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ABSTRACT

This paper investigates the hydrodynamic performances of an smoothed particle hydrodynamics (SPH) code incorporating an artificial
heat conductivity term in which the adopted signal velocity is applicable when gravity is present. To this end, we analyze results from
simulations produced using a suite of standard hydrodynamical test problems. In accordance with previous findings, we show that the
performances of SPH in describing the development of Kelvin-Helmholtz instabilities depend strongly on both the consistency of the
initial condition set-up and the leading error in the momentum equation due to incomplete kernel sampling. In contrast, the presence of
artificial conductivity does not significantly affect the results. An error and stability analysis shows that the quartic B-spline kernel (M5)
possesses very good stability properties and so we propose its use with a large neighbor number, between ∼50 (2D) to ∼100 (3D),
to improve convergence in simulation results without being affected by the so-called clumping instability. Moreover, the results of
the Sod shock tube demonstrate that to obtain simulation profiles in accord with the analytic solution, for simulations employing
kernels with a non-zero first derivative at the origin, it is necessary to use a much larger number of neighbors than in the case of
the M5 runs. Our SPH simulations of the blob test show that in order to achieve blob disruption it is necessary to include an artificial
conductivity term. However, we find that in the regime of strong supersonic flows an appropriate limiting condition, which depends
on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat
diffusion. Our results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in
much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological
simulations of galaxy clusters are consistent with those found using AMR codes. This demonstrates that the proposed diffusion
scheme is capable of mimicking the process of entropy mixing that is produced during structure formation because of the diffusion
caused by turbulence. Finally, the results of our Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows
the code still has several difficulties in the treatment of hydrodynamic instabilities. These problems are intrinsic to the way in which
standard SPH gradients are calculated and not to the implementation of the artificial conductivity term. To overcome these difficulties,
several numerical schemes have been proposed that, if coupled with the SPH implementation presented in this paper, could solve the
issues that have recently been addressed in investigating SPH performances to model subsonic turbulence.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian, mesh-
free particle method that is used to model fluid hydrodynamics in
numerical simulations. The technique was originally developed
in an astrophysical context (Lucy 1977; Gingold & Monaghan
1977), but since then it has been widely applied in many other
areas (Monaghan 2005) of computational fluid dynamics.

The method has several properties that make its use par-
ticularly advantageous in astrophysical problems (Hernquist &
Katz 1989; Rosswog 2009; Springel 2010a). Because of its
Lagrangian nature, the development of high matter concentra-
tions in collapse problems is followed naturally. Moreover, the
method is free of both advection errors and Galilean invari-
ant. Finally, the method naturally incorporates self-gravity and
possesses very good conservation properties, its fluid equations
being derived from variational principles.

The other computational fluid dynamical method commonly
employed in numerical astrophysics is the standard Eulerian
grid-based approach in which the fluid is evolved on a dis-
cretized mesh (Stone & Norman 1992; Ryu et al. 1993; Norman
& Bryan 1999; Fryxell et al. 2000; Teyssier 2002). The spatial
resolution of an Eulerian scheme based on a fixed Cartesian grid

is often insufficient, however, to adequately resolve the high dy-
namic range frequently encountered in many astrophysical prob-
lems, such as galaxy formation. This has motivated the develop-
ment of adaptative mesh refinement (AMR) methods, in which
the spatial resolution of the grid is locally refined according
to some selection criterion (Berger & Colella 1989; Kravtsov,
Klypin & Khokhlov 1997; Norman 2005). Additionally, the or-
der of the numerical scheme has been improved by adopting
the parabolic piecewise method (PPM) of Colella & Woodward
(1984), such as in the AMR Eulerian codes ENZO (Norman &
Bryan 1999) and FLASH (Fryxell et al. 2000).

Application of these different types of hydrodynamical codes
to the same test problem with identical initial conditions should
in principle lead to similar results. However, there has been
growing evidence over recent years that in a variety of hydrody-
namical test cases there are significant differences between the
results produced from the two types of methods (O’Shea et al.
2005; Agertz et al. 2007; Wadsley et al. 2008; Tasker et al. 2008;
Mitchell et al. 2009; Read et al. 2010; Valcke et al. 2010; Junk
et al. 2010).

For instance, Agertz et al. (2007) show that in the stan-
dard SPH formulations the growth of Kelvin-Helmholtz (KH)
instabilities in shear flows is artificially suppressed when steep
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density gradients are present at the contact discontinuities.
Moreover, the level of central entropy produced in binary-
merger non-radiative simulations of galaxy clusters is signif-
icantly higher by a factor ∼2 in Eulerian simulations than in
those made using SPH codes (Mitchell et al. 2009). The origin
of these discrepancies has been recognized (Agertz et al. 2007;
Read et al. 2010) as partly due to the intrinsic difficulty for SPH
in properly modeling density gradients across fluid interfaces,
which in turn implies that there is a surface tension effect that
inhibits the growth of KH instabilities. A second problem is the
Lagrangian nature of SPH codes, which prevents the mixing of
fluid elements at the particle level and leads to entropy gener-
ation (Wadsley et al. 2008; Mitchell et al. 2009). In particular,
Mitchell et al. (2009) argue that the main explanation of the dif-
ferent levels of central entropy found in cluster simulations is
the different degree of entropy mixing present in the two codes.
Unlike SPH, in Eulerian codes fluid mixing occurs by definition
at the cell level and a certain degree of overmixing is certainly
present in simulations made using mesh-based codes (Springel
2010b).

Given the advantages of the SPH codes highlighted
previously, it appears worth pursuing any improvement in
the SPH method capable of overcoming its present limitations.
Along this line of investigation, many efforts have been made
by a number of authors (Abell 2011; Price 2008; Wadsley et al.
2008; Valcke et al. 2010; Read et al. 2010; Heß & Springel 2010;
Cha et al. 2010; Murante et al. 2011).

Price (2008) introduces an artificial heat conduction term in
the SPH equations with the purpose of smoothing thermal en-
ergy at fluid interfaces. This artificial conductivity (AC) term in
turn gives a smooth entropy transition at contact discontinuities
with the effect of enforcing pressure continuity and removing the
artificial surface-tension effect that inhibits the growth of KH in-
stabilities at fluid interfaces. Similarly, Wadsley et al. (2008)
suggest that in SPH the lack of mixing at the particle level can
be alleviated by adding a heat diffusion term to the equations so
as to mimic the effects of subgrid turbulence, thereby improving
the amount of mixing.

Read et al. (2010) present an SPH implementation in which a
modified density estimate is adopted (Ritchie & Thomas 1991),
together with the use of a peaked kernel and a much larger num-
ber of neighbors. The authors show that the new scheme is capa-
ble of following the development of fluid instabilities in a more
improved way than in standard SPH. Abell (2011) presents an
alternative derivation of the SPH force equation that avoids the
problem encountered by standard SPH in handling fluid insta-
bilities, although the approach is inherently neither energy nor
momentum conserving and is prone to large integration errors
when the simulation resolution is low.

The method proposed by Inutsuka (2002) reformulates
the SPH equations by introducing a kernel convolution so as to
consistently calculate the density and hydrodynamic forces. The
latter are determined using a Riemann solver (Godunov SPH).
The method was revisited by Cha et al. (2010) and Murante et al.
(2011), who show that the code correctly follows the develop-
ment of fluid instabilities in a variety of hydrodynamic tests.

A deeper modification than those presented here so far was
introduced by Heß & Springel (2010), who replaced the tradi-
tional SPH kernel approach with a new density estimate based
on Voronoi tesselation. The authors show that the method is free
of surface tension effects and therefore the growth rate of fluid
instabilities is not as adversely affected as in standard SPH.

Finally, a radically new numerical scheme was developed
by Springel (2010b) to retain the advantages of both SPH and

mesh-based codes. In the new code, the hydrodynamic equa-
tions are solved on a moving unstructured mesh using a Godunov
method with an exact Riemann solver. The mesh is defined by
the Voronoi tesselation of a set of discrete points and allowed
to move freely with the fluid. The method is therefore adapta-
tive in nature and thus Galilean invariant but, at the same time,
the accuracy with which shocks and contact discontinuities are
described is that of an Eulerian code. Bauer & Springel (2012)
argue that the standard formulation of SPH fails to accurately
resolve the development of turbulence in the subsonic regime
(but see Price 2012b, for a different viewpoint). The authors
draw their conclusions by analyzing results from simulations of
driven subsonic turbulence made using the new moving-mesh
code, named AREPO, and a standard SPH code.

Similar conclusions were reached in a set of companion pa-
pers (Sijacki et al. 2012; Vogelsberger et al. 2011), in which
the new code was used in galaxy formation studies to demon-
strate its superiority over standard SPH. However, the code is
characterized by considerable complexity making the use of
the SPH scheme still appealing, and more generally, it is desir-
able that simulation results produced with a specific code should
be reproduced with a completely independent numerical scheme
when complex non-linear phenomena are involved. It appears
worthwhile, therefore, to investigate, along the line of previ-
ous authors, the possibility of constructing a numerical scheme
based on the traditional SPH formulation that is capable of cor-
rectly describing the development of fluid instabilities and at the
same time incorporates the effects of self-gravity when present.

This is the aim of the present study, in which the SPH scheme
is modified by incorporating an AC diffusion term into the equa-
tions as described by Price (2008). However, in Price (2008)
the strength of the AC is governed by a signal velocity that is
based on pressure discontinuities. For simulations where gravity
is present, this approach is not applicable because hydrostatic
equilibrium requires pressure gradients. An appropriate signal
velocity for conductivity when gravity is present is then used
to construct an AC-SPH code with the purpose of treating the
growth of fluid instabilities self-consistently. The viability of the
approach is tested using a suite of test problems in which results
obtained using the new code are contrasted with the correspond-
ing ones produced in previous work using different schemes. The
code is very similar in form to that presented by Wadsley et al.
(2008), but here the energy diffusion equation is implemented in
a different manner.

The paper is organized as follows. Section 2 presents the
hydrodynamical method and introduces the AC approach. In
Sect. 3, we investigate the effectiveness of the method by pre-
senting results from a suite of purely hydrodynamical test prob-
lems, namely the two-dimensional Kelvin-Helmholtz instability,
the Sod shock tube, the point explosion or Sedov blast-wave test,
and the blob test. In Sect. 4, we then discuss the results of hydro-
dynamic tests that include self-gravity. Specifically, we consider
the cold gas sphere or Evrard collapse test, the Rayleigh-Taylor
instability, and the cosmological integration of galaxy clusters.
Finally, the main results are summarized in Sect. 5.

2. The hydrodynamic method

Here we present the basic features of the method and for reviews
refer to Rosswog (2009), Springel (2010a), and Price (2012a).

2.1. Basic SPH equations

In the SPH method, the fluid is described by a set of N parti-
cles with mass mi, velocity ui, density ρi, and a thermodynamic
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variable such as the specific thermal energy ui or the entropic
function Ai. The particle pressure is then defined as Pi = (γ −
1)ρiui = Aiρ

γ
i , where γ = 5/3 for a monoatomic gas. The density

estimate ρ(r) at the particle position ri is given by

ρi =
∑

j

m jW
(∣∣∣rij

∣∣∣ , hi

)
, (1)

where rij ≡ ri − r j, W(|rij|, hi) is the interpolating kernel that has
compact support and is zero for |rij| ≥ ζhi (Price 2012a). The
kernel is normalized to the condition

∫
WdDr = 1. The sum in

Eq. (1) is over a finite number of particles and the smoothing
length hi is a variable that is implicitly defined by the equation

fD (ζhi)D ρi = Nsphmi, (2)

where D is the number of spatial dimensions, fD = π, 4π/3 for
D = 2, 3, and Nsph is the number of neighboring particles within
a radius ζhi. This equation can be rewritten by defining hi in
units of the mean interparticle separation

hi = η (mi/ρi)
1/D , (3)

so that N2D
sph = π(ζη)

2 and N3D
sph = 4π(ζη)3/3. The smoothing

length hi is determined by solving the non-linear Eq. (2), and it
should be kept in mind that Nsph does not necessarily need to
be an integer but can take arbitrary values if η is used as the
fundamental parameter determining hi (Price 2012a). A kernel
commonly employed is the M4 (cubic spline), which is zero for
ζ ≥ 2. In 3D, typical choices of Nsph lie in the range Nsph ∼
33−64, which for the M4 kernel corresponds to η � 1.−1.25. The
equation of motion for the SPH particles can be derived from the
Lagrangian of the system (Springel 2010a; Price 2012a) and is
given by

dui
dt
= −

∑
j

m j

⎡⎢⎢⎢⎢⎢⎣ Pi

Ωiρ
2
i

∇iWij (hi) +
P j

Ω jρ
2
j

∇iWij

(
h j

)⎤⎥⎥⎥⎥⎥⎦ , (4)

where the coefficients Ωi are defined as

Ωi =

⎡⎢⎢⎢⎢⎢⎣1 − ∂hi

∂ρi

∑
k

mk
∂Wik (hi)
∂hi

⎤⎥⎥⎥⎥⎥⎦ · (5)

These terms are present in the momentum Eq. (4) because the
smoothing length hi itself is implicitly a function of the particle
coordinates through Eq. (2).

