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1 Introduction

It is a classical result in open string theories that the condition of tadpole cancellation

ensures their consistency by implementing the cancellation of gravitational and mixed

anomalies [39]. It is also well known that topological string amplitudes calculate BPS pro-

tected sectors of superstring theory [2–4]. It is therefore natural to look for a corresponding

consistency statement in the open topological string.

Closed topological strings on Calabi-Yau threefolds provide a beautiful description of

the Kähler and complex moduli space geometry via the A- and B-model respectively [47].

However, D-branes naturally couple in these models to the wrong moduli [35], namely

A-branes to complex and B-branes to Kähler moduli. This leads to new anomalies in the

topological string due to boundary terms, as observed in [12] and constitutes an obstruction

to mirror symmetry and to the realization of open/closed string duality in generic Calabi-

Yau targets. A proper analysis of this problem is thus compelling. In this paper we will

show how to cancel these new anomalies at all loops by including crosscap states. We

will also find that from the target space viewpoint, this corresponds to the cancellation of

D-brane and orientifold charges.
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The first observation in this direction came from a different perspective in [45], where it

was observed that the inclusion of unorientable worldsheet contributions is crucial to obtain

a consistent BPS states counting for some specific geometries in the open A model [26, 44].

From this it was inferred that tadpole cancellation would ensure the decoupling of A and

B model in loop amplitudes. In this paper we provide a Super Conformal Field Theory

derivation of the above statements.

We also provide a target space geometric interpretation for unorientable one loop

amplitudes in open B-model in terms of analytic Ray-Singer torsions [40]. This allows us

to show explicitly that the decoupling of Kähler moduli corresponds to the cancellation of

D-brane and orientifold charge.

Some analysis on the unoriented sector of the topological string have been performed

in [1, 9, 13, 42] for local Calabi-Yau geometries. In these cases the issue of tadpole cancel-

lation gets easily solved by adding anti-branes at infinity, as already noticed also in [12].

However, a more systematic study of this problem is relevant in order to analyze mirror

symmetry with D-branes [43] and open/closed string dualities in full generality.

More in general, it is expected that the topological string captures D-brane instanton

non perturbative terms upon Calabi-Yau compactifications to four dimensions [11, 29].

Therefore, the study of the geometrical constraints following from a consistent wrong

moduli decoupling could shed light on the properties of BPS amplitudes upon wall cross-

ing [16, 21, 25, 33, 36].

The structure of the paper is the following. In section 2 we consider tadpole cancel-

lation at one loop in the simple case of target T 2 and rewrite the resulting amplitudes

in terms of Ray-Singer torsions of suitable vector bundles. In section 3 we move to a

generic Calabi-Yau target space by considering the complete set of holomorphic anomaly

equations and discussing tadpole cancellation at one loop. In section 4 we continue the

microscopic analysis by directly calculating unoriented one loop B-model amplitudes on a

generic Calabi-Yau threefold in terms of analytic Ray-Singer torsions of appropriate vector

bundles. We show that the requirement of decoupling of wrong moduli corresponds to

tadpole cancellation. In section 5 we extend our arguments to all loops and show how local

tadpole cancellation on the world-sheet absorbs the disk function anomaly observed in [12].

We leave our concluding observations for section 6.

2 One loop amplitudes on the torus, tadpole cancellation and Ray-Singer

analytic torsion

In this section we investigate tadpole cancellation for open unoriented topological string

amplitudes at zero Euler characteristic considering, as a warm up example, the B-model

case when the target space is a T 2. We conclude by rewriting the amplitudes as Ray-Singer

analytic torsions.

The relevant amplitudes are the cylinder, the Möbius strip and the Klein bottle coupled

to a constant gauge field. In the operator formalism, as usual for one loop amplitudes,
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we have

Fcyl =

∫ ∞

0

ds

4s
Tro

(

F (−1)F e−2πsH
)

, Fmöb =

∫ ∞

0

ds

4s
Tro

(

PF (−1)F e−2πsH
)

Fkle =

∫ ∞

0

ds

4s
Trc

(

PF (−1)F e−2πsH
)

(2.1)

where P = Ω ◦ σ is the involution operator obtained by combining the worldsheet par-

ity operator Ω and a target space involution σ, F is the fermion number and H is the

Hamiltonian for worldsheet time translations. The trace is taken over all (open or closed)

string states. In this section we consider D-branes wrapping the whole T 2 and take σ to

act trivially. From the Hamiltonian H of the σ-model with Wilson lines for gauge groups

SO(N) or Sp(N/2), we have (setting α′ = 1):

Fcyl =
+∞
∑

n,m=−∞

N
∑

i,j=1

∫ ∞

0

ds

4s
e
− 2πs

σ2t2
|n− σm−ui,j |2 (2.2)

Fmöb = ±
+∞
∑

n,m=−∞

N
∑

i=1

∫ ∞

0

ds

4s
e
− 2πs

σ2t2
|n− σm−2ui|2 (2.3)

Fkle =
+∞
∑

n,m=−∞

∫ ∞

0

ds

4s
e
− 2πs

2σ2t2
|n− σm|2

(2.4)

Here ui,j = ui − uj and ui = φi + σθi with θi and −φi the i-th diagonal element of the

Wilson lines1 along the two 1-cycles of the torus with complex structure σ = σ1+iσ2 = R2eiρ

R1

and area t2 = R1R2 sin(ρ). This means that if one parametrizes the target space torus with

z = R1x1 +R2e
iρx2, then the gauge field reads Ai = θidx1 −φidx2. The topological ampli-

tudes get contribution from classical momenta only, due to a complete cancellation between

the quantum bosonic and fermionic traces. The shift in the classical momenta by the Wil-

son lines ui is the only effect of the coupling to the gauge fields. Note that the different

coupling between the cylinder and the Möbius is due to the selection of diagonal P states for

the Möbius. The ± in front of the Möbius corresponds to the SO(N) and Sp(N/2) theories

respectively coming from the eigenvalues of the Chan-Paton states in the trace under P.

These amplitudes suffer of two kinds of divergences: the first one is from the s → 0 part

of the integral and will be removed by tadpole cancellation. The second one comes from the

series which turns out to diverge for vanishing Wilson lines [40]. In the superstring this sec-

ond divergence is due to extra massless modes generated by gauge symmetry enhancement.

