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1 Introduction

All compelling neutrino oscillation data can be described within the reference 3-flavour

neutrino mixing scheme with 3 light neutrinos νj having masses mj not exceeding approx-

imately 1 eV, mj ∼< 1 eV, j = 1, 2, 3 (see, e.g., [1]). These data allowed to determine the

parameters which drive the observed solar, atmospheric, reactor and accelerator flavour

neutrino oscillations — the three neutrino mixing angles of the standard parametrisation

of the Pontecorvo, Maki, Nakagawa and Sakata (PMNS) neutrino mixing matrix, θ12, θ23

and θ13, and the two neutrino mass squared differences ∆m2
21 and ∆m2

31 (or ∆m2
32) — with

a relatively high precision [2, 3]. In table 1 we give the values of the 3-flavour neutrino

oscillation parameters as determined in the global analysis performed in [2].

At the same time at present there are a number of hints for existence of light sterile

neutrinos with masses at the eV scale. They originate from the re-analyses of the short

baseline (SBL) reactor neutrino oscillation data using newly calculated fluxes of reactor ν̄e,
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which show a possible “disappearance” of the reactor ν̄e (“reactor neutrino anomaly”), from

the results of the calibration experiments of the Gallium solar neutrino detectors GALLEX

and SAGE (“Gallium anomaly”) and from the results of the LSND and MiniBooNE ex-

periments (for a summary of the data and complete list of references see, e.g., [4]). The

evidences for sterile neutrinos from the different data are typically at the level of up to

approximately 3σ, except in the case of the results of the LSND experiment which give

much higher C.L.

Significant constraints on the parameters characterising the oscillations involving sterile

neutrinos follow from the negative results of the searches for νµ → νe and/or ν̄µ → ν̄e
oscillations in the KARMEN [5], NOMAD [6] and ICARUS [7] experiments, and from

the nonobservation of effects of oscillations into sterile neutrinos in the solar neutrino

experiments and in the studies of νµ and/or ν̄µ disappearance in the CDHSW [8], MINOS [9]

and SuperKamiokande [10] experiments.

Constraints on the number and masses of sterile neutrinos are provided by cosmological

data. The recent Planck results, in particular, on the effective number of relativistic degrees

of freedom at recombination epoch Neff, can be converted into a constraint on the number

of (fully thermalised) sterile neutrinos [11] (see also, e.g., [14, 15] and references quoted

therein). The result one obtains depends on the model complexity and the input data

used in the analysis. Assuming the validity of the Λ CDM (Cold Dark Matter) model and

combining the i) Planck and WMAP CMB data, ii) Planck, WMAP and Baryon Acoustic

Oscillation (BAO) data, iii) Planck, WMAP, BAO and high multipole CMB data, for the

best fit value and 95% C.L. interval of allowed values of Neff it was found [11]: i) 3.08,

(2.77–4.31), ii) 3.08, (2.83–3.99), ii) 3.22, (2.79–3.84). The prediction in the case of three

light (active) neutrinos reads Neff = 3.046. The quoted values are compatible at 2σ with the

existence of extra radiation corresponding to one (fully thermalised) sterile neutrino, while

the possibility of existence of two (fully thermalised) sterile neutrinos seems to be disfavored

by the available cosmological data. In what concerns the combined cosmological limits on

the mass and number of sterile neutrinos, they depend again on data used as input in the

analysis: in the case of one fully thermalised sterile neutrino, the upper limits at 95% C.L.

are typically of approximately 0.5 eV, but is relaxed to 1.4 eV if one includes in the relevant

data set the results of measurements of the local galaxy cluster mass distribution [12]. The

existence of one sterile neutrino with a mass in the 1 eV range and couplings tuned to

explain the anomalies described briefly above would be compatible with the cosmological

constraints if the production of sterile neutrinos in the Early Universe is suppresses by

some non-standard mechanism (as like a large lepton asymmetry, see, e.g., [13]), so that

Neff < 3.8 [12].

The bounds on Neff and on the sum of the light neutrino masses will be improved by

current or forthcoming observations. For instance, the EUCLID survey [16] is planned to

determine the sum of neutrino masses with a 1σ uncertainty of ∼ 0.01 eV, combining the

EUCLID data with measurements of the CMB anisotropies from the Planck mission. This

would lead to strong constrains on extra sterile neutrino states.

Two possible “minimal” phenomenological models (or schemes) with light sterile neu-

trinos are widely used in order to explain the reactor neutrino and Gallium anomalies, the
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Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV2] 7.54+0.26

−0.22 6.99–8.18

|∆m2
31| (NO) [10−3 eV2] 2.47+0.06

−0.10 2.19–2.62

|∆m2
32| (IO) [10−3 eV2] 2.46+0.07

−0.11 2.17–2.61

sin2 θ12 (NH or IH) 0.307+0.018
−0.016 0.259–0.359

sin2 θ23 (NH) 0.386+0.024
−0.021 0.331–0.637

(IH) 0.392+0.039
−0.022 0.335–0.663

sin2 θ13 (NH) 0.0241+0.0025
−0.0025 0.0169–0.0313

(IH) 0.0244+0.0023
−0.0025 0.0171–0.0315

Table 1. The best-fit values and 3σ allowed ranges of the 3-flavour neutrino oscillation parameters

derived from a global fit of the current neutrino oscillation data (from [2]). The 3σ allowed range

for θ23 takes into account the statistical octant degeneracy resulting from the analysis.

LSND and MiniBooNE data as well as the results of the negative searches for active-sterile

neutrino oscillations: the so-called “3 + 1” and “3 + 2” models, which contain respectively

one and two sterile neutrinos (right-handed sterile neutrino fields). The latter are as-

sumed to mix with the 3 active flavour neutrinos (left-handed flavour neutrino fields) (see,

e.g., [17, 18]). Thus, the “3 + 1” and “3 + 2” models have altogether 4 and 5 light massive

neutrinos νj , which in the minimal versions of these models are Majorana particles. The

additional neutrinos ν4 and ν4, ν5, should have masses m4 and m4, m5 at the eV scale

(see further). It follows from the data that if ν4 or ν4, ν5 exist, they couple to the electron

and muon in the weak charged lepton current with couplings Uek and Uµk, k = 4; 4, 5,

which are approximately |Uek| ∼ 0.1 and |Uµk| ∼ 0.1. The hypothesis of existence of light

sterile neutrinos with eV scale masses and the indicated charged current couplings to the

electron and muon will be tested in a number of experiments with reactor and accelerator

neutrinos, and neutrinos from artificial sources, some of which are under preparation and

planned to start taking data already this year (see, e.g., [4] for a detailed list and discussion

of the planned experiments).

It was noticed in [19, 20] and more recently in [21–24] that the contribution of the ad-

ditional light Majorana neutrinos ν4 or ν4,5 to the neutrinoless double beta ((ββ)0ν-) decay

amplitude, and thus to the (ββ)0ν-decay effective Majorana mass |〈m 〉| (see, e.g., [25–

27]), can change drastically the predictions for |〈m 〉| obtained in the reference 3-flavour

neutrino mixing scheme, |〈m 〉(3ν)|. We recall that the predictions for |〈m 〉(3ν)| depend on

the type of the neutrino mass spectrum [28–30]. As is well known, depending on the sign

of ∆m2
31(2), which cannot be determined from the presently available neutrino oscillation

data, two types of neutrino mass spectrum are possible:

i) Spectrum with normal ordering (NO): m1 < m2 < m3, ∆m2
31 > 0, ∆m2

21 > 0,

m2(3) = (m2
1 + ∆m2

21(31))
1
2 ;

– 3 –
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ii) Spectrum with inverted ordering (IO): m3 < m1 < m2, ∆m2
32 < 0, ∆m2

21 > 0,

m2 = (m2
3 + ∆m2

23)
1
2 , m1 = (m2

3 + ∆m2
23 −∆m2

21)
1
2 .

Depending on the value of the lightest neutrino mass, min(mj), the neutrino mass

spectrum can be:

a) Normal Hierarchical (NH): m1 � m2 < m3, m2
∼= (∆m2

21)
1
2 ∼= 8.68 × 10−3 eV,

m3
∼= (∆m2

31)
1
2 ∼= 4.97× 10−2 eV; or

b) Inverted Hierarchical (IH): m3 � m1 < m2, with m1,2
∼= |∆m2

32|
1
2 ∼= 4.97× 10−2 eV;

or

c) Quasi-Degenerate (QD): m1
∼= m2

∼= m3
∼= m0, m2

j � |∆m2
31(32)|, m0 ∼> 0.10 eV,

j = 1, 2, 3.

The precision of the current data do not allow to determine the type of the neutrino

mass spectrum and thus we have ∆m2
31(NO) ∼= −∆m2

32(IO).

Using the values of the neutrino oscillation parameters and their 3σ allowed ranges

one finds that [31] (see also, e.g., [29, 30]) |〈m 〉(3ν)| ∼< 0.005 eV in the case of 3-

neutrino mass spectrum of NH type, while if the spectrum is of the IH type one has

0.014 eV ∼< |〈m 〉(3ν)| ∼< 0.050 eV. These predictions are significantly modified, e.g., in the

3+1 scheme due to the contribution of ν4 to |〈m 〉| [21, 22]. Now |〈m 〉| in the NH case

satisfies |〈m 〉| ≥ 0.01 eV and can lie in the interval (0.01 − 0.05) eV, and we can have

|〈m 〉| ∼< 0.005 eV if the 3-neutrino mass spectrum is of the IH type.

In the present article we investigate the predictions for |〈m 〉| in the 3 + 1 and 3 + 2

schemes. More specifically, we analyze in detail the possibility of a complete or partial

cancellation between the different terms in |〈m 〉| , leading to a strong suppression of |〈m 〉| .

Whenever possible (e.g., in the cases of the 3 + 1 scheme and for the CP conserving values

of the CP violation (CPV) phases in the 3 + 2 scheme), we determine analytically the

region of the relevant parameter spaces where such a suppression can occur. In both the

3 + 1 and 3 + 2 schemes we perform also a numerical analysis to derive the values of the

CPV phases for which a complete cancellation can take place. This allows us to derive

the conditions under which the effective Majorana mass satisfies |〈m 〉| > 0.01 eV, which

is the range planned to be exploited by the next generation of (ββ)0ν-experiments. Our

study is a natural continuation of the earlier studies [19, 20] and [21–24] on the subject.

2 One sterile neutrino: the 3+1 model

In this section we study the case of existence of one extra sterile neutrino. We will use the

parametrisation of the PMNS matrix adopted in [18]:

U = O24O23O14V13V12 diag(1, eiα/2, eiβ/2, eiγ/2), (2.1)

where Oij and Vkl describe real and complex rotations in i−j and k− l planes, respectively,

and α, β and γ are three CP violation (CPV) Majorana phases [32]. Each of the matrices

V12 and V13 contains one CPV phase, δ12 and δ13, respectively, in their only two nonzero
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nondiagonal elements. The phases δ12 and δ13 enter into the expression for |〈m 〉| in the

combinations α/2 − δ12 and β/2 − δ13. Therefore for the purposes of the present study

we can set δ12 = 0 and δ13 = 0 without loss of generality. With this set-up for the CPV

phases, the elements of the first row of the PMNS matrix, which are relevant for our further

discussion, are given by

Ue1 = c12c13c14,

Ue2 = eiα/2c13c14s12,

Ue3 = eiβ/2c14s13,

Ue4 = eiγ/2s14 ,

(2.2)

where we have used the standard notation cij ≡ cos θij and sij ≡ sin θij . The element Ue4,

and thus the angle θ14, describes the coupling of 4th neutrino ν4 to the electron in the

weak charged lepton current.