2.2. Artificial viscosity

In SPH, the momentum equation must be generalized by adding
an appropriate viscous force, which is aimed at correctly treating
the effects of shocks. An artificial viscosity (AV) term is then
introduced with the purpose of dissipating local velocities and
preventing particle interpenetration at the shock locations. The
new term is given by(

dui
dt

)
AV

= −
∑

i

m jΠij∇iW̄ij, (6)

where the term W̄ij =
1
2 (W(rij, hi)+W(rij, h j)) is the symmetrized

kernel and Πij is the AV tensor. In the SPH entropy formulation
(Springel & Hernquist 2002), it is the entropy function per par-
ticle Ai that is integrated and its time derivative is calculated as
follows

dAi

dt
=

1
2
γ − 1

ρ
γ−1
i

∑
j

m jΠijuij · ∇iW̄ij ≡ γ − 1

ρ
γ−1
i

(
dui

dt

)
AV

, (7)

where uij = ui−u j. For the AV tensor, we adopt here the form pro-
posed by Monaghan (1997) in analogy with the Riemann solvers

Πij = −αij

2

vAV
ij μij

ρij
fij, (8)

where

vAV
ij = ci + c j − 3μij (9)

is the signal velocity and μij = uij · rij/|rij| if uij · rij < 0 but zero
otherwise, so that Πij is non-zero only for approaching particles.
Here scalar quantities with the subscripts i and j denote arith-
metic averages, ci is the sound speed of particle i, the parame-
ter αi regulates the amount of AV, and fi is a controling factor
that reduces the strength of AV in the presence of shear flows.
The latter is given by Balsara (1995), as

fi =
|∇ · u|i

|∇ · u|i + |∇ × u|i , (10)

where (∇ · u)i and (∇ × u)i are the standard SPH estimates for
divergence and curl (Monaghan 2005). For pure shear flows, |∇×
u|i � |∇ · u|i, so that the AV is strongly damped.

Using the signal velocity (9), the Courant condition on the
timestep of particle i is given by

ΔtC
i � 0.3

hi

max j

∣∣∣∣vAV
ij

∣∣∣∣ · (11)

In the standard SPH formulation, the viscosity parameter αi con-
troling the strength of the AV is given by αi = constant ≡ α0,
with α0 = 1 being a common choice (Monaghan 2005). This
scheme has the disadvantage that it generates viscous dissipation
in regions of the flow that are not undergoing shocks. To reduce
any spurious viscosity effects, Morris & Monaghan (1997) pro-
posed making the viscous coefficient αi time-dependent so that
it can evolve in time under certain local conditions. The authors
proposed an equation of the form

dαi

dt
= −αi − αmin

τi
+ S i, (12)

where S i is a source term and τi regulates the decay of αi to
the floor value αmin away from shocks. For the source term, the
adopted expression is

S i = S 0 fi (− (∇ · u)i , 0) (αmax − αi) , (13)

which is constructed in such a way that it increases in the
presence of shocks. The prefactor S 0 is unity for γ = 5/3
and the damping factor fi is inserted to account for the pres-
ence of vorticity. The original form proposed by Morris &
Monaghan (1997) was refined by the factor (αmax−αi) (Rosswog
et al. 2000), which has the advantage of being more sensitive
to shocks than the original formulation and of preventing αi

from becoming higher than a prescribed value αmax. Cullen &
Dehnen (2011) presented an improved version of the Morris &
Monaghan (1997) AV scheme, employing as a shock indicator a
switch based on the time derivative of the velocity divergence.

The decay parameter τi is of the form

τi =
hi

ci ld
, (14)

where ld is a dimensionless parameter that controls the decay
timescale. In a number of test simulations, Rosswog et al. (2000)
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found that appropriate values for the parameters αmax, αmin,
and ld are 1.5, 0.05, and 0.2, respectively. In principle, the ef-
fects of numerical viscosity in regions away from shocks can be
reduced by setting ld to higher values than ld = 0.2. In practice,
the minimum time necessary to propagate through the resolution
length hi sets the upper limit ld = 1. However, the time evolution
of the viscosity parameter can be affected if very short damping
timescales are imposed. Neglecting variations in the coefficients,
the solution to Eq. (12) at times t > tin can be written as

αi(t) = qi + (αi (tin) − qi) exp−(t−tin)/τ′i , (15)

where

τ′i =
τi

1 + S iτi
, (16)

and qi is a modified source term

qi =
αmin + S iτiαmax

1 + S iτi
. (17)

From Eq. (15), it can be seen that αi(t) � αmax in the strong shock
regime S iτi � 1 but this condition is not satisfied if S iτi <∼ 1.
Therefore, for mild shocks this implies that, if very short de-
cay timescales are imposed, the peak value of αi(t) at the shock
front might be below the AV strength necessary to properly treat
shocks.

To overcome this difficulty, a modification to Eq. (13) was
adopted (Valdarnini 2011, hereafter V11) that, when ld = 1,
compensates for the smaller values of S iτi with respect to the
small ld regimes. This is equivalent to considering a higher value
for αmax, so that in Eq. (13) αmax is substituted by αmax → ξαmax.

The correction factor ξ was calibrated using the shock-tube
problem as reference and requiring a peak value of ∼0.6−0.7 for
the viscosity parameter at the shock front, as in the ld = 0.2
case. The results indicate that a normalization of the form ξ =
(ld/0.2)0.8 for ld ≥ 0.2 satisfies these constraints. This normal-
ization has been validated in a number of other test problems
showing that it is able to produce a peak value of the viscosity
parameter at the shock location that is independent of the chosen
value of the decay parameter ld.

The time-dependent AV formulation of SPH has been shown
to be effective in reducing the damping of turbulence due to
the effects of numerical viscosity in simulations of galaxy clus-
ters (Dolag et al. 2005, V11). Moreover, it was used in Price
(2012b) to argue that the conclusion of Bauer & Springel (2012)
about the difficulty for SPH codes in properly modeling the
development of subsonic turbulence is based on using only
a SPH code in its standard AV formulation. In the following,
unless otherwise stated, we describe simulations performed us-
ing a time-dependent AV, this will be fully specified by the set
of parameters {αmin, αmax, ld}.

2.3. Artificial conductivity

As already outlined in the Introduction, different formulations
have been proposed for overcoming the problems encountered
by standard SPH in the treatment of fluid discontinuities. Here
we follow the approach suggested by Price (2008), who pro-
posed adding a dissipative term to the thermal energy equa-
tion for smoothing the energy across contact discontinuities. The
presence of these dissipative terms introduces a smoothing of
entropy at fluid interfaces with the effect of removing pressure
discontinuities.

The motivations behind this approach were discussed by
Monaghan (1997), who showed how the momentum and en-
ergy equations in SPH must contain a dissipative term related
to jumps in the variables across characteristics, in analogy with
the corresponding Riemann solutions.

The artificial conductivity (AC) term for the dissipation of
energy takes the form

(
dui

dt

)
AC

=
∑

j

m jv
AC
ij

ρij

[
αC

ij

(
ui − u j

)]
eij · ∇iW̄ij, (18)

where vAC
ij is the signal velocity, which does not need to be the

same as that used in the momentum equation, eij ≡ rij/rij, and αC
i

is the AC parameter, which is of order unity1. Equation (18) rep-
resents the SPH analogue of a diffusion equation of the form(

dui

dt

)
AC

� DAC
i ∇2ui, (19)

where

∇2ui = 2
∑

j

m j
ui − u j

ρ j

eij · ∇Wij

rij
(20)

is the SPH expression for the Laplacian (Brookshaw 1985)
and, in analogy with the analysis of Lodato & Price (2010)
for defining an equivalent physical viscosity coefficient for
the SPH numerical viscosity, we can define DAC

i as a numerical
heat-diffusion coefficient given by

DAC
i �

1
2
αC

i v
AC
ij rij. (21)

An important issue concerns the choice of the AC parameter αC
i ,

which must be constructed so that diffusion of thermal energy
is kept under control and is damped away from discontinu-
ities. This can be achieved by introducing a switch similar to
that devised for AV. The dissipation parameter is then evolved
according to

dαC
i

dt
= −α

C
i − αC

min

τC
i

+ S C
i, (22)

the meaning of the terms being similar to that of Eq. (12). In
particular, for the decay timescale τC

i = hi/Cci we here set C =
0.2 and the floor value αC

min to zero. For the source term S C
i , we

use the expression

S C
i = fChi

∣∣∣∇2ui

∣∣∣
√

ui + ε

(
αC

max − αC
i

)
, (23)

where fC is a dimensionless parameter of order unity and the
parameter ε avoids divergences when ui → 0. This equation
differs from the corresponding source term proposed by Price
& Monaghan (2005) and Price (2008) by the factor αC

max − αC
i ,

which has been inserted here in analogy with Eq. (13) for intro-
ducing a stronger response by the switch in the presence of dis-
continuities. The choice of values for the parameters fC and αC

max
depends on the problem under consideration, for example Price
& Monaghan (2005) proposed fC = 0.1. Here a number of nu-
merical experiments has shown that the best results in terms of

1 Note that there is a misprint in the sign of the corresponding Eq. (28)
of Price (2008).
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the response of the AC parameter αC
i to the presence of discon-

tinuities are obtained by setting fC = 1 and αC
max = 1.5, which

we assume henceforth as reference values. Moreover, it is found
that significant benefits in terms of the sharpness of the AC pa-
rameter profile across the discontinuity are obtained by inserting
the αC

max−αC
i term. In principle, the choice of the derivative term

used to detect discontinuities is arbitrary, but in practice a sec-
ond derivative (Price & Monaghan 2005) term ensures higher
sensitivity to sharp discontinuities in thermal energy than a first
derivative (Price 2005a).

An example of a signal velocity specifically designed to re-
move pressure gradients at contact discontinuities is that orig-
inally introduced by Price (2008) for pure hydrodynamical
simulations

vAC
ij (P) =

√∣∣∣Pi − P j

∣∣∣
ρij

, (24)

and further refined by Valcke et al. (2010). The ability of the new
AC formulation of SPH to follow the development of KH insta-
bilities using this expression for the signal velocity was verified
in a number of tests (Price 2008; Valcke et al. 2010; Merlin et al.
2010). However, the disadvantage of using the signal speed (24)
is that it cannot be applied when self-gravity is considered be-
cause in that case a pressure gradient is present at hydrostatic
equilibrium. Imagine, for example, a self-gravitating gas sphere
in hydrostatic equilibrium in which there is a negative radial
temperature gradient, with the gas temperature decreasing ra-
dially outward from the center of the sphere. An application of
the SPH equations, with the AC term of Eq. (22) now using the
signal velocity (24), leads to a heat flux from the inner to the
outer regions and, in the long term, to the development of an
unphysical isothermal temperature profile. A signal velocity that
avoids this difficulty is given by

vAC
ij (grav) =

∣∣∣∣(ui − u j

)
· rij

∣∣∣∣/ rij, (25)

which corresponds to the formulation proposed by Wadsley et al.
(2008) in which a dissipative term is added to the evolution of
the thermal equation with the purpose of modeling heat diffusion
due to turbulence. The new term is constructed in analogy with
the subgrid-scale model of Smagorinsky (1963) and is given by

(
dui

dt

)
AC

= C
∑

j

m j

∣∣∣ui − u j

∣∣∣ (hi + h j

)
ρij

(
ui − u j

)
eij · ∇iW̄ij, (26)

where C is a coefficient of order unity, whose precise value de-
pends on the problem under consideration. For the rising hot
bubble problem considered by Wadsley et al. (2008), the clos-
est agreement with the corresponding PPM results taken as ref-
erence is obtained by setting C = 0.1, higher values being
too diffusive. Throughout this paper, the SPH simulations of
the hydrodynamic tests are performed by adopting the expres-
sion (18) for the thermal energy dissipative term. With respect
to the formulation of Wadsley et al. (2008), this approach has
the advantage of using a diffusion parameter that is not con-
stant but evolves in time according to a source term, so that
the amount of diffusion away from discontinuities is minimized.
For the AC signal velocity, we then use Eq. (25), whose per-
formances in the AC formulation (18) has not been fully tested
before in SPH simulations of hydrodynamic test problems.

We note that, using the signal velocity (25), the
Von Neumann stability criterion becomes unimportant with

respect the Courant condition (11). The Von Neumann constraint
requires Δt ≤ 0.5Δx2/D, which in SPH is given by

ΔtAC
i
<∼ 1

2

h2
i

DAC
i

· (27)

Since αC � O(1), this condition implies that ΔtAC
i
>∼ ΔtC

i in both
the supersonic and subsonic regimes.

3. Hydrodynamic tests

In the following, simulation results obtained by applying the new
AC-SPH code to a number of hydrodynamic test problems are
discussed with the objective of validating the code and assessing
its performance. To this end, the simulation results of the tests
will be compared with the corresponding ones obtained by pre-
vious authors using different codes and/or numerical methods.
The problems considered are usually presented in the literature
in dimensional or complexity order, but here we follow a differ-
ent approach. Since the KH instability is the hydrodynamic test
that initially (Agertz et al. 2007) inspired the discussion about
the difficulties of standard SPH in properly handling the devel-
opment of instabilities, and it is also the most widely considered
in this context (Abell 2011; Price 2008; Cha et al. 2010; Heß
& Springel 2010; Read et al. 2010; Valcke et al. 2010; Murante
et al. 2011), we here discuss first the two-dimensional (2D) ver-
sion of the test in detail. The setup of the other runs is then con-
sidered in the light of the results obtained from the 2D KH test.

3.1. 2D Kelvin-Helmholtz instability

The KH instability arises in the presence of shear flow between
two fluid layers when a small velocity perturbation is imposed
in the direction perpendicular to the interface between the two
fluids. The development of the instability is characterized by an
initial phase, where the fluids interpenetrate each other, and then
the forming of vortices, which become progressively more pro-
nounced and turn into KH rolls at the onset of non-linearity.
In the case of incompressible fluids for a sinusoidal pertur-
bation of wavelength λ, this phase is reached on a timescale
(Chandrasekhar 1961)

τKH =
λ (ρ1 + ρ2)

(ρ1ρ2)1/2 v
, (28)

where ρ1 and ρ2 are the fluid densities and v = v1 − v2 is the rela-
tive shear velocity. A proper modeling of instabilities in numer-
ical hydrodynamics is essential since the KH instability plays a
crucial role in the development of turbulence that occurs in many
hydrodynamical phenomena. In particular, the KH instability is
relevant to many astrophysical processes, such as gas stripping
from cold gas clouds occurring in galactic halos and the produc-
tion of entropy in the intracluster gas of galaxy clusters due to
the injection of turbulence.