We will start with tadpole cancellation and deal later with the second divergence.

In order to analyze the behaviour at s → 0, we Poisson resum the n,m sums in order

to get an exponential going like e−1/s. The result is:

Fcyl =

+∞
∑

m,n=−∞

N
∑

i,j=1

∫ ∞

0
ds

t2
8s2

e
− πt2

2sσ2
|n+σm|2

e2πi(mφi,j−nθi,j) (2.5)

1As reviewed in the appendix the unoriented theory selects either the Sp(N/2) or the SO(N) groups. In

both cases one can diagonalize with a constant gauge transformation leading to N diagonal elements. These

are purely imaginary for SO(N) and real for Sp(N/2), half of them being independent numbers a1, . . . , aN/2

and the other half −a1, . . . ,−aN/2.
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Fmöb = ±
+∞
∑

m,n=−∞

N
∑

i=1

∫ ∞

0
ds

t2
8s2

e
− πt2

2sσ2
|n+σm|2

e2πi(2mφi− 2nθi) (2.6)

Fkle =

+∞
∑

m,n=−∞

∫ ∞

0
ds

t2
4s2

e
− πt2

sσ2
|n+σm|2

(2.7)

In order to extract the tadpole divergent part, let us perform the change of variables
π
s → s, π

4s → s, and π
2s → s respectively for cylinder, Möbius and Klein bottle.2 In the

three cases the divergent parts come from the n = m = 0 term and adding the three

contributions we get

∫ ∞

0
ds

t2
8π

(

N2 (cylinder) ± 4N (Möbius) + 4 (Klein)
)

.

The divergence is canceled by choosing N = 2 and requiring Sp(N/2) gauge group.3

Once this divergence is removed, the Möbius strip with non-zero Wilson lines is finite

and reads

Fmöb = +
1

2
log

N
∏

i=1

∣

∣

∣
eπi(2θi)

2σθ1 (2ui|σ) η (σ)−1
∣

∣

∣
. (2.8)

in terms of the standard modular functions θ1 and η.

As it is evident from (2.8), a further divergence arises at vanishing Wilson lines, where

θ1 vanishes. In order to define a finite amplitude, notice that for small value of one of the

ui’s we can expand to first order inside the logarithm getting

F reg
möb = . . . +

1

2
log
∣

∣

∣
eπi(2θi)

2σθ1 (2ui|σ) η (σ)−1
∣

∣

∣
+ . . . (2.9)

≈ . . . +
1

2
log

∣

∣

∣

∣

0 − 2πiη (σ)2
√

σ2
2ui√
σ2

+ . . .

∣

∣

∣

∣

+ . . . (2.10)

Notice that both η (σ)2
√

σ2 and 2ui√
σ2

are separately modular invariant under the SL(2, Z)

transformations:4

σ → c + dσ

a + bσ
θ → aθ − bφ φ → −cθ + dφ

From (2.10), it is clear that the remaining finite part is the η (σ)2
√

σ2 term in the logarithm.

One can in fact compute it for vanishing Wilson lines starting from (2.3) by first regulating

the integral as
∫ ∞

ǫ

dt

t
e−kt = C − log(kǫ) + O(ǫ) ≈ −log(k) + C (2.11)

and discarding the m = n = 0 term, which take care of the tadpole divergence. Then by

using zeta-function regularization to deal with the infinite product over the k-factors in

2This is in order to normalize the three surfaces to have the same circumference and length (respectively

2π and s). They are parametrized such that the Möbius and the Klein are cylinders with one and two

boundaries substituted by crosscaps respectively.
3In the case of target space T 2d one finds N = 2d.
4Recall that ui = φi + σθi and −φ and θ are the gauge fields along the two cycles.
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the logarithm one gets5

Fmöb = +
1

4
log

N
∏

i=1

σ2t2
2π4uiui

∣

∣eiπ2ui − e−iπ2ui
∣

∣

2
e2πiσ/12e−2πiσ/12

×
∞
∏

m=1

∣

∣

∣

(

1 − e2πi(mσ+2ui)
)(

1 − e2πi(mσ−2ui)
)∣

∣

∣

2
+ C. (2.12)

This is well behaved for ui → 0 giving, for each vanishing Wilson line element, a term

1

2
log

(√
σ2t2√
2

|η(σ)|2
)

+
1

4
log(4π) + C. (2.13)

The constant C is arbitrary and can be chosen to reabsorb the term 1
4 log(4π). The extra

dependence in (2.12) on the Kähler modulus t2 is indeed separated in an overall addi-

tional term which decouples from the one-point amplitudes ∂σF . Using this regularization

scheme, that is deleting the tadpole term and, in case of vanishing Wilson lines, regulating

the corresponding divergent series, we finally have:

Fcyl = −
N
∑

i6=j=1

Θ(|ui,j |2)
1

2
log
∣

∣

∣
eπi(θi,j )2σθ1 (ui,j|σ) η (σ)−1

∣

∣

∣
(2.14)

−



N +

N
∑

i6=j=1

(1 − Θ(|ui,j|2))





1

2
log

(√
σ2t2√
2

|η(σ)|2
)

(2.15)

Fmöb = +
N
∑

i=1

Θ(|ui|2)
1

2
log
∣

∣

∣
eπi(2θi)

2σθ1 (2ui|σ) η (σ)−1
∣

∣

∣
(2.16)

+

(

N
∑

i=1

(1 − Θ(|ui|2))
)

1

2
log

(√
σ2t2√
2

|η(σ)|2
)

(2.17)

Fkle = −1

2
log
(√

σ2t2 |η(σ)|2
)

(2.18)

where Θ(x) is the step function, zero for x ≤ 0 and one for x > 0.

Let us now make a couple of observations on the above results. First, notice that all

the above free energies satisfy at generic values of the Wilson line a standard holomorphic

anomaly equation in the form ∂σ∂σ̄F ∼ 1
(σ−σ̄)2 with a proportionality constant counting

the number of states in the appropriate vacuum bundle. In particular, at vanishing Wilson

lines, we recover the results stated in [45]. A more accurate discussion on the holomorphic

anomaly equation for general target spaces is deferred to the next section.

