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recently discovered supergravity dual background. Along analogous lines, we make novel

predictions for the still unknown AdS dual of the quiver theory for the second del Pezzo

surface. This should flow to a SCFT with irrational charges, too. All of our results differ

from previous findings in the literature and outline interesting subtleties in a-maximization

and AdS/CFT techniques overlooked in the past.
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1. Overview

Placing D3-branes at conical singularities is a useful tool to obtain four dimensional SCFT’s

with N < 4 supersymmetries. If the cone is a Calabi-Yau threefold, the low energy theory

on the branes is an N = 1 SCFT. The AdS/CFT correspondence [1] relates the latter to

type IIB string theory on AdS5 ×X5, where X5, the base of the cone, is a Sasaki-Einstein

(SE) manifold [2, 3]. A deeply explored example is for X5 = T 1,1 [3] which has topology

S2 × S3. This is a “regular” SE manifold, as it arises as a free U(1) fibration over a

Kähler-Einstein space (S2 × S2). The class of regular SE manifolds is completely known

and includes only few other cases. The less trivial ones (their metrics being unknown)

arise when the fibration is over a del Pezzo surface dPk, obtained as the blow up of CP2 at

k = 3, 4, 5, 6, 7, 8 points.

Recently a remarkable result was obtained in [4], where an infinite number of new

smooth SE manifolds and their metrics were found. These manifolds were dubbed Y p,q,

where p, q are co-prime integer labels with q < p, [4] (we refer to this paper for any detail

on the geometry). Their topology is S2 × S3 and they have SU(2)×U(1)×U(1) isometry

group. These manifolds are either “quasi-regular” (the U(1) fibration is over a space with

orbifold singularities) or “irregular” (the Killing vector has non compact orbits). The

quasi-regular (resp. irregular) spaces have volumes which are rational (resp. irrational)

multipliers of the volume of a unit round S5

V (Y p,q) =
q2

(

2p+
√

4p2 − 3q2
)

3p2
(

3q2 − 2p2 + p
√

4p2 − 3q2
) π3 . (1.1)
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AdS/CFT relates V (X5) to the a-central charge1

a =
3

32

(

3TrR3 − TrR
)

(1.2)

of the dual IR SCFT via the holographic relation [1]

V (X5) =
N2

4 a(X5)
π3 , (1.3)

where N is the number of D3-branes at the tip of the cone. Thus, for the irregular SE

manifolds of [4] AdS/CFT predicts that the dual field theories have irrational a-charge,

and hence irrational R-charges at the IR fixed point.

In this paper we test this prediction for a particular case of those studied in [4], Y 2,1,

for which, due to recent geometric findings2 [6], the dual field theory is known. Indeed

Y 2,1 is shown to be the horizon of the complex cone over the first del Pezzo surface dP1.

The dual field theory was built for this case years ago (see for instance [7]): it is a quiver

theory with gauge group SU(N)4, bi-fundamental chiral fields and a superpotential at the

IR fixed point. The supergravity prediction for a, using eqs. (1.1), (1.3), is

a(Y 2,1) = N2(−46 + 13
√
13) . (1.4)

Another prediction refers to the R-charges of baryons in the dual CFT. In fact, D3-branes

wrapped on supersymmetric three-cycles ΣA in the dual geometry correspond to baryons

whose R-charge is proportional to the volumes of such three-cycles via the holographic

relation [8, 9]

R(BA) =
π

3

V (ΣA)

V (X5)
. (1.5)

It is shown in [6] that each SE manifold Y p,q admits two such three-cycles whose volumes,

for the case we are interested in, are

V (Σ1) =
1

36

(

7 +
√
13
)

π2 , V (Σ2) =
1

108

(

31 + 7
√
13
)

π2 . (1.6)

Hence, using (1.5), we should expect irrational baryon charges in the dual CFT.

