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1 Introduction

The CERN collaborations ATLAS [1] and CMS [2] have recently reported the discovery of a
boson, with mass around (125 − 126)GeV, whose branching ratios are fully consistent with
the Standard Model (SM) Higgs boson. Motivated by this achievement, some of us have
recently pointed out [3] that the SM Higgs field might be responsible for generating the
cosmological perturbations of the universe by acting as an isocurvature mode during a de
Sitter inflationary stage [4].

This idea is based on the fact that during a period of exponential acceleration with Hub-
ble rate H all scalar fields with a mass smaller than H are inevitably quantum-mechanically
excited with a final superhorizon flat spectrum. The comoving curvature perturbation, which
provides the initial conditions for the Cosmic Microwave Background (CMB) anisotropies and
for the Large Scale Structure (LSS) of the universe, may be therefore generated on super-
horizon scales when the isocurvature perturbation, which is associated to the fluctuations of
these light scalar fields, is converted into curvature perturbation after (or at the end) of in-
flation [5–10]. In the inhomogeneous decay rate scenario [8] the field responsible for inflation,
the inflaton, decays perturbatively with a decay rate Γ. The hot plasma generated by the
inflaton decay relics thermalizes with a reheating temperature Tr ∼ (MPlΓ)1/2. As a conse-
quence, if Γ depends on some light fields having a flat spectrum during inflation, the decay
rate will be characterized by large-scale spatial fluctuations, thus leading to a temperature
anisotropy, δTr/Tr ∼ δΓ/Γ.

In ref. [3] we have therefore assumed that there was an inflationary period of accelerated
expansion during the primordial evolutionary stage of the universe and that the isocurvature
perturbations are generated by the SM Higgs field. This allowed us to play with two inde-
pendent parameters, the SM Higgs mass mh and the Hubble rate H. Our findings show that,
the Higgs can generate the cosmological perturbation in a wide range of values of the Hub-
ble rate during inflation; depending on the values of the SM parameters, e.g. the top-quark
mass, and for the Higgs masses indicated by the recent experimental discovery, we found
H = (1010 − 1014)GeV. On the other side, if the forthcoming data from the Planck satellite
will provide hints of a B-mode in the CMB polarization originated from tensor modes, this
can be recast into a well-defined range of the Higgs mass

(mh)
B-mode � 128.0GeV + 1.3

�
mt − 173.1GeV

0.7GeV

�
GeV + 0.9

�
H

1015GeV

�
GeV, (1.1)

establishing a very interesting correlation between collider and cosmological measurements.
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In this paper we further study the idea that the cosmological perturbations may be
ascribed to the SM Higgs and focus our attention on another interesting observable charac-
terizing the perturbations, the so-called non-Gaussianity (NG) [11]. Primordial NG in the
cosmological perturbations is a key target for current and future observational probes both
in the CMB anisotropies and in LSS. The reason is simply stated: detecting some level of
NG in the primordial fluctuations as well as its shape allows to discriminate among different
scenarios for the generation of the primordial perturbations [11]. This is because the different
mechanisms giving rise to the inflationary perturbations are correlated with specific shapes.
Models such as the one we investigate in this paper, where the curvature perturbation is
sourced by some isocurvature perturbation, develop the non-linearities when the perturba-
tion is already on super-Hubble scales. The resulting NG is a local function of the Gaussian
part and therefore is dubbed local. As a consequence, the three-point function in Fourier
space gets its major contribution from the “squeezed” configuration where one momentum
is negligible compared to the others (k1 � k2 ∼ k3). The squeezed limit of NG leads to
strong effects on the clustering of dark matter halos as the halo bias becomes strongly scale-
dependent [12]. A detection of primordial NG in the squeezed shape will allow us to rule out
all standard single-field models of inflation since they all predict very tiny deviations from
Gaussianity [13, 14].

In this paper we will answer a very simple question: what is the predicted level of NG in
the cosmological perturbations if the latter are generated by the SM Higgs? Since we do not
wish to restrict ourselves to any specific mechanism to convert the isocurvature perturbation
of the SM Higgs into curvature perturbation, we will compute the unavoidable NG generated
by the non-linearities of the SM Higgs quartic potential. This choice is justified by the fact
that the amount of NG depending on the specific mechanism of conversion from isocurvature
to curvature perturbation may be negligible. We will justify this statement with a couple
of examples.

