PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: May 11, 2012
REVISED: June 25, 2012
ACCEPTED: July 21, 2012
PUBLISHED: August 2, 2012

General composite Higgs models

David Marzocca,” Marco Serone®’ and Jing Shu®

@SISSA and INFN, Via Bonomea 265, I-34136 Trieste, Italy
YICTP, Strada Costiera 11, 1-34151 Trieste, Italy

E-mail: dmarzocc@sissa.it, serone@sissa.it, jshu@sissa.it

ABSTRACT: We construct a general class of pseudo-Goldstone composite Higgs models,
within the minimal SO(5)/SO(4) coset structure, that are not necessarily of moose-type.
We characterize the main properties these models should have in order to give rise to
a Higgs mass around 125 GeV. We assume the existence of relatively light and weakly
coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the
Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-
loop dominated by the SM fields and the above resonances, with a contribution that is
made calculable by imposing suitable generalizations of the first and second Weinberg sum
rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances.
Their presence can also be important for the models to successfully pass the electroweak
precision tests. Interestingly enough, the latter can also be passed by models with a heavy
Higgs around 320 GeV. The composite Higgs models of the moose-type considered in the
literature can be seen as particular limits of our class of models.
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1 Introduction

A possible solution to the gauge hierarchy problem is to assume that the Higgs field is
a bound state of some unspecified strongly coupled constituents. The mass scale where
new resonances should arise to fully unitarize the Standard Model (SM) is parametri-
cally higher than the one expected in Technicolor models, leading to alleviated electroweak
bounds. These bounds are further mitigated if the composite Higgs is naturally light, as
it happens in models where the Higgs is a pseudo Nambu-Goldstone boson (pNGB) of an
approximate spontaneously broken global symmetry of the strong sector [1, 2]. Moreover,
the interactions of a pNGB Higgs with the SM gauge bosons are determined by chiral
lagrangian techniques [3, 4] in terms of a few parameters [5].! The price to be paid is a
fine-tuning needed to keep the Higgs compositeness scale f separated from the Electroweak
Symmetry Breaking (EWSB) scale v.? This price is however not very high, considering
that a value of v/ f < 1/2 can be enough to pass the ElectroWeak Precision Tests (EWPT).
Calculability, on the other hand, is generically problematic. In particular, the Higgs po-
tential, induced by the explicit breaking of the global symmetry in the composite sector,
remains uncalculable.

Most of the progress in model building in composite Higgs models has been obtained
in the framework of extra-dimensional Gauge-Higgs Unification theories [6-18] (most no-
tably [19]), where a composite Higgs is mapped to a Wilson line phase in the extra dimen-
sion and space-time locality automatically leads to a finite Higgs potential (to all orders in
perturbation theory). Alternatively, as recently worked out in [20, 21], one might consider
simplified deconstructed versions of 5D models where calculability is ensured by a collective
symmetry breaking mechanism [22, 23]. Both the 4D models and the 5D models can be
schematically interpreted as consisting of two sectors: an “elementary” sector, including
the SM gauge and fermion fields, and a “composite” strongly coupled sector, including
the Higgs field and heavy resonances. The explicit breaking of the global symmetry is in-
duced by gauging a part of it via the SM gauge bosons and by quadratic terms which mix
the SM fermions with fermion resonances of the strong sector. In this particular set-up,
SM vectors and fermions become partially composite and the resulting set-up goes under
the name of “partial compositeness”.?> The lighter are the SM fermions, the weaker are
the mixing. This simple, yet remarkable, observation allows to significantly alleviate most
flavour bounds.

The recent intense Higgs searches at the LHC have ruled out a SM-like Higgs ev-
erywhere below 600 GeV, except a small window around 125 GeV, where an excess has
been reported [28, 29] and confirmed at Fermilab [30]. Based on the ATLAS and CMS
experimental results, similar exclusion limits have recently been found for a composite
Higgs [31-34]. A Higgs mass of about 320 GeV is allowed [31], as well as a wide open

'From now on a pNGB Higgs will always be assumed.

2This is not the case for little Higgs models where a hierarchy between v and f can naturally be realized,
but the explicit working implementations of this idea are a bit cumbersome. We will not consider little
Higgs models in this paper.

3The idea of partially composite SM fermions dates back to [24], but only extra dimensions have allowed
us to appreciate its full power [25-27].



region for a fermiophobic composite Higgs in the whole region 110-500 GeV. Given the
reported excess, we will assume here the presence of a Higgs particle at 125 GeV, but we
will also comment on models with a heavy 320 GeV Higgs, showing that they can also pass
the EWPT.

Aim of this paper is to construct four-dimensional pNGB composite Higgs models, not
directly related by deconstruction to five-dimensional models, where the Higgs mass can at
least be assumed to be calculable, and characterize the main properties these models should
have in order to give rise to a Higgs mass at around 125 GeV. More specifically, we focus on
the minimal SO(5)/SO(4) coset structure and consider models with an arbitrary number
of spin 1 (“vector” and “axial”) and spin 1/2 resonances. These resonances are assumed
to be the only ones below the cut-off of the model at A = 4nf. Partial compositeness is
assumed. The divergencies of the Higgs potential are cancelled by imposing that certain
form factors, both in the gauge and in the fermion sectors, vanish sufficiently fast for large
euclidean values of the momentum. These conditions are straightforward generalizations of
the first and second Weinberg sum rules [35] and guarantee that the calculable part of the
one-loop Higgs potential is finite. Being the Higgs potential a UV-sensitive quantity, and
in absence of a symmetry mechanism protecting it, we will simply assume that the one-
loop form factors above represent the main contributions to the potential, with higher-loop
and higher-order operators giving only a sub-leading correction. We will denote the above
assumption as the Minimal Higgs Potential (MHP) hypothesis. This is by far the strongest
assumption underlying our construction. A similar approach is known to describe quite
well the pion mass difference in QCD (see [36] for a very nice review), in which case the
knowledge of the UV theory allows to fix the asymptotic behavior of the relevant form factor
for large euclidean momenta. There might also be other mechanisms, instead of collective
symmetry breaking, protecting the Higgs potential, that effectively lead to a realization
of the MHP hypothesis. Independently of these considerations, the MHP hypothesis can
be seen as an effective parametrization valid for a large class of composite Higgs models
that predict a calculable Higgs potential. As an example, we will explicitly show how the
models [20, 21] are particular points in the parameter space of our class of theories.*

The minimal models that one can construct within our scenario are probably the
simplest 4D composite Higgs models. Demanding a finite one-loop Higgs potential requires
the presence of one vector and one axial spin 1 resonance and one spin 1/2 fermion resonance
(for each SM fermion) mixing with the SM fermions. A non-trivial vacuum can only be
obtained by tuning the gauge contribution to the potential versus the fermion one. As
a result, EWSB relates the Higgs and the vector resonance masses in a linear way. The
Higgs mass is also related to the fermion resonance masses. In particular, we show that
a light Higgs implies light fermion resonances. This result, already found in several 5D
models, is proved here on general grounds and parametrically for the simple case of one
fermion resonance, and it is argued to be valid also in more complicated set-ups with more

4In principle, one could even impose the analogue of the first Weinberg sum rule, relaxing the second
one, in which case the one-loop Higgs potential would still keep a logarithmic sensitivity to the cut-off.
This allows yet more freedom, but calculability in the Higgs sector is now compromised (even within our
assumption). We will nevertheless also comment on this possibility.



resonances, as confirmed by the study of some selected classes of models. We have just
found one counter-example to the light Higgs — light fermion resonances implication, based
on a chiral composite sector. In this model the right-handed (RH) top quark directly arises
as a chiral massless bound state of the composite sector and a light Higgs (actually too
light) does not imply light fermion resonances.

With only one fermion and one vector/axial resonance, demanding a 125 GeV Higgs
generally results to too light vector resonances and too large values of the S parameter.
The latter can be mildly tuned to acceptable values by considering multiple vector/axial
resonances. Adding more than one fermion resonance extends the model building and al-
lows for heavier vector resonances, alleviating the bounds coming from S. Of all the models
considered, we also systematically analyze the impact of the EWPT by computing, up to
one-loop level, the calculable new physics fermion contributions to the S and T parame-
ters, and to dgp, the deviation to the SM by, Zby, coupling. Given the almost unavoidable
tree-level positive correction to S, the viable models typically require a sizable (positive)
fermion contribution to the 1" parameter. Light fermion resonances are then very welcome
from EWPT considerations as well. The direct search of b'-like particles from CMS [37],
which also applies to certain exotic fermions with electric charge Q = 5/3 appearing in our
models, is also included and has a significant impact in some cases.

The structure of the paper is as follows. In section 2 we describe in detail the structure
of our models. In section 3 we define the MHP assumption, compute the one-loop Higgs
potential and impose the generalized Weinberg sum rules to make it finite. In section 4
we give a closer look at the Higgs potential and show how it plays an important role in
predicting the range of masses for the vector and fermion resonances. In section 5 three
selected classes of models are studied in some detail and more quantitative results are
reported, including the bounds coming from EWPT and direct searches. In section 6 we
make a detailed comparison of our models with previous works [20, 21]. In section 7 we
conclude. Several details of our computations, as well as the results of an analysis of other
classes of models, are reported in 5 appendices. In appendix A the effect on the Higgs
potential of certain mixing terms among vector resonances is discussed. In appendix B
we report some details about S, T and dgp. In appendix C we compute the tree-level
deviations of the top and bottom gauge couplings from their SM values. We show in detail
in appendix D how the fermion sector of the models [20, 21] is reproduced in our set-up.
Finally, in appendix E we briefly report the basic results of a set of minimal models based
on our construction.

2 The basic set-up

We assume the existence of an unspecified strongly interacting sector with global symmetry
group SO(5) x U(1)x, spontaneously broken to SO(4) x U(1)x.? The Higgs field arises as
a pNGB associated to the broken symmetries. The global symmetry is explicitly broken
by gauging a subgroup SU(2); x U(1)y C SO(4) x U(1)x and by mass mixing terms in

5The strongly interacting sector should also have an SU(3). global symmetry associated to color, but
this is irrelevant for our considerations and will not be considered in what follows.



the fermion sector. In addition to the SM degrees of freedom, the models contain spin 1
and 1/2 resonances. We completely neglect in the following all SM fermion fields, except
the top quark (and to some extent the bottom quark, see below), since they do not play
an important role in EWSB.

2.1 The oc-Model
The four pNGBs h® can be described by means of the o-model matrix

U = exp (i\/ithd) (2.1)

f
as the fluctuations along the SO(5)/SO(4) broken directions. We normalize the SO(5)
generators T such that in the fundamental representation Tr TATE = §48 where A =
a,a, and a, a denote the unbroken and broken directions (a = 1,...,6, a = 1,...,4)

respectively. Sometimes it is useful to consider SU(2); x SU(2)g rather than SO(4), in
which case the index a = (aL,aR), with aL = a,aR = a+ 3 and a = 1,2,3. Under
a transformation g € SO(5), U transforms non-linearly as U — gUh' (g, h%(z)), where
h € SO(4). Under the unbroken SO(4) subgroup, the NGBs transform linearly as a 4 of
SO(4). In the unitary gauge, where the NGBs can be taken in the form A% = (0,0,0, h),
the matrix U takes the simple form

100 O 0

010 O 0
U=1001 0 0 . (2.2)

h . h

OOOCOS?—SID?

h h

000 sin? cos ¢

At the leading order in the chiral expansion, the Lagrangian describing the dynamics of
the pNGBs is given by

Lo = JfTr (JMCZ#) (2.3)

where iUT0,U = ciij& + EﬁT“.6 Gauging the SU(2)z, x U(1)y SM group simply amounts
to promoting the ordinary derivatives to covariant ones, 0, — D, = 0, — i(gOI/V;}T ul +
90BuT3r) and adding the gauge field kinetic terms (as we will see, go and g(, are only ap-
proximate SM gauge couplings, that’s why the subscript 0). The leading order Lagrangian
for the SM gauge fields and the pNGB’s reads

1 aLyyraLuv 1 v f2

Loy = =g Wi W = 1 Bu B + T Tr (dud") (2.4)

where iUTDHU = dzT a4 E}T® are the gauged versions of CZZ and E‘Z Their first terms in
a chiral expansion for a generic SO(4) gauging are

di = —Y2(Duh)* + ...

; - (2.5)
Eﬁ:goAZ+fﬁ(hDﬂ h)*+...

6Sometimes it is also convenient to define the linear field ¥ = U(h%)Zo, transforming as ¥ — g¥, where
¥4 = (0,0,0,0, 1), and express the o-model in terms of this field.



The hypercharge is Y = T3z + X and the SM gauging corresponds to
/
L _ 3R _ Y0
AL =Wy, A= g—OBN. (2.6)
The explicit breaking of SO(5) due to the gauging and the Yukawas generates a potential
for the Higgs through loop corrections and a non-vanishing vacuum expectation value for
h. This spontaneously breaks the EW symmetry and gives mass to the SM fermions and
gauge fields. The mass of the SM W bosons equals
h
mW:ngSin?Eg;, (2.7)
where g is the physical gauge coupling, see eq. (3.11). For simplicity of notation, we use in
the following the short-hand notation

W

£=s2, sp =sin —-. (2.8)

f

2.2 Spin-1 resonances

We assume that below the cut-off of the theory at A = 4nf, the theory contains spin-1
resonances parametrized by a mass m, ~ g, f and a coupling 1 < g, < 4m. The coupling g,
controls both the interactions among the resonances and the resonance-pion interactions.

