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Abstract. In this paper we study the transport equation

µt − div(a(t, x)µ) = 0, ut − a(t, x) · ∇u = 0,

in the case where the vector field a(t, x) is monotone in space. The main result is a stability result w.r.t.
weak convergence of a(t, x) of the corresponding flow.

1. Introduction

In this paper, we study the conservative transport equation

(1.1) µt − div(a(t, x)µ) = 0, µ(0) = µ̄,

and the advective transport equation,

(1.2) ut − a(t, x) · ∇u = 0,

in the case where the vector field a(t, x) is monotone in space.
In [7], uniqueness for the conservative equation is obtained in the class of reversible solutions, which are

defined by means of a generalized flow. This flow however is not unique, though its Jacobin determinant
is. The problem is that, given a maximal monotone operator A(t, x), the vector field a(t, x) ∈ A(t, x)
is uniquely determined Ld-a.e. When the measure µ, solution to (1.1) becomes singular w.r.t. Ld, then
depending on the selection a(t, x), one can have multiple solutions, or no solution at all.

In the present paper, we give an explicit expression for the solution to the transport equation by means
of the Filippov flow X(t, x) of the differential inclusion

(1.3) ẋ ∈ −A(t, x),

where A(t, x) is a maximal monotone operator, of which a(t, x) will be a selection. This selection yields a
unique solution to (1.1), stable with respect to perturbations of the maximal monotone operator A(t, x).

In Section 4, in fact, we prove a quantitative estimate for the stability of the Filippov flow with respect
to strong convergence of A in L1((0, T ); L1

loc(Rd)). (Remember that A(t, x) = {a(t.x)} Ld-a.e.)

Theorem 1.1. Let Ai(t), i = 1, 2, be monotone operators in L1((0, T ); L∞loc(Rd)) with the topology
inherited from L1((0, T ); L1

loc(Rd)), and xi(t), i = 1, 2, the solutions to (1.3) with the same initial data
xi(0) = x̄ ∈ B(0, r). Then the following estimate holds:
(1.4)

|x1(t)− x2(t)|2 ≤ C

∫ t

0

(
‖A1(s)‖L∞(B(0,2R)) + ‖A2(s)‖L∞(B(0,2R))

)1−1/d

‖A1(s)−A2(s)‖1/d
L1(B(0,2R))ds,

for some constant C which depends only on the dimension d, and

R = r +
∫ T

0

max{|A1(s, 0)|, |A2(s, 0)|}ds.

We next prove that also weak stability holds for the flow.

Theorem 1.2. Assume that the monotone functions An converge weakly in L1((0, T ); L1
loc(Rd)) to A.

Then the flows Xn generated by An converge locally in C0((0, T )× Rd) to the flow X generated by A.
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In Section 5, we then deduce by a uniqueness theorem from [3] that the unique solution to the conser-
vative transport equation is given by the formula

µ(t) = X(t)]µ(0),

where X(t) = X(t, ·) is the flow of the maximal monotone extension A(t, x) of the vector field a(t, x).
A stability result was previously established in [10], where it is shown that for a sequence of uniformly
bounded monotone functions ak, the solutions to the conservative transport equation converge up to a
subsequence to a solution of the transport equation for some monotone function a.

The solution to the advective equation is the obtained by the duality formulation

(uµ)t − div(auµ) = 0.

It is given by the formula
u(t)(X(t)]µ) = X(t)](u(0)µ).

Finally, we obtain the explicit formula

u(t, X(t, x)) = u(0, x),

by which the duality solution is uniquely determined Ld-a.e. We thus have the following theorem, which
extends the result of [7]:

Theorem 1.3. The solution (in duality sense) of the advective transport equation is uniquely determined
as an L∞ function. Moreover it depends continuously in the L1

loc-norm w. r. t. the weak convergence of
A(t) in L1((0, T ); L1

loc(Rd)).

2. Settings

We consider the differential inclusion

(2.1) ẋ(t) ∈ −A(t, x(t)),

where A(t, x) is a time-dependent quasi-monotone operator, i. e. it is a Ld+1 measurable set-valued func-
tion from [0, T ]× Rd into Rd which for L1-a. e. t fulfills the condition

(2.2) 〈x1 − x2, y1 − y2〉 ≥ −α(t)|x1 − x2|2 for all xi ∈ Rd, yi ∈ A(t, xi), i = 1, 2,

for some α(t) ≥ 0. We assume that

(2.3)
∫ T

0

α(t) dt < +∞.

For L1-a. e. t the operator
A(t, x) + α(t)x

is assumed to be maximal monotone and inclusion (2.1) holds for L1-a. e. t.
For L1-a. e. t ∈ [0, T ], A(t) = A(t, ·) is single-valued Ld-a. e. in its domain (cf. Theorem 2.2 in [4]).

In the following, we will therefore use the same notation both for the set-valued function and for the
Ld-a. e. defined single-valued function. I denotes the identity function on Rd, and |A(t, x)| = max{|y| :
y ∈ A(t, x)}.

