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1 Introduction and motivation

The AdS/CFT duality [1–3] has proven to be an incredibly powerful tool to study prop-

erties of strongly coupled gauge theories in terms of dual weakly coupled gravitational

backgrounds. The primary objects the basic dictionary allows one to compute are correla-

tors of gauge invariant operators.

Our aim in this work is to apply holographic techniques (i.e. holographic renormaliza-

tion [4–6]) to compute two-point functions of gauge invariant operators related by SUSY

transformations in a strongly coupled theory, and see how these correlators differ when

SUSY is broken at low energies, i.e. either spontaneously or softly. The leading application

we have in mind is General Gauge Mediation [7] (GGM), where two-point functions of

operators belonging to a conserved current supermultiplet encode all the information that

is needed to derive the soft spectrum of superpartners.

In this work, we will focus our attention on asymptotically AdS (AAdS) spacetimes,

which correspond to dual theories with a non-trivial superconformal fixed point in the UV.1

The operators in the current supermultiplet are dual to bulk fields belonging to a vector

multiplet of a N = 2 gauged supergravity in 5 dimensions. Our task will be to compute

1Strictly speaking, theories which are superconformal cannot break SUSY spontaneously, because

〈Tµν〉 = εηµν contradicts Tµµ = 0. The set ups we consider will be thought of as toy models where the

superconformal symmetry is broken explicitely, though often in a strongly coupled way.
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two-point correlators from the linear fluctuations of such fields over a background that

breaks SUSY.

An interesting class of backgrounds can be obtained by considering an effective gauged

supergravity Lagrangian describing the interaction of the N = 2 gravity multiplet with one

hypermultiplet. The latter, known as the universal hypermultiplet, contains the dilaton,

and another scalar related to a squashing mode, which has m2 = −3 (in AdS units) and

is charged under the R-symmetry. We will show that turning on the charged scalar is a

necessary condition in order to get, eventually, Majorana masses for the Supersymmetric

Standard Model (SSM) gauginos. On the contrary, pure dilatonic backgrounds, which as

such preserve the R-symmetry, can (and do, in general) provide a Dirac mass for gauginos.

The rest of the paper is organized as follows.

In section 2 we first briefly review the GGM formalism. Then, we discuss the holo-

graphic recipe to compute GGM correlators by means of the renormalized action for a 5d

massless vector multiplet, the bulk multiplet dual to the current superfield. In doing so,

we explain in detail how to use holographic renormalization for such fields (for previous

works using a similar philosophy see [8–10]).

In section 3 we present a 5d N = 2 gauged supergravity model which is the simplest

possible model containing all necessary ingredients to let us treat several qualitatively

different examples, all arising as consistent solutions of the same 5d equations of motion.

As a warm-up, we start in section 4 by considering a pure (and hence supersymmetric)

AdS background. The holographic GGM functions are those of a supersymmetric field

theory. We use the holographic computation to check the validity of our approach, and as

useful reference for the more interesting examples we consider afterwards.

In section 5 we turn to a dilaton-domain wall background, originally found in [11, 12]

(see also [13]) in the context of full fledged type IIB supergravity, used at that time as a

candidate gravitational dual for confining theories. The background breaks all supersym-

metry but preserves the R-symmetry. We find non-vanishing values for the sfermion masses

while, consistently, SSM gauginos do not acquire a (Majorana) mass term. Interestingly,

we find a pole at zero momentum for one fermionic correlator, which signals the presence

of a Dirac-like (hence R-symmetry preserving) mass for the gauginos [14, 15]. Notice that

in our strongly coupled theory, such Dirac mass contribution arises as a consequence of

strong dynamics in the hidden sector.

Finally, in section 6, we turn-on a small R-symmetry breaking scalar profile, that

we treat linearly and without backreaction on the dilaton-domain wall background. The

linear approximation is sufficient to show how things change significantly. Indeed, we show

that in this case a Majorana mass for the gauginos is generated. Moreover, the pole at

zero momentum of the fermionic correlator, responsible for a Dirac-like contribution to

gaugino masses in the pure dilatonic background, automatically disappears, in remarkable

agreement with field theory expectations [14, 15].

We conclude in section 7 with a summary of our results and an outlook on possible

further applications.
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2 Holographic renormalization of a vector multiplet

In general gauge mediation [7] the basic objects one has to compute are correlators of

operators belonging to the hidden sector current supermultiplet. The 5d gravity dual to

such current superfield is a N = 2 massless vector multiplet. In this section we review

why these claims are correct, write down the correlators we will be interested in, and then

provide the holographic recipe to compute them.

2.1 Correlators for general gauge mediation

Any gauge mediation model can be visualized as a supersymmetric Standard Model visible

sector whose gauge degrees of freedom couple to the hidden sector as∫
d4xd4θgV J , (2.1)

at leading order in the SSM gauge coupling constant g. In the above formula V is a SSM

vector multiplet (here and below we will suppress indices and effectively assume a U(1)

SSM gauge group, for simplicity), and J is a N = 1 multiplet of a conserved current.

In 4d, such a multiplet contains a scalar operator J of conformal dimension ∆0 = 2,

a fermionic operator jα of conformal dimension ∆1/2 = 5/2 and a vector operator ji of

conformal dimension ∆1 = 3.

The current multiplet is associated to a global symmetry of the hidden sector that

one has then to weakly gauge and identify with the visible sector gauge group. The soft

spectrum at low energies is completely determined by two-point functions between the

hidden sector currents, which in Euclidean momentum-space read

〈J(k)J(−k)〉 = C0(k2) , (2.2)

〈jα(k)j̄α̇(−k)〉 = −σiαα̇kiC1/2(k2) , (2.3)

〈ji(k)jj(−k)〉 = (kikj − ηijk2)C1(k2) , (2.4)

〈jα(k)jβ(−k)〉 = εαβB1/2(k2) , (2.5)

where a factor of (2π)4δ(4)(0) is understood. The Cs functions are real and dimensionless

while B1/2 is in general complex, breaks R-symmetry, and has the dimension of a mass.

Unbroken supersymmetry dictates

C0(k2) = C1/2(k2) = C1(k2) , B1/2(k2) = 0 . (2.6)

Expanding the effective Lagrangian of the gauge supermultiplet in the gauge coupling g,

one easily sees that the soft masses for sfermions and gauginos can be expressed in terms

of above correlators as

m2
f̃

= −g4

∫
d4k

(2π)4

1

k2

(
3C1(k2)− 4C1/2(k2) + C0(k2)

)
, (2.7)

mλ = g2B1/2(0) . (2.8)

– 3 –
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4d op. ∆ 5d field scaling AdS mass

J(x) ∆0 = 2 D(z, x) D(z, x) ' z2lnz d0(x) m2
D = ∆0(∆0 − 4) = −4

jα(x) ∆1/2 = 5/2 λ(z, x) λ(z, x) ' z3/2λ0(x) |mλ| = ∆1/2 − 2 = 1/2

ji(x) ∆1 = 3 Aµ(z, x) Aµ(z, x) ' a0µ(x) mA = (∆1 − 2)2 − 1 = 0

Table 1. 4d N = 1 current multiplet and dual supergravity fields

In general, one might like to consider hidden sectors which break supersymmetry at strong

coupling, and this makes the problem of computing the correlators of the hidden sector

currents a difficult one from the field theoretical point of view.

