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We apply the nonlinear steepest descent method to a class of 3 × 3 Riemann-
Hilbert problems introduced in connection with the Cauchy two-matrix random
model. The general case of two equilibrium measures supported on an arbitrary
number of intervals is considered. In this case, we solve the Riemann-Hilbert prob-
lem for the outer parametrix in terms of sections of a spinorial line bundle on
a three-sheeted Riemann surface of arbitrary genus and establish strong asymp-
totic results for the Cauchy biorthogonal polynomials. C⃝ 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4802455]

I. INTRODUCTION

In this paper, we study asymptotic behavior of a class of 3 × 3 Riemann-Hilbert problems
(RHPs) motivated by the recently introduced two-matrix random model.7 The model consists of two
random Hermitian positive-definite matrices M1, M2 of size n × n with the probability measure

dµ(M1, M2) = 1
Zn

dM1dM2

det(M1 + M2)n
e−NTr(U (M1))e−NTr(V (M2)), (1.1)

where U, V are scalar functions defined on R+. The model was termed the Cauchy matrix model
because of the shape of the coupling term. Similarly, the case of the Hermitian one-matrix models
for which the spectral statistics is expressible in terms of appropriate biorthogonal polynomials,20

this two-matrix model is solvable with the help of a new family of biorthogonal polynomials named
the Cauchy biorthogonal polynomials (CBOPs).6

The Cauchy biorthogonal polynomials are two sequences of monic polynomials
(p j (x))∞j=0, (q j (y))∞j=0 with deg pj = deg qj = j that satisfy

∫∫

R+×R+

p j (x)qk(y)
e−N (U (x)+V (y))

x + y
d xd y = hkδ jk , ∀ j, k ≥ 0 , hk > 0. (1.2)

These polynomials were studied in Ref. 9 in relation with the spectral theory of the cubic string.
In yet another application, in analogy to the moment problem approach to the Camassa-Holm

peakons,3, 4 the predecessors of the Cauchy biorthogonal polynomials were used to study the peakon
solutions of the Degasperis-Procesi wave equation.19,18 More generally, the Cauchy biorthogonal
polynomials are expected to play a role in a variety of inverse problems for the third order differential
operators.21

The main features of CBOPs can summarized as follows:

1. they solve a four-term recurrence relation;
2. their zeroes are positive and simple;
3. their zeroes have the interlacing property;
4. they satisfy Christoffel-Darboux identities;
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5. they can be characterized by a pair of 3 × 3 Riemann-Hilbert problems;
6. the solution to the corresponding Riemann-Hilbert problem yields all kernels for the correlation

functions of the Cauchy two-matrix model.

Items 1–5 above have been addressed in Ref. 6 while item 6 was explained in Ref. 7. In the
present paper, we apply the Deift-Zhou steepest descent method to the asymptotic analysis of the
Riemann-Hilbert problem with the view towards applications to the biorthogonal polynomials and
the spectral statistics of the Cauchy two-matrix model.

The paper is organized as follows. In Sec. II, we set up a Riemann-Hilbert problem that
characterizes the biorthogonal polynomials and that is essential in evaluating the correlation kernels
for the associated matrix model.

In Sec. III, we recall the results of Refs. 2 and 7 where a relevant potential theory problem was
set up and solved. The resulting equilibrium measures are the key ingredient in the construction of
the g-functions that pave the way for the Deift-Zhou steepest descent method.

The central section of the paper is Sec. IV, which deals with the nonlinear steepest descent
analysis. We consider the general case in which the two equilibrium measures are supported on
an arbitrary number of intervals. This prompts the use of a higher genus three-sheeted Riemann
surface. Note that a Riemann surface of a similar structure was recently used in Ref. 22 to study
Hermite-Pade approximations of pairs of functions that form generalized Nikishin systems.

We solve the Riemann-Hilbert problem for the outer parametrix in terms of sections of a spinorial
line bundle in the spirit of Refs. 8 and 5. Much of the effort goes towards showing that the model
problem for the outer parametrix always admits a solution (Proposition 4.4, Theorem 4.1).

It is perhaps worth mentioning that in Ref. 13 (Sec. 8), the authors approached a similar
problem of solving a 4 × 4 RHP for multiple orthogonal polynomials that arise in the analysis
of the two-matrix models with interaction e−NTr(M1 M2) instead of the Cauchy interaction in (1.1).
Though similar, their approach differs in that they use the theorem on existence of meromorphic
differentials on a Riemann surface without providing explicit formulas in terms of theta functions,
contrary to the present work. Also we work with arbitrary two measures without being restricted to
the choice of a quartic potential. Section V uses the asymptotic analysis in Secs. II–IV to discuss
universality results for the spectral statistics of the two-matrix model. We find that individual spectral
statistics exhibits the same universality phenomena as in the one-matrix model. We expect that the
Cauchy two-matrix model might produce new universality classes in the case when supports of both
equilibrium contain the origin. This case, however, is not considered in the present paper due to
assumptions on the potentials (assumption 1). Relaxing this assumption requires a generalization of
the potential theory problem studied in Ref. 2.

The Appendixes contain a discussion of a specific genus zero example (Appendix A) as well as
notations and essential information regarding theta functions (Appendix B).

II. RIEMANN-HILBERT PROBLEM FOR CAUCHY BIORTHOGONAL POLYNOMIALS

In the case of ordinary orthogonal polynomials, a well-known characterization in terms of
a Riemann-Hilbert problem was obtained in Ref. 15. Here, we present a similar characterization
following.6

For symmetry reasons, we define

V1(z) := U (z) , V2(z) := V (−z). (2.1)

Following Ref. 2, we consider potentials Vj that are subject to the following.

Assumption 1. The potentials Vj (z) satisfy:

• Vj (z) is a real analytic function on (−) j+1R+, j = 1, 2,
• the growth-conditions

Vj (x) = −a j ln |x | + O(1) as x → 0, a j > 1, lim
x→(−1) j+1∞

Vj (x)
ln |x |

= +∞, (2.2)

• the derivatives V ′
j (z) are meromorphic on a strip containing the whole real axis.
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Example 2.1. The typical examples are potentials of the form

Vj (x) = −a j ln |x | + Pj (x) , a j > 1, (2.3)

where Pj are real polynomials such that limx→(−) j+1∞ Pj (x) = +∞.

The relevant Riemann-Hilbert problem that characterizes CBOPs is the following.

Problem 2.1. Find a matrix "(z) such that

1. "(z) is analytic in C \ R,
2. "(z) satisfies the jump conditions

"(z)+ = "(z)−

⎡

⎢⎣
1 e−N V1(z) 0
0 1 0

0 0 1

⎤

⎥⎦ , z ∈ R+ (2.4)

"(z)+ = "(z)−

⎡

⎢⎣

1 0 0

0 1 e−N V2(z)

0 0 1

⎤

⎥⎦ , z ∈ R−, (2.5)

where the negative axis is oriented towards − ∞,
3. at z = ∞

"(z) =
(

1 + O
(

1
z

))
⎡

⎢⎣

zn 0 0

0 1 0

0 0 1
zn

⎤

⎥⎦ ; (2.6)

4. near z = 0

"(z) =
[
O(1), O(ln |z|), O(ln2 |z|)

]
. (2.7)

Remark 2.1. The growth condition at z = 0 in Eqs. (2.7) can be replaced by O(1) if the densities
e−N Vj vanish at x = 0. In fact, after assumption 1 is put in place, we have e−N Vj (x) = O

(
|x |a j N

)
and

this (using Plemelj formulas for the local model of " at z = 0) implies "(0) = O(1).

In Sec. 6.2 of Ref. 6, it was shown that (adapting the formulas to the present notation by
observing that the matrix that we denote here by " corresponds to "̂ in Ref. 6),

"(z) = (2.8)
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn(z)
1

2iπ

∫

R+

pn(x)e−N V1(x)dx
x − z

1
(2iπ )2

∫

R+

∫

R−

pn(x)e−N V1(x)−N V2(y)dxdy
(y − z)(x − y)

2iπ p̂n−1(z) 1+
∫

R+

p̂n−1(x)e−N V1(x)dx
x − z

∫

R+

∫

R−

p̂n−1(x)e−N V1(x)−N V2(y)dxdy
2iπ (y − z)(x − y)

+ Wβ∗ (z)
2iπ

(−)n(2iπ )2

hn−1
pn−1(z)

(−)n2iπ
hn−1

∫

R+

pn−1(x)e−V1(x)dx
x − z

(−)n

hn−1

∫

R+

∫

R−

pn−1(x)e−N V1(x)−N V2(y)dxdy
(y − z)(x − y)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where p̂n are certain polynomials of exact degree n described in Ref. 6, Wβ∗ (z) =
∫
R−

e−N V2(y)

y−z dy
and all integrals are oriented integrals. We will study the asymptotic behavior of the solution of
Problem 2.1 in various regions of the complex plane for

N ∋ N → ∞ , n := N + r, r ∈ Z, (2.9)

where the integer r is bounded.
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FIG. 1. The supports of the equilibrium measures ρ1, ρ2.