We assume that

(2.4)
∫ T

0

‖A(t)‖L∞(K) dt < ∞

for all compact subsets K of Rd, where

‖A(t)‖L∞(K) = ess sup
{|A(t, x)| : x ∈ K

}
.

Note that since for any monotone function A

(2.5) ‖A‖L∞(B(0,R)) ≤ C‖A‖L1(B(0,2R)), ‖A‖BVloc(B(0,R)) ≤ C‖A‖L1(B(0,2R)),

for some constant C independent of B (see [1], section 5), we can require equivalently that
∫ T

0

‖A(t)‖L1(K) dt < ∞,
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i.e. A ∈ L1((0, T ); L1
loc(Rd)). Clearly the above L∞ condition is equivalent to a uniform bound of the

form ∫ T

0

sup
{|y|, y ∈ A(t, x), x ∈ B(0, R)

}
dt < ∞.

for all R > 0. For a survey on monotone functions see [1].
We can reduce the problem to the monotone case α(t) = 0 by the following transformation: by setting

x̃(t) = x(t) exp
(
−

∫ t

0

α(s) ds

)
,

we have that the variable x̃ fulfills the differential inclusion

˙̃x(t) ∈ −Ã(t, x̃(t)),

with Ã(t, x̃) given by

Ã(t, x̃) = A

(
t, x̃ exp

(∫ t

0

α(s) ds

))
exp

(
−

∫ t

0

α(s) ds

)
+ α(t)x̃.

Now let ỹi ∈ Ã(t, x̃i), i = 1, 2, then

ỹi = yi exp
(
−

∫ t

0

α(s) ds

)
+ α(t)x̃i for some yi ∈ A

(
t, x̃i exp

(∫ t

0

α(s) ds

))
,

thus by (2.2)

〈x̃1 − x̃2, ỹ1 − ỹ2〉 = 〈x1 − x2, y1 − y2〉 exp
(
−2

∫ t

0

α(s) ds

)
+ α(t)|x̃1 − x̃2|2 ≥ 0.

Thus Ã(t, x̃) is a monotone operator. Furthermore, for x̃ ∈ B(0, r) we have x = x̃ exp
(∫ t

0
α(s) ds

)
∈

B(0, R) with R = r exp(‖α‖L1(0,T )) < +∞, and therefore
∫ T

0

‖Ã(t, ·)‖L∞(B(0,r)) dt ≤
∫ T

0

‖A(t, ·)‖L∞(B(0,R)) dt + ‖α‖L1(0,T )r.

Thus condition (2.4) holds also for Ã(t, x̃). In the following we will therefore assume that A(t) is maximal
monotone for a. e. t ∈ [0, T ], i. e. it is monotone and its graph is maximal with respect to inclusion
in Rd × Rd. Under these assumptions, a classical result shows the existence of a Filippov flow: for
completeness, we repeat the proof below.

The conditions (2.3) and (2.4) ensure that the trajectories do not blow up in finite time. Indeed, by
(2.1) and the monotonicity of A for L1-a. e. t ∈ [0, T ],

d
dt
|x(t)|2 = 2〈x(t), ẋ(t)〉 ≤ −2〈x(t), y〉 for any y ∈ A(t, 0),

and thus in particular
d
dt
|x(t)| ≤ |A(t, 0)|,

which yields

(2.6) |x(t)| ≤ |x(0)|+
∫ t

0

|A(s, 0)| ds.

Without additional assumptions, the trajectories of (2.1) could collapse to a single point in finite time.
To avoid this, we assume

(2.7) |A(t, x)| ≤ C(1 + |x|)
for a. e. t ∈ [0, T ], all x ∈ Rd. With this bound, the flow will be surjective in Rd at all times t ∈ [0, T ].
We note that many of the following results do not depend on this assumption.
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3. Existence of a solution

A solution of the differential inclusion (2.1) can be constructed by means of the Yosida approximations.
In the following, we generalize the construction in [4], Chapter 3, to the non-autonomous case.

Definition 3.1. We define the Yosida approximation Aλ(t, x) of A(t, x) by setting for L1-a. e. t ∈ [0, T ]

Aλ(t) = λ−1(I − (I + λA(t))−1).

Lemma 3.2. The following holds:
(1) The map (I +λA(t))−1 is non-expansive (and thus in particular single-valued), and Aλ(t) is Lip-

schitz continuous with Lipschitz constant bounded by λ−1 ([4], p. 146, Theorem 2), and monotone.
(2) The graph of Aλ(t) is obtained by shearing the graph of A(t) in Rd × Rd in the following sense:

for all x ∈ Rd,

(3.1) y = Aλ(t, x + λy) ⇐⇒ y ∈ A(t, x).

(3) The Yosida approximations form a semigroup with respect to the parameter λ:

(3.2) (Aλ)µ = Aλ+µ.

(4) |Aλ(t, x)| is monotone in λ:

(3.3) |Aλ+µ(t, x)| ≤ |Aλ(t, x)| for all x ∈ Rd, λ, µ ≥ 0,

where we denote A0 = A.