The second comment concerns the interpretation of the amplitudes we just calculated

in terms of the analytic Ray-Singer torsion [40].

This is defined as [38]

logT (V ) =
1

2

d
∑

q=0

(−1)q+1qlog det′∆V ⊗ΛqT ∗X (2.19)

5We use the formula sin(πz) = πz
Q

∞

n=1

“

1 − z2

n2

”

.
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where d = dimCX. On an elliptic curve with complex structure σ the analytic torsion of

a flat line bundle L with constant connection u is given by (as it can be found in Theorem

4.1 in [40])

T (L) =



















∣

∣

∣

∣

e−π
(Imu)2

Imσ
θ1(u|σ)

η(σ)

∣

∣

∣

∣

if u 6= 0

√
Imσ|η(σ)|2 if u = 0

(2.20)

where the second case corresponds to the trivial line bundle O.

On an elliptic curve equipped with a flat vector bundle E = ⊕iLi, an extension of the

formula for the Ray-Singer torsion implies that

Fcyl = −1

2

∑

i,j

logT
(

Li ⊗ L∗
j

)

= −1

2
logT (E ⊗ E∗)

Fmöb = +
1

2

∑

i

logT
(

L2
i

)

= +
1

2
logT (diag(E ⊗ E))

Fkle = −1

2
logT (O) . (2.21)

The possibility to rewrite one-loop topological string amplitudes for the B-model in terms

of the analytic Ray-Singer torsion on the target space also for the unoriented open sector

will be discussed in more detail in section 4.

Let us notice that the chamber structure in the amplitudes (2.21) reflects exactly the

multiplicative properties of the Ray-Singer torsion under vector bundle sums logT(V1 ⊕
V2) = logT(V1) + logT(V2) in the specific case of the torus. In fact, the limit of vanishing

Wilson line corresponds to the gauge bundle E = E′⊕O and therefore one finds logT(E′⊕
O) = logT(E′) + logT(O).

3 Unoriented topological string amplitudes at one loop

3.1 Holomorphic anomaly equations

In last section we considered a B-model topological string on a torus. Now we will generalize

the computation to a generic Calabi-Yau 3-fold. Namely, we will follow the standard

BCOV’s computation [4] to derive holomorphic anomaly equations for the amplitudes of

the cylinder, the Möbius strip, and the Klein bottle.

Firstly, we compute the cylinder amplitude Fcyl. We fix the conformal Killing sym-

metry and the A- or B-twist on the cylinder by inserting a derivative with respect to the

right moduli, that is, Kähler moduli for A-model and complex structure moduli for B-

model of Calabi-Yau moduli space. We get the anomaly equation for the unoriented string

amplitude

∂

∂t̄ī
∂

∂tj
Fcyl =

1

4

∫ ∞

0
ds

〈∫

d2z
{

(G+ + G
−
), φ̄

[1]

ī

}

∫

l
(G− + G

+
)

∫

l′
φ

(1)
j

〉

, (3.1)

where

QBRST = G+ + G
−
, (3.2)
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[G+−G
−

, φ̄ī]

k gk̄k
k

[G−−G
+
, φj ]

(a) disk two-point function

xx

[G+− G
−

, φ̄ī]

a gab̄
b

[G−− G
+
, φj ]

(b) tadpole for the cylinder degeneration

Figure 1. the degeneration of a cylinder

and

φ̄
[1]

ī
:=

1

2

[(

G+ − G
−)

, φ̄ī

]

, φ
(1)
j :=

1

2

[(

G− − G
+
)

, φj

]

. (3.3)

The degeneration gives rise to two contributions — open channel and closed channel. The

open channel is
1

4
∂̄ī∂jTropen(−1)F log gtt∗ , (3.4)

where the trace is taken on the open string ground states, gtt∗ is the tt∗ metric for the

open string.

For the closed channel, there are two cases.

i) The two operator insertions φ̄
[1]

ī
and φ

(1)
j are on different sides. It contributes to the

equation by

−Dīk̄Djkg
k̄k, (3.5)

where gij̄ is the tt∗ metric for the closed string and Dij is the disk two-point function

(figure 1(a)).

ii) The two operator insertions are on the same side. It is a tadpole multiplied by a

disk three-point function, where one operator insertion belongs to the wrong moduli,

namely, complex structure moduli in A-model and Kähler moduli in B-model. In

figure 1(b), we denote them as a and b̄, the metric in between is gab̄.

Next let us consider the amplitude’s for a Möbius strip

Fmöb =

∫ ∞

0

ds

4s
Tr[P(−1)F Fe−2πsH ], (3.6)

where P is the involution operator.

The holomorphic anomaly equation is then

∂̄ī∂jFmöb =
1

4

∫ ∞

0
ds

〈

P
∫

d2z
{

(G+ + G
−
), φ̄

[1]

ī

}

∫

l
(G− + G

+
)

∫

l′
φ

(1)
j

〉

. (3.7)

Now the degeneracy has two types. One is the pinching of the strip, it gives rise to a

contribution
1

4
∂̄ī∂jTropen(−1)FPlog gtt∗ . (3.8)

– 7 –
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Figure 2. the pinching of a Möbius strip

[G+−G
−

, φ̄ī]

k gk̄k
k

[G−−G
+
, φj ]

(a) crosscap two-point function and disk

two-point function

x x

[G+−G
−

, φ̄ī]

b gb̄a
a

[G−−G
+
, φj ]

(b) tadpole for the Möbius degeneration

Figure 3. the degeneration of a Möbius strip

The only difference between the pinching of a cylinder and of a Möbius strip (figure 2), is

the insertion of the involution operator P acting on the remaining strip amplitude.

The remaining degeneration amounts to remove the boundary from the Möbius strip.

There are two cases.

i) The two operator insertions are on the different sides (figure 3(a)). It gives rise to a

disk two-point function multiplied by a crosscap two-point function

− (C īk̄Djk + CjkDīk̄)g
kk̄. (3.9)

ii) The two operator insertions are on the same side (figure 3(b)). It is a tadpole mul-

tiplied by a crosscap three-point function or a crosscap tadpole multiplied by a disk

three-point function with one wrong modulus.

