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Abstract: We study the properties of the integro-extremal minimizers of
functionals of the form

F(u) =

∫

Ω
f(x,Du) dx, u ∈ ϕ + W

1,p
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1. Introduction

We consider a functional of the form

F(u) =

∫

Ω
f(x,Du) dx, u ∈ ϕ + W

1,p
0 (Ω), (1.1)

where p ≥ 1, ϕ ∈ W 1,p(Ω) is a given datum and f : Ω×Rn → R is a continuous
function satisfying natural growth condition ensuring the coercivity of F on the
Sobolev space W 1,p(Ω).

When the map ξ 7→ f(x, ξ) is not convex the existence of minimizers is not
guaranteed, hence it is convenient to introduced the relaxed functional
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F(u) =

∫

Ω
f∗∗(x,Du) dx, u ∈ ϕ + W

1,p
0 (Ω), (1.2)

where f∗∗ is the lower convex envelope of f with respect to the second variable.

The aim of this paper is to study qualitative properties of the integro-
extremal minimizers of F introduced in papers [5], [6] and [7].

We concentrate on integro-maximal minimizers, since the treatment of in-
tegro-minimal ones is absolutely analogous, and give a well posedness result,
i.e. uniqueness and continuous dependence on boundary data. In addition
we discuss its use in the solution of the minimum problem for the non-convex
functional F showing that, under suitable assumptions, the integro-maximal
minimizer of F is a viscosity solution of the equation

f∗∗(x,Du(x)) − f(x,Du(x)) = 0. (1.3)

This fact implies, in particular, that whenever it is (classically) differentiable
almost everywhere inside the set Ω, the integro-maximal minimizer of F is also
a minimizers of F .

2. Notations and Preliminaries

We denote respectively by 〈·, ·〉 and by | · | the inner product and the Euclidean
norm in Rn. For x ∈ Rn and r > 0, B(x, r) is the open ball of center x and
radius r. Given E ⊆ Rn, meas (E) denotes the Lebesgue measure of E; Ec, ∂E

and int(E) are, respectively, the complement, the boundary and the interior of
E. The letter N denotes the set of natural numbers {1, 2, . . . } while N0 is the
set N ∪ {0}. Given a map g : Rn → R we define its epigraph as the set

epi (g)
.
= {(ξ, t) ∈ Rn × R : t ≥ g(ξ)} ,

remarking that, whenever g is a convex function, epi (g) is a convex subset
of Rn × R. We denote by g∗∗ the bipolar function of g and refer to [2] for
its definition as well as for other basic arguments of the Calculus of Variations
widely used in the paper like, for example, sequential weak lower semicontinuity
of convex functionals defined on Sobolev spaces.

Throughout the paper Ω is an open bounded subset of Rn and we consider
the spaces Ck(Ω), Ck

c (Ω) (k = 0, 1, . . . ), Lp(Ω), W 1,p(Ω) and W
1,p
0 (Ω), for

1 ≤ p ≤ ∞, with their usual (strong and weak) topologies and identify a
Sobolev function with its precise representative as defined, for example, in [3].

We need the notion semidifferentials and refer to the monograph [1] (Chap-
ter II) for proofs, general setting and for the definition of viscosity solution of
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Hamilton-Jacobi equations.

Definition 1. Let U ⊆ Rn be open, v ∈ C0(U) and x0 ∈ U . We set

D−v(x0)
.
=

{

ξ ∈ Rn : lim inf
x→x0

v(x) − v(x0) − 〈ξ, x − x0〉

|x − x0|
≥ 0

}

, (2.1)

D+v(x0)
.
=

{

ξ ∈ Rn : lim sup
x→x0

v(x) − v(x0) − 〈ξ, x − x0〉

|x − x0|
≤ 0

}

. (2.2)

We call these sets, respectively, super and sub differentials (or semidifferentials)
of u at the point x0 and set also

A−(v)
.
=

{

x ∈ U : D−v(x) 6= ∅
}

, (2.3)

A+(v)
.
=

{

x ∈ U : D+v(x) 6= ∅
}

. (2.4)

Lemma 1. Let U ⊆ R
n be open, v ∈ C0(U) and x0 ∈ U .