The masses of all neutrinos of interest for the present study satisfy mj � 1 MeV,

j = 1, 2, 3, 4. Therefore, the expression for the effective Majorana mass in the 3 + 1 model

has the form (see, e.g., [25–27]):

|〈m 〉| =
∣∣∣m1|Ue1|2 +m2|Ue2|2eiα +m3|Ue3|2eiβ +m4|Ue4|2eiγ

∣∣∣ . (2.3)

In this study we will use two reference sets of values of the two sterile neutrino oscilla-

tion parameters sin2 θ14 and ∆m2
41, which enter into the expression for |〈m 〉| and which

are obtained in the analyses performed in [17, 18]. Some of the results obtained in [18]

using different data sets are given in table 2. We will use the best fit values1

sin2 θ14 = 0.0225 , ∆m2
41 = 0.93 eV2 (A) , (2.4)

found in [18] in the global analysis of all the data (positive evidences and negative results)

relevant for the tests of the sterile neutrino hypothesis, and

sin2 θ14 = 0.023 , ∆m2
41 = 1.78 eV2 (B) , (2.5)

obtained in [18] from the fit of all the νe and ν̄e disappearance data (reactor neutrino and

Gallium anomalies, etc.) and quoted in table 2. Global analysis of the sterile neutrino

related data was performed recently, as we have already noticed, also in [17] (for earlier

analyses see, e.g., [33]). The authors of [17] did not include in the data set used the

MiniBooNE results at Eν ≤ 0.475 GeV, which show an excess of events over the estimated

background [34–36]. The nature of this excess is not well understood at present. For

the best values of sin2 θ14 and ∆m2
41 the authors [17] find: sin2 θ14 = 0.028 and ∆m2

41 =

1.60 eV2, which are close to the best fit values found in [18] in the analysis of the νe
and ν̄e disappearance data (see table 2). Actually, in what concerns the problem we are

going to investigate, these two sets of values of sin2 θ14 and ∆m2
41 lead practically to the

same results.
1We will use throughout all the text the notation ∆m2

41 in the case of NO spectrum and ∆m2
43 for the

IO spectrum.
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sin2 2θ14 ∆m2
41 eV

SBL rates only 0.13 0.44

SBL incl. Bugey3 spectr. 0.10 1.75

SBL + Gallium 0.11 1.80

SBL + LBL 0.09 1.78

global νe disapp. 0.09 1.78

sin θ14 ∆m2
41 eV

global data 0.15 0.93

Table 2. The best fit values of the oscillation parameters sin2 2θ14 and ∆m2
41 obtained in the 3+1

scheme in [18] using different data sets. The values in the last row are obtained from the global fit

of all available data and are reported in table 8 in [18].

The authors of ref. [17] give also the allowed intervals of values of ∆m2
41 and sin2 θ14

at 95% C.L., which are correlated. The two values of ∆m2
41 correspond approximately to

the two extreme points of the ∆m2
41 interval. For ∆m2

41 = 0.9 eV2, the 2σ interval of

allowed values of sin2 θ14 reads: 0.022 ≤ sin2 θ14 ≤ 0.028. This interval is very narrow.

Varying sin2 θ14 in it in our analysis leads practically to the same results as those obtained

for sin2 θ14 = 0.0225 and we will present results only for sin2 θ14 = 0.0225. In the case of

∆m2
41 = 1.78 eV2, the corresponding 2σ interval of sin2 θ14 is:

∆m2
41 = 1.78 eV2 : 0.017 ≤ sin2 θ14 ≤ 0.047 , 95% C.L. . (2.6)

In this case the value we are using sin2 θ14 = 0.023 is approximately by a factor 1.35 bigger

(a factor of 2.04 smaller) then the 2σ minimal (maximal) allowed value of sin2 θ14. In what

follows we will present results for the best fit values ∆m2
41 = 1.78 eV2 and sin2 θ14 = 0.023

and will comment how the results change if one varies sin2 θ14 in the 2σ interval (2.6).

2.1 The case of 3+1 scheme with NO neutrino mass spectrum

In the case of the 3 + 1 scheme with NO neutrino mass spectrum, m1 < m2 < m3 < m4,

we have:

|〈m 〉| = |m1c
2
12c

2
13c

2
14 +m2e

iαc2
13c

2
14s

2
12 +m3e

iβc2
14s

2
13 +m4e

iγs2
14| , (2.7)

where we have used eq. (2.2). The masses m2,3,4 can be expressed in terms of the lightest

neutrino mass m1 and the three neutrino mass squared differences ∆m2
21 > 0, ∆m2

31 > 0

and ∆m2
41 > 0:

m1 ≡ mmin, m2 =
√
m2

min + ∆m2
21,

m3 =
√
m2

min + ∆m2
31 and m4 =

√
m2

min + ∆m2
41 .

(2.8)

The mass spectrum of the 3 + 1 NO (NH) model is shown schematically in figure 1.
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Figure 1. The Mass spectrum in the 3 + 1 NO (NH) model.

In figure 2 we show |〈m 〉| as a function of the lightest neutrino massmmin = m1. As we

have already indicated and was noticed in [21, 22] (see also [19, 20]), for the two sets of values

of ν4 oscillation parameters (2.4) and (2.5) and NH 3-neutrino spectrum (i.e., m1 � m2,3,4)

we have, depending on the values of the Majorana phases, |〈m 〉| ∼= (0.018−0.025) eV and

|〈m 〉| ∼= (0.027 − 0.034) eV, respectively. This is in contrast with the prediction for

|〈m 〉(3ν)| ∼< 0.005 eV. Another important feature of the dependence of |〈m 〉| on mmin,

which is prominent in figure 2, is the possibility of a strong suppression of |〈m 〉| [21–24].

Such a suppression can take place also for |〈m 〉(3ν)| and the conditions under which it

occurs have been studied in detail in [37]. In what follows we perform a similar study for

|〈m 〉| . The aim is to determine the range of values of mmin and the Majorana phases α,

β and γ for which |〈m 〉| ≥ 0.01 eV.

It proves convenient for the purposes of our analysis to work with the quantity |〈m 〉| 2

rather than with |〈m 〉| , and to write |〈m 〉| 2 as

|〈m 〉| 2 = |a+ eiαb+ eiβc+ eiγd|2 . (2.9)

In the NO case under study the parameters a, b, c, and d read:

a = mminc
2
12c

2
13c

2
14

b =
√
m2

min + ∆m2
21c

2
13c

2
14s

2
12

c =
√
m2

min + ∆m2
31c

2
14s

2
13

d =
√
m2

min + ∆m2
41s

2
14 .

(2.10)

The first derivative of |〈m 〉| 2 with respect of α, β and γ leads to the following system of

three coupled equations:

−2b[a sin(α) + c sin(α− β) + d sin(α− γ)] = 0,

−2c[a sin(β)− b sin(α− β) + d sin(β − γ)] = 0,

2d[−a sin(γ) + b sin(α− γ) + c sin(β − γ)] = 0.

(2.11)

It is possible to solve this system of equations using the set of variables v = tan(α/2),

t = tan(β/2), u = tan(γ/2) with α, β, γ 6= π + 2kπ. We will give here only the basic

formulas and will describe the results of such minimization using the best fit values given

– 7 –
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Figure 2. Left Panel. The value of |〈m 〉| as a function of mmin ≡ m1 in the NO case for

∆m2
41 = 0.93 eV2, sin θ14 = 0.15 and the best fit values of the oscillation parameters given in

table 1. The green, red and orange lines correspond respectively to values of the three CPV

Majorana phases (α, β, γ) = (0, 0, 0), (0, 0, π), (π, π, π). The five gray curves show |〈m 〉| computed

for the other five sets of CP conserving values of the phases. The interval between the vertical left

and right solid lines, corresponding to m1 = m1 ' 0.021 eV and m1 = m1 ' 0.065 eV, indicates the

region where |〈m 〉| min = 0 for specific choices of (α, β, γ). Right Panel. The same as in the left

panel but for ∆m2
41 ≡ 1.78 eV2. The vertical solid lines correspond to m1 = m1 ' 0.030 eV and

m1 = m1 ' 0.091 eV. The horizontal band indicates the upper bound |〈m 〉| ∼ 0.2−0.4 eV obtained

using the 90 % C.L. limit on the half-life of 76Ge reported in [38]. See text for further details.

in table 1 and eqs. (2.4) and (2.5). In appendix A we describe in detail the minimization

procedure of the general expression of |〈m 〉| in the 3+1 scheme and the 16 solutions

found. We give explicit expressions for the solutions and derive the domain of each of

the 16 solutions. Eight of these solutions correspond to all possible combinations of the

phases having values 0 or π. Obviously, the solution (α, β, γ) = (0, 0, 0) corresponds to an

absolute maximum of the effective Majorana mass |〈m 〉| . As we show in appendix A, the

domains of the solutions of interest are determined by the properties of the functions fi,

i = 1, . . . , 8:

f1 = a− b− c− d , f2 = a+ b− c− d ,
f3 = a+ b− c+ d , f4 = −a+ b+ c− d ,
f5 = a+ b+ c+ d , f6 = a− b+ c+ d ,

f7 = a− b+ c− d , f8 = a+ b+ c− d ,

(2.12)

where a, b, c and d for the NO case are defined in eq. (2.10).

We will focus first on the solutions which minimize |〈m 〉| such that the minimum value

is exactly zero. As is shown in appendix A.1, there are six physical solutions for which

|〈m 〉| min = 0: (u±, v±, t±), (u±3 , v
±
3 , t

±
3 ), (v±4 (u), t±4 (u)). In order to study the domain of

existence of these solutions we define the following points m1 < m̂1 < m̃1 < m1 as the

zeros of the functions f8, f2, f7, f1, respectively:

f8(m1) = 0, f2(m̂1) = 0, f7(m̃1) = 0, f1(m1) = 0. (2.13)

– 8 –
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We find from the numerical analysis performed in appendix A.1 that i) the solution

(u±, v±, t±) is valid between the zeros of the function f2 and f1 (the region in which

f1f2f3f4 > 0), i.e. in the interval m̂1 < m1 < m1; ii) the solution (u±3 , v
±
3 , t

±
3 ) is valid

between the zeros of the function f7 and f1, i.e. in the interval m̃1 < m1 < m1; and finally

iii) the solution (v±4 (u), t±4 (u)) is valid in the interval between the zero of the function f8

and f1, i.e. for m1 < m1 < m1. In appendix A.1 we give the numerical ranges that define

the domains of the solutions discussed above. Using the best fit values of the neutrino oscil-

lation parameters given in table 1 and eqs. (2.4) and (2.5), we get the following numerical

values of2 m1, m̂1, m̃1, m1:

• for ∆m2
41 = 0.93 eV2 we have (m1, m̂1, m̃1,m1) ' (0.021, 0.024, 0.055, 0.065) eV;

• if ∆m2
41 = 1.78 eV2 we get (m1, m̂1, m̃1,m1) ' (0.030, 0.033, 0.078, 0.091) eV.

For m1 = m1 and m1 = m1 the value of |〈m 〉| is exactly zero for the CP conserving values

of the phases (α, β, γ) = (0, 0, π) and (π, π, π), respectively. In the intervals described

above (excluding the extrema), it is possible to have |〈m 〉| min = 0 for specific values of

(α, β, γ), which are not necessarily CP conserving. This can be seen in figure 3. The

numerical minima depicted in figure 3 are obtained minimizing |〈m 〉| by performing a

scan for different values of m1 and the CPV Majorana phases.

The grey horizontal band in figure 3 corresponds to |〈m 〉| min ≤ 10−8 eV and re-

flects the precision of the numerical calculation of |〈m 〉| min = 0. The minima are

reached at specific values of the phases (α, β, γ) that can have either CP conserving or

CP nonconserving values. For ∆m2
41 = 0.93 eV2 and m1 = 0.03 eV, for instance, we

have |〈m 〉| = 0 if the three CPV phases have the following CP nonconserving values:

(α, β, γ) = (1.731, 0.023,−2.711). Similarly, if ∆m2
41 = 1.78 eV2 and, e.g., m1 = 0.04 eV,

we find that |〈m 〉| = 0 for (α, β, γ) = (1.511,−0.365,−2.761).

