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1. Introduction

The present paper is the natural complement of our recent publication [[J] in which an
explicit residue formula for the free-energy in the planar limit (and for arbitrary genus
spectral curves) of the hermitean two-matrix model was derived. In point of fact the
present results, while logically consequent that paper, can be (and in fact are) derived
without using the explicit formula in [[l]. Given the well-known relation of the free-energy
of this model with the tau-function of the dispersionless Toda hierarchy, we could as well
rephrase the entire contents of this (and the previous) paper in the language of integrable
hierarchies.

Let us briefly recall the historical and logical setting of the problem. The object under
scrutiny is the random 2-matrix model [P, B], which has many applications to solid state
physics [fl] (e.g., conduction in mesoscopic devices, quantum chaos and, lately, crystal
growth[f])), particle physics [, 2d-quantum gravity and string theory [f]-[P]. The model
consists of two hermitean matrices M7, My of size N x N with a probability distribution
given by the formula

1 1
dILL(Ml,MQ) = Z—NdMldM2 exp |:_ﬁ Tr (Vl(Ml) + ‘/Q(MQ) — MlMQ) ,

S

o0 [o¢] v
Vi) = Y s Vel = (1.1)
K=1 J=1



where the functions V; (called potentials) are polynomials of degree d; + 1 for simplicity
(and definiteness), but could be formally extended to power series. The partition function
Zy is known to be a 7-function for the KP hierarchy in each set of deformation parameters
(coefficients of V; or V4) and to provide solutions of the two-Toda hierarchy [L0]—[[[2]. This
model with polynomial potentials has been investigated in the series of paper [[3-[[F]
where a duality of spectral curves and differential systems for the relevant biorthogonal
polynomials has been unveiled and analyzed in the case of polynomial potentials. In [[6]
the mixed correlation functions of the model (traces of powers of the two non-commuting
matrices) have been reduced to a formal Fredholm-like determinant without any assumption
on the nature of the potentials and using the recursion coefficients for the biorthogonal
polynomials. We recall that the biorthogonal polynomials are two sequences of monic

polynomials ([[[3] and references therein)
() =2 4+ -+, on(y)=y"+---, n=01,... (1.2)

that are “orthogonal” (better say “dual”) w.r.t. to the coupled measure on the product
space

/ / dz dy 0 (2)om (y)e s V@V =20) — p 5. R, #0VneN, (1.3)
R/R

where V;(z) and V,(y) are the functions in the measure ([[.1). It is convenient to introduce
the associated quasipolynomials defined by the formulas

n(2) = — ey () FVIE)
hn—l
Ouly) 1=~ a(y)o F0). (1.4

V hn—l

In terms of these two sequences of quasipolynomials the multiplications by = and y respec-
tively are represented by semiinfinite square matrices Q = [Q;]ijen+ and P = [Pjjl; jen=
according to the formulae

2Pn(@) = Y Qum¥m(®);  Y¢n(y) =D Pnndm(y)
Qnm = Om: Prn s ifn>m+1. " (1.5)
The matrices P and @ satisfy the “string equation”
[P,Q] =hl. (1.6)

We refer for further details to [[[7] and [[J]-[[[5] where these models are studied especially
in the case of polynomial potentials. We also point out that the model can easily be
generalized to accommodate contours of integration other than the real axes and arbitrary
(possibly complex) potentials [[L7, L.

The partition function is believed to have a large N expansion (with A = t/N and t

fixed) according to the formula

1

1
—mmzN:f:f(O)ijf(lw---. (1.7)



This expansion in powers of N 2 has been repeatedly advocated for the 2-matrix model on
the basis of physical arguments [, [[§, [[9] and has been rigorously proven in the one-matrix
model [B0]. In the two-matrix model this expansion is believed to generate 2-dimensional
statistical models of surfaces triangulated with ribbon-graphs [f, |, 1], where the powers
of N=! are the Euler characteristics of the surfaces being tessellated. From this point
of view the term F(©) corresponds to a genus 0 tessellation and the next to a genus one
tessellation. Remarkably, an algorithm for the computation of the subleading terms in the
h = % expansion is known and also a closed expression of the genus 1 correction F @
[N

The object of [fl] was the leading term of the free energy, F ©), Tt is the generating
function (to leading order) of the expectations of the powers of the two matrices in the

model
(Tr Mi®) = K8, FO + O (N72), (Tt M) =Jo,,FO + O (N7%).  (18)

It is at the same time the logarithm of the 7-function of the dispersionless Toda hierarchy (in
the one-cut case) B3, BJ); this hierarchy falls in a broad sense in the same sort of integrable
dispersionless hierarchies called “universal Whitham hierarchy” (i.e. dispersionless KdV
and KP) and studied in [4], where formulas for the corresponding 7-function are provided
which are quite similar to that in [[[]. However the situation under inspection in this paper
(and in [ll]) involves a hierarchy which does not quite fall in the very broad class of [R4];
there the moduli space under consideration was the set of curves of genus g with N marked
points cog, k= 1,..., N and local parameters around the punctures, together with a fixed
meromorphic differential of the second kind d€ with poles of degree ng + 1 at oog. The
(local) dimension of the space of these data is 3g — 2 + Zszl(nk +1).

The object of interest of the present paper is -among others- the explicit computation
of the double and triple correlators

<TrMi“Terb> , <TrMi“TerbTerc> . ijk=1,2, a,b,ceN. (1.9)

conn conn

or — which is the same — their generating functions

1 1 0 0
Tr T = F
< - M >conn 5‘/1(‘T1) 5‘/1(‘T2)

1 1) 1)
<Tr T — M1 y >conn N 6Vi(x) 5V2(y)]:
<Tr : 2 Ty M2 >conn - 5V2(zyl) 5‘/2(23/2)}-’ (1.10)
1 1
<T1" I — M1 Tr o — M1 .%'3 — M1 >C0nn - 5V1i.%’1) 5V1i.%’2) 5V1(21'3)]:
1 1 1) 1) )
<Tr T A TR M>  Wilen) Vilaa) Vay)
1 1 1) 1) 1)
<Tr — My o Y2 — M1 >Conn ~ Va(y1) 6Va(ya) 5‘/1(95)f
<Tr Y1 —1M2 o Yo —1M2 Y3 — M2 >conn - 5V2iyl) 5‘@in) 5V2iy3)]:’ (L11)



where the “puncture” operators are defined (a bit formally) as

0 — K1 0 — -1
=N+ K-1Kgp, | = Jo, . . 1.12
5V () KZZ:I V() ;y ’ (112

The meaning of the puncture operators when the potentials are polynomials is given by
the understanding that each derivative — say — w.r.t. ux gives a Tr M1® contribution
inside the expectation value. The two-loops correlators ([.10) are well studied and our
results here are not new at least in the one-cut case [PJ], but are needed for computing
the three-loop correlator ([.11)). The latter have not been computed for this model; the
similar problem for the normal matrix model has been addressed in [R6] in a setting that is
a subsetting of our, primarily due to the fact their case corresponds to a spectral curve of
genus 0 plus certain reality conditions. Indeed the planar limit of the free energy F(©) (we
will drop the superscripts from now on) can be defined for any spectral curve £, of genus
g as a closed differential on a certain moduli space and this differential can be integrated
explicitly ([fl] and references therein). In the literature on matrix models the genus of this
spectral curve is related to the number of connected components (called “cuts”) of the
support of the densities of the spectra of the two matrices; in this terminology the case of
genus 0 spectral curves corresponds to the one cut assumption, whereas the higher genus
case to multicut solutions.

In the present paper we complement our previous paper [[[] by computing explicitly
the second and third order derivatives of the free energy. As we have anticipated, however,
these result are derived independently of [f[], only the notation being borrowed thence. We
also point out that the resulting formulas are very close to similar residue formulas in [P4]
which, however, deals with a different hierarchy and moduli space and whose proofs are
not given explicitly therein.