The growth of the KH instability in hydrodynamic simula-
tions has been addressed by various authors (Abell 2011; Price
2008; Wadsley et al. 2008; Read et al. 2010; Valcke et al. 2010;
Heß & Springel 2010; Cha et al. 2010; Murante et al. 2011).
These studies found that the development of the instability is
artificially suppressed because of two distinct effects: the first
problem is the so-called local mixing instability (LMI) due to
entropy conservation, which inhibits mixing on the kernel scale
and thus introduces pressure discontinuities; the second problem
is caused by errors in the momentum equation, which cannot be
reduced by increasing the number of neighbor particles without
causing particle clumping.
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Table 1. KH parameters for the simulations.

Label run 1 2 3 4 5
M 0.2 0.4 0.6 0.8 1.0
|vx | 0.26 0.52 0.77 1.0 1.3
τKH 1.23 0.56 0.37 0.28 0.22

Notes. From top to bottom: simulation label, Mach number M and
x-velocity v1 of the high-density layer, KH timescale τKH.

Given the wide variety of numerical parameters and initial
conditions with which the KH instability has been addressed,
we choose here to perform the tests using as reference the sim-
ulations presented by Valcke et al. (2010). In particular, the au-
thors implement in their SPH equations an AC term similar to
that of Eq. (18), but with the AC parameter set to unity, and
with a signal velocity given by Eq. (24). The authors performed
a systematic analysis of the capabilities of SPH to capture the
KH instability using different SPH formulations, kernels, nu-
merical resolutions, and KH timescales. This choice allows us
to assess the code capabilities by constructing a large suite of
simulations whose numerical results can be contrasted against
the corresponding ones discussed by Valcke et al. (2010).

3.1.1. Initial conditions set-up

The problem domain consists of a periodic box of unit length
with Cartesian coordinates x ∈ {0, 1}, y ∈ {0, 1}. Within this
domain, there is a fluid with adiabatic index γ = 5/3, which
satisfies the conditions

ρ, T, vx =

{
ρ1, T1, v1 |y − 0.5| ≤ 0.25

ρ2, T2, v2 |y − 0.5| > 0.25.
(29)

As in Valcke et al. (2010), we choose here ρ1 = 10 and ρ2 = 1,
with the index 1 referring to the high density layer. This choice is
motivated by the finding that the difficulties of SPH in reproduc-
ing KH instabilities increase as the density contrast between the
two fluid layers gets higher. The two layers are in pressure equi-
librium with P1 = P2 = 10, so that the sound velocities in the
two layers are c1 =

√
γP1/ρ1 = 1.29 and c2 =

√
γP2/ρ2 = 4.08,

respectively. The layers slide against each other with opposite
shearing velocities v1 = −v2 and to seed the KH instability a
small single-mode velocity perturbation is imposed along the
y-direction

vy = w0 sin (2πx/λ) , (30)

where w0 = 0.025 and λ = 1/6. To restrict the perturbation
to spatial regions in the proximity of the interfaces, the per-
turbation (30) is applied only if |y − σ| < 0.025, where σ
takes the values of 0.25 and 0.75, respectively. With this choice
of parameters, the Mach number of the high-density layer is
M � v1/c1 � v1/1.29 and the KH timescale is τKH � 0.29/v1. As
in Valcke et al. (2010), we consider KH simulations with a range
of five different Mach numbers; Table 1 reports the values of M
together with the respective values of v1 and τKH.

To implement the density set-up (29), a two-dimensional
lattice of equal-mass particles is placed inside the simulation
box. We adopt here an isotropic hexagonal-close-packed (HCP)
configuration for the particle coordinates instead of the more
commonly employed Cartesian grid. The advantage of this con-
figuration is that, for a given number of neighbors, it gives a
more robust density estimate owing to its symmetry properties.

To construct the initial density configuration (29), the lattice
spacing of the particles is varied until the SPH density esti-
mate (1) satisfies the required values within a certain tolerance
criterion (<∼1%) for the relative density error. The simulations
were run using a total number of N = 5122 particles and the
initial particle specific energies were assigned after the density
calculation so as to satisfy pressure equilibrium. This particle
number is larger than that used in the runs of Valcke et al. (2010)
(�200 K), but guarantees a density setup with the specified
tolerance criterion.

As noticed by Valcke et al. (2010) and other authors, SPH is
a numerical method that can only represent smoothed quantities,
hence applying it to hydrodynamic problems where strong den-
sity gradients are present can lead to inconsistencies This is, in
fact, the situation encountered by standard SPH in the treatment
of KH instabilities, where the lack of entropy mixing induces an
artificial pressure discontinuity at fluid interfaces with a jump in
density.

Motivated by these difficulties, we consider here a set of runs
in which the density discontinuity at the interfaces is replaced by
a smooth transition. To allow us to make a consistent comparison
with the corresponding runs of Valcke et al. (2010), we adopt the
same smoothing profile

ρ(y) = D ± Aatan
[
B

(
y′ +C

)]
, (31)

where the coefficients are given by

A =
ρ1 − ρ2

2atan(β)
, (32)

B = 2
β

δ
, (33)

C = −δ
2
, (34)

D =
ρ1 + ρ2

2
, (35)

and y′ = y − σ + δ/2. In Eq. (31), the sign in front of the coeffi-
cient A refers to σ = 0.25, 0.75, respectively. The parameters β
and δ determine the thickness of the density transition and take
the values β = 10, δ = 0.5/0.75.

The following procedure is adopted to construct a lattice con-
figuration that satisfies the density profile given by Eq. (31).
An HCP lattice of particle is first constructed in the domain
0 ≤ x < 1 and 0 ≤ y ≤ 0.5 with a spacing adown such that
the SPH density is ρ = ρ2. Proceeding upward from y = 0,
the lattice spacing is progressively reduced according to a =
adown[ρ2/ρ(y)]1/2 until y = 0.25 and Ndown particles are left. The
same procedure is applied to a high-density lattice that in the
same domain satisfies the condition ρ = ρ1: starting from y = 0.5
and proceeding downward, the lattice spacing is increased so
that a = aup[ρ1/ρ(y)]1/2 until y = 0.25 and Nup particles re-
main of the original high-density lattice. The whole procedure
is numerically iterated until the numbers Ndown and Nup satisfy
the conditions Ndown + Nup = N/2 and Nup/Ndown = ρ1/ρ2. The
lattice is then replicated in the top half of the box (y → 1 − y)
so that the initial conditions are fully symmetric around y = 0.5.
In the following, simulations with initial conditions for which
the particle positions are arranged in a unsmoothed HCP lat-
tice are denoted with the suffix SPH, whereas all of the others
adopt the smoothed density profile constructed according to the
procedure described here.

Another issue that is found to have a significant impact on
the ability of standard SPH to properly capture KH instabilities
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is the choice of the kernel function. According to Read et al.
(2010), the accuracy of the momentum equation for particle i is
governed by the leading error

Ei
0 =

∑
j

m j

ρ j

[
ρi

ρ j
+
ρ j

ρi

]
hi∇iW̄ij, (36)

which vanishes in the continuum limit. However, this does not
hold for a finite number of irregularly distributed particles or,
more specifically, in the proximity of a contact discontinuity
where a density step is present. A possible solution consists of
increasing the number of neighbors so as to improve kernel sam-
pling, although this approach presents some difficulties when
the commonly employed M4 or cubic spline (CS) SPH kernel
is used. This occurs because for a large number of neighbors
the CS kernel is subject to the so-called clumping instability, in
which pairs of particles with interparticle distance q = r/h < 2/3
remain close together because the CS kernel gradient tends to
zero below this threshold distance. A stability analysis (Morris
1996; Børve et al. 2004; Price 2005a; Read et al. 2010) shows
that for the CS kernel, a Cartesian lattice of particles is unstable
for η � 1.5 or Nsph ∼ 28, 110 when D = 2 and D = 3, respec-
tively. The clumping degrades the spatial resolution because it
reduces the effective number of neighbors with which integrals
are sampled, thus still has large E0 errors even when the reso-
lution is increased. To overcome this problem, one can modify
the kernel shape in order to have a non-zero kernel derivative at
the origin. However, for a fixed number of neighbors, kernels of
this kind have the drawback of providing a less accurate density
estimate than that given by the CS kernel since near the origin
the kernels have a steeper profile.

As an alternative to the CS kernel, we consider here the linear
quartic (LIQ) kernel, introduced by Valcke et al. (2010), which
is a quartic polynomial for qs ≤ q ≤ ζ = 2 and is linear for
0 ≤ q < qs. The choice of parameter qs determines the quality of
density estimates. From a set of 2D Sod shock tube runs, Valcke
et al. (2010) recommend qs = 0.6, which is the value adopted
here. For the functional form and normalization of the kernel,
we refer to Valcke et al. (2010).

Another kernel that has been introduced for the purpose
of avoiding particle clumping is the core triangle (CRT) ker-
nel (Read et al. 2010), which has a constant first derivative for
0 ≤ q < α and is similar to the CS kernel for α ≤ q ≤ ζ = 2.
This kernel is of the form

w(q) =
σ

hD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−3α + 9

4α
2
)

q + 1 + 3
2α

2 − 3
2α

3, 0 ≤ q < α,

1 − 3
2 q2 + 3

4 q3, α ≤ q < 1,

1
4 (2 − q)3 , 1 ≤ q < 2,

0. q ≥ 2,

(37)

where 1/σ = 2π
(

7
20 +

α4

8 − 3
20α

5
)
, 4π

(
1
4 +

α5

20 − α
6

16

)
for D = 2

and D = 3, respectively. The value of α is fixed by the con-
dition of continuity for the second derivative, giving α = 2/3.
For the grid of initial conditions previously described, the
sample of KH simulations is then constructed by perform-
ing SPH runs with the same initial conditions but using differ-
ent kernels. We consider the CS kernel, together with the LIQ
and CRT kernels. For all of these runs, the number of neighbors
is Nsph = 32 (η � 1.5).

However, another solution for reducing sampling errors con-
sists of keeping a B-spline kernel function but increasing its or-
der (Price 2012a, Sect. 5.4). This approach has the advantage

Table 2. Main simulation parameters of the KH tests.

Simulations SPH RHO LIQ LP CRT M5
Kernel CS CS LIQ LIQ CRT M5
Ns 32 32 32 32 32 50
vsig grav grav grav pres grav grav
ρ U S S S S S

Notes. From top to bottom: simulation label, kernel function, neigh-
bor number, signal velocity used in Eq. (18), setup of initial HCP lat-
tice where U = unsmoothed and S = smoothed. For all of the runs,
the AV parameters are {αmin, αmax, ld} = {0.1, 1.5, 1}.

of retaining the bell shape of the kernel, a feature that provides
good density estimates (Fulk & Quinn 1996). After the M4 (CS)
kernel, at the next order is the M5 or quartic kernel

w(q) =
σ

hD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
5
2 − q

)4 − 5
(

3
2 − q

)4
+ 10

(
1
2 − q

)4
, 0 ≤ q < 1

2 ,(
5
2 − q

)4 − 5
(

3
2 − q

)4
, 1

2 ≤ q < 3
2 ,(

5
2 − q

)4
, 3

2 ≤ q < 5
2 ,

0. q ≥ 5
2 ,

(38)

which is truncated to zero for ζ ≥ 2.5 and has σ =
96/1199π, 1/20π for D = 2 and D = 3, respectively.

An additional set of SPH simulations was then performed
using the M5 spline as the kernel. For consistency with the other
runs, we kept the same ratio of smoothing length to particle spac-
ing (η ∼ 1.5), so that for these runs the chosen number of neigh-
bors is Nsph = 50. A non-trivial issue concerns the role of pair-
ing instability for this class of kernels. Because the gradient of
the M5 kernel still goes to zero as q → 0, one would expect the
instability still to occur for η ∼ 1.5. Nonetheless, it will be seen
that KH simulations with the M5 kernel do not exhibit particle
clumping, in contrast to corresponding simulations performed
with the CS kernel. This suggests that the stability properties of
the M5 kernel are better than those of the CS one; this topic is
discussed in a subsequent dedicated section (Sect. 3.1.3).

Table 2 summarizes the main simulation parameters used in
the KH tests. For comparison purposes, a set of mirror runs was
carried out for the LIQ simulations in which Eq. (25), for the
signal velocity, was replaced in Eq. (18) by Eq. (24), which is
based on pressure discontinuities.

3.1.2. Results

Figure 1 shows the density maps at t = τKH for some of
the KH simulations listed in Table 2. The panels can be com-
pared directly with the corresponding ones in Fig. 10 of Valcke
et al. (2010). A visual inspection reveals that the expected fea-
tures of the KH runs are correctly reproduced and of a gen-
eral consistency between the results produced by the two codes.
In particular, the LP simulations, which use the pressure-based
AC signal velocities of Eq. (24), appear to produce results almost
identical to the corresponding LIQ ones. Thus, showing how, for
the KH tests examined here, the use of the two signal velocities
can be considered equivalent, within the spanned range of Mach
numbers.

We note, however, the absence of KH rolls for the LP run
with M = 0.4, which contrasts with the same simulation in
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Fig. 1. Density maps for some of the 2D KH instability tests described in Sect. 3.1. From left to right, each column shows the panels for runs
having initial conditions with the same Mach number at the corresponding time t = τKH, as listed in Table 1. From top to bottom, different rows
refer to the simulations SPH, RHO, LIQ, and LP. The last one uses the linear quartic kernel but with the signal velocity (24), whereas the first three
use the expression (25) (see Table 2). The plots can be compared directly with Fig. 10 of Valcke et al. (2010).

Valcke et al. (2010) where the rolls have already been devel-
oped. Given the general agreement between the two codes, it is
hard to ascertain the origin of the discrepancy for this specific
run. However, the panels of Fig. 1 show that the AC-SPH for-
mulation, as discussed in Sect. 4.2, is still unable to properly
capture the development of KH instabilities for very subsonic
shear flows. This suggests how small differences in the time in-
tegration procedure of the two codes can manifest themselves in
the long-term evolution of cold flows.