The paper is organized as follows. In section 2 we give a short summary of primordial
NG and how to calculate it. In section 3 we turn our attention to the NG generated by the
non-linear interactions of the SM Higgs. In section 4 we present our results and draw our
conclusions.

2 Some issues about Non-Gaussianities

In this paper we will adopt the δN formalism [15] to study the curvature perturbation. This
formalism makes use of the fact that the local expansion in separate regions on sufficiently
large scales is identified with the expansion of the unperturbed Friedmann. In general, the
curvature perturbation is given by

ζ(tf , �x) = δN +
1

3

� ρ(tf ,�x)

ρ(t∗)

dρ

ρ+ P
(2.1)

where δN must be interpreted as the amount of expansion along the worldline of a comoving
observer from a spatially flat slice at time t∗ to a generic slice at time tf , and ρ and P are
the local energy and pressure densities, respectively. If the time tf identifies a hypersurface
of uniform energy density, the curvature perturbation at some time tf can be expressed as a
function of the values of the relevant light scalar fields (the inflaton field, the SM Higgs, etc.)
σ
I(t∗, �x) at some time t∗

ζ(tf , �x) = NIσ
I +

1

2
NIJσ

I
σ
J + · · · (I = 1, · · · ,M), (2.2)
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where NI and NIJ are the first and second derivative, respectively, of the number of e-
folds with respect to the field σ

I . The corresponding two-point correlator of the comoving
curvature perturbation is

Pζ(k1) = NINJP
IJ
�k1

,

�σI
�k1
σ
J
�k2
� = (2π)3δ(�k1 + �k2)P

IJ
�k1

= (2π)3δ(�k1 + �k2)δ
IJ

�
H

2π

�2

. (2.3)

Notice that, because of the spatial conformal symmetry of the de Sitter geometry, the two-
point correlators are diagonal in field space [16]. As we are interested in perturbation gen-
erated by the SM Higgs, we will take M = 2: one field is inflaton φ and the other the SM
Higgs, Nφ � Nh, that is the perturbations are dominated by the SM Higgs.

The three- and four-point correlators of the comoving curvature perturbation, called also
the bispectrum and trispectrum respectively, can be also obtained from the expansion (2.2)

�ζ�k1ζ�k2ζ�k3� = B
n−un
ζ (�k1,�k2,�k3) +B

un
ζ (�k1,�k2,�k3),

B
n−un
ζ (�k1,�k2,�k3) = NINJNKB

IJK
�k1�k2�k3

,

B
un
ζ (�k1,�k2,�k3) = NINJKNL

�
P

IK
�k1

P
JL
�k2

+ 2 permutations
�

(2.4)

and

�ζ�k1ζ�k2ζ�k3ζ�k4� = T
n−un
ζ (�k1,�k2,�k3,�k4) + T

un
ζ (�k1,�k2,�k3,�k4),

T
n−un
ζ (�k1,�k2,�k3,�k4) = NINJNKNLT

IJKL
�k1�k2�k3�k4

+NIJNKNLNM

�
P

IK
�k1

B
JLM
�k12�k3�k4

+ 11 permutations
�
,

T
un
ζ (�k1,�k2,�k3,�k4) = NIJNKLNMNN

�
P

IL
�k12

P
JM
�k1

P
KN
�k3

+ 11 permutations
�

+NIJKNLNMNN

�
P

IL
�k1

P
JM
�k2

P
KN
�k3

+ 3 permutations
�
, (2.5)

where �kij = (�ki + �kj). To take into account the fact that the fields can be NG at Hubble
crossing, we have defined their three- and four-point correlators

�σI
�k1
σ
J
�k2
σ
K
�k3
� = (2π)3δ(�k1 + �k2 + �k3)B

IJK
�k1�k2�k3

,

�σI
�k1
σ
J
�k2
σ
J
�k3
σ
L
�k4
� = (2π)3δ(�k1 + �k2 + �k3 + �k4)T

IJKL
�k1�k2�k3�k4

. (2.6)

We see in full generality that the pieces contributing to the three- and the four-point correla-
tors of ζ belong to two different groups: the first is proportional to the connected correlators
of the σI fields; it originates whenever the fields σI are intrinsically NG. This is certainly true
for the SM Higgs fluctuations as the SM potential is not quadratic. We have decided to call it
the non-universal contribution following ref. [17]. The second universal group originates from
the modes of the fluctuations when they are super-Hubble, even if the σ