Finally, for the Klein bottle we have

Fkle =

∫ ∞

0

ds

4s
Tr[P(−1)F Fe−2πsH ]. (3.10)

There are two degenerations. Firstly, we consider the degeneration that splits the Klein

bottle to two crosscaps. Again we have two cases.

i) The two operator insertions are on different sides (figure 4(a)). It gives rise to two

crosscap two-point functions

− CikC j̄k̄g
kk̄ (3.11)

ii) The two operator insertions are on the same side (figure 4(b)). It gives rise to

a crosscap tadpole multiplied by a crosscap three-point function with one wrong

operator insertion.
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[G−−G
+
, φj ]

k gkk̄
k

[G+−G
−

, φ̄ī]

(a) two crosscap two-point functions

xx

[G+−G
−

, φ̄ī]

b gb̄a
a

[G−−G
+
, φj ]

(b) tadpole for the Klein degeneration

Figure 4. one degeneration of a Klein bottle

Secondly, let us consider the complex double of the Klein bottle. Since this is a torus,

the holomorphic anomaly equation is inherited from the torus. The only difference is that

instead of a Yukawa coupling, we obtain an involution operator acting on the chiral/twisted

chiral rings. The doubling torus degeneration gives rise, keeping into account a further

factor 1/2 from left/right projection, to

1

8
Trclosed

[

PC īCj

]

. (3.12)

This term corresponds to
1

8
∂̄ī∂jTrclosedPlog g, (3.13)

where g is the tt∗ metric for the closed string.

3.2 The derivative of the string amplitudes with respect to the wrong moduli

In previous subsection we discussed about the anti-holomorphic dependence of one-loop

open string amplitudes of the right moduli t̄ī. We can also calculate the derivative ∂iF with

respect to the wrong moduli yp’s. Now we will study the different amplitudes separately.

Firstly, we can consider what is the wrong moduli dependence of ∂iFcyl.

∂

∂ti
∂

∂yp
Fcyl =

1

4

∫ ∞

0
ds

〈∫

l
(G− + G

+
)

∫

l′
φ

(1)
i

∫

d2z
{

(G+ + G
−
),
[

G−, ϕp

]

}

〉

, (3.14)

where we use the same notation φ
(1)
i = 1

2 [(G− −G
+
), φi]. We can check that this operator

carries charge 1. We define ϕ
(1)
p = [G−, ϕp], which has charge −1. Then we will perform a

similar analysis as in the previous subsection.

1. For the degeneration as the pinching of the two boundaries, we obtain

ηαβ

〈

Oα(−∞)

∫

l′
φ

(1)
i

∫

d2zϕ(1)
p (z)Oβ(+∞)

〉∣

∣

∣

∣

s→∞

(3.15)

=
1

2
ηαβ

[

〈α|
∫

l′
(G−− G

+
)φi

∫

d2z[G−, ϕp]|β〉 − 〈α|
∫

l′
φi(G

−− G
+

)

∫

d2z[G−, ϕp]|β〉
]∣

∣

∣

∣

s→∞

where α, β are open string ground states and ηαβ is the open string topological

metric. This amplitude is independent of the time (s) position of the line l′, so we
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x

[G−−G
+
, φi]

k gkk̄
k

[G−+G
+
, ϕp]

(a) disk two-point function with wrong

moduli

x

x

x

[G−− G
+
, φi]

a gab̄
b

[G−, ϕp]

(b) tadpole in the cylinder degeneration

Figure 5. one degeneration of a cylinder

can put it in the center of the infinite strip. Thus the first piece of (3.15) is zero,

because the |α〉 state is projected to zero energy state by e−2πsH for s → ∞, and so

annihilated by G− − G
+
. The second piece is also zero, because now the |β〉 state

is annihilated by G− − G
+

for the same reason. Notice that the position of [G−, ϕp]

does not matter, since it anti-commutes with G− − G
+
. Comparing with the right

moduli case (3.4), we obtain

∂i∂pTropen(−1)F log gtt∗ = 0. (3.16)

2. The second degeneration is the removing of a boundary from the cylinder. As before,

there are two cases.

i) The two operators insertions are on different sides (figure 5(a)). Since φ
(1)
i and

ϕ
(1)
p have charges 1 and −1 respectively, in order to get charge 3 or −3 on the

disk we need to project the ground states to (1, 1) and (−1,−1) respectively.

On one disk which has the wrong type of operator insertion ϕ
(1)
p , we can turn

ϕ
(1)
p into [G− + G

+
, ϕp]. We know that G− and G

+
annihilate (a, a) rings, and

G−+G
+

vanishes on the boundary. Therefore, this diagram does not contribute

to the holomorphic anomaly equation.

ii) The two operators insertions are on the same side (figure 5(b)). Again we obtain

a tadpole multiplied by a disk three-point function.

Secondly, we consider the Möbius strip. It contains two cases:

1. The pinching of the boundary (see figure 2)

ηαβ

〈

Oα(−∞)P
∫

l′
φ

(1)
i

∫

d2zϕ(1)
p (z)Oβ(+∞)

〉∣

∣

∣

∣

s→∞
. (3.17)

According to the similar argument as the case of the cylinder (3.15), we get zero.

2. The removing of the boundary from the Möbius strip.

i) One operator insertion is near the boundary, and the other is away from the

boundary (figure 6(a)). If ϕ
(1)
p is near the boundary, the degeneration for that
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x

[G−−G
+

, φi]

k gkk̄
k

[G−+G
+
, ϕp]

(a) crosscap two-point function and disk

two-point function with wrong operator

x

x

x

[G−−G
+
, φi]

a gab̄
b

[G−, ϕp]

(b) tadpole for the Möbius degeneration

Figure 6. one degeneration of a Möbius strip

x

x x

[G−−G
+
, φi]

a gab̄
b

[G−, ϕp]

Figure 7. one degeneration of a Klein bottle

disk will be a (a, a) ring inserted on the disk. From the same argument as for the

cylinder, the disk two-point function is zero. If ϕ
(1)
p is away from the boundary,

namely, it is inserted on the crosscap, then that function is also zero.

ii) The two operators insertions are on the same side (figure 6(b)). We obtain a

tadpole multiplied by crosscap three-point insertions, or a crosscap multiplied

by disk three-point insertions.