Proof. We prove only points (2) through (4).
(2) Since (I + λA(t))−1 is single-valued, we have that

(I + λA(t))−1(x + λA(t, x)) = {x}.
(3.1) then follows from Definition 3.1.

(3) By (3.1), we have that

y ∈ A(t, x) ⇐⇒ y = Aλ(t, x + λy) ⇐⇒ y = Aλ+µ(t, x + (λ + µ)y).

Applying (3.1) to Aλ yields that

y = Aλ(t, x + λy) ⇐⇒ y = (Aλ)µ(t, x + λy + µy).

Hence (3.2) follows.
(4) Take any x ∈ Rd, y ∈ Aλ(t, x), z ∈ Aλ(t, x + µy). By the monotonicity of Aλ(t, x), we have

〈y, z − y〉 ≥ 0

and therefore
|z| ≥ |y|.

Using (3.1) and (3.2), the claimed inequality (3.3) follows, since (I + µAλ(t)) is surjective by
Minty’s Theorem ([4], p. 142, Theorem 1).

¤

Proposition 3.3. For any initial datum x(0) = x0 ∈ Rd there exists a unique solution x(t) of (2.1) on
[0, T ], with 1-Lipschitz dependence on the initial datum.

Proof. Due to the Lipschitz continuity of Aλ(t),

ẋλ = −Aλ(t, xλ), xλ(0) = x0

has a unique absolutely continuous solution xλ(t), with Lipschitz continuous dependence on the initial
datum x0.

In order to show the convergence of xλ(t) as λ → 0, we first note that by (3.1), Aλ(t, xλ) ∈ A(t, (I +
λA(t))−1(xλ)), and therefore

〈
(I + λA(t))−1(xλ)− (I + µA(t))−1(xµ), Aλ(t, xλ)−Aµ(t, xµ)

〉
≥ 0.
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Thus we have
d
dt
|xλ − xµ|2 = −2〈xλ − xµ, Aλ(t, xλ)−Aµ(t, xµ)〉

≤ −2
〈
xλ − (I + λA(t))−1(xλ)− xµ + (I + µA(t))−1(xµ), Aλ(t, xλ)−Aµ(t, xµ)

〉

= −2
〈
λAλ(t, xλ)− µAµ(t, xµ), Aλ(t, xλ)−Aµ(t, xµ)

〉

≤ 2(λ + µ)|Aλ(t, xλ)||Aµ(t, xµ)| ≤ 2(λ + µ)‖A(t)‖2L∞(B(0,R)),

with R = |x0|+
∫ T

0
|A(s, 0)|ds. Here we have used (2.6) and (3.3). We thus obtain

|xλ − xµ|2 ≤ (λ + µ)C where C = 2
∫ T

0

‖A(t)‖2L∞(B(0,R)) dt < ∞

by the boundedness assumption (2.7). Thus there exists a uniform limit xλ → x on [0, T ].
It remains to show that x is a solution to (2.1). Since the maximal monotone operator A(t) is upper

semicontinuous ([1], Corollary 1.3), it follows from xλ → x and (3.1) that for a sequence λi,

Aλi(t, xλi(t)) → y(t) ∈ A(t, x(t)) for L1-a. e. t ∈ [0, T ].

More generally, since Aλ(t, x) is convex, we have that if xi(t) → x(t), λi → 0, for all convex combina-
tions

αij ≥ 0,
∑

i≥j

αij = 1,

the following holds:

(3.4)
∑

i≥j

αijAλi(t, xi(t)) 3 yj(t) → y(t) ∈ A(t, x(t)).

Using the bound (3.3), we can pass to the limit λ → 0 in

xλ(t) = x0 +
∫ t

0

Aλ(s, xλ(s)) ds

to obtain

x(t) = x0 +
∫ t

0

y(s) ds.

Hence there exists a linear combination∑

i≥j

αij ẋi(t), αij ≥ 0,
∑

i≥j

αij = 1,

converging strongly to y(t). Using (3.4) and dominated convergence, it follows that

ẋ(t) = y(t) ∈ A(t, x(t)) for L1-a. e. t ∈ [0, T ],

therefore x is a solution to (2.1).
Now let xi(t), i = 1, 2 be two solutions to (2.1). By the monotonicity of A(t, x),

d
dt
|x1(t)− x2(t)|2 = 2〈x1(t)− x2(t), ẋ1(t)− ẋ2(t)〉 ≤ 0,

and thus
|x1(t)− x2(t)| ≤ |x1(0)− x2(0)|.

Thus the solution depends 1-Lipschitz continuously on the initial datum x0. In particular, for any initial
datum the solution is unique. ¤

We denote by X(t, s, x), t ≥ s, the flow of the inclusion,
d
dt

X(t, s, x) ∈ −A(t,X(t, s, x)), X(s, s, x) = x,

and by X(t, x) = X(t, 0, x) the flow restricted to initial time s = 0.
With the bound (2.7), we have that X(t, ·) : Rd → Rd is surjective for all t ∈ [0, T ]. In fact, from∣∣∣∣

d
dt

X(t, x)
∣∣∣∣ ≤ C(1 + |X(t, x)|)
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it follows that
|X(t, x)| ≥ (1 + |x|)e−Ct − 1.

