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Abstract We discuss how two birds—the little hierarchy
problem of low-scale type-I seesaw models and the search
for a viable dark matter candidate—are (proverbially) killed
by one stone: a new inert scalar state.

1 Motivations

Together with the presence of dark matter (DM), neutrino
oscillations—and the small neutrino mass entailed—are the
only physics beyond the standard model (SM) experimentally
confirmed.

The most attractive model to account for the smallness
of the neutrino masses is the seesaw mechanism [1–4].
This mechanism requires right-handed (RH) neutrinos whose
masses can be taken at the GUT scale or, in low-scale sce-
narios, at lower energies if the Yukawa couplings are taken
proportionally smaller, for instance, of the order of those of
the charged leptons.

The inclusion of these new states within the SM induces
a finite renormalization that tends to pull the Higgs boson
mass (or, equivalently, the electroweak (EW) scale) toward
the higher scale. This is not a problem if the new states are
themselves at the EW scale and the renormalization is itself of
the order of the Higgs boson mass. If instead the new states are
at a larger scale, they give rise to a hierarchy problem in which
in order to keep the Higgs boson mass to its experimental
value we have to cancel the renormalization to the higher
scale to a degree that becomes increasingly fine-tuned as the
new states are taken at higher mass scales.

Such a cancelation can be achieved by a redefinition of the
Higgs boson bare mass but it is more appealing and practical
to use the hierarchy problem in a heuristic manner to help us
in the definition of whatever model of physics we assume to
exist beyond the SM [5].
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The problem of the large contribution to the Higgs mass
mH coming from the new states is best understood in terms
of the renormalization group equation (RGE)

μ
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= −mHγ

(1)
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where the anomalous dimension is given, at one-loop order,
by
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in dimensional regularization and where we only wrote the
dominant contributions from the Higgs boson potential (λ),
the top quark (λt) and the gauge couplings (g1 and g2). If new
states are present at a higher scale, they must be introduced
as a threshold effect in order to match the low- and high-
scale effective theories. That these threshold corrections are
larger and larger as the new states are taken to be heavier
and heavier is the hierarchy problem in the framework of an
effective theory.

According to the proposed approach, the new states—
when they are taken together—must enter in such a way that
their overall effect on the Higgs boson mass renormalization
is no larger than the EW scale, thus making the bare mass
renormalization natural. In other words, using the RGE ter-
minology, the threshold corrections must be small and if the
new states are very heavy they must enter in such a way as
to cancel their respective contributions.

The fine-tuning, if present, is all among the new states
rather than between them and the SM contributions. In this
approach it is possible to keep the physics at the two different
scales separated so as to make possible an effective theory
treatment.

This point of view is suggested by the idea that this is
what would happen if the hierarchy problem had been ame-
liorated by the presence of a (possibly broken) symmetry. Of
course, in our case there is no such a symmetry but the identi-
fication of the states necessary for controlling the size of the
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renormalization might eventually lead to the identification of
one.

We discuss the case in which the masses of the RH neutri-
nos are in the range between one and a few hundreds of
TeVs. The renormalization effects are in this case domi-
nated by the one-loop order and we have what has been
called the little hierarchy problem. To avoid this problem,
new states in addition to the RH neutrinos must be included.
As a matter of fact, the addition of one new state is enough.
We study its properties and to what extent is a viable candi-
dates for DM. This way, two birds (the little hierarchy prob-
lem and DM) are killed by one stone (the new state) and
two a priori unrelated physical problems are nicely brought
together. The fine-tuning required by the cancelation is
around 10 %.

To avoid confusion, let us stress that the hierarchy prob-
lem is often discussed in terms of the quadratic divergence
arising in the mass term of the Higgs boson in a momentum
dependent regularization (or, equivalently, in a pole in d = 2
dimensions in dimensional regularization). The presence of
these divergences makes the Higgs boson mass extremely
sensitive to the UV physics and some cancelation must take
place either in a natural manner by assuming a symme-
try (usually, supersymmetry) or by fine-tuning by imposing
the Veltman condition [6] (see, also, [7–9])—namely that
the new sector couples to the SM Higgs boson just so as
to make the quadratic divergences to the SM Higgs boson
mass vanish (see [10–15] for various applications of this
idea). This is not the hierarchy problem we discuss in this
Letter.