Finally, for the Klein bottle, there is only one contribution. That is when the two

insertions are on one side, we get the following diagram (figure 7).

3.3 Tadpole cancellation at one-loop

When we add up the holomorphic anomaly equations for the cylinder, Möbius strip, and

Klein bottle, requiring tadpole cancellation (figure 8), we get

∂̄ī∂j [Fcyl + Fmöb + Fkle] =
1

8
∂̄ī∂jTrclosed [Plog g] − ∆īk̄∆jkg

kk̄,

+
1

4
∂̄ī∂jTropen

[

(−1)F (1 + P)log gtt∗
]

(3.18)

∂i∂p[Fcyl + Fmöb + Fkle] = 0, (3.19)

where ∆ij = Dij + Cij is the sum of the disk and the crosscap two-point function.

Eq. (3.18) reproduces the results stated in [45] and extend them to the presence of

non-trivial open string moduli.
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= 0+

Figure 8. tadpole cancellation for one-loop

4 Unoriented one-loop amplitudes as analytic torsions

In this section we discuss B-model unorientable one-loop amplitudes for generic Calabi-

Yau threefolds and provide a geometrical interpretation of them in terms of holomorphic

torsions of appropriate vector bundles.

Let us consider the Klein bottle amplitude first. As we have already seen, this is given

by the insertion of the involution operator P in the unoriented closed string trace as

Fkle =

∫ ∞

0

ds

4s
TrHc(−1)F FPe−2πsHc (4.1)

which we can compute as follows. We recall from [4] that the closed topological string

Hilbert space is given by Hc = Λ•TX ⊗ Λ•T̄ ∗X =
⊕

p,q ΛpTX ⊗ ΛqT̄ ∗X, where TX

and T̄ ∗X denote the holomorphic tangent bundle and anti-holomorphic cotangent bundle

respectively. At the level of the worldsheet superconformal field theory these spaces are

generated by the zero modes of the ηĪ and θI = θĪgĪI fermions respectively. The parity P
acts as PηĪ = ηĪ and PθI = −θI [10]. It is thus clear that the projection operator acts as

P = (−1)p on the closed string Hilbert space. By inserting in (4.1) the expressions for the

total fermion number F = FL + FR = q − p, a factor of 1
2 which takes care of left/right

identification and the closed string Hamiltonian in terms of the Laplacian H = ∆p,q, we get

Fkle =
1

8

∑

p,q

(−1)qq log
(

det′∆p,q

)

= −1

4

∑

n

logT
(

ΛnT̄ ∗X
)

= −1

4
logT

(

Λ•T̄ ∗X
)

in terms of the analytic Ray-Singer torsion T(V ) of the bundle V = Λ•T̄ ∗X.

The cylinder amplitude is given by

Fcyl =

∫ ∞

0

ds

4s
TrHo(−1)F Fe−2πsHo

where the assignment of the Chan-Paton factors selects Ho = ⊕pΛ
pTX ⊗ E ⊗ E∗ and

the Hamiltonian Ho = ∆p,E⊗E∗ is the corresponding Laplacian. The result is (as already

found in [4])

Fcyl = −1

2
logT (E ⊗ E∗) .

The last term to compute is the Möbius strip amplitude that is

Fmöb =

∫ ∞

0

ds

4s
TrHo(−1)F FPe−2πsHo

The only issue to discuss here is how to compute the trace with the P insertion. As

explained in the appendix the trace over P, for a Sp(N/2) bundle, selects the diag(E ⊗E)
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states with −1 eigenvalue. This is the only non trivial action of the P operator on the

Hilbert space. Indeed, the boundary conditions project away the θĪ ’s and we are left with

the ηI ’s only, on which P acts as the identity. Thus we get

Fmöb = +
1

2
logT (diag(E ⊗ E)).

Notice that the above conclusions agree with the explicit calculations of section 2, once

restricted to the T 2 target space.

4.1 Wrong moduli independence and anomaly cancellation

In this section we show that the decoupling of wrong moduli in the unoriented open topo-

logical string on a Calabi-Yau threefold X is equivalent to the usual D-brane/O-planes

anomaly cancellation. This is performed for the B-model with a system of N spacefilling

D-branes. These are described by a Chan-Paton gauge bundle E over X with structure

group U(N). As it is well known however, in order to implement the orientifold projection,

E ∼ E∗ has to be real therefore reducing the structure group to SO(N) or Sp(N/2) if the

fundamental representation is real or pseudo-real respectively.

Let us now calculate the variation of the unoriented topological string free energy at

one loop under variations of the Kähler moduli. In order to do it, we use the Bismut

formula [6] for the variation of the Ray-Singer torsion under a change of the base and fiber

metrics (g, h) → (g + δg, h + δh)

1

2π

∂

∂t

∣

∣

∣

∣

t=0

logT(V ) =
1

2

∫

X

∂

∂t

∣

∣

∣

∣

t=0

[

Td

(

1

2π

(

iR + tg−1δg
)

)

Ch

(

1

2π

(

iF + th−1δh
)

)]

8
(4.2)

By throwing the Bismut formula against the whole unoriented string free energy
Fu

χ=0 = Fcyl + Fmöb + Fkle and specializing to the variations of the Kähler form only

(that is at a fixed metric on the Chan-Paton holomorphic vector bundle) we get6

∼
∫

X

{

[

(Ch(E))2 − noCh(diag(E ⊗ E))
] ∂

∂t
[Td(TX)]t=0 +

1

2
n2

o

∂

∂t
[Td(TX)Ch(Λ•T ∗)]t=0

}

(4.3)

We will use chk(2E) = 2kchk(E) and chk(E
∗) = (−1)kchk(E), so that for E = E∗,

chk(E) = 0 for k odd. From the definitions7

Td(TX) =
∏

a

γa

1 − e−γa
(4.4)

Ch(Λ•T ∗X) =
∏

a

(1 + e−γa) (4.5)

we rewrite Td(TX) = ec1(T )/2Â(TX) and Td(TX)Ch(Λ•T ∗X) = 23L(TX). Using the

standard expansions

Â = 1 − 2

3
p12

−4 +
2

45

(

−4p2 + 7p2
1

)

2−8 + . . .