Combining the results described above we can conclude that the effective Majorana

mass |〈m 〉| can be zero only for values of mmin from the following interval:

m1 ≤ mmin ≤ m1 . (2.14)

We will derive next simple approximate analytical expressions for m1 and m1. We

note first that for values of mmin in the range 0.02 − 0.10 eV, the term proportional to√
m2

min + ∆m2
31c

2
14s

2
13 is approximately by an order of magnitude smaller than the other

three terms in |〈m 〉| (the terms with the factors a, b, d in eq. (2.9)). Neglecting it as well

as ∆m2
21 � ∆m2

31,∆m
2
41, we find the following rather simple analytic expressions for m1

and m1, which are valid up to an error of about 10%:

m1 ≈
√

∆m2
41 sin4 θ14

cos4 θ13

(
− cos2 θ12 cos2 θ14 + sin2 θ12

)2 − sin4 θ14

,

m1 ≈
√

∆m2
41 sin4 θ14

cos4 θ13

(
cos2 θ12 cos2 θ14 + sin2 θ12

)2 − sin4 θ14

.

(2.15)

2Although it will not be specified further, whenever we present numerical results in the text or in

graphical form of figures in what follows, we will use the best fit values of the neutrino oscillation parameters

reported in table 1 to obtain them.
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Figure 3. Minimum |〈m 〉| as function of mmin ≡ m1 for ∆m2
41 = 0.93 eV2 and sin θ14 = 0.15.

The plot has been obtained numerically by performing a scan over a sufficiently large sets of values

of mmin and of each of the CPV phases (α, β, γ) in the interval [0, π]. The black vertical lines

correspond respectively to mmin = m1 ' 0.021 eV, mmin = m̂1 ' 0.024 eV and mmin = m1 '
0.065 eV.

Using these expressions we get (m1,m1) ' (0.023, 0.060) eV for ∆m2
41 = 0.93 eV2 instead

of (0.021, 0.065) eV, and (m1,m1) ' (0.032, 0.085) eV for ∆m2
41 = 1.78 eV2 instead of

(0.030, 0.091) eV.

In figure 2 we show two plots of |〈m 〉| as function of the lightest neutrino mass

mmin ≡ m1 using ∆m2
41 = 0.93 eV2 and ∆m2

41 = 1.78 eV2. The shaded area is the region

of allowed values of |〈m 〉| . One can see that the green curve represents the possible

maximum value for |〈m 〉| corresponding to (α, β, γ) = (0, 0, 0). We notice also that in the

limit of mmin → 0 the minimum value of |〈m 〉| > 0.01 eV. This limit will be analyzed in

detail below. We also show in figure 2 the prospective sensitivity to mmin of the β-decay

experiment KATRIN [39, 40], which is under preparation.

As is well known, in the case of 3-neutrino mixing and IH (IO) neutrino mass spectrum

we have |〈m 〉(3ν)| > 0.01 eV (see, e.g., [1]). We find that in the 3+1 scheme under discussion

and NO neutrino mass spectrum we have always |〈m 〉| > 0.01 eV for the following ranges

of mmin:

• mmin < 0.010 eV and mmin > 0.093 eV, if ∆m2
41 = 0.93 eV2;

• mmin < 0.020 eV and mmin > 0.119 eV, for ∆m2
41 = 1.78 eV2.

What would be the changes of our results presented for ∆m2
41 = 1.78 eV2 presented so

far if instead of sin2 θ14 = 0.023 we used the minimal (maximal) value of the 2σ interval (2.6)

of allowed values sin2 θ14 = 0.017 (sin2 θ14 = 0.047) in the analysis? Qualitatively no new

features appear and the results remain the same. Quantitatively some of the numarical

values of | < m > |, m1 and m1, quoted in the text and obtained for sin2 θ14 = 0.023,

are just shifted. More specifically, this will lead to the decreasing (increasing) of the

values of | < m > | at mmin . 10−3 eV and of m1 and m1 approximately by the same

factor 1.35 (2.04).
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For 0 ≤ m1 < m1 and m1 > m1, there are no physical solutions for the phases for which

|〈m 〉| = 0. Moreover, (u±, v±, t±), (u±3 , v
±
3 , t

±
3 ) and (v±4 (u), t±4 (u)) are not well defined in

the indicated intervals. However, by studying the Hessian of |〈m 〉| 2, we find that there are

physical solutions (among those listed in eq. (A.13) of appendix A) for which |〈m 〉| min 6= 0.

These solutions are realised for specific values of the phases, i.e., for (α, β, γ) = (0, 0, π) or

(π, π, π). The analysis performed in appendix A allowed to find the minima of |〈m 〉| at

mmin < m1 for (α, β, γ) = (0, 0, π), and at mmin > m1 for (α, β, γ) = (π, π, π). The domain

of the solution at mmin < m1, corresponding to (α, β, γ) = (0, 0, π), is the common interval

of values of mmin in which the three inequalities c < d, b < d− c and f8 = a+ b+ c− d < 0

hold. The domain of the solution at mmin > m1 with (α, β, γ) = (π, π, π) is determined

by the inequality f1 = a − b − c − d > 0. Actually, as it is possible to show, we have, in

particular, f8 < 0 at mmin < m1, and f1 > 0 for mmin > m1.

The analysis of the Hessian of |〈m 〉| 2 performed in appendix A shows that there can

be two more solutions for which |〈m 〉| min 6= 0. They correspond two i) (α, β, γ) = (0, π, 0)

and ii) (π, 0, 0). The domains of these solutions (following from the Sylvester’s criterion)

are determined by i) c > d, b < c − d, −f3 = −a − b + c − d > 0, and ii) b > c + d,

−f6 = −a+ b− c−d > 0. However, it is not difficult to convince oneself that for the values

of the neutrino oscillation parameters, including those of ∆m2
41 and sin2 θ14 used by us in

the present analysis, there are no physical values of mmin ≥ 0 for which the inequalities in

i) or in ii) are satisfied.

In figure 4 we show all the relevant functions entering in the four sets of inequalities

listed above (and in eq. (A.13) of appendix A) which ensure that the minima |〈m 〉| min 6= 0.

The figure is obtained for the best fit values of the oscillation parameters given in table 1

and for ∆m2
41 = 0.93 eV2 (left panel) and ∆m2

41 = 1.78 eV2 (right panel). One can easily

check that only the two sets of conditions, corresponding to (α, β, γ) = (0, 0, π) or (π, π, π)

and given above,3 are satisfied.

In figures 5 and 6 we show as an illustrative examples (tanα/2, tanβ/2, tan γ/2) as

function of mmin for two of the physical solutions, namely, (u−, t−, v−) and (v+
4 , t

+
4 ), found

in appendix A:

u± = ±

√
(−a+ b+ c− d)(a+ b− c+ d)

(a− b− c− d)(a+ b− c− d)
,

v± = ± (b+ c)

(b− c)
[(a+b−c)2−d2]√

(−a+b+c−d)(a+b−c+d)(a−d−c−b)(a−d−c+b)
,

t± = ± a2 + b2 − c2 − d2√
(a− b− c− d)(a+ b− c− d)(−a+ b+ c− d)(a+ b− c+ d)

,

(2.16)


v±4 (u) =

4bdu± F (a, b, c, d, u)

−u2(a− b− c− d)(a− b+ c− d)− (a− b+ d)2 + c2
,

t±4 (u) =
− 4cdu± F (a, b, c, d, u)

u2(a− b− c− d)(a+ b− c− d) + (a− c+ d)2 − b2
,

(2.17)

3These are the first two conditions in eq. (A.13) of appendix A following from the Sylvester’s criterion

for a minimum.
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Figure 4. Left Panel. The functions f8 (short-dashed blue), f1 (dot-dashed black), b+c−d (solid

red), c − d (large dashed brown), −f6 (dotted green) versus mmin ≡ m1 for ∆m2
41 = 0.93 eV2 and

sin θ14 = 0.15. The vertical lines correspond to mmin = m1 ' 0.021 eV and mmin = m1 ' 0.065 eV.

Right Panel. The same as in the left panel, but for ∆m2
41 = 1.78 eV2. The vertical lines now are

at mmin = m1 ' 0.030 eV and mmin = m1 ' 0.091 eV.

where a, b, c and d are given in eq. (2.10) and

F (a, b, c, d, u) =

{[
− u2(a+ b− c− d)(a− b+ c− d)− (a+ d)2 + (b− c)2

]
×

×
[
a2
(
u2+1

)
−2ad

(
u2−!

)
−
(
u2+1

)
(b+ c− d)(b+ c+ d)

]}1/2

.

The corresponding figures for, e.g., the solutions (v+, t+, u+) and (v−4 , t
−
4 ) are obtained

from figures 5 and 6 by reversing the y−axis.

2.2 The case of m1 = 0

The investigation of the minima of |〈m 〉| in the NH case in the limit of m1 = 0 and

arbitrary values of the relevant parameters b0, c0, d0 = b(m1 = 0), c(m1 = 0), d(m1 = 0),

can be done following the general analysis presented in appendix A and, more specifically,

using the system eq. (2.11) that can be written as

c0 sin(α− β + γ − γ) + d0 sin(α− γ) = 0

−b0 sin(α− β + γ − γ) + d0 sin(β − γ) = 0 ,
(2.18)

with

b0 =
√

∆m2
21c

2
13c

2
14s

2
12 , c0 =

√
∆m2

31c
2
14s

2
13 , d0 =

√
∆m2

41s
2
14 . (2.19)

We have solved the system eq. (2.18) in (α − γ) and (β − γ) and found the solution

sin(α− γ) = 0, sin(β− γ) = 0. The solution value of (α− γ, β− γ) = (0, 0) is a maximum,

while the second one (α − γ, β − γ) = (π, π) is a minimum. In other words, solving the

system of two equations we find a unique minimum at (α−γ, β−γ) = (π, π) independently
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Figure 5. Left Panel. The values of (tanα/2, tanβ/2, tan γ/2) — the large dashed (brown), short

dashed (blue), solid (red) lines — corresponding to the solution (v−, t−, u−) as functions of m1

for ∆m2
41 = 0.93 eV2. The 2nd and the 3rd vertical lines from the left are at m̂1 = 0.024 eV and

m1 = 0.065 eV, and indicate the domain of existence of this solution. The 1st vertical line from the

left corresponds to m1 = 0.021 eV. Right Panel. The values of (tanα/2, tanβ/2) — large dashed

(brown), solid (red) lines — corresponding to the solution (t+4 , v
+
4 ) as functions of m1 for γ ' π

(u � 1). The other parameters are the same as in the left panel. The vertical lines from the left

are respectively at m1 and m̂1. This solution is well defined only for m1 ≤ m1 ≤ m̂1.
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Figure 6. Left Panel. The same as in figure 5, left panel, for ∆m2
41 = 1.78 eV2. The 2nd

and the 3rd vertical lines from the left are at m̂1 = 0.033 eV and m1 = 0.091 eV and indicate the

domain of existence of the solution (u−, t−, v−). The 1st vertical line from the left corresponds to

m1 = 0.030 eV. Right Panel. The same as in figure 5, right panel, for ∆m2
41 = 1.78 eV2. The

vertical lines from the left are at m1 and m̂1. The solution considered (t+4 , v
+
4 ) is well defined only

in the interval m1 ≤ m1 ≤ m̂1.

of the value of4 ∆m2
41. The corresponding minimum value of |〈m 〉| is 0.018 (0.027) eV in

the case of ∆m2
41 = 0.93 eV2 (1.78 eV2). This result is depicted in figure 7. The darkest

4For the specific values of the neutrino oscillation parameters used in the present analysis, the fact that

the minimum of |〈m 〉| is reached for just one set of values of (α−γ, β−γ) = (π, π) follows from the explicit

expression for |〈m 〉| , eqs. (2.7), in the case of m1 = 0.
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Figure 7. The value of |〈m 〉| for NH spectrum in the 3+1 scheme and mmin = 0. The minimum

corresponds to (α − γ, β − γ) =(π, π). At the minimum (the point with the cross) |〈m 〉| =

1.80×10−2 eV. The values in the first four contours are, respectively, (1.88, 1.94, 2.01, 2.08)×10−2 eV

and obtained for ∆m2
41 = 0.93 eV2. See text for further details.

region in the figure corresponds to the minimum of |〈m 〉| and the red cross indicates the

precise value of (α− γ, β − γ) at the minimum.

