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2 PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS

1. Introduction

In this paper we study the Noether-Lefschetz problem for hypersurfaces in com-

plete simplicial toric threefolds, namely, we prove that under a certain condition,

a very general hypersurface in an ample linear system in such a toric threefold PΣ

has the same Picard number as PΣ. In particular, this holds for a very general K3

hypersurface in the anticanonical system of a simplicial toric Fano threefold. (A

property is very general if it holds in the complement of countably many proper

closed subvarieties [16].)

This result can be regarded on one hand as a first step towards the study of

Noether-Lefschetz loci of the moduli space of K3 hypersurfaces in a toric Fano

threefolds; see also the recent works of [14, 17, 15]. On the other hand, this

completes the picture for computing the Picard number for certain hypersurfaces

in the anticanonical system of a toric Fano variety, by handling the unknown case

in dimension 3.

Recall that the Picard number, ρ(Y ) of a variety Y is the rank of the Néron-

Severi group, that is of the image of the Picard group in the second cohomology

group with integer coefficients. The Picard group and the Picard number of a

toric variety PΣ can be easily computed from the combinatorial data of Σ. Let

X be a nondegenerate hypersurface in the anticanonical system of a simplicial

toric Fano variety PΣ, with dimPΣ ≥ 4 (note that a general hypersurface is also

nondegenerate). In the 80s and 90s it was shown [8, 2, 10, 1], that the Picard

number of any such X can be explicitly computed from combinatorial data. This

result was a pivotal ingredient in describing the toric version of mirror symmetry

(see for example [8]). The argument in the above papers is essentially topological

and computes the dimension of the second cohomology group of X, which happens

to be equal to ρ(X) if dim(X) ≥ 3, but not necessarily if dim(X) = 2. In addition,

even the statement in the above papers does not hold when dimPΣ = 3, as we see

from the case of Fermat’s quartic in P3, which is nondegenerate.

This type of result was generalized by Roan to the case of toric varieties (not

necessarily Fano) also for the case when the ambient variety has dimension d ≥
4 [19], and by Ravindra and Srinivas to general normal varieties, still with the

restriction d ≥ 4 [18].

This paper then fills the gap for dimPΣ = 3. It was already known that

ρ(X) = ρ(PΣ) for particular cases of toric Fano threefolds, namely certain weighted

projective spaces [5, 24, 11], as in the higher dimensional case. The techniques used

in the case of weighted projective spaces are very much tailored to that specific case
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[12, 24, 11]. On the other hand, the classical infinitesimal techniques introduced in

the 70s by Griffiths, Steenbrink and collaborators to solve the Noether-Lefschetz

problem in the smooth case (see for example [4]) cannot be used due to the presence

of singularities. Our argument is partly inspired by Cox’s paper [5]: it generalizes

the classical infinitesimal techniques and combines them with more recent results

about toric varieties, their Cox ring and their cohomology [3]. In fact, X and PΣ

are projective orbifolds, and a pure Hodge structure can be defined for them; this

will be a key tool in the proof.

In Section 2 we mostly recall some relevant results from [3], and adapt them to

the set up of [4]. We start with basic properties of simplicial toric varieties and

general hypersurfaces defined by ample divisors. Moreover we note that the exact

sequence defining the primitive cohomology in middle dimension of such a hyper-

surface splits orthogonally with respect to the intersection pairing. The middle

cohomology is the sum of the primitive cohomology and the “fixed” cohomology,

i.e., the cohomology inherited from the ambient toric variety; the splitting is con-

sistent with the Hodge decomposition. We then state some results of [3] which

express the primitive cohomology in middle degree in terms of the Jacobian ring

of the hypersurface; here we assume that ambient space has odd dimension.

Section 3 contains the bulk of the argument: we proceed along the lines of the

infinitesimal arguments of Griffiths for smooth varieties and adapt it to the toric

case. We start from the moduli space of quasi-smooth hypersurfaces constructed in

[3], consider a natural Gauss-Manin connection, proceed to prove an infinitesimal

Noether-Lefschetz theorem and then the needed global Noether-Lefschetz theorem.

Finally, we focus on the case of K3 hypersurfaces in the anticanonical system of a

simplicial toric Fano threefold.