There are several ways to add vector resonances in a chiral Lagrangian. They have been
shown to be all equivalent, once field redefinitions and the addition of local counterterms is
taken into account [39]. Given our assumptions, the most useful set-up is a generalization
of the so-called “hidden local symmetry” approach, where the resonances pﬁ and ,off, in
representations (3,1) @ (1,3) of SU(2); x SU(2)r respectively, transform non-linearly,
while the resonances a,, forming (2,2) representations of SU(2);, x SU(2)g, transform
homogeneously. With an abuse of language, for simplicity we will denote in the following
the pﬁ’R’s and the a, as “vector” and “axial” resonances, respectively, although not all
pﬁ’R and not all a, actually transform under parity as vector and axial gauge fields. Under
a transformation g € SO(5), we have

ph =T pl = bt + o (b9, 1),

pl = piRTOR . pf = hpfht 4 -1 (ho,h!)E, (2.9)
R

a, = aZT& , o Qy — haMhT,

where h = h(g, h%). At leading order in derivatives, the most general Lagrangian allowed
by eq. (2.9) for N,, multiplets in the (3,1), N,, in the (1,3) and N, axial vectors in the

(2,2) is "
L, =L + L% + L°, (2.10)
where
Nop 1 4 4 12 , 2 2 , P \2
£ = 3 (A i) e - 5 S )",
LR = £_1L _with L — R, -
N, 1 o 2 ) 2
Lo — ( — ZTr (ajwa“w) + 2&’2 Tr (gaiaz — Aidu) ) (2.11)
- i

<.
Il



In eq. (2.11), Eﬁ’R are the SU(2)r, g components of E,. The field strengths and covariant
derivatives are defined as

piL,p,l/ = aupi,u - 8Vp2,,u - igpi [pl‘L“u,, pi,u]a Quuv = v,uall - vl/a/u V=0-ikL. (212)
Note that for the axial vectors there is no need to add mass mixing terms, since one can
always diagonalize the quadratic terms and bring the Lagrangian in the form above. It is
useful to define the mass parameters

2 g2
2 2 2 2 2 2 2 a; Ja;
o = o5 Mo, = T 9p e = TAz

K3

(2.13)
keeping of course in mind that the actual masses for the p’s in presence of mixing have to be
obtained via a diagonalization of the quadratic terms. The mass terms in eq. (2.11) induce
mixing terms between the vector resonances piL7 u (p%} u) and the SM gauge fields W (B),
as expected by the partial compositeness scenario [40], generalized to more resonances.
For N,, = N,, = 1, the actual mass eigenstates before EWSB are found by simple
SO(2) rotations: Wy, — Wy cosby + par sinby, B — B cos 0;, + psrsinfy (and similar
transformations for p,r, and psgr), where tanfy, = go/g,,, tanfy = g(/gp,. Alternatively,
for sufficiently heavy resonances, one can keep the original W and B fields and integrate
out the resonances. The two descriptions are obviously equivalent, but depending on the
problem at hand, one can be more convenient than the other.

We assume that the coefficients of higher dimensional operators are dictated by Naive
Dimensional Analysis (NDA), where g, is treated as a “weak” coupling. This should in
principle be contrasted to the recent partial UV completion (PUVC) hypothesis, introduced
in [41], according to which the couplings of higher dimensional operators should not exceed
the o model coupling, g. = A/f, at the cutoff scale A. In particular, the NDA hypothesis
puts more severe bounds on the values of the coefficients of the higher dimensional opera-
tors. For instance, let us consider as an illustration the O(p*) operators Q1 and Q2 (in the
notation of [41]), Q1 = Tr (p"i[d,, d,]), Q2 = Tr (0" f;f,). The NDA and PUVC estimates
of their couplings a; and «ay are

(NDA) . Yp (pove) o 1

“ = 16r2 M ~An’ (2.14)
(NDA) . 99p APUVO) 4
2 ~ 1672’ 2 -

We see that the two estimates are consistent with each other, but the PUVC hypothesis
allows for larger coeflicients.

Demanding a partial unitarization of .A(h&hi’ — hahd) by the vector resonances allows
to select a definite range in the values of f, and f,. For example, for one vector resonance
pp in the adjoint of SO(4), assuming left-right (LR) Zy symmetry, from the Lagrangian in
eq. (2.11) and eq. (2.3) one can obtain its contribution to the hh scattering amplitude [41].
Neglecting the finite width of the resonance and for s,¢,u > v2, one has

A(RORY — hehd) = A(s, t,u)65% + A(t, s,u)0%6% + A(u,t, 5)5%050,

a2 m? — —t (2.15)
A(S,t,u)zs<1—3a2>—pp{s Sy ;

12 2°° 2 f2lt-m2 u—m




where

a, = Jo (2.16)

f
and s,t,u are the usual Mandelstam variables. From this formula one can check that p,
unitarizes the scattering for a, = 1/2/3. Assuming PUVC one obtains the bounds a, ~ 1
and f,/f = aq < 1, which we will typically assume in the following.

2.3 Spin-1/2 resonances

According to the formalism introduced in [3, 4], the most general Lagrangian invariant
under a non-linearly realized group G, spontaneously broken to a linearly realized subgroup
H, should be written using the components d,, and the covariant derivative V,, = 0, — i,
introduced before, that act on matter fields in representations of H. Therefore, we expect
the Lagrangian of the spin 1/2 resonances to be just SO(4) x U(1)x-invariant.

A source of model-dependence arises when we have to couple such composite fermions
to the elementary SM ones. We advocate here the partial compositeness scenario, according
to which SM fermions mix with the spin 1/2 resonances [24]. Such mixing is realized via
a linear coupling A\q;O; + h.c., where O; are composite operators made of the composite
fermions ¥; and the pNGB’s and it explicitly breaks the global symmetries of the composite
sectors.

In order to simplify the possible choices of operators O;, we focus on those that trans-
form linearly under the whole group SO(5). Since the fermion resonances W; sit in repre-
sentations r of H only, this implies that O; ~ UW;, so that O; — gO;. Any representation
rg can be “dressed” with the matrices U to get representations of G. We will not per-
form a systematic study of all possible rg’s here, but focus on two representations only,
the singlet and the fundamental 4 ~ (2,2). Let us consider Ng and Ng singlets and bi-
doublets spin 1/2 resonances S; and Q; (i =1,...,Ng, j =1,...,Ng), with U(1) x charge
gx = +2/3. From these fields, we can construct fermions transforming in the fundamental
of G as follows:

4
ZUAaQa,ja UasSi, A=1,...,5, (2.17)

a=1

where we have explicitly reported the SO(5) group indices. Each of the above two opera-
tors (2.17) can couple to the SM fermion fields. The latter are conveniently written in terms
of spurion five-component fermions &7, and &g, formally transforming in the fundamental
of SO(5) and with U(1)x charge gx = 2/3. Keeping only the SM doublet g1, = (¢1,br)"
and tg, we can write the following two chiral spurions:

br, 0
1 —iby, 0
_ | 4y |, — 1o 2.18
&L N B &R (2.18)
ity 0
0 tr



The leading order Lagrangian for the SM and composite fermions is easily constructed:

Ng Ng
Lyo=quilar +triltr + Y Si(i¥ —mis)Si + > Q;(i¥ — mig)Q;+
i=1 j=1
Ngs o o Ng 6{ B o
Z (\/LS»&DLPLUSZ‘ + stfLPRUSl) + Z (%fRPLUQi + E;QfLPRUQZ) + h.c.,
o V2 o V2
(2.19)

where a /2 factor in the definition of eig 1Q has been introduced for later convenience and
V,=0,—1iE, —iqgxg9,By. (2.20)

There are in general 3Ng + 3Ng complex phases appearing in eq. (2.19), 2Ng + 2Ng + 1
of which can be reabsorbed by appropriate phase redefinitions of the fermion fields, for a
total of Ng + Ng — 1 physical phases. Therefore, without any loss of generality, we can
take the vector masses m;s and mjg to be real and positive. Along the lines of [20], it will
be useful to rewrite the last row in (2.19) as

Ng N
>~ (EREisPLUS: + @ EsPrUS: ) + Y (irElPLUQ: + QL EjgPRUQ:) + hic. (2:21)
i=1 j=1

where the E’s are spurion mixing terms, transforming as follows under the enlarged group
SU(2)% xU(1)% xU(1)% xSO(5) x U(1) x, eventually broken to Ggps by the spurion VEV’s:

Els, Ely ~(1,0,2/3,5,-2/3), Elg, El,~(2,-1/2,2/3,5,-2/3). (2.22)

Couplings between spin 1/2 and spin 1 resonances and additional couplings to the o-model
fields d, and E, are easily constructed by recalling that g,p, — E,, a, and d,, under
SO(5), homogeneously transform according to local SO(4) transformations. The most
general leading order couplings are the following (assuming LR symmetry):

v . o
Lim= Y <’<¢Z~j’;? Q" (9, P) — Bu) PyQr + kEE Q" (9,005 — 9,01 Py Q;
n=bft (2.23)

+ kTS g ak Py Qs + > KISy d PyQy + h.c.),
i,
where P, are chiral projectors.

With the above choice of fermion quantum numbers, by, mixes with the bi-doublet
component of the fermion resonance with T3g = T3, and potentially large contributions to
dgp vanish [42].

The total fermion Lagrangian is obtained by summing egs. (2.19) with (2.23):

ﬁf = L‘f’o + Ef,int . (2.24)

The fermion Lagrangian (2.24) is easily generalized to include the couplings to other SM
fermions. For instance, the bottom quark sector can be obtained by adding to eq. (2.24)



the bp field and additional fermion singlet and bi-doublet resonances SZ-(d) and Q§d), with
gx = —1/3. The latter mix to bg and by, by means of operators of the form EL/RUSZ.(CQ/L

and by, /RU Qg.’dj)% L These mixing affect the top sector, but they are safely negligible, given
the smallness of the bottom mass. They also induce a non vanishing tree-level dg;, which
is however sub-dominant with respect to one-loop corrections coming from fermion mixing
in the charge 2/3 (top) sector. For completeness, we report in appendix C the detailed
form of dgp at tree-level, as well as other coupling deviations, when N éd) and Nézd) singlets
and bi-doublets fermion resonances with gx = —1/3 are added. It is then consistent to
consider the Lagrangian (2.24), neglecting altogether the fermion resonances Sl-(d) and Q§d).

It is useful to discuss in some more detail the simple case Ng = Ng = 1. For simplicity
let us take real mixing terms €, 4/ g. We see from eq. (2.19) that before EWSB the LH
top mixes with @ through the parameter ¢, and the RH top mixes with S through €g,
The degree of compositeness of the top quark can be measured by the angles 6, r [40]
defined as:

(%] l€us|
tanfy, = —=, tanfpr = . 2.25
mQ V2mg ( )
The more tanfyp is large, the more t; /g is composite. For s, < 1, the top mass is
given by
sinfr,sin g | €49 €1Q
Myop ¥ ——————— | —— Mg — ——mg|sy, . 2.26
rop ﬂ €qQ @ €S ( )
The physical masses of the fermion resonances, before EWSB, are the following:
mg mq
= y = - 5 = 3 2.27
mo cosOpr /6 cos 0, /6 = MQ ( )

where the subscripts 0, 1/6 and 7/6 denote the hypercharges of the singlet and of the two
SU(2)1, doublets forming the bi-doublet Q.

The case in which g is fully composite can be studied by assuming that ¢y is a chiral
massless fermion bound state coming from the composite sector and directly identifying it
as the RH component of the singlet fermion resonance Sg in eq. (2.19). In this way, tr
and Sr, and hence the parameters mg, €5 and €, should be removed from eq. (2.19).
We will come back to this particularly simple model in section 5.

The total Lagrangian of the model is finally given by

Lrot = Loy +Lg+ Ly (2.28)

3 The minimal Higgs potential hypothesis and Weinberg sum rules

The Higgs potential in our model is, strictly speaking, not calculable. The pNGB nature of
the Higgs implies that its potential V' (h) depends on sp only. For s; < 1, we can expand
V(h) up to quartic order and obtain

V(h) ~ —ysi + Bsh. (3.1)

The coefficients v and 8 are induced by the explicit breaking of the shift symmetries, the
gauge couplings g and ¢’ in the gauge sector, the mixing terms € in the fermion sector

~10 -



and possibly other terms coming from higher dimensional operators, not appearing in the
Lagrangian (2.28). There are generically two different contributions to v and § that, with
an abuse of language, we denote by IR and UV contributions. The IR contribution is the
one coming from the leading operators defining our model (2.28), the UV contribution is
the one coming from higher dimensional operators and physics at the cut-off scale. The
explicit form of v and S can be deduced, in the limit of small breaking terms, by a simple
spurion analysis [20]. As expected from NDA, the IR contribution to v and 8 shows
generically quadratic and logarithmic divergencies, respectively. Instead of introducing as
usual counterterms for such divergencies, leading to a loss of predictability in the Higgs
sector, we can demand that the one-loop form factors defining the IR part of v and 3, that
should be integrated over all energies scales, are peaked around the resonance masses and
go to zero sufficiently fast at infinity. This is done by fulfilling some generalized Weinberg
sum rules. In this way, the one-loop IR contribution to V' (h) can be made finite.