It follows from the results of our analysis that for m1 = 0 and any values of the CPV

phases (α− γ, β − γ) we have:

• |〈m 〉| ≥ 0.018 eV if ∆m2
41 = 0.93 eV2;

• |〈m 〉| ≥ 0.027 eV for ∆m2
41 = 1.78 eV2. If instead of sin2 θ14 = 0.0223 we use

sin2 θ14 = 0.017 (0.047), we get |〈m 〉| ≥ 0.019 (0.059) eV .

3 The case of IO spectrum in the 3+1 scheme

In the case of 3+1 scheme with IO 3-neutrino mass spectrum, m3 < m1 < m2 < m4, one

can write the effective Majorana mass following the notation in [1] as:

|〈m 〉| = |m1c
2
12c

2
13c

2
14 +m2e

iαc2
13c

2
14s

2
12 +m3e

iβc2
14s

2
13 +m4e

iγs2
14| . (3.1)

The masses m1,2,4 can be expressed in terms of the lightest neutrino mass mmin = m3 and

the neutrino mass squared differences as follows:

m1 =
√
m2

min + |∆m2
32| −∆m2

21, m2 =
√
m2

min + |∆m2
32|, m4 =

√
m2

min + ∆m2
43 ,

m3 = mmin , ∆m2
21 > 0 , ∆m2

32 < 0 , ∆m2
43 > 0 .

(3.2)

The neutrino mass spectrum of this scheme is depicted schematically in figure 8.

The parameters a, b, c and d are given by:

a =
√
m2

min + |∆m2
32| −∆m2

21 c
2
12c

2
13c

2
14

b =
√
m2

min + |∆m2
32| c

2
13c

2
14s

2
12
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Figure 8. The mass spectrum in the 3+1 IO scheme.

c = mmin c
2
14s

2
13 (3.3)

d =
√
m2

min + ∆m2
43 s

2
14

In this case only a few solutions among those found in appendix A are relevant and their

existence depends on the numerical values of the parameters a, b, c and d. In appendix A.1

we list the domain of existence of all the solutions. Here we will analyze the solutions

(u±, v±, t±), given in eq. (2.16) with the parameters a, b, c and d defined in eq. (3.3),

because their domain is the largest (the numerical details are given in appendix A.1).

We observe that the solutions (u±, v±, t±) are well defined when the product f1f2f3f4

is positive, where f1,2,3,4 are given in eq. (2.12). Defining m3 as the zero of the function f1,

f1(m3) = 0, we find that the effective Majorana mass can be zero for m3 < m3 for specific

CP non-conserving values of the CPV phases α, β and γ. For ∆m2
43 = 0.93 (1.78) eV2 and

the best fit values of table 1, we find m3 ' 0.038 (0.074) eV. These results are presented

graphically in figure 9, where we show the numerically calculated |〈m 〉| min as function

of m3. The numerical minima depicted in figure 9 are obtained by performing a scan

over the values of m3 and of each of the phases (α, β, γ) in the interval [0, 2π]. The grey

horizontal band in figure 9, corresponding to |〈m 〉| min < 10−8 eV, reflect the precision

of the numerical calculation of |〈m 〉| min = 0. The minima of |〈m 〉| under discussion

are reached for values of the phases (α, β, γ) that can be either CP conserving or CP

non-conserving.

We will find next an analytical approximation of m3. We observe that for values m3 in

the range m3 ≈ 0.05− 0.10 eV the term ∝ m3 cos2 θ14 sin2 θ13 is by approximately an order

of magnitude smaller then the other three terms in |〈m 〉| . Neglecting it as well the term

∝ ∆m2
21, we find the following expression for m3, which is valid up to an error of about

the 15%:

m3 ≈

√
∆m2

43 sin4 θ14 − |∆m2
32| cos2 2θ12 cos4 θ13 cos4 θ14

cos2 2θ12 cos4 θ13 cos4 θ14 − sin4 θ14
. (3.4)

Using this approximation we get m3 ' 0.032 eV for ∆m2
43 = 0.93 eV2, and m3 ' 0.068 eV

for ∆m2
43 = 1.78 eV2, instead of 0.038 eV and 0.074 eV found numerically.

To find the minima of |〈m 〉| for values of m3 > m3 we have to study the Hessian

of |〈m 〉| . From the analysis in appendix A it follows that in the region in which f1 > 0

(corresponding to the region m3 > m3), the minimum of |〈m 〉| (according to the Sylvester’s
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Figure 9. Minimum |〈m 〉| as function of mmin ≡ m3. The figure has been obtained numerically

for ∆m2
43 = 0.93 eV2, sin θ14 = 0.15. The vertical line corresponds to mmin = m3 ' 0.038 eV. See

text for details.
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Figure 10. Left Panel. The functions f8 (short-dashed blue), f1 (dot-dashed black), b + c − d
(solid red), c−d (large dashed brown), −f6 (dotted green) versus mmin ≡ m3 for ∆m2

43 = 0.93 eV2,

sin θ14 = 0.15. The vertical line corresponds to mmin = m3 ' 0.038 eV. Right Panel. The same as

in the left panel, but for ∆m2
43 = 1.78 eV2. The vertical line corresponds to mmin = m3 ' 0.074 eV.

criterion) takes place at (α, β, γ) = (π, π, π). In figure 10 we show all the relevant functions

entering in the conditions determining the minima, which are listed in eq. (2.12) (and

eq. (A.13)), with the parameters a, b, c and d defined in eq. (3.3).

In figure 11 we show as an example the values of the three phases versus mmin for

the solution (u−, v−, t−). The analogous figure for the solution (u+, v+, t+) is obtained

formally from figure 11 by reversing the y−axis.

Finally, we show in figure 12 |〈m 〉| as function of the lightest neutrinos mass, mmin. In

this case the region of allowed values of |〈m 〉| (the shaded area) is larger than in the NO

case since |〈m 〉| can reach zero for any mmin ≤ m3. This is due to the fact that, depending
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Figure 11. Left Panel. The values of (tanα/2, tanβ/2, tan γ/2) — large dashed (brown), short

dashed (blue), solid (red) lines — corresponding to the solution (v−, t−, u−), eq. (2.16), as functions

of m3 for ∆m2
43 = 0.93 eV2, sin θ14 = 0.15. The vertical line is at m3 = 0.038 eV, indicating the

domain of existence of this solution, m3 ≤ m3. Right Panel. The same as in the left panel, but for

∆m2
43 = 1.78 eV2. The vertical line is at m3 = 0.074 eV, indicating the domain of existence of the

solution (v−, t−, u−), m3 ≤ m3.

on the values of the CPV phases α, β and γ, a complete cancellation among the terms in

the expression for |〈m 〉| can occur.

The results of the analysis performed in this section show that we always have |〈m 〉| >
0.01 eV for:

• mmin > 0.078 eV, if ∆m2
43 = 0.93 eV2;

• mmin > 0.108 eV, if ∆m2
43 = 1.78 eV2.

If in the case of ∆m2
41 = 1.78 eV2, instead of sin2 θ14 = 0.023 we used the extreme value

of the 2σ allowed interval quoted in eq. (2.6), sin2 θ14 = 0.017 (sin2 θ14 = 0.047), this will

lead to the decreasing (increasing) of the numerical values of | < m > | at mmin . 10−3 eV

and of m3, obtained for sin2 θ14 = 0.023, approximately by the factors 1.1 (1.4) and 2.0

(2.4), respectively.

3.1 The case of m3 = 0

The effective Majorana mass in this case is

|〈m 〉| =

∣∣∣∣√|∆m2
32| −∆m2

21 (c12c13c14)2 +
√
|∆m2

32| (c13c14s12)2eiα +
√

∆m2
43 s

2
14e

iγ

∣∣∣∣ .
(3.5)

Now only two phases enter into the expression of |〈m 〉| : α and γ. In this case the minima of

|〈m 〉| can be obtained from the general solutions derived in appendix A and take place for

sin γ± = ∓
√
−[(a0 − d0)2 − b20][(a0 + d0)2 − b20]

2a0d0

sinα± = ±
√
−[(a0 − d0)2 − b20][(a0 + d0)2 − b20]

2a0b0

(3.6)
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Figure 12. Left Panel. The value of |〈m 〉| as function of mmin = m3 for ∆m2
43 = 0.93 eV2,

sin θ14 = 0.15. The green and orange lines correspond respectively to (α, β, γ) = (0, 0, 0) and

(π, π, π). The six gray curves correspond to the other possible sets of CP conserving values 0 or π

of the CPV phases (α, β, γ). The vertical line is at m3 = m3 ' 0.038 eV. If m3 ≤ m3, we can have

|〈m 〉| min = 0 at any fixed m3 for specific values of (α, β, γ), while for m3 > m3, the minimum of

|〈m 〉| is realized at (α, β, γ) = (π, π, π) and |〈m 〉| min 6= 0. Right Panel. The same as in the left

panel, but for ∆m2
43 ≡ 1.78 eV2. The vertical line is at m3 = m3 ' 0.074 eV. The horizontal band

indicates the upper bound |〈m 〉| ∼ 0.2− 0.4 eV obtained using the 90 % C.L. limit on the half-life

of 76Ge reported in [38].

where

a0 =
√
|∆m2

32| −∆m2
21 c2

12c
2
13c

2
14 ,

b0 =
√
|∆m2

32| c
2
13c

2
14s

2
12 ,

d0 =
√

∆m2
43 s

2
14 .

(3.7)

Both minima correspond to |〈m 〉| = 0 independently of the value of ∆m2
43. How-

ever, the location of the minima on the α − γ plane depends on ∆m2
43. For instance, if

we use ∆m2
43 = 0.93 eV2, the minima are at (sinα, sin γ) = (∓0.562,±0.373). This re-

sult is shown in figure 13. We notice that the existence of solutions for (α, γ) such that

|〈m 〉| ∼ 0 is clear from the expression in eq. (3.5) since for the values of the oscillation

parameters used in the present study a complete cancellation among the three terms in

|〈m 〉| can take place. Indeed, in the case of the best fit values, for instance, the first

term ∝
√
|∆m2

32| −∆m2
21 (c12c13c14)2 ≈ 0.032, can be compensated completely by the

sum of the other two terms which are of the order of
√
|∆m2

32| (c13c14s12)2 ≈ 0.014 and√
∆m2

43 s
2
14 ≈ 0.022, respectively.

It follows from our analysis that in the case of m3 = 0 we have |〈m 〉| > 0.01 eV for

values of the phases α and γ outside the region delimited by the red line in figure 13.

We note finally that in the limit m3 → 0 (or equivalently c → 0) there are four out

of the nine solutions determined analytically, which admit |〈m 〉| = 0 (this can be seen

in table 5 in the appendix A.1). The four solutions are (u±, v±, t±) and (v±4 (u), t±4 (u)). If
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Figure 13. The values of |〈m 〉| for the IH spectrum in the 3+1 scheme versus α and γ in the

case of mmin = m3 = 0, ∆m2
43 = 0.93 eV2 and sin θ14 = 0.15. In this case there are two minima in

the crossed points at (sinα, sin γ) = (∓0.562,±0.373), and |〈m 〉| in these minima is exactly zero.