III. THE g FUNCTIONS

An asymptotic treatment for the RHPs for " along the lines of the nonlinear steepest descent
method10 requires that we normalize the problem with the use of an auxiliary matrix constructed
from equilibrium measures that minimize a functional described below (see Refs. 2 and 7).

Consider the space of pairs of probability measures µ1, µ2 supported on R+ ,R−, respectively.
On this space we define the functional

S[dµ1, dµ2] :=
∫

R+

V1(x)dµ1(x) +
∫

R+

∫

R+

dµ1(x)dµ1(x ′) ln
1

|x − x ′|
+

+
∫

R−

V2(y)dµ2(y) +
∫

R−

∫

R−

dµ2(y)dµ2(y′) ln
1

|y − y′|
+

∫

R+

∫

R−

dµ1(x)dµ2(y) ln |x − y|. (3.1)

The minimization of such a functional was studied in a more general setting in Ref. 2, it is related
to a similar problem for a vector of measures of Nikishin type.24

Theorem 3.1 (see Theorem 3.2 in Ref. 2).
Under the assumptions 1 there exists a unique pair of densities ρ1, ρ2 that minimizes the

functional (3.1). Moreover, (see Fig. 1) the supports consist of a finite union of compact intervals
and the densities ρ j are smooth on the respective supports

supp(ρ1) =
L1⊔

ℓ=1

Aℓ ⊂ R+ , supp(ρ2) =
L2⊔

ℓ=1

Bℓ ⊂ R− . (3.2)

Remark 3.1. It has been recently proven by one of the authors and A. Kuijlaars that the growth
condition near the origin in (2.2) can be simply disposed of. The properties in Theorem 3.1 are
still valid except that the support of equilibrium measures may contain x = 0, in which case
ρ j (x) = O(x− 2

3 ). This behavior is crucial in deriving a new type of universality near x = 0 and will
be part of a forthcoming publication.

Theorem 3.2 (Theorem 5.1 in Ref. 7, see also Ref. 2).
The shifted resolvents

Y (1) := −W1 + 2V ′
1 + V ′

2

3
, Y (2) := W2 − V ′

1 + 2V ′
2

3
, where W j (z) :=

∫
ρ j (x)
x − z

dx,

Y (1) + Y (2) + Y (0) = 0 (3.3)

are the three branches of the same cubic equation in the form

E(y, z) := y3 − R(z)y − D(z) = 0, (3.4)

where R(z), D(z) are certain functions analytic in the common domain of V ′
1 and V ′

2.

As a corollary of Theorem 3.2 we deduce the following.

Corollary 3.1. For generic real analytic potentials the densities of the two equilibrium measures
ρ1, ρ2 vanish like a square root at the endpoints of each interval Aℓ,Bℓ in the support of the
spectrum.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.205.67.126 On: Thu, 06 Feb 2014 17:50:27



043517-5 Bertola, Gekhtman, and Szmigielski J. Math. Phys. 54, 043517 (2013)

FIG. 2. The jumps of the g(1) and g(2) functions in the gaps.

Proof. It follows immediately from Cardano formulas, since the densities are related by
Theorem 3.2 to the jump-discontinuity of the branches of the pseudo-algebraic curve (3.4) which
have in general square-root type singularities corresponding to simple zeroes of the discriminant
' = 4R3(z) − 27D2(z). Q.E.D.

Definition 3.1 (g-functions). The g-functions are defined as

g(1)(z) :=
∫

R+

ρ1(x) ln(z − x)dx ; g(2)(z) :=
∫

R−

ρ2(x) ln(z − x)dx ; g(0)(z) + g(1)(z) + g(2)(z) ≡ 0,

(3.5)
where g(1) is defined as an analytic function in the domain D1 := C \ [a0,∞) and g(2) is analytic
in D2 := C \ (−∞, b0], while g(0) is analytic in D0 := D1 ∩ D2 = C \ ((−∞, b0] ∪ [a0,∞)) (see
Fig. 2).

Remark 3.2. We remind the reader that the integral defining g(2) is an oriented integral. The
orientation of the negative half-axis that we use may seem unusual. However, it is consistent with the
one used in studies of multiple orthogonal polynomials on a collection of radial rays in the complex
plane.

Definition 3.2. The right and left cumulative filling fractions are defined as

ϵℓ :=
∫ a2ℓ−1

a0

ρ1(w)dw, ℓ = 1, . . . , (3.6)

σℓ :=
∫ b2ℓ−1

b0

ρ2(w)dw, ℓ = 1, . . . . (3.7)

Note that ϵL1 = 1, while σL2 = −1.
The variational inequalities that characterize the equilibrium measures ρ j,23 together with the

Definition 3.1 translate into the following theorem.

Theorem 3.3 (Analyticity properties for the g functions). The following properties hold:

1. g(1) is analytic in D1 and has the asymptotic behavior g(1) = ln z + O(z−1), z → ∞;
2. g(2) is analytic in D2 and has the asymptotic behavior g(2) = − ln z + O(z−1), z → ∞;
3. g(0) is analytic in D0 and has the asymptotic behavior g(0) = O(z−1), z → ∞;
4. on the right cutsAℓ the functionℑ

(
g(1)

+ (x) − g(1)
− (x)

)
is decreasing and there exists a constant

γ + such that

g(0)
± (x) − g(1)

∓ (x) + V1(x) + γ+ ≡ 0; (3.8)

5. on the right gaps Ãℓ :

g(1)
+ (x) − g(1)

− (x) = −2iπϵℓ = constant ∈ iR, (3.9)

ℜ
(
g(0)

+ (x) − g(1)
− (x) + V1(x) + γ+

)
≥ 0; (3.10)
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6. on the left cuts Bℓ the function ℑ
(
g(2)

+ (x) − g(2)
− (x)

)
is decreasing and there exists a constant

γ − such that

g(2)
± (x) − g(0)

∓ (x) + V2(x) + γ− ≡ 0; (3.11)

7. on the left gaps B̃ℓ:

g(2)
+ (x) − g(2)

− (x) = −2iπσℓ = constant ∈ iR, (3.12)

ℜ
(
g(2)

+ (x) − g(0)
− (x) + V2(x) + γ−

)
≥ 0; (3.13)

8. on the gaps B̃ℓ

⋃
Ãℓ:

g(0)
+ (x) − g(0)

− (x) =
{

2iπϵℓ x ∈ Ãℓ

2iπσℓ x ∈ B̃ℓ

. (3.14)

The proof is based on the facts that ρ j are positive densities, the variational (in)equalities that
arise from the minimization of the functional (3.1)23,2 and elementary complex function theory. We
leave the details to the reader.

Definition 3.3. If the statement that functions in items 4 and 6 above are decreasing is replaced
by the requirement that their derivatives are strictly negative the inequalities in (3.10), (3.13) are
strict then the potentials are said to be regular.

Because of the expressions (3.10), (3.13) we make the following.

Definition 3.4. Define the effective complex potentials by

ϕ1(z) := V1(z) − g(1)(z) + g(0)(z) + γ+, (3.15)

ϕ2(z) := V2(z) − g(0)(z) + g(2)(z) + γ−. (3.16)

The form of the g-functions (Definition 3.1) implies some important inequalities and equalities for
the effective potentials that we presently explore.

Theorem 3.4. The effective complex potentials ϕ1,ϕ2 satisfy the following properties:

1. For any ℓ there exists an open neighborhood of (a2ℓ − 2, a2ℓ − 1) for which the real part of ϕ1

is negative away from the cut Aℓ;
2. For any ℓ there exists an open neighborhood of (b2ℓ − 2, b2ℓ − 1) for which the real part of ϕ2

is negative away from the cut Bℓ.