In Fig. 2, the results for the same set of KH simulations of
Table 1 are shown, but with the use of kernels LIQ, CRT, and M5.
An important feature is now the appearance in the CRT and M5
runs of KH rolls in the M = 0.4 case. This improvement in
the description of KH instabilities suggests that the integration
errors that are present with the LIQ kernel are now absent or
smaller in the CRT and M5 runs. However, in the M = 0.2 case,
the kernels are still unable to capture the development of the KH
instability. For this test case, a high-resolution run (N = 10242)
using the M5 kernel (not shown here) still reveals the absence of

any KH roll at t = τKH, thus showing that in SPH the problem
of an accurate description of KH instabilities in the very sub-
sonic regimes is neither a resolution issue nor due to the AC im-
plementation. We refer to McNally et al. (2012) for a recent
discussion of this topic.

To test the effectiveness of the switch (13) in ensuring a fast
response of the αC

i parameters to the presence of thermal energy
discontinuities, Fig. 3 renders the plots of the AC parameters that
are shown for the test runs of Fig. 2. The maps are color-coded
according to the range of values of αC

i . The highest values lie in
the range ∼0.7−0.8 and are confined to a narrow strip around the
interface layers, with the floor value ∼0 as the background value
away from the discontinuities. We note that in general, and in
particular for the M = 1 test case, the maximum values of the αC

for the M5 runs are below those of the other runs. This result is
due to the faster growth rate of the instability, which is ensured
by an improved kernel accuracy in interpolating the variables.

The long-term evolution of the KH tests is shown at t = 2 in
Fig. 4. The overall features of the density plots for different runs
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Fig. 2. As in Fig. 1 but for the set of simulations LIQ, CRT, and M5.

Fig. 3. Rendered plots of the αC parameters are shown for the same runs as in Fig. 2. The distribution of particle values αC
i has been interpolated

at the map grid points according to the SPH prescription.
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Fig. 4. As in Figs. 1 and 2 but here at the time t = 2 for all of the panels. Note from Table 1 that this implies t � τKH for runs with high Mach
numbers.

are similar to their counterparts displayed in Fig. 11 of Valcke
et al. (2010). We note the tendency for the M5 runs to show
small-scale features at the layer contacts.

The aim of this section is to test the consistency of the
present AC implementation by comparing results extracted from
a suite of AC-SPH simulations of the 2D KH instability prob-
lem, with those of similar runs (Valcke et al. 2010). The results
of the KH tests indicate a code behavior that is in accord with
that expected and the simulations of Valcke et al. (2010).

However, Valcke et al. (2010) argue that the absence of
the AC term is not the main reason for the SPH failure to de-
velop KH instabilities; however the presence of AC is necessary
for the long-term evolution of the instabilities, but this difficulty
of SPH has two distinct reasons. The first is a general problem
of consistency of the initial condition set-up, as SPH by defi-
nition can only deal with smoothed quantities and therefore its
application to problems where sharp discontinuities are present
leads to inconsistencies. This is part of the more general prob-
lem (Robertson et al. 2010) of properly smoothing in numerical
simulations of hydrodynamic test problems the discontinuities
initially present at the interfaces, in order to achieve convergence

in the solution. This aspect of the KH test problem can be cured
by properly stretching the initial particle lattice so as to introduce
a smooth density transition at the interfaces. Results suggest that
there is a significant improvement in the capability of SPH to
properly capture the correct growth rate of the KH instability.

The other problem that causes the poor performance of SPH
when handling KH instabilities is the leading error in the mo-
mentum equation due to the incomplete kernel sampling. This
error can be reduced by removing particle clumping, which de-
pends on the kernel stability properties. In fact, the kernels LIQ
and CRT were introduced (Read et al. 2010; Valcke et al. 2010)
with the aim of removing the clumping instability. Since the re-
sults of the simulations suggest performances for the M5 kernel
that are quite similar to those achieved by these kernels, it is
therefore interesting quantify the relative performances of these
kernels in a better way.

Following Junk et al. (2010), we then measure the growth
rate of the KH instability for some of the runs and compare it
with the linear theory growth rate expectation ∝ et/τKH . This is
achieved, using Fourier transforms, by measuring the time-
evolution of the λ = 1/6 growing mode of the vy velocity
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Fig. 5. Time evolution of the velocity field amplitude in the y direction, as measured by the kλ = 12πmode of the Fourier transform of vy, for some
of the KH instability tests described in Sect. 3.1. Each panel refers to KH simulations performed with the same Mach number, the initial conditions
set-up being given in Table 1. Within each panel, the different curves are for AC-SPH runs with different simulation parameters, as specified in
Table 2. The black solid line indicates the expected linear-theory growth rate.

perturbation component. The details of the procedure are given
in Junk et al. (2010) and so are not reported here. For the sake of
clarity, the results of the LIQ runs are not displayed since they
are quite similar to those of the CRT simulations. Moreover, we
only display the growth rates for three different KH test cases,
those with Mach number M = 0.2, 0.4, and M = 1, the results
of the others being intermediate between these.

A number of distinct features are apparent in the panels of
Fig. 5. The first is that simulations with smoothed IC (RHO)
perform systematically better than the unsmoothed ones (SPH).
The second is that only for M = 1 are the simulations with ker-
nels CRT and M5 able to correctly recover the expected growth
rate. Finally, this capability progressively declines as one consid-
ers lower Mach numbers. While this behavior is in accordance
with the visual impression of the maps previously displayed, and
confirms that the present SPH implementation still has prob-
lems in describing instabilities in subsonic flows, we note that
the performances of the M5 runs are similar to those obtained
using the CRT kernel. This behavior is particularly interesting,
since the simulations were performed by setting the ratio of the
smoothing lengths to particle spacing to η � 1.5 so that the pair-
ing instability, which is present in runs that use the CS kernel,
should be present in the M5 simulations as well.

How the clumping instability affects sampling errors can
be assessed by computing the particle errors E0

i , according to
Eq. (36). The distribution, throughout the simulation domain of
the E0

i errors versus y, is shown in the top panels of Fig. 6 for
M = 1 simulations performed using different kernels. The solid
lines represent the mean of the binned distributions. Similar plots
were produced by Valcke et al. (2010) and their Fig. 3 can be
used for comparative purposes.

As expected, the largest E0 errors are present in the SPH sim-
ulation, whereas better results are obtained by using the LIQ
and CRT kernels, as indicated by the error distribution in their
respective panels. This is a result of the absence of particle
clumping for these simulations, owing to the specific stability
properties of these kernels (Read et al. 2010; Valcke et al. 2010).

A striking feature is given by the E0 error distribution of the
simulation performed using the M5 kernel, which shows how
the magnitude of the E0 errors are even smaller than those of
the two runs CRT and LIQ for this kernel. This result is in
accordance with what has been found previously by analyzing
the growth rates, suggesting that, since all of the simulations

were performed using the same η, the stability properties of
the M5 kernel are better than those of the CS one.

To further investigate this point, the bottom panels of Fig. 6
show the “nearest neighbor” map of the corresponding top pan-
els. This is defined by interpolating the quantity q2

i at the grid
points, according to the SPH prescription, where for the k − th
neighbor qk

i = |xi − xk |/hi and the neighbors have been sorted
according to their distance from the particle i itself.

The map of the M5 kernel indicates a distribution of the sec-
ond nearest-neighbor distribution q2

i that is quite similar to that
displayed by the CRT and LIQ kernels. The only difference oc-
curs at the layer interfaces, where the distribution of the quanti-
ties q2

i for the M5 kernel is slightly shifted towards smaller values
than for the other kernels. Conversely, we note that because of
the pairing instability, for the CS kernel the distribution of the
neighboring distances is flipped with respect to that of the other
kernels.

The results of Fig. 6, however, clearly show the absence of
clumping instability for the M5 kernel. In the next section, we
investigate, in more detail, the stability properties of this kernel.

3.1.3. Stability issues

The stability properties of SPH have been investigated by a num-
ber of authors (Swegle & Hicks 1995; Morris 1996; Monaghan
2000; Børve et al. 2004; Read et al. 2010; Dehnen & Aly 2012).
The instabilities are studied analytically by analyzing the disper-
sion relation for sound waves of small amplitude, propagating
in a uniform medium. We now derive the dispersion relation for
the SPH equation of motion in a manner similar to the analysis
of previous authors. A uniform lattice of equal-mass particles of
mass m, density ρ0, pressure P0, and sound speed c2

s = γP0/ρ0
is perturbed by a small wave

xi = x0
i + a exp

[
k · x0

i − ωt
]
, (39)

where a is the perturbation, k is the wavevector, and x0
i are the

unperturbed particle positions. By linearizing the equation of
motion for the perturbation, one has the dispersion relation

ω2aμ =

⎡⎢⎢⎢⎢⎢⎢⎣2mP0

ρ2
0

∑
j

Hμν
(
1 − cos

(
k · x0

ij

)
aν

+ (γ − 2)
m2P0

ρ3
0

(
a · qi

)
qi
μ

⎤⎥⎥⎥⎥⎦ ,
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Fig. 6. Top panels: distribution at time t = τKH of the errors |Ei
0| plotted versus y, as defined by Eq. (36), for the KH runs with Mach number

M = 1 and different simulation parameters (See Table 2). The red histograms show the mean values of the binned distributions. Bottom panels:
each panel shows the nearest neighbor map of the run in the corresponding top panel. This is defined as the distribution, interpolated at the map
grid points of the normalized distances q2

i = δ
2
i /hi, where δk

i is the distance |xi− xk | of the kth neighbor of the particle i and the neighbors are sorted
so that δk

i < δ
k+1
i .

where the summations are over the neighbors j of particle i, the
vector qi is defined as

qi =
∑

j

sin k · x0
ij∇iWij, (40)

and H(W) is the Hessian of the kernel

Hμν =
∂2W(r)
∂xμ∂xν

· (41)

For a given smoothing length h and wavevector k, the stable so-
lutions of Eq. (40) are defined by the conditionω2 ≥ 0. Solutions
for which ω2 < 0 represent exponentially growing or decay-
ing perturbations. Moreover, it is useful to define a numerical
sound speed C2

num = ω
2/k2 and a scaled numerical sound speed

c2
num = C2

num/c
2
s . The condition c2

num = 1 should clearly be
satisfied for the sound speed to be correctly modeled.

We now examine the stability properties of the CS
and M5 kernels. For simplicity, we consider a plane wave prop-
agating along the x-axis, k = k(1, 0, 0), and assume γ = 5/3.
The bottom panels of Fig. 7 show, for the longitudinal and the
two transverse waves of the perturbation, the instability regions
of the CS kernel, which are denoted by the gray areas and rep-
resent the solutions to Eq. (40) in the domain (h, k), for which
ω2 < 0. Similarly, the top panels are for the M5 kernel.

The longitudinal wave perturbation is responsible for the
clumping instability, whereas the traverse waves give rise to
the so-called banding instability (Read et al. 2010). Unlike the
clumping instability, the latter is relatively unimportant in caus-
ing sampling errors (Read et al. 2010) and is not considered

further here. A comparison of the two stability plots for the lon-
gitudinal wave solution clearly shows that the stability properties
of the M5 kernel are much better than those of the CS one.

This is part of a more general result that was previously
recognized by Morris (1996): the stability properties of SPH
improve when higher-order spline kernels are used in place of
the CS kernel. This occurs, basically, because the higher the or-
der of the spline, the better it approximates a Gaussian kernel.
In Eq. (40), one can see that the numerical sound speed c2

num de-
pends on the first and second derivatives of kernel W. Ideally,
one should have c2

num � 1 to accurately describe the sound wave
propagation and this condition is fulfilled when smoother ker-
nels are used, so as to keep the numerical dependence of c2

num as
weak as possible.

We note however that here, in contrast to the stability prop-
erties of the CRT kernel, the clumping instability is not entirely
suppressed but instead it is present whenever η >∼ 2.5.

Finally, it must be stressed that the paring instability that oc-
curs in the hydrodynamic tests described here, is unlikely to have
a significant impact on many astrophysical problems of interest,
where very cold flows are generally absent. Rasio & Lombardi
(1999) estimate for instance, from SPH simulations of a station-
ary fluid, that lattice effects become important when velocity
dispersions are below ∼3%−4% of the sound speed.

The results of this section and the previous one, therefore,
suggest that to avoid the pairing instability, the M5 kernel can
be considered a viable alternative to the use of the otherwise
steeper CRT and LIQ kernels, provided that the parameter η is
consistently rescaled. In the next section, we then discuss the
related performances of these kernels in a test simulation.
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Fig. 7. Contour plots of the dispersion relation given in Eq. (40) are shown as a function of wavenumber k and smoothing length h for a regular
lattice of particles with spacing Δ, where we consider a wavevector with orientation k = k(1, 0, 0). Gray areas indicate the instability regions for
which ω2 < 0. From the left to right, the top panels show in the case of the M5 kernel the instability regions of the longitudinal and the two
transverse waves. The bottom panels refer to the CS (M4) kernel.

3.2. Sod’s shock tube

A classic test used to investigate the hydrodynamic capabilities
of SPH codes is the Sod shock-tube problem (Hernquist & Katz
1989; Wadsley et al. 2004; Springel 2005; Price 2008; Tasker
et al. 2008; Rosswog 2009). This test consists in a fluid, initially
at rest, in which a membrane located at x = 0 separates the fluid
on the right, of high density and pressure, from the fluid on the
left, of relatively lower density and pressure. The membrane is
removed at t = 0 and a shock wave develops propagating toward
the left, followed by a contact discontinuity and a rarefaction
wave propagating to the right.

