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1 Introduction

The non-linear realization of symmetries is a cornerstone of modern quantum field theory.

While the seminal papers [2, 3] treated non-linearly realized internal symmetries, the ex-

tension to space-time symmetries was studied in [4, 5]. The main qualitative difference

between the two cases is that for space-time symmetries the number of Goldstones is less

than the number of broken generators (the so-called “inverse Higgs phenomenon” [5]).

In this paper we study the non-linear realization of the 4-dimensional conformal group,

SO(4,2), where a single Goldstone appears, the dilaton.

Symmetries can be non-linearly realized on the fields of the theory in various ways,

depending on how the coset space is parametrized. In the case of the conformal group

two possibilities stand out. One is the representation constructed via the effective metric

gµν = e−2πηµν . A covariant action for the effective metric g non-linearly realizes SO(4,2), if

the dilaton π transforms in such a way to reabsorb the conformal factor induced by a Weyl

transformation of the ordinary metric. We will refer in the following to this non-linear

realization of the conformal group as the “Weyl” representation.

A second representation emerges naturally in the context of the AdS/CFT correspon-

dence where SO(4,2) appears geometrically as the isometry group of the 5-dimensional

AdS space. An extended object (brane) at fixed radial position in AdS5 breaks the confor-

mal group to Poincaré. The scalar describing the brane position non-linearly realizes the

SO(4,2) group, but in a way which differs from the Weyl representation. We will call this

non-linear realization the “DBI” representation, since the Dirac-Born-Infeld (DBI) action

of the brane represents the simplest operator in this representation. The Weyl and DBI
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representations are related by an involved redefinition of the fields and the coordinates,

remarkably found in [1] to all orders in a derivative expansion, through a generalization of

the standard coset construction.

The aim of this paper is to study the physical properties of the mapping between

the two representations. First of all, in section 2, we will show that this mapping can be

understood in a geometric way as a change of coordinates in AdS5. Starting from the DBI

representation, where the brane fluctuates in the unperturbed AdS5 metric, one can go to

a gauge where the brane is rigid at a fixed radial coordinate. This induces a conformal

factor in the metric on the boundary of AdS5 that precisely corresponds to the dilaton π

of the Weyl representation. In section 3 we review the coset construction of the Weyl and

DBI representations and their relation, following [1].

A field redefinition, even if it involves a field dependent coordinate change, will lead to

the same S-matrix scattering amplitude in Minkowski space: indeed this is what happens

in the case at hand, as we verify in few examples in section 5. The mapping of the two

theories become more interesting when we are not interested in scattering elements, but in

non-linear classical solutions and perturbations around them. This is the case for conformal

operators which give equations of motion up to second order in derivatives: the conformal

Galileons [6, 7], considered in section 4. Their interest lies in the possibility of studying

in the regime of validity of the Effective Field Theory (EFT) non-linear solutions that

lead to interesting modifications of gravity [6] and novel cosmological evolutions (see for

instance [8–10]). There are two sets of conformal Galileons, depending on which represen-

tation (Weyl or DBI) we are using. We show that the mapping of the two representations

sends conformal Galileons in the Weyl representation (denoted Weyl Galileons for short in

the following) into conformal Galileons in the DBI representation (denoted DBI Galileons

from now on) and viceversa. This is quite easy to understand using our geometric view of

the mapping as a change of coordinates in AdS5, since a change of gauge cannot modify

the property of Galileons of having second order equations of motion. The mapping is very

non trivial since even the simplest operators in the Weyl representation, the kinetic dilaton

and potential terms, are both mapped into a combination of all the five DBI conformal

operators. Similarly the minimal DBI action is mapped into all the five Weyl Galileons.

From this standpoint all the conformal Galileons appear much less “exotic”, as they can

all be obtained from the simplest operators going in the other representation.

The mapping of non-trivial solutions raises some issues about super-luminality, defined

in terms of the Minkowski light-cone, as we discuss in section 6. We will see that solutions

whose perturbations are strictly subluminal, and therefore considered healthy, are mapped

into solutions whose perturbations are on the verge of super-luminality, that would be

considered pathological. (In particular the two Genesis scenarios of [9] and [10] are mapped

into each other.) This raises the issue of how to interpret the constraint of absence of

superluminality [11]. A complete answer lies beyond the scope of this paper and we hope

we will come back to it in the near future. Conclusions and possible developments are

discussed in section 7.