(i) ξ ∈ D−v(x0) if and only if there exists a function φ ∈ C1(U) such that
Dφ(x0) = ξ and and the function x 7→ v(x) − φ(x) has local minimum at the
point x0.

(ii) ξ ∈ D+v(x0) if and only if there exists a function φ ∈ C1(U) such that
Dφ(x0) = ξ and and the function x 7→ v(x) − φ(x) has local maximum at the
point x0.

(iii) D+v(x0) and D−v(x0) are closed convex possibly empty subsets of R
n.

(iv) If v is differentiable at the point x0 then D+v(x0) = D−v(x0) =
{Dv(x0)}.

(v) If both D+v(x0) and D−v(x0) are nonempty then u is differentiable at
x0 and D+v(x0) = D−v(x0) = {Dv(x0)}.

(vi) The sets A−(v) and A+(v) are dense in U .

We recall from [6], [7] and [8] the following arguments.

Lemma 2. Let U be an open subset of R
n, p ∈ [1,∞], v ∈ W 1,p(U) ∩

C0(U), x0 ∈ A−(v), ξ ∈ D−v(x0), r > 0, and ρ > 0 such that B(x0, ρ) ⊆ U .
Then there exists a map v̂ ∈ W 1,p(U) ∩ C0(U) with the following properties:

(i) v̂ − v ∈ W
1,p
0 (U);

(ii) v(x) ≤ v̂(x) for a.e. x ∈ U ;

(iii) Λ̂
.
= {x ∈ U : v̂(x) > v(x)} is nonempty and Λ̂ ⊆ B(x0, ρ);

(iv)

{

|Dv̂(x) − ξ| = r, for a.e. x ∈ Λ̂

Dv̂(x) = Dv(x), for a.e. x ∈ U \ Λ̂;
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(v)

∫

U

v̂ dx >

∫

U

v dx;

(vi)

∫

Λ̂
〈m,Dv̂〉 dx =

∫

Λ̂
〈m,Dv〉 dx ∀m ∈ C0(Ω) : divm = 0 in D′(Ω).

Lemma 3. Let Ω be on open bounded subset of R
n with Lipschitz bound-

ary ∂Ω and p ∈ [1,+∞[. Let t ∈ R
+ be small and u, v ∈ W 1,p(Ω) ∩ C0(Ω) be

such that

‖u − v‖C(∂Ω) ≤ t. (2.5)

Then there exist an open subset Ωt ⊆ Ω and a map wt ∈ W 1,p(Ω)∩C0(Ω) such
that

(i) meas (Ω \ Ωt) → 0 as t → 0+;

(ii) ‖wt‖W 1,p(Ω) ≤ Γ, where Γ is a positive constant independent on t;

(iii) wt = u on Ωt;

(iv) wt = v on ∂Ω.

3. Hypotheses

We consider a continuous function f : Ω×Rn → R and its lower convex envelope
f∗∗ with respect to the second variable. For p ∈ [1,∞[ and given a boundary
datum ϕ ∈ W 1,p(Ω) ∩ C0(Ω), we introduce the functionals

F(u) =

∫

Ω
f(x,Du) dx, u ∈ ϕ + W

1,p
0 (Ω),

F(u) =

∫

Ω
f∗∗(x,Du) dx, u ∈ ϕ + W

1,p
0 (Ω).

Hypothesis 1. We assume that the set S of minimizers of F is nonempty
and sequentially compact in L1(Ω). In addition we require that any element of
S belongs to C0(Ω).