The paper is organized as follows: in section P we set up the problem and notation,
recalling the formula [} for the free energy F, over a spectral curve of genus g. We also
link our present results to the current relevant literature. In section £.1 we give a to-the-
bone review of the Bergman kernel on algebraic curves and of the properties that will be
used in the sequel. In section we compute all second order observables, which include
the derivatives with respect to the filling fraction and the “temperature” ¢ (which can be
interpreted as number operator as well depending on the points of view). Finally, in sec-
tion Bl we compute all third order observables by deriving a formula for the variations of the
conformal structure of the spectral curve under variation of the parameters of the problem.

2. Setting and notations

As in our previous paper [[[] we will work with the following data: a (smooth) curve ¥,

of genus g with two marked points cog, cop and two functions P and ) which have the
following pole structure;

1. The function @ has a simple pole at ocog and a pole of degree da at cop.

2. The function P has a simple pole at cop and a pole of degree d; at cog.



From these data it would follow that P, () satisfy a polynomial relation and hence that the
curve is a plane algebraic (singular) curve, but we will not need it for our computations.?
Moreover we will fix a symplectic basis of cycles {a;,b;j};j=1,. 4 in the homology of the curve.

By their definition we have

di+1

P = ZUKQK ! 6 Z KUgQ 571 = V’(Q)—é%—O(Q_Q), near 0og

do+1

t
Q=> vPt——— Z JV; P~/ = V(P )—E+O(P*2), near cop. (2.1)
=1 J=—1

The fact that the coefficient of the power Q! or P! is the same follows immediately from
computing the sum of the residues of PdQ (or QdP). The polynomials V7 and V5 defined
by the above formula (R.I]) are the potentials of the matrix model whose free energy we
are considering? and the functions @ and P represent the semiclassical (commutative as
per eq. ([L6)) limit of the multiplication operators for the orthogonal polynomials. The
coefficients uf, vy, t are read off egs. (R.1)) as follows

uxg = —res PQ%dQ, vy =—res QP 7dP, t =res PdQ = resQdP. (2.3)
xXQ oop 0Q oop

Note that the requirement that the curve possesses two meromorphic functions with this
pole structure imposes strong constraints on the moduli of the curve itself. In fact a
Riemann-Roch argument shows that the moduli space of these data is of dimension d; +
dy + 3 + g; to the above (di + 1) + (d2 + 1) + 1 parameters we add the following period
integrals referred to as filling fractions

1
€ = — PdQ, i=1,...q9. (2.4)
2im
Here we have introduced a symplectic basis {a;, bi}izlmg in the homology of the curve ¥,
and the choice of the a-cycles over the b-cycles is purely conventional.
The free energy F, of the model (where the subscript refers to the genus of the spectral

curve, not the genus of the i expansion) is then defined by the equations

1 1
OupFg = — 7 1o PQRAQ =Ux,  0,,F, = 7 Ies QP’dP =V,

0, Fy = 7{ PdQ =:T;. (2.5)

"We could also generalize this setting to the case 1 = 2 = co which would simply mean that the two
functions have one simple pole and one essential singularity; this generalization is quite straightforward and
would need only some care about convergence.

2Formula (EI) defines only their derivative; what we mean by 1( ) and 2( ) is explicitly

B d1+1_K X« - d2+1_J ,
()= 2( )= (2.2)

The constant term in the two potential would have trivial consequences as it amounts to a rescaling of the
partition function of the matrix model by e“0*0, which of course has absolutely no consequences on all the
observables of the model.



These equations and in particular the derivatives with respect to the filling fractions appear
in this precise context in [R7]; nevertheless, after identifying the free energy with some tau
function for a dispersionless Whitham hierarchy, similar formulas appear in [R4].

The above equations mean that the coefficients of singular parts of P qua function
of @ (or vice-versa) are the independent coordinates and the coefficients of the regular
part (starting from @Q~2) are the corresponding derivatives of the free energy. Moreover
the a-periods of PdQ are the independent variables and the b-periods the corresponding
derivatives of F,. In fact one should add the extra constraints I'; = 0 to this functional
in order to assure that it comes from a saddle-point integration of the two-matrix model.
However, since we are interested here mostly with the formal N — oo, h — 0, AN =t limit
(as explained in [R8]) we do not impose the extra constraint and treat the filling fractions
as independent coordinates.

It was shown in [l (but see also [Rg] for the extension to the chain of matrices) that
Fy is given by the following equivalent formulas

2F, = res P®1dQ + res QPodP + — res P2QdQ + tu + Z €l
i=1

— ZuKUK—l—ZUJVJ—F—reSP2QdQ+t/L+Z€z i

=1
= Z UKUK + Z
K J
L __9
PO = o L (1 Q(C)) pae

— VA(Q(O) + tn(Q(Q) + / PAQ = ZUKQK 0@ @1

1 P
2(C) = 5o - In (1 - %> QdpP

= —Va(P(Q)) +tIn(P(¢)) + /QdP ZVJP T =0op (2.8)

1
’UJVJ +tu+ Z el — 5252 , (2.6)
=1

Xp
[ = res [Vl(Q) —tln (%)] dS — res [Vo(P) — tIn(PA)]dS —
00Q ocop
g
— 1es PQAS + ) ¢ 7{ ds, (2.9)
e =1 b

where dS is the normalized differential of the third kind with poles at cop and residues
resdS = —1 = —resdS and the function A is the following function (defined up to a
00Q cop

multiplicative constant which drops out of the above formula) on the universal covering of
the curve with a simple zero at cog and a simple pole at cop

A\ i= exp </ dS> . (2.10)



Remark 1. The “chemical potential” p in the context of the dispersionless Toda hierarchy
is the long-wave limit of the Toda field [@g] (denoted by ¢ there) and satisfies, among others,
the Toda field equation which is written, in our notations,
0
8U18U1
Remark 2. In formulas ([2.8),...,(2-9) the open paths of integration are supposed to not
intersect the basis of cycles, i.e., to remain in the fundamental cell of the universal covering

+ Opexp(Orp) = 0. (2.11)

of the curve and the residues involving the multivalued function A are taken to be on the

same cell of the universal cover.

We now make the necessary connections with the relevant literature [B0J-[B5] and [P2}
7.

The equations that define here the free energy in the genus g = 0 case are precisely the
same that define the 7-function of the dToda hierarchy where one imposes the (compatible)
constraint of the string equation to the Lax functions. In the relevant literature [R2}
B3, BA, B the functions P,Q are the Lax operators denoted by L, LYor £,£71 and
the normalization is slightly different. In higher genus our free energy is related to the
tau function for solutions obtained via a Whitham averaging method on some invariant
submanifold of the hierarchy.

The link with the important works [B0] and [BZ|-[Bg] is as follows; if the two potentials
are complex conjugate Vi = V5 =: V then (in genus 0) the functions @ and P are conjugate-
Schwarz-inverted in the sense explained presently; pick the uniformizing parameter A of the
rational curve ¢ to have a zero at cop and a pole at cog(and a suitable normalization)?.
Then one has

1

QW) =P\~

The function Q(A) is then the uniformizing map of a Jordan curve I in the @-plane (at least

). (2.12)

for suitable ranges of the parameters) which is defined by either of the following relations

Q\) =P (%) or Al =1. (2.13)

In the setting of [B3, B0, B3] the function Q is denoted by z (and A by w) so that then P
is the Schwartz function of the curve I', defined by

z=9(z), zel. (2.14)

The coefficients of the potential V(z) = 3, 2k are the so-called “exterior harmonic
moments” of the region D enclosed by the curve I'

1
tgk = — 72 Kz
2
Area(D
t=t //dz/\dz—— Edz:ﬁ. (2.15)
= 2in 2 Jr us
3This is exactly the same appearing in the higher genus formulas; in fact — quite obviously —

=exp [d , which is translated in the higher genus setting simply by replacing d with the third-
kind differential d .