A well-known problem with standard SPH codes in repro-
ducing the analytic solution of the shock-tube problem is the
presence of a pressure discontinuity that arises across the prop-
agating contact discontinuity. Simulations incorporating an ar-
tificial thermal conductivity term in the SPH equations (Price
2008; Rosswog 2009; Price 2012a) show shock profiles in which
density and thermal energy are resolved across the discontinu-
ity, hence producing a continuous pressure profile. However, in
these runs the AC formulation adopts the AC signal velocity (24)
where jumps in thermal energy are smoothed in accordance with
the presence of pressure discontinuities. This is in contrast to
the AC signal velocity (25) employed here, for which in the ab-
sence of shear flows, contact discontinuities are unaffected and
therefore cannot be used to remove the blip seen at the contact
discontinuity in the pressure profile of the shock tube SPH runs.

The application of the AC-SPH code to this test is nonethe-
less of interest because it can still be used to validate the code’s
performances. In particular, we consider a 3D setup of the shock-
tube test and with these initial conditions we construct a set
of AC-SPH simulations performed with different kernels and
neighbor numbers. Shock tube profiles extracted from these sim-
ulations are compared with the aim of assessing the goodness
of different kernels in reproducing, for a given test problem,
profiles of known analytic solutions.

The initial condition setup consists of an ideal fluid with
γ = 5/3, initially at rest at t = 0. An interface set at the origin

separates the fluid on the right of density and pressure (ρ1, P1) =
(4, 1) from the fluid on the left with (ρ2, P2) = (1, 0.1795).
To construct these initial conditions, a cubic box of side-length
unity was filled with 106 equal mass particles, so that 800 000
were placed in the right-half of the cube and 200 000 in the left-
half. The particles were extracted from two independent, uni-
form glass-like distributions contained in a unit box consisting
of 1.6 × 106 and 4×105 particles, respectively. This initial condi-
tion setup is the same as that previously implemented in Sect. 5.1
of V11, to test the time-dependent AV scheme described in
Sect. 2.2.

For the same initial setup, to investigate the performances
of different kernels in reproducing the analytic profiles of the
shock-tube problem, we perform runs with different kernels and
neighbor numbers. The kernels considered are CS, LIQ, CRT,
and M5. The number of neighbors varies as a power of two be-
tween 32 and 128. The SPH runs were realized by imposing pe-
riodic boundary conditions along the y and z axes and the results
were examined at t = 0.12. We show the results obtained using
the standard AV formulation, the results of the other runs being
unimportant from the viewpoint of the kernel performances.

Some of the simulation profiles extracted from the 3D
SPH runs of the shock-tube test are shown in Fig. 8. A strik-
ing feature is the large scatter between the pressure profiles of
the runs performed using different kernels or neighbor numbers.
The same behavior is present for the thermal energy profiles,
whilst very similar density profiles are exhibited by the same
runs.

There are several conclusions that can be drawn from the
results of Fig. 8. The performances of the M5-64 run are quite
similar to those of CS-32, although for the former simulation a
closer inspection reveals a slightly better treatment of the ther-
mal energy spike at the contact discontinuity, the spike being due
to the initial condition set-up.

The worst results are obtained by the LIQ simulations when
using Nsph = 32 or Nsph = 64 neighbors. The profiles of
the LIQ-128 run are not shown here to avoid overcrowding in
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Fig. 8. Results at t = 0.12 of the 3D shock
tube test. The profiles of density, pressure,
thermal energy, and velocity are plotted clock-
wise from top left. The solid black line rep-
resents the analytical solution, while lines
with different styles and colors are the pro-
files of the AC-SPH runs with different ker-
nels and neighbor numbers, as illustrated in
the pressure panel.

Table 3. Average densities and sample standard deviations estimated
from the SPH densities of a configuration of one million particles.

Nsph

Kernel 32 64 128
CS 1.005 ± 0.035 1.002 ± 0.019 1.0018 ± 0.012
LIQ 1.06 ± 0.028 1.024 ± 0.016 1.01 ± 0.011
CRT 1.079 ± 0.039 1.035 ± 0.020 1.016 ± 0.012
M5 1.022 ± 0.052 1.003 ± 0.024 1.0008 ± 0.015

Notes. These are arranged in a glass-like configuration inside a cubic
periodic box of side length unity and total mass one. The SPH parti-
cle densities have been calculated for a variety of kernels and neighbor
numbers Nsph (see text).

the plots, and are quite similar to those of the simulation CRT-
128. This clearly demonstrates the need for this class of kernels
to use a large (say >∼128) number of neighbors, so as to com-
pensate for the density underestimate due to the steeper profiles
introduced to avoid the pairing instability.

To better quantify this density bias, Table 3 reports, for dif-
ferent kernels and neighbor numbers, the mean SPH density es-
timated from a glass-like configuration of N = 106 particles, in a
unit periodic box of total mass one. The results illustrate how the
density estimate of the M5 kernel with 64 neighbors is compa-
rable to the CS one obtained using 32 neighbors, the value of η
being the same (η � 1). Conversely, for the LIQ and CRT ker-
nels, only when Nsph = 128 does the mean density approach
the M5-64 estimate.

The density values given in Table 3 also help us to explain
the rather poor performances of the LIQ kernel when using

32 neighbors. From Fig. 8, it can be seen that for the corre-
sponding run the relative pressure error is εP � 10% in the un-
perturbed right zone of the cube. This error is already present
in the pressure profile at t = 0 and originates from the den-
sity error due to the adopted kernel and neighbor number, to-
gether with the use of an entropy-conserving code to perform
the simulations. Particle entropies are initially assigned accord-
ing to the initial conditions so that, for particles satisfying xi > 0,
Ai ≡ A1 = P1/ρ

γ
1 � 0.1. During the integration, particle pres-

sures are calculated according to Pi = Aiρ
γ
i , and for x > 0 a

relative pressure error εP � γερ � 10% is present when ερ � 6%.

Taken at face value, the results of Table 3 demonstrate that
in 3D simulations a conservative lower limit for the kernels with
a modified shape should be to assume at least Nsph >∼ 200 neigh-
bors. In fact, Read & Hayfield (2012) present a new formu-
lation of SPH where they adopted, as reference, the so-called
high-order core triangle (HOCT, Price 2005a). The profile of
this kernel is a generalization of that of the CRT kernel and
the authors assumed Nsph = 442 as the reference value for their
scheme.

However, the results of the previous sections suggest that the
stability properties of the M5 kernel can be profitably used, with
an appropriate choice of the η parameter, to avoid the pairing
instability when dealing with tests of hydrodynamic instabilities
in which cold flows are present.

Finally, the density estimates of Table 3 suggest that great
care should be taken when deciding the goodness of a particular
kernel based on its relative performance in terms of density esti-
mates. The results of the 3D Sod shock tube clearly indicate how
there could be a large difference between the simulation and the
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expected solution profile of some hydrodynamic variable, such
as pressure or thermal energy, and, at the same time, a much
smaller difference in the corresponding density profile.

3.3. Sedov blast wave

The Sedov blast-wave test is used to validate, in three dimen-
sions, the code capability in the strong shock regime. The test
consists of a certain amount of energy E being injected at t = 0
into a very small volume of an ambient medium of uniform
density ρ. The spherically symmetric shock propagates outward
from the initial volume and at time t the shock front is located at
the radius (Sedov 1959)

R(t) � β
(
Et2/ρ

)1/5
, (42)

where β ∼ 1.15 for γ = 5/3.
Previous investigations (Rosswog & Price 2007; Merlin et al.

2010) showed that, owing to the large discontinuities initially
present in the thermal energy, incorporating an artificial conduc-
tion term in the energy equation greatly improves the description
of the shock front in the simulations. Without the presence of this
term, the initially large discontinuity in the thermal energy soon
gives rise to a disordered particle distribution that degrades the
shock profile (Rosswog & Price 2007).

The initial setting of the test was realized as follows.
A HCP lattice of N = 2× 643 equal mass particles was arranged
in a cubic box of side length unity. The particle masses were
chosen so as to give ρ = 1 and periodic boundary conditions
were imposed. The nearest particle to the position {0.5, 0.5, 0.5}
was chosen as the center particle. To consistently represent a
point-like explosion with the given numerical resolution, the par-
ticles j comprised within the kernel radius ζhi of the center par-
ticle i were given an initial thermal energy such that the total in-
jected energy was E = 1. This blast wave energy was distributed
among the neighboring particles not uniformly but with a weight
proportional to Wij.

Using this initial condition set-up, we ran three test simu-
lations, which differed in the choice of the adopted kernel and
neighbor number. For the CS kernel, we used Nsph = 64 neigh-
bors. We also ran two other test cases, now using the CRT
and M5 kernel and Nsph = 128 neighbors. All of the simula-
tions were performed using the implemented AC scheme and
the time-dependent AV formulation with parameters given by
{αmin, αmax, ld} = {0.1, 1.5, 0.2}.

Figure 9 shows the radial density profiles at t = 0.06 for the
different test runs. The solid black line represents the expected
analytic solution, with the shock front being located at r � 0.37.
Radial simulation profiles were obtained by averaging, for each
radial bin rk, SPH densities calculated from the particle distribu-
tions over a set of (θ, φ) = (20, 20) grid points uniformly spaced
in angular coordinates: these were located at the surface of a
sphere with radius rk. The radial spacing was not uniform but
was chosen so as to guarantee an accurate sampling of density
in the proximity of the shock front, with about ∼40 radial bins
between r ∼ 0.34 and r ∼ 0.42.

All of the simulations are in fair agreement with the analyt-
ical solution and the differences between the simulation profiles
are negligible. At the shock front, the profiles exhibit a density
jump of about ∼2, whereas the analytical solution gives a com-
pression factor of γ+1/γ−1 = 4. These results are in accordance
with previous findings (Rosswog & Price 2007; Springel 2010b;
Heß & Springel 2010) and indicate that for 3D SPH simulations

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

Fig. 9. Radial density profiles of the 3D Sedov blast wave test at
t = 0.06. The solid black line indicates the analytic solution, while
the simulation profiles are obtained by averaging for each radial bin
SPH densities calculated from the particle distributions over a set of
grid points located at the surface of a spherical shell and uniformly
spaced in angular coordinates. All of the runs were performed using
N = 524 288 particles.

of the Sedov-Taylor point explosion problem the simulation pro-
files converge to the analytical solution as the resolution is in-
creased, with approximately ∼3453 particles (Rosswog & Price
2007) being required to fully resolve the shock front.

Figure 9 can also be used to verify the behavior of the indi-
vidual timestep algorithm. For problems involving very strong
shocks, as demonstrated by Saitoh & Makino (2009), individ-
ual particle timesteps must be properly restricted so as to avoid
in the proximity of the shock front their failure to satisfy the
local Courant condition, thus leading to inaccuracies in the in-
tegration. The SPH simulations using individual timesteps, but
without an appropriate limiter, fail to predict the expected solu-
tion profile (see Fig. 3 of Saitoh & Makino 2009). The profiles
of Fig. 9 demonstrate the correctness of the algorithm used to
update the timesteps, although different from the one devised by
Saitoh & Makino (2009).

The present scheme adopts individual particle timesteps Δti
that can vary in power-of-two subdivisions of the largest allowed
timestep Δt0 ≥ Δti (Hernquist & Katz 1989). At each step, par-
ticles whose time bin is synchronized with the current time are
defined as “active” and their hydrodynamic quantities, as well as
their smoothing lengths and densities are consistently updated.
However, non-active particles j that are neighbors of an active
particle i are defined as “low-order active” particles, and their hy-
drodynamic variables, as well as their time-step constraints but
not their forces, are recalculated. This criterion is applied regard-
less of the local shock conditions and no particular conditions are
imposed on Δt j that depend on Δti.

3.4. The blob test

The blob test is another hydrodynamic test where the results
of standard SPH differ significantly from those produced by
grid-based simulations (Agertz et al. 2007; Read et al. 2010;
Cha et al. 2010; Heß & Springel 2010; Murante et al. 2011).
The test consists of a gas cloud of radius Rcl placed in an external
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Fig. 10. Density maps of the blob test in the central plane x = Lx/2 at t = 1, 2, 3 for SPH runs with (CS, M5) and without (CS NOAC) the AC term.
Time is in units of τKH ∼ 1.6τcr and the number accompanying the kernel label indicates the number of neighbors of the run. Axis units are in Mpc.

medium ten times hotter and less dense than the cloud, so as
to satisfy the pressure equilibrium. A large enough wind veloc-
ity vW is given to the hot low-density medium so that a strong
shock wave strikes the cloud. The interaction of the cloud with
the supersonic medium produces a number of effects that are of
interest in an astrophysical context, such as gas stripping and
fragmentation.

The blob is initially perturbed by the development of
Richtmyer-Meshkov and Rayleigh-Taylor instabilities (Agertz
et al. 2007). Afterwards, large-scale (∼Rcl) KH instabilities are
created at the cloud surface because of the shear flows caused
by the supersonic wind. This non-linear phase is supposed to de-
velop over a timescale τcr ∼ 2Rcl

√
χ/vW (Agertz et al. 2007),

where χ is the density contrast, after which cloud disruption will
take place.

To investigate the capability of the AC-SPH code to properly
follow the hydrodynamics of the blob test, we compare results
extracted from our set of SPH simulations realized with the same
initial conditions but with different numerical parameters. The
numerical setup of this test is the same as in Read et al. (2010),
to which we refer for more details. A spherical cloud of radius
Rcl = 197 kpc is placed in a periodic, rectangular box of size
{Lx, Ly, Lz} = {2, 2, 8} Mpc. The cloud has density ρcl = 4.74 ×
10−33 gr cm−3 = χρext and temperature Tcl = 106 K = Text/χ.
The ambient medium has density and temperature so that χ =
10. The cloud is initially located at {1, 1, 1}Mpc and the ambient
medium is given a wind velocity vW = 1000 km s−1, so that for
an adiabatic index γ = 5/3 its Mach number is M = 2.7. An HCP
lattice of equal mass particles is constructed to satisfy the above
density requirements so as to use for this version of the test a

total number of N ∼ 1.1 × 106 particles, as in Heß & Springel
(2010). Finally, a velocity perturbation is imposed at the cloud
surface in order to trigger the development of an instability; the
amplitude and modes are given in Appendix B of Read et al.
(2010).