Hypothesis 2. The function f∗∗ : Ω × Rn → R is (jointly) continuous
and there exist a, b, d > 0 such that

a|ξ|p − b ≤ f∗∗(x, ξ) ≤ d(1 + |ξ|p) ∀x ∈ Ω, ∀ξ ∈ Rn. (3.1)

It is well known that, under this condition, there exists c > 0 such that

|f∗∗(x, ξ)− f∗∗(x, η)| ≤ c
(

1 + |ξ|p−1 + |η|p−1
)

|ξ − η| ∀x ∈ Ω, ∀ξ, η ∈ Rn.

(3.2)
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Hypothesis 3. Define the set

X(x) = {ξ ∈ Rn : f(x, ξ) > f∗∗(x, ξ)} . (3.3)

We assume that, for every x ∈ Ω, the set X(x) is bounded (by its very
definition it is convex). In addition we require the existence of a field m ∈
C0(Ω,Rn) such that

divm = 0 in D′(Ω) (3.4)

and a map q ∈ C0(Ω,R) satisfying the following conditions.

(i) Affinity on the set X(x):

f∗∗(x, ξ) = 〈m(x), ξ〉 + q(x) ∀ξ ∈ X(x); (3.5)

f∗∗(x, ξ) ≥ 〈m(x), ξ〉 + q(x) ∀ξ ∈ Rn. (3.6)

(ii) Extremality outside the set X(x): for every x ∈ Ω and for every ξ ∈
(X(x))c, the point (ξ, f(x, ξ)) is an extremal point of epi f(x, ·).

As a consequence of (ii) we have the following implication: let ξ, η ∈ Rn,
ξ 6= η; then

f

(

x,
ξ + η

2

)

=
1

2
[f(x, ξ) + f(x, η)] =⇒ ξ, η ∈ X(x). (3.7)

4. Well Posedness

Proposition 1. Assume Hypothesis 1. Then there exists an element
u ∈ S such that

∫

Ω
u(x) dx ≥

∫

Ω
u(x) dx ∀u ∈ S. (4.1)

Proof. The proof follows immediately, by Weierstrass Theorem, from Hy-
pothesis 1 and from the lower semicontinuity of the functional F with respect
to L1(Ω)-convergence.

Theorem 1. Assume hypotheses 1 and 3 and let ϕ ∈ W 1,p(Ω) ∩ C0(Ω).
Let u be the element of S given by Proposition 1. Then:

(i) u is a viscosity solution of the equation

f∗∗(x,Du) − f(x,Du) = 0; (4.2)

(ii) if u is differentiable almost everywhere on Ω, then u is a minimizer of
F .
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(iii) the map u is unique, in the sense that if v ∈ S and
∫

Ω
v(x) dx =

∫

Ω
u(x) dx , (4.3)

then v = u;

Proof. We prove uniqueness (iii). The proof of (i) and (ii) can be found in
[7].

Step 1. First of all consider the case in which the set X(x) is empty for
every x ∈ Ω. This means that the map ξ 7→ f∗∗(x, ξ) is strictly convex for every
x ∈ Ω and, consequently, by obvious computations, S is a singleton and there
is nothing to prove.

Step 2. Let now X(x) be nonempty for some x ∈ Ω. For every u ∈ S define
the set

Ωu
X

.
=

{

x ∈ Ω : Du(x) ∈ X(x)
}

. (4.4)

Claim. Take any pair (u, v) of elements of S. We have

meas (Ωu
X △ Ωv

X) = 0, (4.5)

where the symbol △ stands for the symmetric difference.

If both Ωu
X and Ωv

X have measure zero there is nothing to prove. Assume,
by contradiction, that the set

G
.
= Ωu

X \ Ωv
X

has positive measure. Recalling (3.7), we have

f∗∗

(

x,
1

2
Du(x) +

1

2
Dv(x)

)

<
1

2
f∗∗(x,Du(x)) +

1

2
f∗∗(x,Dv(x))

for a.e. x ∈ G. (4.6)

Define the map

w
.
=

1

2
u +

1

2
v.