By writing Z = S(z(w)) these integrals become residues in the w-plane. For conformal
maps (i.e. Jordan curves) the 7-function has been defined in [B5] and given an appealing
interpretation as (exponential of the Legendre transform of) the electrostatic potential of
a uniform 2-dimensional distribution of charge in D [B(]

1 1 1
n(m) = —= // In | d%2d? (2.16)
™ D z

It can be rewritten as a (formal) series in the exterior and interior moments as (note that
we are changing the normalization used in [B0] and [B2]-[B4] to match more closely ours)

2In(m) = __// d2Z|Z| + towo + Z (tkwk + tkWK), (2.17)
K>0

where the interior moments are defined by (the normalization here differs slightly from [§J])

Oy, = W 7TK// Kd%z, K>0
Oy = Wwo = — // In|z|?d%z. (2.18)
T JJp

The logarithmic moment wg corresponds to our “chemical potential” p; it is not at all
obvious (at least we failed to prove it by direct integration) but it is necessarily so because
both Fy and 71 satisfy the same differential equations w.r.t. tx (or, in our notation ug =
U ) and the same scaling constraint

AF = —2 + <2t8t + Z 2 — K)ugdy, + Z 2 — vJavJ> (2.19)

Remark 3. Note that formula (B.4) is quite effective in that it allows explicit computa-
tions. For instance in the genus zero case one could do the exercise (e.g. with Maple)
of explicitly presenting the free energy for arbitrary degrees of the potentials. In the ap-
proach of [BQ] and [33]-[G4] the explicit computation in case of regions with finite number of
nonzero external moments would be prevented mainly by the analytic computation of the log-
arithmic moment which, in our approach is nothing but p = (V{(Q)+Vy(P)—PQ)o—tIn~?,
where the subscript o means the constant part in X\ and v is the “conformal radius” of the
domain. This observation leads to the following

Corollary 1. Let D be a simply connected domain with finite number (say d+1) of nonzer
external harmonic moments and let

d
+) @ (2.20)

=vyw + Z ozjwfj , =
= j=0

SIQ

be the Riemann uniformizing map and Schwarz-function respectively. Then

1 _
— // In |z|2d%z = (V'(2) + V/(S) — 28)0 — tIny?, (2.21)
T JJp
where the subscript ¢ means the constant part of the Laurent polynomial in the bracket,
t=1LA4rea(D) and V(z) = ?{4—11 L K with t the K-th external harmonic moment.



Recently [BI]] the above tau-function 71 has been generalized to multiply connected do-
mains. Also this case is contained in our case by imposing the same constraint on the
potentials V; = V5 = V. This amounts to saying that the curve admits an antiholomorphic
involution ¢ given (coarsely speaking) by @ — P and interchanging the poles cop and
00¢. Such a curve would then become the Schottky double used in [BI] and the boundary
of the multiply connected domain would be defined implicitly by Q(¢) = P(¢) (which de-
fines — in certain cases — g + 1 cycles on the curve 29)4. The reader familiar with the

results in [@] will have no difficulty in finding the necessary dictionary to translate the
two settings, provided he/she imposes the restriction on the potentials in our more general
case.

2.1 Bergman kernel

The Bergman kernel® is a classical object in complex geometry and can be represented in
terms of prime forms and Theta functions. In fact we will not need any such sophistication
because we are going to use only its fundamental properties (that uniquely determine it).
The Bergman kernel (¢, (") (where ¢, (" denote here and in the following abstract points
on the curve) is a bi-differential on 3, x ¥, with the properties

Symmetry: Q(¢. ¢") = A, Q)
Normalization: }{ Q¢ =0
¢'€a;

}{ Q(¢, (") = 2irw;(¢) = the holomorphic normalized abelian differential . (2.22)
¢'€b;

It is holomorphic everywhere on ¥, x ¥, \ A, and it has a double pole on the diagonal
A = {¢ = {'}: namely, if z({) is any coordinate, we have

m*%%(Ow(z(o—z(c» dz(0)dz(¢) , (2.23)

where the very important quantity So(¢) is the “projective connection” (it transforms like

2.6 =, |

the schwarzian derivative under changes of coordinates).

It follows also from the general theory that any normalized abelian differential of the
third kind with simple poles at two points z_ and z; with residues respectively +1 is
obtained from the Bergman kernel as

Z4

450 = [T 00, (2.24)

4An algebraic curve of genus  with an antiholomorphic involution and + 1 real components is called
an Harnack’s -curve; in general a curve with the aforementioned properties can have < 4 1 real
components, see for instance[@]

5Our use of the term “Bergman kernel” is slightly unconventional, since more commonly the Bergman
kernel is a reproducing kernel in the 2 space of holomorphic one-forms. The kernel that we here name
“Bergman” is sometimes referred to as the “fundamental symmetric bidifferential”. We borrow the (ab)use
of the name “Bergman” from @}



2.1.1 Prime form

For the sake of completeness and comparison with the results of [B1] we recall here that
the definition of the prime form F((,¢’).

Definition 1. The prime form E(¢, (') is the (—1/2,—1/2) bi-differential on ¥4 x X,

o [5] (W) —u())

ST Ty @
@ = You0 5] | w. (2.25)
k=1 u=

where wy are the normalized abelian holomorphic differentials, u is the corresponding Abel
map and {%] is a half-integer odd characteristic (the prime form does not depend on which

one).

Then the relation with the Bergman kernel is the following

g
Q(¢,¢) =dede InE(C, () = Z 00,0 [g}

k,j=1

wi(Qw;(¢")- (226)
u(¢)—u(¢")

2.2 Second order observables

The second order observables of the two-matrix model (in fact, the multi-matrix model)
have already been investigated in the literature [P§ B, PJ and their relation with the
Bergman kernel extensively documented. Here we just bring a different and possibly more
rigorous derivation of those identities. The main reason why the second order observables
appear already in the literature is the expectation (and -in some cases, mostly in the one-
matrix model setting- proof) of their “universality”, that is their “independence” on the
fine details of the potentials. This paragraph will support once more this point of view;
indeed we will see that these generalized “specific heats” do not really depend on the
potentials but only on the spectral curve of the model and can be described by geometrical
objects directly linked only to the curve itself. That is to say that these second order
observables will be the same for any pairs of potentials for which the conformal structure
of the spectral curve is isomorphic.

Of course this is no proof of universality, since there is no (rigorous, to our knowledge)
proof that the free energy as defined in this paper is really obtained from some scaling
limit of the partition function of the matrix model. Such a proof exists in the one-matrix
model and uses rather sophisticated tools (Riemann Hilbert problem) [£0]. A first step in
this direction has already been taken by collaborators and the author in [[L3].

On the other hand we will see in section f that universality does not hold for third
order observables, which will not depend purely on the conformal structure of the spectral
curve but on the functions P and @ explicitly.

Let us start with 0y, 0y, F

207 Oy O, F = iaw ]é PQ¥AQ = 1 }[ (0u,P)oQ%dQ . (2.27)
K o0 K Jooq

,10,



Let us focus our attention on the differential (0,, P)od@ (or (0,,P)gd@), where the
subscript indicates that the corresponding quantity is kept fixed under differentiation. It
follows from the definition of the coordinates on the moduli space and from eqs. (P.1]) that

(Oup P)odQ = (QK_1 + O(Q_Q)) dQ near 0og
(Oug P)dQ = —(04,,Q)pdP = O(P~%)dP  near cop

 @ueP)od@ = 0, =0, (2.28)

J

and

(0u, P)dQ = —(0,,Q)pdP = (—P~1 + O(P7?))dP near cop
(0y,Q)pdP = O(Q™?)dQ near oog

y{ (0p, P)QdQ = —0y,¢; =0. (2.29)
a;

In these formulas we have used repeatedly (and we will use it many times) the so-called
thermodynamic identity (or reciprocity)

(0P)@dQ = —(9Q) pdP, (2.30)

where 0 denotes any derivative. This is immediately obtained by differentiating P as a
composite function with the (local) inverse of Q.