I fields are gaussian.
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In the presence of NG, one can define the following non-linear parameters1

fNL =
5

12

�ζ�k1ζ�k2ζ�k3�
�

P
ζ
�k1
P

ζ
�k2

, (squeezed : k1 � k2 ∼ k3) (2.7)

τNL =
1

4

�ζ�k1ζ�k2ζ�k3ζ�k4�
�

P
ζ
�k1
P

ζ
�k3
P

ζ
�k12

, (collapsed : �k12 � 0), (2.8)

2τNL +
54

25
gNL =

�ζ�k1ζ�k2ζ�k3ζ�k4�
�

P
ζ
�k4

�
P

ζ
�k1
P

ζ
�k2

+ 2 permutations
� , (squeezed : k4 � k1, k2, k3). (2.9)

These parameters get both non-universal and universal contributions. For instance,

fNL = f
non−un
NL + f

un
NL,

f
non−un
NL =

5

12

B
n−un
ζ (�k1,�k2,�k3)

(NIN
I)4

,

f
un
NL =

5

6

N
I
NIJN

J

(NIN
I)2

. (2.10)

In this paper we will focus our attention to the contributions to the NG coming from the non-
universal pieces: we can compute them exactly once the SM Higgs potential is known. The
universal pieces are model-dependent, i.e. they depend on the specific mechanism by which
the isocurvature perturbation is converted into the curvature perturbation. We will assume
that their contribution to the total NG is subdominant, and motivate this assumption with
a couple of examples in the following two sub-sections. Of course, in a given well-defined
model one should explicitly check the validity of this hypothesis.

2.1 Non-Gaussianities in the modulated decay scenario

As we mentioned in the Introduction, a specific example where the primordial density per-
turbations may be produced just after the end of inflation is the modulated decay scenario
when the decay rate of the inflaton is a function of the SM Higgs field [8], that is Γ = Γ(h).
Therefore, from now one we restrict ourselves to the case in which there is only one rele-
vant fluctuating field, the SM Higgs. If we approximate the inflaton reheating by a sudden
decay, we may find an analytic estimate of the density perturbation. In the case of mod-
ulated reheating, the decay occurs on a spatial hypersurface with variable local decay rate
and hence local Hubble rate H = Γ(h). Before the inflaton decay, the oscillating inflaton
field has a pressureless equation of state and there is no density perturbation. The perturbed
expansion reads

δNd = −1

3
ln

�
ρφ

ρφ

�
. (2.11)

As the universe is made of radiation after the inflation decay, we can write

ζ = δNd +
1

4
ln

�
ρφ

ρφ

�
. (2.12)

1The prime denotes correlators without the (2π)3δ(3)(
�

i
�ki) factors.
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Eliminating δNd and using the local Friedmann equation ρ ∼ H
2, to determine the local

density in terms of the local decay rate Γ = Γ(h), we have at the linear order

ζ = −1

6

δΓ

Γ
= −1

6

d lnΓ

d lnh

δh

h
= −βh

δh

h
, (2.13)

where h̄ is the vacuum expectation value of the Higgs field during inflation. The corresponding
power spectrum of the curvature perturbation is given by

Pζ = β
2
h

�
H

2πh

�2

. (2.14)

By going to higher orders in the fluctuation h, we get (primes indicate differentiation with
respect to the Higgs field)

f
un
NL = 5

�
1− Γ��Γ

Γ�2

�
,

g
un
NL =

25

54

N
���

N �3 =
50

3

�
2− 3

Γ��Γ

Γ�2 +
Γ2Γ���

Γ�3

�
. (2.15)

Now, suppose that the function Γ(h) gets its dependence on the SM Higgs from some Yukawa-
type interaction with Yukawa coupling Y = Y0(1 + h/2M), with M some high mass scale.
If so, Γ(h) � Γ0(1 + h/2M)2 and we obtain f

un
NL = 5/2 and g

un
NL = 25/3. Both these non-

linear parameters lead to a level of NG which is difficult to test observationally and therefore
subdominant. For further discussion about this particular mechanism, see also ref. [18].