The red line corresponds to |〈m 〉| = 0.01 eV. See text for details.

the solutions (v±4 (u), t±4 (u)) are evaluated at u±, i.e., v±4 (u±) → v±, in this case the two

minima of the first solution coincide with the two minima of the second one.

4 The 3+2 scheme: two sterile neutrinos

In this section we analyze the case of two extra sterile neutrino states. In this case the

PMNS mixing matrix is a 5× 5 unitary matrix. Following the parametrization used in [18]

it can be written as:

U = V35O34V25V24O23O15O14V13V12 diag(1, eiα/2, eiβ/2, eiγ/2, eiη/2) , (4.1)

where η is an additional Majorana CPV phase. As in the case of the 3+1 scheme, we can

set to zero the phases in the matrices V25, V24, V13 and V12 without loss of generality. In

this case the elements of the first row of the PMNS matrix of interest for our analysis are

given by:

Ue1 = c12c13c14c15

Ue2 = eiα/2c13c14c15s12

Ue3 = eiβ/2c14c15s13

Ue4 = eiγ/2c15s14

Ue5 = eiη/2s15

(4.2)

The (ββ)0ν-decay effective Majorana mass reads:

|〈m 〉| =
∣∣∣m1|Ue1|2 +m2|Ue2|2eiα +m3|Ue3|2eiβ +m4|Ue4|2eiγ +m5|Ue5|2eiη

∣∣∣ . (4.3)

The values for θ14, ∆m2
41(43), θ15 and ∆m2

51(53) — for NO (IO)—, obtained in the global

analysis performed in [18], are summarized in table 3.

– 19 –



J
H
E
P
1
1
(
2
0
1
3
)
1
4
6

∆m2
41(43) [eV2] ∆m2

51(53) [eV2] θ14 θ15

0.47 0.87 0.13 0.14

Table 3. Best global fit values of the sterile neutrino oscillation parameters in the 3+2 scheme

with NO (IO) neutrino mass spectrum (from [18]). The relation to the mixing matrix elements is

|Ue4| = cos θ15 sin θ14 and |Ue5| = sin θ15.
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Figure 14. The neutrino mass spectrum in the 3+2 NO scheme.

5 The 3+2 scheme with NO spectrum

In the case of the 3+2 scheme with NO spectrum, m1 < m2 < m3 < m4 < m5, one can

write the effective Majorana mass as:

|〈m 〉| = |m1c
2
12c

2
13c

2
14c

2
15 +m2e

iαc2
13c

2
14c

2
15s

2
12 +m3e

iβc2
14c

2
15s

2
13 +m4e

iγc2
15s

2
14 +m5e

iηs2
15|

(5.1)

As in the case of the 3+1 scheme, it proves convenient to express the masses m2,3,4,5 in

terms of the lightest neutrino mass m1 and the neutrino mass squared differences:

mmin ≡ m1, m2 =
√
m2

1 + ∆m2
21, m3 =

√
m2

1 + ∆m2
31, m4 =

√
m2

1 + ∆m2
41,

m5 =
√
m2

1 + ∆m2
51, ∆m2

21 > 0, ∆m2
31 > 0, ∆m2

41 > 0 and ∆m2
51 > 0 .

(5.2)

The neutrino mass spectrum in 3+2 NO scheme is shown in figure 14.

In what follows we will analyze the conditions for minimization of |〈m 〉| . As in the

3+1 case, we will work with |〈m 〉| 2 rather than with |〈m 〉| :

|〈m 〉| 2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2 , (5.3)

where

a = mminc
2
12c

2
13c

2
14c

2
15 ,

b =
√
m2

min + ∆m2
21c

2
13c

2
14c

2
15s

2
12 ,

c =
√
m2

min + ∆m2
31c

2
14c

2
15s

2
13 ,

d =
√
m2

min + ∆m2
41c

2
15s

2
14 ,

e =
√
m2

min + ∆m2
51s

2
15 .

(5.4)
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The analytical study of the minima of |〈m 〉| 2 in this case is a non-trivial task since four

phases are involved and the non-linearity of the system of the first derivatives of |〈m 〉| 2

with respect to the four phases makes the analysis rather complicated. Therefore finding all

possible solutions of the minimization procedure in analytical form is a complex problem.

Thus, we have performed the general analysis of the minimization of |〈m 〉| numerically.

It is possible, however, to perform analytically the analysis of the minima of |〈m 〉| , cor-

responding to the 16 sets of CP conserving values (either 0 or π) of the four phases α,

β, γ and η. This analysis is described in appendix B. It follows from the results found

in appendix B that only (α, β, γ, η) = (π, π, π, π), (0, 0, 0, π), (0, 0, π, 0), (0, π, 0, 0) and

(π, 0, 0, 0) can correspond to minima of |〈m 〉| . These minima take place in intervals of

values of m1 which are determined by the following sets of inequalities:

(α, β, γ, η) = (π, π, π, π) if F1 = a− b− c− d− e > 0,

(α, β, γ, η) = (0, 0, 0, π) if (d < e) ∧ (c < e− d) ∧ (b < −c− d+ e)∧
∧ (F8 = a+ b+ c+ d− e < 0),

(α, β, γ, η) = (0, 0, π, 0) if (d > e) ∧ (c < d− e) ∧ (b < −c+ d− e)∧
∧ (F3 = a+ b+ c− d+ e < 0),

(α, β, γ, η) = (0, π, 0, 0) if (c > d+ e) ∧ (b < c− d− e)∧
∧ (G3 = a+ b− c+ d+ e < 0),

(α, β, γ, η) = (π, 0, 0, 0) if (b > c+ d+ e) ∧ (F6 = a− b+ c+ d+ e < 0) .

(5.5)

The dependence of F1, F8, F3, G3, F6 and (d − e) on m1 is shown in the right panel of

figure 15.

It is not difficult to check that for the values of the oscillation parameters quoted in

tables 1 and 3, the sets of inequalities listed above in each of the cases of (α, β, γ, η) =

(0, 0, π, 0), (0, π, 0, 0) and (π, 0, 0, 0) cannot simultaneously be fulfilled for m1 ≥ 0. Thus,

only (α, β, γ, η) = (π, π, π, π) and (0, 0, 0, π) correspond to true minima of |〈m 〉| . Defining

m1 and m1 as the zero of the functions F1 and F8,

F1(m1) = a− b− c− d− e = 0, F8(m1) = a+ b+ c+ d− e = 0 , (5.6)

we find that the minima of |〈m 〉| for m1 > m1 take place only at (α, β, γ, η) = (π, π, π, π),

while for m1 < m1 they occur at (α, β, γ, η) = (0, 0, 0, π). Further, the numerical analysis

performed by us shows that in the interval of m1 < mmin < m1, the minimum value of

|〈m 〉| is exactly zero and is reached, in general, for CP nonconserving values of the phases

(α, β, γ, η). These results are presented graphically in the left panel of figure 15. Figure 15

shows also, in particular, that at mmin → 0 we have |〈m 〉| 6= 0.

In figure 16 we show |〈m 〉| as a function of the lightest neutrino mass mmin. The

shaded area indicates the allowed values for |〈m 〉| . The red, orange, green and gray lines

correspond to the different sets of CP conserving values (0 or π) of the CPV phases (α, β, γ).

The vertical solid lines are at m1 = m1 ' 4.44 × 10−3 eV (and (α, β, γ, η) = (0, 0, 0, π))

and m1 = m1 ' 8.84 × 10−2 eV (and (α, β, γ, η) = (π, π, π, π)). It is clear from the figure

that |〈m 〉| can be zero in the interval m1 ≤ mmin ≤ m1, while for mmin → 0 we have
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Figure 15. Left Panel. Minimum |〈m 〉| as function of mmin ≡ m1. The figure has been obtained

numerically for ∆m2
41 = 0.47 eV2, ∆m2

51 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14 (see table 3) and

performing a scan over a sufficiently large sets of values of mmin. The vertical lines correspond to

m1 ' 8.84×10−2 eV and m1 ' 4.44×10−3 eV. In the interval m1 ≤ m1 ≤ m1 we have min(|〈m 〉| )

= 0. Right Panel. The functions F3 (dotted green), F8 (large dashed brown), G3 (short-large

dashed purple), F6 (dot-dashed black), F1 (solid red), d−e (short-dashed blue), defined in eq. (5.6)

as function of mmin for the best fit values of table 3. The vertical lines are at m1 ' 8.84× 10−2 eV

and m1 ' 4.44× 10−3 eV.

|〈m 〉| min → 3.21 × 10−3 eV and max(|〈m 〉| ) = 0.033 eV. The indicated |〈m 〉| min and

max(|〈m 〉| ) values at mmin = 0 in figure 16 are reached for (α, β, γ, η) = (0, 0, 0, π) and

(α, β, γ, η) = (0, 0, 0, 0) (corresponding to the red and green lines). At m1 = m1 and

m1 = m1, we have |〈m 〉| min = 0: at m1 = m1 the first four terms in the expression for

|〈m 〉| are positive and their sum is compensated by the last term,
√

∆m2
51 sin2 θ15, while

at m1 = m1 a cancellation occurs between the first term proportional to mmin and the

sum of all the other terms. We have also indicated in the figure with a dotted vertical

line the prospective constraint on mmin that might be obtained in the β-decay experiment

KATRIN [39, 40]. We find that in 3+2 NO scheme under discussion one always has

• |〈m 〉| > 0.01 eV for mmin > 0.118 eV.

5.1 The case of m1 = 0

In the case of mmin ≡ m1 = 0, the expression of |〈m 〉| symplifies to:

|〈m 〉| 2
∣∣∣
m1=0

= |eiαb0 + eiβc0 + eiγd0 + eiηe0|2 , (5.7)

where the parameters b0, c0, d0 and e0 read:

b0 =
√

∆m2
21c

2
13c

2
14s

2
12 ,

c0 =
√

∆m2
31c

2
14c

2
15s

2
13 ,

d0 =
√

∆m2
41c

2
15s

2
14 ,

e0 =
√

∆m2
51s

2
15 .

(5.8)
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Figure 16. The value of |〈m 〉| versus the lightest neutrino mass m1 for ∆m2
41 = 0.47 eV2,

∆m2
51 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14. The green, red and orange lines correspond

to (α, β, γ, η) = (0, 0, 0, 0), (0, 0, 0, π), (π, π, π, π), while the blue lines are obtained for the other

13 sets of CP conserving values (0 or π) of the four CPV phases. The vertical solid lines are

at m1 = m1 ' 0.004 eV and m1 = m1 ' 0.088 eV. The minimum of |〈m 〉| in the interval

m1 ≤ m1 ≤ m1 is exactly zero. The horizontal band indicates the upper bound |〈m 〉| ∼ 0.2−0.4 eV

obtained using the 90 % C.L. limit on the half-life of 76Ge reported in [38]. See text for further

details.

The minimum of the effective Majorana mass is reached in this case for (α, β, γ, η) =

(0, 0, 0, π) and at the minimum |〈m 〉| 6= 0. Indeed, numerically we have b0 ' 2.51 ×
10−3 eV, c0 ' 1.14× 10−3 eV, d0 ' 1.13× 10−2 eV and e0 ' 1.82× 10−2 eV, and it is clear

that the four terms in the expression for |〈m 〉| cannot compensate each other completely.

For the minimum value of |〈m 〉| in the case under study we get |〈m 〉| = 0.0032 eV. In

figure 17 we show the values of |〈m 〉| versus α−η and β−η, fixing for convenience γ−η = π.

The minimum is at the crossed point corresponding to at α− η = π, β − η = π. It follows

from our analysis that in the case of m1 = 0 and γ − η = π we have |〈m 〉| > 0.01 eV for

values of the phases α− η and β − η in the region delimited by the red lines in figure 17.

