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SBV REGULARITY FOR HAMILTON-JACOBI EQUATIONS WITH
HAMILTONIAN DEPENDING ON (t, x).

STEFANO BIANCHINI AND DANIELA TONON

Abstract. In this paper we prove the SBV regularity of the distributional derivative of a viscosity
solution of the Hamilton-Jacobi equation

∂tu + H(t, x, Dxu) = 0 in Ω ⊂ [0, T ]× Rn,

under the hypothesis of uniform convexity of the Hamiltonian H in the last variable. This result extends
the result of Bianchini, De Lellis and Robyr obtained for an Hamiltonian H = H(Dxu) which depends
only on the spatial distributional derivative of the solution.

1. Introduction

We consider the unique viscosity solution u to the Hamilton-Jacobi equation

(1.1) ∂tu + H(t, x, Dxu) = 0 in Ω ⊂ [0, T ]× Rn.

It is well known that, even when the initial datum for (1.1) is extremely regular, the viscosity solution
of the Cauchy problem develops singularities of the gradient in finite time. The structure of the non-
differentiability set of the viscosity solution has been studied by several authors, see for example Fleming
[11], Cannarsa and Soner [8]. As a major assumption they restrict to the case where the Hamiltonian
H(t, x, p) is strictly convex with respect to p and smooth in all variables. Under this restriction the
viscosity solution of (1.1) can be represented as the value function of a classical problem in Calculus of
Variation and is semiconcave, see [7]. The semiconcavity of u ensures that u is twice differentiable almost
everywhere and that its distributional Hessian is a measure with locally bounded variation. However,
deeper results on regularity have been proved. A significant result in our direction was obtained by
Cannarsa, Mennucci and Sinestrari in [6]: they proved the SBV regularity of the distributional derivative
of the viscosity solution u, when u is the solution of the Cauchy problem with a regular initial datum
u(0, x) = u0(x) belonging to W 1,∞(Rn) ∩ CR+1(Rn), with R ≥ 1. Furthermore they give a sharper
estimates on the set of regular conjugate points, which implies in particular that this set has Hausdorff
dimension less than n− 1 if the initial datum is C∞. Thus in particular they proved that the closure of
the set of irregular points is Hn-rectifiable.

Motivated by the work of Bianchini, De Lellis and Robyr in [5], we prove the SBV regularity for the
distributional derivative of the viscosity solution, reducing the regularity of the initial datum. Indeed, in
that paper, the authors prove that the distributional derivative of a viscosity solution of

(1.2) ∂tu + H(Dxu) = 0 inΩ ⊂ [0, T ]× Rn

belongs to SBVloc under the assumption of uniform convexity of the Hamiltonian. This last assumption
is stronger than the one of strict convexity used in [6], however the regularity of the initial datum is
weaker since it is required to be only bounded and Lipschitz.

To be more precise we would like to prove the SBV regularity of Dxu and ∂tu under hypotheses of
differentiability and uniform convexity of H in the last variable, i.e.

(H1) H ∈ C3([0, T ] × Rn × Rn) with bounded second derivatives and there exist positive constants
a, b, c such that

i) H(t, x, p) ≥ −c,
ii) H(t, x, 0) ≤ c,
iii) |Hpx(t, x, p)| ≤ a + b|p|,
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2 STEFANO BIANCHINI AND DANIELA TONON

(H2) there exists cH > 0 such that

c−1
H Idn(p) ≤ Hpp(t, x, p) ≤ cHIdn(p)

for any t, x.

The aim of this paper is to prove the following main theorem.

Theorem 1.1. Let u be a viscosity solution of (1.1), assume H1, H2 and set Ωt := {x ∈ Rn| (t, x) ∈ Ω}.
Then the set of times

(1.3) S := {t | Dxu(t, ·) 6∈ SBVloc(Ωt)}
is at most countable. In particular Dxu, ∂tu ∈ SBVloc(Ω).

Moreover, under the hypotheses

(H1-bis) H ∈ C3(Rn×Rn) with bounded second derivatives and there exist positive constants a, b, c such
that

i) H(x, p) ≥ −c,
ii) H(x, 0) ≤ c,
iii) |Hpx(x, p)| ≤ a + b|p|,

(H2-bis) there exists cH > 0 such that

c−1
H Idn(p) ≤ Hpp(x, p) ≤ cHIdn(p)

for any x,

as a consequence of the theorem above, we have the following corollary.

Corollary 1.2. Under assumptions (H1− bis), (H2− bis), the gradient of any viscosity solution u of

(1.4) H(x,Du) = 0 in Ω ⊂ Rn,

belongs to SBVloc(Ω).

In Section 2 we recall preliminary results and definitions necessary to understand the main theorem.
In Section 3 we show the properties of the unique viscosity solution to our Hamilton-Jacobi equation, we
define generalized backward characteristics and we prove their no-crossing property. Finally in Section 4
we prove all the necessary lemmas and the main theorem.

2. Preliminaries

2.1. Generalized differentials. We begin with the definition of generalized differential, see Cannarsa
and Sinestrari [7] and Cannarsa and Soner [8].

Let Ω be an open subset of Rn.

Definition 2.1. Let u : Ω → R, for any x ∈ Ω the sets

D−u(x) =
{

p ∈ Rn| lim inf
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x| ≥ 0

}
,

D+u(x) =
{

p ∈ Rn| lim sup
y→x

u(y)− u(x)− 〈p, y − x〉
|y − x| ≤ 0

}
,

are called, respectively, the subdifferential and superdifferential of u at x.

Definition 2.2. Let u : Ω → R be locally Lipschitz. A vector p ∈ Rn is called a reachable gradient of u
at x ∈ Ω if there exists a sequence {xk} ⊂ Ω \ {x} such that u is differentiable at xk for each k ∈ N, and

lim
k→∞

xk = x, lim
k→∞

Du(xk) = p.

The set of all reachable gradients of u at x is denoted by D∗u(x).
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2.2. BV and SBV functions. A detailed description of the spaces BV and SBV can be found in
Ambrosio, Fusco and Pallara [3], Chapters 3 and 4. For the reader convenience, we briefly recall that,
given u ∈ BV (Rm,Rk), it is possible to decompose the distributional derivative of u, which by definition
must be a measure with bounded total variation, into three mutually singular measures:

Du = Dau + Dcu + Dju.

Dau is the absolutely continuous part with respect to the Lebesgue measure. Dju is the part of the
measure which is concentrated on the rectifiable m− 1 dimensional set J , where the function u has jump
discontinuities, thus for this reason it is called jump part. Dcu, the Cantor part, is the singular part
which satisfies Dcu(E) = 0 for every Borel set E with Hm−1(E) < ∞. If this part vanishes, i.e. Dcu = 0,
we say that u ∈ SBV (Rm,Rk).

2.3. Semiconcave functions. For a complete introduction to the theory of semiconcave functions we
refer to Cannarsa and Sinestrari [7], Chapter 2 and 3 and Lions [14]. For our purpose we define semi-
concave functions with a linear modulus of semiconcavity. In general this class is considered only as a
particular subspace of the class of semiconcave functions with general semiconcavity modulus. The proofs
of the following statements can be found in the mentioned references.

Definition 2.3. We say that a function u : Ω → R is semiconcave and we denote with SC(Ω) the space
of functions with such a property, if for any x, z ∈ Ω such that the segment [x− z, x + z] is contained in
Ω

u(x + z) + u(x− z)− 2u(x) ≤ C|z|2.
Proposition 2.4. Let u : Ω → R belongs to SC(Ω) with semiconcavity constant C ≥ 0. Then the
function

ũ : x 7→ u(x)− C

2
|x|2

is concave, i.e. for any x, y in Ω such that the whole segment [x, y] is contained in Ω, λ ∈ [0, 1]

ũ(λx + (1− λ)y) ≥ λũ(x) + (1− λ)ũ(y).

Theorem 2.5. Let u : Ω → R belongs to SC(Ω). Then the following properties hold.
i) (Alexandroff’s Theorem) u is twice differentiable a.e.; that is, for a.e. x0 ∈ Ω, there exist a vector

p ∈ Rn and a symmetric matrix M such that

lim
x→x0

u(x)− u(x0)− 〈p, x− x0〉+ 〈M(x− x0), x− x0〉
|x− x0|2 = 0.

ii) The gradient of u, defined a.e. in Ω, belongs to the class BVloc(Ω,Rn).
iii) Let x ∈ Ω then

D+u(x) = coD∗u(x),
where coA := min{B | B ⊃ A,B convex} is the convex hull of A. Thus D+u is non empty at
each point. Moreover D+u is upper semicontinuous. See [8].

iv) The function T (x) := −D+ũ(x) is a maximal monotone function, i.e.