The suggestion that a very general hypersurface in a toric Fano threefold PΣ

has the same Picard number as the ambient variety can be found, in a different

language, in an unpublished paper by Rohsiepe [20] (see the formula and Remark

in the middle of page 3), based on some dimension counting arguments and trying

to generalize to the case dimPΣ = 3 a formula that Batyrev proved for dimPΣ = 4

[2].
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for useful discussions and suggestions. We are grateful for the hospitality and
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2. Hypersurfaces in simplicial complete toric varieties

In this section we recall some basic facts about hypersurfaces in toric varieties

and their cohomology. We mainly follow the notation in [3]. All schemes are

schemes over the complex numbers.

2.1. Preliminaries and notation. Let M be a free abelian group of rank d, let

N = Hom(M,Z), and NR = N ⊗Z R.

Definition 2.1. [3, Def. 1.1 and 1.3]

(i) A convex subset σ ⊂ NR is a rational k-dimensional simplicial cone if there

exist k linearly independent primitive elements e1, . . . , ek ∈ N such that

σ = {µ1e1 + · · ·+µkek}, with µi nonnegative real numbers. The generators

ei are said to be integral if for every i and any nonnegative rational number

µ, the product µ ei is in N only if µ is an integer.

(ii) Given two rational simplicial cones σ, σ′, one says that σ′ is a face of σ

(we then write σ′ < σ) if the set of integral generators of σ′ is a subset of

the set of integral generators of σ.

(iii) A finite set Σ = {σ1, . . . , σs} of rational simplicial cones is called a rational

simplicial complete d-dimensional fan if

(a) all faces of cones in Σ are in Σ;

(b) if σ, σ′ ∈ Σ, then σ ∩ σ′ < σ and σ ∩ σ′ < σ′;

(c) NR = σ1 ∪ · · · ∪ σs.

A rational simplicial complete d-dimensional fan Σ defines a toric variety PΣ of

dimension d having only Abelian quotient singularities. Moreover, PΣ is simply

connected, and is an orbifold. We shall use the term “orbifold” in the following

sense (see, e.g., [8], Def. A.2.1): an n-dimensional variety Y is an orbifold if every

point y ∈ Y has a neighborhood which is isomorphic to U/G as an analytic space,

where G is a subgroup of Gln(C) with no nontrivial complex reflections, and U

is a G-invariant neighborhood of the origin of Cn. (A complex reflection is an

element in Gln(C) with n−1 eigenvalues equal to 1.) A sub-orbifold of an orbifold

Y is a subvariety Y ′ ⊂ Y with the property that for every y ∈ Y ′ there is a local

chart (U/G, 0) of Y at y such that the inverse image of Y ′ in U is smooth at 0.

Intuitively, a sub-orbifold is a subvariety whose only singularities come from the

ambient variety. These notions of orbifold and sub-orbifold are synonymous to

those of V -manifold and sub-V -manifold, which is indeed the terminology used in

[3]. The notion of V -manifold is originally due to Satake [22].
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Definition/Proposition 2.2. Let Cl(Σ) be the group of Weil divisors in PΣ mod-

ulo rational equivalence, and let Pic(Σ) be the group of line bundles on PΣ modulo

isomorphism. As the notation suggests, both are intrinsic to the fan Σ. Both

are finitely generated Abelian groups, and Pic(Σ) is actually free. Moveover, un-

der our assumptions the toric variety PΣ is Q-factorial, i.e., the natural inclusion

Pic(Σ) ↪→ Cl(Σ) becomes an isomorphism if one tensors by Q. The rank of the two

groups, denoted by ρ(Σ), is also the Picard number, the rank of the Néron-Severi

group of PΣ.

Recall that the Néron-Severi group of a variety Y is the image of the Picard

group in the second cohomology group with integer coefficients. One can define its

rank as ρ(Y )
def
= dimQNS(Y )⊗Z Q = dimQH

2(Y,Q) ∩H1,1(Y,C).

The group D(Σ) = SpecC[Cl(Σ)] is an affine algebraic group whose character

group is isomorphic to Cl(Σ). Since there is a surjection Zn � Cl(Σ), we have an

embedding D(Σ) ↪→ (C∗)n, and a natural action of D(Σ) on the affine space An.

