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In protein structure prediction it is essential to score quickly and reliably large sets of models by selecting the
ones that are closest to the native state. We here present a novel statistical potential constructed by Bayesian
analysis measuring a few structural observables on a set of 500 experimental protein structures. Even though
employing much less parameters than current state-of-the-art methods, our potential is capable of
discriminating with an unprecedented reliability the native state in large sets of misfolded models of the
same protein. We also introduce the new idea that thermal fluctuations cannot be neglected for scoring
models that are very similar to each other. In these cases, the best structure can be recognized only by
comparing the probability distributions of our potential over short finite temperature molecular dynamics
simulations starting from the competing models.

K
nowledge based potentials (KBP)1–4 are energy functions derived from databases of known protein con-
formations that empirically aim to capture the most relevant aspects of the physical chemistry of protein
structure and function. They are derived by measuring the probability of an observable in an ensemble of

experimental structures relative to a reference state2,6,16–18. The conversion of the probability into an energy
function is normally done employing Boltzmann’s law3. Theory of conditional probabilities5,6, linear and quad-
ratic programming7 and information theory8 have been invoked to justify the approach. The simplest observ-
able1,2 that one can use to characterize a structure is the presence of a contact between two specific residues. This
procedure has been generalized to include more and more complex observables3,6,7,9–15, making the KBPs more
and more accurate. Because of their excellent balance between accuracy and computational efficiency, KBPs are
widely used in protein design19, in simulation of protein folding20, binding21 and aggregation22, in protein
structure prediction23 and in fold recognition24.

The quality of knowledge-based potentials is normally benchmarked on their capability of recognizing the
folded state and/or the best model in a set of decoys5,25–27. It is now believed that decoy sets composed by models
submitted during the biennal CASP (Critical Assessment in Structure Prediction) competition28 are the most
challenging29. Although it is not trivial to definitely assess their absolute efficiency, many KBP7,15,17,30–34 perform
quite well. Rosetta10,27, a scoring function derived using an elegant Bayesian analysis, the composite scoring
function QMEAN635,36 and the potential RF_CB_SRS_OD introduced by Rykunov and Fiser18 are particularly
successfull, even when tested on CASP targets18,28. However, even the best performing KBP is not capable of
distinguishing the folded state in all the decoy sets, indicating that improvements are still possible. Moreover, the
state-of-the-art KBPs exploit many complex observables, such as the distance between pair of residues or atoms,
which significantly boosts the number of parameters. The weights of the various terms (which may include
correlated observables, such as value of the torsions and the presence of secondary structure elements) are
optimized on the decoy sets in order to obtain the best performance10,35. This may affect the robustness of the
potentials and the possibility to use them for different purposes other than fold recognition.

We here introduce a statistical potential that we call BACH (Bayesian Analysis Conformation Hunt). Its
definition relies on a few binary structural observables, such as the presence of short range contacts between
pair of residues, in the spirit of the original works1,2 on KBPs. As a consequence, the energy function depends on
only 1091 parameters, much less than other state-of-the-art potentials. The parameters are derived from a
relatively small set of experimental folded structures (TOP500) but do not vary significantly when computed
over a larger dataset, revealing a remarkable robustness. Moreover (and possibly more importantly) the para-
meters are not optimized on any decoy set. This potential, despite of its relative simplicity, has a remarkable
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capability in recognizing the folded state in the CASP sets. By assign-
ing to it the lowest energy value, BACH discriminates the native
conformation in 58 % of the sets we considered. In all the other cases
the native structure is among the best. In the worst case, it ranks #35
in a decoy set with 248 structures. This performance is significantly
better than that of other potentials, and remains remarkably un-
affected for different sets of alternative BACH parameters, derived
either from a subset of TOP500 consisting of only 50 randomly
chosen structures, or from TOP500 with a reduced 9 class repres-
entation of aminoacids37. We also found that BACH performs mar-
ginally better than other competing potentials in finding a model as
close as possible to the native state within the pool of the few lowest
energy decoys.