L = 1 +
1

3
p12

−2 +
1

45

(

7p2 − p2
1

)

2−4 + . . . (4.6)

6Here and in the following calculations we insert for convenience a formal parameter no which keeps

track of the number of crosscaps. It will be eventually put to 1.
7See the book [20] for the notation.
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in (4.3) we calculate the variations of the cohomology classes above and obtain

δFu
χ=0 =

∫

X

2
∑

i=1

Ci
∂

∂t
pi

∣

∣

∣

∣

∣

t=0

(4.7)

with

C1 = −2−3

3
J4(E) +

2−6 · 7
45

p1J0(E) − 2−1

45
n2

op1 (4.8)

C2 = −2−5

45
J0(E) +

2−2 · 7
45

n2
o (4.9)

where J(E) = (Ch(E))2 − noCh(diag(E ⊗ E)) = J0(E) + J4(E) + . . .. One verifies that,

setting no = 1, the vanishing of the coefficients (4.8) and (4.9) is realized by

ch0(E) = 8

ch2(E) =
1

4
p1 (4.10)

that can be rewritten in the more familiar form
√

Â(TX)Ch(E) − 23
√

L̂(TX) = 0 (4.11)

that is8 the tadpole/anomaly cancellation condition for a system of spacefilling D-branes/O-

planes on a Calabi-Yau threefold [32].

4.2 Quillen formula and holomorphic anomaly

In this subsection we compute the holomorphic anomaly equations of section 3 from the

expressions of the free energies in terms of Ray-Singer analytic torsion.

In order to do this, we apply the Quillen formula for torsions

∂∂̄log[T (V )] = ∂∂̄
∑

p

(−1)p+1

2
log[det g

(p)
V ] − πi

∫

X
[Td(TX)Ch(V )](4,4) (4.12)

where det g
(p)
V is the volume element in the kernel of ∂̄V on ΛpT ∗X⊗V and V is the relevant

vector bundle for each contribution (that is Vcyl = E ⊗ E, etc. see the beginning of the

section) comparing with the first and the last terms in the r.h.s. of formula (3.18).

In the notation of the previous subsection we get, up to the ∂∂̄-volume terms and

setting no = 1

∂∂̄Fu
χ=0 = −πi

2

∫

X

[

Td(TX)J(E) +
1

2
Td(TX)Ch(Λ•T ∗X)

]

(4,4)

(4.13)

+
1

4
∂∂̄

[

∑

p

(−1)p
(

log
[

det g
(p)
E⊗E∗

]

− log
[

det g
(p)
diag(E⊗E)

]

+
1

2
log
[

det g
(p)
Λ•T ∗X

]

)

]

8We denoted L̂ =
Q

i
γi/4

th(γi/4)
.
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Figure 9. one example of an anti-holomorphic involution on Σ

which we can calculate using the expansions (4.6) for the vector bundle E satisfying (4.10).

The first line of (4.13) is

πi

∫

X

(

(ch2(E))2 + Â4 · 12ch2(E) + 7 · 8Â8 + 4L8

)

= 0. (4.14)

and vanishes. This result means that, once tadpoles are canceled, the ∆̄∆-term in (3.18)

vanishes for spacefilling branes/orientifolds. This is in agreement with the result for T 2

target found in section 2.

5 Tadpole cancellation at all loops

5.1 Compactification of the moduli space of Riemann surfaces with bound-

aries

The moduli space of Klein surfaces with boundaries Σ can be usefully described by referring

to the notion of complex double (ΣC,Ω), that is a compact orientable connected Riemann

surface with an anti-holomorphic involution Ω (see figure 9).

The topological type of Σ = ΣC/Ω is classified by the fixed locus ΣR of the involu-

tion [34]. If ΣR = ∅, then Σ is non orientable and without boundaries, while if ΣR is not

empty, then Σ has boundaries. In the latter case, Σ is orientable if ΣC\ΣR is not connected

and non orientable otherwise.

We recall that on a local chart z ∈ C∗, the anti-holomorphic involution acts as Ω±(z) =

±1
z̄ . The involution Ω+ has a non empty fixed set with the topology of a circle, which after

the quotient becomes a boundary component. The involution Ω− doesn’t admit any fixed

point and leads to a crosscap.

The compactification of the moduli space of open Klein surfaces can be studied from

the point of view of the complex double [23]. In this context, the boundary is given as

usual by nodal curves, but with respect to the closed orientable case there are new features

appearing due to the quotient. In particular, nodes belonging to ΣR can be smoothed either

as boundaries or as crosscaps (see figure 10). Thus the moduli spaces of oriented and non

orientable surfaces intersect at these boundary components of complex codimension one.

Actually there are also boundary components of real codimension one which are ob-

tained when the degenerating 1-cycle of the complex double intersects ΣR at points. In this

cases, one obtains the boundary open string degenerations as described in [8]. The resolu-

tion of the real boundary nodes can be performed either as straight strips or as twisted ones.

For example, when we have colliding boundaries, their singularity can be resolved either as

splitting in two boundary components or as splitting in a single boundary and a crosscap
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Figure 10. the complete resolution of a cone singularity in the doubling space

Figure 11. the resolution of a pinching point in the doubling space

(see figure 11). Thus the moduli space of oriented and unoriented surfaces intersect also

along these components. For a more detailed and systematic description, see [28].

More precisely, as discussed also in [7], the moduli space of the quotient surface Σ is

obtained by considering the relative Teichmüller space T (ΣC,Ω), that is the Ω-invariant

locus of T (ΣC), modding the large diffeomorphisms Γ(ΣC,Ω) which commute with the

involution Ω

MΣ = T (ΣC,Ω)/Γ(ΣC,Ω) (5.1)

Let us consider as an example the case of null Euler characteristic. In this case the

complex double is a torus and the annulus, Möbius strip and Klein bottle can be obtained by

quotienting different anti-holomorphic involutions. The conformal families of tori admitting

such involutions are Lagrangian submanifolds in the Teichmüller space of the covering torus

modded by9 the translations τ → τ + 1
{

τ ∈ C|Im(τ) > 0,−1
2 ≤ Re(τ) ≤ 1

2

}

. These are

9The other generator S of Γ(T 2) = PSL(2, Z) is not quotiented because it does not commute with

the involutions.
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Moebius
AnnulusKlein

−1/2 1 / 20

τ

Figure 12. different involutions represent in the moduli space of Torus

vertical straight lines at Re(τ) = 0 for the annulus and the Klein bottle while at Re(τ) = ±1
2

for the Möbius strip10 (see figure 12). Notice that all vertical lines meet at τ = i∞ which

is the intersection point of the different moduli spaces.