The quotient T(Σ) = (C∗)n/D(Σ) is an algebraic torus. Below we shall show that

this group acts naturally on PΣ.

Definition 2.3. ([6]) Given a fan Σ, consider a variable zi for each 1-dimensional

cone ςi in Σ, and let S(Σ) be the polynomial ring C[z1, . . . , zn]. For every σ ∈ Σ,

let zσ =
∏

ςi 6⊂σ zi, and let B(Σ) the ideal in S(Σ) generated by the zσ’s.

S(Σ) is called the Cox ring.

S(Σ) is a graded ring, with grading provided by the class group, S(Σ) =

⊕β∈Cl(Σ)Sβ. We identify the affine space An with SpecS(Σ), and denote by Z(Σ)

the affine variety in An given by the ideal B(Σ). If we set U(Σ) = An − Z(Σ),

the group D(Σ) acts on U(Σ), and the toric variety PΣ may be represented as

U(Σ)/D(Σ). This yields an action of T(Σ) on PΣ. For every face τ in Σ we shall

denote by Tτ ⊂ PΣ the orbit of τ in PΣ under this action.

2.2. Quasi-smooth hypersurfaces. From now on we assume that PΣ is projec-

tive. Let L be an ample line bundle on PΣ, and denote by β ∈ Cl(Σ) its degree; a

section of L is a polynomial in Sβ.

Definition 2.4. [3, Def. 3.1] Let f be a section of L, and let V(f) be the zero

locus of f in SpecS(Σ). We say that the hypersurface X cut in PΣ by the equation

f = 0 is quasi-smooth if V(f) is smooth outside Z(Σ).



6 PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS

Definition 2.5. [3, Def. 4.13] If L is an ample line bundle on PΣ, a hypersurface

X is said to be nondegenerate if X ∩ Tτ is a smooth 1-codimensional subvariety

of Tτ for all τ in Σ.

Proposition 2.6. [3, Prop. 3.5, 4.15] If f is the general section of an ample invert-

ible sheaf, then X is nondegenerate. Moreover, every nondegenerate hypersurface

X ⊂ PΣ is quasi-smooth. Thus, if f is a general section of L, its zero locus is a

quasi-smooth hypersurface X in PΣ, hence it is an orbifold.

An important fact is that the complex cohomology of an orbifold has a pure

Hodge structure in each dimension [23, 25].

We also note that in view of the homotopy hyperplane Lefschetz theorem, which

holds for the embedding X ↪→ PΣ [13, Thm. 1.2 Part II], X is simply connected if

dim(PΣ) ≥ 3.

2.3. Primitive cohomology of a hypersurface. Let L be an ample line bun-

dle on PΣ, and let X be a hypersurface in PΣ cut by a section f of L (note

that by [3], Proposition 10.8, f lies in B(Σ)). Denote by i : X → PΣ the inclu-

sion, and by i∗ : H•(PΣ,C) → H•(X,C) the associated morphism in cohomology;

i∗ : Hd−1(PΣ,C)→ Hd−1(X,C) is injective by Proposition 10.8 in [3].

Definition 2.7. [3, Def. 10.9] The primitive cohomology group PHd−1(X) is the

quotient Hd−1(X,C)/ i∗(Hd−1(PΣ,C)).

Lemma 2.8. The exact sequence

0→ i∗(Hd−1(PΣ,C))→ Hd−1(X,C)→ PHd−1(X)→ 0

splits orthogonally with respect to the intersection pairing in H•(X,C). The same

is true with coefficients in Q.

Proof. The hard Lefschetz theorem holds also for projective orbifolds (this follows

from the results in [21]; a simple proof is given in [26]).

Then cupping by c1(L) we get an isomorphism ` : Hd−1(PΣ,C)→ Hd+1(PΣ,C).