– 2 –



J
H
E
P
1
0
(
2
0
1
3
)
0
4
0

2 The AdS change of coordinates

The spontaneous breaking of the conformal group SO(4,2) to Poincaré is usually described

in two different representations.1 The Weyl representation is the standard non-linear real-

ization of dilatations and special conformal transformations in terms of the dilaton π(x):

δπD = (1− xµ∂µπ)c , (2.1)

δπKµ
= (−2xµ − x2∂µπ + 2xµx

ν∂νπ)b
µ , (2.2)

with c and bµ being the parameters of the infinitesimal transformations. An action for π

which is invariant under the conformal group is conveniently written in terms of curvature

invariants built out of the effective metric gµν = e−2πηµν .

In the DBI representation it is useful to think of SO(4,2) as the group of isometries of

AdS5. In the presence of a probe 3-brane the subgroup ISO(3,1) is linearly realized, while

the other isometries are broken. If we have a non-dynamical AdS5 background

ds2 =
L2

z2
(dxµdx

µ + dz2) (2.3)

and a brane in the position

z̄(x) = L eq(x)/L , (2.4)

the leading order brane action is given by the usual Nambu-Goto action

SNG = − 1

L4

∫

d4x e−4q/L

(

√

1 + e2q/L(∂q)2 − 1

)

. (2.5)

The branon field q(x) can be seen in this case as the Goldstone boson of the broken

transformations [12], with SNG being the leading order terms in an expansion in invariants.

The non-linearly realized isometries of SO(4,2) act on q(x) as:

δqD̂ =

(

1− 1

L
xµ∂µq

)

c , (2.6)

δqK̂µ
=

(

− 2xµ − L∂µq(e
2q/L − 1)− 1

L
x2∂µq +

2

L
xµx

ν∂νq

)

bµ . (2.7)

Notice that the second term in (2.7) does not appear in the Weyl representation (2.2).

How are these two representations connected? The most intuitive answer can be given

by thinking in terms of the rules of the AdS/CFT correspondence. In the absence of any

brane, an isometry of AdS can be seen as a conformal transformation on its boundary at

z = 0. As said before, the presence of a brane in AdS breaks spontaneously some of its

isometries, with the branon q being the corresponding Goldstone field. We can now look

for a change of coordinates (xµ, z) → (yµ, w) such that the brane in the new coordinates is

at fixed w and the boundary 4D metric is conformally flat (this was analyzed at the linear

level in [13] and neglecting higher derivative terms in [14]). In the new coordinates the

1In this paper we focus on the 4D conformal group only, but our considerations can straightforwardly

be extended to other space-time dimensions.
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asymptotic conformal factor of the 4D metric will play the role of the dilaton π. In other

words, such a change of coordinates gives the relation between the two representations and

trades the branon field q for the dilaton π in the Weyl representation.

Let us work it out explicitly: we want to perform the diffeomorphism (xµ, z) → (yµ, w)

such that in the new coordinates the brane is at fixed w

w̄(y) = L (2.8)

and with gauge conditions

gµ5 = 0 , g55 = L2/w2 . (2.9)

Consider a change of coordinates

xµ = yµ + Fµ(y, w) , z = w eG(y,w) , (2.10)

with

Fµ = −w2

2
eG(y,w)+π(y)ηµν∂νπ(y) , G = π(y)− log

(

1 + w2 e
2π(y)

4
(∂π(y))2

)

. (2.11)

The function π(y) is arbitrary for the moment. It is straightforward to check that, indepen-

dently of the choice of π(y), this change of coordinates satisfies the gauge conditions (2.9).

The first condition reads

∂Fµ

∂w
+

∂Fν

∂w

∂F ν

∂yµ
+ we2G

(

1 + w
∂G

∂w

)

∂G

∂yµ
= 0 , (2.12)

while the second becomes

e−2G

(

∂Fµ

∂w

)2

+ 2w
∂G

∂w
+

(

w
∂G

∂w

)2

= 0 . (2.13)

The function π(y) is fixed by the requirement that the brane is now at constant w: w̄(y) =

L. Using (2.4) and (2.10), this condition reads

Leq(x)/L = Leπ(y)
(

1 +
L2

4
e2π(y)(∂π)2

)−1

. (2.14)

The metric in the new coordinates reads

ds2 =
L2

w2

(

gµν(y, w) dy
µdyν + dw2

)

. (2.15)

Close to the boundary w = 0, the metric gµν can be expanded as

gµν = ηµνe
−2π(y) +O(w2) . (2.16)

Therefore π is the asymptotic conformal factor of the 4D metric in the new coordinates

and transforms as the dilaton in (2.1) and (2.2). It also corresponds to the radion, when

we truncate the AdS space by a UV brane at z = z0.
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This geometric picture makes evident the origin of the relation between the Weyl

and DBI representations but somehow it does not explain how the change of coordi-

nates (2.10), (2.11) can be found. In the next section, following [1], we will apply the

technique of the coset construction to the case of SO(4,2) broken to Poincaré in the

two different representations of the conformal algebra. The same coset manifold will be

parametrized in terms of space-time coordinates and Goldstone fields in two different ways

and then by equating the two Cartan forms we will get explicitly the relation between the

two set of coordinates.