Interestingly, for the case at hand the literature offers a purely field theoretical calcu-

lation of a, [10]. The result was found using the “a-maximization prescription” proposed

by Intriligator and Wecht (IW) in [10]. This is a remarkable prescription that allows one to

determine the exact R-charges of a CFT in those cases where these cannot be completely

fixed by (super) symmetries or (ABJ) anomaly-vanishing arguments. This happens when

the SCFT admits some global symmetry group containing U(1) factors commuting with

the non-abelian flavor symmetries and mixing with U(1)R
3 (this is the case for the theory

1Here TrR and TrR3 are the linear and cubic ’t Hooft anomalies for the exact R-symmetry. Notice

that for generic CFT’s a differs from the central charge c = (1/32)(9 TrR3 − 5 TrR). However, for large N

theories having a holographic dual, TrR = 0 and hence a = c [5].
2We thank the authors, D. Martelli and J. Sparks, for having made us aware of their results before their

paper was published.
3We will refer to U(1)R as one of the possible R-symmetries, dubbed R0 in [10].

– 2 –
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for dP1
4). The a-maximization prescription states that among the possible choices, the

(a priori arbitrary) combination of U(1)-charges corresponding to the exact R-symmetry

is the one which locally maximizes a. We will point out that particular care is needed in

including, among these U(1)’s, the ones eventually coming from the breaking of non abelian

flavor symmetries in the IR. We refer to [10]–[15] for more details on a-maximization.

The result found in [10] for the quiver theory for the first del Pezzo surface is that

a = (27/32)N 2 . Similarly, the R-charges for the baryons were computed, again predicting

rational values [11, 16, 17]. At that time this did not produce any puzzle, since AdS

computations where based on the (wrong, as the results in [6] have now explicitly shown)

assumption that the geometric results would not have been affected by the manifold being

an irregular SE manifold.5 However, these field theory findings contradict the more recent

geometrical predictions (1.4) and (1.6), opening a possible puzzle for AdS/CFT.

In section 2 we solve the puzzle. Carefully taking into account the flavor symmetry

breaking pattern driven by the superpotential (a subtlety which was overlooked in litera-

ture) we calculate the a-charge and the R-charges by using a-maximization and find perfect

agreement with the results of [6], eqs. (1.4) and (1.6). This shows that the exact R-charges

for the theory on N D3-branes at the tip of the complex cone over dP1 are indeed ir-

rational. To our knowledge this is the first example of a CFT with irrational R-charges

having a known holographic dual. Our calculation provides a cross-check of AdS/CFT and

a-maximization in a (till now) unexplored realm. It also points into refining part of the

AdS/CFT techniques for the case of non-regular SE manifolds, as suggested in [6].

In section 3 we reexamine the SCFT living on N D3-branes on the complex cone over

the second del Pezzo surface, dP2. This is not Kähler-Einstein, just as dP1, and so we expect

this case to be subtle, too. The field theory [7] has SU(N)5 gauge group and bi-fundamental

chiral matter content. Moreover, there is a superpotential, which crucially breaks all the

non-abelian flavor symmetries to abelian subgroups. Assuming that the theory flows to

an interacting fixed point and using a-maximization, we show that the SCFT at hand has

irrational R-charges. This is again in contradiction with previous findings [11, 16, 17]. Our

results also provide a purely field theoretical prediction on details of the dual (and so far

unknown) geometry.

The two main results of this paper can then be summarized as follows:

• From a field theoretical point of view, our findings outline the following simple,

but crucial, issue. As remarked in [10], the non-abelian flavor symmetries do not

contribute to the exact R. However, care is needed in identifying these symmetries

in the IR. A superpotential at the IR fixed point, for example, can break some non

abelian flavor symmetries to give extra abelian factors. The latter can and do mix

with the other U(1)’s and contribute in determining the exact R-symmetry.

• From the AdS/CFT point of view, we provide a non-trivial check for the duality dis-

cussed above and a solution of the related puzzle. Moreover, we give a new argument

in support of this duality, showing that the symmetries of the supergravity back-

4For regular SE manifolds, instead, the symmetries are enough to fix R.
5In the regular cases, one can easily prove that the volumes are rational.

– 3 –
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ground exactly match the ones in field theory. Finally, our results explicitly stress,

as remarked in [6], the peculiarities of AdS/CFT techniques in cases with irregular

SE factors.

Now that the AdS/CFT issues for the theory on dP1 have been clarified, it would be

very interesting to add fractional branes to this system [18], as it was done for the coni-

fold [19, 20]. This would break conformal invariance and could reveal interesting dynamics.

Work is in progress in this direction [21]. Another interesting development would be to

study the KK spectrum of type IIB on AdS5 × Y 2,1, similarly to what has been done for

T 1,1 [22]. This would help in determining the exact bulk field/CFT operator map. Finally,

the SCFT duals of general Y p,q have to be uncovered.