Our purpose is then to provide the correct recipe to compute GGM correlators (2.2)–

(2.5) using the AdS/CFT correspondence. In what follows we discuss the various steps one

should pursue to reach this goal.

First, one should consider a 5d supergravity background being possibly a stable solution

of (a consistent truncation of) 10d Type IIB supergravity compactified on some 5d internal

manifold. This background represents, holographically, our strongly coupled hidden sector.

Since this background is the source of supersymmetry breaking, we will focus on solutions

which do not preserve any supersymmetry. For the time being, we will not need to specify

any detail of the background, except that we take it to be asymptotically AdS, that is

ds2 '
z→0

1

z2

(
dz2 + (dxi)2

)
. (2.9)

On such background we should then study the fluctuations for the fields dual to the con-

served U(1) current multiplet J . According to the AdS/CFT field/operator correspon-

dence, the 5d supergravity multiplet dual to a current supermultiplet J is a N = 2 massless

vector multiplet (D, λ, Aµ) , as detailed in table 1 (for asymptotically AdS backgrounds,

the scaling at the boundary is directly related to the mass of supergravity fields).

On general grounds the existence of such a multiplet is ensured as long as the internal

manifold has some isometries. In the context of the full 10d theory it would be a difficult

task to identify the correct 10d fluctuations corresponding to the 5d vector multiplet [16].2

For this reason we will consider consistent truncations of the full theory to 5d gauged

supergravity. Notice, though, that since we want to compute two-point functions of the

dual operators, we need to consider the action for the vector multiplet only to quadratic

order in the fields (but of course to all order in the background fields).

Given a 5d supergravity action, we have to apply the holographic renormalization

procedure [4–6] in order to obtain a finite well defined on-shell boundary action. At the

end of this procedure we will get a renormalized action Sren[d0, λ0, a0] quadratic in the

sources. The two point functions are then computed deriving twice with respect to the

sources.

We recall that the leading boundary mode for the scalar, d0, can be directly identified

with the source for the operator J . Similarly for the vector, with the gauge choice Az = 0,

2At least for the standard case of AdS5 × S5 the problem has been fully solved in [17, 18].
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the leading boundary mode a0i is the source for the 4d conserved vector current at the

boundary. As for the spinor, it can always be written in terms of 4d Weyl spinors of

opposite chirality [19]

λ =

(
χ

ξ̄

)
. (2.10)

Choosing the sign of the mass |mλ| = 1/2 we are fixing the chirality of the leading

mode in the near boundary expansion. As we will review, choosing mλ = −1/2 the leading

mode at the boundary has negative chirality λ ' z3/2ξ̄0. Using the holographic dictionary,

the GGM functions can then be determined from the renormalized boundary action as

C0(k2) = − δ
2Sren

δd0δd0
, C1/2(k2) = − σ̄

α̇α
i ki

2k2

δ2Sren

δξα0 δξ̄
α̇
0

, C1(k2) =
ηij
3k2

δ2Sren

δa0iδaj0
, (2.11)

B1/2(k2) = −ε
αβ

2

δ2Sren

δξα0 δξ
β
0

. (2.12)

In the remainder of this section, we will derive the results above.

2.2 Two-point functions from the renormalized boundary action

In what follows we want to show in some detail how, given a certain background, one

can use the procedure of holographic renormalization to calculate two-point functions of

current operators (2.11)–(2.12). The starting point is given by the interactions of the vector

multiplet with the background, encoded in the part of the Lagrangian which is quadratic

in the vector multiplet.

Near the boundary of the background geometry we assume that all scalars that might

have a non-trivial profile vanish sufficiently fast, so that all their interactions with the

vector multiplet can be neglected in this limit. Therefore, near the boundary the (Eu-

clidean) quadratic Lagrangian approaches that of a vector multiplet minimally coupled to

the background

Lquad '
z→0

Lmin =
1

2
(Gµν∂µD∂νD − 4D2) +

1

4
FµνF

µν +
1

2
(λ̄ /Dλ+ c.c.)− 1

2
λ̄λ . (2.13)

Consequently the equations near the boundary approach the AdS form

(2AdS + 4)D '
z→0

0 , (2.14)

(Max)AdSAi '
z→0

0 , (2.15)(
/DAdS −

1

2

)
λ '

z→0
0 , (2.16)

where we fixed the 5d Coulomb gauge in which Az = 0 and the 4d Lorentz gauge ∂iAi = 03,

3Notice that with this gauge choice we can compute only the coefficient of ηij in the vector current

correlator; the additional term can obviously be inferred by current conservation.
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and the differential operators above take the form

2AdS = z2∂2
z − 3z∂z + z2(∂i)

2 , (2.17)

(Max)AdS = z2∂2
z − z∂z + z2(∂i)

2 , (2.18)

/DAdS = zγz∂z − 2γz + zγi∂i . (2.19)

The spinor equation can be rewritten in terms of Weyl components as
z∂zχ+ izσi∂iξ̄ − 5

2χ 'z→0
0

−z∂z ξ̄ + izσ̄i∂iχ+ 3
2 ξ̄ 'z→0

0 .
(2.20)

Correspondingly, the asymptotic behavior of the supergravity fields near the boundary

takes the following form4

D(z, k) '
z→0

z2
(
d0(k) ln(zΛ) + d̃0 +O(z2)

)
, (2.21)

Ai(z, k) '
z→0

ai0(k) + z2(ãi2(k) + ai2(k) ln(zΛ)) +O(z4) , (2.22)
ξ̄(z, k) '

z→0
z3/2

(
ξ̄0(k) + z2(

¯̃
ξ2(k) + ξ̄2(k) ln(zΛ)) +O(z4)

)
,

χ(z, k) '
z→0

z5/2
(
χ̃1(k) + χ1(k) ln(zΛ) +O(z2)

)
.

(2.23)

Note that in the scalar case the leading term at the boundary has a logarithmic scaling.

This is a peculiar feature related to the fact that m2
D = −4 saturates the stability bound

for a scalar field in AdS5 [20, 21]. In the fermionic case the choice mλ = −1/2 implies that

the leading mode at the boundary has negative chirality, as anticipated.