On the other hand, local operators, induced from states above the cut-off scale and
possibly mixing with the SM fields, contribute to the UV part of v and 8. For small fermion

mixing terms, the leading operators are’

3
Cgf4 Z Zt TaL TCLLZ _ 4ng 4 2 :,Y;NDA)S}QL’

ar=1
d 5 ’ 9
g 4 t a a _ 4 04 4 __ (NDA) 4
E gl gT 'y | = d =
167T2f <a | gL > 2567297 osn =0y Sho (3.2)
1=

1 NDA
e P (BgsD) (S Efg) = Sleassh = 4"
dy 2 1 15t = gINDA) 4
oz (BusD) (= E))” = grsleasl'sh = 47"t
where ¢4 ¢ and dy ; are estimated by NDA to be coefficients of O(1). Similar operators can
obviously be Written in terms of ¢’ and the other spurion mixing terms in eq. (2.22). By

(NDA) 4 B(NDA

comparing g with the typical values one gets from the IR contribution,

once made calculable (such as eqs. (3.16) and (3.30) below), we see that W(J;DA) > Y. f

and ﬁ p f ~ f3, r so that calculability is still lost. In order to circumvent this problem,

(NDA) and BVPA) are sub-

we assume here that the underlying UV theory is such that v
leading with respect to the IR part of v and S, so that the Higgs potential is calculable
and dominated at one-loop level by the fields in our model. The logic underlying the above
assumption (that might seem too radical and strong) is that any theory where a symmetry
mechanism is at work (not only collective breaking or higher dimensions) to actually predict

a calculable Higgs potential would automatically satisfy the above requirements and fall

"The leading fermion local operators above were not considered in [20]. This is probably due to the
fact that the free fermion composite Lagrangian has an obvious hnearly realized SO( ) symmetry when
miq@ = mis. In addition, when the mixing terms are taken to be equal, ;5 = €} and €5 = €. (as in [20]),
the whole Higgs field can be removed from the quadratic fermion Lagrangian by a field redefinition and
hence vector mass insertions are needed to get a non-trivial one-loop potential. This is however an accident
of the one-loop result and fermion operators like the ones in eq. (3.2) will be anyway generated at higher
loop level.
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into our class of models, which can then be seen as a general parametrization of composite
Higgs models. We denote the above assumption as the Minimal Higgs Potential (MHP)
hypothesis.

Having explained the philosophy of our perspective, we turn to the computation of
the IR contribution of the one-loop Higgs potential, from now on simply denoted by the
Higgs potential. The latter is conveniently computed by first integrating out the heavy
spin 1 and 1/2 resonances, with no need to go to a mass basis, and then by integrating
out the remaining light degrees of freedom. This is a useful way to proceed, because the
pseudo-Goldstone nature of the Higgs field and the SO(5) x U(1)x symmetries allow to
fix in terms of a few form factors the form of the effective Lagrangian for the light states
and encode there all the information of the heavy resonances. We will be quite brief in
the derivation of the Higgs potential in the following, since all the relevant steps have been
repeatedly used in the literature and are by now well-known.

3.1 (Gauge contribution

In momentum space, the effective Lagrangian of the SM gauge fields up to quadratic order
in the gauge fields and to any order in the Higgs field can be written in terms of 3 scalar
form factors Ilyy+y— = ws,w,, Ilpe and Iy, g, functions of P

iy
PtT (2HW+W_ WHW, + Tyww, W3W3 + Mg B, B, + QHWSBW;}BV), (3.3)
where P/"" = ntv — ptp¥/ p? is the projector on the transverse field configurations and the
IT’s are form factors that also depend on the Higgs field. The one-loop Higgs potential is
easily computed from the above expression by taking the Landau gauge 0" B, = 0" W = 0.
In this gauge the longitudinal components of the gauge fields, as well as the ghosts, decouple
and can be neglected. Integrating out the gauge fields and going to Euclidean momenta,
one gets:

3

V() =

4
/ éﬁ)i (2 1og Ty~ (~p%) +log (Tps (~p3) s (~p%) — Wy n(—r2)) )
(3.4)

To have an analytic understanding of the possible functional dependence on the Higgs
field of the effective potential, it is useful to introduce spurionic gauge fields such that the
whole SO(5) ® U(1)x group becomes gauged: A, = Af;T& + AZLT“L + AZRT“R. The most
general SO(5) ® U(1) x-invariant Lagrangian depending on the gauge fields and the NGB’s,
at the quadratic order in the gauge fields and in momentum space, is

P
£ =~ (H§ (p*) XXy + Mo (p*) Tr[A,A)] + T (p°) 20 A, Ay B+
(3.5)

+ I1(p%) (Tr[(UTA#U)L(UTAI,U)L} — Tr[(UTA,,,U)RwTAVU)R]) )
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where (...)0F

inside the adjoint of SO(4).® Switching off the spurionic fields, that is keeping only the
components AaL Wi, A3R = cx B, and X, = sxB,,, where

implies the projection on the (3,1) and (1,3) irreducible representations

gx 90 390

CX = —F/7— ) SX = —F/—,
Vo tek P V98 + 9%

we obtain the most general effective Lagrangian for the gauge bosons in SO(5)/SO(4) with

(3.6)

the explicit dependence on the Higgs field:

eff ij atrra S% 1 2 2
£ === (MWW +H14(Wu s+ WIW2) +
IIzB,B j 9 w3 3.7

+cpllnr (WEWS - ‘ZOQBHBu> >,
0

where Il = (s% I + c41ly), cp, = cos(h)/f, and g, = gocx. From this Lagrangian one
obtains

S
Wy +w- = Mwaws = 1o + Zhl_h + R,
2

lIgg =1l + C%%Hl — C%(ChHLR, (38)
Sh
IMy,p = — CXZﬂl .

The form factor Iy, g is related to the S-parameter [43]:

2

AS == Dy p(0) = = T 0), (3.9)
where AS = S — Sgs (see appendix B). It is well known that AS is the main phenomeno-
logical electroweak bound constraining Composite Higgs Models, that requires s, < 1. As
we will show below, a necessary condition to kill the quadratic divergence in the potential
is to demand limy,, oo lI,g = 0. In order to ensure this condition and to keep the model
simple, in the following we impose a LR symmetry in the strong sector, that automatically
implies HLR = 0.

The explicit form of the form factors is obtained by integrating out the heavy vector
resonances at tree-level and quadratic order (the one relevant at one-loop level). This is
not straightforward to do for an arbitrary number of vector resonances, due to the last
term in L2 eq. (2.11). Let us then set fiix = 0 in the following (see appendix A for the

8The term in the second line of (3.5) could be generated, for example, by the operator Oz =
(Tx[E, EY#] — Tr[EL E™ #]) [41], or directly in a model with vector resonances py;, p,; without invariance
under L <> R, see section 3.1.1.
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effect of this term in the two vector case). In this simple case, we get

N, 2 Np 2
. J
(") = 660" +2050° | D o ray ~ 2 G 2
=1 \P @i j=1 P P
(3.10)
P .
Mo(p?) = =" + 900" Y~ Ty (") = —p.
Y mry H

The physical SM gauge couplings are modified by the contribution of the resonances and
given by:

-1 -1

2 98 2 al 98 2 2 90
— - =gl1+> =2 2= = g2(1 § 3.11
g H6(0) gO + = gz] ) g H/ ( gO + 9 ( )

where / stands for a derivative with respect to p?. It is straightforward to get from the

above relations the form of the gauge contribution to v, and §, to the Higgs potential:”

__3/°°d2 2 (3, 3y
Y9 = 8(47’(’)2 PEDPE H HB 1,

3 2 1 &\
_ S (G () )

For large Euclidean momenta, the form factors Iy o Ho x p2 %, while II; oc pOE, indicating

(3.12)

that all higher terms in the s;, expansion are UV finite. On the other hand, v, and 3, are
respectively quadratically and logarithmically divergent in the UV, in general. Their UV
properties are fixed by the single form factor I1;. Without imposing any condition, the form
factor Iy goes to a constant at high energy and the potential diverges quadratically. How-
ever, the form-factor I1;(p?) is an order parameter of the spontaneous symmetry breaking
(being proportional to the difference of the form factors of gauge fields along the unbro-
ken and broken generators [19]), so for energies much higher than the symmetry breaking
scale f, it should go to zero, assuring that the potential will diverge only logarithmically.
Imposing this condition, we obtain the first Weinberg sum rule [35]:

Na NP
lim g ?Thi(—ph) = 7 +2) fo -2 fh=0. () (3.13)
PE =00 i=1 j=1

Demanding that IT; goes to zero faster than p?% (finite potential) for large Euclidean mo-
menta gives the second Weinberg sum rule:'"

hm X 2p2 11y (—p2) —QZfQ —22 m% = 0. (II) (3.14)
p i=1

9We have inserted the IR cut-off u, ~ mw to regulate a logarithmic divergence appearing in 8,. This
is a spurious divergence arising from the expansion (the full potential is manifestly IR-finite) and does not
play an important role in what follows. We have checked that our results do not sensitively depend on the
choice of fig.

9The sum rules (3.13) and (3.14) are also valid for the general case fmix # 0 when N, = 2.
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Notice that the first sum rule requires the presence of at least one vector resonance p,,
while the second sum rule requires at least one axial resonance a,. There is a qualitative
difference between the Weinberg sum rules (I) and (II). While the former must be unavoid-
ably imposed (at high energies the global symmetry is by assumption restored), the latter
can be relaxed, leaving a mild logarithmic UV-sensitivity of the Higgs potential.!' From
egs.(3.9) and (3.10), we get the tree-level contribution to the S-parameter:

Ny 2 Nq 2
~ 2 P’ i
AS = smsh (Y0 h -3 u ) (3.15)

j=1"p1 =1 T

where we have approximated gy ~ ¢ for simplicity.

The explicit form of 7, and f, is readily computed for N, = N, = 1. Setting for
simplicity ¢’ = 0, a, = 1 and expanding at leading order in (g/g,)? (and in uy(= mw)/m,
in B,), we get

~

g = 642 9= 102472

reeer oty

541
(5:+ %% 32m2

For N, = N, = 1, when both eqs. (3.13) and (3.14) are imposed, AS can be rewritten as

AS = 8WS%T']:; <1 — 4f;2> (3.17)
p p

and, as eq.(3.13) imposes f, > f/ V2, it is manifestly positive definite. As expected, for
sp =1, eq. (3.17) agrees with the vector dominance estimate in technicolor theories derived
in [43]. In holographic 5D models, AS is positive as well. For N, or N, > 1, on the other
hand, AS can in principle have any sign. Since as far as we know there is no general proof
about the positivity of AS (neither in Higgsless Technicolor theories nor in Composite
Higgs Models) we will also consider in the following one model (with N, =1, N, = 2) in
the “exotic” region where AS can be negative. The UV uncalculable contribution to AS
is easily estimated by using NDA:

ASWNDA)  Z g2 (3.18)

As expected, this is the value one gets from eq. (3.15) (modulo accidental cancellations or
enhancements), when the vector and axial couplings approach 4.

A possible constrain on the form factor II; comes from the results of [45]. A straight-
forward generalization of the proof given there implies that any composite Higgs model,
UV-completed by vector-like gauge theories, cannot give rise to EWSB without additional
contributions to the Higgs potential (such as those given by fermion resonances). In other

"The second sum rule was originally derived by assuming that the broken and unbroken currents behave
as free fields in the UV [35]. This assumption holds for asymptotically-free gauge theories but can break
down if, say, the UV theory is a strongly interacting CFT. In particular, it has been pointed out in [44],
where an approach similar to ours has been advocated in Higgsless models, that the second Weinberg sum
rule does not hold in Conformal Technicolor.
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words, for s, < 1, 74 in eq. (3.12) should be negative definite. This condition (always sat-
isfied in 5D models) is automatically satisfied when both (I) and (II) hold for N, = N, =1
(see eq. (3.16)).12 On the other hand, when N, or N, > 1, 7, can be positive and induce
EWSB by itself (although these regions are never found in our numerical scans).

3.1.1 Left-right asymmetric case

Let us study in this section what are the consequences of having a LR asymmetric model.
We consider the simplest example, with N,, = N,. = 1, which already shows all the
important aspects. From eq.(2.11) and eq.(3.8) we get:

Golp?® 90Ty’
2(p* —mye)  2(p* —myz)’

PR
12 £2 2 22 2
g(] pr + g(] PRp

2(p* —mp) 200 —m

o (p®) = —p* +

Ip(p*) = —p* +

M
p%)

IT; (p*) = g§ <f2— L I >

2 2 _
pP—my PP —my

(3.19)

B lol®  Gfap”

pr(p®) =
LR(p ) 2(]92 _ meL) 2(]92 —m

pi).

The form factor II;r goes to a constant for large Euclidean momenta, and it induces a
quadratic divergence in the Higgs potential. Since the functional dependence related to
this form factor is ¢y, see eq. (3.7), this divergence is present at any order in the expansion
for small SZ~ Similarly to Iy, Iz g is an order parameter for the symmetry breaking and
should hence go to zero at high energies. From the expression above we get

2 2
. 2y 9 2 2 90 2 2 2 2 —4
pélinwo HLr(=pE) = 20 ( oL PR) - 2]9% ( oMo — PRmﬂR) + 0(pE ) (3.20)

Canceling the quadratic and logarithmic divergence requires f,, = f,; and m,, = m,,,
respectively, which is equivalent in this case to impose a complete LR symmetry, for which
I,z = 0 identically. Note that by adding more copies of vector resonances, however, one
might be able to have a finite potential even without imposing a LR symmetry.