Let i∗ : H
d−1(X,C)→ Hd+1(PΣ,C) be the Gysin map. We claim that the following
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commutative diagram

0

��

0

��

0

��

// Hd−1(PΣ,C)

i∗

��

// Hd−1(PΣ,C)

`
��

// 0

0 // ker i∗

��

// Hd−1(X,C)

��

i∗
// Hd+1(PΣ,C)

��

// 0

0 // ker i∗

��

// PHd−1(X)

s

WW

//

��

0

0 0

provides a straightforward splitting s of the above exact sequence. Let 〈 , 〉 be the

intersection pairing in cohomology both in H•(X,C) and H•(PΣ,C), and recall

that i∗ and i∗ are adjoint with respect to the intersection pairing. The upper-right

square commutes since by Poincaré duality

〈i∗i∗α, β〉 = 〈i∗α, i∗β〉 = 〈c1(L) ∪ α, β〉 = 〈`(α), β〉 .

If α ∈ Hd−1(PΣ,C) and β ∈ PHd−1(X), we have

〈i∗(α), s(β)〉 = 〈α, i∗(s(β))〉 = 0 .

If the statement is true with coefficients in C it also true with coefficients in Q
since H•(X,C) ' H•(X,Q)⊗Q C. �

Remark 2.9. The kernel of i∗ in Hd−1(X,C) is sometimes called the “variable

cohomology” Hd−1
var (X,C); in degree d− 1 the variable and primitive cohomologies

of X are then isomorphic. 4

Both Hd−1(PΣ,C) and Hd−1(X,C) have pure Hodge structures, and the mor-

phism i∗ is compatible with them, so that PHd−1(X) inherits a pure Hodge struc-

ture. We shall write

PHd−1(X) =
d−1⊕
p=0

PHp,d−1−p(X).

The following Proposition 2.10 implicitly uses a generalization of Bott’s van-

ishing theorem, called the Bott-Steenbrink-Danilov theorem, which indeed holds

under our assumptions. The exact statement is that H i(PΣ,Ω
p
PΣ

(L)) = 0 for all
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i > 0 and p ≥ 0 if L is an ample line bundle on PΣ. This was stated without proof

by Danilov [9] and proved in [3] (Theorem 7.1).

Proposition 2.10. There is a natural isomorphism

PHp,d−p−1(X) '
H0(PΣ,Ω

d
PΣ

((d− p+ 1)X)

H0(PΣ,Ωd
PΣ

((d− p)X) + dH0(PΣ,Ω
d−1
PΣ

((d− p)X)

Proof. This follows from comparing Corollaries 10.2 and 10.12 in [3]. �

The resulting projection map, multiplied by the factor (−1)p−1/(d− p+ 1)!, will

be denoted by

rp : H0(PΣ,Ω
d
PΣ

((d− p+ 1)X)→ PHp,d−p−1(X) (1)

and is called the p-th residue map in analogy with the classical case.

Definition 2.11. Let X be any hypersurface in PΣ cut by a section f of L and

let J(f) be the ideal of the Cox ring generated by the derivatives of f . The ring

R(f) = S(Σ)/J(f) is the Jacobian ring of S(Σ).

The Jacobian ring encodes all the information about the primitive cohomology

of X:

Proposition 2.12. If p 6= d/2 − 1, PHp,d−p−1(X) ' R(f)(d−p)β−β0, where β0 =

− degKPΣ
, β = degL.

Proof. [3] Theorem 10.13. �

3. The Picard group of the general toric threefold

3.1. The Gauss-Manin connection. Let Z be the open subscheme of |L| pa-

rametrizing the quasi-smooth hypersurfaces in |L|, and let π : F → Z be the

tautological family on Z; we denote by Xz the fiber of F at z ∈ Z. Let H d−1 be

the local system on Z whose fiber at z is the cohomology Hd−1(Xz), i.e., H d−1 =

Rd−1π∗C. It defines a flat connection ∇ in the vector bundle E d−1 = H d−1⊗COZ,

the Gauss-Manin connection of E d−1. Since the hypersurfacesXz are quasi-smooth,

the Hodge structure of the fibres Hd−1(Xz) of E d−1 varies analytically with z

[23]. The corresponding filtration defines holomorphic subbundles F pE d−1, and the

graded object of the filtration defines holomophic bundles GrpF (E d−1). The bundles

E p,d−p−1 given by the Hodge decomposition are not holomorphic subbundles of

E d−1, but are diffeomorphic to GrpF (E d−1), and as such they have a holomorphic
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structure. The quotient bundles PE p,d−p−1 of E p,d−p−1 correspond to the primitive

cohomologies of the hypersurfaces Xz. Let πp : E d−1 →PE p,d−p+1 be the natural

projection.