Proof. It suffices to consider any of the right cuts, say, Aℓ. Then because of the identity∑
g( j) ≡ 0 and from the properties specified in Theorem 3.3 (since g(2)

+ − g(2)
− = 0) we have

g(1)
+ − g(1)

− = −g(0)
+ + g(0)

− ⇒ g(1)
+ + g(0)

+ = g(1)
− + g(0)

− . (3.17)

More importantly, we see from (3.8) above that

g(1)
+ − g(1)

− = g(1)
+ − g(0)

+ − V1 − γ+ = −ϕ1+ = (3.18)

= −
(
g(1)

− − g(0)
− − V1 − γ+

)
= ϕ1−. (3.19)

Equation (3.18) implies that the jump 'g(1) is the left boundary value of the analytic function
− ϕ1, while Eq. (3.19) represents the same quantity as the right boundary value of the analytic
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function ϕ1. The condition of strict decrease appearing in Theorem 3.3 then implies in view of the
Cauchy-Riemann equations that ℜϕ1 strictly decreases as one moves perpendicularly away from the
cut. Q.E.D.

Since the three g-functions are antiderivatives of the resolvents W j (3.3), we deduce that there
must be two constants γ 1, 2 such that

g(1)(z) = γ1 + 2V1 + V2

3
−

∫ z

a0

Y (1)(ζ )dζ ; g(2)(z) = γ2 − 2V2 + V1

3
−

∫ z

b0

Y (2)(ζ )dζ, (3.20)

where the respective integrals are performed within the simply connected domains specified above
and the constants γ 1, 2 are chosen, so that asymptotically

g(1)(z) = ln z + O(z−1), g(2)(z) = − ln z + O(z−1). (3.21)

It thus appears that the three g-functions are intimately related to the three branches of the integral∫
ydz over the three-sheeted Riemann surface (3.4).

IV. DEIFT-ZHOU STEEPEST DESCENT ANALYSIS

We will follow a well-established approach to asymptotic analysis of Riemann-Hilbert problems
pioneered by Deift and Zhou in Ref. 11 and referred to as the nonlinear steepest descent method.

A. Modifications of the Riemann-Hilbert problem

We proceed to introduce the contours indicated in Fig. 3: the disks Da around each endpoint
a ∈ {aj, bj}j = 1, . . . of the cuts have sufficiently small radii so as not to include any other end
points. The exact position and shape of the upper and lower arcs joining two end points are largely
irrelevant; they should lie in the region where the real parts of the effective potentials (Definition
3.4) are negative. We will name the part outside all disks and all lenses the outer region.

Let us define a new piecewise analytic matrix function (only nonzero entries are indicated),

"0 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

" in the outer region

"

⎡

⎢⎣

1

−eN V1(z) 1

1

⎤

⎥⎦ in the upper half of each lens on the right cuts

"

⎡

⎢⎣

1

eN V1(z) 1

1

⎤

⎥⎦ in the lower half of each lens on the right cuts

"

⎡

⎢⎣

1

1

eN V2(z) 1

⎤

⎥⎦ in the upper half of each lens on the left cuts

"

⎡

⎢⎣

1

1

−eN V2(z) 1

⎤

⎥⎦ in the lower half of each lens on the left cuts

. (4.1)

FIG. 3. The final steps in the modification of the RHP.
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FIG. 4. The modified jumps for "0 on a cut of the right side of the spectrum.

As a consequence the jumps of the Riemann-Hilbert problem are modified as indicated by the
jump-matrices in Figs. 4 and 5. We now define

!(z) := C−1
γ "0(z)G(z)Cγ , G(z) := diag(e−Ng(1)(z), e−Ng(0)(z), e−Ng(2)(z)), (4.2)

Cγ :=

⎡

⎢⎣
eN γ−+2γ+

3

eN γ−−γ+
3

e−N γ++2γ−
3

⎤

⎥⎦ . (4.3)

The matrix ! will be the main object of our interest from this point on. Recall that g( j) = (−1) j ln z
+ O(z−1), for j = 1, 2, and that n = N + r. Then ! satisfies a new Riemann-Hilbert problem

!(z) =
(
1 + O(z−1)

)
zdiag(r,0,−r ) z → ∞, !+(z) = !−(z)M(z), (4.4)

where M(z) takes different forms depending on the arc considered. Note that ! is bounded at z
= 0 because of assumption 1 and Remark 2.1. Recalling the definition of the effective potentials
(Definition 3.4) we have (using the notation ' f = f+ − f−, S f = f+ + f−),

M = M (right)
± :=

⎡

⎢⎣

1

eNϕ1 1

1

⎤

⎥⎦ , on the upper/lower rims of a right lens,

M = M (le f t)
± :=

⎡

⎢⎣

1

1

eNϕ2 1

⎤

⎥⎦ , on the upper/lower rims of a left lens,

(4.5)

FIG. 5. The modified jumps for "0 on a cut of the left side of the spectrum.
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M = M (right)
0 :=

⎡

⎢⎢⎢⎣

e−N
(

V1−g(1)
− +g(0)

+ +γ+
)

−eN
(

V1−g(1)
− +g(0)

+ +γ+
)

1

⎤

⎥⎥⎥⎦
=

⎡

⎢⎣

1

−1

1

⎤

⎥⎦ , (4.6)

on the right cuts,

M = M (le f t)
0 :=

⎡

⎢⎢⎢⎣

1

e−N
(

V2−g(0)
− +g(2)

+ +γ−
)

−eN
(

V2−g(0)
− +g(2)

+ +γ−
)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎣

1

1

−1

⎤

⎥⎦ , (4.7)

on the left cuts,

M = M (right)
gap =

⎡

⎢⎢⎣

e2iπNϵℓ eN
(
g(0)

+ −g(1)
− −V1−γ+

)

e−2iπ Nϵℓ

1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

e
N
2 'ϕ1 e− N

2 S ϕ1

e− N
2 'ϕ1

1

⎤

⎥⎥⎦ , (4.8)

on the right gaps,

M = M (le f t)
gap =

⎡

⎢⎢⎣

1

e−2iπ Nσℓ eN
(
g(2)

+ −g(0)
− −V2−γ−

)

e2iπ Nσℓ

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1

e
N
2 'ϕ2 e− N

2 Sϕ2

e− N
2 'ϕ2

⎤

⎥⎥⎦ (4.9)

on the left gaps.
Observe that the off-diagonal entries of (4.5), (4.9), and (4.8) are exponentially small as N

→ ∞ because of the signs of the real parts; in particular all their Lp norms (except for p = ∞) are
exponentially small. Yet, near the endpoints aj, bj of the support of the equilibrium measures, the
off-diagonal entries tend to 1. However, the new RHP that effectively amounts to setting them to
zero is a key ingredient in the final approximation we need. It is, in fact, the main new ingredient
of the paper from the point of view of the nonlinear steepest descent method. More explicitly, we
formulate the following.

Problem 4.1 (Outer parametrix). Find a 3 × 3 matrix -(z), analytic in D0 := C \
((−∞, b0] ∪ [a0,∞)) and with the following properties:

(i) the jumps indicated in Figure 6;
(ii) the growth conditions at z = ∞ and near an endpoint z = a are, respectively,

-(z) =
(

1 + O
(

1
z

))
⎛

⎜⎝

zr

1

z−r

⎞

⎟⎠ , -(z) = O
(

(z − a)−
1
4

)
, a ∈ {ai , bi }i=1,.... (4.10)

FIG. 6. The RHP for the outer parametrix.
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FIG. 7. The contours of the residual RHP for the error term and the orders of the jumps matrices.

The final approximation involves the solution of the exact RHP for ! within disks around the
endpoints that we have indicated above (see Figure 3). This is called the local RHP and is formulated
below.

Problem 4.2 (Local parametrix). Let D = Da be a disk (previously introduced) around any of
the endpoints a of the supports of ρ1, ρ2. Find a piecewise analytic 3 × 3 matrix P(z) = Pa(z) such
that

(i) P(z) is bounded for z ∈ D uniformly with respect to N;
(ii) within D, P(z) satisfies the jump-conditions for ! with jump-matrices (4.9), (4.8), (4.7), (4.5);
(iii) on the boundary ∂D, P(z)-−1(z) = 1 + o(1), N → ∞, uniformly in z ∈ ∂D.

Suppose now that we have managed to solve Problems 4.1 and 4.2 and let us define the matrix

!̂(z) :=
{

-(z) z ̸∈
⋃

a Da

Pa(z) z ∈ Da
. (4.11)

Then the “error” matrix E(z) := !(z)!̂
−1

(z) solves the RHP,

E+ = E−(1 + G) , E(z) = 1 + O(z−1), (4.12)

where the jumps are supported on the boundaries ∂Da , on the rims of the lenses and gaps outside
the local disks. A direct standard inspection (see, e.g., Ref. 10) shows that G tends to zero as
N → ∞ in all Lp norms p ∈ [1, ∞] and hence E(z) is close to the identity matrix 1 uniformly on P 1.
If the equilibrium problem is regular (in the sense of Remark 3.3), then the bounds on the jumps of
the error term E (and hence on the error itself) are as depicted in Fig. 7.