〈y1 − y2, x1 − x2〉 ≥ 0 ∀xi ∈ Ω yi ∈ T (xi) i = 1, 2;

and it is maximal in following sense

V ⊃ T, V monotone =⇒ V = T.

As stated in the above theorem at point ii), when u is semiconcave Du is a BV map, hence its
distributional Hessian D2u is a symmetric matrix of Radon measures and can be split into the three
mutually singular parts D2

au,D2
j u,D2

cu. Moreover the following proposition holds.

Proposition 2.6. Let u be a semiconcave function. If D denotes the set of points where D+u is not
single-valued, then |D2

cu|(D) = 0.

Proof. Indeed, the set of points where D+u is not single-valued, i.e. the set of singular points, is a
Hn−1-rectifiable set. ¤

Definition 2.7. We say that a function v : Ω → R is semiconvex if u := −v is semiconcave.
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2.4. Viscosity solutions. A concept of generalized solutions to the equations

(2.1) ∂tu + H(t, x, Dxu) = 0 in Ω ⊂ [0, T ]× Rn,

and

(2.2) H(x, Du) = 0 in Ω ⊂ Rn,

was found to be necessary since classical solutions for these equations may be defined only a.e. and may
not be unique. Crandall and Lions introduced in [10] the notion of viscosity solution to solve both these
problems, see also Crandall, Evans and Lions [9].

Definition 2.8. A bounded uniformly continuous function u : Ω → R is called a viscosity solution of
(2.1) (resp. (2.2)) provided that

i) u is a viscosity subsolution of (2.1) (resp. (2.2)): for each v ∈ C∞(Ω) such that u − v has a
maximum at (t0, x0) ∈ Ω (resp. x0 ∈ Ω),

vt(t0, x0) + H(t0, x0, Dxv(t0, x0)) ≤ 0 (resp. H(x0, Dv(x0)) ≤ 0);

ii) u is a viscosity supersolution of (2.1) (resp. (2.2)): for each v ∈ C∞(Ω) such that u − v has a
minimum at (t0, x0) ∈ Ω (resp. x0 ∈ Ω),

vt(t0, x0) + H(t0, x0, Dxv(t0, x0)) ≥ 0 (resp. H(x0, Dv(x0)) ≥ 0).

3. Properties of the viscosity solution of Hamilton-Jacobi equations

The proofs of the following statements can be found in Cannarsa and Sinestrari [7], Chapter 6. See
also Fleming [11], Fleming and Rishel [12], Fleming and Soner [13] and Lions [14].

We will consider here only viscosity solutions of equation (2.1), similar results apply also to viscosity
solutions of the Hamilton-Jacobi equation (2.2).

The convexity of the Hamiltonian in the p-variable relates Hamilton-Jacobi equations to a variational
problem.

Let L be the Lagrangian of our system, i.e. the Legendre transform of the Hamiltonian H with respect
to the last variable, for any t, x fixed

L(t, x, v) = sup
p
{〈v, p〉 −H(t, x, p)}.

The Legendre transform inherits the properties of H, in particular L is C3([0, T ] × Rn × Rn) and is
uniformly convex in the last variable.

In addition to the uniform convexity and C3 regularity of L the hypotheses on H, (H1) and (H2),
ensure the existence of positive constants a, b, c such that

i) L(t, x, v) ≥ −c,
ii) Lx(t, x, 0) ≤ c,
iii) |Lvx(t, x, v)|leqa + b|v|.

Define the value function u(t, x) associated the the bounded Lipschitz function u0(x), for (t, x) ∈ Ω

(3.1) u(t, x) := min
{

u0(ξ(0)) +
∫ t

0

L(s, ξ(s), ξ̇(s))ds
∣∣∣ ξ(t) = x, ξ ∈ C2([0, t])

}
.

Less regularity can be asked to ξ, but it is unnecessary since any minimizing curve exists and is smooth,
due to the regularity of L, see [7].

Theorem 3.1. Taken in (3.1) a minimizing curve ξ, for the point (t, x), such that ξ(s) ∈ Ωs for all
s ∈ [0, t], the following holds. (Recall Ωs = {x ∈ Rn| (s, x) ∈ Ω}.)

i) The map s 7→ Lv(s, ξ(s), ξ̇(s)) is absolutely continuous.
ii) ξ is a classical solution to the Euler-Lagrange equation

d

ds
Lv(s, ξ(s), ξ̇(s)) = Lx(s, ξ(s), ξ̇(s)),

and to the Du Bois-Reymond equation
d

ds
[L(s, ξ(s), ξ̇(s))− 〈ξ̇(s), Lv(s, ξ(s), ξ̇(s))〉] = Lt(s, ξ(s), ξ̇(s)),
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for all s ∈ [0, t], where Lt(s, ξ(s), ξ̇(s)) is the derivative of L with respect to the first variable.
iii) For any r > 0 there exists K(r) > 0 such that, if (t, x) ∈ [0, r]×Br(0) then

sup
s∈[0,t]

|ξ̇(s)| ≤ K(r).

iv) There exists a dual arc or co-state

(3.2) p(s) := Lv(s, ξ(s), ξ̇(s)) s ∈ [0, t],

such that ξ, p solve the following system{
ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s)).

v) (s, ξ(s)) is regular, i.e. for any 0 < s < t ξ is the unique minimizer for u(s, ξ(s)), and u(s, ·) is
differentiable at ξ(s).

vi) Let p be the dual arc associated to ξ as in (3.2) then we have

p(t) ∈ D+
x u(t, x),

p(s) = Dxu(s, ξ(s)), s ∈ (0, t).

Theorem 3.2. The value function u defined in (3.1) is a viscosity solution of (2.1) with bounded Lipschitz
initial datum

u(0, x) = u0(x).

We present below some properties of the unique viscosity solution to the Hamilton-Jacobi equation
(1.1), following from the representation formula we have just seen. These properties are taken from [7].

Theorem 3.3 (Dynamic Programming Principle). Fix (t, x), then for all t′ ∈ [0, t]

(3.3) u(t, x) := min
{

u(t′, ξ(t′)) +
∫ t

t′
L(s, ξ(s), ξ̇(s))ds

∣∣∣ ξ(t) = x, ξ ∈ C2([t′, t])
}

.

Moreover if ξ is a minimizer in (3.1) it is a minimizer also for (3.3) for any t′ ∈ [0, t].

Theorem 3.4 (Semiconcavity Theorem). Suppose (H1), (H2) hold and u0 belongs to Cb(Rn). Then for
any t in (0, T ], u(t, ·) is locally semiconcave with semiconcavity constant C(t) = C

t . Thus for any fixed
τ > 0 there exists a constant C = C(τ) such that u(t, ·) is semiconcave with constant less than C for any
t ≥ τ .

Moreover u is also locally semiconcave in both the variables (t, x) in (0, T ]× Rn.

3.1. Minimizers and Generalized Backward Characteristics. We can introduce the definition of
generalized backward characterisics.

Definition 3.5. Given x ∈ Ωt for t fixed in [0, T ], we call generalized backward characteristic, associated
to u starting from x, the curve s 7→ (s, ξ(s)), where ξ(·) and its dual arc p(·) solve the system

(3.4)
{

ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s))

with final conditions

(3.5)
{

ξ(t) = x
p(t) = p,

where p ∈ D+
x u(t, x).

If D+
x u(t, x) is single-valued then we call ξ a classical backward characteristic.

We state here some properties of minimizers which strictly relate them with classical and generalized
characteristics, see [7].

Theorem 3.6. For any (t, x) ∈ Ω the map that associates with any (pt, px) ∈ D∗u(t, x) the curve ξ
obtained by solving the system (3.4) with the final conditions{

ξ(t) = x
p(t) = px

provides a one-to-one correspondence between D∗u(t, x) and the set of minimizers of u(t, x).
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Thus we can state the following theorem which follows from Theorem 3.1-(iv), Theorem 3.6 and
Definition 3.5.