6 The 3+2 scheme with IO spectrum

In the case of the 3+2 scheme with IO spectrum, m3 < m1 < m2 < m4 < m5, |〈m 〉| can

be written as:

|〈m 〉| = |m1c
2
12c

2
13c

2
14c

2
15 +m2e

iαc2
13c

2
14c

2
15s

2
12 +m3e

iβc2
14c

2
15s

2
13 +m4e

iγc2
15s

2
14 +m5e

iηs2
15| .
(6.1)

We have:

m1 =
√
m2

3−∆m2
32−∆m2

21, m2 =
√
m2

3−∆m2
32, m3 ≡ mmin, m4 =

√
m2

3+∆m2
43,

m5 =
√
m2

3+∆m2
53, ∆m2

21 > 0 , ∆m2
32 < 0 , ∆m2

43 > 0 , ∆m2
53 > 0 .

(6.2)
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Figure 17. The value of |〈m 〉| in the 3+2 scheme with NO spectrum at mmin = 0 for γ − η = π.

The minimum of |〈m 〉| corresponds to (α − η, β − η) =(π, π) (the crossed point). The values of

|〈m 〉| at this minimum is 3.21 × 10−3 eV. The red line corresponds to |〈m 〉| = 0.01 eV.
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Figure 18. The neutrino mass spectrum in the 3+2 IO scheme.

The neutrino mass spectrum in 3+2 IO scheme is shown schematically in figure 18.

We define:

|〈m 〉| 2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2 , (6.3)

where the parameters a, b, c, d and e in this case read:

a =
√
m2

min + |∆m2
32| −∆m2

21c
2
12c

2
13c

2
14c

2
15 ,

b =
√
m2

min + |∆m2
32|c

2
13c

2
14c

2
15s

2
12 ,

c = mminc
2
14c

2
15s

2
13 ,

d =
√
m2

min + ∆m2
43c

2
15s

2
14 ,

e =
√
m2

min + ∆m2
53s

2
15 .

(6.4)

As in the case of NO spectrum, we have performed the general analysis of minimization

of |〈m 〉| numerically. Analytical results have been obtained only for the CP conserving

values (0 or π) of the four CPV phases. As it follows from the analysis performed in

appendix B, only one set of CP conserving values of the phases corresponds to a minimum

of |〈m 〉| , namely, (α, β, γ, η) = (π, π, π, π). The domain of this minimization solution is
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Figure 19. Minimum |〈m 〉| as a function of mmin ≡ m3. The plot has been obtained numerically

for ∆m2
43 = 0.47 eV2, ∆m2

53 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14 (see table 3) by varying

mmin in the interval [0.001, 1.000] eV and each of the four CPV phases in the interval [0, 2π]. The

vertical line corresponds to m3 ' 1.25 × 10−1 eV (F1(m3) = 0). For any given m3 ≤ m3 we have

|〈m 〉| min = 0. For the different m3 < m3, the minima of |〈m 〉| occur at different sets of CP

nonconserving values of (α, β, γ, η) (see text for further details).

determined by the inequality F1(m3) ≡ (a − b − c − d − e) > 0. Let us define by m3 the

zero of F1: F1(m3) = 0. As can be shown (and is seen also in figure 22 in appendix B),

the inequality of interest F1(m3) > 0 is satisfied for m3 > m3. Thus, for m3 > m3,

|〈m 〉| takes minimum values only for the values of the phases (α, β, γ, η) = (π, π, π, π).

Moreover, the minima of |〈m 〉| at m3 > m3 are different from zero. This follows from

the fact that the minima under discussion correspond to the contribution of the first term

∝
√
m2

min + |∆m2
32| −∆m2

21 in the expression for |〈m 〉| , eq. (6.1), being compensated by

the sum of the other terms in |〈m 〉| , and that for the values of the oscillation parameters

used in the present analysis the compensation cannot be complete. For the indicated

values of the phases, a complete compensation leading to |〈m 〉| min = 0 is possible only

in the point m3 = m3. At any given m3 < m3, as our numerical analysis shows, we have

|〈m 〉| min = 0 and the minimum takes place, in general, for CP nonconserving values of

(α, β, γ, η). These results are illustrated in figure 19, where we show |〈m 〉| min as function

of the lightest neutrino mass.

In figure 20 we show |〈m 〉| as function of the lightest neutrino mass mmin = m3. The

gray lines correspond to |〈m 〉| computed for CP conserving values of the phases (α, β, γ, η)

(either 0 or π). The shaded area indicates the possible allowed values of |〈m 〉| and is

obtained for the values of the oscillation parameters quoted in tables 1 and 3. The vertical

solid line corresponds to mmin = m3 ' 0.125 eV and (α, β, γ, η) = (π, π, π, π). At mmin ≤
m3, we can have |〈m 〉| min = 0 for specific, in general CP nonconserving, values of the

phases (α, β, γ, η). This behaviour of |〈m 〉| min is very different from the behavior in the

case of NO spectrum discussed in the previous section, where |〈m 〉| min can be zero only

in a limited interval of values of mmin.
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Figure 20. The value of |〈m 〉| as function of mmin = m3 for ∆m2
43 = 0.47 eV2, ∆m2

53 = 0.87 eV2,

sin θ14 = 0.13, sin θ15 = 0.14 (see table 3). The green and orange lines correspond to (α, β, γ) =

(0, 0, 0, 0) and (π, π, π, π), while the gray lines corresponding to the other 14 sets of CP conserving

values (0 or π) of the four CPV phases. The vertical solid line corresponds to mmin = m3 ' 0.125 eV.

At mmin ≤ m3 we can have |〈m 〉| min = 0. The dotted line represents the prospective upper limit

from the β-decay experiment KATRIN [39, 40]. The horizontal band indicates the upper bound

|〈m 〉| ∼ 0.2− 0.4 eV obtained using the 90 % C.L. limit on the half-life of 76Ge given in [38].

We find also that in the 3+2 IO scheme under discussion and the values of the neutrino

oscillation parameters used in the present analysis one always has

• |〈m 〉| > 0.01 eV for mmin > 0.178 eV.

6.1 The case of m3 = 0

In the limit mmin ≡ m3 = 0, (which implies c = 0 in eq. (6.3)), the analysis of the

minimization of the effective Majorana mass is exactly the same as in the case of the 3+1

scheme. This becomes clear after a redefinition of the phases and the coefficients involved.

For mmin ≡ m3 = 0, |〈m 〉| 2 can be written as:

|〈m 〉| 2

∣∣∣∣
m3=0

= |a0 + eiαb0 + eiγd0 + eiηe0|2 , (6.5)

where

a0 =
√
|∆m2

32| −∆m2
21 c

2
12c

2
13c

2
14c

2
15 ,

b0 =
√
|∆m2

32| c
2
13c

2
14c

2
15s

2
12 ,

d0 =
√

∆m2
43 c

2
15s

2
14 ,

e0 =
√

∆m2
53 s

2
15 .

(6.6)
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Using the analysis performed in appendix A for the 3+1 scheme we find that the so-

lutions which minimize |〈m 〉| , such that |〈m 〉| min is exactly zero, are: (u±, v±, t±)≡
(tan(γ±/2), tan(α±/2), tan(η±/2)), (u±3 , v

±
3 , t

±
3 ) ≡ (tan(γ±3 /2), tan(α±

3 /2), tan(η±3 /2)), and

(v±4 (u), t±4 (u)) ≡ (tan(α±
4 /2), tan(η±4 /2)). The solutions (u±, v±, t±) and (v±4 (u), t±4 (u)) can

be obtained formally from eqs. (2.16) and (2.17) by replacing, respectively, a, b, c and d

with a0, b0, e0 and d0 defined in eq. (6.6), while the solution (u±3 , v
±
3 , t

±
3 ) is given by:

u±3 = ±
√

(−a0 + b0 − d0 + e0)(a0 − b0 + d0 + e0)√
(a0 − b0 − d0 − e0)(a0 − b0 − d0 + e0)

,

v±3 = ± a2
0 − b20 − d2

0 + e2
0√

(a0−b0−d0−e0)(a0−b0−d0+e0)
√

(−a0+b0−d0+e0)(a0−b0+d0+e0)
,

t±3 = ±
(b0 + e0)(−a0 + b0 + d0 − e0)

√
(−a0 + b0 − d0 + e0)(a0 − b0 + d0 + e0)

(b0 − e0)
√

(a0 − b0 − d0 − e0)(a0 − b0 − d0 + e0)(−a0 + b0 − d0 + e0)
.

(6.7)

Using the best fit values ∆m2
43 = 0.47 eV2, ∆m2

53 = 0.87 eV2, sin θ14 = 0.13, sin θ15 =

0.14 we find that the minima corresponding to (u±, v±, t±) and to eq. (6.7) are given

numerically by:

u± ' ±1.44, v± ' ±18.5, t± ' ∓2.61 (6.8)

and

u±3 ' ±1.30, v±3 ' ∓2.63, t±3 ' ∓24.7 . (6.9)

The third minimum corresponding to the solution (v±4 (u), t±4 (u)) is not determined uniquely

since it depends on u. However, one can define the minimum for a specific choice of u, or

equivalently, for a value for one of the other phases, because the expressions of this solution

are invertible. In order to check numerically whether the three solutions are minima we

plot the dependence of |〈m 〉| on two of the CPV phases (α, γ, η), fixing the value of the

third phase. It proves convenient to set the value of η, i.e. of t, equal to the values of the

solution (u±, v±, t±). One can, of course, do the same using the solutions (u±3 , v
±
3 , t

±
3 ), or

choosing an arbitrary value of η. Our aim is to show that in the 3+2 IO scheme with

m3 = 0, the two solutions (u+, v+, t+) and (v+
4 (u), t+4 (u)) represent two different minima,

in contrast to the case of 3+1 IO scheme with m3 = 0.

More specifically, if we fix t ' −2.61, we find v+
4 ' 1.68 at a value of u+

4 ' −59.3. The

Left Panel of figure 21 shows the values of |〈m 〉| with t = t+ ' −2.61. The marked points

correspond to the two different minima: the first corresponds to the solution (u+, v+, t+)

and takes place at (α, γ) = (3.03, 1.93), while the second one is associated with the so-

lution (v+
4 (u), t+4 (u)) and occurs at (α, γ) = (2.07, 3.17). In these two minima the effec-

tive Majorana mass is exactly zero. Repeating the same analysis with t ' 2.61, we find

v−4 ' −1.68 at the value of u−4 ' 59.3. The Right Panel of figure 21 shows the val-

ues of |〈m 〉| with t = t− ' 2.61. The points marked with a cross correspond to the

two different minima, one evaluated from the function (u−, v−, t−) and corresponding to

(α, γ) = (3.25, 4.35), and the second evaluated from the function (v−4 (u), t−4 (u)) and corre-

sponding to (α, γ) = (4.21, 3.11). As in the previous case, in these two minima the effective
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Figure 21. Left Panel. The value of |〈m 〉| in the 3+2 IO scheme for m3 ≡ mmin = 0 and the best

fit values of table 3. The phase η is set to the value η+, tan η+/2 ' −2.61. The values of |〈m 〉|
in the marked points (α, γ) = (3.03, 1.93), (2.07, 3.17), are zero. The red contour line corresponds

to |〈m 〉| = 0.01 eV. Right Panel. The same as in the left panel, but setting η to the value η−,

tan η−/2 ' 2.61. The values of |〈m 〉| in the marked points (α, γ) = (3.25, 4.35), (4.21, 3.11), are

zero. The red contour line corresponds to |〈m 〉| = 0.01 eV. See text for details.

Majorana mass is exactly zero. The existence of two minima in the 3+2 scheme in the

limit of m3 = 0 is very different from the 3+1 case where the two minima coincide.