We finally investigated the reason of the poorer performance of
BACH on some decoys sets. By analyzing ensembles generated by
molecular dynamics from a single model we find that the BACH
energy of thermodynamically equivalent structures is affected by
large fluctuations. In fact, fluctuations of similar amplitude are also
present among different models of the same protein obtained by
NMR. Based on these observations, we propose that computing a
scoring function on single structures may not be always adequate for
discriminating the best. A more reliable quality measure is the prob-
ability distribution of a scoring function computed in a finite tem-
perature molecular dynamics run, rather than a single value.
Applying this idea we are able to discriminate the native state also
in cases where evaluating the scoring function on single structures
leads to ambiguous results.

Results
The main goal of this work was to develop an efficient and physically
inspired knowledge based potential which is able to discriminate the
native conformation from a set of different structures with the same
primary sequence. This potential is constructed by analyzing a set of
500 experimentally resolved protein structures (see Methods), mon-
itoring the probability of the event that single residues or residue
pairs are observed in one of the structural classes defined as follows.
Each residue is classified as solvent exposed or not by computing its

solvent accessible surface38. Every pair of residues is classified in one
out of five mutually exclusive states: (i) as forming an a-bridge; (ii) as
forming an anti-parallel b-bridge; (iii) as forming a parallel b-bridge;
(iv) as forming a contact through their side chain atoms; (v) as not
realizing any of the previous four conditions. All classifications are
verified considering the full atomic configuration of the system (see
Methods). Following a Bayesian analysis procedure, the 1090 energy
parameters associated to event occurrences are estimated from their
observed probabilities. An extra parameter, p, fixes the relative
weight of the two contributions, the solvation and the pairwise.
This parameter is determined (p 5 0.6) by monitoring the fluctua-
tions of the two components on the TOP500 dataset as described in
Methods. These 1091 parameters define the BACH statistical poten-
tial. Moreover, we have validated the robustness of our approach by
checking that the performance remains remarkably unaffected for
different sets of alternative BACH parameters (see Methods).

Discriminating the native conformation. We have calculated the
BACH energy over various decoy sets, and checked its ability of
assigning the lowest energy value to the native conformation. In
figure 1 we show the BACH energy versus the distance in GDT39

to the native structure for four decoy sets: A) T0388 from CASP8
( pdb code 3CYN), B) T0488 from CASP8 (pdb code 2VWR), C)
T0575 from CASP 9 (pdb code 3NRG), D) 15561 decoy structures of
protein GB3 generated by molecular dynamics and bias exchange
metadynamics (details of the simulations are presented in Methods).
One can see that in cases A) and C) BACH is able to discriminate the
native structure from the other structures by assigning to it the
lowest energy value. Case B) is the CASP8-9 decoy set in which
BACH performance is the worst. The native conformation is
ranked #35 out of 248 structures (14%). In the case of the
structures generated by molecular dynamics (figure 1-D) the native
conformation is in the best 0.5%, ranked #86 out of 15561 structures.
In all cases, the closer a decoy structure is to the native state (as
quantified by a large GDT), the lower is, on average, its BACH
energy, thus showing a funnel-like behaviour. This is a first qualita-
tive indication that BACH might be a rather powerful tool for protein
structure discrimination. In the following, we will provide quantitative

Figure 1 | The BACH energy as a function of the GDT with respect to the native structure, for three decoy sets of CASP8-9: A) T0388 (native pdb code

3CYN), B) T0488 (pdb code 2VWR), C) T0575 (pdb code 3NRG), and D) for a decoy set of 15561 structures of protein GB3 (pdb code 2OED) generated

by molecular dynamics simulations and bias exchange metadynamics. Red points: native conformation. Blue circles: structures with low GDT (distant

from the folded state) and with a BACH energy lower than the native state.

www.nature.com/scientificreports
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evidence supporting this claim and compare the performance of
BACH with other knowledge based potentials.