Every coefficient in the expansion is a function of the momentum k, and the variational

principle of the supergravity theory is defined by fixing the leading modes at the boundary

(d0, ξ̄0, ai0) and letting all other coefficients free to vary independently. Substituting the

ansatz in the asymptotic equations of motion (2.14)–(2.16) one can determine the on-shell

values of all coefficients but tilded ones (i.e. the source terms), as local (i.e. polynomial in

k) functions of the leading modes (d0, ξ̄0, ai0). In particular we find

ai2 =
k2

2
ai0(k) , ξ̄2 =

k2

2
ξ̄0(k) , χ1 = −σikiξ̄0(k) . (2.24)

Conversely, the subleading modes in the near boundary expansion are not determined

by the near boundary analysis and in general will be non-local functions of the external

momenta which can be derived from the exact solutions of the equations of motion.

When evaluated on-shell, the supergravity action (2.13) reduces to the boundary terms,

which are in general divergent in the limit z → 0, and have to be regularized. This can be

done considering a cutoff surface z = ε, for which, after Fourier transformation on the 4d

coordinates, the boundary terms become

Sreg = −
∫
z=ε

d4k

(2π)4

1

2

[
ε−4(Dz∂zD)z=ε + ε−2(Aiz∂zA

i)z=ε − ε−4(ξχ+ χ̄ξ̄)z=ε
]
. (2.25)

Note that the fermionic boundary term [22, 23] is reminiscent of a Dirac mass term.

4In order to define the logarithmic mode in the bulk we have to introduce an energy scale Λ which gets

identified with the RG scale of the boundary theory.
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Plugging the near boundary expansion and taking into account the on-shell relations

between the various coefficients, we can collect both a divergent and a finite contribution

in the regularized action (2.25)

Sreg|div = −
∫
z=ε

d4k

(2π)4

1

2
ln(εΛ)[2 ln(εΛ)d2

0 + 4d0d̃0 + d2
0 + ai0k

2a0i + 2ξ0σ
ikiξ̄0] ,

Sreg|finite = −
∫

d4k

(2π)4

1

2

[
2d̃2

0 + d0d̃0 + 2ai0ãi2 + ai0
k2

2
ai0 − (ξ0χ̃1 + ¯̃χ1ξ̄0)

]
.

The divergent terms can be subtracted by means of the following covariant counterterms

Sct = −1

2

∫
z=ε

d4k

(2π)4

√
γ

[
2D2 +

D2

ln(εΛ)
− 1

2
ln(εΛ)FijF

ij + 2 ln(εΛ)λ̄γikiλ

]
. (2.26)

The counterterms for the scalar components contribute also to the finite part of the bound-

ary action so we finally get the result

Sren =
N2

8π2

∫
d4k

(2π)4

[
d0d̃0 − 2ai0ãi2 −

1

2
ai0k

2ai0 + ξ0χ̃1 + ¯̃χ1ξ̄0

]
, (2.27)

where we restored the normalization of the action which was neglected so far. The coeffi-

cient is due to the identification 1
8πG5

= N2

4π2 which we will explain when treating the pure

AdS example.

Twice differentiating with respect to the sources we finally get for the two-point

functions

〈J(k)J(−k)〉 =
N2

8π2

(
−2

δd̃0

δd0

)
, (2.28)

〈ji(k)jj(−k)〉 =
N2

8π2

(
2
δãi2

δaj0
+ 2

δãj2
δai0

+ k2ηij

)
, (2.29)

〈jα(k)j̄α̇(−k)〉 =
N2

8π2

(
δχ̃1α

δξ̄α̇0
+
δ ¯̃χ1α̇

δξα0

)
, (2.30)

〈jα(k)jβ(−k)〉 =
N2

8π2

(
δχ̃1α

δξβ0
−
δχ̃1β

δξα0

)
. (2.31)

An important comment about the fermionic correlators is in order. From the structure

of the spinor equation of motion one can notice that the subleading mode χ̃1, which is

determined by the full bulk equation, will always have a non-trivial dependence on the

leading mode of opposite chirality ξ̄0, ensuring a non-zero value for the function C1/2. On

the other hand, already at this very general stage, we see that the only way to obtain a

non-zero B1/2 is to have the mode χ̃1 to depend also holomorphically on the source ξ0. In

the next section we will show that this is closely related to the presence of Majorana-like

couplings in the 5d action that can arise only in the presence of a non-trivial profile for

R-charged scalars. This should be expected, since a non-zero B1/2 requires R-symmetry to

be broken. We will see under which conditions non-trivial Majorana-like couplings of the

bulk fermions can be produced.
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3 Embedding the hidden sector in a gauged supergravity model

In this section we will introduce our model for the 5d bulk theory. As already noticed,

the 5d gravity theory, besides the graviton multiplet, must contain at least one N = 2

vector multiplet, which is dual to the multiplet of the conserved current of the boundary

theory. As a necessary condition for the theory to be a consistent truncation of 10d type IIB

supergravity, the matter content must include also one hypermultiplet which is the N = 2

multiplet of the 10d dilaton, usually called universal hypermultiplet. In fact, enlarging

the matter content to include an hypermultiplet is also necessary to the aim of finding

interesting backgrounds, as we will see. Therefore, the minimal 5d content one should

consider consists of N = 2 supergravity coupled to a vector multiplet and a hypermultiplet.

In order to make our program concrete we consider a class of gauged supergravity

theories studied in [24] which actually contains the minimal field content described above.5

We now briefly outline the main ingredients that specify our Lagrangian, whose form is

dictated by the scalar manifold and the gauging. For further details we refer to [24, 25].

The scalars describe a non-linear sigma model with target space

M = O(1, 1)× SU(2, 1)

U(2)
. (3.1)

The manifold is a direct product of a very special manifold S = O(1, 1) and a quaternionic

manifold Q = SU(2,1)
U(2) spanned by the so-called universal hypermultiplet, which contains

the axio-dilaton. The S factor is parametrized by the vector multiplet real scalar D with

metric

ds2
1 = dD2, (3.2)

whereas Q is parametrized by the four real hyperscalars qX = (φ, C0, η, α) with metric

ds2
2 = gXY dq

XdqY =
1

2
cosh2(η)dφ2 +

1

2

(
2 sinh2(η)dα+ eφ cosh2(η)dC0

)2
+ 2dη2 , (3.3)

where η ≥ 0 and α ∈ [0, 2π]. The scalar η is sometimes called squashing mode, since within

10d compactifications it is related to a squashing parameter of the internal compactification

manifold. The isometries of this scalar manifold have a U(2) maximal compact subgroup

acting on Q. Since the theory contains two vectors, one in the gravity multiplet and the

other one in the vector multiplet, the maximal subgroup we can gauge is a U(1) × U(1).

As a minimal set up we choose to gauge just the U(1) corresponding to the shift symmetry

α→ α+ c (3.4)

of the above metric, which is a compact isometry because the scalar α is a phase.