Clearly w lies in the set ϕ + W 1,p(Ω) and, by (4.6), we have

F(w) =

∫

G

f∗∗(x,Dw) dx +

∫

Ω\G
f∗∗(x,Dw) dx

=

∫

G

f∗∗

(

x,
1

2
Du +

1

2
Dv

)

dx +

∫

Ω\G
f∗∗

(

x,
1

2
Du +

1

2
Dv

)

dx

<
1

2

∫

G

f∗∗ (x,Du) dx +
1

2

∫

G

f∗∗ (x,Dv) dx
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+

∫

Ω\G
f∗∗

(

x,
1

2
Du +

1

2
Dv

)

dx ≤
1

2

∫

Ω
f∗∗ (x,Du) dx +

1

2

∫

Ω
f∗∗ (x,Dv) dx

=
1

2
F(u) +

1

2
F(v) = minF . (4.7)

Inequality (4.7) is a contradiction and this proves that meas (G) = 0. In-
terchanging the role of u and v we prove (4.5).

Choose any v ∈ S and set

ΩX
.
= Ωv

X . (4.8)

As a consequence of (4.5) and of definition (4.8) the following properties hold:

Du(x) ∈ X(x) for a.e. x ∈ ΩX ∀u ∈ S; (4.9)

Du(x) ∈
(

X(x)
)c

for a.e. x ∈ Ω \ ΩX ∀u ∈ S. (4.10)

Claim. Take any pair (u, v) of elements of S. We have

Du(x) = Dv(x) for a.e. x ∈ Ω \ ΩX . (4.11)

Assume, by contradiction, that there exists a set G ⊆ Ω\ΩX with meas (G) >

0 such that

Dv(x) 6= Du(x) for a.e. x ∈ G. (4.12)

Recalling (4.4), (4.6), (4.10), (4.12) we have

f∗∗

(

x,
1

2
Du(x) +

1

2
Dv(x)

)

<
1

2
f∗∗(x,Du(x)) +

1

2
f∗∗(x,Dv(x))

for a.e. x ∈ G.

Introduce as above the map w
.
= 1

2u + 1
2v: by the same computations of (4.7)

we obtain a contradiction. Hence (4.11) is proved.

Step 4. Recalling Hypothesis 3 we set

g(x, ξ)
.
= f∗∗(x, ξ) − 〈m(x), ξ〉 − q(x) ∀ξ ∈ Rn ∀x ∈ Ω

and introduce the functional

G(u) =

∫

Ω
g(x,Du(x))dx, u ∈ ϕ + W

1,p
0 (Ω).

Given u ∈ ϕ + W
1,p
0 (Ω), write u = ϕ + z, with z ∈ W

1,p
0 (Ω). We have, by

divergence theorem and by (3.4),

G(u) =

∫

Ω
f∗∗(x,Du(x))dx −

∫

Ω
(〈m(x),Du〉 + q(x)) dx
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=

∫

Ω
f∗∗(x,Du(x)) dx −

∫

Ω
〈m(x),Dϕ(x) + Dz(x)〉 dx −

∫

Ω
q(x) dx

= F(u) −

∫

Ω
〈m(x),Dϕ(x)〉 dx −

∫

Ω
q(x) dx = F(u) + γ,

where γ is a constant independent on u. Hence the set of minimizers of G
coincides with the set S of minimizers of F and for this reason we may assume,
replacing f∗∗ by g,

f∗∗(x,Du(x)) = 0 for a.e. x ∈ ΩX ∀u ∈ S. (4.13)

Step 5. Take now any pair (u, v) of elements of S and define the map

w(x) = (u ∧ v)(x)
.
= max{u(x), v(x)} for a.e. x ∈ Ω. (4.14)

Claim. w ∈ S.

Clearly w lies in ϕ + W 1,p(Ω). By (4.11) we have

Dw(x) = Du(x) = Dv(x) for a.e. x ∈ Ω \ ΩF .