3.2 Fermion contribution

The top quark effective Lagrangian up to quadratic order in the fermions and to any order
in the Higgs field can be written, in momentum space, as

pr I, tr + ER? Il tr — (ELHtLthR + h.c.), (3.21)

resulting in the following contribution to the Higgs potential:

4
Vi) = =2 [ P tog (pb, (b0 (<o) + [Mun(—ob)) . (32)

120n the contrary, if one imposes only the sum rule (I), even for N, = N, = 1, 7, (and AS) can have
any sign.
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Integrating out the fermion resonances S; and @Q);, we get the following expression for the
form factors:

I, =Tlg +sillyg, Iy, =g+ sillis, I, = ispcnllos, (3.23)
where
%@5 ol L(gh sl % ol
Ho(p®) =1-) 55, Mo(p?) = —< S — ng) :
=P 2NT P mis =P T e
Ns i 12 Ns P12 Ng J |2
|ets 2y 1 l€is] el
Os(p?) =1-) =5 —~, Ths@’) =5 5~ 5 |
ZZ; 2(p* —mjs) 2 z; p? = mig ; P? = mjg
1/ Yo .. mio
Mos(p?) = < ehe g—- — Y e ]> . (3.24)
0s0) = g\ L eusyp—g, ~ 2 ko,

Similarly to the gauge case, for s, < 1, we can expand Vy up to quartic order:

Vi(h) ~ —fyfs% + ﬂfs%, (3.25)

with
ON. [ o o (Thg  Ths  Ijs
- d
i (47T)2/0 PEPE\ T, T T g )

2
B, = Ne /OO a2, p? % n g n Ihis) 2(piIlioIhs — IT)g)
f 2 )2 TEPE\\ pRTiplls | To | g pAllollg ‘

(3.26)

For large Euclidean momenta Ilg g o p%, IIig1s o< pEQ, Ilgs o pE2. It then follows that
the terms involving Ilgg in eq. (3.26) are all finite. The factor ps is an IR-cutoff curing
a spurious logarithmic divergence arising from the expansion of the potential. We fix it
to be around the top mass (see footnote 9). All higher terms in the s, expansion are UV
finite. We can impose the fermion analogue of the Weinberg sum rules, demanding that
the divergencies in v, and 3y above cancel. The cancellation of the logarithmic divergence
in B requires

pL—o0

I Ng Ng
: 15 ; j
lim (_2)p2EH75 = Z ‘525‘2 - Z HQ‘Q =0,
= = (I1I) (3.27)
g Ny 2 Ly 2
lim 2p%—=< = letgl” — €517 =0.
200 T ; q ]Z; 9@

When eq. (3.27) is satisfied, the quadratic divergence in ~; is automatically cancelled.
Imposing the cancellation of the logarithmic divergence in v requires the second condition

Mg II s o

. 1S 1 ] i j j

fim 2 (52 + 17 ) = Dok (lebs P = lesl”) = 3 i (Ielgl = ejol?) =0 (V).
=1 j=1

pL—o0
(3.28)
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It is useful to consider in some detail the case Ng = Ng = 1, taking all the mixing param-
eters to be real, for simplicity. Assuming mg # mg, a solution to egs. (3.27) and (3.28) is

€15 = €1Q = €qS = —€qQ = €. (3.29)

Other solutions with different sign choices can also be considered. We take €,¢g of opposite
sign with respect to the other ¢’s so that the top mass is maximized, see eq. (2.26).!* The
coefficients v, and 3y are now easily computed in analytic form, but the resulting expres-
sions are too lengthy to be reported. For illustration, we just show here their approximate

form in the limit of small mixing, 6, p < 1. At leading order we get'?
fyf:Ncil—:cQ—F<$22+2x+2)10gx2’ $:@’
327 e —1 mg (3.30)
_ Neet (14 z)loga?
br=%e -1
Notice that the €* behaviour of ¢ is an accident of the Ny = Ng = 1 case, the typical
2

scaling being oc €.

The generalized Weinberg sum rules (I-IV) must be satisfied by any composite Higgs
model where a symmetry mechanism is at work to realize the MHP hypothesis. They are
clearly also satisfied in the notable case of five-dimensional theories, where locality in the
extra dimension forbids any local Higgs potential to all orders in perturbation theory (thus
implementing in full the MHP hypothesis). However, when one has to sum over an infinite
set of fields, with increasing mass, such as in the 5D models, the sum rules written as in
(I-IV) are not very useful. It is more convenient to first sum over the infinite set of fields
and then take the limit of large euclidean momenta.'® In doing that, one finds that the
form factors such as IIy, 1115, II1g and Ilgg introduced before, all go to zero exponentially
for pp — oco. For instance, in the simplest set-up of a 5D theory on a flat interval of
length L, one gets II1(pg) « pr/sinh(2Lpg) (see e.g. [46] for an introduction and further
examples).

4 Analysis of the Higgs potential

The total Higgs potential up to O(s}) is given by
V(h) = Vy(h) + Vy(h) = =sj, + Bsp,, (4.1)

where we have denoted v = 74 + vy and 8 = 4 + ;. The potential has three extrema:
sp =0 (no EWSB), s, = 1 (maximal EWSB) and

sﬁzg:%. (4.2)

130therwise, in order to get the correct top mass, a larger degree of top compositeness is needed and the

Higgs mass turns out to be always heavier than 125 GeV.

! Contrary to the expansion in g/ 9, in the gauge contribution (3.16), that is always a sufficiently accurate
approximation, the explicit forms (3.30) are not always useful. When ¢z, and/or ¢ significantly mix with
the composite sector, different limits should be considered.

15The higher-dimensional symmetries demand that one has to sum over the whole infinite tower of states,
despite the limited regime of validity of the 5D effective theory.

~ 18 —



The one at £ = 1 should be discarded because it is outside the regime of validity of eq. (4.1)
(and leads anyway to massless SM fermions, II;,;, = 0 in eq. (3.23)). The extremum (4.2)
is a local minimum of the potential when v > 0 and, at the same time, v < 28. Demanding
a sufficiently small value of &, as suggested by the EWPT, requires to tune v < 5. The
Higgs mass at the non trivial minimum (4.2) equals

8
s

It is very useful to parametrically understand what are (if any) the generic relations among

m? =

£(1-¢). (4.3)

the Higgs mass and the masses of the vector and fermion resonances. For simplicity, we
first consider the set-up where N, = N, = Ng = Ng = 1 and set ¢’ = 0. Assuming PUVC,
we take a,, as defined in eq. (2.16), equal to one. When the Weinberg sum rules (I-II) in the
gauge sector are imposed, the axial mass and decay constant are completely determined in
terms of the vector mass m,, which is the only mass scale in the spin 1 sector. We choose
to solve the sum rules (III-IV) as in eq. (3.29), so that the fermion sector is characterized
by three mass scales: the mixing parameter € and the vector masses mg and mg.

From eq. (3.16), we see that the following parametric expressions for v, and 3, ap-
proximately hold:

g°f*m; g*r

L TR A T

g\2

~ gl (L) < gl (4.4)
9p

For £ < 1, using egs. (4.2) and (4.3) we have

ﬁ ~ 47”2@ (4.5)
2 — 2 : :

my g
Given the bounds coming from the S parameter, we parametrically require v < |4/, as
well as v < 8. This implies a fine-tuning at work, so that « is small because the fermion
and the gauge contribution compensate with each other, v ~ —v,. As we will shortly
see, |vf| ~ |Bf|, while By ~ 74(9/9p)%, implying that generally 3, < (; and can be
neglected. The fermion sector, with three different mass scales, is more involved. It is
useful to parametrize it in terms of wy, = tanfy, and wr = tan g, introduced in eq. (2.25),
and one mass scale. We can split the fermion parameter space in 3 x 3 = 9 regions,
wr, < 1 (elementary t1,), wr, ~ 1 (semi-composite t1,), and wy, > 1 (fully composite ) and
similarly for wr. We always take wy, and wg to scale in a similar fashion, so that wy ~ wgr
for (w, < 1,wg < 1) and (wr, > 1,wr > 1), and wrwr ~ 1 for (wy, € 1,wr > 1) and
(wr > 1,wp < 1).!1% In each region we choose as mass scale the physical mass of the

161t is important to keep in mind that physically there is actually no way to take the formal parametric
limit wr,r — 0 or wr,r — 00, because, at fixed top mass, some fermion resonance mass becomes infinitely
massive. The maximal value of a fermion mass in the effective theory should be less than A = 4=« f, above
which we should integrate out the heavy field. In light of that, the actual allowed range for wr g is

ﬁ 5 WL,R 5 4. (46)
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Lightest Fermion Resonance (LFR), denoted by my, as given by eq. (2.27). This is always
either mq or my/5. We then define the parameters

Nm Nm4
miy, = ki(wp,wr)mi&, vy = 162 Lk (wr,wr), Bf= 162

Lg(wr,wr).  (4.7)

We report in table 1 the parametric dependence of k¢, k, and kg on wy, and wg, as well as
my, in each region. Notice that the table is not symmetric under the exchange wy <> wg
and mg < mg, because of the presence of the bi-doublet with ¥ = 7/6, whose mass is
mgq, independently of wy, and wg. Given the mixing parameters and &, everything else is
parametrically determined, namely m,, m; and myg. In particular, we have

N.m2 92]\7 m2 k m2
2 c'top Ny 9 2 c'"top N3 2 top
m, o~ Miy,, MY ——5— 5 , m7; = , 4.8
P 4m, k3¢ top H 8m2m, kP top L k& (4.8)
m% N 272 k., m% N Ncmfop k. mlzq g*N mtop k?ﬂ§ (4.9)
m¥ g kg’ m2 " Amd, ke m2 — 8wimi, ky ’

In all regions, except (wy, < 1,wr < 1) and (wg, > 1,wr > 1), kg/k? ~ 1 and the Higgs is
parametrically determined in terms of my.p, to be quite light (below the LEP bound, taking
eq. (4.8) literally).!” In all these regions, for reasonably natural values of ¢ (say, & ~ 1/10),
the LFR (singlet S or exotic doublet @7, depending on the region) is always light, of
order 1/4/€ times the top mass, or even too light, of order 1/(wp+/€), with wy > 1. For
(wr, > 1,wr > 1) the Higgs is heavier and yet the fermion resonance @7 is light. Finally,
when (wr, < 1,wr < 1), both the Higgs and the resonance masses (vector and fermion)
increase as 1/w?. In all regions, ks = k, implying that m,/myg is independent of the
fermion sector and determined, at fixed . Finally, since kg, > k; in all regions, we can
conclude that a light Higgs implies light fermion and vector resonances. The latter are
always heavier than the former, as can be seen from eq. (4.9) that, taken literally, predict
vector masses roughly twice heavier than fermion masses. The converse is not always true.
In particular, for a strongly composite top, we can have light fermion resonances and an
heavy Higgs.®

Let us now consider the generalizations to models with multi vector and fermion res-
onances. When more spin 1 resonances are considered, a too large S parameter can be
circumvented by either some tuning between the axial and vector resonances or by an in-
crease in the vector resonance mass. For illustration, let us consider how the latter situation
can be realized with 2 vectors and 1 axial resonance (see section 5 and appendix E for a
discussion of a model based on this gauge sector). For simplicity, we take f = f,2 = f
and fmiz = 0. Imposing the sum rules (I) and (II) allows to determine m, and f, as a

function of f and of the two vector masses m, and m,2. A simple calculation gives as

p

"Needless to say, the considerations above are quite schematic and are only valid parametrically. They
are not accurate enough for a more quantitative description.

8The direct link between my and m, can be problematic for these minimal models with just one
resonance. In fact, a more detailed analysis reveals that m, is always below 2TeV for a 125 GeV Higgs
mass (see egs. (E.1)—(E.3) and figure 9 (b,d) in appendix E), leading generally to a too large S parameter.
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WR
Wy, <1 ~1 >1

<1 (m, w*, wt, w?) (mp,1,1,1) (mp,1,1,1)
~1 (mz/6,1,1,1) (m,1,1,1) (m,1,1,1)
>1 (m7/67w%7w%,w%) <m7/6>w%7‘0%7w%) (m7/6, 1w, w?)

Table 1. Values of mp, ki, ky and kg (in order) for the parametric limits of elementary, semi-
composite and fully composite tr, tg. For simplicity, we have omitted the subscripts 0,7/6 on m,
and L, R on w, when not necessary.

leading expression in an expansion in (g/g,)?

9f2g2m§ 2 2 2 2
7g_fw((ugg )log (§(1+x )) . logaj), (4.10)

where m, = m,1 and z = m,/m,1. For an appropriate range in z, the coefficient mul-

tiplying f292m§ in eq. (4.10) can be significantly smaller than the one in eq. (3.16). At
fixed vy, this implies the possibility of increasing m, and hence decreasing the value of
AS within the allowed range. One can also check that in the case of 2 axials and 1 vector
resonance, AS can be made small when one of the two axial resonances is quite light (see
eq. (E.4)).

When more fermion resonances are involved, Ng and/or Ng greater than one, the
analysis is greatly complicated by the large number of parameters involved. The main
qualitative feature, as already mentioned, comes from 7 that for small mixing terms

scales as €2

. This implies that parametrically v > B, in tension with eq. (4.2), that
would favour regions where v < 3. On the other hand, a larger v; is welcome, because
it implies a larger 7, (in order to tune v¢ + 74 to be small) and hence spin one resonance
masses heavy enough to keep AS under control, although at the expense of a higher fine-
tuning. We still expect the Higgs to be light when the LH and RH top are substantially
composite (¢; = m;) and at least one fermion resonance, barring accidental cancellations,
to be light and parametrically related to the top mass by m? ~ m%op /€. On the other
hand, when we approach the region of an elementary top, both the Higgs mass and the
fermion resonances related to the top become heavy. We then expect that the implication
light Higgs — light fermion resonances continue to apply. We will provide more accurate
estimates of the relation among Higgs and fermion resonance masses in the next section,
where we consider in more detail some specific classes of models.

Non-minimal models with more vectors and fermions allow the possibility to tune
¢ < 1 in a different way. Since with more vectors, as we have just seen, the estimate (4.4)
does not necessarily hold, there is the possibility to have v¢ > |v,4| (and yet heavy enough
vector resonances), so that the whole gauge contribution to the Higgs potential is sub-
leading with respect to the fermion one. All the tuning is at work in the fermion sector to
get vy ~ 2{By < By. This is possible, in the region of small mixing, if both the coefficients
of the leading quadratic and next-to-leading quartic terms in the mixing in vy are tuned

to be small, so that vy < 8f. In such regions a double tuning is at work, needed to get a
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Figure 1. Values of v;/(—,) versus v;/(28y), that is the value of { one would get by neglecting the
gauge contribution to the Higgs potential. The points are obtained by a numerical scan, requiring
mpy € [100,150] GeV. (a) The range of the parameters is taken as follows: m;g,m;s € [0,8f],
040,0:q,04s,0ts € [0,27], a, € [1/v2,2]. €, as defined in eq. (E.5), has been obtained by fixing
Myop While m,, by fixing {. The green line represents £ = 0.1. In most of the points vy, ~ —v; and it
is never possible to go in the region where v5 > —v,. (b) The range of the parameters is taken, in
the notation of [20], as follows: g., . € [0,8], Mg, Mg, m,A € [0,8f], yr/(v/2yr) € [0.3,0.6] and
yr has been obtained fixing my.p, cutting for £ € [0.05,0.15]. The green band represents the actual
values of £ € [0.05,0.15]. In most of the points still 7, ~ —v¢, but now there is a region where the
gauge contribution is negligible.

small hierarchy between v and f. See figure 1 for a comparison between the multi-fermion
and multi-gauge model (e.g. the 3-sites theory of [20]), where this kind of tuning can occur,
and the multi fermion (but minimal-gauge) model.