The vector field of this U(1) which acts non trivially on the scalar manifold is the

graviphoton in the gravity multiplet, so that this gauge symmetry is dual to the R-

symmetry of the boundary theory. On the other hand, in our simplified setting the U(1)

5This class of theories has the virtue that, for some choices of the gauging, the resulting theory is believed

to be a consistent truncation of the maximally gauged N = 8 supergravity in 5d (and therefore of 10d type

IIB compactified on a sphere).
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gauged by the vector belonging to the vector multiplet acts trivially on all supergravity

fields (this does not mean that the vector multiplet is free, as we will see when we write its

Lagrangian). Notice that the axio-dilaton is neutral under both U(1)’s while the complex

scalar ηeiα is charged under the symmetry gauged in the bulk by the graviphoton. There-

fore, a background with a non-trivial profile for the dilaton preserves the R-symmetry,

while a non-trivial profile for η breaks it. For later reference let us notice that while the

axio-dilaton is massless, and holographycally dual to the hidden sector TrF 2
ij operator,

the squashing mode η has m2 = −3 and it is dual to the hidden sector gaugino bilinear.

Hence, the leading mode for this field at the boundary would provide an explicit mass to the

hidden gauginos (hence an explicit R-symmetry breaking term), while a subleading term

would correspond to a VEV for the gaugino bilinear (hence a spontaneous R-symmetry

breaking term).

Starting form our 5d Lagrangian, as already outlined in the previous section, there are

basically two steps one should perform:

• First, we should find a non-supersymmetric background configuration with just the

metric and some of the hyperscalars turned on. In order to do this we will truncate

the Lagrangian to the relevant field content (provided this is consistent with the full

set of equations) and extract the equations of motion which the background must

satisfy.

• Second, we need to extract the linearized differential equations for the vector multi-

plet fluctuating on the background that we will find. To this aim, we will perform

a different truncation of the Lagrangian setting all fields but the vector multiplet

to their background values, and retain only the couplings which are no more than

quadratic in the vector multiplet fields.

We will now present the explicit form of these truncated Lagrangians.

3.1 Lagrangian for the background

Let us start by setting to zero the whole vector multiplet, as well as the gravitino, the

graviphoton and the fermions of the hypermultiplet. The phase α can be gauge-fixed to

zero. The resulting truncated (Euclidean) action reads

Sb.g. =

∫
d5x
√
G

[
−1

2
R+ Lkin + V

]
(3.5)

where the kinetic term is given in term of the metric (3.3) by Lkin = 1
2gXY ∂µq

X∂µqY ,

that is

Lkin =
1

4

[
4∂µη∂

µη + cosh2(η)∂µφ∂
µφ+ e2φ cosh4 (η) ∂µC0∂

µC0

]
. (3.6)

As a consequence of the gauging we have a non-trivial potential given by

V =
3

4

(
cosh2(2η)− 4 cosh(2η)− 5

)
. (3.7)
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We end up with the following system of differential equations

Rµν =
2

3
VGµν + 2

(
∂µη∂νη +

1

4
cosh2(η) ∂µφ∂νφ

)
, (3.8)

2η =
1

2

∂V
∂η

+
1

8
sinh(2η) ∂µφ∂

µφ, (3.9)

2φ = −2 tanh(η) ∂µη∂
µφ, (3.10)

where 2 is the usual Klein-Gordon operator on a curved space

2 =
1√
G
∂µ(
√
GGµν∂ν) . (3.11)

The condition of asymptotically AdS background can be phrased by taking a metric of

the form

ds2
5 =

1

z2

(
dz2 + F (z)(dxi)2

)
(3.12)

with F (z) approaching 1 at the boundary z → 0. Therefore the solution to the above

equations determine the three unknown functions φ, η and F of the radial coordinate z.

In the case of unbroken R-symmetry, η = 0, the above system of equations reduces

exactly to the one considered in [11], and admits both a supersymmetric AdS solution

with constant dilaton, as well as a singular dilaton domain-wall solution [11, 12]. The

latter breaks both conformal invariance and (all) supersymmetry. Another interesting

background is one where also the charged scalar η has a non-trivial profile. We will consider

all these examples in turn. Notice that it is only in the R-breaking background that we

need to fix the particular truncation and the form of the gauging which specify our 5d

model. This is necessary to derive the potential for η and find its profile, and also to find

out how it interacts with the fluctuations in the vector multiplet (at least at quadratic level

in the vector superfield).

3.2 Quadratic Lagrangian for the vector multiplet

We now turn to the action describing the coupling of vector multiplet fluctuations to the

background. To this end we fix F, φ and η to their (z-dependent) background value into

the full Lagrangian, and retain only those terms involving the vector multiplet up to second

order. The resulting (Euclidean) action can be divided in two pieces

Squad =

∫
d5x
√
G [Lmin + Lint] . (3.13)

The first one contains kinetic terms and mass terms for the fluctuations, and it is uniquely

fixed by the dimensions of the dual operators and their minimal coupling to the metric to

be Lmin, eq. (2.13). The second one contains interactions with the scalars φ and η and

takes the form

Lint =
1

2
δM2D2 − δmDλ̄λ

− 1

2

(
mM λ̄λ

c + vM λ̄(/∂η)λc + ṽM λ̄(/∂φ)λc + c.c.
)
. (3.14)
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where

δM2 = 2(cosh2(2η)− cosh(2η)) , δmD = −1

2
sinh2(η) (3.15)

mM = i sinh(η) , vM = − i

cosh(η)
, ṽM =

i

2
sinh(η). (3.16)

In the first line there are (z-dependent) shifts for scalar mass squared and Dirac fermion

mass, whereas in the second line there are a Majorana mass term and additional Majorana-

like couplings. We wrote the couplings in a 5d covariant manner, but one should bear in

mind that η and φ are background values which actually can depend only on the radial

coordinate, so that the additional terms are equivalent to 4d covariant terms constructed

with a γ5 matrix. Notice that all couplings (3.15)–(3.16) vanish if η is identically zero in

the background.

From the action (3.13) we get the equations of motion

(2 + 4− δM2)D = 0 , (3.17)

1√
G
∂µ(
√
GGµρGνσFρσ) = 0 , (3.18)(

/D − 1

2
− δmD

)
λ− (mM + vM /∂η + ṽM /∂φ)λc = 0 , (3.19)

where

2 =
1√
G
∂ν(
√
GGµν∂µ) , (3.20)

Fµν = ∂µAν − ∂νAµ , (3.21)

/D = eµaγ
a

(
∂µ +

1

8
ωcbµ [γb, γc]

)
. (3.22)

As already noticed, the 5d spinor is equal in form to a 4d Dirac spinor and it is often useful

to rewrite its equation of motions in terms of chirality eigenstates, that is

λ =

(
χ

ξ̄

)
, λ̄ = −

(
ξ χ̄
)
, λc =

(
ξ

−χ̄

)
. (3.23)

In terms of Weyl components χ and ξ, eq. (3.19) becomes(
z∂z −

5

2
+ z

F ′

F
− δmD

)
χ+ i

z√
F
σi∂iξ̄ − (mM + vMzη

′ + ṽMzφ
′)ξ = 0 , (3.24)(

z∂z −
3

2
+ z

F ′

F
+ δmD

)
ξ̄ − i z√

F
σ̄i∂iχ− (mM − vMzη′ − ṽMzφ′)χ̄ = 0 . (3.25)

As can be seen from above equations, when Majorana-like couplings are turned on, not

only ξ̄ but also ξ appears in the equation for χ, and vice-versa. As we concluded in the

previous section, we thus see that it is necessary to turn on a background for the scalar η

in order to have correlators with a non-zero B1/2.
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3.3 Renormalized action with a non-trivial η

When the scalar η has a non-trivial profile and has non-vanishing leading boundary behav-

ior, the renormalized action for the vector multiplet should be slightly modified.