Comparison with other knowledge-based potentials. We compare
the performance of BACH with QMEAN635,36, ROSETTA5,10,27 and
RF_CB_SRS_OD18. These potentials have been shown to perform
extremely well in decoy discrimination18,28. The comparison is
performed on a subset of CASP8-9 targets (see Methods), as it has
been previously shown that these decoys are the most challenging29.
We used only sets in which the decoy structures have the same
sequence as the native structure, and that contain the coordinates
of all the heavy atoms (see Table S1). This greatly reduces the number
of targets, but allows comparing structures that are strictly
chemically equivalent, removing a source of systematic errors.

The first measure of performance we use is the normalized rank,
defined as the rank of the native structure divided by the total num-
ber of structures in the decoy set. For example, if the native structure
has the lowest (resp. highest) possible energy among a set of 100
structures, its rank will be 0.01 (resp. 1). In figure 2-A we show the
normalized rank for the decoy sets in CASP 8/9 (see Methods) for
BACH, QMEAN6, RF_CB_SRS_OD and ROSETTA. Strikingly,
BACH has the lowest sorted rank, namely the best performance in
discriminating the native structure from the decoys. BACH ranks the
native within the best 5% for 28 decoy sets, whilst QMEAN6 does it
for 23, RF_CB_SRS_OD for 25, and ROSETTA for 19 out of a total of
33 sets. Moreover, for 19 sets BACH ranks the native structure as the
first, whilst QMEAN6 does this for 14 cases, RF_CB_SRS_OD for 13
and ROSETTA for 3. These results show that BACH is able to dis-
criminate accurately the native structure, assigning to it, in many
cases, the lowest energy value.

Another standard measure to characterize the performance of a
scoring function is the Z-score, defined as the distance, measured in
standard deviations, of the energy of the native state from the mean
energy of the set. The larger the Z-score, the better the potential is in
discriminating the native structure. In figure 2-B, the Z-scores for the
decoy sets in CASP 8/9 are shown for each potential. As one can see,
BACH has, in almost all cases, the largest Z-score values. Also for
the Z-score, QMEAN6 has the second best performance, while
RF_CB_SRS_OD and ROSETTA perform more poorly.

BACH performance in native state discrimination is largely un-
affected by varying the relative weight p of the solvation term with
respect to the pairwise term by a factor of 2 (see Eq. (1)). For both
p 5 0.3 and p 5 1.2 we still rank the native structure first in 17 cases
out of 33. We performed even more stringent tests on the robustness
of the BACH potential. First, we rederived the 1090 BACH energy
parameters on a much smaller subset of the TOP500 dataset, con-
sisting of 50 randomly chosen structures. Secondly, we derived 243
reduced BACH energy parameters, from the TOP500 dataset, imple-
menting a 9 classes residue alphabet37 (see Methods). In both cases
we kept p 5 0.6. As is shown in Fig. 3, the performance in properly
ranking native structures is strikingly comparable, even though
slightly worse, to the one obtained with the BACH energy parameters
constructed with 20 aminoacid classes from the full TOP500 dataset.

In order to quantify the ‘‘funnelness’’ we also considered the
Pearson correlation coefficient between the score and the GDT with
respect to the native structure. This quantity measures how large are
the fluctuations of a set of points with respect to a linear fit of the data.
Its absolute value for the 33 decoy sets and for the four scoring
functions we considered is shown in Fig. 4-A. For this specific quant-
ity, QMEAN6 performs better than BACH, namely it produces on

Figure 2 | A) Normalized rank and B) Z-score sorted for the decoy sets in

CASP 8–9, and calculated for the BACH, QMEAN6, RF_CB_SRS_OD and

ROSETTA scoring functions.