Theorem 3.7. Let (t, x) in Ω be given, and let ξ be a C2 curve such that ξ(s) ∈ Ωs for all 0 ≤ s ≤ t.
Then ξ is a minimizer if and only if ξ and its dual arc p are solutions of the following linear system

for any s ∈ [0, t] {
ξ̇(s) = Hp(s, ξ(s), p(s))
ṗ(s) = −Hx(s, ξ(s), p(s))

with the final conditions {
ξ(t) = x
p(t) = p,

where (−H(t, x, p), p) belongs to D∗u(t, x).
A minimizer ξ is a generalized backward characteristic. In particular ξ is a classical backward charac-

teristic if and only if ξ is the unique minimizer for u(t, x). The set of minimizers for u(t, x) is a proper
subset of the set of generalized backward characteristics emanating from (t, x).

Remark 3.8. Note that, the solutions ξ of the system (3.4) are in general curves and not straight lines,
as solutions were in the case H = H(p).

Remark 3.9. No-crossing property of minimizers. Fix a time t and consider a minimizing curve ξ such
that ξ(t) = x ∈ Ωt. For 0 < s < t the curve ξ is the unique minimizer for u(s, ξ(s)), this ensures that any
other minimizer cannot intersect ξ for any 0 < s < t (otherwise uniqueness would be lost, see point (v)
of Theorem 3.1). As a consequence generalized backward characteristics which are also minimizers, i.e.
solution of (3.4), (3.5), where (−H(t, x, p), p) belongs to D∗u(t, x), cannot intersect except than in 0 or
t. Nothing can be said at this level for generalized backward characteristics solution to (3.4) with

ξ(t) = x p(t) = p ∈ D+
x u(t, x) \D∗

xu(t, x),

which are not minimizers. In general they cross and are not regular.

The introduction of a backward solution, as in Barron, Cannarsa, Jensen and Sinestrari [4], will allow
us to see that, at least for a small interval of time, all the generalized backward characteristics share the
no-crossing property except than for their final point at time t.

Fix t in (0, T ] and define for 0 ≤ τ < t, y ∈ Ωτ the function

(3.6) ũ(τ, y) := max
{

u(t, ξ(t))−
∫ t

τ

L(s, ξ(s), ξ̇(s))ds
∣∣∣ ξ(τ) = y, ξ ∈ C2([τ, t])

}
.

Note that the function v(τ, y) := ũ(t− τ, y) is a viscosity solution of

(3.7) ∂τv −H(t− τ, x, Dyv) = 0 in Ω ⊂ [0, T ]× Rn

with initial datum v(0, y) = ũ(t, y) = u(t, y), for this reason ũ is called backward solution.

Proposition 3.10. In general
ũ(τ, y) ≤ u(τ, y)

and the equality holds if and only if the maximizer ξ in (3.6) defined for τ ≤ s ≤ t is part of a minimizing
curve for u(t, ξ(t)).

Proof. Let ξ be a C2-curve which is a maximizer for ũ(τ, y), i.e.

ũ(τ, y) = u(t, ξ(t))−
∫ t

τ

L(s, ξ(s), ξ̇(s))ds.

Thanks to the Dynamic Programming Principle,

u(t, ξ(t)) ≤ u(τ, y) +
∫ t

τ

L(s, ξ(s), ξ̇(s))ds.

Hence,
ũ(τ, y) ≤ u(τ, y)

and the equality holds if and only if ξ is also a minimizer for u(t, ξ(t)), thus D+u(s, ξ(s)) is single-valued
for any τ ≤ s < t. ¤
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Note that a curve ξ which is a minimizer for u(t, x) is also a maximizer for ũ(τ, ξ(τ)) = u(τ, ξ(τ)) for
any 0 ≤ τ < t.

With suitable modifications Theorems 3.1, 3.2, 3.3 and 3.4 still hold for ũ(τ, y) and its maximizers, in
particular ũ is semiconvex (rather than semiconcave) with constant C

t−τ .
Without adding any other assumption, the no-crossing property holds also for maximizers except than

in their initial and final point.
However, if we restrict to a τ which is not too far from t, we can establish a one to one correspondence

between generalized backward characteristics, as in Definition 3.5, and maximizers of (3.6), thus obtaining
regularity and the no-crossing property for generalized backward characteristics except than for their final
point at time t. Moreover the backward solution ũ(s, ·) belongs to C1,1(Ωs) for every s ∈ (τ, t).

To prove the above fact let us first reduce to a simpler case which will be useful also later on during
the proof of our main theorem.

Lemma 3.11. Consider the solutions to the system (3.4) with final conditions

(3.8)
{

ξ(t) = x
p(t) = p ∈ K

where x is fixed in Rn and K is a compact set in Rn. For t − τ small enough there exists a one to one
correspondence between p in K and ξ(τ) solution of (3.4),(3.8).

Proof. Thanks to the Taylor expansion of the flow generated by (3.4), the solution to that system with
(3.8) as final conditions is equal to

ξ(τ) = x− (t− τ)Hp(t, x, p) + O((t− τ)2),

and differentiating in p

(3.9) ξp(τ) = −(t− τ)Hpp(t, x, p) + O((t− τ)2).

Call ω = x−ξ(τ)
t−τ . Last equation implies that ωp is uniformly different from zero since

ωp = Hpp(t, x, p) + O(t− τ).

Thus, restricting to t− τ small enough, we can locally invert this equation, and obtain

(3.10) pω = Lvv (t, x, ω) + O(t− τ).

Moreover, from
ω = Hp(t, x, p) + O(t− τ),

integrating (3.10), we obtain
p = Lv (t, x, ω) + O(t− τ).

Thus we have reached a one to one correspondence between ξ(τ) and the value p of its dual curve at
time t. ¤

Integrating (3.9)in p between p1 and p2 we obtain

ξ1(τ)− ξ2(τ)
τ − t

= Hp(t, x, p1)−Hp(t, x, p2) + O(t− τ)(p1 − p2)

where ξ1 and ξ2 are the characteristics with initial data p1 and p2 respectively.

Proposition 3.12. Consider a solution to the system (3.4) with final conditions (3.8), let ξ(τ) = y and
consider the straight line joining x to y

(3.11) η(s) =
s− τ

t− τ
x +

t− s

t− τ
y.

Then we have the following estimates

(3.12) ‖η − ξ‖C0([τ,t]), ‖ηp − ξp‖C0([τ,t]), ‖ηpp − ξpp‖C0([τ,t]) ≤ O((t− τ)2),

(3.13) ‖η̇ − ξ̇‖C0([τ,t]), ‖η̇p − ξ̇p‖C0([τ,t]), ‖η̇pp − ξ̇pp‖C0([τ,t]) ≤ O(t− τ).
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Proof. As we see in the previous proposition

y = ξ(τ) = x− (t− τ)Hp(t, x, p) + O((t− τ)2),

and for s ∈ [τ, t]
ξ(s) = x− (t− s)Hp(t, x, p) + O((t− s)2).

Compute now the difference

sup
s∈[τ,t]

|η(s)− ξ(s)| = sup
s∈[τ,t]

∣∣∣∣
s− τ

t− τ
x +

t− s

t− τ
y − x + (t− s)Hp(t, x, p) + O((t− s)2)

∣∣∣∣

= sup
s∈[τ,t]

∣∣∣∣
t− s

t− τ

(
x− (t− τ)Hp(t, x, p) + O((t− τ)2)

)− t− s

t− τ
x

+(t− s)Hp(t, x, p) + O((t− s)2)
∣∣∣∣

≤ O((t− τ)2).

Moreover from
yp = ξp(τ) = −(t− τ)Hpp(t, x, p) + O((t− τ)2),

and from
ξp(s) = −(t− s)Hpp(t, x, p) + O((t− s)2)

for s ∈ [τ, t], we obtain

sup
s∈[τ,t]

|ηp(s)− ξp(s)| = sup
s∈[τ,t]

∣∣∣∣
t− s

t− τ
yp + (t− s)Hpp(t, x, p) + O((t− s)2)

∣∣∣∣

= sup
s∈[τ,t]

∣∣∣∣
t− s

t− τ

(−(t− τ)Hpp(t, x, p) + O((t− τ)2)
)

+(t− s)Hpp(t, x, p) + O((t− s)2)
∣∣∣∣

≤ O((t− τ)2).