The reader interested in the application of this equivalence to the special case of

Galileons can jump directly to section 4 where the mapping between DBI and Weyl

Galileons is derived.

3 Coset construction

In this section we review the coset construction of the two representations and their relation:

we will follow closely [1] to which we refer for further details.2 The Weyl representation is

defined by the coset element

g = ey
µPµeπDeΩ

µKµ , (3.2)

where Pµ, D and Kµ are the standard generators of the conformal group. The DBI repre-

sentation is on the other hand defined by the coset

g = ex
µPµeqD̂eΛ

µK̂µ , (3.3)

where

K̂µ ≡ 1√
2L

Kµ +
L√
2
Pµ , D̂ ≡ 1√

2L
D . (3.4)

Going through the coset construction we get the Cartan form in the two representations.

In the Weyl one we have

g−1dg = e−πdyµPµ + (dπ − 2e−πΩµdy
µ)D − 4e−πΩµdyνMµν

+
(

dΩµ − Ωµdπ + e−π(2Ωνdy
νΩµ − Ω2dyµ)

)

Kµ ,
(3.5)

with Mµν the Lorentz generators.3 We can set to zero the expression multiplying the

dilatation generator D in (3.5) by imposing the so called inverse Higgs constraint [5]. In

this way we fix Ωµ:

Ωµ(y) =
1

2
eπ∂µπ(y) , (3.6)

2In this paper we use the (−,+,+,+) signature, while Bellucci, Ivanov and Krivonos [1] use (+,−,−,−).

Some additional change of notation:

q =
1√
2
qBIK , π = ΦBIK , L =

1√
2 mBIK

. (3.1)

3Here and in the following, all indices are raised and lowered with ηµν .
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where the derivative is with respect to the coordinates yµ. In the DBI representation we

have

g−1dg =

[

e−q/L

(

dxµ − 2λµλνdx
ν

1 + λ2

)

+
2λµdq

1 + λ2

]

Pµ

+
1− λ2

1 + λ2

[

dq − 2
e−q/Lλµdx

µ

1− λ2

]√
2D̂

+
1

1 + λ2

[

dλµ − 1

L
λµdq − e−q/L

L
(λ2dxµ − 2λµλνdx

ν)

]√
2K̂µ

+
2e−q/L

1 + λ2

[

1

L
(λνdxµ − λµdxν) + eq/L(λνdλµ − λµdλν)

]

Mµν ,

(3.7)

where

λµ = Λµ
tan(Λ/

√
2)

Λ/
√
2

, Λ =
√

ΛµΛµ . (3.8)

The inverse Higgs constraint gives now

λµ(x) =
∂µq(x) e

q(x)/L

1 +
√

1 + e2q(x)/L(∂q(x))2
. (3.9)

By equating the Cartan forms one finds the relation between the two representations

yµ = xµ + Leq(x)/Lλµ(x) , π(y) =
q(x)

L
+ log(1 + λ2(x)) , Ωµ(y) =

1

L
λµ(x) . (3.10)

It is straightforward to check that the first and second relations in (3.10) coincide respec-

tively with (2.10) and (2.14) evaluated at w = L.

It is useful to have formulas which relate the coset constructions to more standard

geometric tensors. In the Weyl representation, one defines the covariant derivative of the

Goldstone [1]

DνΩµ =
e2π

2

(

∂µ∂νπ + ∂µπ∂νπ − 1

2
(∂π)2ηµν

)

. (3.11)

One can thus write the Ricci tensor of the effective metric gµν = ηµνe
−2π as

e2πRµν(g) = 4DµΩν + 2ηµνD
αΩα . (3.12)

In the DBI representation, the covariant derivative reads

Dµλ
ν =

1

1 + λ2

(

eq/L
(

∂µλ
ν − 2

λµλ
ρ∂ρλ

ν

1 + λ2

)

− 1

L
λ2δνµ

)

. (3.13)

In the q coordinates, the AdS metric (2.3) reads

ds2 = e−2q/Ldxµdxµ + dq2 . (3.14)

From (3.7) one gets the brane induced vierbein and metric, and their inverses:

Eα
ν = e−q/L

(

δαν + 2
λνλ

α

1− λ2

)

, Gµν = Eα
µE

β
ν ηαβ = e−2q/Lηµν + ∂µq∂νq ,

(E−1)αµ = eq/L
(

δαµ − 2
λµλ

α

1 + λ2

)

, Gµν = e2q/Lηµν − e4q/L∂µq∂νq

1 + e2q/L(∂q)2
. (3.15)
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The extrinsic curvature in curved space reads

Kµν =
∂XA

∂xµ
∂XB

∂xν
∇AnB , (3.16)

where nA is a vector orthonormal to the surface, namely

∂XA

∂xµ
nBĜAB = 0 , nAnBĜAB = 1 , (3.17)

with Ĝ the 5D AdS metric (3.14). In (3.16) and (3.17), XA is the brane embedding vector.