B. Outer parametrix

The construction of the solution to the RHP 4.1 uses theta-functions associated with an algebraic
curve studied below. Solutions to problems of this kind can be derived in several ways.17,8 While
we will eventually write down “explicit” formulas involving theta functions, these formulas are not
numerically effective unless the underlying Riemann surface has genus zero. However, we do need
to prove existence of a solution. Thus, our strategy will be to produce theta-functional expressions
for the solution to Problem 4.1 and subsequently use results on bordered Riemann surfaces from
Ref. 14 to ensure solvability of the RHP in terms of the proposed expressions. As an example, we
will also provide the corresponding (explicit) expressions for the case of genus zero.

1. The abstract Riemann surface

The title of this section refers not to the Riemann surface defined by the pseudo-algebraic
equation E(y, z) = 0 (3.4), but to an abstract Riemann surface L described below.

Let L1, L2 be the number of intervals of the supports of the measures ρ1, ρ2; note that end-
points of cuts correspond to zeroes of odd multiplicity of the discriminant equation '(z) := 4R3(z)
− 27D2(z), and the assumption of regularity of the potentials translates into the requirement that all
zeroes of odd multiplicity of '(z) are real and simple.

We consider now the abstract Riemann surface obtained by gluing together three Riemann
spheres parametrized by the variable z; the Riemann sphere labelled 1 is slit along the support of ρ1
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FIG. 8. The Hurwitz diagram of the abstract spectral curve L: the vertical dotted lines represent the identification of points.

and glued there with the middle Riemann sphere labelled 0. The latter is subsequently slit also along
the support of ρ2 and glued across it with the Riemann sphere labelled 2, cut along the support of
ρ2 (see Fig. 8).

The resulting Riemann surface L is a compact surface of genus

g = genus(L) = L1 + L2 − 2 (4.13)

as follows from the Riemann-Hurwitz formula. The endpoints of the intervals Aℓ, ℓ = 1, . . . L1

and Bℓ, ℓ = 1, . . . , L2 are branch points of order 2, i.e., the local coordinate is
√

z − x0, with
x0 one of the endpoints. The local coordinate around the three points at infinity ∞1, ∞0, ∞2

is 1/z.
This point of view allows one to think of Y(0, 1, 2) appearing in Theorem 3.2 as the three branches

of a locally analytic function y over the Riemann surface L; indeed near a branch point x0, due
to the assumption about ' and due to Cardano formulas, the function y has a square-root Puiseux
expansion in z − x0, and thus is a well-defined function on the curve L.

If V ′
1, V ′

2 are meromorphic functions, then y is a meromorphic function on L, otherwise y will
in general have other isolated singularities or will be defined only in a strip around the three-copies
of the real axis in L.

We will use the basis of the canonical homology of L indicated in Fig. 9.

Proposition 4.1. The curve L possesses a natural antiholomorphic involution defined as the
complex conjugation of each of the three sheets. The finite gaps provide g = genus(L) pointwise
invariant nontrivial cycles. Thus L can be realized as a double of the bordered Riemann surface
obtained by identifying the upper half of sheet 2 with the lower half of sheet 0 along the left cuts,
and the lower half of sheet 0 with the upper half of sheet 1 along the right cuts (see Chap. 6
in Ref. 14).

FIG. 9. Our choice of the canonical homology basis on the abstract Riemann surface L; the solid lines represent arcs on
Sheet 2, the dotted ones are arcs on Sheet 0, and the dashed ones are arcs on Sheet 1. In the example there are 5 total cuts
and hence the genus is 3. We can declare that the curves lying on the same sheet are the α-cycles, whereas the curves lying
on two different sheets are the corresponding β-cycles.
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FIG. 10. Depiction of the lifted contours γx , γx ′ , γy , γy′ . Their X-projection is just a closed path (in the picture we have
chosen circles) intersecting the real axis only at x and one of b0 or a0. The points x′, y′ belong to the gaps and by definition
the curves γx ′ , γy′ lie on one sheet and are actually homologic to the α-cycles chosen before (see Fig. 9 and its caption).

Proposition 4.1 shows that the properties of L are very similar to the properties of a hyperelliptic
curve defined as w2 = P(z) for a real polynomial P of degree 2g + 2. This fact will be used to
obtain information on the theta divisor of the Jacobian of L when constructing the outer parametrix.

2. Multiplier system χ and spinors

Recall the definition of domains D0,1,2 (Definition 3.1). By lifting points in the complex plane
z one can construct three sections p j : D j → L such that: p1 is analytic in D1 = C \ 4Aℓ, p2 is
analytic in D2 = C \ 4Bℓ and p0 is a analytic in D0 = D1 ∩ D2 with the following boundary values:

p1(x)± = p0(x)∓ , x ∈ A := 4L1
ℓ=1Aℓ

p2(x)± = p0(x)∓ , x ∈ B := 4L2
ℓ=1Bℓ. (4.14)

Definition 4.1. Let x ∈ R+ (x ∈ R−); the contour γx : S1 → L is defined as the unique lift to L
of the closed path on C that contains the leftmost (rightmost) point a0 ∈ A (b0 ∈ B) and intersecting
the real axis only at a0 and x (see Fig. 10). The lift is accomplished by using the map p1 : D1 → L
for the part in the upper half-plane (or p2 : D2 → L if x ∈ R−). The lower part of the path is lifted
using p0 if x belongs to a cut or p1 (p2) when x belongs to a gap.

By this definition γ x defines a closed cycle in the homology of L. Moreover, γ x span the whole
homology as x ranges through R.

We define the following vectors (characteristics) in the Jacobian of the curve L :

A = 2iπ N

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϵ1

...

ϵL1−1

σ1

...

σL2−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B = 0 ∈ Cg (4.15)

where the cumulative filling fraction have been introduced in (3.6) and (3.7). Note the linear
dependence of the vector A on N.

Given any two vectors A = (A j ), B = (B j ) ∈ Cg one can define a character, namely, a homo-
morphism χ : π1(L) → C∗ (with π1 the fundamental group of the Riemann surface) by extending
the values it takes on the basis of the homology, χ (α j ) = eA j , χ (β j ) = eB j . For A, B in (4.15) we
have

χ (α j ) =
{

eN2iπϵj j ≤ L1 − 1

eN2iπσ j−L1+1 j > L1 − 1
, χ (β j ) = 1. (4.16)
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A meromorphic spinor ψ for the character χ is a multivalued half-differential that acquires
the factor χ (γ ) under analytic continuation along a closed contour γ . Any half-differential φ at a
point p can be expressed in a local coordinate ζ as φ(p) = f (ζ )

√
dζ . In particular, since z is a local

coordinate away from the branch points, we can write ψ(p) = f (z)
√

dz, where p ∈ L is a preimage
of z. Recalling the definition of the three sections pj(z) given above we have

ψ(p1(x))± = χ (γx )ψ(p0(x))∓ , x ∈ A , ψ(p1(x))+ = χ (γx )ψ(p1(x))− , x ∈ R+ \ A

ψ(p2(x))± = χ (γx )ψ(p0(x))∓ , x ∈ B , ψ(p2(x))+ = χ (γx )ψ(p2(x))− , x ∈ R− \ B

(4.17)

ψ(p0(x))+ = χ (γx )−1ψ(p0(x))− , x ∈ R+ \ (A ∪ B). (4.18)

In addition, we will use the spinor
√

dz defined on L slit along the top of the cuts A in sheet 1
and bottom on sheet 0, and along the top of B in sheet 2 and bottom in sheet 0. By definition

√
dz

satisfies the boundary conditions
√

dz(p1(x))± = ±
√

dz(p0(x))∓ , x ∈ A, (4.19)

√
dz(p1(x))+ =

√
dz(p1(x))− , x ∈ R \ A, (4.20)

√
dz(p2(x))± = ±

√
dz(p0(x))∓ , x ∈ B, (4.21)

√
dz(p2(x))+ =

√
dz(p2(x))− , x ∈ R \ B. (4.22)