In an analogous way, from

ypp = ξpp(τ) = −(t− τ)Hppp(t, x, p) + O((t− τ)2),

and from
ξpp(s) = −(t− s)Hppp(t, x, p) + O((t− s)2)

for s ∈ [τ, t], we obtain
sup

s∈[τ,t]

|ηpp(s)− ξpp(s)| ≤ O((t− τ)2).

Observe now that
η̇(s) =

x− y

t− τ
,

and
ξ̇(s) = −Hp(t, x, p) + O(t− s),

hence

sup
s∈[τ,t]

|η̇(s)− ξ̇(s)| = sup
s∈[τ,t]

∣∣∣∣
x− y

t− τ
−Hp(t, x, p) + O((t− s))

∣∣∣∣

= sup
s∈[τ,t]

∣∣∣Hp(t, x, p) + O(t− τ)−Hp(t, x, p) + O(t− s)
∣∣∣

≤ O(t− τ).

In the same way we obtain
sup

s∈[τ,t]

|η̇p(s)− ξ̇p(s)| ≤ O(t− τ),

and
sup

s∈[τ,t]

|η̇pp(s)− ξ̇pp(s)| ≤ O(t− τ).



SBV REGULARITY FOR HAMILTON-JACOBI EQUATIONS WITH HAMILTONIAN DEPENDING ON (t, x). 9

¤

Now, fix x ∈ Rn and a compact set K ⊂ Rn. Call ξ(τ, K) the subset of Rn defined as

ξ(τ, K) := {ξ(τ)| ξ is a solution of (3.4) with final conditions (3.8)}.

For any y in ξ(τ,K) consider the function

φ(τ, y, t, x) = min
{∫ t

τ

L(s, ξ(s), ξ̇(s))ds
∣∣∣ ξ ∈ C2([τ, t]), ξ(τ) = y, ξ(t) = x,

}
,

and observe that for any y ∈ ξ(τ, K) there exists a unique ξ solution of (3.4) with final conditions (3.8)
such that y = ξ(τ, p). Thus we can see y as y = y(p) with a C2 dependence of y from p.

Proposition 3.13. it holds
∥∥∥∥φ(τ, t, y(p), x)− (t− τ)L

(
t, x,

x− y(p)
t− τ

)∥∥∥∥
C2(K)

≤ O((t− τ)2).

In particular for t− τ small enough y 7→ φ(τ, y, t, x) is convex with constant C̃
t−τ .

Note that, from the definition, y 7→ φ(τ, y, t, x) is automatically semiconcave.
Moreover, if we symmetrically consider the function x 7→ φ(τ, y, t, x) then the same properties can be

proven for it.

Proof. From the definition, the function y 7→ φ(τ, y, t, x) has a unique minimum ξ which is the solution
to system (3.4) with final conditions (3.8). Thus the C2 dependence of y from p implies that p 7→
φ(τ, y(p), t, x) belongs to C2(K).

Let ξ be the unique minimizer for φ(τ, y, t, x) and observe that x = η(t) and x−y
t−τ = η̇(t), where η is

the straight line joining x to y as in (3.11).

sup
p∈K

∣∣∣∣φ(τ, y(p), t, x)− (t− τ)L
(

t, x,
x− y(p)

t− τ

)∣∣∣∣ =

= sup
p∈K

∣∣∣∣
∫ t

τ

L(s, ξ(s), ξ̇(s))ds−
∫ t

τ

L(t, η(t), η̇(t))ds

∣∣∣∣

≤ sup
p∈K

{∣∣∣∣
∫ t

τ

L(s, ξ(s), ξ̇(s))ds−
∫ t

τ

L(t, ξ(s), ξ̇(s))ds

∣∣∣∣ +
∣∣∣∣
∫ t

τ

L(t, ξ(s), ξ̇(s))ds−
∫ t

τ

L(t, η(t), ξ̇(s))ds

∣∣∣∣

+
∣∣∣∣
∫ t

τ

L(t, η(t), ξ̇(s))ds−
∫ t

τ

L(t, η(t), η̇(t))ds

∣∣∣∣
}

≤ sup
p∈K

{
C1

∫ t

τ

|s− t|ds + C2

∫ t

τ

|ξ(s)− η(t)|ds + C3

∫ t

τ

|ξ̇(s)− η̇(t)|ds

}

≤ sup
p∈K

{
− C1

2
(t− τ)2 + C2Hp(t, x, p)

∫ t

τ

|t− s|ds + C2

∫ t

τ

O((t− s)2)ds + C3

∫ t

τ

O((t− s))ds

}

≤ O((t− s)2).

Moreover for the first derivative

sup
p∈K

∣∣∣∣∂p

[
φ(τ, y(p), t, x)− (t− τ)L

(
t, x,

x− y(p)
t− τ

)]∣∣∣∣ =
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= sup
p∈K

∣∣∣∣
∫ t

τ

Lx(s, ξ(s), ξ̇(s))ξp(s)ds +
∫ t

τ

Lv(s, ξ(s), ξ̇(s))ξ̇p(s)ds

−
∫ t

τ

Lx(t, η(t), η̇(t))ηp(t)ds−
∫ t

τ

Lv(t, η(t), η̇(t))η̇p(t)ds

∣∣∣∣

≤ sup
p∈K

{∣∣∣∣
∫ t

τ

Lx(s, ξ(s), ξ̇(s))(−(t− s)Hp(t, x, p) + O(t− s)2)ds

∣∣∣∣

+
∣∣∣∣
∫ t

τ

Lv(s, ξ(s), ξ̇(s))(−Hpp(t, x, p) + O(t− s))− Lv(t, η(t), η̇(t))(−Hpp(t, x, p) + O(t− τ))ds

∣∣∣∣
}

≤ sup
p∈K

{
C1

∫ t

τ

|(s− t) + O(t− s)|ds

+
∣∣∣∣
∫ t

τ

[Lv(s, ξ(s), ξ̇(s))− Lv(t, η(t), η̇(t))](C2 + O(t− τ))ds

∣∣∣∣
}

≤ O((t− s)2).

Analogously for the second derivative

sup
p∈K

∣∣∣∣∂pp

[
φ(τ, y(p), t, x)− (t− τ)L

(
t, x,

x− y(p)
t− τ

)]∣∣∣∣ ≤ O((t− s)2).

Thanks to the fact that p 7→ y(p) is C2(K) and has bounded derivative and that the same holds true
also for its inverse, due to Proposition 3.12, it follows that φ(τ, y, t, x) and (t− τ)L

(
t, x, x−y

t−τ

)
are close

in C2(K̃), where K̃ is the image of K through the map p 7→ y(p). Thus y 7→ φ(τ, y, t, x) is convex with
constant C̃

t−τ , the same constant of y 7→ (t− τ)L
(
t, x, x−y

t−τ

)
. ¤

Remark 3.14. All the estimates found strictly depend on the compact set K, however thanks to the finite
speed of propagation of the minimizers ξ, see point (iii) of Theorem 3.1, they are uniform for our ũ.

Let us now come back to our case.

Proposition 3.15. For 0 ≤ τ < t consider the backward solution defined in (3.6) for y in Ωτ . Then for
t− τ small enough the maximum is unique for all y ∈ Ωτ .

Proof. The backward solution can be written in this equivalent way

(3.14) ũ(τ, y) = max
x∈Ωt

{u(t, x)− φ(τ, y, t, x)} .

Recalling that u(t, ·) is semiconcave with constant C
t and that−φ(τ, t, y, ·) is strictly concave with constant

C̃
t−τ we can rewrite (3.14) as

ũ(τ, y) = max
x∈Ωt

{
u(t, x)− C

t
|x|2 − φ(τ, t, y, x) +

C

t
|x|2

}
.

Hence, since u(t, x) − C
t |x|2 is concave and −φ(τ, t, y, x) + C

t |x|2 remains strictly concave, the function
ũ(τ, y) is the maximum of a strictly concave function, hence this maximum is unique. Thus there exists
a unique x ∈ Ωt such that

ũ(τ, y) = u(t, x)− φ(τ, t, y, x),

i.e. there exists a unique curve ξ ∈ C2([τ, t]) such that ξ(τ) = y, ξ(t) = x and

ũ(τ, y) = u(t, ξ(t))−
∫ t

τ

L(s, ξ(s), ξ̇(s))ds.