Note that the only singularities of these differentials are at the two marked points (see
the discussion on the third-order observables for a proof that there are no poles at the
branch-points). In other words (9,, P)odQ and (0,, P)qodQ are abelian differentials of the
second kind (i.e. with poles but no residues), normalized (i.e. the a-periods vanish) with a
pole of degree K + 1 or J 4+ 1 respectively only at cog or cop respectively. It is immediate
that this differential is uniquely determined and can be expressed in terms of the Bergman
kernel as follows

PucP)edQC) = 5o § Q26,0
Q

(00, P)gdQ(Q) = (0, Q)pdP = 5 — fi,o RGOt (2.31)

Indeed, when ¢ ~ cog we have (using z = 1/Q(() as local coordinate)

I0C,0) = — fi j] [(% +0(1)} dzd?’

2im] 0Q 2imJ z—2)
= (—z777140(1)) dz = (Q7+0(Q %)) dQ. (2.32)
It then follows that
_ 1 K(m\OJ (5 =
uF = ey . §. @FORTOACH. (2.33)
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By similar arguments one obtains also the formulas
1
2imK Jooq
1 K
= — . dP
2K . Q ((9 JQ)P
1 ~ ~
= Q Kyp’ 2.34
(21'7.‘-)2](!] f;oQ f;oP (Ca C)Q (C) (C) ( 3 )

Y0 F = gy B § PROPIO0CE (2.35)

We now compute the second derivatives w.r.t. the filling fractions; to that extent we notice

aﬂ}( ava _ QK(aUJ P)QdQ thermodyn;nic identity

that (0, P)@dQ is holomorphic everywhere because

0(Q%)dQ near ooq

= _(8€jQ)PdP = O(P_Q)dp near oop . (236)

(aejP)QdQ = {

Thus it is regular at the marked points and has no other singularities (the poles of the
variation at @ fixed of P cancel with the zeroes of dQ; see discussion in section [f}). Moreover
it satisfies

2imdjp = 2im0;; € = Ok, j{ PdQ = j{ (0, P)@dQ . (2.37)
ag a

Therefore (8ej P)odQ@ = 2irw; where {w;};=1. 4 is the basis of normalized abelian holo-
morphic differentials. As a consequence we obtain

Oc; 0, F :j{ (0, P)@dQ = 2@'71'?{ wj :jé ?é Q= 2wy, (2.38)
by by by, Jb,

where 7 = [7;;]i j=1..¢ is the period matrix for the holomorphic curve.
The other mixed derivatives are easily computed along the same lines as above to be

— 1 ! K1
auKaejf - 2K 7{6@- ioQ Q(C7C )Q (C )
-1
00ucF = 5o Q148
0Q

1
F = P/
09, 2inJ %OOP d5

ataej]::f ds = uj(ooQ) —uj(ooP)
b
OFF = In(3),

In(y) := —resln <%> ds, In(®) := res In(PX)dS. (2.39)

0Q

(Note that the product v does not depend on the arbitrary multiplicative constant entering
the definition of the multivalued function A). The first two relations are obvious recalling
that [fl]

dS = —(0P)qdQ = (0:,Q)pdP. (2.40)

The third relation is a well known result for the third-kind abelian differential.
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We shall prove the last relation: we start from the first derivative of F (p, also called
chemical potential) and its expression given in our previous paper [[[]

iy = 2imd,F
_ f;@ <V1(Q)—tln (%)) ds—iop (Va(P) —tln(P)\))dS—fgoQ PQAS +

g
+2i7726j% ds
j=1 “bi

_ Q _ N
— ilen(A)PdQJrf;opln(m)QdP iOQPstHm;e]j{jds (2.41)

We can therefore compute

=2 Iny
=—dS
. 1 Q\ —m——
QZﬂat/L = — - (Ot)\)Q PdQ + In | = (BtP)QdQ—i-
cog A cog  \A
=2imIny
=dS
1 /_/H
ocop oop
:_(ati)Q dQ :_(at:)P dP
dX d\ 4
_ 74 P Q2 - 74 Q @)L +2ir Y ¢ 7{ (0,48)p
Q A Qg A : b,
J=1 J
= 2imIn(y7y), (2.42)
where we have used Riemann bilinear identity to move the residue of the following term
on line (2:49)
1 1
y{ X (ON) p QAP = —j{ X (ON) p QAP +
cop ocop
=—2ime;
g ——
+Y ¢ Qdp ]é (8,dS)p — }[ QdP ]é (8,dS)p| . (2.43)
j=1"4% b b a;

=0, §, d5=0

This concludes our analysis of the second order observable of the model. We repeat here
for the sake of completeness that we are aware of a prior derivation in [Pg] and [R6] for the
case of conformal maps and genus 0 (one-cut case [F]).

2.3 Extension to formal power series for the potentials

The present derivation for the second derivatives does not rely on formal manipulations
involving higher ux or v;. However it gives a deeper insight to use such a formalism. To
that end we will now think of the two potentials V7 and V5 as infinite power series, without

,13,



concern about their convergence. This is often done in the physical literature [[[9), and
yields the correct results in a faster and possibly more elegant way. To this end we define
the puncture operators

0 } : —-K-1 } : —-J-1
= Ko, ) JOy 2.44
(”1((]) K lq K (”2 P - ( )

Using this formalism we realize that our free energy F, is nothing but the generating
function of the Bergman kernel on the selected curve

= ) )W)
W@M() 4 ioniQ O)le -~ a@) ~ aac@aacqn’

where the integrals are to be read in a formal sense of inverse power series in ¢, ¢, coefficient
by coefficient; indeed each coefficient is precisely given by formula (.33). In eq. (.45) the
notation ((q) means the point on the curve that projects on the physical sheet of the
projection Q. The physical sheet is the sheet that has no cuts extending to infinity. On
the physical sheet the formula is not formal; on the other sheets it should be properly
understood as analytic continuation.

Similarly we have the other formulas where the P-projection is involved

_®F 1 (¢, ¢)
TV P = el f;f; »—PO) - P(O))
_ Q(C(p),C
dP(<<p>>dP<<(
2F ;1 U
Vilg)ova(p) 1Y = e f;Q fi,o 00 — P

_ Q(C(q)7Cp’)) . (2.46)

dQ(¢(g))dP(C()

To be more precise, these formulas are exact (modulo the issue of convergence of the

potentials) only in a neighborhood of the respective punctures where @@ and P provide
univalued coordinates.

It is interesting to recast the problem upside-down: let it be given a smooth curve
of genus g ¥, with Bergman kernel © (which implies a fixation of symplectic basis in the
homology of the curve) and two marked points cog p such that:

e there exist two functions ), P with simple poles at the respective marked points;

e the only other singularity for the functions above are essential singularities at the
other (respective) marked point.

In this setting we can define “coordinates” ug, v; by means of formulas (R.3) and then
the expansion of the Bergman kernel around the punctures in the coordinates provided by
the functions P, () are the second derivatives of a “tau” function.
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2.3.1 Relation with conformal maps

The reader trying to bridge the present setting with [BI] should be warned that the puncture
operator here is not the “infinitesimal deformation” operator ibidem. Their operator would

be written in our notation

S R
- N+ Ko, | — Oy | 9.47
THOID SRR 7 P LR (247)

with the relation (e.g. for the 2 — z two-puncture case)

d4d o 0 _ 0 I 5
dl‘l dl‘g(;‘/ll(xl) (SVY(‘TQ) g_6V1(m1) 5‘/1($2) g

(2.48)

Therefore their double-deformation is the antiderivative of our double puncture. This is
why in [BI] they have the logarithm of the prime form® whereas we have the Bergman
kernel. Since in this paper we will not investigate Hirota equations (i.e. Fay’s identities)
which involve the prime form more naturally than the Bergman kernel, we will not pursue

this observation any further.