In the static gauge we take it to be

XA = (xµ, q(x)) . (3.18)

Explicitly, we find

Kµν = − 1
√

1 + e2q/L(∂q)2

(

∂µ∂νq +
1

L
∂µq∂νq +

1

L
Gµν

)

,

Eσ
µE

ρ
νDσλρ = −1

2

(

Kµν +
1

L
Gµν

)

.

(3.19)

Finally, we report useful formulas relating the Weyl and DBI representations:

∂yν

∂xµ
= eq/L(1 + λ2)Eρ

µ(δ
ν
ρ + LDρλ

ν) ≡ eq/L(1 + λ2)Eρ
µT

ν
ρ ,

T ν
ρ =

1

2
δνρ − L

2
Kαβ(E

−1)αρ (E
−1)βν ,

(3.20)

and the important relations between the covariant derivatives:

DνΩµ =
1

L
(T−1)ωνDωλµ , (3.21)

Dνλµ = LTω
ν DωΩµ . (3.22)

Thanks to (3.21) and (3.22), and (3.12), (3.19), relating covariant derivatives to geometric

tensors, we can directly map geometric invariants from one representation to the other.

We will see this map in some more detail for the relevant case of the Galileons in the

next section.

4 Galileon mapping

So far our discussion has been general and valid for any possible conformal action. We now

focus on a particular set of five operators in each representations: the conformal Galileons.

We will show that, in going from one representation of the conformal group to the other,

the five Galileons are mapped into themselves: each Weyl Galileon is mapped into a linear

combination of the DBI Galileons and viceversa.

Let us start by introducing the two sets of operators. The Weyl Galileons were intro-

duced in [6] as a natural extension of the Galilean symmetry to the conformal group (in

– 7 –
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the Weyl representation). The Weyl Galileons are particular linear combinations of the

conformal operators with 2n derivatives in which terms of the form (∂∂π)n combine to give

total derivatives and have second order equations of motion.

There are only five Weyl Galileons in 4D:

Lπ1 = −e−4π ,

Lπ2 = −L2e−2π(∂π)2 ,

Lπ3 = L4(∂π)2
(

−[Π] +
1

2
(∂π)2

)

, (4.1)

Lπ4 = L6e2π(∂π)2
(

−[Π]2 + [Π2]− 1

2
(∂π)2[Π]− 1

2
(∂π)4

)

,

Lπ5 = L8e4π(∂π)2
[

− [Π]3 + 3[Π][Π2]− 2[Π3]

−3(∂π)2([Π]2 − [Π2])− 5(∂π)4[Π]− 11

4
(∂π)6

]

.

Some explanation of the notation is in order. Π is the matrix of second derivatives Πµν ≡
∂µ∂νπ. For traces of the powers of Π we write [Πn] ≡ Tr(Πn), e.g. [Π] = ∂µ∂

µπ, [Π2] =

∂µ∂νπ∂
µ∂νπ. We define the contractions of the powers of Π with ∂π using the notation

[πn] ≡ ∂π · Πn−2 · ∂π, e.g. [π2] = ∂µπ∂
µπ, [π3] = ∂µπ∂

µ∂νπ∂νπ.
4 Powers of L have been

introduced in (4.1) to make the operators dimensionless. With the exception of Lπ3, the

Weyl Galileons can also be written in terms of the metric

gµν = ηµνe
−2π (4.3)

and its curvature:5

Lπ1 =−
√
−g ,

Lπ2 =− L2

√−g

6
R ,

Lπ4 =− L6

√−g

4

(

− 7

36
R3 +R(Rµν)

2 − (Rµν)
3

)

,

Lπ5 =L8

√−g

2

(

93

2 · 64R
4 − 39

4 · 62R
2(Rµν)

2 +
5

12
R(Rµν)

3 +
3

16
(R2

µν)
2 − 3

8
(Rµν)

4

)

.

(4.4)

For Lπ3 an analogous expression only exists in d 6= 4 and one can only write Lπ3 as a d → 4

limit [6, 17].