5 Three examples of selected models

The framework introduced in the previous sections opens up a huge set of possibilities for
model building. In fact, not only the number of spin 1 and spin 1/2 resonances to be
introduced below the cutoff is free, but also the Weinberg sum rules have often physically
different possible solutions. Studying in detail each of these models is well beyond the scope
of this work and, as the simplest cases are already able to produce working models which
pass the EWPT and display all the interesting aspects, we focus in the following on the
case where Ng, Ng, N,, N, < 2. A schematic presentation of the results for all the different
cases will be presented in the appendix E. The simplest realization of our framework, that
is the model with N, = N, = Ng = Ng = 1 described in section 4 and in appendix E,
does not grossly pass the EWPT for my € [100, 150] GeV, because of a too large tree-level
S parameter, induced by (relatively) too light vector resonances, m, < 2TeV, as can be
seen in figure 9 (b,d). This is a direct consequence of the first relation in eq.(4.9) and of
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the fact that ky ~ kg in this model. On the other hand, this model passes EWPT and the
direct bound (5.1) for mpy ~ 320 GeV (see appendix E).

A straightforward way to circumvent this problem is to add more freedom either in
the gauge sector or in the fermionic sector. In the rest of this section we consider three
models. The first two, in our opinion, offer the best compromise between simplicity and
viability, that is N, = 2, N, = Ng = Ng =1 and Ng = 2, Ng = N, = N, = 1. The third
one is actually the simplest possible model, with N, = Ng = 1 and N, = Ng = 0. Here
the composite sector is assumed to contain a massless chiral bound state, identified with
the RH top quark. As we will see, this model is not realistic because it predicts a too light
Higgs, but it is a counterexample to the statement that a light Higgs predicts light fermion

resonances.

For the first two models presented here and those in the appendix E we have performed
a scan of the parameters imposing the generalized Weinberg sum rules, setting the ratio
v2/f? = € = 0.1,0.2 and requiring a light Higgs boson, my € [100,150] GeV, or mpy =~
320 GeV, still allowed for a composite Higgs [31]. In all our scans we set the top mass
(roughly at the TeV scale) to be myiop(TeV) ~ 150 GeV. For all the points which satisfy
the constraints above we have computed the new physics 1-loop fermion contribution to AS
and AT and the deviation to Adgz(br) (for more details on the EWPT see appendix B).
We then performed a combined x? analysis using the same fit already used in [47], based
on the ¢; parameters [48-50].1

Direct search bounds on the fermion resonance masses should also be taken into ac-
count. The bi-doublets and singlets contain the ¢', &’ and the exotic fermion x (the upper
component of the bi-doublet with Y = 7/6, with electric charge @ = 5/3). The latter has
no mixing with the SM fields and would be always lighter than any other fermion from the
same bi-doublet. Therefore, the LFR would be either the lightest x or ¢’ from the singlet.
The exotic x has a 100% decay branching into tW™ which implies a stringent constrain
from the same-sign dilepton and trilepton events with b tags. At present, the best bound for
X is the one from CMS ¥ search my > 611 GeV [37] which also applies to the y search [52].
The lightest ¢’ coming from an SO(4) singlet, however, has three different decay channels:
' — bWT, t' = tZ and t' — th, where only the first one has a significant bound. The
constraints on t' largely depend on its decay branching ratio and are weak. For instance,
if Br(# — bW < 35%), we find that the CMS bound [38] would imply m; < 350 GeV
which is outside the range of the CMS search. Therefore, throughout the paper, we only
include the direct search bound for x, imposing

In the appendix E we also comment on the models where the generalized second Weinberg
sum rules are relaxed and the Higgs potential is logarithmically divergent.

19WWe have checked that our fit, restricted to the S and T parameters, reproduces with good accuracy the
fit provided by the Particle Data Group for different values of the Higgs mass, figure 10.4 of [51].

~93 -



5.1 Two-vector model

The models with N, = 2, N, = Ng = Ng = 1, are the simplest models passing the EWPT
within our set-up. A similar model with N, = Ng = Ng = 1 and N, = 2, considered
in the appendix E, also pass the EWPT, but it is theoretically less motivated than the
N, = 2, N, = 1 case. Indeed, while the gauge sector of the latter can be realized, for
instance, in a deconstructed model (such as the 3-sites model of [20]), the former appears
to be more exotic and unconventional. For this reason, we have decided to focus on the
N, = 2, N, = 1 model in the following. We assume invariance under LR symmetry, so
that Iz in the last row of eq. (3.7) vanishes. In the fermion sector we take eq.(3.29) to
satisfy the two sum rules (3.27) and (3.28), and keep mg # mq. This solution allows us
to explore both the regions of parameter space where the LFR is a ¢’ or x.

As explained in section 4, adding a second vector resonance allows for a higher overall
mass scale for the vectors, keeping v, fixed, and alleviate the constraints coming from the
S parameter. This can be explicitly seen in the approximation funix = 0 and f,, = f,, = f,
where we obtain the expression (4.10) for -4, which is negative in the range 0.4 < z =
my2/my S 2.5 and positive otherwise. It is therefore possible to tune x ~ 2.5 (or z ~ 0.4)
and at the same time increase m 1 to keep v, fixed. A posteriori, the numerical scan shows
that amix = fmix/f < 0.3, so that the approximation used above is valid.

The fermion sector of this model is simple enough that it is not hard to write simple
analytic formulas for the top and Higgs mass, that go beyond the parametric estimate given
in section 4. In particular, this allows us to explicitly check that a light Higgs requires light
fermion resonances. Let us first consider the elementary t; r region, with wy r < 1. In
this region, at leading order in wy, ~ wpr, we have

1 1 ,(mg +mg)?
mfop Qmsz(wL—l—\[wR) :154 rQnQQm% £. (5.2)

Using eq. (4.3) for £ < 1 and expanding (3 at leading order in wy, g, we immediately get?”

N, miwl 2wp)? Qw2 N, mgms mg
2 c mSwR(wL+ wa) glog( wR) — c Q'S 10g< Q)mt0p7 (53)

myy ~
H ™ q2f2 2w — w? w? 7r2f2m —m3

where in the last relation we have used eqs. (2.25) and (5.2). It is straightforward to derive
from eq. (5.3) an upper bound for the LFR mass mp:

nf my
mL >
v N, mtop

Let us now consider the region wy, < 1, wg ~ 1 (elementary ¢y, semi-composite tg, often

(5.4)
found in the numerical scan). In this region the LFR is necessarily ¢/, with mj = mqg ~
v2mg. Expanding in w;, < 1, we have
2 my,
mtop = 767

M
m3 o~ 2f2mL<log§ + 8log (m%) + log4 — 1)mfop,

20A similar formula was already obtained in [52].
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Figure 2. Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV).
The green circles represent the singlet while the purple triangles represent the exotic doublet with
Y = 7/6. The masses mg,m,, and m,, are taken in the range [0,8f], a,,,a,, € [1/2,2] and
amix € [0,5]; € and mg have been obtained by fixing Myop and . EWPT and the bound (5.1) have
not been imposed.

and gives the upper bound
2V/2r f mpg
my, <
V/Ney/log €1 Mitop

We performed the parameter scan for a light Higgs, both for £ = 0.1 and £ = 0.2. We

(5.6)

show in figure 2 the relation between the LFR mass, my, and the Higgs mass, mpg, in the
light Higgs region, obtained by a numerical scan over the parameter space. In the case
of £ = 0.1, approximately 4% of the points produced by the scan are able to pass the
EWPT, as indicated in figure 3, where we show the reduction of our fit to (AS, AT) by
marginalizing with respect to dg; (as done in figures 4, 6 and 7).2! The y and #' fields are
respectively the lightest states (with my/s ~ 500 GeV and mg ~ 800 GeV) in the region of
positive and sizable AT and of small AT. The points which pass the EWPT are evenly
distributed in these two regions but the bound my /5 > 611 GeV rules out most of the region
with a light y. As explained above, the vector masses can be arbitrarily heavy, so passing
the constraints on the S parameter is not an issue for this model. The points which pass
the EWPT show a lightest vector resonance always above ~ 1.5 TeV. Also in this case, the
tuning to get a successful EWSB is between the gauge and the fermion contribution to the
Higgs potential, 74 and . As expected, a smaller portion of points pass the EWPT for
€ =0.2 (~ 1%). The scan shows that in this case the EWPT prefer the points where t' is
the LFR, with a mass mg ~ 600 GeV.

2'Notice that the corrections to AS and AT due to the compositeness of the Higgs have been absorbed
in the definition of the fit. In other words, ASpiot = ASfit — ASu(mu) and ATpior = ATy — AT (mu),
where ASy;; and AT}y are defined in egs. (B.9) and (B.7).
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Figure 3. S and T parameters for the points of the numerical scan with a light Higgs: mpy €
[100,150] GeV. The ellipses are the 99% and 90% C.L., for a mean value of my = 125GeV. The
green circles are the points which pass both EWPT and the bound (5.1), the blue triangles pass
EWPT but are ruled out by the bound (5.1) and the red squares don’t pass EWPT. The range of
the input parameters is as indicated in figure 2.

’Np:Q,Na:NQ:stl—HeavyHiggs—£:O.15‘

0.4+

0.2+

AT

0.0r

—-02+

203 —02 -0l 00 01 02 03
AS

Figure 4. S and T parameters for the points of the numerical scan for a heavy Higgs (mpy €
[300,350] GeV) and £ = 0.15. The ellipses are the 99% and 90% C.L., for a mean value of my =
325 GeV. The green circles are the points which pass the EWPT (and the bound (5.1)) while the red
squares are the points which don’t pass EWPT. The ranges of the input parameters is as indicated
in figure 2.
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The analysis of the bounds on the Higgs mass performed in [31] shows that in the
Composite Higgs Models we are considering (within the so called MCHMS5 class) there is
still an allowed region for mpg ~ 320GeV, if £ = 0.1. We then also performed a scan for
this case, fixing £ = 0.15 and cutting for my € [300,350] GeV. We find that the LFR can
be as heavy as 2.2 TeV and it can be both ¢’ or y. Interestingly enough, despite the heavy
Higgs mass, the model passes the EWPT. Approximately ~ 4% of the points pass the
EWPT (see figure 4), which prefer ¢’ as LFR with mg ~ 1.7 TeV and the spin 1 resonances
with masses above 3 TeV.

5.2 Two-singlet model

Adding a second composite fermion, singlet of SO(4), is the minimal choice to go beyond the
simplest setup in the fermionic sector. This is already enough to increase v, and therefore
to obtain heavier vector resonances and smaller tree-level contribution to the S parameter.

The fermionic Lagrangian we start with is the one of eq.(2.19) with Ng =1, Ng = 2.
The most general solution to the first fermionic sum rule, eq.(3.27), is given in terms of

two angles and two mixings:

€Q = €q, €qs = (€qcos8y, €45inb,), (5.7)
€tQ — €t a‘,S = (Et COS Qt, €t sin Gt) ‘

There are various ways to satisfy the second fermionic sum rule eq.(3.28). One possibility
is to solve for one of the remaining parameters, say €4, in terms of the remaining ones. In

this way, we get

mé — m%s cos? @, — m%s sin? 6, (5.8)

€qg = €¢ N .
I mg), — mig cos? Oy — m3gsin® 6,

Once we impose this relation, for small mixing €; we have 7 o €2 and X €}, in contrast
to the 1-singlet case where vy, B o ¢*. In particular, we get

p o € (my —mig)(md — mig)(mis — mig)(cos 20, — cos26;). (5.9)

This implies that v, can be enhanced with respect to the estimate in eq.(3.30). But 7,
cannot increase too much, leading otherwise to too heavy vector resonances, and hence
the enhancement of v should be kept small. This is confirmed by the numerical scan
where we get small deviations from the exact cancellation. In this simple, yet fundamental,
observation lies the reason why this model, like all the ones with more fermionic resonances,
is able to pass the EWPT.