We denote by γ̃p the cup product

γ̃p : H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))→ H0(PΣ,Ω
d
PΣ

((d− p+ 1)X)) .

If z0 is the point in Z corresponding to X, the space H0(PΣ,OPΣ
(X))/C(f), where

C(f) is the 1-dimensional subspace of H0(PΣ,OPΣ
(X)) generated by f , can be

identified with Tz0Z. The morphism γ̃p induces in cohomology the Gauss-Manin

connection:

Lemma 3.1. Let σ0 be a primitive class in PHp,d−p−1(X), let v ∈ Tz0Z, and let σ

be a section of E p,d−p−1 along a curve in Z whose tangent vector at z0 is v, such

that σ(z0) = σ0.

Then

πp−1(∇v(σ)) = rp−1(γ̃p(ṽ ⊗ σ̃)) (2)

where rp, rp−1 are the residue morphisms defined in equation (1), σ̃ is an element

in H0(PΣ,Ω
d
PΣ

((d − p + 1)X)) such that rp(σ̃) = σ0, and ṽ is a pre-image of v in

H0(PΣ,OPΣ
(X)).

In particular the following diagram commutes:

H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))
γ̃p //

φ⊗rp
��

H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))

rp−1

��

Tz0Z⊗ PHp,d−1−p(X)
γp // PHp−1,d−p(X)

(3)

where γp is the morphism that maps v ⊗ α to ∇vα and φ is the projection φ :

H0(PΣ,OPΣ
(X))→ Tz0Z.

Proof. This is a standard computation, see [4], Proposition 5.4.3. Let fi be local

representatives, with respect to a suitable cover {Ui} of PΣ, of the section f . Via

the isomorphism of Proposition 2.10, we locally represent σ0 by the meromorphic

differential forms ωi/f
d−p+1
i . A tangent vector v ∈ Tz0Z represents a deformation

fi 7→ fi + tgi where t is a complex parameter, and gi are holomorphic functions.

Then ∇v(σ) is represented by[
d

dt

ωi
(fi + tgi)d−p+1

]
t=0

= −(d− p+ 1)
gi ωi

fd−p+2
i

.
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But the right-hand side of this equation is, up to a suitable factor, the argument

of the map rp−1 in the right-hand side of equation (2). �

Lemma 3.2. If α and η are sections of E p,d−p−1 and E d−p,p−1 respectively, then

for every tangent vector v ∈ Tz0Z,

∇vα ∪ η = −α ∪∇vη . (4)

Proof. The Gauss-Manin connection is compatible with the cup product by defi-

nition, i.e.,

∇v(α ∪ η) = ∇vα ∪ η + α ∪∇vη .

But α ∪ η = 0 because it is an element in E d,d−2. �

3.2. The moduli space of hypersurfaces in PΣ. Let Autβ(PΣ) be the subgroup

of Aut(PΣ) which preserves the grading β. The coarse moduli space Mβ for the

general quasi-smooth hypersurfaces in PΣ with divisor class β may be constructed

as a quotient

U/Ãutβ(PΣ) , (5)

[3, 1], where U is an open subset of H0(PΣ,OPΣ
(X)), and Ãutβ(PΣ) is the unique

nontrivial extension

1→ D(Σ)→ Ãutβ(PΣ)→ Autβ(PΣ)→ 1 .

By differentiating, we have a surjective map

κβ : H0(PΣ,OPΣ
(X))→ TXMβ ,

which is the analogue of the Kodaira-Spencer map.

The local system H d−1 and its various sub-systems do not descend to the moduli

space Mβ, because the group Autβ(PΣ) is not connected. Nevertheless, this group

has a connected subgroup Aut0
β(PΣ) of finite order, and, perhaps after suitably

shrinking U , the quotient M0
β

def
= U/Aut0

β(PΣ) is a finite étale covering of Mβ

[7, 1].