At a more general level, one should similarly discuss the moduli space of holomorphic

maps from the worldsheet Σ to the Calabi-Yau space X with involution σ in terms of

equivariant maps (ΣC,Ω) → (X,σ) [23]. The above discussion suggests that the proper

definition of open topological strings can be obtained by summing over all possible inequiv-

alent involutions of ΣC. In particular one should include the contribution of non-orientable

surfaces in order to have a natural definition of the compactification of the space of stable

maps. Actually, once the perturbative expansion of the string amplitudes is set in terms of

the Euler characteristic of the worldsheet, we have to sum over all possible contributions

Fχ =
∑

g,h,c|χ=2−2g−h−cFg,h,c at given genus g ≥ 0, boundary number h ≥ 0 and crosscaps

number 0 ≤ c ≤ 2.

At fixed Euler characteristic, the set of Riemann surfaces admitting an anti-

holomorphic involution is a Lagrangian submanifold LΩ of the Teichmüller space of the

complex double TΣC
as in formula (5.1). Actually it might happen that the same La-

grangian submanifold corresponds to Riemann surfaces admitting inequivalent involutions

which have to be counted independently, as for the example of the annulus and Klein bottle

that we just discussed. The complete amplitude is then given schematically as

Fu
χ =

∑

Ω

∫

TΣC

δ(LΩ)

∫

{φ:Σ→X,φ◦Ω=σ◦φ}
|µG−|3χ

which provides a path integral representation for open/unoriented topological string am-

plitudes.

The above is the counterpart in topological string of the well-known fact that in open

superstring theory unoriented sectors are crucial in order to obtain a consistent (i.e. tadpole

and anomaly free) theory at all loops [5]. Evidence of these requirements has been found

from a computational point of view in [45] where the contribution of unoriented surfaces

has been observed to be necessary to obtain integer BPS counting formulas for A-model

open invariants on some explicit examples. Let us remark that this picture applies to any

compact or non compact Calabi-Yau threefold in principle. It might happen, however, that

in the non compact case for some specific D-brane geometries tadpole cancellation can be

10Notice that the annulus and the Klein bottle are distinguished by different anti-holomorphic involutions.
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ensured by choosing suitable boundary conditions at infinity so that the orientable theory

is consistent by itself as in the case of [23, 42].

5.2 Local tadpole cancellation and holomorphic anomaly

As we have seen in the section 5.1, non-orientable Riemann surfaces should be included in

order to provide a consistent compactification of the moduli space of open strings. It was

found in [12] that a dependence on wrong moduli appears when one considers holomorphic

anomaly equations for orientable Riemann surfaces with boundaries. However, it follows

from the discussion of section 5.1 that whenever we consider a closed string degeneration

in which one of the boundaries shrinks, there is always a corresponding component in the

boundary of the complete moduli space where one crosscap is sent to infinity. Therefore,

we always have this type of degeneration

Aa(〈ωa|B〉 + 〈ωa|C〉), (5.2)

where |B〉 and |C〉 are the boundary and crosscap state respectively, ωa is the operator

inserted in the degenerated point which corresponds to a wrong modulus, Aa is the ampli-

tude of the remaining Riemann surface with a wrong moduli operator insertion. Tadpole

cancellation implies

〈ωa|B〉 + 〈ωa|C〉 = 0. (5.3)

which ensures the cancellation of the anomaly of [12] at all genera. This cancellation has a

simple geometrical interpretation in the A-model: in this case, we can have D6-branes and

O6-planes wrapping 3-cycles of the Calabi-Yau 3-fold X, and the condition (5.3) reads

〈ωa|B〉 + 〈ωa|C〉 = ∂ya

(∫

L
Ω(3,0) +

∫

Xσ

Ω(3,0)

)

= 0, (5.4)

where L is a Lagrangian 3-cycle, Ω(3,0) is the holomorphic 3-form, and Xσ is the fixed point

set of the involution σ : X → X. From (5.4) we can interpret the local cancellation of

the wrong moduli dependence (5.2) as a stability condition for the vacuum against wrong

moduli deformations.

6 Conclusions

In this paper we discussed the issue of tadpole cancellation in the context of unoriented

topological strings, and showed from Super Conformal Field Theory arguments that this

corresponds to the decoupling of wrong moduli at all loops. We also provided a geometrical

interpretation for unoriented B-model amplitudes at one loop in terms of analytic torsions

of vector bundles over the target space.

Let us remark that the topological open A-model free energy is expected to provide

a generating function for open Gromov-Witten invariants. However, these have not been

defined rigorously yet, except for some particular cases [17, 23, 37]. We observe that the

inclusion of unoriented worldsheet geometries turns out to be natural also from a purely

mathematical viewpoint. In fact the compactified moduli spaces of open Riemann and

Klein surfaces have common boundary components (see section 5.1). Thus string theory
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suggests that a proper mathematical definition of open Gromov-Witten invariants should be

obtained by including non-orientable domains for the maps. Therefore one should consider

equivariant Gromov-Witten theory and sum over all possible involutions of the complex

double, up to equivalences.

There are several interesting directions to be further investigated, the most natural

being the study of holomorphic anomaly equations in presence of non-trivial open string

moduli. This can be obtained by extending the holomorphic anomaly equations studied

in [8] in order to include the contribution of non-orientable worldsheets.

Actually, our method is applicable only to cases in which the D-brane/orientifold set

is modeled on the fixed locus of a target space involution. It would be quite interesting

to be able to generalize it to a more general framework, that is to remove the reference to

a given target space involution to perform the orientifold projection, in order to compare

with some of the compact examples studied in [18, 22, 24, 27, 46].