Let us consider a specific region in parameter space selected by EWSB, where ¢; ~
€ ~ € mqg ~ mag ~ M, 0, ~ 7 and 0; ~ 0, with both m;5 and € much smaller than M.
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Figure 5. Mass of the LFR (in GeV), before EWSB, as a function of the Higgs mass (in GeV).
The green circles represent the singlet while the purple triangles represent the exotic doublet with
Y = 7/6. All the fermion masses are taken in the range [0,6f], the angles 6,,6, € [0,2n] and
a, € [1/+/2,2]. The mixing €, and the mass m,, have been obtained by fixing mye, and & respectively.
EWPT and the bound (5.1) have not been imposed.
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Figure 6. S and T parameters for the points of the numerical scan with a light Higgs: mpy €
[100,150] GeV. The ellipses are the 99% and 90% C.L., for a mean value of my = 125 GeV. The
green circles are the points which pass EWPT (and the bound (5.1)) and the red squares don’t.
The ranges of the input parameters is as indicated in figure 5.
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In this region the coefficient of the €7 term in 7t is suppressed. We get

N, M? N,
’}/f ~ 6264 (lOng? — 1> = 7064137,

327 7 3272
N, , M? et m? N, ,
~ 1 — (log =L — = b 5.10
1= gt <Ogm%+8m% %2 3272 P (5.10)
m2 o~ & e
top — 4 9
opP 4m%

where pf is the IR regulator of the spurious IR divergence arising from 3y (see eq. (3.26)
and footnote 9) and my, denotes the mass of the LFR, that is clearly the singlet Sy in this

region: mp, =~ , /m?91 + €2/2. From these relations we obtain the estimate
T Mg

8 Mtop

(5.11)

Since bg > log%—%2 > 2 for at least M > 3myp, the singlet has an upper bound of my <
800 GeV for £ = 0.1. We therefore obtain that also in this case a light Higgs boson implies
light fermionic resonances. For both € = 0.1 and 0.2 we find that the singlet is the LFR,
with a mass in the range ~ 300 — 800 GeV, see figure 5. Even though the bulk of the points
show a vector mass in the same range as in the minimal model, there are nevertheless
points with bigger values of m, so that the model can pass the EWPT, see figure 6. For
¢ = 0.1, approximately 2.75% of the points pass the EWPT, with m, 2 2.5TeV and
mp, € [400,700] GeV. For & = 0.2, less than 1% of the points pass the EWPT, the typical
value of m, and my, being analogous to the { = 0.1 case.

In the heavy Higgs case, that is for my € [300,350] GeV and for & = 0.15, the LFR
is still the first singlet, but with a mass range 400 GeV < my < 2TeV. In this model
~ 7% of the points pass the EWPT, see figure 7, the preferred region being for 1 TeV <
mr S 1.5TeV and m, 2 3TeV. The fraction of points which pass is surprisingly high also
because, for bigger Higgs masses, most of the points are naturally in a region of heavy p

(that is, small AS), as can be understood from the estimate in (4.9).

5.3 A counter-example: a light Higgs and heavy resonances

We consider in the following a model where the RH top quark is fully composite. As
already mentioned at the end of section 2.3, this model is built assuming that the tg is
a chiral composite state in the singlet representation of SO(4) and adding one composite
fermion in the bidoublet representation, ). No singlet fields S are present, Ng = 0. The

leading fermion Lagrangian is>?

Eﬁo = qLilDQL + ERthR + Q(ZW — mQ)Q + GqséLUPStR + 6ngLUPQQR + h.c.. (5.12)

*20ne might think that the Lagrangian (5.12) can be obtained from eq. (2.19) with Ng = Ns = 1, in the
limit €;5,+qQ — 00, in which case the singlet becomes ultra-heavy and can be integrated out. This is however

not the case, because the Weinberg sum rule (IIT) would imply €454 — o0, and hence a ultra-heavy doublet
as well.
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Figure 7. S and T parameter for the points of the numerical scan, for a heavy Higgs (mpy €
[300,350] GeV) and & = 0.15. The ellipses are the 99% and 90% C.L., for a mean value of my =
325 GeV. The green circles are the points which pass the EWPT (and the bound (5.1)) while the red
squares are the points which don’t. The ranges of the input parameters is as indicated in figure 5.

The Weinberg sum rules (III) and (IV) obtained in section 3 do not apply in this case
with Ng = 0, but the expressions for the form factors and the 1-loop Higgs potential are
particularly simple. Demanding the cancellation of the quadratic divergence in the fermion
sector requires |e;g| = |eg5] = €. Demanding also the cancellation of the logarithmic
divergence in «y would require ¢ = 0, which is not a viable possibility. We are therefore
forced to keep the logarithmic divergence, which, as we explained in the appendix E, means
that v, and thus &, is not calculable. We then proceed assuming a given value for £ and
computing only . Since 8, < By, we can completely neglect the gauge sector.?? In this
approximation, and at first order in £, we obtain the expression for the Higgs and top

masses: " ) )
N. €'m m e“m
2 c Q 1/6 2 Q
my ~ ¢ | log -1, Mgy =~ —5&, (5.13)
82 f2m‘11/6 < ,uff > top 2mf/6

where m% /6 = m2Q + €2 is the physical mass of the composite Y = 1/6 doublet before
EWSB. From these expressions we get the estimate for the Higgs mass as

—1 GeV. (5.14)

As can be noticed immediately, the Higgs is always too light (mpg ~ 90 GeV for my /6 =
6 TeV). This conclusion has also been checked by a numerical scan of the model, which
gives results in agreement with the estimate above, see figure 8. In this model the LFR is

ZGince ¢ is not calculable, we can also relax the Weinberg sum rule (IT) in the gauge sector, in which
case we can assume that no axial resonance is present at all.
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Figure 8. Higgs mass (in GeV) as a function of the Y = 1/6 doublet mass (in TeV) in the
composite tg model, for £ = 0.1. The blue points are obtained by a numerical scan, while the thin
red line represents the analytic estimate eq.(5.14). The two results are compatible, up to a ~ 5%
error, due to the expansion for small § in eq.(5.14). In the numerical scan, the mass m¢g has been
taken in the range [0, 10f], while the mixing parameter € has been obtained by fixing mcp.

X, with a mass (before EWSB) my6 = mq. It is interesting to notice that a light Higgs
doesn’t imply a light fermionic resonance, at least for models with a chiral composite sector.

6 Comparison with previous works

In the previous sections we constructed a general framework for composite Higgs models,
based only on the assumptions of SO(5)/SO(4) symmetry breaking pattern and the MHP
hypothesis. The aim of this section is to explicitly show how this general setup is able to
reproduce the physics of two deconstructed composite Higgs models.

6.1 Discrete composite Higgs model

Let us start with the two and three sites deconstructed models described in [20]. The
two sites model is based on the coset SO(5)r ® SO(5)r/SO(5)y, where the SM group is
embedded in SO(5)z. From this coset one has 10 Goldstones 74, transforming in the
adjoint of SO(5)y. The SO(4) subgroup of SO(5)r is gauged by introducing six gauge
fields py,, which become massive by eating the six Goldstone bosons 7. The Lagrangian
of this model is (in the notation of [20])

72
s 1.
L9525 = fzﬁ [(D,U)'D'U| — 1T [P P + LIS, (6.1)
where the Goldstone matrix is U = exp [iﬂﬁATA / fﬂ], the covariant derivative is D, U =
U — i(goWSTE + goBuTH)U +ig.UpiT* and LG is the usual gauge Lagrangian for

the SM EW gauge bosons. Going to the “holographic” gauge, where 7 = 0, this model
is described by the Lagrangian of eq.(2.11), with one vector multiplet in the adjoint of
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SO(4), no axial resonances, and fixing the parameters as (imposing invariance under LR
symmetry):

f2

5 (6.2)

2-sites: f=rfh=1F, 9p = Js mf} = %ﬁf?’ f3 =
One can check that only the first Weinberg sum rule is satisfied and the gauge contribution
to the Higgs potential remains logarithmically divergent.

In order to get a finite potential, the authors of [20] add to the model another site,
doubling the coset to (SO(5)1 ®SO(5)%)/SO(5)i, x (SO(5)% @ SO(5)%)/SO(5)%.. From this
symmetry breaking pattern 20 Goldstone bosons arise and can be parametrized by two
SO(5) matrices U; = U(n{') and Uy = U(ws'). Sixteen NGB’s are eaten by the gauging of
SO(4) € SO(5)% by pj;, and of the diagonal combination of SO(5 )} ®SO(5)% by the gauge
field pl‘?:

DUy = 0,U1 — i(goWSTE + 9o BuTi)Us + iguUrp/ T,

6.3
DUy =0,Us — zg*puT Us +ig.Uap, T (6:3)

The Lagrangian of this model is

e P 2 1. o1
/3(},’13,‘, sites _ f [(D Uy) D“Ul} —|— ! Tr [(DHUg)tD"Ug] — ZTT P ] — ZTT [P P |+ LEEC

(6.4)
In the holographic gauge where 74 = 7¢ = 0, one obtains the Lagrangian of (2.11) for two
vectors and one axial resonances, with LR symmetry and the following parameters:

f f f
f:fﬂ'277 faziv f1:77 f2:O7
3-sites: - V2 2 T2 ’ . (6.5)
fmiﬂ}:\L/fﬁa ga:gp1 29*7 gp2 :§*7 A:—i

Both Weinberg sum rules (3.13) and (3.14) are now satisfied. Notice that the term propor-
tional to f,, is absent in the deconstructed model because it would correspond to a non-local
interaction in field space. For completeness, we report in appendix D the detailed map for
the fermion sector.

6.2 Minimal 4D composite Higgs

Let us now write a similar dictionary for the deconstructed model described in [21]. This
model is based on a two-coset Lagragian: SO(5);,®SO(5)r/SO(5)p, described by the NGB
matrix Q1 = exp(iv274T?/ f1), and another coset SO(5)/SO(4), described by the matrix
Qo = exp(iV272T%/ f5). The SM gauging is embedded in SO(5);, and to absorb the 10
exceeding NGB’s, the diagonal subgroup of SO(5)r ® SO(5) is gauged by the field pA In
the notation of [21], the Lagrangian is

13

1
5 (Dy Do) DH Dy — A pAn (6.6)

L= flTr|D o+ 22 19 2pu,,p
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where ®5 = Q¢ (¢ = (0,0,0,0,1)%) and
DMQI = 8#91 — iAugl + inpﬂ’ DMQQ = (9#92 — iquL (67)

Going again to the holographic gauge, where {y =1 and O, =U = exp(iv/27%T%/ f1), and
redefining the NGB fields as 7% = f1/f7%, one can write the Lagrangian as in eq.(2.11):

i 1 1,

= Tr[d d”H—f—%Tr [(g pu—E )ﬂ—i—u'ﬂ“ (9,0 _f712d 1l
A(ff+ ) - a e i TR Al
(6.8)
from which we obtain the dictionary for N, = N, = 1:
S N B
o= 2 27 fp_iv 9a = Yp»
i+ 2
2 2 2 2 (6.9)
__fi fo _fith
i+ A 2

It is straightforward to check that both Weinberg sum rules are satisfied with these pa-
rameters. The map for the fermion sector is reported in appendix D.

7 Discussion and conclusions

We have constructed a general class of composite Higgs models, in the context of the
minimal SO(5)/SO(4) coset structure, and introduced the MHP hypothesis that allows to
predict the Higgs potential in terms of the parameters defining the model. We have argued
that any composite Higgs model based on the partial compositeness paradigm and leading
to a calculable Higgs potential should satisfy the generalized Weinberg sum rules (I-IV) and
should be described by our Lagrangian (2.28), or straightforward generalizations thereof.
We emphasize that our approach allows to considerably enlarge the possibilities for model
building and the parameter space for each model. For instance, models where the fermion
resonance representations do not form complete SO(5) multiplets, also with Ng # Ng,
obviously allowed from effective field theory considerations, are easily constructed in our
framework, while they are not easily obtained in deconstructed models.

We have explicitly shown the main properties of the simplest models one can construct
within our framework. We argued that for non-chiral composite fermion sectors, a light
Higgs, around 125 GeV, implies the presence of at least one light, often sub-TeV, fermion
resonance of charge 5/3 or 2/3, independently of EWPT considerations. When the latter
are taken into account, on the other hand, one realizes that these fermion resonances
can play an important role in determining the viability of the model, given mainly by
their sizable contribution to the T parameter. Models where the LFR has charge 5/3 are
significantly constrained by the direct search bound (5.1) , see e.g. figure 3(a). We have
also shown that models with a 320 GeV composite Higgs, yet not excluded by the current
ATLAS and CMS bounds [31], can pass both EWPT and direct search bounds. A heavy
Higgs is actually welcome to increase the vector resonance mass and hence to decrease AS.

There are various obvious ways in which our paper can be generalized. From a bottom-
up perspective, fermion resonances in representations that are not only SO(4) singlets or
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fundamentals can be considered, as well as less minimal cosets, such as SO(6)/SO(5) [53, 54]
or others. From a top-down perspective, it would be very interesting to find new symmetry
principles, other than collective breaking or 5D locality, that lead to a (at least partial)
UV-completion of some of our models, realizing the MHP hypothesis.

We have decided to omit a phenomenological study of our models, because a careful
analysis would require a paper on its own, given also the various different possibilities at
hand. We just mention here that the current searches at LHC for heavy fermions start to
put significant bounds on models. In particular, the bound for the exotic @) = 5/3 state
X> m76 > 611 GeV, already excludes sizable regions in the parameter space in some of our
models. It is definitely important to study in more detail the actual bounds on # coming
from the SO(4) singlet, less constrained by the current analyses, given that such fermion
is often the lightest composite particle.

The Higgs hunt at the LHC is probably coming to an end, with some evidence around
125 GeV, that hopefully will be confirmed or ruled out soon. If confirmed, the new era of
understanding the properties of this particle will start. We expect that future improvements
in the heavy vector quark searches would help us to discriminate whether the Higgs is an
elementary or a composite particle.