Proposition 3.3. There is a morphism

γp : TXMβ ⊗ PHp,d−1−p(X)→ PHp−1,d−p(X) (6)

such that the diagram

H0(PΣ,OPΣ
(X))⊗H0(PΣ,Ω

d
PΣ

((d− p)X))
∪ //

κβ⊗rp
��

H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))

rp−1

��

TXMβ ⊗ PHp,d−1−p(X)
γp // PHp−1,d−p(X)



PICARD GROUP OF HYPERSURFACES IN TORIC 3-FOLDS 11

commutes.

Proof. It suffices to prove the Proposition with Mβ replaced by M0
β; in fact the

tangent spaces at points M0
β are canonically isomorphic to the tangent spaces at

the image points in Mβ.

If ρ : Z → M0
β is the induced map (where Z has been suitably restricted), the

local system H d−1 descend to a local system ρ∗H d−1 on M0
β, and ρ∗ρ∗H d−1 '

H d−1 (the natural morphism H d−1 → ρ∗ρ∗H d−1 is an isomorphism on the stalks

due to topological base change; note that ρ is proper). Thus we obtain on M0
β

holomorphic bundles that are equipped with a Gauss-Manin connection, which is

trivial in the direction of the fibers of ρ. If we define again γp by γp(v⊗α) = ∇v(α)

(where ∇ is now the Gauss-Manin connection on M0
β), the commutavity of the

diagram in the statement follows from the commutativity of the diagram (3). �

The tangent space TXMβ at a point representing a hypersurface X is naturally

isomorphic to the degree β summand of the Jacobian ring of f , that is, TXMβ '
R(f)β [3]. Moreover, by Proposition 2.12, PHp,d−p−1(X) ' R(f)(d−p)β−β0 .

Proposition 3.4. Under these isomorphisms, the morphism γp in equation (6)

coincides with the multiplication in the ring R(f),

R(f)β ⊗R(f)(d−p)β−β0 → R(f)(d−p+1)β−β0 .

Proof. Theorem 9.7 in [3] implies

H0(PΣ,Ω
d
PΣ

((d− p)X)/H0(PΣ,Ω
d
PΣ

((d− p− 1)X) ' S(d−p)β−β0 ,

and, moreover, H0(PΣ,OPΣ
(X)) ' Sβ; the cup product corresponds to the product

in the ring S. This implies that the “top square” of the 3-dimensional diagram

H0(PΣ,OPΣ
(X))⊗

H0(PΣ,Ωd
PΣ

((d− p)X))

∪ //

''
κβ⊗rp

��

H0(PΣ,Ω
d
PΣ

((d− p+ 1)X))

rp−1

��

&&
Sβ ⊗ S(d−p)β−β0

��

// S(d−p+1)β−β0

��

TXMβ ⊗ PHp,d−1−p(X) //

((

PHp−1,d−p(X)

''
R(f)β ⊗R(f)(d−p)β−β0

// R(f)(d−p+1)β=β0
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commutes. We need to show that the “bottom square” commutes as well, which

will follow from the commutativity of the “side squares”, and the surjectivity of

the morphism κβ⊗rp. The commutativity of the diagram on the right is contained

in the proof of Theorem 10.6 in [3]. The commutativity of the diagram on the left

follows from the commutativity of the previous diagram, with d − p + 1 replaced

by d− p, and the commutativity of

H0(PΣ,OPΣ
(X))

��

∼ // Sβ

��
TXMβ

∼ // R(f)β

which is shown in the proof of Proposition 13.7 in [3]. �

3.3. Picard group. Our aim is now to prove the following result. Let us recall

that a property is said to be very general if it holds in the complement of a countable

union of subschemes of positive codimension [16]. Also recall that the Picard

number ρ(X) is the rank of the Néron-Severi group, i.e., ρ(X) = dimQ(H1,1(X,C)∩
H2(X,Q)).

Theorem 3.5. Let PΣ be a 3-dimensional complete simplicial toric variety, L

an ample line bundle on PΣ, and X a very general quasi-smooth hypersurface in

the linear system |L|. If the morphism γ2 : TXMβ ⊗ PH2,0(X) → PH1,1(X) is

surjective, then X and PΣ have the same Picard number.