The scalar η has m2 = −3, and therefore its leading and subleading boundary behav-

ior is

η '
z→0

η0z + η̃2z
3 + . . . (3.26)

As the numerical analysis in the following sections will show, whenever the leading mode

η0 is present (a source term for the corresponding ∆ = 3 boundary operator, the hidden

gaugino bilinear), the renormalized boundary action (2.27) should be modified by the

following term

Sηren =
N2

8π2

∫
d4k

(2π)4
[iη0(ξ0ξ0 − ξ̄0ξ̄0)] . (3.27)

Accordingly, the expression for the correlator (2.31) is modified to

〈jα(k)jβ(−k)〉η =
N2

8π2

(
δχ̃1α

δξ0β
−
δχ̃1β

δξ0α
+ 2iεαβη0

)
. (3.28)

The corrected expression (3.28) is necessary to ensure that the fermionic correlator properly

goes to zero at large momenta, as dictated by supersymmetry restoration at high energy.

The ultra-local term (3.27) can be seen as a counterterm which we add to the boundary

action in order to reabsorb an unwanted contact term in the correlator. This countertem

only depends on quantities that are held fixed in the variational principle.

Notice that if the η profile has a leading boundary behavior proportional to η̃2, which

is holographically dual to a purely dynamical generation of an R-symmetry breaking VEV,

no modification in the renormalized boundary action occurs. Still, having η a non trivial

profile, χ̃1 would depend on ξ0, and hence the correlator (2.31) would be in general different

from zero.

The origin of the additional term (3.27) can alternatively be motivated as follows. The

interaction Lagrangian (3.14) at linear order in η reads

Llin
int =

1

2

(
−iηλ̄λc + iλ̄(/∂η)λc − i

2
ηλ̄(/∂φ)λc + c.c.

)
, (3.29)

where we can actually neglect the third term, since in a background with a non-trivial

dilaton profile, which necessarily behaves as z∂zφ = O(z4), this cannot contribute to the

boundary action.

The key observation is that the following boundary term

Sηreg =

∫
z=ε

d4k

(2π)4

i

2
ε−4

[
η(ξξ − ξ̄ξ̄ − χχ+ χ̄χ̄)

]
z=ε

. (3.30)

is obtained if one integrates by parts the second term in (3.29). We note that this boundary

term is now Majorana-like, in contrast with the usual one, eq. (2.25), which is Dirac-like.

The term bilinear in χ is always vanishing at the boundary, but we notice that when η ∼ ε
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the term bilinear in ξ is actually finite, and is exactly the term (3.27) after we restore the

proper normalization.

One can easily verify that the action for η and λ with the interactions given in (3.29)

vanishes on-shell up to quartic terms in those fields. Therefore, to this order of approx-

imation, supplementing the renormalized boundary action by the counterterm (3.27) is

equivalent to considering an interaction Lagrangian modified with respect to (3.29) by

replacing the derivative interaction with the one obtained after integration by parts.

4 Holographic correlators in AdS

As a warm up exercise we want to compute the GGM two-point functions for a pure AdS

background, which is a solution of eqs. (3.8)–(3.10) with φ = η = 0. This exercise has

several motivations. First of all it will enable us to verify that our machinery correctly

reproduces what we expect from a conformal and supersymmetric case, namely eqs. (2.6).

Second, the values for the correlators that we find in AdS will be the reference to confront

with, when considering other backgrounds. In particular, each correlator will have to

asymptote to those of the pure AdS case, at large momenta. Finally, the computations we

perform in this section can be of interest in a different context, that is when conformality

and supersymmetry breaking are implemented by a hard wall in AdS (for this perspective,

see [26]).

The pure AdS solution is a trivial solution of our 5d effective model. However, in order

to fix the overall normalization of correlators, it is useful to uplift it to the AdS5 × S5

solution of 10d type IIB supergravity, which reads (see e.g. [11])

ds2
10 =

L2

z2

(
dz2 + (dxi)2

)
+ L2dΩ2

5 , (4.1)

F5 =
N
√
π

2π3

(
vol(S5) +

1

z5
d4x ∧ dz

)
, (4.2)

where the radius of AdS5 is fix to be L4 = k10N
2π5/2 by 10d Einstein equations. The overall

constant in front of the 10d action is 1/2k2
10 so that, substituting the value of the 10d

Newton constant in terms of the string theory parameters k10 =
√

8πG10 = 8π7/2gsα
′2, we

get L4 = 4πgsNα
′2. Taking L = α′ = 1 we find G5 = π

2N2 and the overall constant in front

of the 5d effective action is 1/8πG5 = N2

4π2 .

In pure AdS the equations of motion (2.14), (2.15) and (2.20) are related to standard

Bessel equations [27] and therefore it is possible to get analytic solutions for the fields

D(z, k) = −z2K0(kz)d0(k) ; (4.3)

Ai(z, k) = zkK1(kz)a0i(k) ; (4.4)

ξ̄(z, k) = z5/2kK1(kz)ξ̄0(k) , χ = −z5/2σikiK0(kz)ξ̄0(k) . (4.5)

The modified Bessel functions Kν(x) can be written as power series which contain loga-

rithmic modes for integer ν [27]. For our concerns, all we need to know is the behaviour of
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these functions near the origin

K0(x) '
x→0
− lnx+ ln 2− γ +O(x2) , (4.6)

K1(x) '
x→0

1

x

[
1 +

x2

4
(2 lnx− 2 ln 2 + 2γ − 1) +O(x4)

]
. (4.7)

Using these expansions we get

d̃0(k) =

[
−1

2
ln

(
Λ2

k2

)
− ln 2 + γ

]
d0(k) , (4.8)

ãi2(k) =
k2

2

[
−1

2
ln

(
Λ2

k2

)
− ln 2 + γ − 1

2

]
ai0(k) , (4.9)

¯̃
ξ2(k) =

k2

2

[
−1

2
ln

(
Λ2

k2

)
− ln 2 + γ − 1

2

]
ξ̄0(k) , (4.10)

χ̃1(k) =

[
−1

2
ln

(
Λ2

k2

)
− ln 2 + γ

]
σikiξ̄0(k) . (4.11)

Substituting these expressions into eqs. (2.28)–(2.31), we get for the two-point functions

〈J(k)J(−k)〉 =
N2

4π2

[
1

2
ln

(
Λ2

k2

)
+ ln 2− γ

]
; (4.12)

〈ji(k)jj(−k)〉 = −N
2

4π2

(
ηij −

kikj
k2

)
k2

[
1

2
ln

(
Λ2

k2

)
+ ln 2− γ

]
; (4.13)

〈jα(k)j̄α̇(−k)〉 =
N2

4π2
σiki

[
1

2
ln

(
Λ2

k2

)
+ ln 2− γ

]
(4.14)

〈jα(k)jβ(−k)〉 = 0 . (4.15)

Our results are in agreement with CFT computations [28, 29]. Note that we can always

subtract the constant contribution ln 2 − γ to the two-point functions by means of finite

counterterms which preserve the N = 2 supersymmetry of the bulk action, so these terms

are inessential and will be ignored in what follows.