Note added. While this work was at the final stages of its completion, two papers
appeared, refs. [55] and [56], that have some overlap with our work. In particular, about
the correlation light Higgs — light fermion resonances in Composite Higgs Models.
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A Effect of f..ix for two vectors

Let us consider a model with two copies of vector fields in the adjoint of SO(4), pL and
pi, and N, axial resonances, assuming LR symmetry so that Il = 0. This is a subcase
of the generic Lagrangian of eq.(2.11) where the left and right parameters are identified.
Before integrating out the heavy vectors, we have to diagonalize the p mass matrix:

b—a—/(b—a)? + 42
mi =a+b++/(a—b)?2+4c2, tanf = ¢ (2 a)® +4c , (A1)
c

where 2o 2 | 2
+ 12 + 12 2
2 pt mix 2 p? mix -
a = gpl 72 s = gp2 72 y  C=0p19p2 EIX. (AZ)

The mass eigenstates, before EWSB, are given by the linear combinations

{P; = C&PL + Seﬂi, (A.3)

Py = —Sep,ﬂ + Cepi-
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In terms of these fields, the p Lagrangian in momentum space and to quadratic order in
the fields is

P m2 m2
LD —p == (o e + P 0, ") + fﬂj“p’”a + e
_f2 +aEua _p2 —appa P EaEua
for 90ty fo-90- P 5
where
[2 gy =cofign +s0fnge and  flgy =—sofhgn +cofnge.  (AD)

Now we can integrate out these vectors and the two axial vectors, going to Euclidean
momenta we obtain

i ;¥ ¥t

o(p) = —p* + g3f2 + 95 f= + +
07p 0%p p? — mi, p*— mi+
” 4 2 2 ¢4
99 J,-9 90 +g +
Hp(p) = —p* + 95 f5 + 95 [ + Q’ + 5, (A.6)
p? m,- p? — m,

f+g + 210 g% Ja 2 > p?
2 2 2 p p~7p i
IIi(p) = (f —2fh —2f 2—m2+_ 2 2 +Z 2_am2 '

-m ,
p p pm =P i

One can check explicitly that in this case the Weinberg sum rules are the same as in
eq.(3.13), (3.14). The SM gauge couplings are modified by the contribution of the reso-
nances and given by:

P % 98
I, (0 gl g gl g
WW( ) 1+ 0m47 + On21'+p+
p p
9 9 (A.7)
g2 =— 90 _ 90
- I’ 0 - g’2 4 g 7 92’f4 g2 .
BB( ) 1+ 0 m4_ + 0 niz_‘_ﬁ
P P

B Comments on the electroweak precision tests

ElectroWeak Precision Tests put strong indirect constrains on new physics beyond the SM.
The most relevant parameters are S and 7. We have neglected the constraints coming
from the W and Y parameters [57], since in our model they are parametrically suppressed
with respect to S by a factor (g/g,)?. A non-universal important bound comes from &g,
the deviation of the by Zby, coupling from its SM value. Imposing a custodial symmetry
and a proper mixing of by with the fermion resonances allow to suppress the tree-level
values of T" and dgp. More precisely, in the (oblique) basis where the contributions to gy
coming from vector resonance mixing (universal for any SM fermion) vanish, T exactly
vanishes. The explicit expression of the tree-level contribution to dg; coming from fermion
resonance mixing is reported in appendix C. It does not vanish, but it is always sufficiently
suppressed to be safely neglected. At tree-level, then, the only dominant parameter is S,
as given by eq. (3.15). Since the custodial symmetries protecting 7" and dg; at tree-level
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are explicitly broken in the full Lagrangian, mainly by Yukawa couplings in the top sector,
one-loop corrections to 7' and dg, cannot be neglected [58-60)].

We define by AT, AS and Adgy the contribution given by new physics only, with the
SM contribution subtracted:

AT =T —Tsy, AS=8—-Ssu, Adgy=0g—0gbsM, (B.1)
where
1 1, 5., Ner N, m? ..
=—=+4- 0 Toy ~ ————— Sov = —= (341 "bottom
9b,SM 2 + 35 U SM = e o SM = 13+ ( + og( Mt20p )
Qe (2 =Tr +6+ (2+3r)logr M2
691),31% = . 9 ( ( 2 ) = ) ) r= t20P ) (B2)
167 sin” Oy, (r—1) miy

where M;op is the pole top mass, Mo, = 173.1 GeV [61], not to be confused with myp, at
the high scale, always taken around 150 GeV in our paper.

Due to the non-renormalizable nature of our theory, strictly speaking AS, AT and
Adg, are not calculable. It is possible to disentangle an IR, calculable part, from the
uncalculable part and use NDA and a spurionic analysis to estimate the size of the latter.
We will not report some details of our estimate, that can be found, e.g., in [20].

Let us start by estimating AT'. The hypercharge coupling ¢’ is the only custodial break-
ing parameter in the gauge sector. The NDA estimate for the uncalculable contribution to
AT coming exclusively from the gauge sector is
Sh

AT(NDA) ~

; (B.3)

.
87 cos 9W

eq. (B.3) also coincides with the NDA estimate for the contribution of the vector and
axial resonances, because their couplings g,, g, < 47 and their masses m, ~ g,f, mq, ~
gaf, precisely compensate in the contribution to AT to reproduce eq. (B.3). Another
contribution arises from the modified couplings of the Higgs with the SM gauge bosons [60].
This can be computed by introducing running AS and AT parameters and demanding that
they vanish at the scale A. In this way one gets

33% A A

2

S
log — A = —hog =, B.4
o8 Sw(p) or %8 (B.4)

AT (p) = = 87 cos? Oy

For A > pu ~ my, eq. (B.4) captures the calculable “leading log” deviations to AS and AT
due to a composite Higgs.?* Finally we have the fermion contribution. The uncalculable
fermion contribution is easily shown to be sub-leading, in the limit of small mixing €, and

24We have explicitly checked the reliability of eq. (B.4) by computing the whole deviations to AS and AT
due to the modified Higgs couplings, obtained from the full SM one-loop Higgs+gauge boson contributions
to the gauge vacuum polarizations amplitudes computed in dimensional regularization (see e.g. [62]) and
replacing the 1/€ pole with 2log A. We have found that the O(1) deviations to eq. (B.4) are always of the
same order of the uncalculable contributions (3.18) and (B.3) and can thus be reabsorbed in a change of
UV boundary conditions for the values of AS and AT at the cut-off scale.
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can be neglected. The calculable contribution to 7" due to the fermion resonances is given
by (see e.g. the appendix of [47] for some explicit expressions of fermion contributions to T')
N, N f 23,2Z

- ; (B.5)
2msin? Oy g2 m2

ATy ~
where \ is the Yukawa coupling between the top and a fermion resonance, A\ ~ ¢/f, and
my is its vector-like mass. We get

AT 4N, cos? 0 4 4N, cos? 6
f ccos“ by € ¢ COS W)‘gop7 (B.6)

AT T Zsin? by Pmd T g?sin® O

where in the last equality we have used eq. (2.26). The calculable fermion contribution is
hence the dominant contribution to AT. We have then included in our fit

ATfit = ATH(mH) + ATf . (B7)

A similar analysis applies to AS. The uncalculable gauge contribution, as well as
the vector and axial one, is given in eq. (3.18), while the fermion one is negligible. The
calculable fermion resonance contribution can be estimated as

N )\2 2 N 2
ASp = 0 ~4“‘26 (B.8)
T my T tmy
For 01, r ~ O(1) this is roughly of the same size of eq. (3.18), but we have kept it in our
fit, because it is calculable and in some region in parameter space the actual value of ASy
can be significantly larger than the estimate (B.8). We have then included in our fit

ASpiy = ASo + ASp(mp) + AS . (B.9)

where ASy is the tree-level value (3.15).

Let us now consider Adg,. First of all, we have to distinguish between universal
and non-universal gauge coupling deviations. The universal calculable and uncalculable
deviations can be rotated in AS and AT and can be shown to be of the same order as
AT, g(NDA) and ASNPA) " The calculable contribution we have computed arises from loops
where a SM W is exchanged, 5gZV, that can be estimated as

A Jeltsp

sgy” ~
P = 16n2m2 ~ 1672 2m?

12

(B.10)

In addition to that, we also have a calculable contribution where a vector resonance is
exchanged in the loop, and the usual uncalculable contribution. The latter is estimated
by NDA. It arises when the spurions (2.22) are inserted in the fermion bilinears. There
are several local operators one can construct. For example, one contributing to dg;, is the

following:
% t s t coleqol'sy g
_ o) (o B )
FA(1672)2 <QLEqQ7“EqQQL) Z (= E o) (EgqDuX) = T 1(1672)2f7 cos O qrZqr (B.11)
a=1
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with ¢, an O(1) coefficient and o the SU(2)? index (see [20] for details), leading to

o4y _legolt
og,, ~ {6r2)2fish (B.12)

which is sub-leading with respect to eq. (B.10). The one-loop deviations where a vector
and a fermion resonance are exchanged in the loop are induced by the couplings (2.23).
They are estimated to be

K gpleIAPv?  k2jel*s]

2,22 22,2 °
16m°mzms 1672 f2m7

gy ~ (B.13)

where k generically represents the O(1) k coefficients in eq. (2.23). In general dg ~ Sgt”
and both should be taken into account. However, 595 depends on the couplings (2.23) that
are otherwise irrelevant in our analysis. For simplicity, we then assume that k < 1 so that
(591‘,” marginally dominates over 595 . Under this assumption, we have included in our fit

(Adgs) it = b3 (B.14)

neglecting the vector resonance contribution. We have not inserted in our EWPT fit
the tree-level correction (C.3) to dgp, because it depends on several other parameters (the
down-type mixing ¢(® and the couplings l;:”) that do not play any other role in our analysis.
This omission is justified by noticing that dg, in eq. (C.3), in addition to the 3,21 factor,
is suppressed by the small mixing of the d-type, €. Neglecting the second term coming
from the axial resonance (depending also on l%ij), we have checked for N éu’d) = Né?u’d) =1
that the tree-level correction (C.3) is typically 2-3 times smaller than dg}" .

As we see, the calculability of dg; is not on the same footing as that of S and T.
Nevertheless the effect of Adg, in our fit is sub-dominant, the main effects coming from

AS and AT.

C Gauge coupling deviations

In this appendix we report the tree-level deviations from their SM values of the top and
bottom trilinear couplings to the SM gauge fields. They are computed in the basis where
we keep as light fields directly the fields ¢, W and B in the Lagrangian (“oblique” or
“holographic basis”). In this basis, the deviations are all proportional to the fermion mixing
parameters € introduced in eq. (2.19), the universal effect induced by vector resonances
being “shifted” in S and T. We compute the deviation due to dimension six operators
involving the Higgs field, O(h?/f?), neglecting higher derivative dimension 6 operators
with no Higgs. The latter give a sub-dominant effect, suppressed by a factor (g/g,)?
with respect to the former. We can effectively set all ordinary derivatives for the gauge
resonances to zero. Vector and axial resonances can contribute to the deviations by means
of non-universal contributions induced by the couplings (2.23). For simplicity, we compute
in the following the axial contribution only, the vector one being in general complicated by
the mixing fmix,i;-
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As discussed in the main text, including the bottom sector requires the addition of other
fermion resonances and mixing. The total fermion Lagrangian can still be written in the
form (2.24), provided we add an extra index a, taking values a = u, d, that distinguish the
top and bpttom sector. In' other words, ); — Qg.a), miQ — mgg, S; — Si(a)7 mis — mgg),
63,3 0~ eigazQ, 315 0 eéf;;Q, and similarly for the couplings in eq. (2.23).

Integrating out the axial resonances gives a = Ai/ga;dy + . ... Plugging back this
relation in the fermion Lagrangian generates the operators

KI5 md, PQY + he. (C.1)

that contribute to ég. In eq. (C.1)
Z KA+ K (C.2)

are the effective coupling constants of the above operators, functions of the couplings
appearing in eq. (2.23). Integrating out the fermion resonances gives, upon rescaling the
SM fields to get canonical kinetic terms, the following results, at leading order for sp < 1:

&2 )2 | i(d) |2 NGV N, z<Sd> J(Q) o
092(be) = g (Z @z * Z -2 Z Z e +h'c-) ’
a N\ =1 Mg j—l ]Q i=1 j=1 zS JQ
&2 § e z(u>|2 | J(u)‘Q N NG v(Su> y(én* e
_ h q q u
59Z(tL)*7SZ (Z (w2 +Z (w2 *QZZ OO +hc>,(C.3)
qr i=1 Mg j=1 jQ i=1 j=1 sz 7jQ
52 § €2 |J(a 2 NEING e (o) Lo
dgw(trbr) = == > (Z @z @ @ i )
qr a=u,d  i=1 Mg J=1 m]Q i=1 j=1 Mg jQ
where
J(a)‘
Zq,, (C.4)
a=u,d j=1 ]Q
In eq. (C.3) 0g = g — gsy and
9z,sm(qr) = Tar —sin® 0w @,  gw,sm(trbr) =1. (C.5)

As expected by gauge invariance, no correction proportional to sin? Ay arises. It is straight-
forward to show that no deviations occur to the RH fields at tree-level, so that

0gz(br) = dgz(tr) = gw(trbr) = 0. (C.6)

D The fermion sector of the deconstructed models

D.1 Discrete composite Higgs model

The fermionic sector of [20] can be studied directly in the holographic gauge. As we are
interested only in the leading contribution to the 1-loop Higgs potential, we neglect in the
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following interactions between fermions and spin-1 fields (gauge bosons, vector and axial
resonances) as well as composite fermions necessary to give mass to SM fermions other
than the top. In the two sites model the authors introduce a complete multiplet in the
fundamental of SO(5)g, ¥ = Q + S, with a mass term that is only SO(4) g invariant:

L;%};sites — Eelem + [eomp +£mzz’ (Dl)
where £¢€™ is the kinetic term for the SM fermions,

Lo = iQPQ + moQQ + iSPS + 5SS, (D.2)

LM =y fELU (Q + S) + yrfERU (Q + 5‘) + hc. (D.3)

Comparing this Lagrangian to the general one of eq.(2.19), it is immediate to recognize
that the models are the same once we fix Ng = Ng = 1 and

2 sites: €qQ = €45 = YL f, €1Q = €15 = \@ny, mg = —mg, mg = —mr.

(D.4)

One can check that the sum rules of (3.27) are satisfied while the one in eq.(3.28) is

generically not, so that the potential is logarithmically divergent. Omne could however
impose the finiteness of the one loop potential setting y7, = v2yr.

In the three sites model there are two composite fermionic multiplets, one in the
fundamental of SO(5)L, ¥ = Q + S, and another one in the fundamental of SO(5)%,
¥ = Q + S. In the holographic gauge, the Lagrangian is

£ —iQPO + iSPS +iQPQ + iSPS+
moQQ + mrSS + m(QQ + SS) + AQQ + 55) + h.c. , (D.5)
L™ =y fELU(Q+ S) + yrfErU (Q + S) + hec.