It would be also interesting to link our B-model torsion formulae to the A-model side

where open strings on orientifolds have been understood quite recently [30] to be the dual

of coloured polynomials in the Chern-Simons theory. This should also enter a coloured

extension of the conjecture stated in [14]. Notice also that interpretation of open B-model

one loop amplitudes in terms of analytic torsions could be extended to more general target

space geometries. For example one could investigate whether the notion of twisted torsions

introduced in [31, 41] could provide a definition of B-model one loop amplitudes in the

presence of H-fluxes and more in general with a target of generalized complex type. In such

a context, our approach should lead to a generalization to open strings of the computation

of exact gravitational threshold corrections as in [15, 19].

Acknowledgments

We thank A. Brini, R. Cavalieri, S. Cecotti, H.-L. Chang, J. Evslin, H. Liu, H. Ooguri,

J. Walcher and J.-Y. Welschinger for discussions and exchange of opinions. We thank

S. Natanzon for providing a copy of [34].

A A discussion on Chan-Paton factors

Here we want to discuss in more detail the effect of the Chan-Paton factors to the ampli-

tudes. The notation follows from [39]. An open string state is generalized carrying two

indices at the two ends, each one running on the integers from 1 to N . This additional

state is indicated as |i, j〉 (i, j = 1 . . . N).

The worldsheet parity Ω is defined to act exchanging i with j and rotating them with

a U(N) transformation γ. This rotation is added simply because it is still a symmetry for

the amplitudes. Thus we have

Ω |i, j〉 ≡ γj l |l, k〉 γ−1
k i (A.1)

Asking Ω2 = 1 [39] means requiring

γT = ±γ (A.2)
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Now if we do a base change of the kind |i, j〉 → |i′, j′〉 = U−1
i′ k |k, l〉Ul j′ it transforms γ in

the new primed base so that γ → UT γU . In particular choosing an appropriate |i′, j′〉 base

one can always transform γ so that

γ = 1 or γ =

(

0 i

−i 0

)

(A.3)

respectively in the + or − case of (A.2). We start from the first case. There we can create

the new base |a〉 = Λa
i j |i, j〉 using N2 independent matrices, in our case the N×N real ma-

trices. Worldsheet parity action on the states |a〉 can be seen as an action on the coefficient

Λa
i j . Choosing them either symmetric or antisymmetric one has respectively 1

2(N2 + N)

and 1
2 (N2 − N) of them. Since massless states transform with a minus under worldsheet

parity, in order to create unoriented states one needs to couple these to Chan-Paton states

|a〉 with antisymmetric coefficients. So a double minus gives a plus. Then the gauge field

background, associated with those vertex operators, will be with values in the Lie Algebra

of N×N anti-symmetric real matrices, that is SO(N). From the spacetime effective action,

with gauge field and matter in the adjoint, one has that the coupling of an |a〉 state with a

generic background A = AbΛ
b is of the kind

[

Λa, AbΛ
b
]

. If the background is diagonal with

elements a1 . . . aN and we consider the state |a〉 = |i, j〉 this coupling gives an eigenvalue

+ai −aj: the state |i, j〉 will shift the spacetime momenta as p → p+ai −aj. This effect is

more precisely described changing the string action with the addition of a gauge field back-

ground, which will manifest itself inserting in the path integral a Wilson loop of the kind
∏

k

Tre
i

R

∂Σk
AµẊµ

(A.4)

where the sum is other all the connected components of the boundary. If one creates an

open string state with a vertex operator on a boundary with non trivial homology, the

left i Chan-Paton sweeps in space giving an Aharonov-Bohm phase (A.4) ai. The right

j Chan-Paton moves in the opposite direction on the same boundary and couples with a

minus. For loop states with one Chan-Paton on a boundary and the second on another

the situation is the same, always with one Chan-Paton moving along the orientation of

the boundary and the other in the opposite.11

Now for any (constant) SO(N) background one can always act with a rigid gauge

transformation to put it in the form

⊕

i

ai

(

0 1

−1 0

)

(A.5)

This is still SO(N) so the worldsheet parity still acts simply exchanging the i− j factors. If

in addition one wants to diagonalize it one needs to act with a gauge transformation that

will change the SO(N) form and so will have effects also on the shape of Ω. In fact we can

rewrite |i, j〉 = Ui k′ |k′, l′〉U−1
l′ j so that

|a〉 = Λa
i jUi k′

∣

∣k′, l′
〉

U−1
l′ j = UT

k′ iΛ
a
i j(U

†)Tj l′
∣

∣k′, l′
〉

11Notice that the state sweeping the loop should be consistent with the one created by a boundary vertex

operator plus some string interaction
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This in order to transform Λa so to diagonalize our background. But, acting in this way,

the base |i, j〉 has changed and then also the worldsheet parity (A.1) will be different.

In particular

γ(= I) → UT γU(= UT U)

When (A.5) is reduced to the simple two dimensional case the matrix UT which

diagonalizes A and γ ( in the primed base ) are

UT =

(

i/
√

2 1/
√

2

−i/
√

2 1/
√

2

)

γ =

(

0 1

1 0

)

The computation of the cylinder is straightforward. We have to sum over all states, and

different Chan-Paton indices will modify the Hamiltonian with the usual momentum shift.

Instead if we want to compute the Möbius strip we should look for diagonal states of Ω. It

is easy to see that, in the |i′, j′〉 base, they are |1, 2〉 and |2, 1〉, both with eigenvalue +1.12

Each diagonal term in the trace will contribute both with its eigenvalue and with its own

Hamiltonian. In our case the two states will change the momenta respectively as p → p +

a1−a2 and p → p+a2−a1 where, for our diagonalized SO(2) background, a1 = ia and a2 =

−ia. Generalization to higher N is straightforward. Then we end up with our amplitudes.

The Sp(N/2) situation is even simpler. There the diagonal background is already an

Sp(N/2) algebra matrix if in the form13

diag{a1, · · · , aN/2,−a1, · · · ,−aN/2}

Therefore the worldsheet parity Ω is still the second of (A.3). Diagonal states are now

|i, i + N/2〉 or |i + N/2, i〉 for i = 1 . . . N/2, note both with negative eigenvalues. The

contribution to the Hamiltonian is again p → p ± 2ai.
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