As expected for a supersymmetric background we find that the relations (2.6) are

satisfied, and thus that both gaugino (2.8) and sfermion masses (2.7) are identically zero.

In a general superconformal theory the OPE of the conserved current satisfies some general

constraints which were studied in general in [30] and applied to the GGM formalism in [31].

In particular, if the hidden sector is exactly superconformal as it is the case for N = 4 SYM,

only the unit operator in the OPE of J(x)J(0) can have an expectation value, leading to

C0(x) = C1/2(x) = C1(x) =
τ

16π4x4
→ C0(k2) = C1/2(k2) = C1(k2) =

τ

16π2
ln

(
Λ2

k2

)
,

(4.16)

where the coefficient τ associated to the unit operator has been exactly determined from

’t Hooft anomaly in [32] and gives the contribution of the CFT matter to the beta function

associated to the gauge coupling constant of the U(1) subgroup of SO(6) that we are

gauging. For the AdS5 case we find τ = 2N2. We note here that such a large number
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would be in contrast with keeping the SSM gauge couplings perturbative before unification.

We will not comment on this further, besides saying that we are really trying to extract

from this holographic approach qualitative features of correlators in strongly coupled hidden

sectors, that we assume are a good approximation even outside the large N limit.

5 Holographic correlators in a dilaton-domain wall

In this section we do a step further and apply our machinery to a supersymmetry breaking

background, which is also a solution of our 5d supergravity Lagrangian. In this case we

keep a trivial profile for the squashing mode, η = 0, but allow for a non-trivial dilaton

profile. We will see how the IR behavior of the correlators will change drastically with

respect to their conformal expressions found in the previous section.

The dilaton-domain wall is in fact a solution of the full 10d type IIB supergravity

found in [11, 12]. This is a singular solution with a non-trivial background for the dilaton

φ which preserves the full SO(6) R-symmetry. Upon dimensional reduction on S5 we get

the following 5d background

ds2
5 =

1

z2
(dz2 +

√
1− z8 (dxi)2) , (5.1)

φ(z) = φ∞ +
√

6 arctanh(z4) . (5.2)

The metric goes to AdS5 at the boundary z → 0 and presents a naked singularity in the

deep interior of the bulk, which we have set to z = 1 by adjusting one of the constants of

integration. At the singularity the dilaton diverges

lim
z→1

φ(z) =∞ . (5.3)

The presence of the naked singularity signals a breakdown of the supergravity approxi-

mation and therefore the holographic interpretation of this background as a well-defined

field theory could be problematic. It appears that this particular singularity is physically

acceptable according to the two criteria of [33] and [34]. Respectively, its scalar potential

is bounded from above (it is exactly zero), and gtt is monotonously decreasing towards the

singularity. The reason this solution has had some bad reputation is due to the fact that

it fails another criterium put forward in [33], namely that it has no generalization with

a horizon.

A possible physical interpretation of this background was discussed in [11, 13]. Suffices

here to say that it describes a vacuum of a theory which in the UV coincides with N = 4

SYM, where however a non-trivial VEV for trF 2
ij is turned on triggering confinement

and SUSY breaking. In the following we will probe some of its features by the explicit

computation of the GGM correlators. This background is interesting for our program

because it breaks, besides conformality, all the supersymmetries (as one can see from the

supersymmetry transformation of the dilatino) and it preserves the SO(6) symmetry, so

that we can consider an N = 2 vector multiplet gauging a U(1) ⊂ SO(6).

The effective action at the linearized level for the N = 2 vector multiplet in the

dilaton-domain wall is of the form (2.13), and the resulting equations of motion will take
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the schematic form

(2DW − 4)D ≡
(
z2∂2

z −
(

3 + 5z8

1− z8

)
z∂z +

z2(∂i)
2

√
1− z8

− 4

)
D = 0 , (5.4)

(Max)DWAi ≡
(
z2∂2

z −
(

1 + 3z8

1− z8

)
z∂z +

z2(∂i)
2

√
1− z8

)
Ai = 0 , (5.5)(

/DDW −
1

2

)
λ ≡

(
zγz∂z − 2

1 + z8

1− z8
γz +

z

(1− z8)1/4
γi∂i −

1

2

)
λ = 0 . (5.6)

We note that the AdS equations are modified by terms of O(z8) in a near boundary

expansion.

The second order equations for the fluctuations of the supergravity fields can be solved

once two boundary conditions are specified.6 One boundary condition will always deter-

mine the leading term at the boundary, fixing the overall normalization of the solution.

The second condition should be a regularity condition in the bulk. In the case under

consideration this means to fix the behavior near the singular point z = 1.

Expanding eqs. (5.4)–(5.6) to the leading order in 1− z ≡ y → 0 we get

(y2∂2
y + y∂y)D = 0 , (5.7)(

y2∂2
y +

1

2
y∂y

)
Ai = 0 , (5.8)(

y2∂2
y +

5

4
y∂y −

1

8

)
ξ̄ = 0 , (5.9)

whose solutions are given in terms of two undetermined coefficients α and β as

D '
y→0

α0 ln y + β0 , (5.10)

Ai '
y→0

αi1 + βi1y
1/2 , (5.11)

ξ̄ '
y→0

α1/2y
−1/2 + β1/2y

1/4 . (5.12)

The differential equations are well posed if we require, for all of the three fields, that a

linear combination of α and β vanishes.7 A condition giving a unequivocal choice for all of

the three fields is requiring that both the field and its derivative are finite at the singularity.

This condition can be satisfied for all of the three fields and their first derivatives, except

for the first derivative of the fermion, which will diverge in any case. We thus select the

choice of parameters α0 = β1 = α1/2 = 0.8

Once we specify the boundary conditions, a solution to eqs. (5.4)–(5.6) can be found

numerically for any value of the parameter k corresponding to the 4d momentum. By using

the holographic formulas (2.28)–(2.30) we can then plot the Cs functions.