Finally, it follows from our analysis that for m3 = 0 in the cases we have considered

and which are illustrated in figure 21 we have |〈m 〉| > 0.01 eV for values of the phases α

and γ outside the region delimited by the red line in figure 21.

7 Conclusions

In the present article we have investigated the predictions for neutrinoless double beta

((ββ)0ν-) decay effective Majorana mass |〈m 〉| in the 3 + 1 and 3 + 2 schemes with one

and two additional sterile neutrinos with masses at the eV scale. These two schemes are

widely used in the interpretation of the reactor neutrino and Gallium anomalies as well as

of the data of the LSND and MiniBooNE experiments in terms of active-sterile neutrino

oscillations. Due to the assumed active-sterile neutrino mixing, the “3 + 1” and “3 + 2”

models have altogether 4 and 5 light massive neutrinos νj coupled to the electron and

muon in the weak charged lepton current. In the minimal versions of these models the

massive neutrinos are Majorana particles. The additional neutrinos ν4 and ν4, ν5, should

have masses m4 and m4, m5 at the eV scale. It follows from the data that if ν4 or ν4,

ν5 exist, they should couple to the electron and muon in the weak charged lepton current

with couplings Uek ∼ 0.1 and Uµk ∼ 0.1, k = 4; 4, 5.

As was shown in [19, 20] and more recently in [21–24], the contribution of the additional

light Majorana neutrinos ν4 or ν4,5 to the (ββ)0ν-decay amplitude, and thus to the (ββ)0ν-

decay effective Majorana mass |〈m 〉| , can change drastically the predictions for |〈m 〉|
obtained in the reference 3-flavour neutrino mixing scheme, |〈m 〉(3ν)|. Using the values

of the neutrino oscillation parameters of the 3 + 1 and 3 + 2 schemes, obtained in the
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global analyses of the data relevant for the active-sterile neutrino oscillation hypothesis

(positive evidence and negative results), performed in [17, 18] (see tables 1, 2 and 3),

we have investigated in detail in the present article the possibility of a complete or partial

cancellation among the different terms in |〈m 〉| , leading to a strong suppression of |〈m 〉| .

This was done in the 3 + 1 and 3 + 2 schemes both in the cases of 3-neutrino mass spectra

with normal ordering (NO) and inverted ordering (IO), as well as in the cases of normal

hierarchical (NH) and inverted hierarchical (IH) spectra with min(mj) = 0, where j =

1, 2, 3, 4 (j = 1, 2, 3, 4, 5) for the 3 + 1 (3 + 2) scheme. In this type of analysis the free

parameters are the CP violation (CPV) Majorana phases and the lightest neutrino mass.

In the case of the 3 + 1 scheme, in which there are three physical CPV Majorana phases,

we have found all the solutions of the system of equations which determine the minima of

|〈m 〉| as well as their domains (i.e., the regions of their validity), in analytic form. This

was done for all types of neutrino mass spectra we have considered. In the more complicated

case of 3 + 2 scheme with four physical CPV Majorana phases, the non-linearity of the

system of four equations which determine the extrema of |〈m 〉| makes the analytical study

of the extrema of interest a complicated problem. Thus, in this case we have performed

the general analysis of the minimization of |〈m 〉| numerically. It was possible, however, to

perform analytically the analysis of the minima of |〈m 〉| , corresponding to the 16 sets of

CP conserving values (either 0 or π) of the four phases.

We have found that if the neutrino mass spectrum is of the NO type, we can have

|〈m 〉| = 0, and thus strongly suppressed |〈m 〉| , in a specific interval of values of

min(mj) ≡ mmin, m1 ≤ mmin ≤ m1. This results is valid both for the 3 + 1 and 3 + 2

schemes. The specific values of m1 and m1 depend on the scheme: they are determined

by the values of the oscillation parameters in each of the two schemes. For the best fit

values reported in tables 1, 2 and 3, in the 3 + 1 with ∆m2
41 = 0.93 eV2, 3 + 1 with

∆m2
41 = 1.78 eV2 and 3 + 2 schemes they read, respectively: (m1,m1) = (0.021, 0.065) eV,

(m1,m1) = (0.030, 0.091) eV and (0.004, 0.088) eV. For the different values of mmin from

the indicated interval, the minimum |〈m 〉| = 0 is reached for different sets of CP noncon-

serving, in general, values of the CPV Majorana phases.

For the best fit values reported in tables 1, 2 and 3, we find that we always have

|〈m 〉| > 0.01 eV,

• in the 3 + 1 scheme with ∆m2
41 = 0.93 eV2 — for mmin < 0.010 eV and mmin >

0.093 eV;

• in the 3 + 1 scheme with ∆m2
41 = 1.78 eV2 — for mmin < 0.020 eV and mmin >

0.119 eV;

• in the 3 + 2 scheme — for mmin > 0.118 eV.

The results we have obtained for IO spectrum are different. In this case one can

have |〈m 〉| = 0 in the interval mmin ≤ m3, where m3 is determined by the values of

neutrino oscillation parameters. For a given mmin from the indicated interval, |〈m 〉| = 0

takes place for specific, in general, CP nonconserving values of the relevant Majorana

phases. The values of m3 in the two schemes, 3 + 1 and 3 + 2, differ. Using the values of
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the oscillation parameters given in tables 1, 2 and 3, we find: m3 = 0.038 (0.074) eV for

∆m2
41 = 0.93 (1.78) eV2 in the 3 + 1 scheme, and m3 = 0.125 in the 3 + 2 scheme.

Using the values of the oscillation parameters given in tables 1, 2 and 3, we find also

that one has always |〈m 〉| > 0.01 eV,

• in the 3 + 1 scheme with ∆m2
43 = 0.93 eV2 — for mmin > 0.078 eV;

• in the 3 + 1 scheme with ∆m2
43 = 1.78 eV2 — for mmin > 0.108 eV;

• in the 3 + 2 scheme — for mmin > 0.178 eV.

We have investigated also the specific cases of NH and IH spectra in the limit mmin = 0,

which present certain peculiarities both in the 3 + 1 and 3 + 2 schemes.

The analysis performed by us allowed to derive the general conditions under which

the effective Majorana mass satisfies |〈m 〉| > 0.01 eV, and thus to determine the regions

of values mmin for which |〈m 〉| is predicted to lie in the range planned to be explored by

the next generation of (ββ)0ν-experiments. The results of these experiments will provide

additional tests of the hypothesis of existence of sterile neutrinos with masses at the eV

scale, and couplings ∼ 0.1 to the electron and muon in the weak charged lepton current.
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A The extrema of |〈m 〉| in the 3+1 scheme with NO or IO neutrino

mass spectrum

We are interested in the minima and the maxima of |〈m 〉| . It turns out to be somewhat

simpler to study the extrema of |〈m 〉| 2 which obviously coincide with those of |〈m 〉| .

The expression for |〈m 〉| 2 in both the cases of NO and IO spectra can be written as:

|〈m 〉| 2 = |a+ eiαb+ eiβc+ eiγd|2. (A.1)

The zeros of the first derivatives of |〈m 〉| 2 with respect to the phases α, β and γ are given

by the following system of three equations:

−2b[a sin(α) + c sin(α− β) + d sin(α− γ)] = 0,

−2c[a sin(β)− b sin(α− β) + d sin(β − γ)] = 0,

2d[−a sin(γ) + b sin(α− γ) + c sin(β − γ)] = 0.

(A.2)
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In order to solve this system we use the following parametrization:

sinα =
2v

1 + v2
, cosα =

1− v2

1 + v2
,

sinβ =
2t

1 + t2
, cosβ =

1− t2

1 + t2
,

sin γ =
2u

1 + u2
, cos γ =

1− u2

1 + u2
.

(A.3)

where, respectively, v ≡ tan(α/2), t ≡ tan(β/2), u ≡ tan(γ/2) with α, β, γ 6= π + 2kπ. In

terms of the new variables the system in eq. (2.11) can be written as:

− 2b

1 + v2

[
2av −

2ct
(
1− v2

)
t2 + 1

+
2c
(
1− t2

)
v

t2 + 1
−

2du
(
1− v2

)
u2 + 1

+
2d
(
1− u2

)
v

u2 + 1

]
= 0,

− 2c

1 + t2

[
2at−

2b
(
1− t2

)
v

v2 + 1
+

2bt
(
1− v2

)
v2 + 1

−
2d
(
1− t2

)
u

u2 + 1
+

2dt
(
1− u2

)
u2 + 1

]
= 0,

2d

1 + u2

[
− 2au+

2b
(
1− u2

)
v

v2 + 1
−

2bu
(
1− v2

)
v2 + 1

+
2ct
(
1− u2

)
t2 + 1

−
2c
(
1− t2

)
u

t2 + 1

]
= 0.

(A.4)

The new coordinates u, v and t are singular if at least one angle α, β, γ is equal to π. We

observe that seven solutions of the system in eq. (2.11) are given for one of the three phases

equal to π, i.e., for u or v or t going to ∞:

α = β = π(0) and γ = 0(π),

α = γ = π(0) and β = 0(π),

γ = β = π(0) and α = 0(π),

α = β = γ = π .

(A.5)

We can recover this type of solutions as a limit of the system in eq. (A.4) when a pair of

variables u, v, t are equal. For example, in the limit in which t = v = 0, the system in

eq. (A.4) is reduced to



(4bd)
u

u2 + 1
= 0,

(4cd)
u

u2 + 1
= 0,

[4d(a+ b+ c)]
u

u2 + 1
= 0 .

(A.6)

Evidently, we have a solution in the limit u → ∞. This is equivalent to say that the

solutions under discussion can be found as a limit of the system (A.4) when the variables

u, t, and v are sent to ∞.
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The solutions of the system in eq. (A.4), assuming α, β, γ 6= π and b, c, d 6= 0, are the

zeros of the following system of equations:



2av −
2ct
(
1− v2

)
t2 + 1

+
2c
(
1− t2

)
v

t2 + 1
−

2du
(
1− v2

)
u2 + 1

+
2d
(
1− u2

)
v

u2 + 1
= 0,

2at−
2b
(
1− t2

)
v

v2 + 1
+

2bt
(
1− v2

)
v2 + 1

−
2d
(
1− t2

)
u

u2 + 1
+

2dt
(
1− u2

)
u2 + 1

= 0,

−2au+
2b
(
1− u2

)
v

v2 + 1
−

2bu
(
1− v2

)
v2 + 1

+
2ct
(
1− u2

)
t2 + 1

−
2c
(
1− t2

)
u

t2 + 1
= 0.

(A.7)

The solutions of this system are nine: (u1, v1, t1), (u±, v±, t±), (u±i , v
±
i , t

±
i ) with i = 2, 3

and (v±4 (u), t±4 (u)). We found (u1, v1, t1) = (0, 0, 0) and



u± = ±

√
(−a+ b+ c− d)(a+ b− c+ d)

(a− b− c− d)(a+ b− c− d)
,

v± = ±(b+ c)

(b− c)
[(a+ b− c)2 − d2]√

(−a+ b+ c− d)(a+ b− c+ d)(a− d− c− b)(a− d− c+ b)
,

t± = ± a2 + b2 − c2 − d2√
(a− b− c− d)(a+ b− c− d)(−a+ b+ c− d)(a+ b− c+ d)

,



u±2 = 0,

v±2 = ±

√
(−a− b+ c− d)(a+ b+ c+ d)

(a− b− c+ d)(a− b+ c+ d)
,

t±2 = ± (a− b+ c+ d)(a+ b+ c+ d)√
(a− b− c+ d)(a− b+ c+ d)(−a− b+ c− d)(a+ b+ c+ d)

,



u±3 = ±

√
(−a+ b+ c− d)(a− b+ c+ d)

(a− b− c− d)(a− b+ c− d)
,

v±3 = ± a2 − b2 + c2 − d2√
(a− b− c− d)(a− b+ c− d)(−a+ b+ c− d)(a− b+ c+ d)

,

t±3 = ±(b+ c)(−a+ b− c+ d)

(b− c)(−a+ b+ c− d)

√
(−a+ b+ c− d)(a− b+ c+ d)

(a− b− c− d)(a− b+ c− d)
,


v±4 (u) =

4bdu± F (a, b, c, d, u)

−u2(a− b− c− d)(a− b+ c− d)− (a− b+ d)2 + c2
,

t±4 (u) =
−4cdu± F (a, b, c, d, u)

u2(a− b− c− d)(a+ b− c− d) + (a− c+ d)2 − b2
,

(A.8)
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where

F (a, b, c, d, u) =

{[
− u2(a+ b− c− d)(a− b+ c− d)− (a+ d)2 + (b− c)2

]
×

×
[
a2
(
u2 + 1

)
− 2ad

(
u2 − 1

)
−
(
u2 + 1

)
(b+ c− d)(b+ c+ d)

]}1/2

.