2. The quiver gauge theory for the first del Pezzo

The quiver gauge theory for dP1 was constructed in [7, 23] and is a four dimensional

N = 1 SCFT with gauge group SU(N)4 and bi-fundamental matter. The corresponding

quiver diagram is depicted in figure 1. Beside the four gauge multiplets, there are also

ten chiral multiplets Xij . The notation is such that the chiral superfield Xij transforms

in the (Ni, N̄j). The flavor symmetry group of the theory without superpotential [10] is

SU(3) × SU(2)× SU(2)×U(1)×U(1).

At the IR fixed point it is believed that the theory has also a superpotential given by

W = Tr
[

εαβ X
α
34X

β
41X13 − εαβ X

α
34X42X

β
23 + εαβ X

3
34X

α
41X12X

β
23

]

, (2.1)

where α, β = 1, 2. This explicitly breaks the SU(3) factor (associated to the 3 bi-fundamen-

tal fields XI
34, I = 1, 2, 3) of the flavor symmetry group to SU(2)×U(1), as can be seen by

the different rôle played by the doublet Xα
34 and the singlet X3

34 in the above expression.

Similarly, only a single diagonal SU(2) survives and a diagonal U(1) of the two abelian

factors. Therefore, the residual non-R symmetry group at the IR fixed point is SU(2) ×

X41
α

X13

X34
3X34

α

X23
α

X42

,

1 2

34

12X

Figure 1: The quiver associated to the first del Pezzo surface. Each dot represents a SU(N) factor

while each arrow represents a bi-fundamental chiral multiplet.
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U(1)×U(1). Hence, according to what summarized previously, there are two abelian factors

which are expected to mix with U(1)R and give the actual exact R-symmetry of the IR

SCFT.

Note that, as outlined in [10], the theory at hand could be potentially problematic. For

two of the nodes in the quiver (3, 4 in our notations) the number of fundamental (and anti-

fundamental) fields is Nf = 3Nc = 3N . This means that both factors lye at the boundary

of the Seiberg conformal window (3/2)N < Nf < 3N and in particular their one-loop beta

function vanishes in the UV. This should imply that both factors are IR free instead of

being interacting. We will assume that the whole theory flows to an IR interacting fixed

point. We will also assume that the gauge couplings in the IR are sufficiently small to

avoid singularities in the β-functions. The agreement we will find with AdS dual results

strengthens these assumptions.

2.1 Calculating the central charge via a-maximization

Let us discuss the conditions imposed on the R-charges by the fact that the theory flows

to an IR SCFT with superpotential. We adopt here the same logic as in [13].

Generically, the β-functions for each quiver factor are proportional to

β ∼ 3T (G) −
∑

A

T (rA) (1− γA) , (2.2)

where the scaling dimension of a chiral field XA is ∆A = 1 + γA/2, and it is related to

the R-symmetry charge by ∆ = 3
2 RA. T (G) is the Casimir of the adjoint, and T (rA) the

Casimir of the representation rA under which the field XA transforms. For G = SU(N),

T (G) = N and T (fund) = 1/2. At the IR interacting fixed point the β-functions of the

four gauge groups should vanish and this gives the conditions (with obvious notations, we

suppress redundant SU(2) indexes)6

β̂1? ≡ N +
1

2
N(R12 − 1) +

1

2
N(R13 − 1) +N(R14 − 1) = 0 , (2.3)

β̂2? ≡ N +
1

2
N(R12 − 1) +N(R23 − 1) +

1

2
N(R42 − 1) = 0 , (2.4)

β̂3? ≡ N +
1

2
N(R13 − 1) +N(R23 − 1) +N(R

(1)
34 − 1) +

1

2
N(R

(3)
34 − 1) = 0 , (2.5)

β̂4? ≡ N +N(R14 − 1) +
1

2
N(R24 − 1) +N(R

(1)
34 − 1) +

1

2
N(R

(3)
34 − 1) = 0 , (2.6)

where ? means “at the fixed point”, following IW’s notations, we moved to the double index

notation adapted to this quiver theory, A→ ij, and we used the fact that 1−γij = 3(1−Rij)

for chiral fields. Moreover, constrained by the SU(3)→ SU(2) symmetry breaking dictated

by the superpotential (2.1) we are taking the still unknown charges R
(3)
34 and R

(1)
34 = R

(2)
34 as

different ones.7 This point was overlooked in the literature and, as we are going to show,

plays a crucial rôle.