Note that the jump relations (4.19) and (4.21) imply that
√

dz is globally defined on a double cover
of L branched at the ramification points (to be distinguished from the branch points) since a 2π–loop
around one such point (i.e., a 4π -loop around x = c for c a branch point) yields a transformation√

dz → −
√

dz. If we define a multivalued function f (p) := ψ(p)√
dX (p) it follows from the above

that its composition with the three sections pj (Sec. IV B 2) satisfies the following boundary-value
conditions:

f (p1(x))± = ±χ (γx ) f (p0(x))∓ , x ∈ A

f (p1(x))+ = χ (γx ) f (p1(x))− , x ∈ R+ \ A, (4.23)

f (p2(x))± = ∓χ (γx ) f (p0(x))∓ , x ∈ B

f (p2(x))+ = χ (γx ) f (p2(x))− , x ∈ R− \ B. (4.24)

For our choice (4.16) of χ the above relations take the form

f (p1(x))+ = f (p0(x))− , f (p0(x))+ = − f (p1(x))− , x ∈ A

f (p1(x))+ = e2iπ Nϵ j f (p1(x))− , x ∈ (a2 j−1, a2 j ) (4.25)

f (p2(x))+ = − f (p0(x))− , f (p0(x))+ = f (p2(x))− , x ∈ B

f (p2(x))+ = e2iπ Nσℓ f (p2(x))− , x ∈ (b2ℓ−1, b2ℓ). (4.26)

Moreover, near a branch point x = a, since the local coordinate on the curve L is
√

z − a, the
functions fj(z) := f(pj(z)) behave as

f j (z) = O((z − a)−
1
4 ). (4.27)

All the above discussion amounts to the following.

Proposition 4.2. Let ψ be a meromorphic spinor for the character χ and let f j (ζ ) := ψ(p j (ζ ))√
dz(p j (ζ ))

.

Then the vector

F(z) := [ f1(z), f0(z), f2(z)] , z ∈ C \ (−∞, b0] ∪ [a0,∞) (4.28)
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has the properties

F(x)+ = F(x)−

⎛

⎜⎝

1

−1

1

⎞

⎟⎠ , x ∈ A; F(x)+ = F(x)−

⎛

⎜⎝

e2iπNϵj

e−2iπ Nϵ j

1

⎞

⎟⎠ , x ∈ (a2 j−1, a2 j ),

F(x)+ = F(x)−

⎛

⎜⎝

1

1

−1

⎞

⎟⎠ , x ∈ B; F(x)+ = F−

⎛

⎜⎝

1

e−2iπ Nσℓ

e2iπ Nσℓ

⎞

⎟⎠ , x ∈ (b2ℓ−1, b2ℓ)

(4.29)
as well as F(x) = O((x − a)−

1
4 ) for any endpoint a.

This means that the jump conditions for Problem 4.1 are already satisfied. The complete solution
amounts to finding a spinor ψ for each row such that it has an appropriate growth at the points above
z = ∞. Generically, a spinor for a character χ is uniquely determined, up to a multiplicative constant,
by choosing a divisor of degree − 1. This is a consequence of Riemann–Roch–Serre theorem1, 16

for line-bundles (our line bundle is the tensor product of a flat line bundle defined by the character
χ and a spinor bundle, namely, a line bundle whose square is the canonical bundle) We have the
following.

Proposition 4.3. Consider the two sequences of spinors ψr , ψ̂r , r ∈ Z for the same character
χ (4.16) satisfying the following divisor properties (see (B15) in Appendix B),

(ψr ) ≥ −(r + 1)∞1 + r∞2 ; (ψ̂r ) ≥ −(r + 1)∞1 − ∞0 + (r + 1)∞2. (4.30)

Consider the matrix

V(z) :=

⎛

⎜⎜⎜⎜⎝

fr (p1) fr (p0) fr (p2)

f̂r−1(p1) f̂r−1(p0) f̂r−1(p2)

fr−1(p1) fr−1(p0) fr−1(p2)

⎞

⎟⎟⎟⎟⎠
, fr := ψr√

dz
, f̂r := ψ̂r√

dz
. (4.31)

Then V(z) solves a RHP with the jumps (4.29), the asymptotic behavior

V(z) = diag(C1, C2, C3)(1 + O(z−1))diag(zr , 1, z−r ) (4.32)

and Problem 4.1 admits a solution if and only if C1C2C3 ̸= 0.

Proof. By Proposition 4.2 the jumps conditions are automatically fulfilled. As z → ∞, p j (z)
→ ∞ j ∈ L by construction. Then

fr (p1) = K (1)
r zr (1 + O(z−1)) , fr (p0) = K (0)

r
1
z (1 + O(z−1)) , fr (p2) = K (2)

r z−r−1(1 + O(z−1)),

f̂r−1(p1) = K̂ (1)
r−1zr−1(1 + O(z−1)) , f̂r−1(p0) = K̂ (0)

r−1(1 + O(z−1)) , f̂r−1(p2) = K̂ (2)
r−1z−r−1(1 + O(z−1)) .

This asymptotic behaviour follows from the divisor properties of ψr , ψ̂r ; for example, since ψ r has
a pole at most of degree r + 1 at ∞1 where

√
dz has a simple pole, fr must have at most a pole of

order r at infinity.
The last claim follows from the fact that Problem 4.1 requires that the constants K (1)

r , K (2)
r−1,

and K̂ (0)
r−1 should not vanish. It is only in this case that the matrix V can be normalized by a left

multiplication to behave like (1 + O(z−1))diag(zr , 1, z−r ). To prove the necessity of the last claim
we have to show that if any of the constants K (1)

r , K (2)
r−1, K̂ (0)

r−1 vanish, then Problem 4.1 is unsolvable.
To see this we first point out that standard arguments show that if a solution to Problem 4.1 exists,
then that solution is unique. Therefore, the solution of Problem 4.1 exists if and only if the only
row-vector solution F(z) of the RHP with the same jumps as 4.1 but with the asymptotic condition
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(4.10) at z = ∞ replaced by

F(z) = [O(zr−1),O(z−1),O(z−r−1)] (4.33)

is the trivial solution F(z) ≡ 0. If any of the constants above is zero, the corresponding row, then
provides a nontrivial solution precisely to this latter problem. This proves the necessity of the last
claim. Q.E.D.

C. Theta-functional expressions

The notation below is borrowed from Ref. 8 and the definitions can be found in Ref. 14 and are
reviewed in Appendix B.

The spinors ψr , ψ̂r in Proposition 4.3 can be written “explicitly” in terms of theta functions as
follows:

ψr = 3'(p − ∞2)r

3'(p − ∞1)r+1
3

[
A

B

]

(p + r∞2 − (r + 1)∞1)h'(p), (4.34)

ψ̂r−1 = 3'(p − ∞2)r

3'(p − ∞1)r3'(p − ∞0)
3

[
A

B

]

(p + r∞2 − ∞0 − r∞1)h'(p). (4.35)

Here, h' is a certain fixed holomorphic spinor defined in (B10). We now recall that 3'(p − q), as
a function of a point p, has a simple zero at p = q and at other g − 1 points whose positions are
independent of q and depend solely on the choice of odd characteristic '. Also, by construction,14

the spinor h' has zeroes precisely at the same g − 1 points (and of the same multiplicity). It thus
appears that ψ r has a zero of multiplicity r at ∞2 and a pole of order r + 1 at ∞1. The order of

the pole at ∞1 may be smaller if the term Tr (p) := 3
[ A

B

]
(p + r∞2 − (r + 1)∞1) vanishes there.

If this happens, the constant C1 in Proposition 4.3 would be zero and the RHP unsolvable. Similarly,
if Tr−1(∞2) = 0, then ψ r − 1 has a zero of multiplicity higher than r, and consequently C3 = 0.

Finally, if T̂r−1(p) := 3
[ A

B

]
(p + r inf t y2 − ∞0 − r∞1) vanishes at ∞0, then the spinor ψ̂r−1 does

not have a pole at ∞0 and thus C2 in Proposition 4.3 vanishes. Note that

Tr (∞1) = Tr−1(∞2) = T̂r−1(∞0) = 3

[
A
B

]
(r∞2 − r∞1).

Therefore, we have the proposition below.

Proposition 4.4. The Riemann-Hilbert Problem 4.1 is solvable if and only if

3

[
A

B

]

(r∞2 − r∞1) ̸= 0. (4.36)

We now need to establish the nonvanishing property required by Proposition 4.4. We recall that
in our case A ∈ iRg and B = 0 (4.15). We then can use the results on bordered Riemann surfaces
contained in Ref. 14.

Theorem 4.1. For any A ∈ 2iπRg, r ∈ Z,

3

[
A

0

]

(r∞2 − r∞1) ̸= 0. (4.37)

Therefore, Problem 4.1 is always solvable.