2.2 Non-Gaussianities generated at the end of inflation

Another possibility is that that the dominant component of the curvature perturbation is
generated at the transition between inflation and the post-inflationary phase [9]. Let us sup-
pose that slow-roll inflation suddenly gives way to radiation domination through a waterfall
transition in hybrid inflation and that the value of the inflaton φe at which this happens
depends on the SM Higgs field, φe = φe(h). If we assume again that the contribution to the
curvature perturbation from the inflaton field is subdominant, we get

ζ = N
�
eδφe = N

�
e
dφe

d lnh

δh

h
=

dNe

d lnh

δh

h
. (2.16)

For concreteness, let us assume that inflation ends on those Hubble regions where λφφ
2 +

g
2
h
2 = constant. In this case, the corresponding power spectrum of linear perturbations is

given by

Pζg =
h
2

2M2
Pl�e

�
g
2
h

λφφe

�2�
H

2πh

�2

, (2.17)

where �e = −Ḣ/H
2 at the time of the waterfall transition. The universal contribution to the

three-point correlator is given by (primes again indicate differentiation with respect to the
SM Higgs)

6

5
f
un
NL =

N
�
eφ

��
e +N

��
e φ

�2
e

(N �
eφ

�
e)

2
� φ

��
e

(N �
eφ

�2
e )

+ ηe − 2�e

� −
√
2�e

MPl

h

λφφe

g2h

�
1 +

g
4
h
2

λ
2
φφ

2
e

�
, (2.18)
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where we have introduced the slow-roll parameter ηe through the relation N
��
e = N

�2
e (ηe−2�e).

If the power spectrum induced by the SM Higgs field dominates over the one generated by
the inflaton field Pζφ = (1/2�kM2

Pl)(H/2π)2, that is

(g2h/λφφe)
2 � (�e/�k) � 1 , (2.19)

where �k is the slow-roll parameter when the wavenumber k is exiting the Hubble radius, then

6

5
f
un
NL � −

√
2�e

g
2
MPl

λφφe
. (2.20)

This value of NG can be small as long as
√
2�eMPl � h and �e � 1, once eq. (2.19) is taken

into account. Having shown that the universal contribution to NG may be small, we now
focus our attention on the non-universal contribution, which we can compute exactly once
the SM Higgs potential is known.

3 The SM Higgs contribution to the non-Gaussianity

Let us now consider the SM Higgs field h(�x, τ) with potential V (h) = λ(h)h4/4. If the
SM Higgs field has a non vanishing vacuum expectation value h, we know that the n-point
correlator is given by

�h�k1(τ)h�k2(τ) · · ·h�kn(τ)� = −i

�
0

����
� τ

−∞
dτ �

�
h�k1

(τ)h�k2(τ) · · ·h�kn(τ), V (h(τ �))
����� 0

�
. (3.1)

Using the mode functions for a massless field in de Sitter

h�k(τ) =
H√
2k3

(1− ikτ) eikτ , (3.2)

one obtains [19]

�h�k1h�k2 · · ·h�kn�
� = V

(n)
H

2n−4 (k(n)t )3�n
i=1 2k

3
i

In(k1, k2, · · · , kn), (3.3)

where k
(n)
t = k1 + k2 + · · · kn, V (n) = dnV (h)/dh

n
and

In(k1, k2, · · · , kn) = 2

� τend

−∞

dτ

k
3
t τ

4
Re

�
− i(1− ik1τ) · · · (1− iknτ)e

ik(n)

t τ
�
. (3.4)

In particular, we have

I3(k1, k2, k3) =
8

9
−

�
i<j 2kikj�
k
(n)
t

�2 − 1

3
(γE +Nkt)

�
i 2k

3
i�

k
(n)
t

�3 ,

I4(k1, k2, k3, k4) =
8

9
−

�
i<j 2kikj�
k
(n)
t

�2 + 2
Πiki

k
4
t

− 1

3
(γE +Nkt)

�
i 2k

3
i�

k
(n)
t

�3 . (3.5)

Here γE denotes the Euler gamma, while Nkt is the number of e-folds from the time the mode
kt crosses the Hubble radius to the time τend when inflation ends.
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How large can the non-universal contributions be? Let us consider the three-point
correlator in the squeezed limit

�h�k1h�k2h�k3�
� � −2

3
· 6λh
H2

Nkt P�k1
P�k2

, (k1 � k2 ∼ k3). (3.6)