The DBI Galileons were introduced in [7]: they are all the operators in the DBI

representation that preserve second order equations of motion. There are again five of

4It is useful to note the following total derivative

∂µ

[

e4π(∂π)6∂µπ
]

= e4π(∂π)2
[

�π(∂π)4 + 6[π3](∂π)2 + 4(∂π)6
]

. (4.2)

If we add 5L8/7 of this to Lπ5 we get the same form as given in [7, 15] up to the overall normalization.
5These expressions will coincide with (4.1) up to total derivatives.
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them [16]:6

Lq1 =− e−4q/L ,

Lq2 =− e−4q/L
√

1 + e2q/L(∂q)2 ,

Lq3 =Lγ2[q3]− Le−2q/L[Q] + e−4q/L(γ2 − 5) ,

Lq4 =L2γ([Q]2 − [Q2]) + 2L2γ3e2q/L([q4]− [Q][q3])

− 6e−4q/L 1

γ

(

2− 3γ2 + γ4
)

− 8Lγ3[q3] + 2Le−2q/Lγ
(

4− γ2
)

[Q] ,

Lq5 =2L3γ2e2q/L
(

[Q]3 − 3[Q][Q2] + 2[Q3]
)

+ 6L3γ4e4q/L
[

2([Q][q4]− [q5])− ([Q]2 − [Q2])[q3]
]

− 36L2e2q/Lγ4([Q][q3]− [q4]) + 6L2γ2(3− γ2)([Q]2 − [Q2])

+ 3Lγ2(3− 20γ2)[q3]− 3Le−2q/L(3− 20γ2 + 8γ4)[Q]

− 3e−4q/L(15− 31γ2 + 12γ4) .

(4.5)

We use here the same notation as for the Weyl Galileons and

γ ≡ 1
√

1 + e2q/L(∂q)2
. (4.6)

Notice that the NG action (2.5) is given by a combination of the first two DBI Galileon

terms in (4.5), LNG = L−4(−Lq1 + Lq2). Also in this case it is convenient to think about

these operators in geometric terms [7, 16]. One writes operators on a probe brane in AdS5,

preserving second order equations of motion. They can be written in terms of the metric

Gµν induced on the brane (3.15),

Gµν = e−2q/Lηµν + ∂µq∂νq . (4.7)

This is their explicit form:

Lq1 =− e−4q/L ,

Lq2 =−
√
−G ,

Lq3 =L
√
−G K ,

Lq4 =− L2
√
−G R = −L2

√
−G

(

12

L2
− [K]2 + [K2]

)

,

Lq5 =
3L3

2

√
−G KGB =

3L3

2

√
−G

(

6KL−2 − 8

3
[K3] + 4[K][K2]− 4

3
[K]3

)

.

(4.8)

6The expressions of Lq4 and Lq5 in [16] contain typos that we corrected. We thank G. Trevisan for help

with this.
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Here Kµν is the extrinsic curvature of the brane (3.19). The operator KGB is the boundary

term associated to the Gauss-Bonnet term in the bulk [7]. In the last two equations we have

written the operators in terms of the extrinsic curvature, using the Gauss-Codazzi relation.

At first, there is no obvious reason why the two sets of Galileons should be mapped

into each other by the change of representation. The fact that they both give second order

equations of motion does not help, since this property is not preserved under a general field

redefinition. The AdS picture we developed in section 2, on the other hand, clearly shows

the link between the two sets of Galileons. The two representations are related by a change

of coordinates: the property of having second order equation of motion cannot depend on

the choice of coordinates. Given that the two sets of Galileons are the only operators with

this property, we argue that the two sets must be mapped into each other.

It is however useful to verify the mapping in detail. This is how the Weyl Galileons

are written in terms of the DBI ones and viceversa:



















Lπ1

Lπ2

Lπ3

Lπ4

Lπ5



















=



















0 1
2

7
64 − 1

24 − 1
192

0 0 − 1
16 − 1

12 − 1
48

4 0 −11
8 0 −1

8

0 0 −3
2 2 −1

2

0 −96 21 8 −1





































Lq1

Lq2

Lq3

Lq4

Lq5



















, (4.9)



















Lq1

Lq2

Lq3

Lq4

Lq5



















=



















1 −1 1
4 − 1

24
1

192

1 −1
2 0 1

48 − 1
192

4 −1 0 − 1
24

1
48

0 −6 0 1
4 0

−12 −21 0 −7
8 − 1

16





































Lπ1

Lπ2

Lπ3

Lπ4

Lπ5



















. (4.10)

To get these relations we started from (4.4), the expression of the Lπi’s in terms of

curvature invariants. Using (3.12), (3.21), (3.19) and (3.20) one is able to map these

operators in the DBI representation and write them directly in terms of the extrinsic

curvature Kµν . From this it is easy to get to the Lqi’s, using their expression (4.8) in terms

of the extrinsic curvature. Notice that in this way we always produce a determinant of

the induced metric on the brane, so that we never generate the term Lq1. This procedure

works except for Lπ3, since its geometric expression would require a complicated d → 4

limit. Instead, we prefer to fix this row of the matrix looking at the inverse transformation.