Note that A, as well as the gauging by p;‘7 explicitly breaks SO(5)L ® SO(5)% to the
diagonal subgroup SO(5)p. As the composite mass terms are not diagonal, one needs to
diagonalize them before comparing this model with our setup:

{Ql = ¢, Q + 50,Q, 7 {51 = cpgS + 5055, (D.6)

QQ = _SQQQ + C@QQ; 52 = _8955 + CQSS'

After doing that, we obtain that this three sites model can be described by the La-
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grangian (2.19) for Ng = Ng = 2 and

mizq =% (m+mq F /(m —mg)? +147),
migs =3 <m+fns$ V(m —mgs)? +4A2> ;
tanfg = a )
\/Au(mfm(g)(mfmm\/m)
. tan 95’ = a ’
S-sites: \/A2+(m—ﬁ15)(m—rhs+\/m) (D.7)

G;Q = yL.fseQa 62@ - ny69Q7
6;5‘ = ny8957 635 = nyCGS’
GL}Q = \/énySQQ, 6%@ - \/inyCQQ,
ets = V2yrfsog, €7s = V2yrfcos.

One can check that the sum rules (3.27) and (3.28) are satisfied. One can also check
that the fermion contribution to the potential has a leading mass term proportional to the
square of the mixings, which can be tuned away for y;, ~ v/2yg, allowing for a successful
EWSB, confirming what stated in [20].

D.2 Minimal 4D composite Higgs

The fermion sector of [21], as far as the top is concerned, consists of the elementary SM fields
and two complete multiplets in the fundamental of SO(5): ¢ = (Q, S), ¢ = (Q, S), where

we have decomposed them in the irreducible representations of SO(4). In the holographic

gauge, the fermion Lagrangian is®°

clerm = cem 1 iQPQ + iSPS +iQPQ + iSPS+
— mp(QQ + 55) — mz(QQ + S8)+
— (myy + Y7)SLSk — my, QLQg + h.c.+
+ A ELU(Qr + Sr) + A €rU(QL + S) + hee. .

(D.8)

To compare this Lagrangian with our framework, we need to diagonalize the composite

mass terms via biunitary transformations:

mr my.
Mq = ( OT ~T) =Va, (QQL)MC%VQR(GQR)T7
ms

mr my,. + Y-
Mg = ( OT § T> = Vs, (05, ) M§Vs, (0s,) ",
M

#We thank Michele Redi and Andrea Tesi for having pointed out that in their model A, # Aty in
general.
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where Mg = diag(mig, maq), Mgl = diag(mig, mas),

1
mi2Q = ﬁ\/mZT +mz +mi, F \/(m% +mZ +my, )% — dmim?2,

- m2 —mi —mi, — \/(m% —m7)? +my, (mi, + 2mj + 2m7) D10)
nfg, = 7 '
@r 2mgmys,
m2 —mi +mi, — \/(mQT~ —m#)2 +mi, (mi, + 2mg + 2m7)

tanfg, = ,
Qr 2mrmys,

and mi 2, tanfg, and tanfg, are the same as above with the substitution my,, — Y7 +
my,.. Writing the Lagrangian in terms of the mass eigenstates (before EWSB),

, (D.11)

{QL = cosfg, Q11 — sinfp, Qar,
Q1 = sinfg, Q11 + cos g, Qar,

and analogously for the other cases, we obtain the Lagrangian (2.19) for Ngp = Ng = 2 and

1 2

€@ = DirCog g = —Ai 60,
1 2

EqS = AtLCQSR) €qS = _AtLSQSR’
1 2

€Q = \/ﬁAtRSQQL, €Q = ﬂAtRCQQL,

1 2
€15 = \/iAtRSHSL7 €1g = \@AtRCQSL.

(D.12)

One can check that all the sum rules are satisfied by this model and therefore the Higgs
potential is finite at 1-loop level. One can also check that the leading term in «yf, quadratic
in the mixing A, ., is proportional to Y7 (A7, m7 — 2A%Rm%)(2myT +Yr).

E Results for other simple models

In all the models studied, and presented schematically below, EWSB is always due to
a tuning between the fermionic and gauge contributions to . In the parameter scans
we performed, we have set myop(TeV) ~ 150 GeV and £ = 0.1, solving these constraints
for two of the input parameters. We have then imposed a cut for a light Higgs, mpy €
[100, 150] GeV.

Minimal model: Ng =1, Ng =1, N, =1, N, = 1. For illustration, we consider
here two versions of the minimal model, differing on how the Weinberg sum rules (3.28) are
satisfied. We denote by “type 1”7 the model where €5 = €9 = €55 = —€40 = €, mg # mg
(as in eq. (3.29)), and by “type 2”7 the model where €5 = €Q = €, €5 = —€40 = €Q,
mg = mg = m. In the first model the LFR is either ¢’ or yx, while in the second one the
LFR is necessarily x. In both cases the vector resonance’s mass is bounded from above by
m, S 2TeV, which implies that the S parameter is too big (AS 2 0.3) and both models
don’t pass the EWPT, see figure 9(b,d).

It is not difficult to see in more detail the tension present in this model. Let us for
definiteness consider the type 1 model. The numerical scan show that EWSB mostly occurs
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Figure 9. (a,c) Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet
with Y = 7/6. (b,d) Mass of the p, vector as a function of the Higgs mass. One can see that for
my S 130GeV, m, < 1.8 TeV, which is too low for the model to pass the EWPT. In (a,b) we took
the masses mqg, mg € [0,5f], a, € [1/v/2,2] while € and m,, have been obtained by fixing Mo, and
&. In (c,d) the same range has been taken for the parameters m, e, and a,, while ¢, and m, have
been obtained by fixing myp and €. The direct search bound (5.1) has not been imposed.

in the region wy, < 1, wg ~ 1. Taking wrg = 1 and expanding at leading order in wy, one
finds
m/z, N 872 f(wr) < 8> 1
m% ~ 9log2 ¢2¢ ~ 9log2 g%

(E.1)

where
8(1 + logw?)
1+ 8logw? —log4/¢

flwr) = (E.2)

is a smooth function f(x) <1, for any . Using eq. (E.1) for my ~ 125 GeV, we immedi-
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Figure 10. Mass of the LFR, before EWSB; as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet with
Y =7/6. EWPT and the bound (5.1) have not been imposed. In the model (a) the range in which
we scanned the parameters is the same as in figure 2. For the model (b), instead, we took the

fermionic masses in [0,5f], a, € [1/v/2,2], a1, € [0, /a2 —1/2] and ma1/m, in a region [0.2,2]
times the value for which AS vanishes. As usual, m, and € have been obtained by fixing £ and

Mtop-

ately find an upper bound for m, (for { = 1/10):

m, < 1.8TeV . (E.3)
Demanding AS < 0.2 in eq. (3.17), with f, ~ f, gives m, 2 2.5TeV, in tension with
the bound (E.3). On the other hand, no problems from AS arise for mpy =~ 320 GeV. A

numerical scan shows indeed that this model, for mg ~ 320 GeV, is able to pass the EWPT.
The vector resonance mass is above 3 TeV and the LFR is the ¢’ with my ~ 1.4 TeV.

Two vectors: Ng = 1, Ng = 1, N, = 2, N, = 1. We choose the type 1 finite-
ness condition for the fermionic sector. The numerical scan shows that the vector mass
eigenstates and the axial vector can be arbitrarily heavy and therefore having a small
AS is no longer a problem. The LFR is either x, with my;s ~ 500GeV, or t', with
mo ~ 600 — 1000 GeV, see figure 10(a). The EWPT selects points which are evenly dis-
tributed among the two regions, but the bound (5.1) rules out almost the whole region
with a light x. Among the points passing the EWPT, there are also ones with the lightest
vector mass as light as 1.5 TeV, while the axial is always heavier than ~ 2.2 TeV.

Two axials: Ng =1, Ng =1, N, =1, N, = 2. We choose the type 1 finiteness
condition for the fermionic sector. The results in this sector are completely analogue to
the minimal model with the same type of finiteness condition. In particular, the vector
resonance is always light: m, < 2TeV, see figure 11(a). The tree level S parameter of this
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Figure 11. (a) Mass of the vector resonance p, and (b) of the lightest axial vector, as a function
of the Higgs mass. The points for the axial vector are the ones which pass the EWPT. The range
of the parameters is the same as in figure 10(b).

model can be written as

AS = s L ar & Maa )My & 2, (Mg =) (g = 1my)
2mglm32mg

, (E4)

after having solved the two Weinberg sum rules in terms of the two axial decay constants.
We can see that AS can be made small or even negative by choosing the two masses of
the axial resonances such that mg,; < m, < mg2. A closer inspection shows that the
EWPT favour the region in parameter space where the lighter axial resonances has sub-
TeV masses. This is indeed reflected by the numerical scan, where we find that the lightest
axial resonance has a mass mgq; ~ 300—900 GeV, see figure 11(b). This model has therefore
a potentially interesting phenomenology, but it is fair to say that a model with light axial
resonances and negative S parameter looks quite “exotic” and might not admit a consistent
UV completion.

Two singlets: Ng =1, Ng =2, N, =1, N, = 1. See section 5 for a more complete
description of this model. In this case, the LFR is the singlet, with mg ~ 300 — 800 GeV,
see figure 12(a), the second singlet being always much heavier. The vector resonance can
be as heavy as 5-6 TeV, due to the fact that now ~; can be bigger than the minimal case.
The points which pass the EWPT have m, > 2TeV and ¢’ as the LFR, with mg ~ 500 GeV,
the other resonances being heavier than 1TeV.

Two bidoublets: Ng = 2, Ng =1, N, =1, N, = 1. In this case the LFR can be
either the singlet or the lightest Y = 7/6 doublet, their masses being always below ~ 1 TeV,
see figure 12(b). Analogously to the previous case, the vector resonance can be heavy and
AS small. The EWPT select the points with the singlet as lightest state, mg ~ 500 GeV,
and with m, > 2TeV.
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Figure 12. Mass of the LFR, before EWSB, as a function of the Higgs mass. The green circles
represent the (lightest) singlet while the purple triangles represent the (lightest) exotic doublet
with Y = 7/6. The range of the parameters in the model (a) is the same as in figure 5. For the
models (b,c) we took all the fermion masses m;q, m;s € [0,8f] and a, € [1/v/2,2], while ¢, and m,,
have been obtained by fixing respectively myop and &. In the log. divergent case, (d), the range is
mqg,ms, € € [0,8f] while ¢, has been obtained by fixing my.,. EWPT and the bound (5.1) have
not been imposed.

Two singlets and bidoublets: Ng = 2, Ng¢ = 2, N, = 1, N, = 1. The most
general solution for eq.(3.27) is given in terms of four angles and two mixings:

€40 = (408840, €4sinbyq), €95 = (€gco8ys, €4sinbys), (£5)
€@ = (ercos by, € sinbyg), €rs = (ercosbig, € sinbyg). '

Now one can solve eq.(3.28) for one of the remaining parameters, in the parameter scans
we choose to solve it for €, as this allows us to go in the light singlet region. The scan
shows that the LFR tends to be the first singlet, see figure 12(c). As in the previous two
cases, the points which pass the EWPT and the direct bound (5.1) have m, > 2TeV, t/
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as the LFR with mg =~ 400 — 1000 GeV, the other resonances being generally heavier than
1TeV.

Minimal model with logarithmic divergence. As we have seen above, the minimal
model with Ng = Ng = N, = N, = 1 is not viable because of a too light vector resonance,
which implies a too big S parameter. This problem can be circumvented by relaxing the
second Weinberg sum rules, so that the Higgs potential keeps a logarithmic divergence. This
obviously implies that the MHP hypothesis is no longer defendable, since local operators
have to arise in order to renormalize the logarithmic divergence. In other words, the
coefficients ’yéNDA) and W}NDA) introduced in eq. (3.2) run and can be assumed to be
vanishing only at a given energy scale. One could however hope that their impact is
somehow small, so that it is still possible to make good estimates for the parameter &£
integrating the form factors only up to the cutoff A ~ 4xwf. To satisfy the first Weinberg

sum rule in the fermion sector we can assume that
€95 = —€40 = €q; €15 = €1Q = €. (E.6)

The logarithmically divergent term in s is proportional to the square of the mixing pa-
rameters, vy o (e — €2)log A/m where m is a generic fermion mass. This is the same
effect seen when adding more fermions which would allow higher values of v and, there-
fore, heavier vector masses. Doing a numerical scan of such model we indeed obtain these
results but, on the other side, we notice that the physics (that is, the value of £ and mp)
is too sensitive to the value of A: changing it by a factor of 2 has an O(1) effect on these
observables, making the model unpredictable.

We can adopt another approach to deal with the logarithmic divergence, which is
accepting that v, and therefore &, is uncalculable. Assuming a given value of £ and using
eq. (4.3) we can still compute the Higgs mass, being § finite. The relation vf ~ —~,,
connecting the fermion and the gauge sector in a crucial way, is now lost. Given that 5, <
By, as far as the Higgs potential is concerned, the gauge sector is completely negligible and
thus unconstrained (see footnote 23). This allows the model to pass the EWPT, although
in a somewhat trivial way. Neglecting the gauge sector and performing a parameter scan
for the minimal model presented above, we still obtain that a light Higgs implies light
fermionic resonances, as can be seen from figure 12(d).

Similar considerations would of course apply to the non-minimal models. As far as
the Higgs sector is concerned, the price to be paid is high since EWSB is no longer under
control. Moreover, as we have seen, non-minimal models are viable without the need of
relaxing the second Weinberg sum rules. For these reasons, we have decided to not explore
any further models where a logarithmic divergence in the Higgs potential is kept.
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