Therefore, given p ∈ Rd, we have that for R > (|p|+ 1)eCt − 1

p 6∈ X(s, ∂BR(0)), for all s ∈ [0, T ],

so we get the topological degree

deg(X(t, ·), BR(0), p) = deg(I, BR(0), p) = 1,

since p ∈ BR(0). Thus there is an x ∈ Rd such that X(t, x) = p. In particular, the flow X(t, s, x) is
completely determined by its values X(t, x) for initial time s = 0 by the semigroup property:

X(t, s, x) = X(t, y) for y ∈ [X(s, ·)]−1(x).

In the following, we will therefore refer to both X(t, s, x) and X(t, x) as the flow of the differential
inclusion (2.1).

Remark 3.4. In the autonomous case, one can recover an ODE by selecting the element with minimal
norm in A(t, x) ([4], p. 147, Theorem 2). This, however, is not true in general in the non-autonomous
case, as can be seen from the example of a “sliding motion”:

A(t, x) =





−1 x < t/2
[−1, 0] x = t/2
0 x > t/2

where any flow line entering the singularity x = t/2 at time t = t0 will remain on it for all t > t0, and
then ẋ(t) = 1/2.

Since an a. e. defined monotone function has a unique maximal monotone extension, each operator
A(t, x) ∈ L1((0, T ); L∞loc(Rd)) generates a unique flow X(t, x) solving (2.1). In fact, there is a one-to-one
correspondence, as the following proposition shows.

Proposition 3.5. Assume X : [0, T ]× Rd → Rd with X(0, x) = x is absolutely continuous in t,

(3.5)
d
dt
|X(t, x1)−X(t, x2)|2 ≤ 0 for all x1, x2 ∈ Rd, a. e. t ∈ [0, T ],

(3.6)
∣∣∣∣
d
dt

X(t, x)
∣∣∣∣ ≤ C(1 + |X(t, x)|) for all x ∈ Rd, a. e. t ∈ [0, T ].

Then there exists a unique maximal monotone operator A(t, x) in L1((0, T ); L∞loc(Rd)) with the bound
(2.7) generating X.

Proof. By assumption, d
dtX(t, x) is defined for all x ∈ Rd, a. e. t ∈ [0, T ]. Using (3.5), we can define

a(t,X(t, x)) = − d
dt

X(t, x).

Then a(t,X(t, x)) is defined for Ld+1-a. e. (t, x) ∈ [0, T ] × Rd. As we have seen above, the bound (3.6)
implies that X(t, ·) is surjective. Since by the assumptions X(t, x) is absolutely continuous in t and
Lipschitz continuous in x, it follows that Ld(X(t, A)) = 0 if Ld(A) = 0. Then a(t, x) is defined for
Ld+1-a. e. (t, x) ∈ [0, T ]× Rd. It remains to show that a(t, x) is monotone in x. This follows again from
(3.5):

〈a(t, X(t, x1))− a(t, X(t, x2)), X(t, x1)−X(t, x2)〉

= −
〈

d
dt

X(t, x1)− d
dt

X(t, x2), X(t, x1)−X(t, x2)
〉

= −1
2

d
dt
|X(t, x1)−X(t, x2)|2 ≥ 0.

¤
Remark 3.6. Note that a(t, x) is defined for Ld+1-a. e. (t, x) ∈ [0, T ]×Rd: we will show that it is actually
defined for µ(t)-a. e. (t, x) if µ(t) is a solution of the conservative transport equation (1.1), see Definition
5.5 and equation (5.1).
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4. Continuous dependence

In this section we study the dependence of the solutions to (2.1) on the monotone operator A.
We consider two monotone operators Ai(t), i = 1, 2, in L1((0, T ); L∞loc(Rd)) with the topology inherited

from L1((0, T ); L1
loc(Rd)). Let xi(t) be the solutions to

(4.1)

{
ẋi(t) ∈ −Ai(t, xi(t)),
xi(0) = x̄,

i = 1, 2.

By (2.6), we have that for initial data x̄ ∈ B(0, r), the solutions are bounded by

|xi(t)| ≤ R, R = r +
∫ T

0

max{|A1(s, 0)|, |A2(s, 0)|}ds.

Theorem 4.1. Let Ai(t), i = 1, 2, be monotone operators in L1((0, T ); L∞loc(Rd)) with the topology
inherited from L1((0, T ); L1

loc(Rd)), and xi(t), i = 1, 2, the solutions to (4.1) with the same initial data
x̄ ∈ B(0, r). Then the following estimate holds:
(4.2)

|x1(t)− x2(t)|2 ≤ C

∫ t

0

(
‖A1(s)‖L∞(B(0,2R)) + ‖A2(s)‖L∞(B(0,2R))

)1−1/d

‖A1(s)−A2(s)‖1/d
L1(B(0,2R))ds,

for some constant C which depends only on the dimension d.