We start from the definition of the Lqi’s in terms of the brane geometry, (4.8), and express

them in terms of the Lπi using (3.19), (3.22) and (3.12), where in (3.22) the matrix Tω
ν

should be seen as the inverse of

(T−1)ων = δων − L2DνΩ
ω . (4.11)

This procedure does not work for Lq1, but in this case we can directly use eqs. (3.10)

and express the result in terms of the Weyl Galileons (4.1). In this way we have derived

the whole inverse map (4.10). By computing its inverse, we have fixed the last unknown
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row of the map (4.9) and checked that the remaining entries of the matrices coincide. As

a further check, we have also computed explicitly the transformation of Lq2 and written it

in terms of the Weyl Galileons (4.1): the result agrees with the expression obtained using

the curvature invariants.

It is important to point out a subtlety in the procedure above. The DBI Galileons

correspond to the Lovelock invariants on the brane and the boundary terms associated to

the Lovelock terms in the 5D bulk [7]. These are the only terms that guarantee second

order equations of motion. If one continues the list of (4.8), the following term, Lq6, would

be the Gauss-Bonnet term on the brane. This, however, is a total derivative. Written in

terms of the extrinsic curvature it reads

Lq6 = L4
√
−G (R2 − 4R2

µν +R2
µνρσ)

= L4
√
−G

(

24L−4 − 4[K]2L−2 + 4[K2]L−2

−6[K2][K]2 + 3[K2]2 + [K]4 − 6[K4] + 8[K][K3]
)

.

(4.12)

If we start from the Weyl Galileons and go through the above procedure we will generate

terms of the form K4. These, by themselves, do not form a total derivative, but only

when combined with lower order terms to give rise to (4.12). This has to be taken into

account since it contributes to the coefficients of the other Lqi’s. This subtlety exists only

at order K4, since Lovelock invariants of higher order are not total derivatives, but vanish

identically. Notice that the same thing does not occur in the Weyl representation. There

is no combination Lπ6 of the schematic form R5
µν which is a total derivative. Indeed all

terms of the form (∂2π)5 must combine to form a total derivative in order to keep second

order equations of motion. But, as explained in [6], there are no total derivatives of the

form (∂2π)n with n > 4. Thus the terms (∂2π)5 must cancel one by one and this implies

that the whole linear combination of R5
µν terms vanishes. This also explains the fact that

in going from the DBI to the Weyl representation all terms which are generated beyond the

five Lπi’s vanish identically, since it is not possible to write any total derivative in terms

of the curvature tensor. The same thing happens in the opposite direction, with the only

exception of the Lq6 we just discussed.

Notice that in the map (4.9) the term Lq1 only contributes to Lπ3. Viceversa, in the

inverse map (4.10), the term Lπ3 only contributes to Lq1. This is a manifestation of the fact

that neither Lπ3 nor Lq1 can be written in terms of curvature invariants. The first has been

shown to come from the Wess-Zumino term associated with the Weyl anomaly [17], the

latter come from Wess-Zumino couplings of D-branes in UV string realizations. See [18]

for an interpretation of Lq1 and Lπ3 as Wess-Zumino terms associated with the coset

construction reviewed in section 3.

5 Equivalence of the S-matrix

The Weyl and DBI non-linear representations of the conformal group are related by (2.10)

and (2.14). The mapping (2.14), properly expanded in derivatives, can be seen as a partic-

ular (though highly non-trivial) implicit field redefinition which does not affect the space-

time coordinates. Since the S-matrix is known to be invariant under such field redefinitions,
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on-shell scattering amplitudes should be the same in both representations. We explicitly

show this equivalence for the particular case of 2 → 2 dilaton scattering around Minkowski.