The corresponding contribution to the three-point correlator of the comoving curvature per-
turbation is

�ζ�k1ζ�k2ζ�k3�
� � −4

λh

H2

Nkt

N � P
ζ
�k1
P

ζ
�k2
, (k1 � k2 ∼ k3) (3.7)

leading to a non-universal contribution to the non-linear parameter fNL given by (see eq. (2.7))

f
n−un
NL � −5

3

λh

H2

Nkt

N � = − 5

6π

λh

H

Nkt

P1/2
ζ

� −5.0

�
λ

10−3

�1/2�
mh(h)/H

10−3

��
Nkt

50

�
, (3.8)

where we have defined the quantity Pζ ≡ (k3/2π2)P ζ
�k
= N

�2(H/2π)2 � 2.3 × 10−9 and the

(field-dependent) Higgs mass m
2
h(h) = 3λh

2
. Analogously we find the four-point correlator

to be

�h�k1h�k2h�k3h�k4�
� = 6λH4 (k(4)t )3

16 k31 k
3
2 k

3
3 k

3
4

I4(k1, k2, k3, k4), (3.9)

which, in the squeezed limit k4 � k1, k2, k3, reduces to

�h�k1h�k2h�k3h�k4�
� = 6λH4 (k(3)t )3

16 k31 k
3
2 k

3
3 k

3
4

I3(k1, k2, k3) =
1

h

H
2

2 k34
�h�k1h�k2h�k3�

�

=
P�k4

h
�h�k1h�k2h�k3�

�
. (3.10)

This corresponds to

g
n−un
NL � −25

54

2λ

H2

Nkt

N �2 = − 25

27(2π)2
λNkt

Pζ
� −5.1× 105

�
λ

10−3

��
Nkt

50

�
. (3.11)

Notice that both fNL and gNL are predicted to be negative.

4 Results and conclusions

To find the amount of NG generated by the SM Higgs we need to compute its potential and
the solution to the field equation of motion in the expanding background. As in ref. [3],
we adopt 2-loop renormalization group (RG) equations for gauge, Higgs-quartic and top-
yukawa couplings; the pole-mass matching scheme for the Higgs and top masses is taken
from the appendix of ref. [20]. We considered mt = 173.1 ± 0.7GeV for the top mass [22],
and αs(MZ) = 0.1184 ± 0.0007 for the QCD gauge coupling [23]. For simplicity, we have
only considered the central value of the QCD coupling αs; in fact, the size of the effect of
the 1σ-variation of αs turns out to be comparable with the higher-order effects that we are
neglecting (e.g. three-loops effects). The RG-improved effective potential V (h) of the SM

– 7 –
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Figure 1. The absolute value of fNL as a function of H, for mh = 125.5GeV and three values
of the top mass: mt = 171.7, 172.4, 173.1GeV. The curves correspond to values of H below the
instabiity scale, and they end where H = Λinst. The limit |fNL| < 102 has also been displayed as
horizontal band.

Higgs [21] is then obtained by solving numerically the RG equations, as a function of input
parameters, such as the top and Higgs masses.

The dynamics of the SM Higgs field during inflation is found, after setting the Hubble
rate during inflation and the initial value of the field, by solving the equation

ḧ+ 3Hḣ+ V
�(h) = 0 , (4.1)

where the dot refers to derivative with respect to t = H
−1 ln a (conventionally, the scale factor

is set to 1 at the initial field value). The dynamics has to satisfy the following requirements:
1) V (h) � H

2
M

2
Pl, which means that the contribution of the Higgs field to the energy density

during inflation is negligible; 2) |d2V (h)/dh2| � H
2, which means that the SM Higgs field

is light enough during inflation. The latter condition must hold for enough e-folds to ensure
sufficient homogeneity and isotropy of the present observable universe (we consider 60 e-folds
as a fiducial number). An automatic consequence of the condition 2 is that the special index
of the perturbations is sufficiently close to 1.

Next, we scan over the Higgs and top masses and the Hubble rate H, looking for those

values for which the cosmological perturbations have the correct value, P 1/2
ζ = 4.8 × 10−5,

and computing the amount of NG generated according to eqs. (3.8) and (3.11). Of course, we
have to impose that the NG are sufficiently small to meet the current bounds, |fNL| � 102 [24]
and |gNL| � 106 [25].