6For the sake of the argument that follows, we can convert the two first order equations for the spinors

χ and ξ̄ into a single second order equation for ξ̄.
7For instance D = 0 or ∂ξ̄ = const. at the singularity are not suitable boundary conditions because they

would kill both the coefficients.
8More general choices of the boundary conditions are in principle allowed (in bottom-up approaches for

instance), and would give rise to different physics. For this perspective see [26].
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Figure 1. C0 function: in red the AdS logarithm, in blue the dilaton domain wall result.
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Figure 2. C1 function: in red the AdS logarithm, in blue the dilaton domain wall result.
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Figure 3. C1/2 function: in red the AdS logarithm, in blue the dilaton domain wall result.

We show the plots in figures 1, 2 and 3. In each graph we plot both the result for

the supersymmetric AdS case, as well that for the dilaton domain wall solution. It is

reassuring to note that the AdS tails for the three graphs correctly coincide and tend to

their supersymmetric value.

One of the interesting results of the plots is the k−2 IR behavior of the fermionic

correlator C1/2. In figure 4 we plot k2C1/2, which clearly shows this correlator has a 1/k2
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Figure 4. k2C1/2: for k → 0 it goes to a finite value, indicating that there is a 1/k2 pole in C1/2

for the dilaton domain wall.

pole at zero momentum. This kind of behavior is related to the existence of massless

excitations carrying the same quantum numbers of the corresponding current. For the

fermionic current jα, this signals the existence of massless fermions, tipically ’t Hooft

fermions, that compensate the global anomaly of the unbroken U(1)R-symmetry [14]. Note,

in passing, that imposing the “wrong” boundary condition for the vector field fluctuations,

namely α1 = 0, we would have gotten a k−2 pole also for C1. For the vector current

this would be a massless Goldstone boson. This would imply the existence of Goldstone

bosons associated to some broken global symmetry, which cannot be the case here since the

original 10d background preserves the full SO(6) (and hence our U(1)×U(1)R) symmetry.

While we cannot prove that there are indeed R-charged ’t Hooft fermions in our

strongly coupled theory, and just observe that the holographic analysis suggests them

to be there, it is useful to refer to the full 10d background to get some more confidence

about our result. From the 10d perspective there is a whole SO(6) symmetry which the

background preserves. Hence, at every scale there must exist massless fermions in the spec-

trum so to match the UV global anomaly. The UV fixed point is N = 4 SYM, which has

indeed a non-zero global anomaly for the SO(6) current. At this point one may think that

the U(1) global symmetry of the hidden sector which we are eventually weakly gauging

and identifying with the (simplified) SM gauge group is anomalous. This has not to be the

case because having a non-zero SO(6)3 anomaly still allows to consider a non-anomalous

U(1) subgroup inside SO(6). On the contrary, our result suggests that (part of) the SU(4)

anomaly is transmitted to the U(1)R current. Let us emphasize that any other anomalous

global symmetry would not provide a pole to the fermionic correlator C1/2, which is neutral

under any global symmetry but the R-symmetry. Hence, field theory expectations would

suggest that when the R-symmetry is broken, R-charged ’t Hooft fermions would not exist,

and the pole in the fermionic correlator should vanish. We will come back to this point in

the next section.

The Majorana gaugino mass, determined by B1/2 through (2.8), vanishes because of

unbroken R-symmetry. However, the pole in C1/2 provides for a Dirac mass for the SSM

gaugino. This is very similar to any other model of R-symmetric Dirac gaugino masses,
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except that the massless fermion in the adjoint that must couple bilinearly with the gaugino

is here a composite fermion generated at strong coupling. The phenomenological aspects

of this spectrum will be discussed in more detail in [26]. Suffices to say, here, that the soft

spectrum, in this situation, is very much reminiscent of that of gaugino mediation models.

See [15, 35] for a discussion of Dirac gaugino masses in General Gauge Mediation.

Let us finally notice how different are the Cs in the dilaton domain wall background

with respect to the ones in AdS, at large momentum. Numerically we find that

C0 − 4C1/2 + 3C1 ∼ O(k−8), k →∞ . (5.13)

This is due to the fact that the correction of the domain wall metric with respect to the

AdS one near the boundary is of O(z8). Note that since the dilaton does not enter the

equations for the vector multiplet fluctuation, its O(z4) behaviour near the boundary does

not influence the Cs. Another nice feature of the asymptotic behaviour (5.13) is that it

makes the integral (2.7) nicely convergent in the UV.

Both the IR and the UV limit of the Cs functions could also be determined analytically

by studying the equations (5.4)–(5.6) in the respective limits k → 0 and k →∞. We delay

this study to [26].

6 Holographic correlators in a dilaton/η-domain wall

Let us discuss our last example, and look for a solution of eqs. (3.8)–(3.10) with a non-trivial

profile for both the dilaton and the squashing mode. The latter breaks the R-symmetry so

one should expect a very different behavior for the correlators.

In fact, in what follows we will only turn on a perturbative profile for the R-symmetry

breaking scalar η, that is we consider only the linearized equation for η on the dilaton

domain wall background, and neglect the backreaction of such a profile on the dilaton and

the metric. As we are going to show, this will still be enough to provide a drastic change

in the holographic correlators (nicely matching, again, field theory expectations).

The linearized equation for η is most conveniently written and solved using the follow-

ing parametrization of the asymptotic AdS metric (with boundary at r →∞)

ds2 =
(
dr2 + e2r(dxi)2

)
(6.1)

and reads

η′′(r) + 4coth(4r)η′(r) + 3η(r)− 3

2(sinh(4r))2
η(r) = 0. (6.2)

The solution depends on two integration constants A and B and is given by

η(r) = (e8r − 1)
1
4

√
3
2

[
A 2F1

(
2 +
√

6

8
,
4 +
√

6

8
,
3

4
, e8r

)

+B 2F1

(
4 +
√

6

8
,
6 +
√

6

8
,
5

4
, e8r

)]
, (6.3)

where 2F1 is the hypergeometric function.
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Figure 5. B1/2 obtained on a background with a non-trivial profile for η.

Changing variables to the usual z = e−r radial coordinate, one can verify that indeed

this solution has the expected behavior (3.26) near the boundary, with η0 and η̃2 expressed

as linear combinations of A and B. On the other hand, studying the equation near the

singularity y = 1− z → 0 one finds the following behavior

η '
y→0

αy
1
4

√
3
2 + βy

− 1
4

√
3
2 , (6.4)

with α and β which are in turn linear combinations of A and B. If one imposes the

boundary condition at the singularity so to meet the criterion on the boundedness of the

potential [33], that is β = 0, one finds a relation between A and B which imposes both η0

and η̃2 to be turned on at the boundary (indicating that R-symmetry is broken explicitly in

the hidden sector). This implies that in doing the holographic renormalization procedure

one should bear in mind the discussion in section 3.3 and augment the boundary action by

the term (3.27).