Figure 3 | Normalized rank sorted for the decoy sets in CASP 8–9,

calculated for the BACH, QMEAN6, and for alternative implementations

of the BACH scoring functions: A) BACH parameters derived from 50

randomly chosen structures of TOP500 B) reduced BACH parameters for 9

aminoacid classes. The black curve is the same as in Fig. 2-A.

www.nature.com/scientificreports
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average a more linear dependence of the scoring function on GDT.
However, the highest Pearson coefficient is observed in the decoy sets
in which the native state is poorly discriminated. This is shown in
figure 4-B, where we plot the absolute value of the Pearson correla-
tion coefficient versus the Z-score for BACH and QMEAN6 for the
33 decoy sets of CASP 8/9. Strikingly, in almost all the cases in which
the Pearson coefficient is higher than 0.8 the Z-score is below 1.5,
indicating that a scoring function producing a good linear correla-
tion is normally less capable of distinguishing the native state. This
could indicate that the profile of the energy score as a function of the
GDT to the native is not necessarily best fitted to a linear curve for a
funnel-shaped landscape. This idea is consistent with previous ther-
oretical arguments40.

We also benchmarked the capability of BACH in recognizing
models that are close to the native structure. This is relevant, as
KBPs are normally used in computational procedures aimed at
iteratively finding conformations that are closer and closer to an
unknown folded state. As we will show quantitatively later, estimates
of a scoring function on a single structure are unavoidably affected by
fluctuations, that hinder their statistical significance. If in an algo-
rithm one always selects only the lowest energy structure, there
would be high chances of missing a relevant ‘‘branch’’ of native-like
conformations. In order to quantify this effect, we consider the N
lowest energy structures, and we select among them the one with the
largest GDT. We compute the difference DNGDT between this value
and the GDT of the best model in all the decoy set, namely the decoy
with the largest GDT. If the best model is one of the N lowest energy
structures DNGDT 5 0. In figure 4-C, we report DNGDT as a func-
tion of N averaged over the 33 CASP8-9 decoy sets. For N51, only
the lowest energy structure is selected, providing a quality measure
similar to the one used in ref.18. For BACH and QMEAN6 the average
D1GDT is 16 and 11 GDT units, respectively. This indicates that the
top scoring QMEAN6 model is on average 5 GDT units closer to the
best model in the set. For increasing values of N, the average DNGDT
decreases rapidly down to ,5 for all scoring functions, indicating a
significant gain in information achieved by considering 5–10 alterna-
tive structures. In this range of N, the performance of BACH
becomes better than that of the other potentials. Adding more and
more structures reduces only marginally the average DNGDT, but
with the drawback that in a hypothetical algorithm one would have to
consider a very large number of branches which would increase the
computational cost.

The performance of BACH on traditional decoy sets. We also
benchmarked the performance of BACH over decoy sets that
are considered the standard ones to test the scoring functions:
semfold26, 4state25, fisa5 and RosettAll27. Since these decoy sets
include a large number of targets satisfying the aforementioned
condition of chemical equivalence, we use these sets to assess how
BACH’s performance is affected by the presence of bound
partners (e.g. ligands or other protein chains) in the native
conformation. As supplementary information we present the
normalized rank of the folded state, and compare BACH’s
performance with the other potentials. In figure S1-B we have
selected, from these sets, only the decoys that have a monomeric
native structure with no ligands. The performance of BACH
remains marginally better than the other KBPs also in this case.
In particular, the normalized rank of BACH is smaller than 0.2 in
all the cases. For 12 sets BACH ranks the native structure as first,
similarly to QMEAN6, whilst RF_CB_SRS_OD does it for 2 cases
and ROSETTA for 8 out of a total of 19 sets. In figure S1-A, we
plot the normalized ranking over all the sets, also those including
target structures that are multimeric or have ligands. Even if
these decoy sets include cases in which the native state is not
monomeric, BACH still performs at least as good as other
competitors. We also see that the other scoring functions, in

particular ROSETTA, perform much better with these decoys
than with the CASP decoy sets, consistently with what is found
in Ref.29.