We compare the results of SPH simulations where three
different spline kernels were used CS, CRT, and M5. We use
128 neighbors for the simulations with the CS and CRT kernels
and 220 for the run with the M5 kernel, so that the ratio η is
the same for all the runs (η ∼ 1.5). For the CS kernel, we run a
simulation where the AC term given by Eq. (18) is absent in the
equation of thermal energy evolution (CS-128 NOAC), and three
other simulations (CS-128, CRT-128, M5-220) in which the AC
term (18) is incorporated in the energy evolution equation. In
the following, the simulation AV parameters are set as follows:
{αmin, αmax, ld} = {0.1, 1.5, 0.2}.

For several runs, Fig. 10 shows the gas density maps at three
different times t = 1, 2, 3, the time being in units of τKH ∼ 1.6τcr
(Agertz et al. 2007). The maps have been evaluated according
to the SPH prescription on a 2D grid of (200x800) points in the
central yz plane located at x = Lx/2. The top panels of Fig. 10
are for the standard NOAC run CS-128. It can be seen that in
this case, unlike the results of mesh-based simulations (Agertz
et al. 2007), the cloud survives the impact of the supersonic wind
striking its surface and there is no disruption. This is due to the
absence of fluid instabilities developing at the cloud surface. If
they were present, they would in turn lead to the stripping of
material and the cloud break-up. This code behavior is similar to
what was found in previous findings (Agertz et al. 2007; Read
et al. 2010; Heß & Springel 2010).
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Fig. 11. Mass loss of the cloud versus time for the blob test simulations. Particles are defined as a cloud member if their temperatures and densities
fulfill the conditions Ti < 0.9Text and ρi > 0.64ρcl. Left panel: simulations have been performed incorporating the AC term into the SPH equations
and using the kernels CS, CRT, and M5. For the CS kernel, a simulation is also shown as reference without AC (NOAC, solid black line).
Right panel: for the CS kernel, simulations with additional constraints on the particle AC parameters αC

i have been performed using N = 106 (N6)
and N = 105 (N5) particles, see text for more details. Black squares have been extracted from Fig. 10 of Springel (2011) and indicate the behavior
of the cloud mass versus time in a similar test performed using the moving-mesh code AREPO and with (64 × 64 × 128) resolution elements.

In contrast, incorporating the AC diffusion term in the
SPH equations leads to a significant improvement in the code
capability to properly model the cloud evolution. This can be
seen from the middle and bottom row panels of Fig. 10, in which
the density maps are displayed for the CS-128 and M5-220 runs.
The simulation performed using the CRT kernel is not shown
since its performances are quite similar to those obtained using
the CS kernel.

This behavior is consistent with the expectation that intro-
ducing AC removes the numerical effects that in SPH prevent the
treatment of contact discontinuities when large density jumps are
present, thus the inconsistencies that suppress the growth of the
instabilities. The AC-SPH formulation presented here can there-
fore, at least qualitatively, correctly follow the time evolution of
the cloud as in the other SPH schemes that have been proposed
(Read et al. 2010; Heß & Springel 2010; Murante et al. 2011;
Saitoh & Makino 2012).

To quantify the code performances in a more quantitative
way, Fig. 11 (left panel) shows the mass loss of the cloud as
a function of time for the different runs. We follow previous def-
initions (Agertz et al. 2007) and a gas particle is defined to still
be a member of the cloud if at the considered epoch its gas and
temperature fulfill the conditions ρ > 0.64ρcl and T < 0.9Text.
The standard SPH results show a cloud that is not disrupted and
whose mass, after an initial transient, stays constant at about
half of the original value. A striking result is instead given by
the runs employing the AC term. For these simulations, there is
now a high mass-loss rate occurring at early times, followed by
complete cloud disruption at t >∼ 3τKH.

We note that the mass loss rate of the AC-SPH runs does
not depend in a significant way on the choice of the kernel. This
suggests that the cloud disruption is driven by large-scale insta-
bilities and is relatively insensitive to small-scale perturbations.
Given the similarities displayed in Fig. 11, left panel, by the
mass loss rates of the AC-SPH simulations employing different
kernels, when referring to the left panel we adopt the term mass
loss rate to generically indicate the behavior of these curves.

In the test considered here, the new AC scheme is clearly
now capable of properly removing the surface effects, present

across the contact discontinuity in the standard SPH version,
which artificially suppress the growth of hydrodynamic insta-
bilities. However, a comparison of the mass loss rate with
the corresponding one produced using the new moving-mesh
code AREPO in simulations of equivalent resolution (Springel
2011, Fig. 10) shows that for the AC runs presented here the
mass depletion of the cloud occurs much faster. This discrep-
ancy suggests that the processes of heat diffusion, which in the
adopted numerical scheme are mediated via the AC parame-
ter αC, should be somehow constrained by a physically moti-
vated mechanism, which was not considered in the discussion
of Sect. 2.3. This mechanism should be introduced with the pur-
pose of avoiding a heat transfer mechanism, as governed in the
code by Eq. (18), which is overly diffusive.

To evaluate the relative effectiveness of the heat and momen-
tum transport, in the theory of heat transfer the Prandtl num-
ber Pr is defined as the ratio of the kinematic viscosity ν to the
thermal diffusion coefficient D, Pr = ν/D (Blundell & Blundell
2006). For gases, the transport coefficients for the transport of
heat and momentum are nearly equal and the Prandtl number is
of order unity, with Pr = 2

3 when γ = 5/3 (Blundell & Blundell
2006). This suggests that a constraint on the particle AC param-
eter αC

i can be obtained by setting

Pr � νAV

DAC
∼ 1

5

αAV
i v

AV
ij

αAC
i v

AC
ij

>∼ 2
3
, (43)

where the equivalent kinematic viscosity coefficient νAV due
to AV is given approximately by νAV

i ∼ 1
10α

AV
i v

AV
ij rij (Lodato &

Price 2010), and the numerical heat diffusion coefficient DAC
i has

been estimated according to Eq. (21). We note that the reverse of
Eq. (43) is relatively unimportant, since the source term S C

i is
driven by a second order derivative, while for AV it is a first order
derivative that determines S i.

It can be seen from Eq. (43) that, for the AC signal velocity
adopted here, the constraint on the numerical heat diffusion be-
comes important in the presence of supersonic flows. Moreover,
the condition Pr ∼ O(1) is valid only for gases, where the
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transport of momentum and energy occurs simultaneously. For
liquids, according to the dominant mechanism of heat conduc-
tion, the value of the Prandtl number can vary by several or-
ders of magnitude among different substances (Dimotakis 2005).
The condition given by Eq. (43) should, therefore, be considered
problem-dependent.

A rigorous procedure for deriving the upper limits on the set
of parameters

{
αC

i

}
at any given timestep would require us to

first define for the particle i the numerical kinematic viscosity
and heat diffusion coefficients⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈
νAV

i

〉
=

∣∣∣∣( dui
dt

)
AV

∣∣∣∣ / ∣∣∣∇2ui + 2∇ (∇ · ui)
∣∣∣〈

DAC
i

〉
=

(
dui
dt

)
AC

/
∇2ui,

(44)

where the bulk viscosity ζ is 5/3 of the shear viscosity η ≡ νρ
(Lodato & Price 2010) and it is understood that the SPH expres-
sions should be used for the operators at the denominators.

The upper limits on the parameters
{
αC

i

}
are then given by

the conditions〈
DAC

i

〉
≤ 3

2

〈
νAV

i

〉
, (45)

which must be simultaneously satisfied by all the parameters.
In place of the procedure just described, we adopt here a sim-
pler approach and using Eq. (43) we estimate the upper limits
on

{
αC

i

}
as

αAC
i
<∼ 3

10
αAV

i MAX j<

{ ∣∣∣vAV
ij

∣∣∣/ ∣∣∣vAC
ij

∣∣∣} , (46)

where the notation j < means that the maximum is taken for all
the neighbors j that satisfy the condition uij · rij < 0. This is to
be consistent with the definition of AV, for which Πij is non-zero
only for approaching particles. Clearly, this definition does not
guarantee an accurate constraint of the αC

i parameter, but the use
of the maximum among all the approaching pairs should provide
a floor value for the effective constraint.

For the CS kernel, we then performed a simulation identi-
cal to the one previously discussed, but now imposing the addi-
tional constraint given by Eq. (46) on the αC parameters. This
simulation is labeled as MAX N6 and the corresponding mass-
loss curve is displayed in the right-hand panel of Fig. 11. To
assess resolution effects, we ran a mirror simulation now using
N = 105 particles (MIN N5). Moreover, the uncertainties as-
sociated with the use of Eq. (46) can be estimated by looking
at the mass loss rate of a simulation (MIN N6) where instead
of Eq. (46) the same equation was used but the constraint was
derived using the MIN operator instead of the MAX one.

For comparative purposes, in the right-hand panel of Fig. 11
the mass loss of the cloud (black squares), as found in a similar
blob test performed by Springel (2011) using the new moving-
mesh code AREPO, has been also inserted. The number of res-
olution elements is 64 × 64 × 128, so that the resolution is
approximately equivalent to that of the tests shown here.

A striking result seen from the behavior of the mass loss
rates is that, introducing the constraint (46) on the numerical
heat transfer in the simulations, the mass depletion of the cloud
is now in better agreement with previous results and in particular
with the cloud mass evolution produced in the blob test by the
Voronoi-based code AREPO.

Uncertainties associated with the procedure adopted to esti-
mate the constraint on the αC parameters are of limited impact,

as can be assessed by the differences between the mass loss rates
exhibited by the runs MAX N6 and MIN N6. Moreover, for the
run MAX N5 the mass loss rate is much stronger than in the case
MAX N6. This is indicative of the numerical diffusion effects
that dominate the blob evolution. A numerical simulation with
N = 107 particles is clearly required to clarify this issue; how-
ever, the agreement with previous results of the mass loss for the
run MAX N6 suggests that convergence is achieved using as few
as N = 106 particles.

Finally, both the runs MAX N6 and MIN N6 exhibit at t >∼
3τKH a remnant cloud mass that is ∼20−30% of the initial mass.
Although this result can still be due to the use of a constraint on
the numerical heat diffusion that still needs to be refined, we note
that these remaining masses are equally present in SPH blob tests
that have adopted, with the purpose of avoiding the problems of
standard SPH, completely different approaches (Heß & Springel
2010; Murante et al. 2011).

We therefore suggest that this underestimate in the stripping
rate of the blob mass is not due to the AC scheme, but depends
rather on the SPH formulation and is associated with the intrinsic
errors in gradient estimates. These errors, in turn, lead to the sup-
pression of the small-scale instabilities. Such a issue will be dis-
cussed further in detail in Sect. 4.2, which is dedicated to the
Rayleigh-Taylor instability.

To summarize, SPH simulations that incorporate the
AC scheme can successfully be used to accurately model the
blob evolution. However, the results of the tests indicate that it
is necessary to properly constrain the AC parameter αC in order
to avoid unphysical heat diffusion when strong supersonic flows
are present.

4. Gravity tests

To validate the performances of the AC signal velocity (25),
we investigate several hydrodynamical test problems in which
the self-gravity must be necessarily taken into account to prop-
erly model the system evolution. We first considered the 3D
collapse of a cold gas sphere initially at rest. This test is cus-
tomarily used in SPH to judge the code capability when strong
shocks are present, such as those occurring during the forma-
tion of self-gravitating structures. We then examined a 2D ver-
sion of the classic Rayleigh-Taylor instability test and finally the
new code was used to assess the behavior of cluster entropies in
cosmological structure formation.

4.1. Cold gas sphere

A standard hydrodynamical test for SPH codes in which gasdy-
namics is modeled including self-gravity is the 3D collapse of a
cold gas sphere, also commonly referred to as the “Evrard” col-
lapse test (Evrard 1988). The test follows in time the adiabatic
collapse of a initially cold gas sphere and has been widely used
by many authors (Hernquist & Katz 1989; Steinmetz & Mueller
1993; Wadsley et al. 2004; Springel 2005; Wetzstein et al. 2009;
Springel 2010b; Heß & Springel 2010, V11) as a standard test
for SPH codes.

The gas cloud is spherically symmetric and initially at rest
with mass M, radius R, and density profile

ρ(r) =
M

2πR2

1
r
· (47)

The gas obeys the ideal gas equation of state with γ = 5/3
and the thermal energy per unit mass is initially set to u =
0.05GM/R. The SPH simulations are performed using units for
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Fig. 12. Radially averaged profiles at t = 0.8 of the Evrard collapse test. Clockwise from the top left panel: profiles of density, entropy, artificial
conductivity parameter αC, and radial velocity. Curves with different line styles and colors refer to SPH runs performed using different kernels and
with (AC) or without (NOAC) the AC term in the SPH energy equation. The black solid lines indicate the 1D PPM reference solution of Steinmetz
& Mueller (1993).

which G = M = R = 1 and the chosen time unit is the cloud
free-fall timescale tff = (π2/8)

√
R3/GM = π2/8.

With these initial conditions, the pressure support of the gas
sphere is negligible and the cloud begins to collapse until a
bounce occurs in the core with a subsequent shock wave propa-
gating outward. Most of the kinetic energy is converted into heat
at the epoch of maximum compression of the gas, which occurs
at t ∼ 1.1. The initial conditions setup is realized by stretch-
ing the radial coordinates of a glass-like uniform distribution of
N = 88 000 equal mass particles located within a sphere of unit
radius, so as to generate the density profile of Eq. (47).