In the DBI representation we start from the NG action (2.5). Expanding in derivatives

up to (∂q)4 terms, we get

LNG = −1

2
(∂q)2 +

1

8f4
(∂q)4 , (5.1)

where we have canonically normalized q and have defined the dilaton decay constant

f2 ≡ 1

L2
. (5.2)

From (5.1) a straightforward computation gives, at tree-level,

ADBI(2 → 2) =
s2 + t2 + u2

4f4
, (5.3)

where s, t, and u are the usual Mandelstam variables. Notice that (5.3) is tree-level exact,

since higher order terms from the expansion of the square root in the NG action necessarily

appear with more than four dilaton fields.7 The map (4.10) gives

LNG =
1

L4
(−Lq1 + Lq2) =

1

L4

(

1

2
Lπ2 −

1

4
Lπ3 +

1

16
Lπ4 −

1

96
Lπ5

)

. (5.4)

By performing the field redefinition8

π → π +
1

2
π2 − 1

4
L2(∂π)2 (5.5)

all terms cubic in π can be removed from the action (5.4). Modulo �π terms that vanish

on-shell, and keeping terms involving no more than 4 dilatons, one gets back the action (5.1)

in terms of a canonically normalized dilaton field π. It then trivially follows that

ADBI(2 → 2) = AWeyl(2 → 2) . (5.6)

Other simple checks of the mapping (2.14) can be performed. For instance, in the Weyl

representation, the action Lπ2 describes a free dilaton (this is easily seen by defining Ω =

1− exp(−π)) and should map to a free theory as well in the DBI representation. Indeed,

one can check that the 2 → 2 amplitude vanishes.

In the Weyl representation, the 2 → 2 dilaton scattering at low energies is governed by

the Lπ3 term. Positivity of the total cross-section implies that the coefficient multiplying

this term has to be negative and, by means of the map (4.9), this implies that

cq1 < 0 . (5.7)

7This is of course an artifact of our choice of action. Starting from an effective action involving higher

order invariants will in general give rise to higher order corrections in (5.3).
8The reader may think we are cheating since we show the equivalence of our complicated field redef-

inition (3.10) using here another (much simpler) field redefiniton. On the other hand the equivalence of

the S-matrix for these simple field redefinitions is well understood. Moreover, one can verify that the

action (5.4) gives the amplitude (5.3) directly, without field redefinitions.
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This bound is in particular respected in the NG action, where a definite positive kinetic

term for q and absence of a vacuum energy requires cq1 = −cq2 = −1.

Let us check the equivalence in the presence of external sources by considering the

addition of a massless scalar field φ. In the Weyl representation, the action reads

Sπ+φ = − 1

L2

∫

d4y e−2π(∂φ)2 . (5.8)

At tree-level, the scattering φφ → φφ can only be induced by the exchange of a single π,

coming from the expansion of the exponential factor. By Bose symmetry, the amplitude is

proportional to s+ t+ u = 0 and is trivial.

In the DBI representation the simple-looking Lagrangian turns into a complicated form

Sπ+φ → Sq+φ = − 1

L2

∫

d4x detT (x)
(1 + λ(x)2)3

1− λ(x)2
e−2q(x)/L(∂yφ(y))

2 , (5.9)

The tree-level scattering φφ → φφ can still be induced by the exchange of a single dilaton.

Expanding (5.9) at leading order in q, we get

Sq+φ = − 1

L2

∫

d4x

(

e−2q/L(∂φ)2 +
L

2
�q(∂φ)2 + L∂νφ∂µq∂µ∂νφ

)

= − 1

L2

∫

d4x e−2q/L(∂φ)2 , (5.10)

since the last two terms combine in a total derivative. At this order, the action (5.9)

coincides with (5.8) and results in the same trivial amplitude. This simple exercise shows

that the equivalence between the DBI and the Weyl representations hold in presence of

additional fields.

6 Lightcones

The equivalence of the Weyl and DBI representations provided by our mapping presents

also puzzling aspects, since it has been pointed out that the theories based on the former

can lead to superluminal propagation of fluctuations in certain backgrounds [8, 9], while

no superluminal propagation is possible in theories based on the NG action (2.5).

Let us consider the propagation of fluctuations around Minkowski space, in the presence

of a background configuration q0(x) of the form

L∂µe
q0(x)/L = Cµ , (6.1)

where Cµ is a constant vector. We assume that (6.1) is a classical solution of the NG

action (2.5) with the addition of suitable sources. For simplicity, we consider C2 ≪ 1.

Let us analyze the fluctuations of the canonically normalized field χ = e−q/L/L. Up to

quadratic order in both the fluctuations and the background Cµ, the NG action (2.5) reads

SNG =

∫

d4x

(

− 1

2
(∂χ)2 +

C2

4
(∂χ)2 +

1

2
(∂χ · C)2

)

. (6.2)
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The equation of motion of the fluctuations χ(x) coming from (6.2), modulo an overall

constant rescaling, is
(

ηµν − CµCν
)

∂µ∂νχ = 0 . (6.3)

The second term in (6.3) implies that free plane waves of the DBI dilaton propagate

strictly sub-luminally around the background (6.1), with respect to the Minkowski light-

cone defined by ηµν .