The point of view we follow is that all quadratic diver-
gencies are a scheme-dependent artifact which obfuscates
the problem by making impossible to separate degrees of
freedom living at different energy scales. One can even
argue that in the Higgs boson mass case, they arise because
of the explicit breaking of scale invariance in momentum
dependent regularizations (in a way similar to the quadratic
divergence arising in QED when we take a momentum
dependent regularization which violates gauge symmetry),
and they should be eliminated by an appropriate countert-
erm [16–19] or by not using that particular regularization
scheme.

The point is that, even without these divergent terms, there
are large finite renormalization effects which only depends on
integrating out the heavy modes in the low-energy effective
theory—the SM in our case. We identify the little hierarchy
problem with the presence of these finite terms. These correc-
tions are similar to those arising in a supersymmetric theory
with soft mass terms where the quadratic divergencies are
canceled while, after integrating out the heavy states, there
are finite terms whose contribution shifts the values of the
Higgs boson mass [20,21]. This work is about these terms in
the case of the seesaw mechanism.

2 Low-scale seesaw and the little hierarchy problem

We consider a type I seesaw model in which three RH neu-
trinos Na R are added to the SM as SU (2)L singlets. The
lagrangian of the model is given by the kinetic and Yukawa
terms of the SM with the addition of the neutrino Yukawa
terms:

L = −yνa� N̄a R H̃†L� − 1

2
N̄ c

aL MNab NbR + H.c., (3)

where L� represents the SM left-handed SU (2) doublet
(ν�, �)L and � = e, μ, τ . In Eq. (3), the Yukawa term gives
rise to the neutrino Dirac mass matrix, MD = y vW , after
the Higgs field H = (vW + h) takes its vacuum expectation
value vW = 174 GeV. The heavy RH neutrinos Na R have a
Majorana mass term.

We compute the one-loop finite correction to the Higgs
boson mass using dimensional regularization with renormal-
ization scaleμ. The SM particle contributions are negligible.
To compute the one-loop renormalization arising from the
heavy Majorana neutrinos, we rotate the Yukawa couplings
yνal into the basis in which the heavy RH neutrino mass matrix
MN is diagonal. In this basis the matrix of neutrino Yukawa
couplings takes the following form in the type I seesaw model
of interest [22,23]:

ŷνj� = MN j (RV )Tj�
/
vW , (4)

where V is a unitary matrix which diagonalises the RH neu-
trino Majorana mass matrix, MN = V M̂V T with M̂ =
diag(M1,M2,M3), M j being the mass of the heavy neutrino
mass-eigenstate N j , and RT ∼= M−1

N MD (|MD| � |MN|).
As can be shown (see, e.g., [22]), the quantity (RV )�j repre-
sents the weak charged current and neutral current coupling
of the heavy Majorana neutrino N j to the charged lepton l
and the W ±-bosons, and to the LH flavor neutrino νl and the
Z0-boson. The matrix η = −0.5(RV )(RV )† describes, in
the seesaw model considered, the deviations from unitarity
of the Pontecorvo, Maki, Nakagawa, Sakata (PMNS) neu-
trino mixing matrix UPMNS: UPMNS = (1 + η)U , where U
is a unitary matrix which diagonalises the Majorana mass
matrix of the LH flavor neutrinos, mν , generated by the see-
saw mechanism.