¤

Corollary 3.16. For t− τ small enough , s ∈ (τ, t) the function ũ(τ, ·) is C1,1(Ωs).
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Proof. From the above proposition we know that ũ(s, ·) is C1(Ωs) for every s ∈ [τ, t). Consider now the
forward solution defined from ũ(τ, ·)

û(s, x) := min
{

ũ(τ, ξ(τ)) +
∫ s

τ

L(l, ξ(l), ξ̇(l))dl
∣∣∣ ξ(s) = x, ξ ∈ C2([τ, s])

}
.

Due to the fact that ũ(τ, y) has a unique maximizer for every y ∈ Ωτ we have that û(s, x) = ũ(s, x)
for every s ∈ [τ, t] and x ∈ Ωs. Thus for s ∈ (τ, t), ũ(s, ·) is both semiconvex and semiconcave, hence
C1,1(Ωs). ¤

Remark 3.17. As a consequence of the Proposition 3.15 for the function ũ(τ, y) for every y ∈ Ωτ there
exists only one curve which is a maximizer and a generalized backward characteristic. Hence generalized
backward characteristics which are also maximizers do not intersect even at time τ . It remains to prove
the following.

Proposition 3.18. Every generalized backward characteristic ξ(s), i.e. a solution of (3.4) with final
conditions (3.5) where p ∈ D+

x u(t, x), is a maximizer for ũ(τ, ξ(τ)) if t− τ is small enough.

Proof. Let ξ be a generalized backward characteristic with ξ(t) = x, p(t) = p ∈ D+
x u(t, x) and ξ(τ) = y.

Then ξ is a minimizer for φ(τ, t, y, x) and p = p(t) = −Dyφ(τ, y, t, x).
Let ξ̃ be the unique maximizer for ũ(τ, y) and suppose by contradiction that ξ̃ differs from ξ, in

particular ξ̃(t) = x̃ 6= x = ξ(t). Then by definition

ũ(τ, y) = u(t, x̃)− φ(τ, y, t, x̃) > u(t, x)− φ(τ, y, t, x).

Thus, for the differentiability and the convexity of φ(τ, y, t, ·)
u(t, x̃)− u(t, x) > φ(τ, y, t, x̃)− φ(τ, y, t, x)

≥ 〈Dyφ(τ, y, t, x), x̃− x〉+
C̃

t− τ
|x̃− x|2.

On the other hand for the semiconcavity of u(t, ·)

u(t, x̃)− u(t, x) < 〈p, x̃− x〉+
C

t
|x̃− x|2.

Thus, recalling that p = −Dyφ(τ, y, t, x), for t− τ small enough we reach the absurd

C

t
>

C̃

t− τ
.

¤

From the above proposition it follows

Corollary 3.19. Generalized backward characteristics cannot intersect each other in [τ, t) if t − τ is
small enough.

3.2. Local property. Thanks to the time invariance of the equation and to the following locality prop-
erty, which is a generalization of the Proposition 3.5 found in [5], it is enough to prove Theorem 1.1 for
the unique viscosity solution of (1.1) with a Lipschitz bounded initial datum

(3.15) u(0, x) = u0(x).

Proposition 3.20. Let u be a viscosity solution of (1.1) in Ω. Then u is locally Lipschitz. Moreover for
any (t0, x0) ∈ Ω, there exists a neighborhood U of (t0, x0), a positive number δ and a Lipschitz function
v0 on Rn such that

(Loc) u coincides on U with the viscosity solution of
{

∂tv + H(t, x, Dxv) = 0 in [t0 − δ,∞)× Rn

v(t0 − δ, x) = v0(x).

Proof. The proof of Proposition 3.5, given in [5], still apply in our case where we only loose the property
that minimizers of 3.1 are straight lines which was unnecessary for the argument. ¤
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4. Proof of the main theorem

4.1. Preliminary remarks. Let u be a viscosity solution of (1.1). Applying Proposition 3.20 we can
assume without loss of generality that u is a solution of the Cauchy Problem (1.1)-(3.15) over a bounded
domain [0, δ] × U and with a bounded and Lipschitz initial datum. Moreover assumptions (H1)-(H2)
guarantee that the Hamiltonian is convex and has super-linear growth in the last variable.

We will prove the SBV regularity over the smaller interval of time [τ, τ + ε] for a fixed τ > 0, ε > 0
small enough and such that [τ, τ + ε] ⊂ [0, δ]. As we have already seen, this is necessary to prevent
intersections of generalized backward characteristics.

We consider a ball BR(0) ⊂ Rn and a bounded convex set Ω ⊂ [τ, τ + ε]×Rn with the properties that
• {s} ×BR(0) ⊂ Ω for every s ∈ [τ, τ + ε];
• for any (t, x) ∈ Ω and for any C2 curve ξ which minimizes u(t, x) in (3.1), the entire curve ξ(s)

for s ∈ [τ, t] is contained in Ω.
Indeed, from the fact that ‖Du‖∞ < ∞, it is enough to choose

Ω := {(t, x) ∈ [τ, τ + ε]× Rn| |x| ≤ R + C ′(τ + ε− t)}
with C ′ sufficiently large and depending only on ‖Du‖∞ and H.

The general idea of the proof is now standard, see [2], [5]. We construct a monotone bounded functional
F (t) defined on the interval [τ, τ + ε]. Then, we relate the presence of a Cantor part in the derivative
D2

xu(t, ·) for a certain t in [τ, τ + ε] with a jump of the functional F in t. Since this functional can have
only a countable number of jumps, the Cantor part of D2

xu(t, ·) can be different from zero only for a
countable number of t’s.

Remark 4.1. Once we have formalized the above strategy and proved the SBV regularity for almost
every t in [τ, τ + ε] the conclusion that Dxu belongs to SBVloc(Ω) follows from the slicing theory of BV
functions (see Theorem 3.108 of [3]). The SBVloc regularity of ∂tu follows instead from the Volpert chain
rule.

4.2. Construction of the functional F . Consider t belonging to (τ, τ + ε] for a fixed τ > 0 and ε > 0
small enough. For any τ ≤ s < t we define the set-valued map

Xt,s(x) := {ξ(s)| ξ(·) is a solution of (3.4), with ξ(t) = x, p(t) = p ∈ D+
x u(t, x)}.

Moreover we will denote by χt,s the restriction of Xt,s to the points where it is single-valued. According
to Theorem 3.6, the domain of χt,s, dom(χt,s) =: Ut, consists of those points where D+

x u(t, x) is single-
valued, i.e. there exists a unique minimizer for u(t, x) in the representation formula (3.1). For that reason
χt,s is clearly defined a.e. in Ωt. We will sometimes write χt,s(Ωt) meaning χt,s(Ut).

Remark 4.2. In the definition of Xt,s we follow generalized backward characteristics starting at time t > 0
till time s. As we have already seen, if t− s is small enough, generalized backward characteristics cannot
intersect except than at time t. Thus if we choose ε > 0 small enough we can have the injectivity of the
set valued map Xt,s over the interval of time [τ, τ + ε].

Note that in the case H = H(Dxu) the authors of [5] were able, in Proposition 5.2, to prove the
injectivity of Xt,0, as a set-valued map, for every t ∈ [0, ε] with ε small enough.

Therefore, equivalently to Proposition 5.2 in [5], we can state

Proposition 4.3. Let t, s be fixed such that τ ≤ s < t ≤ τ + ε, for ε > 0 small enough, which does not
depend on t, s. Then taken any two solutions (ξ1, p1) and (ξ2, p2) of the system (3.4) with final condition

ξi(t) = xi ∈ Ωt pi(t) ∈ D+
x u(t, xi) i = 1, 2,

and (ξ1(t), p1(t)) 6= (ξ2(t), p2(t)) it follows that ξ1(s) 6= ξ2(s). Hence, in particular, the map x 7→ Xt,s(x)
is injective as a set-valued map.

Proof. It follows from Corollary 3.19. ¤

For every τ < t ≤ τ + ε, we can now define the functional

(4.1) F (t) := Hn(χt,τ (Ut)).
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Lemma 4.4. The functional F is non increasing,

F (s) ≥ F (t) for any s, t ∈ (τ, τ + ε] with s < t.

Proof. As in the proof of Lemma 4.1 in [5], the claim follows from the following consideration:

χt,τ (Ωt) ⊂ χs,τ (Ωs) for every τ ≤ s ≤ t ≤ τ + ε.