Remark 4.1. The theorem could be rephrased as stating that the monodromy data for the outer
parametrix do not lie on the Malgrange divisor. In this case the Malgrange divisor is actually
identifiable with the (3) divisor in the Jacobian of the curve L.17
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Proof. Recall from Proposition 4.1 that L has an antiholomorphic involution and can be repre-
sented as the double of a bordered Riemann surface (Chap. VI of Ref. 14).

The β-cycles are homologous to cycles fixed by the antiholomorphic involution, since we can
realize each of them as a path following the gap in R on one of the outer sheets and the same
segment on the middle sheet. There are in total g + 1 cycles fixed by the involution; aside from the
g β-cycles, there is also the cycle which we denote by βg + 1 that covers the union of the segment
[b0, a0] on the middle sheet with all the unbounded gaps in the three sheets (see Fig. 1).

We now use Corollary 6.5 on page 114 of Ref. 14 which describes the intersection of the

3-divisor with a g-dimensional real torus in the Jacobian of the form
[ iRg

µ

]
(with µ = (µ j ) ∈ 1

2Z
g

a half-period). It consists of the image in the Jacobian of the set of divisors of degree zero that
have a form Dg−1 − D0

g−1, where D0
g−1 is the divisor of degree g − 1, such that 2D0

g−1 is linearly
equivalent to the canonical divisor and Dg−1 is any positive divisor of degree g − 1 invariant under
the involution and such that Dg−1 has (1 + 2µ j ) mod 2 points in β j for j = 1, . . . , g. This means

that if there existed a point A ∈ iRg such that 3
[ A

0

]
(0) = 0, then it would be the image of a positive

divisor of degree g − 1 with exactly one point in each of the g gaps, a clear contradiction (see also
Proposition 6.16 in Ref. 14). This proves that 3

[ A
0

]
(0) cannot vanish for any value of A ∈ iRg .

To complete the proof, recall that 3
[ A

0

]
(r∞2 − r∞1) is proportional to 3(A + r∞2 − r∞1) .

To prove that the latter expression is nonzero we only need to show that u(r∞2 − r∞1) ∈ iRg , where
u is the Abel map. By our choice of α-cycles and normalization (B1), holomorphic differentials ωj

satisfy ω̄ j (z̄) = −ω j (z). Therefore, an image under the Abel map of any divisor of degree 0 contained
in βg + 1 is purely imaginary. Since ∞1, 2 ∈ βg + 1, the proof is complete. Q.E.D.

The expressions in terms of theta functions for the columns of the outer parametrix - possess
other interesting relations that were investigated in Ref. 5.

1. Genus 0 case

A particularly simple situation is the case in which the surface L is of genus 0, namely, there are
only two cuts, one in R+ and one in R−. In this case we can write quite explicit algebraic expressions
for all the objects above (see Fig. 11 for an example). First, we introduce a uniformizing parameter
t : CP1 → L in terms of which the meromorphic function z : L → CP1 is written as

z := u0t + C + u1

t − 1
+ u2

t + 1
. (4.38)

FIG. 11. Depiction of the three sheets and how they are mapped onto three disjoint regions of the t-plane. The real x-axis
is mapped to the real t-axis and the two sides of each cut are mapped to the boundaries of the oval-shaped regions. The
intersection of the ovals with the real t-axis are the four ramification points of the map z(t).
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Here, we have identified the three poles ∞0, 1, 2 with t = ∞, 1, − 1, respectively. Once the uni-
formization has been fixed, the expressions for the spinors above are extremely simple

fr := ψr√
dz

= (t + 1)r

(t − 1)r+1

√
dt
dz

, fr = (t + 1)r+1

(t − 1)r
√

u0(t2 − 1)2 − u1(t + 1)2 − u2(t − 1)2 ,

f̂r := ψ̂r√
dz

= (t + 1)r+1

(t − 1)r+1

√
dt
dz

, f̂r = (t + 1)r+2

(t − 1)r
√

u0(t2 − 1)2 − u1(t + 1)2 − u2(t − 1)2
.

(4.39)

The normalization is obtained by expanding near the three points at infinity

fr ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

zr 2r

(−u1)r+ 1
2

t ∼ 1

i
zr+1

u
r+ 1

2
2

2r+1
t ∼ −1

√
u0

z
t ∼ 0

, f̂r−1 ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

zr−1 2r

(−u1)r− 1
2

t ∼ 1

−i
zr+1

u
r+ 1

2
2

2r
t ∼ −1

1
√

u0
t ∼ 0

. (4.40)

The solution to the RHP problem Problem 4.1 is

-(z) = diag((−u1)r− 1
2 2−r , i

√
u0, iu

−r+ 1
2

2 )

⎛

⎜⎜⎝

fr (t1(z)) fr (t0(z)) fr (t2(z))

f̂r−1(t1(z)) f̂r−1(t0(z)) f̂r−1(t2(z))

fr−1(t1(z)) fr−1(t0(z)) fr−1(t2(z))

⎞

⎟⎟⎠. (4.41)

Here, t1, 2, 3(z) are t-coordinates of sections p1, 2, 3 discussed in Sec. IV B 2.

D. Local parametrix (solution of Problem 4.2)

For the sake of completeness we spell out the form of the parametrix near a endpoint of a cut
where the density ρ1, 2 vanishes like a square root (see Corollary 3.1).

1. The rank-two parametrix

We need to solve the exact RHP in Fig. 12. This part is essentially identical to the established
results in Refs. 12 and 10. We consider only the previously defined neighborhood Da of the right
endpoint a := a2ℓ − 1 of one of the intervals of ρ1. The modifications for the other cases are
straightforward. Near x = a the effective potential ϕ1 is a piecewise analytic function with the jump

FIG. 12. The exact Riemann-Hilbert problem near a right endpoint in R+, and in terms of the zooming local coordinate ξ .
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ϕ1+ − ϕ1− = 4iπϵℓ, where ℓ is the number of the gap that starts on the right of a and ϵℓ is the
cumulative filling fraction (3.6).

Let ϕ be a function defined by

ϕ(z) =
{

ϕ1(z) + 2iπ (1 − ϵℓ) , ℑz > 0

ϕ1(z) + 2iπ (1 + ϵℓ) , ℑz ≤ 0
.

Then ϕ has an analytic expansion in Puiseux series of the form described below.

Lemma 4.1. The locally analytic function ϕ has an expansion

ϕ(x) = 4
3

C(x − a)
3
2 (1 + O(x − a))

C = lim
x→a−

πρ1(x)√
a − x

> 0,

where the cut of the root extends on the left of a and the term O(x − a) is analytic at a (i.e., has a
convergent Taylor series).

Proof. Recalling the representation (3.20) for the g functions we have

ϕ(z) =
∫ z

a

dϕ1(ξ )
dξ

dξ =
∫ z

a

(
Y (1)(ξ ) − Y (0)(ξ )

)
dξ . (4.42)

Now a small loop around a interchanges Y(1) ↔ Y(0), which means that

Y (1)(ξ ) − Y (0)(ξ ) =
√

ξ − a (2C + O(ξ − a)) (4.43)

with the term O(ξ − a) analytic. The expression for C is obtained by recalling that by
Definition 3.4,

ϕ′(z) = ϕ′
1(z) = V ′

1(z) − 2
∫ +∞

0

ρ1(s)ds
z − s

−
∫ −∞

0

ρ2(s)ds
z − s

. (4.44)

Now ρ1(s) ∼ C
√

a − s near s = a (with C > 0) due to (4.43) and ϕ′
+ − ϕ′

− = 4π iρ1. The sign of C
> 0 is due to the fact that ℜϕ1 = ℜϕ and it must be positive in the gap (x > a). Q.E.D.

Remark 4.2. In a non-generic situation, one can only conclude that

ϕ(z) = (z − a)k+ 3
2 (C̃ + O(z − a)) , C̃ > 0 (4.45)

for some nonnegative integer k. This case is called nonregular and it is treated in Ref. 10. The
construction there applies identically in this case, but we prefer to concentrate on a detailed
discussion for the most generic case.