Consequently, by Stampacchia’s Theorem, we have

Dw(x) =

{

Du(x) for a.e. x ∈ Ω \ (G ∩ ΩX)

Dv(x) for a.e. x ∈ G ∩ ΩX ,
(4.15)

where we have set

G
.
= {x ∈ Ω : v(x) > u(x)} .

Formula (4.15) implies that

F(w) =

∫

Ω\(G∩ΩX )
f∗∗(x,Du) dx +

∫

G∩ΩX

f∗∗(x,Dv) dx. (4.16)

But, by (4.9) and (4.13), we have

f∗∗(x,Du(x)) = f∗∗(x,Dv(x)) = 0 for a.e. x ∈ G ∩ ΩX (4.17)

and inserting (4.17) in (4.16) we obtain that

F(w) =

∫

Ω
f∗∗(x,Du) dx = F(u) = minF .

This proves the claim.

Step 6. Let now (u, v) be a pair of integro-maximal element of S, that is to
say:

∫

Ω
v dx =

∫

Ω
u dx = max

{
∫

Ω
z dx, z ∈ S

}

. (4.18)

Assume, by contradiction, that there exists a set G of positive measure such
that v(x) > u(x) for a.e. x ∈ G. Define the map w

.
= u ∧ v ∈ S as in (4.14)
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and observe that necessarily we have
∫

Ω
w dx >

∫

Ω
u dx. (4.19)

By Step 5 the map w lies in S and then (4.19) contradicts (4.18). Hence we
have

v(x) ≤ u(x) for a.e. x ∈ Ω. (4.20)

Formulas (4.18) and (4.20) imply that v = u almost everywhere on Ω and this
ends the proof.

Remark 1. If u is not differentiable almost everywhere in Ω we cannot
conclude that u is a minimizer of F . However, in this case, we have the following
property.

Set

E
.
= {x ∈ Ω: Du(x) ∈ X(x)} . (4.21)

(i) If meas (E) = 0, then u is a minimizer of F .

(ii) If meas (E) > 0 then the following phenomenon occur:

for almost every y ∈ E, for every r > 0 and for every M > 0 the set

B(y, r) ∩ {x ∈ Ω: |Du(x)| ≥ M} (4.22)

has positive measure.

To prove this statement assume, by contradiction, that there exists a point
x0 ∈ E, r0 > 0 and M0 > 0 such that

|Du(x)| ≤ M0 for a.e. x ∈ B(x0, r0). (4.23)

It follows that u is Lipschitz continuous in the ball B(x0, r0) and then it is
differentiable almost everywhere in it. Then, invoking Lemma 2 and by a
contradictory argument analogous to the one used in the proof of existence
theorems in [6] and [7], we obtain an element û of S such that

∫

Ω
û(x) dx >

∫

Ω
u(x) dx. (4.24)

This inequality is absurd and the assertion is proved.

We turn now our attention to the dependence on the boundary data and
formulate the following hypothesis.

Hypothesis 4. Let Ω be an open bounded subset of Rn with Lipschitz
boundary. Let {ϕk, k = 0, 1, . . . } be a sequence in W 1,p(Ω) ∩ C0(Ω), bounded
in W 1,p(Ω). We assume that

ϕk⌊∂Ω→ ϕ0⌊∂Ω as k → ∞ in C0(∂Ω). (4.25)
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For every k ∈ N0 introduce the set

Wk
.
= ϕk + W 1,p(Ω),

the variational problem

Minimize F(u) =

∫

Ω
f∗∗(x,Du) dx; u ∈ Wk,

the minimum

mk
.
= min

{

F(u);u ∈ Wk

}

,

and the corresponding set of minimizers

Sk
.
=

{

u ∈ Wk : F(u) = mk

}

.

We assume that the set Sk is compact in L1(Ω) and that any element of Sk

belong to C0(Ω) and is differentiable almost everywhere in Ω for every k ∈ N0

(see [7] for conditions ensuring that these properties hold true).