The role of fluctuations. The results presented in Fig. 1 and 2
demonstrate the excellent capability of BACH in distinguishing the
folded state. However, in the decoy sets we considered there are still
several cases in which the native structure does not have the lowest
BACH energy. Two examples are shown in Fig. 1-B and 1-D. For
instance, for the decoys of GB3 generated by molecular dynamics and
bias exchange metadynamics there are several structures that have
high GDT and a BACH energy lower than the native structure. Even
some structures of low GDT have a remarkably low BACH energy
(blue circle in Fig. 1-D). These decoys have a different tertiary
arrangement with respect to the native structure. One wonders
whether these structures are a signal of a flaw in the BACH
potential, that it is not able to recognize them as misfolded states.
In order to investigate this point, we selected two structures enclosed
in the blue circle in Figure 1-D and we performed for each of them a
finite temperature molecular dynamics (MD) simulation in explicit
solvent (see Methods). We compare the results with an ensemble of
structures obtained with a similar run performed starting from the
native state. As found in Fig. 5 all the MD simulations show high

Figure 4 | A) Absolute value of the Pearson correlation coefficient sorted

for the decoy sets in CASP8-9, for the BACH, QMEAN6, RF_CB_SRS_OD

and ROSETTA scoring functions. B) Absolute value of the Pearson

correlation coefficient versus the Z-score for BACH and QMEAN6 for the

decoys in CASP 8-9. C) Difference in GDT between the structure in each set

which is closest to the folded state and the low energy representative

structure (the decoy that is ranked within the first N, according to each

potential, and that has the highest GDT).

www.nature.com/scientificreports
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thermal fluctuations in BACH energy, of the order of 7 or more.
Remarkably, the structures generated from the folded state show a
BACH energy distribution (Fig. 5-A) clearly different from those
obtained for the other ensembles. This demonstrates that the low
BACH energy structures enclosed by the blue circle in Figure 1-D do
not correspond to meaningful low energy conformations.

To confirm and exploit further this idea we considered the
CASP8-9 decoy set in which BACH has the worst performance
(T0488, where the native was ranked #35 out of 248 structures, see
Fig. 1-B). Following a procedure similar to the one described above,
we generated by MD simulations three sets of structures (see
Methods for details) starting from the native state and from
two decoy structures with lower energy than the native state
(T0488TS256_1 and T0488TS299_3, ranked according to BACH
#1 and #4, respectively). These structures have a high GDT score
(GDT . 80.0) and therefore a high topological similarity with the
folded conformation. In Fig 5-B we compare the BACH energies
distributions for the three sets of structures. The ability of BACH

in distinguishing the native state from both decoys is confirmed;
the discrimination is less sharp than in the case of GB3, because
of the higher similarity of decoys to the native state. In conclusion,
the failure of BACH in pinpointing the native state in the original
decoy set can be removed by looking at the appropriate energy dis-
tribution over a finite temperature run.

The fluctuations we observe in Fig. 5-A/B are not artifacts of the
simulation, but are also present in experimental data. This is shown
in Fig 5-C, where we compare the probability distribution of BACH
energy observed for the 20 native NMR models of the T0472 CASP8
decoy set (pdb code 2K49) with that computed over a finite temper-
ature run starting from one of such models. These results confirm
what we discussed previously, namely that the energy value of a
single structure is not always significant, as it is affected by thermal
fluctuations. A more reliable quality measure of a model is the prob-
ability distribution of the BACH energy computed on an ensemble of
structures that can be obtained by means of a finite temperature
molecular dynamics run.

Discussion
We have developed a knowledge based potential, named BACH, that
employs in its definition only a few binary structural observables,
monitoring the presence of contacts, like originally proposed more
than thirty years ago1,2. A novel ingredient in BACH is splitting
residue-residue contacts, within the same Bayesian framework, in
those present within a-helices or b-sheets or instead in those that
are not involved in secondary structure motifs. The former are mon-
itored by verifying the presence of hydrogen bonds between back-
bone atoms, the latter by assessing the proximity between side chain
heavy atoms. This last choice of defining non-secondary structure
contacts by ignoring backbone atoms has been already recognized to
improve crucially the performance of a scoring function41. A second
innovative aspect of BACH is the evaluation, again within a Bayesian
framework, of the propensities of single residues to be buried within
the interior of the protein globule or to stay exposed on its surface.