In the type I seesaw scenario, the elements of the matrix
(RV ) are bounded by their relation to the elements of the
neutrino mass matrix mν [22], which all have to be smaller
than approximately 1 eV:∣∣∣∣∣
∑

k

(RV )∗�′k Mk(RV )†k�

∣∣∣∣∣ = |(mv)�′�| � 1 eV. (5)

In the traditional seesaw model the Yukawa couplings are
taken typically to be of order one and the masses MN j are
very large, close to the GUT scale. The couplings |(RV )�k | in
this case have to be very small to satisfy Eq. (5). In low-scale
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seesaw models, the heavy Majorana neutrino masses lie at
the TeV scale and the couplings |(RV )�k | are proportionally
larger. In this scenario, |(RV )�k | can even be larger if there is
partial or complete cancelation between the terms in the sum
in the r.h.s. of Eq. (5). This possibility can be realized, e.g.,
in models [24] with two heavy Majorana neutrinos, N1 and
N2, which have relatively close masses, M2 = M1(1 + z),
z � 1, thus forming a pseudo-Dirac state [25–27], and whose
couplings (RV )�1 and (RV )�2 are related: (RV )�2

√
M2 =

±i (RV )�1
√

M1, l = e, μ, τ . The indicated conditions can
take place, for instance, in theories with an approximately
conserved lepton charge (see, e.g., [28]).

In the scenario with two heavy Majorana neutrinos out-
lined above, the flavor structure of the couplings (RV )�j ,
j = 1, 2, is completely determined by the requirement of
reproducing the neutrino oscillation data and the scheme is
characterized by four parameters [24]: M1, z, the largest
eigenvalue y of the matrix of neutrino Yukawa couplings
(see further) and a CP violation phase. The neutrino oscilla-
tion data, the EW precision measurements and the existing
limits on the rates of lepton flavor violating (LFV) processes
involving the charged leptons (as the μ → e + γ , μ → 3e
decays, etc.), imply the following upper bounds on the cou-
plings |(RV )�1| ∼= |(RV )�2| (see, e.g., [29,30] and refer-
ences quoted therein):

|(RV )e1|2, |(RV )μ1|2, |(RV )τ1|2 � 10−3 (6)

where we have quoted a somewhat simplified constraint on
the three couplings. The actual upper bounds depend on the
flavor index l of the couplings, but the variation with l is not
significant and for the purposes of our investigation it can be
neglected. We will use the generic bounds given in Eq. (6) in
our analysis.

In what follows we will neglect for simplicity the splitting
between the two heavy Majorana neutrino masses z, i.e., we
will set z = 0 and will use M1 = M2 ≡ MN. The corrections
due to z 	= 0 are insignificant in the problem of interest. For
z = 0, the largest eigenvalue y of the matrix of neutrino
Yukawa couplings is given by [24]

y2v2
W = 2M2

N

[
|(RV )e1|2 + |(RV )μ1|2 + |(RV )τ1|2

]
(7)

Taking into account the one-loop contribution and assum-
ing RH neutrino degeneracy, the Higgs boson mass receives
a shift given by

δμ2
H(μ) = 4y2

(4π)2
M2

N

(
1 − log

M2
N

μ2

)
, (8)

being μ the matching scale that in this case we can identify
with MN.

The addition of the RH neutrinos would shift the Higgs
boson mass to the new scale unless we balance this new
contribution to prevent large one-loop renormalizations. The

identification of what states (their masses and couplings to
the Higgs boson) must be present for such a balancing act
to occur provides the heuristic power of the little hierarchy
problem.

While many possible new states can be added to prevent
large corrections to the Higgs boson mass, the simplest choice
consists in including just an inert scalar state [31–38], that is,
a scalar particle only interacting with the Higgs boson (and
gravity)—and therefore transforming as the singlet represen-
tation of the EW gauge group SU (2)× U (1) (and similarly
not charged under the color group)—which acquires no vac-
uum expectation value. Such a choice minimizes unwanted
effects on EW radiative corrections and other physics well
described by the SM.

If in addition we impose a Z2 symmetry under which the
inert scalar is odd and all the SM fields are even, the new
state will couple to the SM Higgs doublet only through quar-
tic interactions in the scalar potential. By construction, as
we only look for solutions with vanishing vacuum expecta-
tion value, the symmetry Z2 remains unbroken and after EW
symmetry breaking the singlet state can, as we shall discuss,
potentially be a viable cold DM candidate.