To construct the set of SPH simulations, four tests were
run using the kernels CS and M5. The number of neighbors is
set to 100 for the M5 runs and 50 for the CS ones. To assess
the convergence properties of the radial profiles of the consid-
ered hydrodynamic variables, the M5 run was replicated using
200 000 particles (M5−200 k). All of these runs were performed
by incorporating in the SPH equations the AC term (18). For
the CS kernel, a reference run with the AC term disabled was
considered (CS-NOAC). The gravitational softening length was
assumed to be εg = 0.02.

For each test case, we performed simulations with different
settings of the AV parameter ld. However, introducing a time-
dependent AV scheme in SPH reduces the severity of the numer-
ical viscosity effects and in particular, for the test investigated
here, produces a radial entropy profile at the shock front in better

agreement with the 1D PPM reference solution. For this reason,
the results for different test cases are presented for runs where
a standard AV formulation was used (runs AV0 of V11). This
is done to highlight differences in the simulation results due to
the use of different kernels and the inclusion of the AC term in
the SPH thermal energy equation. This choice of simulation pa-
rameters allows one to compare the test calculations performed
here with previous results presented in Sect. 5.2 of V11.

The average radial profiles at t = 0.8 of density, en-
tropy, time-dependent AC parameter, and radial velocity are dis-
played in Fig. 12. The black solid lines indicate the profiles of
the 1D PPM calculation of Steinmetz & Mueller (1993). Broadly
speaking, one expects to see some differences between the pro-
files of the NOAC simulation and those of the other runs. This
should be valid in particular for the entropy profiles. However,
at the considered epoch, Fig. 12 shows that the entropy profile
of the NOAC run is still very similar to the others. This oc-
curs because at t = 0.8 the shock front propagation is still in
the early phase and the smoothing in the thermal energy due to
the AC term is not yet significant.

The behavior of the αC profiles is in accordance with that
expected. In particular, the profiles exhibit a peak that corre-
sponds to the shock front location, which occurs approximately
at r ∼ 0.18, and a decay as one moves away from it. The pro-
file shapes depend on the kernel shape and weakly on resolu-
tion. The former is interpreted as a consequence of the improved
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Fig. 13. As in Fig. 12, a closer view at t = 0.9 of the radial profiles of density and entropy in the proximity of the shock front.

mixing capability provided by the higher order of the kernel. We
note that there is an increase in the profiles as one moves toward
the sphere center, which occurs because of the presence of a tem-
perature gradient. However, in Eq. (18) this radial dependence is
of no consequence because behind the shock front the sphere
quickly achieves a hydrostatic equilibrium and vAC

ij (grav) � 0
for r <∼ 0.1.

The epoch examined in Fig. 12 was chosen so as to compare
the simulation profiles with the corresponding ones presented in
Fig. 40 of Springel (2010b) and realized using the new moving-
mesh code AREPO. In particular, a visual inspection shows that
ahead of the shock front the accuracy of the entropy profiles
shown in Fig. 12 can be considered to be in-between that of
the profile produced using the AREPO code and the one real-
ized with the SPH code Gadget-2 (right panels in Fig. 40 of
Springel 2010b, test cases “moving-mesh” and “SPH”, respec-
tively). We note, however, that a strict comparison between the
different simulation profiles is difficult because the number of
resolution elements employed by Springel (2010b) in the cold-
gas sphere tests are lower by about ∼1/3 than the one used here.
In particular, the smaller shock broadening found here can be
ascribed to a resolution effect.

Finally, Fig. 13 shows a closer view of the radial density
and entropy profiles in the proximity of the shock front at
t = 0.9. The NOAC simulation exhibits the worst accord with
the PPM reference solution, while for the high-resolution run
M5 − 200k the improvement in accuracy is minimal with re-
spect to the other AC runs. This suggests that to obtain a sig-
nificant improvement in the adherence of the simulation profiles
with the PPM solution one must use a much higher number of
simulation elements (say >∼106, Springel 2010b).

A noteworthy feature of the profiles of Fig. 13 is that now
the AC simulation profiles are in much better agreement with
the PPM profiles. This is interpreted as a numerical effect in
which the pre-shock entropy, which is generated by the AV im-
plementation ahead of the shock front owing to the converg-
ing flow, is now strongly reduced because the AC term in
the SPH energy equation now removes this excess of internal en-
ergy. This in turn implies that, behind the shock front, a thermal
energy profile is closer to the PPM solution profile.

Comparisons of the profiles of Fig. 13 with the correspond-
ing ones displayed in Fig. 4 of V11 show that the dependence of
the simulation profiles on the adopted AC scheme is stronger
than that due to the time-dependent AV formulation. In fact,

these results are almost unchanged when one performs SPH sim-
ulations using a time-dependent AV scheme in place of the
standard one.

Finally, two runs were performed using the CRT and
LIQ kernels and a number of neighbors set to Nsph = 50. The
profiles of the two simulations have not been shown here to avoid
overcrowding in the panels. The performances of the CRT run
are quite similar to those of the CS one, whilst the profiles of
the LIQ simulation are largely inconsistent with the reference
PPM solution profiles.

4.2. 2D Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability arises when a heavier fluid
is placed on top of a lighter fluid (Chandrasekhar 1961) in the
presence of an external gravitational field. The fluids are in pres-
sure equilibrium with the external field, and in this configura-
tion the system is unstable in the presence of small perturbations
at the interface. The lighter fluid will then begin to rise and the
denser one to fall. This process leads to the development of char-
acteristic finger-like structures before the fluids enter the non-
linear phase where they completely mix together. To evaluate the
ability of the AC-SPH code to properly describe the evolution of
RT instabilities, we consider a 2D version of the test. The initial
conditions were chosen to be similar to the numerical test imple-
mented by Abell (2011) to validate its new rpSPH formulation
of SPH equations, so as to compare Abell’s results consistently.
The computational domain consists in a 2D box with coordinates
x ∈ {0, 1/2}, y ∈ {0, 1}. The boundaries are periodic in x and re-
flecting in y. The density is ρ1 = 2 at the top and ρ2 = 1 at the
bottom, with a density profile

ρ(y) = ρ2 +
(ρ1 − ρ2)[

1. + exp
{
−2(y − 0.5)/Δy

}] , (48)

where Δy = 0.05. This ensures a smoothing in density at the
interface y = 0.5 that allows a consistent numerical behav-
ior (Robertson et al. 2010). This density profile is realized by
constructing a HCP lattice of N = 6202 equal mass particles
in which the spacing is varied according to the procedures de-
scribed in Sect. 3.1.1 until the profile of Eq. (48) is satisfied.

The pressure at the interface is set to P0 = ρ1/γ =
10/7, where γ = 1.4 and varies with y according to P(y) =
P0 − gρ(y)(y − 1/2), g = 1/2 being the external acceleration,
so that the system is initially in hydrostatic equilibrium. For the
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Fig. 14. Density maps of the 2D Rayleigh-Taylor tests are shown at time t = 3 for standard SPH (NOAC) and AC-SPH simulations performed
using N = 6202 particles with different kernels and neighbor numbers. The density distributions can be compared directly with the map shown in
Fig. 4 of (Abell 2011, top right panel), as the adopted initial conditions for the tests are the same.

particles that satisfy the condition |y − 0.5| < 0.2, a velocity
perturbation is applied in the y direction given by

vy(x, y) = δvy {1 + cos [8π (x + 1/4)]}
× {

1 + cos
[
5π (y − 1/2)

]}
/4, (49)

where δvy = 0.1.
We present results for the CS, CRT, M5, and, for reasons that

we discuss later, we consider also the M6 kernel (Price 2012a,
Sect. 2.3).

The number of neighbors for these runs is set to Nsph = 32,
32, 50, 110, respectively. As in the other test cases considered
here, for comparative purposes, we ran a simulation (CS-NOAC)
in which the AC term in the thermal energy equation was dis-
abled. The following settings were used for the AV parameters
{αmin, αmax, ld} = {0.1, 1.5, 0.2}.

In Fig. 14, at the time t = 0.3, we present the 2D density
maps of the different RT tests. As expected, standard SPH is
unable to correctly capture the development of the RT instabil-
ity, as indicated by the leftmost panel of Fig. 14 (CS kernel,
NOAC run). However, from this viewpoint the improvement is
minimal even for the corresponding AC version of the consid-
ered run (CS-32). On the contrary, a significant improvement is
obtained if one uses the M5 kernel or the next in order M6, which
is a quintic polynomial (Price 2012a). In fact, in the rightmost
panel of Fig. 14 (M6 run), the center of mass of the RT spikes
appears at a lower position than in the M5 run and therefore
the convergence might still not have been reached yet, even for
the M6 run.

This strong dependence of the code performances on the ker-
nel order demonstrates that, for the RT test, accuracy in pressure
forces is a fundamental issue. These results are consistent with
those of Sect. 3.1 and indicate that the poor performances of SPH
when handling KH or RT instabilities, in particular for very sub-
sonic flows, are mainly due to the leading errors in the momen-
tum equation. These errors decrease as the order of the kernel
increases, which implies that the accuracy in pressure force es-
timates is higher and thus the velocity noise is lower. This, in

turn, indicates a better capability to capture the growth of the
instability.

Similar results were obtained by McNally et al. (2012), who
ran a suite of 2D KH simulations using carefully crafted ini-
tial conditions with the goal of assessing different hydrodynamic
code capabilities. The authors conclude that for SPH the code
performances are strongly related to the order of the kernel em-
ployed in the simulation and thus to the accuracy of the gradient
estimates.

Moreover, the simulation behavior of Fig. 14 is consistent
with the findings of García-Senz et al. (2012), who present a
new formulation of SPH in which gradients are estimated using
a tensorial approach that conserves both linear and angular mo-
mentum. The authors demonstrate that when using this higher-
order gradient estimator the interpolation of physical quantities
is significantly more accurate than in the standard method. In
particular, several tests showed that the code is now able to suc-
cessfully capture the development of KH and RT instabilities.

To summarize, the results of this section demonstrate that the
performance of SPH in modeling hydrodynamic subsonic insta-
bilities depend critically on the accuracy of the gradient estima-
tor. The formulation proposed by García-Senz et al. (2012) looks
particularly promising in this aspect in overcoming the present
SPH difficulties.

Finally, it must be stressed that the simulation results of
Fig. 14 were obtained by setting δvy = 0.1. If the same test had
been performed using δvy = 0.01, as in the RT test of the new
moving-mesh code AREPO (Springel 2010b, Sect. 8.8), the ve-
locity noise would have suppressed the growth of the instability
even for the M6 run. We note that in their RT test, García-Senz
et al. (2012) were able to recover the growth of the instability us-
ing the same amplitude of the velocity perturbation, δvy = 0.01.

4.3. Cluster comparison

We now discuss a set of cosmological cluster simulations that
we constructed using the standard SPH formulation as well as
the new AC-SPH version. We only considered non-radiative, or
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“adiabatic” simulations, in which the hydrodynamics were mod-
eled according to the formulation presented in Sect. 2. Previous
investigations (Frenk et al. 1999; Wadsley et al. 2004, 2008;
Mitchell et al. 2009; Springel 2010b) showed that for the same
initial conditions there are systematic differences between re-
sults extracted from cluster simulations produced using stan-
dard SPH and Eulerian AMR codes. Specifically, the level of
central entropy is found to be lower in SPH simulations than in
the corresponding AMR runs. The latter simulations are charac-
terized by the presence of a flat entropy core, whereas the radial
entropy profile produced by SPH runs increases steadily with ra-
dius. As outlined in the Introduction, the origin of this discrep-
ancy has been the subject of intense debate (Agertz et al. 2007;
Mitchell et al. 2009; Read et al. 2010) that has given as the main
explanation the different degrees of numerical mixing present in
the two codes.

To assess the capability of the AC-SPH code in solving this
issue, we then ran several cluster simulations. A comprehensive
study of the differences between the hydrodynamic variables
of cluster simulated using the standard and the AC version of
the SPH code will be presented in a forthcoming paper. Here, we
only show the final radial entropy profile of the simulated clus-
ters as the main variable that can be used to test the effectiveness
of the AC-SPH formulation in solving the entropy problem in
cluster cores.

A detailed description of the procedures used to construct
the simulated cluster sample is given in Sect. 2 of V11, and we
provide a brief summary here. The simulations were carried out
assuming a spatially flat ΛCDM model, with matter density pa-
rameter Ωm = 0.3, vacuum energy density ΩΛ = 0.7, baryonic
density Ωb = 0.0486, and h = H/100 km s−1 Mpc−1 = 0.7. The
scale-invariant power spectrum is normalized to σ8 = 0.9 on
an 8 h−1 Mpc scale at the present age t0. An N-body cosmolog-
ical simulation involving only gravity was first run with a co-
moving box of size L2 = 200 h−1 Mpc, starting from an initial
time tin and ending at the final epoch t0. At this epoch, clusters
of galaxies were identified in the simulation box as groups of
particles that are associated with overdensities approximately in
excess of ∼200 Ω−0.6

m . Several of these clusters were then res-
imulated individually using the AC-SPH code described here,
coupled with a treecode gravity solver.

Initial conditions for a specified cluster were generated as
follows: a spherical region with origin located at the cluster cen-
ter was populated with a high-resolution (HR) grid, the radius of
the HR sphere being such that it contains all of the original par-
ticles identified at t = t0 as cluster members. Both a gas particle
and a dark matter particle were associated with each grid node,
whose positions were perturbed according to the random real-
ization of the original cosmological simulations and only parti-
cles located within the HR sphere were kept for the hydro run.
The HR particles were surrounded by a low-resolution shell of
dark matter particles, extracted from a grid with spacing twice
that of the HR grid, the shell being introduced for the purpose of
mimicking the effects of tidal forces. The grid spacing was cho-
sen such that at the end of the procedure a cluster was simulated
with Ngas ∼ 220 000 gas particles and Ndm ∼ Ngas dark mat-
ter particles in the inner HR sphere, whereas Next

dm ∼ Ndm were
used in the low-resolution shell. Particle masses were assigned
according to the values of Ωm and Ωb.