6These conditions are equivalent to the ABJ anomaly vanishing conditions.
7Our choices of the R-charges could be rendered more clear by redefining the fields in such a way that W

becomes manifestly invariant under the diagonal SU(2). One can show that this would produce the same

results we find here.

– 5 –
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Since, in order to compare our results with the string/supergravity predictions, we are

interested in the large N limit, we will ignore all terms of order 1/N k with k > 0. It is

easy to verify that in this case

TrR ≡
∑

ferm

r(ferm) = N

4
∑

i=1

β̂i? = 0 , (2.7)

as expected since the theory has a holographic dual. We see that the above condition does

not give a new constraint with respect to eqs. (2.3)–(2.6).

A genuinely new constraint on the R-charges comes from the superpotential. Indeed,

we have to impose that the superpotential has R-charge equal to 2 at the IR fixed point.

This gives the conditions

R
(1)
34 +R41 +R13 = 2 , (2.8)

R
(1)
34 +R23 +R42 = 2 , (2.9)

R
(3)
34 +R12 +R41 +R23 = 2 . (2.10)

The conditions (2.3)–(2.6) and (2.8)–(2.10) leave us with only two unknowns to be deter-

mined by a-maximization. These precisely correspond to the two U(1) factors of the global

symmetry group which mix with U(1)R to give the exact R-symmetry in the IR. We have

R13 = R42 = R
(3)
34 ≡ x , R14 = R23 ≡ y ,

R
(1)
34 = R

(2)
34 = 2− x− y , R12 = 2− x− 2y . (2.11)

Using the above values, we find for the“trial”(i.e. the one before maximization), a-charge

at (1.2) the (x, y)-dependent expression

at(x, y) =
9N2

32

[

4 + 4(y − 1)3 + 3(x− 1)3 + (1− x− 2y)3 + 2(1 − x− y)3
]

. (2.12)

Extremizing with respect to x and y we find that the maximum for at is at

xm = −3 +
√
13 , ym =

4

3

(

4−
√
13
)

, (2.13)

giving an irrational central charge

c = a = at(max) = N 2
(

−46 + 13
√
13
)

. (2.14)

It is a simple exercise to show that without implementing the flavor symmetry breaking

pattern discussed above, hence taking R1
34 = R2

34 = R3
34, the conditions on the vanishing

β-functions and on the R-charge of the superpotential leave only one R-charge to be de-

termined. Using a-maximization the value one would find is rational, a = 27N 2/32. The

same happens for the R-charges.

A technical remark. As pointed out in [10], the a-charge “knows” about the unbroken

non-abelian flavor symmetries, and the fact that they do not contribute to the exact R-

charge. So, for example, if one considers the theory above without the superpotential (2.1),

– 6 –
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there are only two U(1)’s that can mix with U(1)R. However, if one performs the a-

maximization keeping different R-charges for all the ten chiral multiplets, one obtains, after

imposing the vanishing of the β-functions, a six-parameter dependent at. Nevertheless, its

actual maximum at(max) and the R-charges turn out to be the correct ones calculated

in [10] for the case W = 0. The same conclusions applies to the W 6= 0 theory above.

Therefore, the final lesson is that whenever it is hard to understand which symmetries

are preserved in the IR, one can drop this complication and just keep all the R-charges

different, being guaranteed that anyway at(max) will be the correct one. As our calculation

shows, the important point is not to over-constrain the R-charges, as this obviously affects

the determination of the correct maximum of at.

2.2 The R-charges

Plugging the solution (2.13) into the relations (2.11) we get the R-charges for the bi-

fundamental fields of the theory. These are reported in table 1.

It can be checked that with the above assignment
Xij Rij

X12
1
3(−17 + 5

√
13)

Xα
23, X

α
41

4
3(4−

√
13)

Xα
34

1
3(−1 +

√
13)

X3
34, X13, X42 −3 +

√
13

Table 1: The exact R-charges of the

bi-fundamental chiral fields for the dP1

dual.

the theory does not violate the unitarity bound. For

the gauge invariant mesons not entering the superpo-

tential, X3
34X

β
41X13, X

3
34X42X

β
23 andXγ

34X
α
41X12X

β
23,

this is immediately verifiable, being their conformal

dimension ∆ > 1.