The background (6.1) has the nice property of being essentially invariant under the

mapping (3.10). One has

L∂µe
π0(y) =

2Cµ

1 +
√
1 + C2

= Cµ

(

1 +O(C2)
)

. (6.4)

Within the same approximations as above, the equation of motion for the fluctuations in

the canonical field φ = e−π/L reads

ηµν∂µ∂νφ(y) = 0 , (6.5)

namely free plane waves of φ propagate at the speed of light, with respect to the Minkowski

light-cone. We see that the change of representation maps the Minkowski light-cone of the

Weyl representation to the light-cone of the induced metric on the brane (see (6.3)) in the

DBI case which is, modulo an overall factor,

Gµν = ηµν − CµCν + . . . . (6.6)

A relevant special case of (6.1) is provided by the Genesis scenarios, based on Galileon

operators (either in the Weyl [9] or DBI representations [10, 19]) with an SO(4,1) invariant

background, in which

eπ ∝ t , eq/L ∝ t . (6.7)

The two solutions (6.7) are related by

eπ = απ · y0 → eq/L = αq · x0 (6.8)

with

αq = απ

(

1 +
L2α2

π

4

)−1

and x0 = y0 ·
1 + L2α2

π

4

1− L2α2
π

4

. (6.9)

The time x0 of the AdS parametrization is dilated compared to the dilaton one, y0, so

that the speed of propagation will be subluminal in the AdS case. Indeed in [10, 19] it is

found that the symmetries in the AdS parametrization force a subluminal propagation by

a factor 1/γ (the relativistic factor of the brane motion in AdS)

γ2 =
1

1− L2

α2
q

. (6.10)

This matches exactly with what we get starting from a luminal propagation in the π

variables and taking into account the time dilation above.
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As argued in [8, 9] the luminal propagation of perturbations in the Weyl case is prob-

lematic. A small deformation of the solution is enough to allow superluminal propagation.

This superluminality is measurable within the EFT, unless its regime of validity is limited

to a scale lower than 1/t, but in this case the solution itself cannot be trusted. In the

DBI variables the light-cone is closed with respect to the Minkowski metric and a small

deformation cannot induce any superluminality. On the other hand, the light-cone is null

with respect to the induced brane metric.

It is known that in presence of dynamical gravity the criterion of luminality with respect

to the Minkowski light-cone cannot be used straightforwardly [11], since the natural metric

to use is gµν . In our case gravity is decoupled but the examples above clearly show that a

field-dependent change of coordinates can affect the light-cone in non-trivial backgrounds.

Different couplings of the Galileons with dynamical gravity are possible in the two

representations [7, 8, 15, 20] and the issue is of particular importance when discussing the

violation of the Null Energy Condition. It would be interesting to study how the different

couplings transform under the mapping.

7 Concluding remarks

We have analyzed in this paper various aspects of the field redefinition found in [1], that

relates two different non-linear realizations of the 4D conformal group. We have reinter-

preted the field redefinition geometrically as a change of coordinates in AdS5 and shown

that the conformal Galileons in the two representations are mapped into each other. We

have also found the explicit form of the mapping and its inverse, given in (4.9) and (4.10).

The knowledge of the map also allowed us to explicitly check the equivalence of the 2 → 2

dilaton scattering at low energies in the two representations. Notice that the equivalence

requires that we keep the whole maps (4.9) and (4.10) and we cannot truncate them:

the leading terms in one representation are mapped into all the Galileons in the other

representation and we need all of them to get the same S-matrix.

The mapping becomes more interesting and subtle when applied to non-trivial back-

grounds. In particular, we have shown that in a class of backgrounds essentially invariant

under the mapping (of which the Genesis scenario is a specific case [8–10]), luminal fluc-

tuations in the Weyl representation are mapped to strictly sub-luminal fluctuations in the

DBI representation, where luminality is measured with respect to the Minkowski light-cone.

The luminal Weyl fluctuations are instead mapped to DBI luminal fluctuations, if in the

second case luminality is measured with respect to the induced brane metric. This result

seems to indicate that even when gravity is decoupled, the criterion of luminality around

a Minkowski light-cone is in general not well-defined. The key question is now: given that

the DBI and Weyl representations are different IR descriptions of the same physical sys-

tem, how should we interpret these results? If superluminality (again, with respect to the

Minkowski flat metric) appears in one description but not in the other, is the existence of

a local and causal UV completion of this system ruled out? We do not have a firm answer

to this question, that deserves further work.
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