Proof. The idea of the proof is that by the monotonicity of Ai(t), we obtain that whenever the solutions
are moving apart, i. e. d

dt |x1(t) − x2(t)| > 0, then A1(t) and A2(t) differ on a set of positive Lebesgue
measure in Rd.

First note that we can assume Ai(t, x) to be Lipschitz continuous in x (and therefore single-valued). In
fact, if xi,λ is the solution to (4.1), with the Yosida approximation Ai,λ instead of Ai, then by Proposition
3.3 the solutions converge to xi for λ → 0, and (3.3) yields the estimate.

For the two solutions ẋi = −Ai(t, xi), we have

d
dt
|x1 − x2|2 = −2〈x1 − x2, A1(t, x1)−A2(t, x2)〉,

and thus

(4.3)
d
dt
|x1 − x2| =

〈
x1 − x2

|x1 − x2| , A1(t, x1)−A2(t, x2)
〉

.

For any fixed t ∈ [0, T ], consider a point x = αx1 + (1− α)x2 + z ∈ Rd. By the monotonicity,

〈z − (1− α)(x1 − x2), A1(t, x)−A1(t, x1)〉 ≥ 0,

〈z + α(x1 − x2), A2(t, x)−A2(t, x2)〉 ≥ 0,

and therefore

〈x1 − x2, A1(t, x)〉 ≤ 〈x1 − x2, A1(t, x1)〉+
1

1− α
〈z,A1(t, x)−A1(t, x1)〉,

〈x1 − x2, A2(t, x)〉 ≥ 〈x1 − x2, A2(t, x2)〉 − 1
α
〈z, A2(t, x)−A2(t, x2)〉.

Since x1, x2 ∈ B(0, R), taking z ∈ B(0, R), α ∈ [0, 1], we have that x ∈ B(0, 2R). Using (4.3), we then
obtain for α ∈ [ 14 , 3

4 ]
〈

x1 − x2

|x1 − x2| , A2(t, x)−A1(t, x)
〉
≥ d

dt
|x1 − x2| − 8K(t)

|z|
|x1 − x2| ,

where K(t) is the L1(0, T ) function defined as

K(t) = ‖A1(t)‖L∞(B(0,2R)) + ‖A2(t)‖L∞(B(0,2R)).

It follows that

|A1(t, x)−A2(t, x)| ≥ max
{

0,
1
2

d
dt
|x1 − x2|

}
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in the set

E(t) =
{

x = αx1 + (1− α)x2 + z :
1
4
≤ α ≤ 3

4
, |z| ≤ |x1 − x2|

16K(t)
max

{
0,

d
dt
|x1 − x2|

}}
.

x1(t) x2(t)

E(t)

α = 3/4α = 1 α = 1/4 α = 0

Since the volume of this set is equal to

1
2
|x1 − x2|ω(d− 1)

( |x1 − x2|
16K(t)

max
{

0,
d
dt
|x1 − x2|

})d−1

,

where ω(d− 1) is the volume of the unit sphere in Rd−1, it follows that
∫

B(0,2R)

|A1(t, x)−A2(t, x)|dx ≥ ω(d− 1)
24d−3

1
K(t)d−1

(
max

{
0,

d
dt
|x1 − x2|

})d

|x1 − x2|d

Thus with some constant C = C(d) we have the estimate

|x1(t)− x2(t)|2 = 2
∫ t

0

|x1(s)− x2(s)| ddt
|x1(s)− x2(s)|ds

≤ 2
∫ t

0

|x1(s)− x2(s)|max
{

0,
d
dt
|x1(s)− x2(s)|

}
ds

≤ C

∫ t

0

K(s)1−1/d

(∫

B(0,2R)

|A1(s, x)−A2(s, x)| dx

)1/d

ds.

This proves (4.2). ¤

Note that the exponent in (4.2) is sharp. This can be seen for example by taking Ai to be the monotone
functions obtained as the subdifferentials of the convex functions

φ1(x) = |x|, φ2(x) = max{0, |x| − c}, c > 0.

Taking an initial datum xi(0) = x̄ with |x̄| = c one has on the one hand x1(t) = 0 for all t ≥ c and
x2(t) = x̄ for all t ≥ 0, so that

|x1(t)− x2(t)|2 = c2 for all t ≥ c.

On the other hand,

‖Ai‖L∞(B(0,2R)) = 1, ‖A1 −A2‖L1(B(0,2R)) = ω(d)cd,

where ω(d) is the volume of the unit ball in Rd. Evaluating (4.2) at time t = c, one has therefore that
both sides of the inequality are proportional to c2.