BACH’s performance has been benchmarked against other state-
of-the-art potentials on the most challenging decoy sets. We used
indicators that assess either how the native structure is recognized or
how different models are sorted based on their similarity to the native
state. BACH performs better than other scoring functions in discrim-
inating the native structure and in assigning to it the largest energy
gap with respect to the mean energy of the decoy set. This is a striking
result since the parameters employed by BACH are fewer in com-
parison with other KBPs, and no optimization on decoy sets was used
to boost the performance. The latter is moreover maintained if the
number of parameters is further reduced by employng a reduced 9
classes aminoacid alphabet37 or if the parameters are derived from
just 50 structures, demonstrating the remarkable robustness of our
potential.

We then benchmarked the capability of BACH in producing
‘‘funnel-shaped’’ distributions. QMEAN6 performs better than
BACH in generating a linear correlation of the score with the
GDT from the native state, as quantified by the Pearson coefficient.
However, the highest Pearson coefficient is observed in the decoy
sets in which the native state is poorly discriminated.

We have also shown that the 5-10 lowest energy decoys selected by
BACH are likely to include better models of the native structure than
other competing potentials. The procedure of searching for the best
native-like model in a pool of low energy conformations is justified
by the observation that the rankings may be affected by the presence
of thermal fluctuations. Therefore, considering only the lowest
energy structure might lead to inaccurate modeling. In fact, we have
shown that thermal fluctuations are present with the same mag-
nitude both among the different NMR models of the same protein
and within a structural ensemble obtained by finite temperature
molecular dynamics simulations. As a consequence, we propose that

Figure 5 | A) BACH energy distributions for sets of structures generated

with molecular dynamics simulations for GB3 protein (see Methods): the

folded state in explicit solvent (black line), two structures with initial low

BACH energy (green and blue lines, respectively). Points: initial

conformations. B) 2VWR protein (set T0488 of CASP8) 1ns of MD

simulations for: the native conformation (black line), decoy structure

T0488TS256_1 (blue line) and decoy structure T0488TS299_3 (green line).

Points: initial conformations. C) BACH energy distribution for the 20

NMR models of protein 2K49 (set T0472 of CASP8), and for the structures

obtained by 1ns of MD simulations for model #1.

www.nature.com/scientificreports
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an appropriate strategy to rank two structures requires to run a short
MD simulation starting from each structure, in order to produce
ensembles of thermodynamically equivalent conformations. We
have shown that the probability distribution of the BACH energy
estimated on the two ensembles allows discriminating correctly the
two models. This procedure can be applied successfully not only for
models that are very dissimilar from the native state but also for those
which are close to it. This suggests that BACH might be a valuable
tool for the refinement of protein structures roughly determined by
experimental or numerical methods.

Methods
BACH parameters. The BACH energy function is based on two terms

EBach~pEPAIRzESOLV: ð1Þ

Both are statistical potentials derived from a dataset of native PDB structures. They
take respectively into account effective pairwise residue-residue interactions and
single residue solvation properties. p is a parameter that fixes the relative units of the
two energy terms.

The pairwise statistical potential EPAIR is based on classifying all residue pairs
within a protein structure in five different structural classes, labeled by x: two residues
may form a a-helical bridge (x 5 1), or an anti-parallel b-bridge (x 5 2), or a parallel
b-bridge (x 5 3), or may be in contact with each other through side chain atoms (x 5

4), or may not realize any of the previous four conditions (x 5 5). Pairs of consecutive
residues along the protein chain are included in the above classification. a- and b-
bridges are detected by using a modified version of the DSSP algorithm42 that employs
a more stringent energy threshold (-1 Kcal/mol in place of the original 20.5 Kcal/
mol, as already done in43) to assess hydrogen bond formation. A residue pair is
assigned to the side chain - side chain contact class (x 5 4) if it is not assigned to any of
the previous classes (x , 4) and if any inter-residue pair of side chain heavy atoms is
found at a distance lower than 4.5Å. If none of the above conditions are verified, the
residue pair is assigned to the no-interaction class (x 5 5). The pairwise statistical
potential EPAIR requires five distinct symmetric matrices x

ab , where a and b vary
among the 20 aminoacid types, for overall 1050 parameters:

EPAIR~
X
ivj

xij
aiaj ð2Þ

ai is the aminoacid type of residue at position i, and xij is the structural class to which
residue pair i - j is assigned.