The scalar potential of the model is given by

V (H, S) = μ2
H(H

† H)+ μ2
SS2

+ λ1(H
† H)2 + λ2S4 + λ3(H

† H)SS. (9)

Linear and trilinear terms for S are absent due to the Z2

symmetry mentioned above.
Taking into account the one-loop contribution induced by

the scalar state S, the overall shift to μ2
H, taking MS < MN

and μ = MS to minimize the logarithmic contributions to
the matching, becomes

δμ2
H(MS) = 1

(4π)2

[
λ3 M2

S − 4y2 M2
N

(
1 − log

M2
N

M2
S

)]
,

(10)

where we have taken y given in Eq. (7) for the Yukawa cou-
plings.

We want the threshold correction in Eq. (10) to be of the
order of the Higgs boson mass itself. For simplicity, we can
just impose δμ2

H = 0 and obtain

λ3 = 4y2 M2
N

M2
S

(
1 − log

M2
N

M2
S

)
. (11)

Equation (11) is economical but we must bear in mind that it
represents just the special case in which the one-loop renor-
malization exactly vanishes. More solutions can easily be
found for δμ2

H 
 m2
H but do not change in a significant

manner the numerical results.
Because of the extra factor 1/(4π)2, two-loop corrections

become important only if the masses are above 10 TeV. To be
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safe, we take the matching scaleμ = MS smaller than 7 TeV.
For these values, the fine-tuning of requiring δμ2

H 
 m2
H is

about 10 %.

3 Enter dark matter

It has been shown [33–38] that a single inert singlet that
couples with the Higgs boson with a small coupling is a
realistic cold weakly interacting DM candidate (WIMP) with
a mass below vW . In our case, the singlet may account for the
correct relic density in the opposite regime where its mass is
much larger than vW and its coupling with the Higgs boson
relatively large.

In this case, the scattering amplitude is dominated by the
point-like SS → hh vertex which gives a contribution to the
thermally averaged total cross section equal to

〈σv〉 
 1

4π

λ2
3

M2
S

√
1 − m2

H

m2
S

, (12)

where we keep only the s-wave contribution.
To estimate the viability of S as DM candidate, we must

compute its relative relic abundance [39–42],

ΩS = MSnS(t0)

ρc
(13)

where ρc = 1.05 h2 10−5 GeV/cm3 and the density nS(t0) is
given by

nS(t0) =
√

45

πg∗
s0

MplTf 〈σv〉 , (14)

where Mpl is the Planck mass, Tf is the freeze-out tempera-
ture, which for our and similar candidates is approximately
given by

mS/Tf 
 log
MS Mpl〈σv〉

240
√

g∗
∼ 26, (15)

and s0 = 2.8 × 103 cm−3 is the entropy density. The con-
stant g∗ = 106.75 + 1 counts the number of SM degrees of
freedom in thermal equilibrium plus the additional degrees
of freedom related to the singlet.

We therefore obtain

ΩSh2 
 8.41 × 10−11 MS

Tf

√
45

πg∗
GeV−2

〈σv〉 , (16)

which is sufficiently accurate for our purposes.
Current data fit within the standard cosmological model

give a relic abundance with ΩDMh2 = 0.1187 ± 0.0017
[43]. By combining the central value above with Eqs. (12)
and (16), we can write the coupling λ3 as function of MS

thus obtaining

|λ3| 
 0.15
MS

TeV
. (17)

This solution gives a DM candidate which can account for
100 % of the relic density and with a cross section of a few
pb which makes it weakly interacting, a WIMP.

The presence of the scalar singlet DM improves the EW
vacuum stability with respect to the SM [44]. This is par-
ticularly interesting in connection with the presence of the
RH neutrinos which, in general, have the opposite effect of
reducing the stability region of the Higgs boson potential
[45].

Insertion of Eq. (17) in Eq. (11) gives a relationship
between the RH neutrino mass and that of the new scalar
if the latter is to be considered a viable candidate for DM:

0.15M3
S = 8α

M4
N

v2
W

(
1 − log

M2
N

M2
S

)
(18)

where α = |(RV )e1|2 + |(RV )μ1|2 + |(RV )τ1|2 represents
the sum of the squares of the couplings of the RH and LH
neutrinos. In Eq. (18), all masses must be taken in TeVs.