Theorem 3.5 will follow from two Lemmas. In the first Lemma no restriction on

the dimension d of PΣ needs to be made, in the second we shall assume that d is

odd.

The first Lemma is an “infinitesimal Noether-Lefschetz theorem”, such as The-

orem 7.5.1 in [4].

Denote by Hd−1
T (X) ⊂ Hd−1(X) the subspace of the cohomology classes that

are annihilated by the action of the Gauss-Manin connection. Coefficients may be

taken in C or Q. Note that Hd−1
T (X) has a Hodge structure.

Lemma 3.6. For a given p with 1 ≤ p ≤ d− 1, assume that the morphism

γp : TXMβ ⊗ PHd−p,p−1(X)→ PHd−p−1,p(X)

is surjective. Then Hp,d−1−p
T (X) = i∗(Hp,d−1−p(PΣ)).
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Proof. Replace Mβ by M0
β, and consider the local systems E d−1 and PE p,d−p−1 on

M0
β. Take

α ∈ Hp,d−1−p
T (X) ∩ PHp,d−1−p(X).

We regard classes in PHp,d−1−p(X) as elements in the fiber of PE p,d−p−1 at

the point [X] ∈ M0
β . By hypothesis β ∈ PHd−p−1,p(X) can be written as β =∑

i γp(ti ⊗ ηi) with ηi ∈ PHd−p,p−1(X). Then by equations (2) and (4)

〈α, β〉 =
∑
i

〈α, γp(ti ⊗ ηi)〉 =
∑
i

〈α,∇tiηi〉 = −
∑
i

〈∇tiα, ηi〉 = 0.

So α is orthogonal to PHd−1−p,p(X). By Lemma 2.8, this means that α is orthog-

onal to the whole group Hd−1−p,p(X), hence it is zero. Therefore Hp,d−1−p
T (X) =

i∗(Hp,d−1−p(PΣ)). �

For any variety Y we define Hm,m(Y,Q) = Hm,m(Y,C) ∩H2m(Y,Q).

Lemma 3.7. Let d = 2m+ 1 ≥ 3, and assume that the hypotheses of the previous

Lemma hold for p = m. Then for z away from a countable union of subschemes

of Z of positive codimension one has

Hm,m(Xz,Q) = im[i∗ : Hm,m(PΣ,Q)→ H2m(Xz.Q)].

Proof. Let Z̄ be the universal cover of Z. On it the (pullback of the) local system

H d−1 is trivial. Given a class α ∈ Hm,m(X) we can extend it to a global section of

H d−1 by parallel transport using the Gauss-Manin connection. Define the subset

Z̄α of Z̄ as the common zero locus of the sections πp(α) of E p,d−1−p for p 6= m (i.e.,

the locus where α is of type (m,m)).

If Z̄α = Z̄ we are done because α is in Hd−1
T (X) hence is in the image of i∗ by

the previous Lemma. If Z̄α 6= Z̄, we note that Z̄α is a subscheme of Z̄.

We subtract from Z the union of the projections of the subschemes Z̄α where

Z̄α 6= Z̄. The set of these varieties is countable because we are considering rational

classes. �

Proof of Theorem 3.5. Lemma 3.7, for d = 3, implies that H1,1(Xz,Q) and

H1,1(PΣ,Q) have the same dimension for a very general z. These two numbers

are the Picard numbers of Xz and PΣ, respectively (see Definition/Proposition

2.2). �

We assume now that PΣ is Fano, and that L = −KPΣ
, so that the hypersurfaces

in the linear system |L| are K3 surfaces. We have PH2,0 ' R(f)0 ' C, PH1,1(X) '
R(f)β, and TXMβ ' R(f)β, where β = − degKPΣ

. By Propositions 2.12 and 3.4,
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the morphism γ2 corresponds to the multiplication R(f)β ⊗ R(f)0 → R(f)β, and

since R(f)0 ' C, this is an isomorphism. From Theorem 3.5 we have:

Theorem 3.8. Let PΣ be a 3-dimensional Fano complete simplicial toric variety,

and X a very general hypersurface in the linear system | −KPΣ
|. Then X has the

same Picard number as PΣ.
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