3. Third derivatives: Beltrami differentials

In this section we compute the third derivatives in terms of the canonical structures and
data of our moduli space. We must note here that in the case of the tau-function for confor-
mal maps of connected domains (i.e. genus 0 case) constructed by Marshakov, Krichever,
Wiegmann, Zabrodin et. al. these formulas are known [B2] (see appendix BJ). In or-
der to obtain their “residue formulas” from the formulas we are going to write down, we
should restrict ourselves to the genus zero case and impose that P(\) = Q(1/X), A being
the uniformizing parameter of the rational curve with A(cog) = oo and A(ocop) = 0 (see
appendix [§). However our formulas cover a more general case that would includes the
situation of conformal maps of multiply-connected domains [BI, were we to impose some
restriction of reality on P and @ (as explained in section

When computing a variation in the moduli of our problem {ux,vy,t,¢€;}, we introduce
a deformation of the conformal structure of the curve. We will see that this deformation
is equivalent to introducing simple poles at the branch-points of one or the other of the
two projections @ : X, — CP"! and P : Yy — CP!, depending on which among @ and
P we keep fixed under the variation. Let us denote by q,,u = 1,...,d2 + 1+ 2g and
Pv, v = 1,...,dy + 1+ 2g such points and then by @Q,, P, the corresponding critical
values; here we are implicitly making an assumption of genericity of the potentials, in
that we will consider these branch-points as simple. Were we to consider more degenerate
cases (critical potentials) we would have to modify some of the formulas below (mainly the
Beltrami differentials). Note that critical potentials (i.e. potentials which are fine-tuned so
as to have degenerate singularities of the maps P and Q) are very important for applications
to conformal field theories in that they provide instances of minimal conformal models.

SHere we are speaking rather loosely; we should also fix a coordinate and consider the prime form as a
bi-function by trivializing the spinor bundle.
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Coming back to our generic situation, let us consider the case of the Q-projection, the
other case being totally similar. The projection @ : X, — CP! determines the confor-
mal structure of the curve and hence it suffices to consider the variation of the structure
arising from the deformation of this projection. Consider first the branch-points of the
Q-projection and introduce the local parameter in a neighborhood of the critical point g,

C,u: \/Q_Q,u- (3'1)

As we know, the critical values of both projections Q and P are not independent coordinates
in our moduli space; they vary when performing a variation of our moduli. Let us call
any infinitesimal variation of our moduli. Under such a variation (), also undergoes some
variation 0Q),. Suppose now we have a germ of function F in a neighborhood of ¢, (which
may also depend explicitly on the moduli) and we make the variation 9 at @Q-value fixed.

Then
9Q, dF (G,)

S 2¢,  dg,

where 05 F' denotes the variation of F' coming from the explicit dependence on the moduli.

(OF (Cu))q = + 9oF (Cy) (3.2)

We see immediately from (B.2) that, generically, the variation has a simple pole at each
branch-point of the @-projection. Ditto for the branch-points of P when computing a
variation at P-value fixed.

A variation of the moduli induces a variation in the conformal structure of the under-
lying real surface ¥ ; these infinitesimal variations are described by the so-called “Beltrami
differentials”. They consist of differentials of the form

WD T € L(S,)., (33)

and enter into Rauch’s formula [i]] for the variation of the Bergman kernel

5N%O=/AMWMW@W&0- (3.4)

It is shown in many places [BY and [[]-[3] that varying the image of a branch-point b of
a covering ¢ : Mg, — CP? corresponds to the following Beltrami differential (in terms of a
local coordinate z centered at b)

1 dz

where 1. is the characteristic function of the e disc and € is a parameter small enough so
that no other branch-points fall within the disc. This is called “Schiffer” variation and
corresponds to varying the critical value of a simple branch-point; for higher order branch-
point see [BY. Plugging this into (B.4) and using Green’s theorem followed by Cauchy’s
residues theorem one obtains simply a residue

Q " Q ! "
Bus G, ¢) = rgs TR

(3.6)

,16,



Our setting is slightly different, in that we have two projections P and @) and the respec-
tive branching values are not independent moduli but vary together with the {ug,vs,¢€;,t}
moduli of our problem. Therefore all we need in order to find the Beltrami differentials
corresponding to these variations is to be able to find the coefficients 9@, and 0P, that
appear in eq. (B.2)). To this end let us now consider the case of a differential of the form
Fd@Q. It follows from the above discussion (and we have already used this fact implicitly
to compute the first variations of PdQ) that its variation at @ fixed will be holomorphic
at the branch-points because the differential d@Q has simple zeroes there which cancel the
poles of the variation of F.

Suppose now that for some reason we have a way of identifying independently what
differential is w := (0F)d@ Then we could compute the desired coefficients Q) , as in the
following formula

dF .
%ﬁm=4wﬁam>mmm
aQu = _diF(qM) . (3.7)

We now apply the above to the case F' = P and the differential Pd(Q); in this case we have
already discovered that

1. the derivative of Pd() w.r.t. ¢; is the holomorphic normalized abelian differential

(0; P)@d@Q = wj;
2. the derivatives of PdQ w.r.t. ug or vy are given by eq. (R.31));

3. the derivative of PdQ w.r.t. t is the normalized abelian integral (0;P)od@ = dS of
the third kind with poles at the marked points.

Therefore the parameter 0Q),, and 9P, are given by the following formulas

-
1 é@_«@)

s
8ejQ,U« == é au - _% dP(C) 'CZQ;L
7{ QO (¢, Q)
5 Q _ 1 00Q
ure Qp 2%inK dP(¢) 'CQH

P(¢)7Q(¢, )

1 Joop
0oy Qu = 2imJ dP(¢)

JEs

>Q

dP(¢)

‘CQ;L

Q= — (3.8)

‘CZQLL
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Repeating all of the above but interchanging the role of P and @ we find (note the opposite
signs, coming from the thermodynamic identity)

o
1 7{b 9

aev v = wj
LA T7] M T ToT( 'Cp,
1 74 QO 9. d)
au Py = 5 =P
K 2imrK dQ(C) 'C:p,,
L $ PO
8vzpu = T3> =P ‘
‘ 2imJ dQ(Q) C=py
| ed
P, =29 _____ : :
: aQ10) L,,y (39)
In general we can write the formula (0 denoting an arbitrary variation)
0P)qd
00, = ~TGE| =it
0 dP
op, — -2l = OP)al). (3.10)

We are now in a position of expressing the Beltrami differentials corresponding to a varia-
tion in our moduli as in

do+1+2g di1+1+2g

Z 0Q ) = Z oP, ) (3.11)

(©)

where the notation pg. denotes the Schiffer variation centered at the point ¢. The equiv-
alence sign = means that the two expressions determine the same variation of conformal
structure. Indeed we should remind that any two Beltrami differentials p and g determine
the same variation of the conformal structure if for any quadratic holomorphic differential

//%,@://E i, (3.12)

g

® we have

Indeed, for ® € H(K?) a holomorphic quadratic differential we have

da+1+42g da+1+g da+1+g

o (OP)odQ ®
0 // = 0 res — = — res ——~—*—~
Z Qﬂ luSc Z Qﬂ - dQ ; (=qu deP
dli‘i’g o (aP)QdQ q) dli‘i’g 8P @
= —x - = ), Tes —— =
2o K aQap T & T ap
di1+1+2g

= Z dP, // pe (3.13)
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thus proving the equivalence of the two Beltrami differentials. The equality marked (%)
follows from the fact that the differential % has poles only at the branch-points of
P and @, and the sum of all residues must vanish.”

From Rauch variational formula (B.4) (see also [B9]) follows then that the variation of
the Bergman kernel under such a Beltrami differential is

da+1+2g

/ (¢, U, )
00(¢, = res 0Q,————="—=
(02(¢,¢))q ; 2es 9Qu 100

da+1+42g

_ . <aP>QdQ<> (6,00 \ 1
,; a 4P()dQ() 31

di+1+2g
OGN = 3 s o, —“di(é) )
:dlggziei (m)PdfP(fc))d(fy(g e 1
Using the expressions above for the coefficients dQ,, and OP, we obtain then
Lwag f, o 0000EC0E
@006 e = =557 ; i dP($)dQ(()
| | e P, QRGO RES
e dP()dQ(Q)
L mne f PERGOACOREE
@06 = 577 ,; a dP()dQ()
v [, 9609 N0C)
@R(¢.Ng =~ Y res =8 - (3.16)

= dP(¢)dQ(C)

The variations at P fixed would be given by the same formulas as above but replacing the
sum over the critical point of @ by the sum over the critical points of P and changing the
overall sign.