We define the zooming local parameter by the equation

4
3
ξ

3
2 = Nϕ(z), (4.46)

so that the fixed-size neighborhood of a in the z-plane is mapped conformally (one-to-one) to an
homothetically expanding neighborhood of the origin in the ξ plane with a diameter growing like
N

2
3 . The choice of the root in (4.46) is such that the cut is mapped to R− of ξ -plane.
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We then introduce the standard rank-two Airy parametrix R0(ξ )10, 12 as the piecewise defined

matrix R0
j constructed in terms of the Airy function Ai(x) as follows. If σ 3 =

(
1 0

0 −1

)

, define

R0
k(ξ ) :=

√
2πe− iπ

4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
y0 −y2

y′
0 −y′

2

⎞

⎠e
(

2
3 ξ

3
2 +iπ Nϵ

ℓ

)
σ 3 =

⎛

⎝
y0 −y2

y′
0 −y′

2

⎞

⎠e
N
2 ϕ1 σ 3 k = 1

⎛

⎝
−y1 −y2

−y′
1 −y2

⎞

⎠e
(

2
3 ξ

3
2 +iπ Nϵ

ℓ

)
σ 3 =

⎛

⎝
−y1 −y2

−y′
1 −y2

⎞

⎠e
N
2 ϕ1 σ 3 k = 2

⎛

⎝
−y2 y1

−y′
2 y′

1

⎞

⎠e
(

2
3 ξ

3
2 −iπ Nϵ

ℓ

)
σ 3 =

⎛

⎝
−y2 y1

−y′
2 y′

1

⎞

⎠e
N
2 ϕ1 σ 3 = k = 3

⎛

⎝
y0 y1

y′
0 y′

1

⎞

⎠e
(

2
3 ξ

3
2 −iπ Nϵ

ℓ

)
σ 3 =

⎛

⎝
y0 y1

y′
0 y′

1

⎞

⎠e
N
2 ϕ1 σ 3 k = 4

, (4.47)

where index k refers to regions in Fig. 12 and, for s = 0, 1, 2,

ys := ωsAi(ωsξ ), ω = e2iπ/3. (4.48)

Each R0
k has the following uniform asymptotic behavior near ξ = ∞,

R0
k(ξ ) = ξ− σ3

4
1√
2

(
1 1

−1 1

)

e(− iπ
4 ±iπ Nϵℓ)σ 3 (1 + O(ξ−3/2)), (4.49)

where the ± depends on the half-plane (upper/lower) in which the asymptotics is considered.
Thus, the final form of the local parametrix is defined as a matrix R whose restrictions to the

four regions in Fig. 12 are

Rk(ξ ) :=

:=F(z)︷ ︸︸ ︷

e−(− iπ
4 ±iπ Nϵℓ)σ 3

1√
2

[
1 −1

1 1

]

ξ
σ3
4 R0

k(ξ ). (4.50)

Here,

(i) the prefactor F(z) solves a RHP on the left

F(z)+ =
[

0 −1

1 0

]

F(z)− , ξ (z) ∈ R−

F(z)+ = e−2iπ Nϵℓσ3 F(z)− , ξ (z) ∈ R+ .

(4.51)

(ii) R satisfies the exact jump conditions of the RHP in Fig. 12, except for the jump condition on
the cut:

R+ =
[

0 −1

1 0

]

R−

[
0 1

−1 0

]

ξ ∈ R−

R+ = e−2iπ Nϵℓσ 3R−e2iπ Nϵℓσ 3 ξ ∈ R+

. (4.52)

(iii) R(ξ ) = 1 + O(N−1) uniformly on the boundary of the neighborhood Da .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.205.67.126 On: Thu, 06 Feb 2014 17:50:27



043517-20 Bertola, Gekhtman, and Szmigielski J. Math. Phys. 54, 043517 (2013)

E. Rank-three parametrix

Now we embed the rank-two parametrix from Sec. IV D into a matrix

Ra(x) = R(x) ⊕ 1 =:

[
R(x)

1

]

. (4.53)

Let define the parametrix Pa(z) within the disk Da as

Pa(z) := -(z)Ra(z), (4.54)

where - is the outer parametrix constructed earlier. The only point to address now is whether
-(z)Ra(z) is bounded inside the disk, since near a,

-(z) = O((z − a)−
1
4 ), F(z) = O((z − a)−

1
4 ). (4.55)

Thus, the product -(z)(F(z) ⊕ 1) may at most have square root singularities: however, comparing
the RHPs that - and F solve, we see that the product is a single-valued matrix, thus it must be
analytic since at worst it may have singularities of type (z − a)−

1
2 . Being single-valued, however, it

must have a Laurent series expansion that must, in fact, be a Taylor series by the previous a priori
estimate of its growth. Therefore, the product is actually analytic. Since F(z) is solely responsible
for the unboundedness of R, this proves that Pa(z) is bounded.

F. Asymptotics of the biorthogonal polynomials

Let us go back to modifications discussed in Sec. 4.1 of the RHP Problem 2.1 for Cauchy
biorthogonal polynomials. It follows from (4.2), that within the half-lenses depicted in Figs. 4 and
5 (on the ± sides of the cuts) the original matrix "(z) reads

"±(x) = Cγ !(x)±G−1
± C−1

γ

⎡

⎢⎣

1

±eN V1 1

1

⎤

⎥⎦ , x ∈ A, (4.56)

"±(x) = Cγ !(x)±G−1
± C−1

γ

⎡

⎢⎣

1

1

±eN V2 1

⎤

⎥⎦ , x ∈ B. (4.57)

According to (2.8), the degree n monic biorthogonal polynomial is

pn(x) = "11(x) = e
N
2

(
V1+g(0)

± +g(1)
± +γ+

) [
!11±e− N

2 ϕ1± ± !12±e
N
2 ϕ1±

]
=

= e
N
2 (V1−g(2)+γ+)

[
!11±e− N

2 ϕ1± ± !12±e
N
2 ϕ1±

] (x ∈ A). (4.58)

Note that for x > 0, g(2)(x) ∈ R and has no jumps, and for x ∈ A we have ϕ1± = −2iℑg(1)
± (x)

= ±2iπ
(∫ x

a0
ρ1(s)ds − 1

)
. From (4.2)–(4.9),

!(z) = diag(1,−1, 1)!(z)diag(1,−1, 1) (z ∈ C) , !12±(x) = ±!11∓(x) = ±!̄11±(x) (x ∈ A),
(4.59)

and thus

pn(x) = e
N
2 (V1−g(2)+γ+)2ℜ

[
!11e−i Nπ

∫ x
a0

ρ1(s)ds
]
, x ∈ A. (4.60)

Vice versa, for z ̸∈ A (and outside of the right lenses) one has

pn(z) = eNg(1)
!11(z). (4.61)
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Recall that ! =
(
1 + O(N−1)

)
!̂, where !̂ is defined in (4.11). Then one can obtain uniform

asymptotic information on the behaviour of pn in any compact set of the complex plane. In particular,
away from the endpoints, the asymptotics is expressible in terms of theta functions (genus ≥1) or
algebraic expressions (genus 0).

To obtain asymptotic information for the biorthogonal companions qn, one simply interchanges
the roles of the measures.

V. ASYMPTOTIC SPECTRAL STATISTICS AND UNIVERSALITY

Once we have obtained a uniform asymptotic control of the biorthogonal polynomials, it is
natural to investigate, in parallel to what has been done for the Hermitian matrix model (see, e.g.,
Ref. 10), the large N behavior of the correlation functions for the Cauchy two-matrix model studied
in Ref. 7. We recall that the finite-size correlation functions for the spectra of M1, M2 distributed
according to (1.1) correspond to a multi-level determinantal point process with the kernel

KN (x, y) :=
N−1∑

j=0

p j (x)q j (y)
h j

, (5.1)

∫∫

R2
+

p j (x)qi (y)
e−N (V1(x)+V2(−y))

x + y
= h jδi j , (5.2)

where {p j (x), q j (y)} j∈N are the monic biorthogonal polynomials.

Remark 5.1. Normalizing factors hj appear in the definition of KN (x, y) in contrast to the
formula (3.31) in Ref. 7 since here we use monic rather than orthonormal biorthogonal polynomials.

Define four auxiliary kernels

H00(x, y) := KN (x, y), (5.3)

H10(y′, y) :=
∫

R+

e−N V1(x)dx
y′ + x

H00(x, y), (5.4)

H01(x, x ′) :=
∫

R+

e−N V2(−y)dy
y + x ′ H00(x, y), (5.5)

H11(y, x) :=
∫

R+

∫

R+

H00(x ′, y′)
e−N (V1(x ′)+V2(−y′))dx ′dy′

(y + x ′)(x + y′)
− 1

x + y
. (5.6)

Remark 5.2. To obtain kernels for the correlation functions auxiliary kernels need to be multiplied
by appropriate exponentials involving the potentials V1, V2.

Thus, using results from Ref. 7 with notational changes indicated in Remark 5.1 and before
Eq. (2.8), we have the following.