The baryons are color singlets defined from the

corresponding bi-fundamental chiral fields as

Bij = det
N×N

(Xij) . (2.15)

Hence they do not give any problem to the unitarity bound: their R-charge goes like N ,

since R(Bij) = N Rij .

2.3 A check for AdS/CFT

In [6] it is argued that the field theory analyzed above should be dual to type IIB string

theory on AdS5×Y 2,1. As we are going to show, our results indeed confirm this prediction

and thus provide the first example of gauge/gravity duality for SCFT’s with irrational R

charges.

The first important check concerns the central charge. The irrational a-charge we have

obtained, Eq. (2.14), is in perfect agreement with the supergravity prediction [6], eq. (1.4).8

Another matching is provided by baryon R-charges: using the holographic relations

(1.3) and (1.5), we get for the dual volumes of the corresponding three-cycles

V (ΣA) =
3

4
Nπ2 1

a
R(BA) =

{

π2
(

7 +
√
13
)

/36 A = (12)

π2
(

31 + 7
√
13
)

/108 A = (34), (13), (42)
(2.16)

which is nothing but eq. (1.6), that is what computed for the dual geometry in [6].

8An analogous striking test of AdS/CFT was obtained in the regular case of the conifold [24]. In that

case, however, no a-maximization is required to fix the R-charges.

– 7 –
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Finally, let us add another new piece of evidence in support of the duality, showing

that also the global symmetries match. The field theory global symmetries are the exact

R-symmetry just computed and the global SU(2) × U(1) × U(1). The Y 2,1 metric only

admits a SU(2) × U(1) ×U(1) isometry [4]. However, the whole supergravity background

contains also a non-trivial flux of the self dual RR five-form field strength F5 = dC4. The

KK reduction of C4 on the unique independent three-cycle of Y 2,1 (whose topology is in

fact S2 × S3) provides an additional U(1)B baryonic symmetry. Hence the continuous

global symmetry group of the dual field theory is expected to be

SU(2)×U(1) ×U(1)×U(1)B . (2.17)

This precisely agrees with the symmetries of the field theory above. One of the three U(1)’s

in the latter is thus mapped to U(1)B . Let us notice that the field theory at hand is a chiral

quiver. Then the baryonic U(1)B do mix with U(1)R to give the exact R-symmetry, as

remarked in [11]. This is different to what happens in non-chiral theories where baryonic

symmetries commute with R [10].9

3. The SCFT for the second del Pezzo surface and a prediction for its

AdS dual

The second del Pezzo surface dP2 shares with dP1 the property of not admitting a Kähler-

Einstein metric [25]. The base of the complex cone over dP2 is thus a non-regular SE

manifold and its volume is not guaranteed to be rational [26]. Therefore, one could not

exclude to get a dual SCFT with irrational R-charges by considering D3-branes at the tip

of that cone. The dual gauge theory was worked out in [7, 23] and we can now repeat the

same rationale we pursued for the case of dP1. In this case neither we know the AdS dual,

nor a metric for dP2. So, our results should furnish novel predictions on the dual geometry.

There are two known phases for the field theory duals, related by Seiberg duality. The

corresponding quivers are shown in figure 2. Both of them have gauge group SU(N)5, but

different bi-fundamental field content.

Let us first focus on Model II.10 In this model all the bi-fundamental fields are flavor

singlets but Xα
31 and Xα

23 (α = 1, 2) which transform in two distinct SU(2)’s. The crucial

point is that, again, the superpotential

W = Tr[X34X45X53 −X53X
2
31X15 +X34X42X

2
23 +

+X2
23X

1
31X15X52 +X42X

1
23X

2
31X14 −X1

23X
1
31X14X45X52] (3.1)

breaks this non-abelian flavor symmetry. As a result, the R-charges of all the bi-fundamen-

tal fields are a-priori different.11 We will now compute such charges and the central charge,

9We are grateful to Ken Intriligator for a crucial observation on this point.
10As in the previous section we will assume that the nodes of the quiver will all be interacting in the IR

where the theory will reach a non-trivial fixed point.
11As for dP1, in the a-maximization calculations present in the literature for the dP2 dual, it is always

assumed that the R-charges of the two doublets are the same, i.e. the flavor SU(2) × SU(2) is unbroken.