We observe that in the NH case, the limit m1 → 0 corresponds to setting a → 0 in

eqs. (A.4), while the limit m3 → 0 in the IH case corresponds to c → 0. We define

the constants a, b, c, d in these limits respectively as b0, c0, d0 and a0, b0, d0. Moreover,

we observe that |〈m 〉| evaluated at the solutions (u±i , v
±
i , t

±
i ) with i = 2, 3, (v±4 , t

±
4 ) and

(u±, v±, t±) is exactly zero.

In the subsection 6.2 we discuss, in particular, the limiting case of m3 → 0. Therefore it

is useful to show the solutions (u±, v±, t±) in terms of sin γ+ = − sin γ−, sinα+ = − sinα−,

sinβ+ = − sinβ−, so we can write:

sin γ− =

√
−[(a− d− c)2 − b2][(a+ d− c)2 − b2]

2(a− c)d
,

sinα− =
(b− c)(b+ c)(a+ b− c− d)

√
(−a+ b+ c− d)(a+ b− c+ d)(−a+ b+ c+ d)

2 (ab (c(a− c) + b2)− bcd2)
√

(−a+ c+ d)2 − b2
,

sinβ− =

√
(a−b−c−d)(a+b−c−d)

√
(−a+b+c−d)(a+b−c+d)

(
−a2 − b2 + c2 + d2

)
2(a− c) [a (c(a− c) + b2)− cd2]

.

Next, in order to study the domains of existence of the solutions given in eq. (A.8),

which depend on the parameters a b, c and d, we need to define the following functions:

f1 = a− b− c− d , f2 = a+ b− c− d ,
f3 = a+ b− c+ d , f4 = −a+ b+ c− d ,
f5 = a+ b+ c+ d , f6 = a− b+ c+ d ,

f7 = a− b+ c− d , f8 = a+ b+ c− d .

(A.9)

We notice that the conditions of existence for the solutions (u±, v±, t±), (u±2 , v
±
2 , t

±
2 ) and

(u±3 , v
±
3 , t

±
3 ) are respectively f3f4f5f6 > 0, f1f4f6f7 > 0 and f1f2f3f4 > 0. We discuss the

domains of the other solutions in appendix A.1 using numerical methods.

Finally, we would like to comment on the solutions (v±4 , t
±
4 ) because, as can be seen

from their explicit expressions, they depend on a free variable, u. Thus, we would like to

provide some details about the study of the domain of such solutions. Defining k = u2 and

F (a, b, c, d, k) =
√
f(k) we find that the function f(k) is a parabola of the form:

f(k) = Ak2 +Bk + C , (A.10)

with coefficient of the term of maximum degree equal to

A = (a+ b− c− d)(a− b+ c− d)(a+ b+ c− d)(−a+ b+ c+ d) , (A.11)
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and discriminant ∆ = B2− 4AC = 256 a2b2c2d2. The discriminant ∆ is always positive or

equal to zero. The zeros of the function f(k), namely k1 and k2, are given by:

k̃1 =
(a− b− c+ d)(a+ b+ c+ d)

(a+ b+ c− d)(−a+ b+ c+ d)
,

k̃2 = −(a+ b− c+ d)(a− b+ c+ d)

(a+ b− c− d)(a− b+ c− d)
.

(A.12)

Depending on the values of the parameters a, b, c and d one can find a range of mmin for

which this solution is well defined. We will discuss this in the next section A.1.

The method described above cannot be used to determine the physical domain of the

minimization solutions found by us in the case in which at least one of the phases α, β, γ is

equal to π (eq. (A.5)). In order to study these cases we use the Hessian matrix of |〈m 〉| 2,

H(α, β, γ). The determinant of the Hessian, evaluated for the phases either 0 or π and as-

suming a, b, c, d > 0, can be positive only for (α, β, γ) = (π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π).

Therefore the local minima and maxima can correspond only to these configurations. We

derive the relations among the coefficients a, b, c, d in order to have a minimum using the

Sylvester’s criterion. We assume that a, b, c, d are real and positive, a, b, c, d > 0.

We have a minima at

(α, β, γ) = (π, π, π) if f1 = a− b− c− d > 0;

(α, β, γ) = (0, 0, π) if (c < d) ∧ (b < d− c) ∧ (f8 = a+ b+ c− d < 0);

(α, β, γ) = (0, π, 0) if (c > d) ∧ (b < c− d) ∧ (−f3 = −a− b+ c− d > 0);

(α, β, γ) = (π, 0, 0) if (b > c+ d) ∧ (−f6 = −a+ b− c− d > 0).

(A.13)

A.1 Domains of the solutions

In this part we describe the domains of the solutions given in eq. (A.8). We will give the

numerical intervals of values of mmin in which the minimization solutions are well defined

for ∆m2
41(43) = 0.93 eV2 and 1.78 eV2 and using the best fit values reported in table 1. In

tables 4 and 5 we present the results of this numerical analysis in the cases of NO and IO

spectra, respectively.

B Extrema of |〈m 〉| in the 3+2 scheme

As in the case of the 3+1 scheme, it proves somewhat easier to study the extrema of |〈m 〉| 2

than of |〈m 〉| . The expression for |〈m 〉| 2 for both NO and IO spectra has the form:

|〈m 〉| 2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2. (B.1)

Equating to zero the first derivatives of |〈m 〉| 2 with respect to the four phases we get the

following system of four equations:

a sin(α) + c sin(α− β) + d sin(α− γ) + e sin(α− η) = 0,

a sin(β)− b sin(α− β) + d sin(β − γ) + e sin(β − η) = 0,

−a sin(γ) + b sin(α− γ) + c sin(β − γ)− e sin(γ − η) = 0,

−a sin(η) + b sin(α− η) + c sin(β − η) + d sin(γ − η) = 0.

(B.2)
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Solution Domain of existence in terms of mmin

(u±, v±, t±)
2.363× 10−2 eV < m1 < 6.473× 10−2 eV

(3.337× 10−2 eV < m1 < 9.061× 10−2 eV)

(u±2 , v
±
2 , t

±
2 )

None

(None)

(u±3 , v
±
3 , t

±
3 )

5.485× 10−2 eV < m1 < 6.473× 10−2 eV

(7.811× 10−2 eV < m1 < 9.061× 10−2 eV)

(v±4 , t
±
4 ) for A > 0

2.090× 10−2 eV < m1 < 2.363× 10−2 eV ∨
∨ 5.485× 10−2 eV < m1 < 6.473× 10−2 eV(

3.043× 10−2 eV < m1 < 3.337× 10−2 eV ∨
∨ 7.811× 10−2 eV < m1 < 9.061× 10−2 eV

)
(v±4 , t

±
4 ) for A < 0

2.363× 10−2 eV < m1 < 5.485× 10−2 eV

(3.337× 10−2 eV < m1 < 7.811× 10−2 eV)

Table 4. Numerical results for the domains of existence of the solutions given in eq. (A.8) in the

3+1 NO case for ∆m2
41 = 0.93 eV2 (∆m2

41 = 1.78 eV2). The expression of A is given in eq. (A.11).

Solution Domain of existence in terms of mmin

(u±, v±, t±)
0 eV < m3 < 3.855 · 10−2 eV

(0 eV < m3 < 7.437× 10−2 eV)

(u±2 , v
±
2 , t

±
2 )

None

(None)

(u±3 , v
±
3 , t

±
3 )

3.084× 10−2 eV < m3 < 3.855× 10−2 eV

(6.344× 10−2 eV < m3 < 7.437× 10−2 eV)

(v±4 , t
±
4 ) for A > 0

3.084× 10−2 eV < m3 < 3.855× 10−2 eV

(6.344× 10−2 eV < m3 < 7.437× 10−2 eV)

(v±4 , t
±
4 ) for A < 0

0 eV < m3 < 3.084× 10−2 eV

(0 eV < m3 < 6.344× 10−2 eV)

Table 5. The same as in table 4 but for the case of the 3+1 IO scheme.

The analytical study of the minima of |〈m 〉| 2 in this case is a non-trivial task since

four phases are involved and the non-linearity of the system of the first derivatives of

|〈m 〉| 2 with respect to the four phases makes the analysis rather complicated. Therefore
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Figure 22. The functions F3 (dotted green line), F8 (long-dashed brown line), G3 (short-long-

dashed purple line), F6 (dot-dashed black line), F1 (solid red line), d− e (short-dashed blue line),

defined in eq. (5.6), versus mmin ≡ m3 for the oscillation parameter values reported in table 3. The

vertical black line corresponds to mmin = m3 ' 1.25× 10−1 eV.

finding all possible solutions of the minimization procedure in analytical form is a com-

plicated problem. Thus, we have performed the general analysis of the minimization of

|〈m 〉| numerically. This allowed to determine the intervals of values of mmin in which the

minimal value of |〈m 〉| is exactly zero. It is possible, however, to perform analytically the

analysis of the minima of |〈m 〉| , corresponding to the 16 sets of CP conserving values

(either 0 or π) of the four phases α, β, γ and η. This can be done by using the Sylvester’s

criterion for the Hessian, evaluated for the indicated values of the phases 0, π, which de-

termines the physical domain of the minimization solutions. The minima thus found, as

we show, correspond to |〈m 〉| 6= 0.

Assuming a, b, c, d, e > 0 and a, b, c, d, e ∈ R and using the Sylvester’s criterion we find

that the minima of |〈m 〉| take place at

(α, β, γ, η) = (π, π, π, π) if F1 = a− b− c− d− e > 0,

(α, β, γ, η) = (0, 0, 0, π) if (d < e) ∧ (c < e− d) ∧ (b < −c− d+ e)∧
∧ (F8 = a+ b+ c+ d− e < 0),

(α, β, γ, η) = (0, 0, π, 0) if (d > e) ∧ (c < d− e) ∧ (b < −c+ d− e)∧
∧ (F3 = a+ b+ c− d+ e < 0),

(α, β, γ, η) = (0, π, 0, 0) if (c > d+ e) ∧ (b < c− d− e)∧
∧ (G3 = a+ b− c+ d+ e < 0),

(α, β, γ, η) = (π, 0, 0, 0) if (b > c+ d+ e) ∧ (F6 = a− b+ c+ d+ e < 0) .

(B.3)

At the other CP conserving values of the phases, (α, β, γ, η) = (0, 0, 0, 0), (π, π, 0, 0),

(π, 0, π, 0), (π, 0, 0, π), (0, π, π, 0), (0, π, 0, π), (0, 0, π, π), (π, π, π, 0), (π, π, 0, π), (π, 0, π, π)

and (0, π, π, π), |〈m 〉| cannot reach a minimum. In figure 22 we show the dependence of

the functions F1, F8, F3, G3 and F6 on mmin ≡ m3 for the best fit values of the neutrinos

oscillation parameters given in tables 1 and 3.
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