Proposition 5.1 (Proposition 3.2 in Ref. 7). The auxiliary kernels are given in terms of the
solution of the RHP in Proposition 2.1 as follows (for x, x′, y, y′ ≥ 0),

H00(x, y) = − 1
(2iπ )2

[
"−1(−y)"(x)

]
3,1

x + y
, H10(y′, y) = 1

2iπ

[
"−1(−y)"(−y′)

]
3,2

y′ − y
,

H01(x, x ′) = 1
2iπ

[
"−1(x ′)"(x)

]
2,1

x − x ′ , H11(y, x) =
[
"−1(x)"(−y)

]
2,2

x + y
.

(5.7)

One should not expect that the kernels H00(x, y), H11(y, x), x, y > 0 display any universal behavior,
even in the scaling regime x = ξ

Nα , y = η
Nα . The only “interaction” between the two matrices M1

and M2 that can lead to a universality class is near the zero eigenvalue.
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On the other hand, if one considers separately statistics of the eigenvalues of M1 or M2, no new
universality phenomena will appear, as we briefly explain below. It is sufficient to consider H01(x,
x′) since the computation for H10(y, y′) is completely analogous. Again, we consider only the regular
case.

Universality in the bulk. Let c belong to the interior of some cut. For simplicity we will consider
only A, but the result extends to the other case with obvious modifications in the roles of the
potentials. Due to regularity assumptions, at c we have ρ1(c) = C > 0. Consider

x = c + ξ

C N
, x ′ = c + η

C N
. (5.8)

Then a straightforward computation using Proposition 5.1 yields

1
ρ1(c)N

H01(x, x ′)e− N
2 (V1(x)+V1(x ′)) =

e− N
2 (g(2)(x)−g(2)(x ′))

2π i(ξ − η)

(
e

N
2 (ϕ1+(x)−ϕ1+(x ′)) − e− N

2 (ϕ1+(x)−ϕ1+(x ′))
)

(1 + O(N−1)). (5.9)

Recall that

ϕ1+(x) = iℑϕ1+(x) = −2iπ
∫ ∞

x
ρ1(s)ds, (5.10)

so that

lim
N→∞

1
ρ1(c)N

H01(x, x ′)e− N
2 (V1(x)+V1(x ′)) = e− g(2) ′ (c)

2ρ1(c) (ξ−η) sin(π (ξ − η))
π (ξ − η)︸ ︷︷ ︸

Ksin(ξ,η)

=: K̂sin(ξ, η). (5.11)

The prefactor above to the usual sine-kernel Ksin (ξ , η) is not universal (it depends on the densities);
however, since K̂sin is conjugate to Ksin ,

det K̂sin(ξi , ξ j ) = det Ksin(ξi , ξ j ). (5.12)

Therefore all spectral statistics, gap probabilities, etc., for M1 or M2 separately will follow the
standard universality results for the Hermitian matrix model.

Universality at the edge. Similarly, one finds near the edge x = a,

x = a + ξ

C N
2
3

, x ′ = a + η

C N
2
3

, C := lim
s→a−

πρ1(s)√
a − s

, (5.13)

lim
N→∞

1

C N
2
3

H01(x, x ′)e− N
2 (V1(x)+V1(x ′)) = Ai(η)Ai ′(ξ ) − Ai ′(η)Ai(ξ )

ξ − η
. (5.14)
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APPENDIX A: AN EXAMPLE: “DOUBLE LAGUERRE” BIORTHOGONAL POLYNOMIALS

We consider the case where the two potentials are the same V1(x) = V2(−x) and are of the
simplest possible form

e−V1(x) = xae−bx , (A1)

where both a, b > 0.
We can rescale the axis and set b = 1 without loss of generality.
The curve (3.4) appearing in Theorem 3.2 was computed in Refs. 2 and 7,

y3 −
(

1
3

+ a2

z2

)
y −

(
2a2 + 6a + 1

3z2
− 2

27

)
= 0. (A2)

According to Sec. IV C 1, we find a rational uniformization of this curve as

z = (1 + a)t + 2a + 1
2a + 2

(
1

t − 1
+ 1

t + 1

)
, (A3)

y = 2a + 1
2a

(
1

(a + 1)t − a
− 1

(a + 1)t + a

)
− 2

3
. (A4)

For a > 0 there are four symmetric branch points on the real axis and the inner ones tend to zero as
a → 0, whereas all four tend to infinity as ±(a ± 2

√
a) + O(1) as a → ∞. Explicit formulas for

the parametrix can be obtained by substituting u0 = 1 + a, u1 = u2 = 2a+1
2a+2 into (4.41).

APPENDIX B: NOTATION AND MAIN TOOLS

For a given smooth compact curve L of genus g with a fixed choice of symplectic homology
basis of α and β-cycles, we denote by ωℓ the normalized basis of holomorphic differentials

∮

α j

ωℓ = δ jℓ ,

∮

β j

ωℓ = τ jℓ = τℓj . (B1)

We will denote by 3 the theta function

3(z) :=
∑

n⃗∈Zg

eiπ n⃗·τ n⃗−2iπz·n⃗. (B2)

The Abel map u : L → Cg with a base-point p0 is

u(p) =
[∫ p

p0

ω1, . . . ,

∫ p

p0

ωg

]t

(B3)

and is defined up to the period lattice Z + τ · Z. For brevity we will omit any symbolic reference
to the Abel map when it appears as argument of a theta function: namely, if p ∈ L is a point and it
appears as an argument of a theta function, the Abel map will be implied, meaning that

3(p − q) stands for 3(u(p) − u(q)).

We denote by K the vector of Riemann constants

K j = −
g∑

ℓ=1

[∮

aℓ

ωℓ(p)
∫ p

p0

ω j (q) − δ jℓ
τ j j

2

]
, (B4)

where the cycles αj are realized as loops with basepoint p0 and the inner integration is done along a
path lying in the canonical dissection of the surface along the chosen representatives of the basis in
the homology of the curve.
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The Riemann constants have the crucial property that for a nonspecial divisor D of degree g,
D =

∑g
j=1 p j , then the function

f (p) = 3(p − D − K) (B5)

has zeroes precisely and only at p = pj, j = 1. . . g.
We also use theta functions with (complex) characteristics: for any two complex vectors ϵ⃗, δ⃗

the theta function with half-characteristics ϵ⃗, δ⃗ is defined via

3

[
ϵ⃗

δ⃗

]

(z) := exp
(

2iπ
(

ϵ⃗ · τ · ϵ⃗

8
+ 1

2
ϵ⃗ · z + 1

4
ϵ⃗ · δ⃗

))
3

(

z + δ⃗

2
+ τ

ϵ⃗

2

)

. (B6)

Here the half-characteristics of a point are defined by

2z = δ⃗ + τ ϵ⃗. (B7)

This modified theta function has the following periodicity properties, for λ, µ ∈ Zg ,

3

[
ϵ⃗

δ⃗

]

(z + λ + τµ) = exp
[
iπ (ϵ⃗ · λ − δ⃗ · µ) − iπµ · τ · µ − 2iπz · µ

]
3

[
ϵ⃗

δ⃗

]

(z). (B8)

Definition B.1. The prime form E(p, q) is the ( − 1/2, − 1/2) bi-differential on L × L,

E(p, q) = 3'(p − q)
h'(p)h'(q)

, (B9)

h'(p)2 :=
g∑

k=1

∂uk ln 3'

∣∣∣∣
u=0

ωk(p) =: ω'(p), (B10)

where ' =
[

ϵ⃗

δ⃗

]

is a half-integer odd characteristic (i.e., ϵ⃗ · δ⃗ is odd). The prime form does not

depend on a choice of '.

The prime form E(p, q) is antisymmetric in the argument and it is a section of an appropriate
line bundle, i.e., it is multiplicatively multivalued on L × L,

E(p + α j , q) = E(p, q), (B11)

E(p + β j , q) = E(p, q) exp
(

−τ j j

2
−

∫ q

p
ω j

)
. (B12)

In our notation for the half-characteristics, the vectors ϵ⃗, δ⃗ appearing in the definition of the prime
form are actually integer valued. We also note that the half order differential h' is in fact also
multivalued according to

h'(p + α j ) = eiπϵ j h'(p), (B13)

h'(p + β j ) = e−iπδ j h'(p). (B14)

Given a meromorphic function F (or a section of a line bundle) we will use the notation (F) for its
divisor of zeroes/poles. For example,

(F) ≥ −kp + mq (B15)

means that F has at most a pole of order k at p and a zero of multiplicity at least m at q.
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