The five interaction matrices x
ab are determined from a dataset of native protein

structures employing the ensemble of all residue pairs from the dataset as the reference
state6:

x
ab~{ln

nx
abP
x

nx
abP

ab
nx

abP
x

P
ab

nx
ab

2
664

3
775 ð3Þ

where nx
ab is the total number of residue pairs of type a and b found in the structural class x

within the dataset. In order to treat coherently as a unique physical system the full sequence
which determines a given protein structure, residues that are not seen in the PDB structure,
even if they are part of the sequence expressed by the crystallographer, are considered as
disordered ones and included in the countings, so that any pair involving a disordered
residue is classified in the no-interaction class (x 5 5).

The solvation statistical potential ESOLV is based on classifying all residues in two
different environmental classes, either buried (b) or solvent exposed (s). The envir-
onmental class is defined based on the evaluation of the solvent accessible surface area
(SASA) performed by the SURF tool of VMD graphic software44,45. The SASA is
computed by SURF for all heavy atoms of the protein chain by rolling a probe sphere
(representing a water molecule) on the surface of the set of spheres centered at heavy
atom coordinates. We input to SURF the same value (1.8Å) for the radii of all atom
types and the radius of the probe sphere. The latter is higher than what is employed in
VMD (1.4Å) because we want to avoid considering internal cavities as areas exposed
to the solvent. The output of SURF is the number of triangle vertices associated to
each atom of the protein. These vertices are used in the triangulated representation of
the protein surface employed by VMD, and the area associated with each vertex is
,0.15Å2. By summing over all atoms of a given residue, we obtain the number of
vertices t associated to that residue, which is proportional to its SASA. The distri-
bution of the values of t observed in the dataset for alanine, valine and arginine
residues is shown as supplementary information in Fig. S2; the observed behaviour is
typical of all residue types. The presence of a sharp peak at t 5 0, well separated by a
broader peak at larger values of t, allows a clearcut definition of residue environment
as either buried (t # t*) or solvent exposed (t . t*), using the same threshold t* 5 10
for all residues. The single residue statistical potential ESOL requires two separate
parameter sets le

a , for overall 40 parameters:

ESOLV~
X

i

lei
ai

ð4Þ

ei 5 b or s is the environmental class of residue at position i. The two parameter sets le
a

are determined employing the ensemble of all residues from the dataset as the
reference state6:

le
a~{ ln

me
aP

e
me

aP
a

me
aP

e

P
a

me
a

2
664

3
775 ð5Þ

where me
a is the total number of residues of type a found in the environment class e

within the dataset. Residues that are not seen in the PDB structure, even if they are
part of the sequence expressed by the crystallographer, are included in the counting as
solvent exposed (e 5 s).

An alternative implementation of BACH was derived using a reduced aminoacid
alphabet consisting of 9 classes37: small hydrophobic (ALA,VAL,ILE,LEU,MET),
large hydrophobic (TYR,TRP,PHE), small polar (SER,THR), large polar
(ASN,GLN,HIS), positively charged (ARG,LYS), negatively charged (ASP,GLU), and
finally GLY, PRO, CYS separately on their own. In this way we obtain just 225 energy
parameters for the pairwise term and 18 energy parameters for the solvation term.

The parameter p entering in Eq. 1 and fixing the relative weight of the two con-
tributions EPAIR and ESOLV is chosen in such a way that the energy per residue of the
two terms has approximately the same standard deviation over the dataset. This
criterion gives p 5 0.6. Therefore, at variance with other composite methods10,35 no
optimization criteria is introduced in BACH to fix the relative weigths of different
physical terms. We have also checked that the value of p does not affect significantly
the performance of BACH in native state discrimination.