Plugging our results in the formulas for the holographic correlators (2.11) and (2.12), it

is easy to see that C0 and C1 are unaffected. On the other hand, both fermionic correlators

are modified. As shown in figure 5 the correlator B1/2 has now a non-trivial dependence on

the momenta. Consistently with expectations, it reaches a finite value at zero momentum

(hence providing non-vanishing Majorana mass to SSM gauginos), and falls off to zero at

k →∞. On the other hand, the pole at k2 = 0 in C1/2 has now disappeared (see figure 6).

This is consistent with field theory intuition: R-symmetry being broken, ’t Hooft fermions,

if any, cannot couple to the jα current and provide zero momentum poles in C1/2. We

see the fact that as soon as η has a non-trivial profile the correlators B1/2 becomes non-

vanishing and, at the same time, the pole in C1/2 vanishes, as a remarkable and non-trivial

agreement with expectations from the field theory side.

7 Conclusions and perspectives

In this paper we have laid out the procedure for computing two-point functions of oper-

ators belonging to a conserved current supermultiplet in a strongly coupled field theory,
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Figure 6. The red dashed line is C1/2 in the background with η = 0, while the blue solid line is

the result when a profile for η is turned-on.

using holography. This was aimed, primarily, at providing a holographic computation for

correlators that play a role in models of (general) gauge mediation.

We have been working in the context of 5d consistent truncations of type IIB string

theory and focused our attention on supersymmetry breaking asymptotically AdS back-

grounds. We have found that when R-symmetry is unbroken, the SSM gauginos generi-

cally acquire a Dirac mass by coupling to composite fermions, which manifest themselves

as massless poles in the fermionic correlator C1/2. Sfermions have masses derived from

an integral which converges very nicely in the UV, and are dominated by the pole of the

fermionic correlator, providing a spectrum which is reminiscent of gaugino mediation mod-

els. On the contrary, for R-symmetry breaking backgrounds the pole in C1/2 disappears,

while the R-breaking correlator B1/2 acquires a non-trivial profile, hence providing Majo-

rana mass to SSM gauginos. All our results are in remarkable agreement with field theory

expectations [14, 15].

These techniques can be applied, in principle, to several other models and can also

find applications in different contexts. Possible further research directions are as follows.

In the present work, we have adopted a top-down approach, and worked in the context

of consistent truncations of type IIB 10d string theory. A different approach is to use

a bottom-up set up. For instance, one could use a model of dynamical SUSY breaking

reminiscent of AdS/QCD set ups. The simplest one is an AdS background with a IR hard

wall9 (HW). In [26] we perform an analysis similar to the one we performed in the present

work for hard wall backgrounds. The benefit in considering HW setups is that on the one

hand the correlation functions can be established analytically; on the other hand, at the

price of loosing any clear string embedding, there is much more flexibility (for instance,

one can allow a profile for η providing a VEV for the hidden gauginos bilinear and not a

source term).

A natural next step is to try and generalize the present holographic approach to back-

grounds which are not asymptotically AdS. Indeed, a superconformal theory cannot break

9GGM realizations in warped geometries have already been considered in [36]. The essential difference

between [36] and our approach is that in the former, the SUSY-breaking sector is realized as a field theory

in the warped geometry, while in our scenario it is defined by the geometry itself.
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supersymmetry spontaneously (because of the tracelessness of the stress-energy tensor).

Thus, the cases considered here and in [26] are nice toy-models but cannot be the full story

for a genuine SUSY breaking hidden sector. It would be interesting, in this respect, to

extend our analysis to cascading backgrounds, as those considered in [37, 38].

Eventually, the addition of probe or backreacting D7 branes to represent the SSM

gauge groups will also be a necessary ingredient, especially if one wants to make contact

with the original set up of holographic gauge mediation [37, 38]. Indeed, in 5d backgrounds

descending from string theory without explicit D-brane sources, the maximal global sym-

metry one can have is SO(6) ' SU(4), i.e. the rank is not big enough to match that of the

SSM gauge group. Adding D7 branes is thus necessary in this top-down approach, even

though it makes the mediation of SUSY breaking less direct and neat.

Finally, let us emphasize that the GGM framework can be seen as an instance of sit-

uations in which fields in a visible sector are coupled linearly to composite operators in a

strongly coupled hidden sector, and observables are extracted from correlators of such com-

posite operators. This kind of setting is found also in other scenarios, like technicolor-like

theories and composite Higgs models, so that one can envisage broader BSM applications

along the lines of the holographic calculation we performed here.
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[34] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[35] K. Benakli and M. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B

816 (2009) 185 [arXiv:0811.4409] [INSPIRE].

[36] M. McGarrie and D.C. Thompson, Warped General Gauge Mediation, Phys. Rev. D 82

(2010) 125034 [arXiv:1009.4696] [INSPIRE].

[37] F. Benini, A. Dymarsky, S. Franco, S. Kachru, D. Simic and H. Verlinde, Holographic Gauge

Mediation, JHEP 12 (2009) 031 [arXiv:0903.0619] [INSPIRE].

[38] P. McGuirk, G. Shiu and Y. Sumitomo, Holographic gauge mediation via strongly coupled

messengers, Phys. Rev. D 81 (2010) 026005 [arXiv:0911.0019] [INSPIRE].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.58.041901
http://arxiv.org/abs/hep-th/9804035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804035
http://dx.doi.org/10.1103/PhysRevD.58.106006
http://arxiv.org/abs/hep-th/9805145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805145
http://dx.doi.org/10.1007/JHEP09(2011)071
http://arxiv.org/abs/1107.1721
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1721
http://dx.doi.org/10.1007/JHEP12(2011)064
http://arxiv.org/abs/1109.4940
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4940
http://dx.doi.org/10.1103/PhysRevD.57.7570
http://arxiv.org/abs/hep-th/9711035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711035
http://arxiv.org/abs/hep-th/0002160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002160
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007018
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.002
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.002
http://arxiv.org/abs/0811.4409
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4409
http://dx.doi.org/10.1103/PhysRevD.82.125034
http://dx.doi.org/10.1103/PhysRevD.82.125034
http://arxiv.org/abs/1009.4696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4696
http://dx.doi.org/10.1088/1126-6708/2009/12/031
http://arxiv.org/abs/0903.0619
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0619
http://dx.doi.org/10.1103/PhysRevD.81.026005
http://arxiv.org/abs/0911.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0019

	Introduction and motivation
	Holographic renormalization of a vector multiplet
	Correlators for general gauge mediation
	Two-point functions from the renormalized boundary action

	Embedding the hidden sector in a gauged supergravity model
	Lagrangian for the background
	Quadratic Lagrangian for the vector multiplet
	Renormalized action with a non-trivial eta

	Holographic correlators in AdS
	Holographic correlators in a dilaton-domain wall
	Holographic correlators in a dilaton/eta-domain wall
	Conclusions and perspectives