Possible solutions are shown in Fig. 1. We can see that
we can have solutions with MS 
 MN as long as we take
the couplings between LH and RH neutrinos, and therefore
α, to be as large as possible within the experimental con-
straints in Eq. (6). This case corresponds to taking the largest
Yukawa coupling just at its experimental bound. This is the
most interesting range because the RH neutrino masses are
still in a range accessible to the experiments (e.g., μ →
e + γ , μ → 3e decays, μ− − e− conversion in nuclei, neu-
trinoless double β-decay).

On the other hand, if these couplings are taken at their
natural values (and no cancelation is assumed in their sum)
we can have only solutions where MS is much smaller than
MN because now the Yukawa couplings are much smaller
than 1. In this case, λ3 becomes negative and one has to check
that λ3 ≥ −2

√
λ1λ2 for the stability of the potential. This

scenario seems less interesting than the previous one because
the RH neutrino masses are several hundreds of TeVs and
therefore outside the range of any foreseeable experiment.

It is interesting to notice that there exists another regime
in which the inert singlet is a viable DM candidate. When
λ3 is much smaller than 1, thermal equilibrium for the scalar
states is never attained and their abundance is so low that they
never annihilate among themselves. The usual result does not
apply. In this case, the DM candidate is what has been called
a feebly interacting massive particle (FIMP). If we do not
use Eq. (17) and take λ3 
 10−11 [46,47], we can have a
DM candidate in which MS 
 MN (see Fig. 2). For these
solutions, α 
 10−12 and the Yukawa couplings become of
the order of those of the charged leptons.

Let us briefly comment on the possibility of detecting the
inert scalar S in the case in which is a WIMP.
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Fig. 1 Contour plot for the WIMP solution: values of MS and MN
that are solutions of Eq. (18) for two limiting sets of values of the
parameter α. On top (in descending order) α = {1, 2, 4}× 10−4, below
α = {1, 2, 4} × 10−13. Solutions with mS < mN are below the dashed
line in the figure on top

The multi TeV range of its mass makes its detection at the
LHC very difficult if not impossible.

Similarly, we do not expect this DM candidate to be con-
strained by current experiments in space (PAMELA, FERMI,
AMS2 etc.). Its mass is larger than 1 TeV with a weakly inter-
acting cross section that is too small to produce an enhance-
ment in the 100 GeV range in annihilation processes with
positrons or γ -rays in the final states [48,49]. Moreover,
because it only interacts with the Higgs boson, it produces
positron and photons mainly through hadronic states (π+ and
π0, respectively) with a corresponding broad energy spec-

Fig. 2 Contour plot for the FIMP solution: values of MS and MN that
are solutions of Eq. (11) in the case of λ3 
 10−11 and α 
 10−12

trum which would be difficult to disentangle from that of
other sources.

Nuclear scattering experiments are a more promising
place where to look for a possible experimental signature.
The quartic term proportional to λ3 in Eq. (9) gives rise,
after EW symmetry breaking, to the three-field interac-
tion SSh, which yields the effective singlet-nucleon vertex
fNλ3mN/m2

H SS ψ̄NψN, where mN is the nucleon mass and
the factor fN contains many uncertainties due to the compu-
tation of the nuclear matrix elements, and it can vary from
0.3 to 0.6 [50,51]. The (non-relativistic) cross section for the
process is given by [52,53]

σN = f 2
Nm2

N
λ2

3

4π

(
mr

mSm2
H

)2

, (19)

where mr is the reduced mass for the system which is, to a
vary good approximation in our case, equal to the nucleon
mass mN. Substituting the values we have found for our
model and for mS of a few TeV, we obtain, depending on
the choice of parameters and within the given uncertainties,
a cross section σN of order 10−45cm2, a value within reach
of the next generation of experiments [54,55].
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