The reason why we distinguish between the variations at @ or P fixed will be clearer
in a moment.

Indeed let us compute now the third derivatives of F,. If for example we want to

compute Oy, 0y, Oy, Fy the simplest way is to leave the variation of v last so that we will

"The differentials (  )od have poles at most of degree o + 2 at cog or 1 + 2 at cop but those are
canceled by the poles of d d at those points, of degree 2+ 3 and 1 + 3 respectively.
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be varying at @ fixed;
OuyOuy Ovpe Fg = O OuyOuy Fy
1 QK
= favK —(auLP)QdQ

20 QK
_ # J NL !
= Gt §.Q0" Q0 20
_ 1 J "N\L /
=~ . f. QOTQ Oul e
1
T TRiMJLE
B (¢, (¢, O, Q)
. J /LP K ; ~, A ;
DI 7[20@ 71@ 711;@(0 Y h e
d2+1+42g
_ (Ovic P)@dQ(0u, P)@dQ (0, P)@dQ
_ ;1 res odr . (3.17)

Performing the variation at P fixed, since P is not a local coordinate near the marked
point 0o, would introduce unnecessary complication to the formula (basically adding an
extra residue to it). Thus we need to pay the necessary care in choosing which among P
and @) needs to be kept fixed in order to have the simplest formulas.

With this caveat in mind can thus now compute the third derivatives of the free energy.
The resulting formulas should be compared with the residue formulas in [BZ, 6] (which
would correspond to genus g = 0 here) The formulas are simplified if we introduce the
quadri-differential

(61, )¢, )23, €)

R GO A T (3.18)
and the notations
Uk(S) = (Gux PJotQO) = 5 QY AGE),
Vi(Q) = (00, PhadQ(O) = —575 § PICYACE). (319
We also recall that P
wj = (0, P)odQ,  dS = —(8,P)gdQ, (3.20)

are the normalized abelian differentials of the first and third kind respectively. With these
definitions and reminders we have

da+1+42g

- wi(Qu;(Qwr(€)
aqaejaék]:g - ; Cl":e(i deQ
1 do+1+42g
- res QB ;62,633
T ; Jes jiebi 7{26% 7{3651@ (CHENEHE)
di1+142g ) .
- X Mg
v=1 v
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d2+1+2g

(362(9 at = 2271_ Creqsu féleb fé‘;eb \/CS oo Cla C2a C3a C)
do+1+2g d1+142g

B wi(C)wj(C)dS(C) _ wi(§)w;(¢)dS(¢)

‘Ekﬁ @mm“;ﬁiﬁmwm

d2+1+2g
2 _ 3 1
aqat fg = 217{_ CI’G;H félEb /C; g /CS oot (Cla C2a C3a C)
i1 wi(QdS(©O? MR wi(QdS(0)?

o ,; o AP(QAQ() ; S AP(OaQ0) (3.21)

The third derivative w.r.t. ¢ has to be treated with some care, although the result is a
formula of the same sort. For the purpose of this computation it is best to choose as
basepoint defining A the marked point cog, regularizing appropriately the integral

A= )( dS = lim [ dS—n(Q(0) = lim [ dS——In(P(C))+— In(vgys1). (3.22)
00Q (—00qQ J¢ (—o0q J¢ 1 dq

This is just a convenient normalization of the function A with the property that

(@ In(\)p = / 0dS)p,  (Gn(\)o = / (:dS)o. (3.23)

Q Q

Using these properties we find

8?}—9 = 0y In(yy) = 0; ( resIn Q Q — res ln(P/\)d)\
00Q A A A

reg L0e@)AdA (0:Q)rdA res (0pP)xdA
00Q QA cop P
( )QdQ (9t)\)PdP
ST o TR T s
OOl (@ n(N)pdP
%Q Q oop P
d@ foo foop 9,42 dp fOOQ focfg (0:Q)p
- Q S P
-0

:[:Q/m?@m - [ @

d2+1+29

0Q 0Q
oor 31
_ ms/ / / QO (¢1, o, C3:0)
1 = J¢i=00g Ja=00g J3=00g

d2+1+2g di1+142g

- LC)?’_— resw
- E:J%AP@MQ@)_ §:¢pﬂm@mQ@y (3.24)

— 21 —



The other derivatives are

s SR Y
0,007, = = 3 i HGHIIO TS GO0
=S SR 5 T SO,

In all of the above formulas we can move the sum over the residues at the critical points
of either maps P and ) because the differential has poles only at those points and not
at the marked points. Indeed the denominator has a pole of order di + 3 and do + 3 at
oog and oop respectively, and the pole of the numerator never exceeds these values. In
the remaining derivatives, instead, the simplest form is obtained by summing over only the
critical points of one of the two maps, case by case:

d2+1+2g 2
o 402U (<)
0; Ouy Fg = ; =g, dP(0)dQ(C)
di1+1+2g

- dS(¢)?v;(¢)
0100, Fy = D 1% T5EA00)

v=1
da+1+2g dS(OUx (OU5(C)
atauKaUJ]:g - ; Cr:eqsu dP(C)dQ(C)
- wi(QUK (U ()
Oer D Oy Fy = ,; &, T dP(0AQ(Q)

da+1+2g
. UL (U (U (C)
O Ouse 0, Fy = — ,; &, dPQ)dQ(C)

dao+142g
- Vi (QUK (U (C)
8vLauKau1fg - ; CI‘:eqSM dP(C)dQ(C)
d1+142g

B dS(OVk(OVs(Q)
OW0ucOsFa = = 2 1% = Ip(0a00)

d1+142g wi(OV (OVs(C)
0e; 0y 0, Fg = ; p  dP(O)dQ(C)

di+142g

- VL(OVr (Vi)

Ou o0y Ty = D, 108 = om0
di+142g

B UL VK(OVs(Q)
Ous Doy O, Fy = ) X8 == 5o

v=1

(3.26)

v=1
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Although we have not written it each time, it is clear that any of these derivatives is

obtained by means of suitable integrals of the kernel Q(?’vl)(o, e o () over

1

1. a b-cycle corresponding to each variation w.r.t. €’s (times 5-);

2. a circle around oog against Q€ /(2im K) for each variation w.r.t. uk’s;
3. a circle around ocop against —P” /(2iw J) for each variation w.r.t. v;’s;
4. a path from ocop to cog for each variation w.r.t. ¢;

followed by minus the sum over the residues at the points ( = g, if there are two or more
derivatives w.r.t the ug’s or two derivatives w.r.t. t and one w.r.t. ug, or the sum of
residues at the points ¢ = p,’s if there are two or more derivatives w.r.t. the v;’s or two
derivatives w.r.t. ¢t and one w.r.t. vs. In all other cases the choice of residues is immaterial.
Using the above results somewhat liberally in the case of potentials given by power
series we obtain
Corollary 2 (Three-loops correlators) Denoting by ((z) the inverse function of Q(()
=z and Z(y) the inverse function of P({) = y on the respective physical sheets we can

write the three-loop correlators as follows

> zes QPV(C(@), (o), C(+"); )

1 1 1 _ C=qu
<Tf PR VA VA S V3 >Conn T T AQU@)AQC @) AR (")
res QG (¢(2), (), C(y);
< 1 1 1 > Zﬂjw (¢(@), ("), C(y); )
Tr Tr — Tr = - = , (3.27)
r—M =M y—M;/conn dQ(¢(2))dQ(¢(z"))dP(¢(z"))

and similarly for the other two three-loop correlators but summing over p,’s and with an

overall minus sign.