Indeed, consider any y ∈ χt,τ (Ωt). Then there exists a C2([τ, t]) curve ξ and a point x ∈ Ωt such that ξ
is the unique minimizer in (3.1) with the following endpoints conditions ξ(t) = x, ξ(τ) = y. Such a curve
remains the unique minimizer also for u(s, ξ(s)) for any τ ≤ s ≤ t ≤ τ + ε. Hence, setting z = ξ(s), we
have that the point y can be seen as y = χs,τ (z), hence y ∈ χs,τ (Ωs). ¤

4.3. Hille-Yosida transformation. Taken a Borel set A ⊂ Ωt at a fixed time t ∈ (τ, τ + ε], to compute
the measure Hn(Xt,τ (A)) we follow the evolution of the set along generalized backward characteristics
till the time τ .

Let us recall how the characteristics and their dual arc evolve in time. They are solutions of the system
(3.4), together with the final condition (3.5) where p belongs to D+

x u(t, x).
We have to face the following problem: the function D+

x u(t, ·) is a multi-valued function of bounded
variation which is not Lipschitz in general. However it can be easily related to a maximal monotone
function whose graph can be parametrized in a Lipschitz way as shown in Alberti and Ambrosio [1].

Let us consider the graph (A,D+
x u(t, A)) for a Borel set A ∈ Ωt. Since u(t, x) is semiconcave in x,

v(x) := −(u(t, x) − 1
2C|x|2) is a convex function. Note that the semiconcavity constant should depend

on t, i.e. C(t) = C
t , however a uniform one can be taken due to the fact that t belongs to (τ, τ + ε] where

τ > 0. Moreover, as seen in Theorem 2.5-(iv), the differential of v is a maximal monotone function.
For a maximal monotone function it can be proven, see for example [1], that its graph is a Lipschitz
submanifold without boundary. Adapting the same procedure to our case, we can parametrize the graph
of the derivative of our semiconcave function with a 1-Lipschitz function.

Indeed, we pass from our graph {(x,D+
x u(t, x)| x ∈ A} to the graph of a maximal monotone function

with the following transformation {
x = x
y = Cx− p,

where C is the semiconcavity constant of u(t, ·). Then we apply an Hille-Yosida transformation to have
a 1-Lipschitz parametrization of it. {

z = x + y
w = y.

Call T (x) := Dxv(x) the maximal monotone function. Retracing the passages above, we can express w
as a 1-Lipschitz single-valued function of z. Taking z ∈ B := A + T (A)

{
z = z
w = (Idn + (T )−1)−1(z).

Thus, coming back to our original coordinates, we can describe our graph with the following Lipschitz
parametrization

(4.2)
{

x(z) = z − w(z)
p(z) = Cz − (C + 1)w(z),

where z ∈ B, i.e. we have

ΓA := {(x,D+
x u(t, x))| x ∈ A} = {(z − w(z), Cz − (C + 1)w(z))| z ∈ B}.

Remark 4.5. As explained in [1] the 1-Lipschitz function w(z) is exactly the derivative of the inf-
convolution function of v(x) = −(u(t, x)− 1

2C|x|2)

f(z) = min
x∈Rn

{
v(x) +

|x− z|2
2

}
.

Thus we have w(z) = fz(z) where f is a convex function.
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When applying the flux backward in time, starting from our set ΓA, characteristics ξ(s, z) and p(s, z)
evolve according to

(4.3)
{

ξ̇(s, z) = Hp(s, ξ(s, z), p(s, z))
ṗ(s, z) = −Hx(s, ξ(s, z), p(s, z))

with final conditions

(4.4)
{

ξ(t, z) = x(z) = z − w(z)
p(t, z) = p(z) = Cz − (C + 1)w(z),

for z in B. Since the flux is described by smooth equations and thanks to the fact that the parametrization
of our initial set is 1-Lipschitz, the solutions ξ(s, z), p(s, z) are Lipschitz curves.

We can now rewrite Xt,τ in an equivalent way, for x in A

Xt,τ (x) = {ξ(τ) | ξ(·) is a solution of (3.4), with ξ(t) = x, p(t) = p ∈ D+
x u(t, x)}

= {ξ(τ, z) | ξ(·, z) is a solution of (4.3), with ξ(t, z) = z − w(z), p(t, z) = Cz − (C + 1)w(z),
z ∈ x + T (x)}.

With an abuse of notation we will denote with ξ(τ, ·) : B → Ωτ the function Xt,τ (·) when we are
considering the Lipschitz parametrization; with this notation Xt,τ (A) = ξ(τ, B). We can now apply the
Area Formula to ξ(τ, ·)

(4.5)
∫

ξ(τ,B)

H0((ξ(τ, ·)−1(w))dw =
∫

B

| det(ξz(τ, z))|dz.

Thanks to the injectivity of the map Xt,τ which is preserved when passing to the Lipschitz parametriza-
tion, the left term of (4.5) is precisely the measure of the set ξ(τ, B).

Hence, we have ∫

ξ(τ,B)

H0((ξ(τ, ·)−1(w))dw = Hn(ξ(τ, B)) = Hn(Xt,τ (A)).

To compute det(ξz(τ, z)) we differentiate in z the equations (4.3), (4.4) obtaining that ξz and pz satisfy
the linearized system

(4.6)
{

ξ̇z(s, z) = Hpx(s, ξ(s, z), p(s, z))ξz(s, z) + Hpp(s, ξ(s, z), p(s, z))pz(s, z)
ṗz(s, z) = −Hxx(s, ξ(s, z), p(s, z))ξz(s, z)−Hxp(s, ξ(s, z), p(s, z))pz(s, z)

with the final conditions

(4.7)
{

ξz(t, z) = Idn(z)− wz(z)
pz(t, z) = CIdn(z)− (C + 1)wz(z),

for any z ∈ B.

4.4. Approximation. If we choose ε > 0 small enough we can approximate our curves with straight
lines for any t in (τ, τ + ε], i.e. we can write

ξ(τ, z) = ξ(t, z)− (t− τ)ξ̇(t, z) + O((t− τ)2).

Using this approximation and (4.6) we obtain
(4.8)

det(ξz(τ, z)) = det
(
ξz(t, z)− (t− τ)Hpx(t, x(z), p(z))ξz(t, z)− (t− τ)Hpp(t, x(z), p(z))pz(t, z)

)

+O((t− τ)2).

Since we are now considering nearly straight lines, instead of more general curves, we can expect that
this approximation should allow us to adapt the techniques of [5] and recover the lemmas needed.

Before going on, let us give an explicit formula for the spatial-Laplacian of our solution. Thanks to the
semiconcavity of u(t, ·) its spatial-Laplacian is a measure. Moreover, using the 1-Lipschitz parametrization
given by Hille-Yosida, the spatial-Laplacian can be seen as the push-forward of a particular measure.

Lemma 4.6. For any Borel set A, let {(x(z), p(z))| z ∈ A + T (A)} be the 1-Lipschitz parametrization of
the set {(x, D+

x u(t, x)| x ∈ A} as seen above in (4.2). Then we have

∆u(t, A) = x(z)]


∑

i,k

∂pi(z)
∂zk

[cof xz(z)]ik


Hn(A).
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Here cof A is the cofactor matrix of the matrix A.

This formula has been shown to the authors by C. De Lellis.

Proof. We can assume A open. Take any φ in C∞c (Rn) and compute
∫

A

[D2
xu(t, x)]ijφ(x)dx = −

∫

A

[Dxu(t, x)]i
∂φ(x)
∂xj

dx

= −
∫

A+T (A)

pi(z)
∂φ(x(z))

∂xj
det(xz(z))dz

= −
∫

A+T (A)

pi(z)
∑

k

(
∂φ(x(z))

∂zk

∂zk(x(z))
∂xj

)
det(xz(z))dz

= −
∫

A+T (A)

pi(z)
∑

k

(
∂φ(x(z))

∂zk
[cof xz(z)]jk

)
dz

=
∫

A+T (A)

φ(x(z))
∑

k

(
∂pi(z)
∂zk

[cof xz(z)]jk

)
dz +

+
∫

A+T (A)

φ(x(z))pi(z)
∑

k

(
∂

∂zk
[cof xz(z)]jk

)
dz.

In the lines above we have used the 1-Lipschitz parametrization of the set {(x, D+
x u(t, x)| x ∈ A} and the

fact that
∂zk(x(z))

∂xj
= [xz(z)]−1

kj =
1

det(xz(z))
[cof xz(z)]jk.