The clusters selected to be re-simulated hydrodynamically
were chosen with the following criterion. Originally (V11), the
procedure previously described was repeated two more times to
construct two new cluster samples extracted from cosmological
simulations with box sizes L4 = 2L2 and L8 = 2L4. The three

0.01 0.1 1
0.01

0.1

1

Fig. 15. Final radial entropy profiles as a function of r/r200 for the four
relaxed test clusters. The gas entropy S (r) = kBT (r)/μmpρ

2/3
g is plot-

ted in units of S 200 Different line styles refer to different clusters, the
numbers indicating the cluster membership in the cosmological ensem-
ble from which they have been extracted. Thin (black) lines are for the
profiles of runs performed using the standard SPH formulation, while
thick (red) lines refer to the AC-SPH runs incorporating the AC term.

cluster samples were then combined to construct a final sam-
ple S all of ∼160 clusters covering nearly a decade in cluster
masses. Cluster members of sample S all were then ranked ac-
cording to their dynamical state, as measured by an appropri-
ate statistical indicator. Two sub-samples of four test clusters
each, denoted respectively by Q and P, were then constructed
by extracting from sample S all clusters with membership crite-
rion for sample Q (P) of being in a fully relaxed (perturbed)
state. These two sub-samples were then used to investigate the
effects of AV in hydrodynamic SPH simulations of galaxy clus-
ters (V11). Here the four test clusters of sub-sample Q were
chosen to investigate the performances of the AC-SPH code.
This choice was motivated by the need to proper disentangle
the amount of entropy mixing produced during merger processes
from that specific to the numerical method in the final cluster en-
tropy. The clusters of sub-sample Q were carefully selected on
the basis of their dynamical state and are among the most re-
laxed of sample S all. Therefore, for these clusters, differences
in the final radial entropy profile between standard and AC runs
can be safely ascribed to the new AC term implemented in the
code. The AV simulation parameters of the simulations were
{αmin, αmax, ld} = {0.1, 1.5, 0.2}.

The final entropy profiles for the four test clusters are
displayed in Fig. 15, where the cluster entropies have been
normalized to

S 200 =
1
2

[
2π
15

G2 M200

fbH

]2/3

, (50)

where fb = Ωb/Ωm is the global baryon fraction and MΔ =
(4π/3)Δ ρc r3

Δ
denotes the mass contained in a sphere of ra-

dius rΔ with mean density Δ times the critical density ρc =
3H2/8πG. As is customary, the cluster mass is defined by setting
Δ = 200 and r200 denotes the cluster radius.

The results of Fig. 15 indicate that, although there is a cer-
tain degree of scatter between the entropy profiles of individ-
ual clusters, all of the AC-SPH runs consistently exhibit much
shallower entropy profiles and higher core entropies than in the
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standard SPH runs at r/r200 <∼ 0.1. For a given cluster, the dif-
ference in the levels of central entropies produced by the two
codes is about a factor ∼4, and now the values of central en-
tropies are comparable with those produced using AMR codes in
cosmological cluster simulations (Voit et al. 2005) and idealized
cluster binary mergers (Mitchell et al. 2009). It should, however,
be stressed that in Eulerian hydrodynamics it is the numerical
scheme that forces the fluid to be mixed below the minimum
cell size. This suggests that AMR simulations of galaxy clusters
might overestimate the correct level of core entropy because of
fluid mixing (Springel 2010b). To summarize, the development
of entropy cores in the AC-SPH runs is clearly a consequence
of the heat diffusion term described by Eq. (18) now present in
the energy equation. This term acts to redistribute the internal
energy produced in the shocks during dissipative processes, so
that the subsequent entropy mixing leads, in the end, to higher
levels of core entropies.

Similar results were obtained by Wadsley et al. (2008), who
similarly added a heat diffusion term to the SPH energy equa-
tion, but using the prescription of Eq. (26) instead of the Eq. (18)
adopted here. According to Wadsley et al. (2008), the value of
the coefficient C tends to be problem dependent and for the clus-
ter simulations the best agreement with the entropy profiles ex-
tracted from the mesh code runs is obtained by setting C �
0.1−1. Here, the time-dependent formulation (22) presents the
advantage of minimizing thermal diffusion away from shocks,
as demonstrated in the cold gas sphere test by Fig. 12, where the
radial profile of the AC parameter αAC is peaked at the shock
location.

The simulations presented in this section were realized us-
ing adiabatic gas physics. However, a realistic modeling of the
intracluster medium physics must incorporate the possibility that
the gas cools radiatively. Previous simulations (V11) showed
that the presence of cooling leads to the development in the in-
ner cluster regions of dense compact cool-gas cores and subse-
quently of high levels of turbulence, the latter being produced by
the hydrodynamical instabilities generated by the interaction of
the compact cool cores with the ambient medium.

How this scenario is affected by incorporating into the
SPH equations a numerical heat diffusion term is an issue that
can be properly addressed only by resorting to numerical sim-
ulations. Here, we outline that two competing effects are ex-
pected to influence the final level of turbulence in a cluster core:
the improved capability of the code to describe the develop-
ment of hydrodynamical instabilities, and thus an increase in
the amount of turbulence, and the reduced availability of cool
gas because of the presence of material of higher entropy, which
has been brought in the inner core by the enhanced fluid-mixing
properties of the code.

Finally, a resolution study previously performed in V11
found for the simulation resolution employed here that there is
a substantial stability in the entropy profiles of the simulations.
Although the simulations of V11 do not incorporate the AC term,
we do not expect strong variations in the resolution dependence
of the profiles, given the similarity in the level of core entropies
with those found using mesh-based codes.

5. Summary and conclusions

We have presented an SPH numerical scheme that incorporates
an artificial conductivity term and uses an appropriate signal ve-
locity for simulations including gravity. The AC formulation was
introduced by Price (2008) as a solution to the problems en-
countered by standard SPH to correctly follow the development

of KH instabilities, owing to the inconsistencies of the standard
formulation in the description of density at a contact discontinu-
ity. Here, a suite of hydrodynamic test problems has been inves-
tigated with the purpose of validating the new AC-SPH code and
assessing its performances when using the specifically adopted
signal velocity.

The results of the KH instability test were presented in
Sect. 3.1, in which the code capabilities were tested by consid-
ering SPH simulations of the KH test performed using a large
variety of initial condition set-up and SPH kernels. The set of
initial conditions was chosen as in Valcke et al. (2010), so as to
consistently compare the results. These are in accordance with
the corresponding ones of Valcke et al. (2010) and indicate that,
for the version of the KH test analyzed here, the AC implemen-
tation is important for the long-term behavior of the simulation.

Moreover, the results of the KH test indicate (Valcke et al.
2010; Read et al. 2010; McNally et al. 2012) that the poor per-
formances of standard SPH in properly treating KH instabilities
can be explained in terms of two distinct effects. The first is a
general problem of consistency, which for the problem under
consideration requires that smooth interfaces should be present
at contact discontinuities, in order to obtain numerical conver-
gence. The second effect, which in standard SPH suppresses the
growth of KH instabilities, is the leading error in the momentum
equation, which is caused by incomplete kernel sampling (Read
et al. 2010) and quantified by the norm E0 defined by Eq. (36).

To circumvent this problem, several proposals have been
made (Valcke et al. 2010; Read et al. 2010) in which the stan-
dard SPH cubic spline M4 kernel is replaced by the new LIQ
or CRT kernels with steeper central profiles. These kernels
present the advantage of being stable against particle clumping,
so that the number of neighbors can be safely increased to reduce
the error E0.

In this paper, we have considered the possibility of reducing
sampling errors by considering higher-order B-spline kernels,
specifically the M5 or quartic spline kernel. A striking result of
the KH runs presented in Sect. 3.1 is that, for a given value of the
ratio η of the smoothing length to the mean interparticle spacing,
simulations of the KH test performed using the M5 kernel have
amplitudes of the E0 error substantially smaller and in line with
the behavior of the same quantity for simulations employing ei-
ther the LIQ or CRT kernels. A linear stability analysis reveals
that this result follows owing to the very good stability prop-
erties of the M5 kernel. The analysis indeed suggests that the
clumping instability is absent for values of η up to η <∼ 2, which
in 3D corresponds to Nsph ∼ 520 neighbors.

These findings are consistent with the results of Dehnen &
Aly (2012), who proposed to adopt, with the specific purpose of
avoiding the clumping instability, the Wedland (1995) functions
as a new class of kernels. The authors showed that in terms of
stability and accuracy properties, the quartic spline performs ex-
tremely well when compared with the proposed Wedland func-
tions. These results are strictly connected to the properties of the
kernel Fourier transform, which according to the authors must
be non-negative to avoid particle clumping, and are consistent
with the findings of Sect. 3.1.3 since when increasing the kernel
order both the B-spline and the Wedland functions approach the
Gaussian.

We therefore propose, as a compromise between the need to
reduce sampling errors while keeping the computational cost to
a minimum, the use of the M5 kernel with a neighbor number
in the range Nsph ∼ 60−120 as the standard combination that
guarantees sufficient accuracy in many SPH simulations of astro-
physical problems. Moreover, the results of the Sod shock-tube
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test of Sect. 3.2 demonstrate that to obtain simulation profiles in
accordance with the analytic solution, for simulations employing
kernels with a modified shape the use of a much larger number
of neighbors than in the case of the M5 runs is necessary.

The results of the gravity tests show that the adoption of
the AC-SPH scheme significantly reduces, at the level tested in
this paper, the differences seen in the hydrodynamics between
standard SPH and grid-based simulations of self-gravitating
structures. For the cold gas sphere, the entropy profile is in
closer agreement with the PPM reference solution and for the
cosmological cluster simulations, a key result is the final level
of core entropies, which are consistent with those of the cen-
tral entropies produced using AMR codes. Thus, it appears that
in hydrodynamic simulations where self-gravity is important
the AC term, accompanied by the proposed signal velocity, plays
a key role as a mechanism for redistributing thermal energy and
hence as a source of entropy mixing.

To summarize, results extracted from simulations of hydro-
dynamic tests where self-gravity is the dominant factor are in
much better agreement with the corresponding ones obtained us-
ing mesh-based codes. These results then demonstrate the capa-
bility of the implemented AC-SPH scheme in properly following
the formation of cosmic structures.

We note that the artificial heat conduction term was orig-
inally proposed by Price (2008) with the purpose of avoiding
the inconsistencies encountered by standard SPH in the pres-
ence of density steps at contact discontinuities. A complemen-
tary view was proposed by Wadsley et al. (2008), who intro-
duced the same term, albeit in a different numerical formulation,
with the aim of modeling the level of diffusion due to turbulence.
The two interpretations are not mutually inconsistent, although
the results of the self-gravity tests presented in this paper sup-
port the view of a heat diffusion term that in SPH is capable
of mimicking the diffusion due to turbulence. In a similar fash-
ion, Violeau & Issa (2007) presented an SPH scheme to model a
free-surface incompressible flow that, in analogy with 3D Large
Eddy Simulations, assumes a Smagorinsky (1963) model for the
filtered Navier-Stokes equations.

The results of the blob test simulations demonstrate that the
instabilities leading to the expected cloud disruption can develop
only when the SPH energy equation incorporates the AC term.
A particularly interesting result is that an appropriate limiting
condition must be implemented on the AC coefficients αC in or-
der to avoid an unphysical amount of heat diffusion, which in
turn leads to a cloud disruption that occurs too early. This lim-
iter was identified with the Prandtl number and, for the AC sig-
nal velocity adopted here, severely limits the amplitude of
the AC coefficients in the regime of strong supersonic flows.

The AC-SPH simulations of the blob test incorporating now
the new constraint support this view, since Fig. 11 shows for the
new runs a cloud mass-loss rate that is in closer agreement with
the rates obtained from simulations realized using a completely
independent numerical scheme (Springel 2011). However, it
must be stressed that the condition specified by Eq. (43) was
calculated for a perfect monoatomic gas with γ = 5/3, so that a
physically motivated constraint on the artificial heat diffusion of
the simulated medium should be considered problem-dependent.

However, the code still has several problems that render its
use problematic if the development of hydrodynamic instabili-
ties need to be followed in the regime of subsonic flows. The
results of the simulations indicate that these shortcomings are
not due to the AC implementation, but rather are intrinsic to
the standard formulation with which gradients are calculated
in SPH and the related errors are subsequently introduced in the

momentum equation. In particular, simulations of the RT test
show that increasing the kernel order alleviates the problems but
does not solve them. These results are in accordance with re-
cent findings (McNally et al. 2012; García-Senz et al. 2012) and
clearly demonstrate that for very subsonic flows, the poor per-
formances of SPH in modeling hydrodynamic instabilities are
strictly connected to the code accuracy in gradient estimates.

The formulation of García-Senz et al. (2012), which was pro-
posed with the aim of calculating SPH gradients with accuracy
as high as possible while keeping the benefits of a Lagrangian
formulation, looks in this respect very promising and encour-
ages further investigations along the numerical approach pro-
posed in this paper. These would be particularly relevant in the
light of the results of Bauer & Springel (2012), who claim that
standard SPH fails to properly model the regime of subsonic tur-
bulence. They reach their conclusions by comparing results ex-
tracted from simulations of driven subsonic turbulence realized
using the moving-mesh code AREPO and GADGET SPH. Their
results were criticized by Price (2012a), for whom the use of a
time-dependent AV is critical in SPH simulations of subsonic
turbulence.

A re-analysis of the Bauer & Springel (2012) simulations us-
ing the AC-SPH code presented here, augmented with improved
gradient operators, would then be fundamental for achieving a
deeper understanding of the capability of the different numeri-
cal methods to model subsonic turbulence, which is expected to
have a significant impact on shaping the thermodynamic prop-
erties of baryons in cosmological haloes and, subsequently, the
process of galaxy formation.
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