Assuming that the hypotheses of Theorem 1 hold, for every k ∈ N0 we de-
note by uk the unique integro-extremal elements of Sk as defined in Proposition
1. We have the following

Theorem 2. Assume Hypotheses 2, 3 and 4 and call uk the unique integro-
maximal element of Sk given by Proposition 1. Then

uk → u0 weakly in W 1,p(Ω). (4.26)

Proof. Step 1. For every ǫ > 0 and for every k ∈ N0 we define the set

Sǫ
k

.
=

{

u ∈ Wk : F(u) ≤ mk + ǫ
}

. (4.27)

Let (uj) be a sequence in Sǫ
k; by the coercivity of F (see (3.1)) we have that

there exists M > 0 such that

‖Duj‖W 1,p(Ω) ≤ M ∀j ∈ N.

It follows that (uj) admits a subsequence, still denoted by (uj), weakly con-
verging in W 1,p(Ω) to u ∈ Wk. By sequential weak lower semicontinuity of F ,
we have

F(u) ≤ lim inf F(uj) ≤ mk + ǫ;

hence u lies in Sǫ
k and, in particular, by Rellich Theorem, such set turns out to

be sequentially compact in L1(Ω). Invoking Proposition 1 and Hypothesis 4,
for every k ∈ N0 and for every ǫ > 0 we may select an element uǫ

k ∈ Sǫ
k such

that
∫

Ω
uǫ

k dx ≥

∫

Ω
u dx ∀u ∈ Sǫ

k. (4.28)
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Claim. For every k ∈ N0 we have

uǫ
k ⇀ uk weakly in W 1,p(Ω) as ǫ → 0 + . (4.29)

Fix k ∈ N0. By the coercivity of F , and with the same argument used
above, we deduce that there exists a positive constant M such that

‖uǫ
k‖W 1,p(Ω) ≤ M, ∀ǫ > 0.

Take any sequences (ǫj) and (u
ǫj

k ) such that ǫj → 0+ and

u
ǫj

k ⇀ v weakly in W 1,p(Ω) as j → ∞ (4.30)

for some v ∈ Wk. By the sequential weak lower semicontinuity of F we have

F(v) ≤ lim inf
j→∞

F(u
ǫj

k )

and, since

F(u
ǫj

k ) ≤ mk + ǫj , ∀j ∈ N , (4.31)

and ǫj → 0+, we obtain that

F(v) ≤ mk + ǫj , ∀j ∈ N. (4.32)

It follows that F(v) ≤ mk and then

v ∈ Sk. (4.33)

On the other hand, since Sk ⊆ Sǫ
k for every ǫ > 0, we have

∫

Ω
uǫ

k dx ≥

∫

Ω
uk dx ∀ǫ > 0 (4.34)

and consequently, by the continuity of the integral operator with respect to
weak convergence in W 1,p, (4.30) and (4.34) imply that

∫

Ω
v dx ≥

∫

Ω
uk dx. (4.35)

Inequality (4.35), inclusion (4.33) and the uniqueness result of Theorem 1 imply
that v = uk. Then the arbitrariness of (ǫj) and (u

ǫj

k ) proves (4.29) and, in
particular, by Rellich Theorem, we have

∫

Ω
uǫ

k dx →

∫

Ω
uk dx as ǫ → 0 + . (4.36)

Step 2. Consider the sequence (mk)k∈N.

Claim.

mk → m0 as k → ∞. (4.37)

First of all remark that Hypotheses 2 and 4 imply that (mk) is bounded in
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R. Take any converging subsequence (m̃k) and call m̃ its limit. Assume first
m̃ < m0: there exist some positive δ, an index kδ ∈ N and elements vk ∈ Sk

such that

F(vk) = m̃k ≤ m0 − δ, ∀k > kδ. (4.38)

By coercivity of F we may extract from (vk) a subsequence, still denoted (vk),
weakly converging in W 1,p(Ω) to v. By convergence (4.25) of Hypothesis 4 we
have that v lies in W0 and, in addition, by weak lower semicontinuity of F and
by (4.38),