Now, repeating upside down the passages starting from the last term, one obtains that
∫

A+T (A)

φ(x(z))pi(z)
∑

k

(
∂

∂zk
[cof xz(z)]jk

)
dz = −

∫

A

∂

∂xj
(φ(x(z))[Dxu(t, x)]i) dx

which is equal to zero due to the fact that φ has compact support. Hence
∑

k

(
∂

∂zk
[cof xz(z)]jk

)
= 0.

¤

We are now able to prove an analogous of Lemma 4.3 in [5].

Lemma 4.7. For ε small enough (depending only on the bound M for ‖Hpx‖), let t ∈ (τ, τ + ε] and
A ⊂ Ωt be a Borel set. Then

(4.9) Hn(Xt,τ (A)) ≥ C1Hn(A)− C2(t− τ)
∫

A

d∆u(t, ·) + O((t− τ)2),

where C1, C2 are positive constants (depending on C, cH). ∆u(t, ·) is the spatial-Laplacian of u(t, ·).
Proof. Let us start from (4.8).

For t− τ small enough the matrix

Idn(z)− (t− τ)Hpx(t, x(z), p(z))

is invertible. Indeed, since ∃M > 0 such that the norm ‖Hpx(·, ·, ·)‖ < M it is sufficient to take ε < 1
2nM .

This condition ensures that

det(Idn(z)− (t− τ)Hpx(t, x(z), p(z))) >
1
2

> 0.

Thus this determinant can be put in evidence in (4.8)

| det(ξz(τ, z))| = |det (Idn − (t− τ)Hpx) ||det
(
ξz − (t− τ)(Idn − (t− τ)Hpx)−1Hpppz

) |+ O((t− τ)2)

>
1
2
|det (ξz − (t− τ)Hpppz) |+ O((t− τ)2).
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To lighten the computation above we have omitted the dependence of Hpx, Hpp from t, x(z), p(z) and of
ξz, pz from t, z. Moreover we used the fact that for t− τ small enough it is possible to expand the inverse

(Idn − (t− τ)Hpx)−1 = Idn + (t− τ)Hpx + O((t− τ)2).

We are then left to expand the determinant in series

det (ξz − (t− τ)Hpppz) = det (ξz)− (t− τ)tr
(
[cof ξz]T Hpppz

)
+ O((t− τ)2),

and use that w = fz as underlined in the Remark 4.5, so that, recalling (4.7),

ξz = Idn − wz = Idn − fzz, pz = CIdn − (C + 1)wz = CIdn − (C + 1)fzz.

Call λi, for i = 1, ..., n, the eigenvalues of the positive semidefinite matrix fzz. Hence we can compute

det (ξz) =
∏

i

(1− λi) [cof ξz]ii =
∏

j 6=i

(1− λj).

The convexity of f and the 1-Lipschitzianity of fz imply that all the eigenvalues are bounded from
above and from below: 0 ≤ λi ≤ 1, for i = 1, . . . , n. Thus, for every i = 1, . . . , n, we have 0 ≤ 1− λi ≤ 1
and −1 ≤ C − (C + 1)λi ≤ C, in particular this last inequality suggests that we have to work a bit to
bound our determinant, since C − (C + 1)λi has no definite sign.

1
2

(
det (ξz)− (t− τ)tr

(
[cof ξz]T Hpppz

))
+ O((t− τ)2) =

=
1
2


∏

i

(1− λi)− (t− τ)tr


diag


∏

j 6=i

(1− λj)


 Hppdiag[C − (C + 1)λi]





 + O((t− τ)2)

=
1
2


∏

i

(1− λi)− (t− τ)
∑

i

∏

j 6=i

(1− λj)[Hpp]ii(C − (C + 1)λi)


 + O((t− τ)2)

=
1
2

∏

i

(1− λi)− (t− τ)
1
2

∑

i

∏

j 6=i

(1− λj)[Hpp]ii(C(1− λi)− λi) + O((t− τ)2)

=
1
2

(1− (t− τ)C tr Hpp)
∏

i

(1− λi) + (t− τ)
1
2

∑

i

λi[Hpp]ii
∏

j 6=i

(1− λj) + O((t− τ)2).

Now that all the terms have positive sign for an ε small enough, we can use the uniform convexity of
H in p and the bounds on λi to show that there exist constants C1, C2, all of them depending only on
C, cH , such that

| det(ξz(τ, z))| ≥ C1

∏

i

(1− λi) + (t− τ)C2

∑

i

λi

∏

j 6=i

(1− λj) + O((t− τ)2)

≥ C1

∏

i

(1− λi) + (t− τ)C2

∑

i

λi

∏

j 6=i

(1− λj)− n(t− τ)C2C
∏

i

(1− λj) + O((t− τ)2)

= C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C(1− λi)− λi))
∏

j 6=i

(1− λj) + O((t− τ)2)

= C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C − (C + 1)λi)
∏

j 6=i

(1− λj) + O((t− τ)2).

Therefore if we compute the area formula (4.5) we obtain
∫

B

|det(ξz(τ, z))|dz ≥
∫

B


C1

∏

i

(1− λi)− (t− τ)C2

∑

i

(C − (C + 1)λi)
∏

j 6=i

(1− λj)


 dz + O((t− τ)2).

Applying Lemma (4.6) and recalling that 1− λi are the eigenvalues of ξz(t, z) we obtain the thesis.

Hn(Xt,τ (A)) ≥ C1Hn(A)− C2(t− τ)
∫

A

d∆u(t, ·) + O((t− τ)2)

where C1, C2 are constants depending only on C, cH . ¤
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4.5. Area estimates. In order to complete the proof of the main theorem we need to prove a Lemma
which states the equivalent result of Lemma 5.1 in [5].

Lemma 4.8. If ε > 0 is small enough, for any t ∈ (τ, τ + ε], any δ ∈ [0, t− τ ] and any Borel set A ⊂ Ωt

we have

(4.10) Hn(Xt,τ+δ(A)) ≥
(

1
2

)n (
t− (τ + δ)

t− τ

)n

Hn(Xt,τ (A)).

Proof. Fix t in (τ, τ + ε], and let A be a Borel set A ⊂ Ωt. Without loss of generality we can suppose A
to be a compact set.

Consider an approximation of the vector field induced by our generalized backward characteristics by
taking a dense sequence of points {xi}∞i=1 in A. Fix an integer I > 0, call AI := {xi| i = 1, . . . , I} and
define for any s such that τ ≤ s < t and y ∈ Xt,s(A)

ũI(s, y) = max
{

u(t, ξ(t))−
∫ t

s

L(l, ξ(l), ξ̇(l))dl
∣∣∣ ξ is a C2([s, t]) curve, ξ(s) = y, ξ(t) ∈ AI

}
.

We assume in addition that the sequence {xi}i∈I is big enough so that we can uniformly bound the
speed of propagation of every maximizer ξ.

Remark 4.9. All the properties which we stated for maximizers of the backward solutions and for the
backward solution itself are preserved in each cone of propagation for the maximizers of this approximated
backward solution (Euler equation, systems for maximizer and dual arc, no-crossing property, etc) and
for ũI (a.e. differentiability, dynamic programming principle, semiconvexity).

Through this approximation the set Es := Xt,s(A) is split into at most I open regions Ei
s, i = 1, . . . , I,

defined by

Ei
s = interior of {y ∈ Xt,s(A)| ∃ξ maximizer for ũI(s, y) such that ξ(t) = xi},

together with the set
JI

s =
⋃

i 6=j

(
Ēi

s ∩ Ēj
s

)

of negligible Hn-measure. Indeed, even for ũI(s, ·) the set of points with more than one maximum is the
set of point of non differentiability and this set has Hn-measure zero.

Call
XI

t,s(xi) := {ξ(s)| ξ is a maximizer for ũI(s, y) with y ∈ Ēi
s},

this is a multi-valued function defined on the set AI .
The set XI

t,s(AI) converges in the Hausdorff sense to the set Xt,s(A) as I tends to infinity. Indeed, it
follows from the strong convergence of the maximizers of ũI to the maximizers of ũ which is ensured by
their bound on the derivative (Theorem 3.1-(iii)). Thus

Hn(Xt,s(A)) ≥ lim sup
I→∞

Hn(XI
t,s(AI)).