This leads to the conclusion that the R-charges and the central charge (and hence the volumes of the dual

geometry) are rational.
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Figure 2: The quivers associated to the second del Pezzo surface.

as in section 2. By imposing the vanishing of the β-functions at the IR fixed point and

the condition that the superpotential should have R-charge 2, we get four independent

R-charges, in terms of which we can write

R45 ≡ x , R53 ≡ y , R52 ≡ z , R
(2)
23 ≡ w ,

R14 = w − x , R
(1)
31 = R42 = x+ y −w , R

(2)
31 = x+ z ,

R
(1)
23 = R15 = 2− x− y − z , R34 = 2− x− y . (3.2)

Plugging these values in eq. (1.2) we get for the trial a-charge

at =
9N2

32
[5 + (x− 1)3 + (y − 1)3 + (z − 1)3 + (w − 1)3 + (w − x− 1)3 +

+ (x+ z − 1)3 + 2(x+ y − w − 1)3 + (1− x− y)3 + 2(1 − x− y − z)3](3.3)

Extremizing with respect to x, y, w and z, we get

xm =
1

2
(−5 +

√
33) , ym =

1

4
(9−

√
33) ,

wm =
1

16
(17−

√
33) , zm =

3

16
(19 − 3

√
33) , (3.4)

and hence for the actual central charge of the theory

c = a =
243N2

1024

(

−59 + 11
√
33
)

. (3.5)

Note that, as for dP1, the central charge is irrational. It is larger than the one calculated

previously in literature, i.e. 27N 2/28. Also it predicts, for the volume of the dual compact

space, the value

V (XdP2
) =

π3N2

4 a
=

1

486

(

59 + 11
√
33
)

π3 , (3.6)

where we denote as XdP2
the horizon of the complex cone over dP2.

12
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Xij Rij

X1
23 , X

1
31 , X42 , X15

1
16 (−21 + 5

√
33)

X2
23 , X

2
31

1
16 (17−

√
33)

X52 , X14
3
16(19 − 3

√
33)

X53 , X34
1
4(9−

√
33)

X45
1
2 (−5 +

√
33)

Table 2: The exact R-charges of the bi-fundamental chiral fields for the dP2 dual, Model II.

Xij Rij

X32 , X
2
15 , X31 , X

2
25

1
16 (−21 + 5

√
33)

X1
53 , X

2
53

1
4(9−

√
33)

X41 , X42
3
16(19 − 3

√
33)

X1
15 , X

1
25

1
16 (17−

√
33)

X34
1
2 (−5 +

√
33)

X54
1
8(−21 + 5

√
33)

X3
53

1
8(37 − 5

√
33)

Table 3: The exact R-charges of the bi-fundamental chiral fields for the dP2 dual, Model I.

The corresponding R-charges for the chiral fields can be now easily computed plugging

the values (3.4) in the relations (3.2) and are listed in table 2. Again, they turn out to

be irrational. It can be checked that with the above R-charge assignment there are no

violations to the unitarity bound.

By using once again the holographic relation (1.5) adapted to this case, we can predict

the volumes of the supersymmetric three-cycles of the dual geometry. Using eq. (3.6) and

table 2, these turn out to be, again, irrational.

As far as Model I is concerned, this is Seiberg dual to Model II, so the physical

quantities in the IR such as the central charge should be the same. One can repeat the

calculations above and check that this is indeed the case. This is a non-trivial check, since

the two theories look pretty different. As expected, the equality holds for at(max). Finally,

the R-charges of the chiral fields are again irrational and are listed in table 3.

Let us end with a comment. The value of the volume of XdP2
, eq. (3.6), is close to the

one of Y 3,1. From the general formula (1.1) this reads

V (Y 3,1) =
1

648

(

63 + 11
√
33
)

π3 . (3.7)

This is smaller than V (XdP2
), and thus a(XdP2

) < a(Y 3,1). The SCFT dual to Y 3,1 has

SU(N)6 gauge group [6], while for the dual of XdP2
this is SU(N)5. What one can argue

is that the two SCFT’s may be related by some higgsing. It would be clearly interesting

to find an explicit realization of this higgsing and a metric for XdP2
.

12The above volume is smaller than the one for the dP1 case. For the case of regular dPk surfaces it is

also expected that the related volumes decrease with k [11].
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