Remark 4.2. Applying Hölder’s inequality with exponent d to (4.2) yields that in the set
{

A(t, x) : ‖A(t)‖L∞(B(0,2R)) ≤ H(t)
}

, H(t) ∈ L1(0, T ),

we have the estimate

(4.4) ‖X1(t)−X2(t)‖C0(B(0,r)) ≤ C̃‖A1 −A2‖1/d
L1((0,T )×B(0,2R)), C̃ = 2C

(∫ T

0

H(s)ds

)1−1/d

.
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Note that for d ≥ 2, the constant C̃ cannot be chosen independently of H(t), as can be seen from
the following example. For simplicity of notation, we consider the case d = 2; clearly, this can easily be
extended to higher dimensions. We denote x = (x1, x2) ∈ R2, and define for |x1| ≤ 1, c > 0:

a(1)(x) = (0, cx2),

a(2)(x) = (cb(x), cx2), where b(x) = − (
√

2/c− |x2|)2
2(x1 + 2)

for |x2| <
√

2/c, and b(x) = 0 otherwise.

One can check that a(1), a(2) are monotone functions on [−1, 1] × R, which we can extend to maximal
monotone operators A(1), A(2) on R2, coinciding with a(1) and a(2) respectively on (−1, 1) × R. Let
R = 1/2, T = 1, and x(1), x(2) the solutions to

{
ẋ(i)(t) = −a(i)(t, x(i)(t)),
x(i)(0) = −1/2,

i = 1, 2.

Then on the one hand,
|x(1)(1)− x(2)(1)| > 1/2

does not depend on c. On the other hand, |a(1)(x) − a(2)(x)| ≤ 1 for x ∈ B(0, 2R), and since a(1)(x) =
a(2)(x) for |x2| ≥

√
2/c, it follows that

‖A(1) −A(2)‖L1(B(0,2R)) → 0

for c → +∞.

The previous result is a quantitative estimate of the distance of two trajectories with the same initial
data (for different initial data one can use the 1-Lipschitz estimate). In the following theorem we weaken
the assumptions, requiring only weak convergence.

Theorem 4.3. Assume that the monotone functions An converge weakly in L1((0, T ); L1
loc(Rd)) to A.

Then the flows Xn generated by An converge locally in C0((0, T )× Rd) to the flow X generated by A.

Proof. The weak convergence implies the equi-integrability of the sequence An. In particular, using (2.5),
we have that for any R > 0 and ε > 0, there exists δ > 0 such that

∫ t2

t1

‖An(t)‖L∞(B(0,R)) dt < ε for all n ∈ N, [t1, t2] ⊂ [0, T ] such that |t1 − t2| < δ.

Using (2.6), it follows that the sequence Xn is locally uniformly bounded. It then follows from (2.7) that
the sequence Xn is locally uniformly Lipschitz. By passing to a subsequence, we can therefore assume
that Xn converges locally uniformly to some flow X̃.

Assume now by contradiction that X̃ 6= X. By continuity, we find ε > 0, x0 ∈ Rd and t1 < t2 ∈ [0, T ]
such that

|X̃(t1, x0)−X(t1, x0)| = ε,

|X̃(t2, x0)−X(t2, x0)| = 2ε.

Let R ∈ (0,+∞) be large enough for B(0, R) to contain X(t, x0) and Xn(t, x0) for all n ∈ N, t ∈ [t1, t2]. By
the same computation as in the proof of Theorem 4.1, we get for ξ(α, z) = αXn(t, x0)+(1−α)X(t, x0)+z,
α ∈ [1/4, 3/4],

(4.5) −〈vn(t), An(t, ξ(α, z))−A(t, ξ(α, z))〉 ≥ d
dt
|Xn(t, x0)−X(t, x0)| − 8Kn(t)

|z|
|Xn(t, x0)−X(t, x0)| ,

where we denote

vn(t) =
Xn(t, x0)−X(t, x0)
|Xn(t, x0)−X(t, x0)|

and
Kn(t) = ‖An(t)‖L∞(B(0,R)) + ‖A(t)‖L∞(B(0,R)).
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In this case, we cannot pass to the modulus on the left-hand side, therefore we cannot integrate over a
fixed set as in the strong convergence case. We define the sets

En(t) =
{

ξ(α, z) : α ∈ [1/4, 3/4], z ⊥ (Xn(t, x0)−X(t, x0)), |z| < δ
}

,

E(t) =
{

ξ(α, z) : α ∈ [1/4, 3/4], z ⊥ (X̃(t, x0)−X(t, x0)), |z| < δ
}

,

En =
⋃

t∈[t1,t2]

{t} × En(t), E =
⋃

t∈[t1,t2]

{t} × E(t).

X̃(t2, x9)
Xn(t2, x0)

En =
⋃

t∈[t1,t2]
{t} × En(t)

E =
⋃

t∈[t1,t2]
{t} × E(t)

X(t1, x0)Xn(t1, x0)
X̃(t1, x0)

En(t1)
E(t1)

E(t2)
En(t2)

t = t1

t = t2

t
X(t2, x0)

We have that the Lebesgue measure of En(t) is

Ld(En(t)) =
1
2
ω(d− 1)|Xn(t, x0)−X(t, x0)|δd−1.