PDB dataset. The BACH parameters have been derived using the TOP500 database46.
This set includes 500 non redundant protein domain conformations, extracted from
both monomeric and multimeric PDB protein structures, between 30–840 amino
acids long, which have been solved with resolution better than 1.8 _A by X-ray
crystallography (no NMR). The structures in the set include disordered and not
resolved regions. We count the contributions of these amino acids as no-interaction
ones. We have checked that the choice of the fold library does not significantly affect
parameters. In figures S3 and S4, we present the correlation between the BACH
parameters calculated using either TOP500 or an ensemble of 8000 structures found
in the CATH database47. Correlation is excellent especially for parameters
corresponding to favourable interactions, that are by definition highly represented in
the datasets. We have checked that the BACH energy calculated for a decoy set using
the parameters obtained with the two different databases, have an excellent
correlation as well (see figure S5). We have also derived a different alternative set of
the 1090 energy parameters from a subset of TOP500 consisting of only 50 randomly
chosen structures (these structures are listed in Table S2).

Scoring function evaluation. The scoring functions used in this work were evaluated
on native and decoy structures as follows: online submission at the server http://
swissmodel.expasy.org/qmean/cgi/index.cgi for the composite function QMEAN6; a
linux executable downloaded from http://www.fiserlab.org/potentials was used for
the RF_CB_SRS_OD potential and the 3.2 ROSETTA scoring function was
downloaded from http://boinc.bakerlab.org/.

CASP decoy sets. The performance of BACH has been assessed on selected decoy sets
from CASP 8-9. A decoy set was used if the sequence of the experimentally solved
structure is the same as the sequence given initially in the CASP competition, so that
the majority of decoy structures have the same sequence as the native structure. The
list of the decoy sets used is presented in Table S1 (33 decoys sets). The structures in
each decoy set were used if they had the same length and sequence as the native
structure, and had all the side-chain and backbone atoms. If for any reason a structure
could not be analyzed by one of the scoring functions with whom we compare the
performance of BACH, the structure was taken out of the set. The native
conformations given by NMR were cut to have the same number of residues as the
decoys of the set, and since their folded structure is given in the form of 20 different
models, we defined as native, the pdb model that had the lowest energy (for each
potential). So, for two scoring functions the native structure for a decoy set could be a
different model out of the 20 presented in the NMR structures.

Decoy set generated by Molecular Dynamics. We also generated decoy sets, using
molecular dynamics simulations, either in explicit solvent (MD) or in combination
with bias-exchange metadynamics48 (BE) to produce realistic structures, for three
proteins: GB3 (pdb code 2OED), protein T0488 from CASP8 (pdb code 2VWR) and
protein T0472 from CASP8 (pdbcode 2K49). For protein GB3 we ran three different
simulations: i) MD starting from the native state at T5330 K for 10 ns, ii) MD
starting from two selected structures (blue circle in Fig. 1-D) at 330 K for 1ns, iii) BE
of 20 ns at 400 K. For protein 2VWR we ran MD of 1ns at T5300 K starting from i)
the native conformation, and two decoys: ii) T0488TS256_1 and iii) T0488TS299_3.
For protein 2K49 we ran MD of 1ns at T5300K starting from NMR model #1. MD
simulations were performed using the GROMACS 4.5.3 package49, employing the
AMBER99-ILDN50 force field, using TIP3P water model51 for the explicit solvent. BE
together with the OBC52 implicit solvent model and T 5 400K were used to enhance
the conformational searching53. See Supplementary Text for details on MD and BE
simulations.
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Similarity measure between structures: GDT. As a similarity measure between
structures, we use the Global Distance Test (GDT)39, defined as:

GDT~ 1=4ð Þ Fƒ1zFƒ2zFƒ4zFƒ8ð Þ ð6Þ

where F#X denotes the percentage of residues under a distance cutoff of XÅ after the
two molecules have been optimally superimposed. To detect the optimal
superposition, we used the MaxSub algorithm54, in the implementation
given within the MaxCluster tool (www.sbg.bio.ic.ac.uk/maxcluster/
index.html#MaxSub).
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