The instability scale Λinst of the SM Higgs potential at which the Higgs quartic coupling
runs negative sets an upper limit on the values of H. A lower limit on H is set by the NG
constraints. The way to keep fNL below the bound is by having λ(h̄) small and this is
achieved by taking h̄ as close as possible to Λinst, where λ = 0. The field can roll down
starting, at most, from the maximum of the potential, and this is our initial condition for
the equation of motion (4.1).

Our results are presented in figures 1, 2 and 3 where we also show the current exclusion
limit on H from CMB data which dictates H � 1.5× 1014GeV [26] (darker gray band), and
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Figure 2. The green bands indicate the allowed values of mh, H, where H < Λinst and |fNL| < 100,
for different top-quark masses (the central value, 1σ and 2σ below).

124.0 124.5 125.0 125.5 126.0 126.5 127.0

108

1010

1012

1014

mh �GeV�

H
�GeV

�

Current CMBExclusion

Expected PLANCK sensitivity

mt�171
.7 GeV

mt�172.4 G
eV

mt�173.1 G
eV

mt�173.8 GeV

mt�174.5 GeV

Figure 3. The orange bands indicate the allowed values of mh, H, where H < Λinst and |gNL| < 106,
for different top-quark masses (the central value, ±1σ and ±2σ). The green bands correspond to the
regions allowed by the fNL constraint, as in figure 2.

the testable region by the PLANCK experiment 6.7 × 1013GeV � H � 1.5 × 1014GeV [27]
(lighter gray band).

In figure 1, we plot the values of fNL, as a function of H, for fixed mh = 125.5GeV
and different values of the top mass: mt = 171.7, 172.4, 173.1GeV. The curves correspond to
values of H below the instability scale, and they end where H = Λinst. The limit |fNL| < 102

has also been displayed as a horizontal band. Notice that, for a given mh, a sufficently
small amount of NG is produced as long as the top mass is small enough. This because the
instability scale increases for smaller mt, and this allows larger values of H to be considered,
and thus smaller fNL.

The bands in figure 2 correspond to the upper and lower limits on H discussed above,
for different values of the Higgs and top-quark masses. In particular, for the central value of
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mt = 173.1GeV, H is limited to be in the range (1011 − 1012)GeV, and therefore no tensor
modes would be seen. Notice that the fNL constraint implies a lower bound on H almost
independent on mh,mt: H � 1011GeV. This can be recovered by imposing fNL = −100
in eq. (3.8). In the range of masses we considered we typically have h̄ � 1011GeV and
λ � 4× 10−4. This implies a minimum value of H ∼ 1011GeV.

In figure 3, the corresponding limits from gNL are shown (orange bands). We deduce
that whenever fNL is large, gNL is small and therefore the bounds on the bispectrum are
stronger the the ones coming from the trispectrum.

One can also obtain a fitting formula relating the Higgs mass, the top mass and the
Hubble rate on the isocurve fNL = −100,

(mh)
fNL=−100 � 128.1GeV + 1.3

�
mt − 173.1GeV

0.7GeV

�
GeV + 1.3

�
H

1015GeV

�
GeV. (4.2)

This formula is valid in the ranges 124.0GeV � mh � 127.0GeV and 6.7× 1013GeV � H �
1.5×1014GeV. If tensor modes will be detected with a given H, eq. (4.2) makes a prediction
for the Higgs and top masses corresponding to a level of NG of fNL = −100.

In conclusion, we have studied the level of NG in the cosmological perturbations which
are generated by the non-linearities of the SM Higgs potential under the hypothesis that
the SM Higgs is responsible for the generation of the curvature perturbation (but not for
driving inflation). In particular, we have assumed that the universal contribution to the
NG is negligible, supporting this hypothesis with a couple of examples. In this sense, the
NG studied in this paper is unavoidable (barring potential cancellations with the universal
contributions). Under these circumstances we have obtained that:

• The NG in the four-point correlator (in the squeezed limit) is always negligible once
the bounds on the amplitude of the three-point correlator are accounted for.

• The current constraints on fNL imply a lower bound on the Hubble rate during inflation,
H � 1011GeV, in the range of Higgs mass indicated by the LHC experiments.

• For the current central value of the top mass (mt = 173.1GeV) a future detection of
NG would exclude the detection of tensor modes through the B-mode of the CMB
polarization.
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