Moreover, it follows from the uniform convergence of Xn to X̃ that Ld(En 4 E) → 0. Integrating the
inequality (4.5) in ξ over En(t) gives

−
∫

En(t)

〈vn(t), An(t, ξ)−A(t, ξ)〉dξ ≥ δd−1ω(d− 1)
d
dt
|Xn(t, x0)−X(t, x0)|2 − 4Kn(t)ω(d− 1)δd.

By the equi-integrability, K̄ = supn

∫ t2
t1

Kn(t) dt < +∞. Moreover, for n sufficiently large we have
|Xn(t, x0)− X̃(t, x0)| ≤ ε/4. Therefore, integrating the inequality in t from t1 to t2 gives

−
∫ t2

t1

∫

En(t)

〈vn, An(t, ξ)−A(t, ξ)〉dξ dt

≥ δd−1ω(d− 1)
(
|Xn(t2, x0)−X(t2, x0)|2 − |Xn(t1, x0)−X(t1, x0)|2

)
− 4K̄ω(d− 1)δd

≥
(

3
2
ε2 − 4K̄δ

)
ω(d− 1)δd−1.

Since vn converges strongly in L1(t1, t2), it follows that the left hand side converges to 0, for any fixed
choice of δ. For sufficiently small positive δ however, the right hand side is a positive constant, therefore
we have a contradiction. ¤

5. Transport equations and monotone operators

In order to apply the preceding results to the transport equation, we first estimate the Lebesgue
measure of the set where the inverse image of the flow at a fixed time t > 0 contains more than one point,

S =
{

x ∈ Rd : ∃y1 6= y2 x = X(t, y1) = X(t, y2)
}

.
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Since the inverse image of a point [X(t, ·)]−1(y) is a connected set ([8], Theorem 6.6), we have that S is
contained in the image X(t, S′) of

S′ =
{

x ∈ Rd : ∇xX(t, x) not defined or det(∇xX(t, x)) = 0
}

.

The Lebesgue measure of X(t, S′) follows easily from the area formula.

Lemma 5.1. The set X(t, S′) has Lebesgue measure 0.

Proof. Since χX(t,S′)(y) ≤ H0(S′ ∩ [X(t, ·)]−1(y)) for all y ∈ Rd, we have by the area formula that

Ld(X(t, S′)) =
∫

Rd

χX(t,S′)(y) dy ≤
∫

Rd

H0(S′ ∩ [X(t, ·)]−1(y)) dy =
∫

S′
det(∇xX(t, y)) dy = 0.

¤

Remark 5.2. It is clear that in general, the assumption that Y : Rd → Rd is 1-Lipschitz and det(∇Y ) ≥ 0
does not imply that there exists A(t) monotone in space generating a flow X(t) such that Y = X(1),
apart from the 1-dimensional case where the operators can be given by

A(t, x) = {z − Y (z), x = (1− t)z + tY (z)}.
Notice that in particular by taking Y to be

Y = (x + C(x))−1,

where C is the Cantor-Vitali function, we have that the set X(t, S′) can have any Hausdorff dimension
in [0, 1).

We next want to define a vector field a(t, x) for every (t, x) ∈ Rd+1 such that for the flow X(t, x)
generated by the maximal monotone operator −A(t, x)

d
dt

X(t, x) = −a(t,X(t, x)), a(t, x) ∈ A(t, x) L1-a.e. t.

The construction of Proposition 3.5 yields a vector field only for Ld+1 a.e. (t, x). Our aim is to show
that we can extend it also in the regions where A(t, x) is multivalued.

Given A(t, x) maximal monotone satisfying assumptions (2.7), consider the unique Filippov flow X(t, x)
constructed in Proposition 3.3.

Lemma 5.3. The set

N :=
{

(t, x) ∈ Rd+1 : @
d
dt

X(t, x)
}

is Borel and negligible for all Borel measures of the form L1(dt)× µ(dx).

Proof. The set N is given by

N =
{

(t, x) ∈ Rd+1 : ∃m∀n
(
∃ h, h′ ∈ R, 0 < |h|, |h′| < 1

n
,

∣∣∣∣
X(t + h, x)−X(t, x)

h
− X(t + h′, x)−X(t, x)

h′

∣∣∣∣ ≥
1
m

)}

=
⋃
m

⋂
n

P
(Nmn

)
,

where P : Rd+1 × R2 → Rd+1 is the projection operator on the first d + 1 coordinates and

Nmn :=
{

(t, x, h, h′) ∈ Rd+1 × R2 : 0 < |h|, |h′| < 1
n

,

∣∣∣∣
X(t + h, x)−X(t, x)

h
− X(t + h′, x)−X(t, x)

h′

∣∣∣∣ ≥
1
m

}
.

Since Nmn is clearly σ-compact, P (Nmn) is σ-compact. Using the fact that the Borel sets form a σ-
algebra, the first part of the statement follows.