Proof. The quotes are because a complete proof should address also the issue of convergence
of the series involved. Indeed we can obtain the above correlators by applying the relevant
puncture operators, which can be done only by considering infinite series for the potentials.
At the end of this process we should set all the coefficients but a finite number to zero so
that the final formula involves only a finite sum of residues. Since we are not addressing
the summability of the series involved in this procedure we cannot claim rigor for this
proof. With this in mind we nevertheless proceed on a formal level. For instance the first
correlator would be

Z x_K_11'/_Kl_11'”_K”_1KK,K”8uK 8uK, 8uK,, fg —
K,K' K'"=1
BT QK QX QNS @y o
e Q ’ M
(2i7r)3 KJ(;I;”l f{oQ %}OQ ioQ Zﬂ: Cr:eqsﬂ K (x/)K/Jrl (ac”)K/url (<7 C 7C ,C)
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We can interchange the sums with the integrals (and sum the resulting geometric series)
if the loops around oog project — e.g.— to circles in the @Q-plane which leave z,z’,z” in
the unbounded region, that is, if |Q({)/z|, etc. remain bounded and less than one. In this

case we have then

= ! 1 1 1 (3,1) 1o,
(*) (2Z7T)3 f;oQ fi)oQ f;oQ Zﬂ:CI'ZGqS‘L T — Q(g) x! — Q(C/) ! — Q(C”)Q (C?C 7C 7<)
(3.29)

which provides the result by residue evaluation (the only residues are at the three points

¢(z),¢(z"),¢(2")). The other correlators are computed exactly in the same way. “Q. E.
D.77

4. Conclusion and outlook

The main result of the paper is the formula for the triple derivatives of the free energy for
arbitrary genus spectral curves. En route we have computed the variation of the conformal
structure of the curve, which would in principle allow to compute derivatives of any order.
Quite clearly the task becomes an exercise in complication (see similar problems in [Pd]).
We also remark that in many practical uses the third derivatives suffices to determine many
relevant properties. In particular our formulas should be sufficient to address completely
the issue of associativity in both sets of variables {ux} and {vs}. It should be remarked
that the multi-loop correlators of the one-matrix model (which is a sub-case of the two-
matrix model when one potential is gaussian) were presented by means of a recursive (and
hence not totally explicit) procedure in [f4].

We have not considered the mixed correlator

Mz, y) = <Trw_1M1 y_1M2>. (4.1)

Such correlator is not universal and can be obtained via loop equations in the large -
limit [fg, [[§, Y, f§). The mixed correlator (JL.1]) has also already been computed exactly
in the finite N = dim(M;) regime in [1q].
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A. Example: the gaussian-gaussian model

If both potentials are gaussian (d; = da = 1) then the spectral curve is a fortior: rational.
There is nothing new in what we will write in this appendix since the tau-function has
already been computed (see [B(|, with the warning that we are using different normal-
izations for the parameters) corresponding to the elliptic case (it suffices to consider the
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holomorphic and antiholomorphic coordinates as independent in their formulas to obtain
ours). We choose the normalization of the coordinate A so that

Q) = YA+ g+ aA™!
P ="'+ 00+ AA, v eR. (A1)

Using the formula for the free energy and computing the residues one obtains

3 2 4 t(U,QUlQ + Ugu% + 21)111,1) .

T
— )¢
VUugvg — 1> 2 UgVy — 1

In this case one can check by direct computations that our residue formulas yield correctly

2Fo = t*In ( (A.2)

the third derivatives of Fy (a computer aided algebra system like Maple will help for the
computations of residues).

B. Relation with conformal maps

We want here to show that the “residue” formulas in [R6, are contained in our formulas.
We recall that the comparison is achieved by taking (see section f) z = Q, d1 = dp = d,
Vi = Vo =V and using

d
Q) = YA+ aa

i=0
v d ;
P()\) = X + ;ai)\l
In this case the Bergman kernel is simply
dAdN
QNN) = ——s B.2
( ? ) ()\ _ )\/)2 ? ( )

and the differentials of the second kind reduce to
_ _ 1 / K _ d K _ 1 K
Us = (0u P)adQ = = res QANIQNT = - (QF (V) dh = =d (QF(V) , , (B3)

where the subscript ()4 means the nonnegative part in \. Then our formulas reproduce
exactly those in [BJ] when proper identifications are made (our normalization differs from
theirs).

C. Example: the gaussian-cubic case

Here we show how to compute the free energy and derivatives for the case Va(y) = %yQ—{—vly
and Vj cubic (one could do the exercise for higher degree potentials, the expressions become
quite large but can be obtained explicitly e.g. with Maple). This case corresponds to the
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one-matrix model® and indeed the spectral curve is hyperelliptic. We will however restrict
ourselves to the genus zero case where computations can be made completely explicit.
Indeed we have

Q) = A+ a0 + 5
2
.mm:}+§:@w. (C.1)

We see that here the computations of all derivatives are possible in explicit terms because
@ has only two critical points; in all cases in which (when computing the third derivatives)
we should sum over the residues at the critical points of P we can replace the sum by
summing over the critical points of @ plus the other residue at A = 0. We can eliminate
the parameters «; as follows (sometimes that makes formulas shorter)

ag =v1 +v20, Q1 = V27, t=aif —*. (C.2)

In order to express the free energy in terms of the coordinates uj we should invert an
algebraic set of equations which can be done numerically at least. Nonetheless we can
compute the free energy and any derivative up to the third using our formulas. The quadri
differential Q3! is simply

dAdAadAzdA
(A1 = A)2(A2 = A)?(A3 = AP NQ'(N)

QB (A, dg, g A) = (:3)

Using e.g. Maple one can immediately compute all derivatives by residue evaluations. For
instance the chemical potential is

4 4820001 + ao’Br + fo*er  Paan®

2
p=0Fo =" —apfo — Prar +2tIn(y) 2 32 (C.4)
and we have (just two examples)
A3 2
RFy = 1 vy B (C5)

V5 — 4 82°v5393 + P22 5% — 274 By
03, =8 <7 (72513 + 4792327 + 129° BB B2 + 29 o> B + 3 B12Bo® + 24 8o Bova® +
+ 4812 8oy va® + 12 81 B2 Bov2” + 472 B182°v2 + 127 B> B v —
— 67 B2B0B1%v2 — 7 Br v — 3ﬂ13ﬁ02v2>> X

X (=72 +482°v2% — B1%vs® + 22y ﬁl)_l : (C.6)

8Quite clearly the corresponding matrix model would have to be defined with normal matrices with
spectrum on certain contours, rather than hermitean matrices @]

,26,



References

[1] M. Bertola, Free energy of the two-matriz model/dToda 7-function, Nucl. Phys. B 669 (2003)

434 [hep-th/0306184].

)

M.L. Mehta, Random matrices, 2nd edition, Academic Press, New York 1991.

P.M. Bleher and A.R. Its, eds., Random matriz models and their applications, MSRI
Research Publications 40, Cambridge Univ. Press, Cambridge, 2001.

T. Guhr, A. Muller-Groeling and H.A. Weidenmuller, Random matriz theories in quantum
physics: common concepts, |[Phys. Rept. 299 (1998) 189 [cond-mat/9707301].

M. Praehofer and H. Spohn, Universal distributions for growth processes in 1 + 1 dimensions
and random matrices, |Phys. Rev. Lett. 84 (2000) 4882

J.J.M. Verbaarschot, Random matriz model approach to chiral symmetry, Nucl. Phys. 53

(Proc. Suppl.) (1997) 8§ [hep-1at/9607086.

F. David, Planar diagrams, two-dimensional lattice gravity and surface models, [Nucl. Phys. B

257 (1985) 43,

P. Di Francesco, P. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices,

Rept. 254 (1995) 1| [hep-th/9306153].

T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-theory as a matrix model: a
conjecture, |Phys. Rev. D 55 (1997) 5112 [hep-th/9610043].