Let us decompose Hn(XI
t,s(AI)) in the sum over i ∈ I of Hn(XI

t,s(xi)). Using the one to one corre-
spondence of Lemma 3.11

ξp(τ)
τ − t

= Hpp(t, xi, p) + O(t− τ)

and
ξp(τ + δ)
τ + δ − t

= Hpp(t, xi, p) + O(t− τ).

Therefore ∣∣∣∣
ξp(τ)
τ − t

− ξp(τ + δ)
τ + δ − t

∣∣∣∣ ≤ O(t− τ),

and ∣∣∣∣
(

t− (τ + δ)
t− τ

)
ξp(τ)(ξp(τ + δ))−1 − Id

∣∣∣∣ ≤ O(t− τ).
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Thus, passing to the determinant,

det(ξp(τ + δ)) ≥
(

1
2

)n (
t− (τ + δ)

t− τ

)n

det(ξp(τ)).

From which it follows

Hn(XI
t,τ+δ(xi)) ≥

(
1
2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (xi)).

Summing up all the terms

Hn(XI
t,τ+δ(AI)) ≥

(
1
2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (AI)).

Finally using the fact that Hn(XI
t,τ (AI)) = Hn(Xt,τ (A)) and the Hausdorff convergence we obtain

Hn(Xt,τ+δ(A)) ≥ lim sup
I→∞

Hn(XI
t,τ+δ(AI))

≥ lim sup
I→∞

(
1
2

)n (
t− (τ + δ)

t− τ

)n

Hn(XI
t,τ (AI))

=
(

1
2

)n (
t− (τ + δ)

t− τ

)n

Hn(Xt,τ (A)).

Hence the thesis is proved. ¤

We can now prove the following

Lemma 4.10. For ε small enough, for any t in (τ, τ+ε] such that |D2
cu(t, ·)|(Ωt) > 0 and δ in (0, τ+ε−t],

there exists a Borel set A ⊂ Ωt such that
i) Hn(A) = 0, |D2

cu(t, ·)|(A) > 0 and |D2
cu(t, ·)|(Ωt \A) = 0;

ii) Xt,τ is single-valued on A;
iii) and

(4.11) χt,τ (A) ∩ χt+δ,τ (Ωt+δ) = ∅.

Proof. From Proposition 2.6 and the definition of Cantor part of a measure, there exists a Borel set A
such that

• D+
x u(t, x) is single-valued for every x ∈ A,

• Hn(A) = 0,
• |D2

cu(t, ·)|(Ωt \A) = 0 and |D2
cu(t, ·)|(A) > 0.

By contradiction suppose there exists a compact set K ⊂ A such that

|D2
cu(t, ·)|(K) > 0

and
Xt,τ (K) = χt,τ (K) ⊂ χt+δ,τ (Ωt+δ).

Call ω := |D2
cu(t, ·)|(K).

Then there exists a Borel set K̃ ⊂ Ωt+δ such that χt,τ (K) = χt+δ,τ (K̃). Moreover, thanks to the fact
that we are considering classical characteristics starting from K̃, we have

χt+δ,t(K̃) = K and χt+δ,s(K̃) = χt,s(K) ∀s ∈ [τ, t).

Using Lemma 4.8, for any s ∈ [τ, t),

Hn(K) = Hn(Xt+δ,t(K̃)) ≥
(

1
2

)n (
δ

t + δ − s

)n

Hn(Xt+δ,s(K̃)) =
(

1
2

)n (
δ

t + δ − s

)n

Hn(Xt,s(K)).

Hence

(4.12) Hn(K) ≥
(

1
2

)n (
δ

t + δ − s

)n

Hn(Xt,s(K)).
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Moreover if we choose s such that t− s is small enough

Hn(Xt,s(K)) ≥ C1Hn(K)− C2(t− s)
∫

K

d∆su(t, ·) + O((t− s)2)

≥ −C2(t− s)
∫

K

d∆cu(t, ·) + O((t− s)2)

≥ −C2(t− s)ω + O((t− s)2)

≥ C2

2
ω2,

where we have used the fact that Hn(K) = 0, that ∆ju(t,K) ≤ 0, which is true due to semiconcavity,
implies ∆su(t,K) ≤ ∆cu(t,K), and −∆cu(t,K) ≥ |D2

cu(t, ·)(K)| = ω. Thus

(4.13) Hn(Xt,s(K)) ≥ C2

2
ω2.

Combining (4.12) with (4.13) we obtain

Hn(K) ≥
(

1
2

)n (
δ

t + δ − s

)n
C2

2
ω2 > 0.

This is in contradiction with our hypothesis. ¤

We now have all the necessary Lemmas to prove the Theorem 1.1.

Proof. For ε > 0 sufficiently small such that Lemmas 4.4, 4.7, 4.8, and 4.10 hold, consider the functional
F defined in (4.1) over the interval [τ, τ + ε]. F is bounded, and, from Lemma 4.4, F is a monotone
function. Thus its points of discontinuity are at most countable.

We will prove that the presence of a Cantor part at a time t is related to a discontinuity of the
functional F in t, hence there must be only a countable number of t’s in [τ, τ + ε] for which the Cantor
part is positive.

Suppose there exists a t in (τ, τ + ε) such that

|D2
cu(t,Ωt)| > 0,

then for any δ > 0 let A be the set of Lemma 4.10. Using Lemma 4.10-(iii) we get

(4.14) F (t + δ) ≤ F (t)−Hn(Xt,τ (A))

To compute Hn(Xt,τ (A)) call ω := |D2
cu(t, ·)|(A). As we saw in the previous lemma, if we choose s ∈ [τ, t)

such that t− s is small enough, we have

Hn(Xt,s(A)) ≥ C2

2
ω2.

Moreover for Lemma 4.8

Hn(Xt,τ (A)) ≥
(

1
2

)n (
t− τ

t− s

)n

Hn(Xt,s(A)).

Hence

Hn(Xt,τ (A)) ≥
(

1
2

)n (
t− τ

t− s

)n
C2

2
ω2 ≥ Cω2.

We can now use this estimate in (4.14) obtaining

F (t + δ) ≤ F (t)− Cω2.

Letting δ → 0
lim sup

δ→0
F (t + δ) < F (t).

Therefore t is a point of discontinuity for F , as we would like to prove.
¤



20 STEFANO BIANCHINI AND DANIELA TONON

References

[1] G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in Rn, Math. Z., 2 (1999), pp. 259–316.
[2] L. Ambrosio and C. De Lellis, A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-

Jacobi equations, J. Hyperbolic Differ. Equ., 31 (4) (2004), pp. 813–826.
[3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford

University Press, 2000.
[4] E. Barron, P. Cannarsa, R. Jensen, and C. Sinestrari, Regularity of Hamilton-Jacobi equations when forward is

backward, Indiana Univ. Math. J., 48 (1999), pp. 385–409.
[5] S. Bianchini, C. De Lellis, and R. Robyr, SBV regularity for Hamilton-Jacobi equations in Rn, Preprint, (2010).
[6] P. Cannarsa, A. Mennucci, and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi

equations, Arch. Ration. Mech. Anal., 140 (1997), pp. 197–223.
[7] P. Cannarsa and C. Sinestrari, Viscosity solutions of Hamilton-Jacobi equations and optimal control problems,

Birkhäuser, Boston, 2004.
[8] P. Cannarsa and H. Soner, On the singularities of the viscosity solutions to Hamilton-Jacobi equations, Indiana

Univ. Math. J., 36 (1987), pp. 501–524.
[9] M. Crandall, L. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans.

Amer. Math. Soc., 282 (1984), pp. 487–502.
[10] M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983),

pp. 1–42.
[11] W. Fleming, The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations, 5

(1969), pp. 515–530.
[12] W. Fleming and R. Rishel, Deterministic and stochastic optimal control, Springer, New York, 1975.
[13] W. Fleming and H. Soner, Controlled Markov process and viscosity solutions, Springer, Berlin, 1993.
[14] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.

Stefano Bianchini
SISSA, via Bonomea, 265, 34136 Trieste, Italy,
Phone +39 040 3787 434, Fax +39 040 3787 528

E-mail address: bianchin@sissa.it

Daniela Tonon
SISSA, via Bonomea, 265, 34136 Trieste, Italy ,
Phone +39 040 3787 526, Fax +39 040 3787 528

E-mail address: tonon@sissa.it