The second part is a direct consequence of Fubini Theorem, using the fact that each section N (x) =
{t : (t, x) ∈ N} is L1-negligible. ¤
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Lemma 5.4. If X(t, x) = X(t, y) and the derivatives d
dtX(t, x), d

dtX(t, y) exist, then they coincide.

Proof. The proof follows immediately from the fact that
d
dt
|X(t, x)−X(t, y)|2 ≤ 0.

¤

The above lemma implies that d
dtX(t, x) is constant on {(t, x) : X(t, x) = z} \ N , so that the next

definition makes sense.

Definition 5.5. For the time-dependent maximal monotone operator A(t), define a single-valued, every-
where defined vector field a : R+ × Rd → Rd by first setting

a(t,X(t, x)) = − d
dt

X(t, x) (t, x) ∈ Rd+1 \ N
and then extending it by choosing arbitrarily a(t,X(t, x)) ∈ A(t,X(t, x)) when

X(t, x) ∈ Ñ := X(N ) \X(Rd+1 \ N ).

Using the fact that Borel images of Borel sets are analytic, it is fairly easy to show that the set Ñ is in
the σ-algebra A generated by the analytic sets: in particular it is universally measurable, i.e. it belongs
to the completed σ-algebras of all Borel measures on Rd+1. For a survey of analytic sets, see Chapter 4
of [11].

By Fubini Theorem, the set Ñ is negligible for the measure
∫ T

0
(X(t)]µ)dt for all T > 0:

∫ T

0

( ∫

Rd

χÑ (t, x)d(X(t)]µ)(x)
)

dt =
∫ T

0

( ∫

Rd

χÑ (t, X(t, x))dµ(x)
)

dt

≤
∫ T

0

( ∫

Rd

χN (t, x)dµ(x)
)

dt

=
∫

Rd

L1
{
t : @ dX(t, x)/dt

}
dµ(x) = 0.(5.1)

This means that any extension of a(t, x) in Ñ does not affect the transport equation, as well as the ODE.
By the equivalence theorem for uniqueness of the non-negative solutions to transport equations and

ODE, [3] Theorem 9, we have the following proposition:

Proposition 5.6. Let A(t, x) be a maximal monotone operator, and µ̄ a non-negative measure. Then
the non-negative solution to the conservative transport equation with coefficient a(t, x) as defined above
and initial datum µ̄,

µt − div(a(t, x)µ) = 0, µ(0) = µ̄,

is given by the formula
µ(t) = X(t)]µ(0),

where X(t) = X(t, ·) is the flow of the differential inclusion (2.1).

To construct a solution to the advective transport equation,

(5.2) ut − a(t, x) · ∇u = 0, u(0, x) = ū(x),

with ū(x) Borel uniformly bounded, we can use the duality formulation

(5.3) (uµ)t − div(auµ) = 0,

for some measure µ. It turns out that the solution depends on the test measure µ chosen, as the following
example shows:

Example 5.7. For d = 1, consider the vector field

a(t, x) =





−1 x < 0
0 x = 0
1 x > 0
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and the following two solutions of the conservative equation:

µ1(t) = L1 + 2tδ(x), µ2(t) = (1 + χ(0,∞))L1 + 3tδ(x).

Then the solutions with initial datum u(0, x) = χ(0,∞)(x) with test measures µ1 and µ2 are given by

u(t, x) =





0 x < 0
1/2 x = 0
1 x > 0

u(t, x) =





0 x < 0
2/3 x = 0
1 x > 0

For the general case, we have the following proposition, valid not only in the monotone vector field
case.

Proposition 5.8. The duality solution of (5.3) is given by the formula

(5.4) u(t)(X(t)]µ) = X(t)](u(0)µ).

The proof is just an application of the definition of duality solution (5.3) and Proposition 5.6, and u(t)
is determined as an L1(X(t)]µ)-function.

Using the definition of pushforward, we can rewrite (5.4) as
∫

E

u(t, x) d[X(t)]µ](x) =
∫

[X(t)]−1(E)

u(t,X(t, x)) dµ(x)

=
∫

[X(t)]−1(E)

u(0, x) dµ(x) =
∫

E

d[X(t)](u(0)µ)](x).

Assume the inverse image of y under X(t, ·) consists of a single point, [X(t)]−1(y) = {x}. Using the
regularity and the bound (2.7), we have that [X(t)]−1(B(y, r)) ⊂ B(ρ, x), with ρ → 0 as r → 0. Thus we
get that the duality solution can be taken as

(5.5) u(t, y) = u(t,X(t, x)) = u(0, x)

on the set where X−1(t, y) is single valued. In particular this Borel function does not depend on the
measure µ and it is uniformly bounded. Since the property that X−1(t, y) is singleton holds Ld-a. e., u(t)
is defined as an L∞(Ld)-function.

Using the results on the continuous dependence of the flow on A(t, x), we conclude with the following
theorem:

Theorem 5.9. The solution (in duality sense) of (5.2) is uniquely determined as an L∞ function. More-
over it depends continuously in the L1

loc-norm w. r. t. the weak convergence of A(t) in L1((0, T ); L1
loc(Rd)).
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