K. Ueno and K. Takasaki, Toda lattice hierarchy, |Adv. Studies Pure Math. 4 (1984) 1.

M. Adler and P. Van Moerbeke, String-orthogonal polynomials, string equations and 2-Toda
symmetries, [Commun. Pure Appl. Math. 50 (1997) 241|.

M. Adler and P. van Moerbeke, The spectrum of coupled random matrices, [Ann. Math. 149

(1999) 921| [hep-th/9907217].

[14]

[15]

[16]

M. Bertola, B. Eynard, J. Harnad, Differential systems for biorthogonal polynomials
appearing in 2-matriz models and the associated Riemann-Hilbert problem,
hlin.si/0208009, to appear in Comm. Math. Phys.

M. Bertola, B. Eynard, J. Harnad, Duality of spectral curves arising in two-matriz models,
[Theor. Math. Phys. 134 (2003) 25|

M. Bertola, B. Eynard and J. Harnad, Duality, biorthogonal polynomials and multi-matrix
models, [Commun. Math. Phys. 229 (2002) 73 [plin.si/0108049).

M. Bertola, B. Eynard, mized correlation functions of the two-matriz model, J. Phys. A 36

(2003) 7734.

[17]

M. Bertola, Bilinear semi-classical moment functionals and their integral representation, El

App. Theory 121 (2003) 71|.

—
©

DO
=)

0

= e Y X

B. Eynard, Large N expansion of the 2-matriz model, |J. High Energy Phys. 01 (2003) 051)

B. Eynard, Large-N expansion of the 2-matriz model, multicut case, math.ph/0307052.
N.M. Ercolani and K.T.-R. McLaughlin, presentation at the Montréal 2002 AMS meeting.
V.A. Kazakov, Ising model on a dynamical planar random lattice: exact solution, Phys. Lett)

A 119 (1986) 140.

,27,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB669%2C435
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB669%2C435
http://xxx.lanl.gov/abs/hep-th/0306184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C299%2C189
http://xxx.lanl.gov/abs/cond-mat/9707301
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C4882
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C88
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C88
http://xxx.lanl.gov/abs/hep-lat/9607086
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB257%2C45
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB257%2C45
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C254%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C254%2C1
http://xxx.lanl.gov/abs/hep-th/9306153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C5112
http://xxx.lanl.gov/abs/hep-th/9610043
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ADSPM%2C4%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C50%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ANMAA%2C149%2C921
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ANMAA%2C149%2C921
http://xxx.lanl.gov/abs/hep-th/9907213
http://xxx.lanl.gov/abs/nlin.si/0208002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C134%2C25
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C229%2C73
http://xxx.lanl.gov/abs/nlin.si/0108049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C7733
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C7733
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JAPPT%2C121%2C71
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JAPPT%2C121%2C71
http://jhep.sissa.it/stdsearch?paper=01%282003%29051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA119%2C140
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA119%2C140

[22] K. Takasaki, T. Takebe, SDiff(2) Toda equation-hierarchy, 7-function, and symmetries,

Math. Phys. 23 (1991) 205,

[23] K. Takasaki, T. Takebe, SDiff(2) KP hierarchy, infinite analysis, part A, B, Kyoto, 1991,
Adv. Ser. Math. Phys., 16 World Sci. Publishing, River Edge, NJ 1992, p. 889.

[24] 1. Krichever, The T-function of the universal Whitham hierarchy, matriz models and
topological field theories, [Commun. Pure Appl. Math. 47 (1994) 437

[25] J.M. Daul, V.A. Kazakov and I.LK. Kostov, Rational theories of 2D gravity from the two
matriz model, |Nucl. Phys. B 409 (1993) 311] [hep—th/9303093].

[26] P. Wiegmann, A. Zabrodin, Large scale correlations in normal and general non-hermitean

matriz ensembles J. Phys. A 36 (2003) 3411|.

[27] V.A. Kazakov, A. Marshakov, Complex curve of the two matriz model and its T-function, El

Phys. A 36 (2003) 3107.

[28] B. Eynard, Master loop equations, free energy and correlations for the chain of matrices, IZl

High Energy Phys. 11 (2003) 018§ [hep-th/0309036].

[29] K. Takasaki, T. Takebe, Integrable hierarchies and dispersionless limit, |Rev. Mod. Phys. 7|

(1995) 749.

[30] LK. Kostov, I. Krichever, P. Wiegmann, A. Zabrodin, The 7-function for analytic curves,
Random matriz models and their applications, Math. Sci. Res. Inst. Publ. 40, Cambridge
Univ. Press, Cambridge 2001, p. 285.

[31] I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary
problem in multiply-connected domains, hep—th/0309010]

[32] A. Marshakov, P. Wiegmann, A. Zabrodin, Integrable structure of the Dirichlet boundary
problem in two dimensions, |Commun. Math. Phys. 227 (2002) 131|.

[33] P. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies,

Phys. 213 (2000) 524

[34] A. Zabrodin, The dispersionless limit of the Hirota equations in some problems of complex
analysis, [Teor. Mat. Fiz. 129 (2001) 239

[35] L.A. Takhtajan, Free bosons and T-functions for compact Riemann surfaces and closed
smooth Jordan curves. Current correlation functions, |Lett. Math. Phys. 56 (2001) 181}

[36] K. Takasaki, T. Takebe, Quasi-classical limit of Toda hierarchy and W-infinity symmetries,
[Lett. Math. Phys. 28 (1993) 16§.

[37] L-P. Teo, Analytic functions and integrable hierarchies — characterization of tau-functions,

|[Lett. Math. Phys. 64 (2003) 79.

[38] A. Harnack, Uber die Vieltheilgkeit der ebenen algebraischen Curven, [Math. Ann. 10 (1876)]
189.

[39] A. Kokotov, D. Korotkin, 7-function on Hurwitz spaces, path-ph/0202034).

[40] P. Deift, T. Kriecherbauer, K.T.R. McLaughlin, S. Venakides, Z. Zhou, Strong asymptotics of
orthogonal polynomials with respect to exponential weights, |Commun. Pure Appl. Math. 52

(1999) 1491).

,28,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA23%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA23%2C205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C47%2C437
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB409%2C311
http://xxx.lanl.gov/abs/hep-th/9303093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C3411
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C3107
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA36%2C3107
http://jhep.sissa.it/stdsearch?paper=11%282003%29018
http://jhep.sissa.it/stdsearch?paper=11%282003%29018
http://xxx.lanl.gov/abs/hep-th/0309036
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C7%2C743
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C7%2C743
http://xxx.lanl.gov/abs/hep-th/0309010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C227%2C131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C213%2C523
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C213%2C523
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C129%2C239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA56%2C181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA28%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2CA64%2C75
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MAANA%2CA10%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MAANA%2CA10%2C189
http://xxx.lanl.gov/abs/math-ph/0202034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C52%2C1491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C52%2C1491

[41] H.E. Rauch, Weierstrass points, branch points, and moduli of Riemann surfaces,

Pure Appl. Math. 12 (1959) 543

[42] J.D. Fay, Kernel functions, analytic torsion, and moduli spaces, Memoirs of AMS, 1992,
v. 96, n. 464.

[43] A. Kokotov, D. Korotkin, On G-function of Frobenius manifolds related to Hurwitz spaces,
path-ph/0306053.

[44] J. Ambjern, J. Jurkiewicz, Yu. M. Makeenko, Multiloop correlators for two-dimensional
quantum gravity, |Phys. Lett. B 251 (1990) 511

[45] B. Eynard, Correlation functions of eigenvalues of multi-matriz models, and the limit of a
time dependent matriz, J. Phys. A 31 (1998) 8081l

[46] B. Eynard, Eigenvalue distribution of large random matrices, from one matriz to several
coupled matrices, [Nucl. Phys. B 506 (1997) 633.

,29,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C12%2C543
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C12%2C543
http://xxx.lanl.gov/abs/math-ph/0306053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB251%2C517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA31%2C8081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB506%2C633