F(v) ≤ lim inf F(vk) ≤ m0 − δ < min
{

F(u);u ∈ W0

}

. (4.39)

Inequality (4.39) is absurd and then

m̃ ≥ m0. (4.40)

Recalling from Hypothesis 4 the properties of the sequence (ϕk) we apply
Lemma 3, defining a family (Ωk) of open subsets of Ω and a sequence (uk)k∈N

in W 1,p(Ω) such that for every k ∈ N and for a suitable positive M independent
on k, the following properties hold:

‖uk‖W 1,p(Ω) ≤ M, (4.41)

uk = u0 on Ωk, (4.42)

uk = ϕk on ∂Ω (4.43)

and, in addition,

meas (Ω \ Ωk) → 0 as k → ∞. (4.44)

We stress that u0 is the integro-maximal minimizer of the variational prob-
lem with boundary datum ϕ0. Conditions (4.41)-(4.44) imply that uk ∈ Wk for
every k and that

uk → u0 strongly in W 1,p(Ω) as k → ∞. (4.45)

Then, using (3.2) of Hypothesis 2, we estimate
∣

∣F(uk) −F(u0)
∣

∣ =

∣

∣

∣

∣

∫

Ω
(f∗∗(x,Duk) − f∗∗(x,Du0)) dx

∣

∣

∣

∣

≤ c

∫

Ω
(1 + |Duk|

p−1 + |Du0|
p−1)|Duk − Du0| dx

≤ c
(

1 + Mp−1 + ‖Du0‖
p−1
Lp(Ω)

)

‖Duk − Du0‖Lp(Ω)
k→∞
−→ 0,

where we have used Hölder inequality and (4.45). Hence we have

F(uk) → F(u0) as k → ∞ (4.46)
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and, as a consequence of (4.46), ∀δ > 0 there exists kδ ∈ N such that

m̃k = F(uk) ≤ F(uk) ≤ m0 + δ, ∀k > kδ. (4.47)

By the arbitrariness of δ we deduce from (4.47) that

m̃ ≤ m0. (4.48)

Inequalities (4.40) and (4.48) imply that m̃ = m0 and we conclude that any
converging subsequence of (mk) tends to m0. This proves (4.37).

Step 3. Consider now the sequence (uk)k∈N.

Claim.

uk ⇀ u0 weakly in W 1,p(Ω) as k → ∞. (4.49)

First of all remark that, by the boundedness of the sequence (ϕk) in W 1,p(Ω)
(Hypothesis 4) and by the coercivity of F , the sequence (uk) is bounded in
W 1,p(Ω). Take any weakly converging (in W 1,p(Ω)) subsequence, still denoted
(uk), and call v its limit. Convergence (4.25) in Hypothesis 4 implies that
v ∈ W0 and, by weak lower semicontinuity of F and by (4.37), we have

F(v) ≤ lim inf F(uk) = m0.

Hence

v ∈ S0. (4.50)

Consider the sequence (uk) defined in Step 2 with properties (4.41)-(4.44). By
(4.37) and (4.46) we obtain that

[

F(uk) −F(uk)
]

→ 0 as k → ∞; recalling
definition (4.27) it follows that for every ǫ > 0 there exists kǫ ∈ N such that
uk ∈ Sǫ

k for all k > kǫ. Hence, by (4.28), we have
∫

Ω
uk dx ≤

∫

Ω
uǫ

k dx ∀k > kǫ. (4.51)

Recalling (4.36) and (4.45) we deduce from (4.51) and from uk ⇀ v in W 1,p(Ω)
that

∫

Ω
u0 dx ≤

∫

Ω
v dx;

then the definition of u0 and (4.50) imply that
∫

Ω
u0 dx =

∫

Ω
v dx. (4.52)

By Theorem 1 we deduce from (4.52) that v = u0. Hence any weakly converging
subsequence of (uk) tends weakly to u0 in W 1,p(Ω) and this proves (4.49).
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