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1 Introduction

In the last two years an intriguing relation between non-rational conformal field theories

in two dimensions and N = 2 supersymmetric gauge theories in four dimensions [1] has

been under scrutiny by a variously composed community of physicists and mathematicians.

This correspondence can be obtained by considering the AN−1 (2, 0) theory on R
4 × C —

where C is a punctured Riemann surface — and a related Hitchin integrable system [2, 3].

In the context of this correspondence, strongly coupled Argyres-Douglas points [4, 5, 7]

and their generalizations correspond to specific singular geometries of C as already realized

in [8]. A complementary picture was developed in [9] in terms of quiver representations

related to particular triangulations of the curve.

Most of the analysis of the correspondence put forward so far had to do with the

gauge theory in a weakly coupled regime where a Lagrangian frame can be found and

used to extract relevant physical quantities, including the instanton partition function [10],

to compare with the CFT prediction in the limit of degenerate complex structure of the

corresponding Riemann surface.

In this paper we will use the CFT approach in order to access a class of SU(2) gauge

theories coupled to superconformal field theories (SCFTs) without Lagrangian descriptions,
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obtained from the compactification of the A1 (2, 0) theory on a Riemann surface with

irregular singularities. The Nekrasov partition function can be defined [10] as the small

radius limit of a twisted index of a five dimensional theory on the circle. In order to

compute it in the gauge theory, one should have a definition of the proper Hilbert space and

Hamiltonian or a Lagrangian description of the theory. For strongly coupled matter sectors,

as for the SCFTs under consideration here, this direct approach looks hard. Instead,

we implement an extension of the Seiberg-Witten geometric construction to compute the

solution. This extension is provided by the AGT correspondence. We conjecture that

the relevant full prepotential in the Ω-background can be obtained by constructing the

generalized coherent states in the Verma module of the Virasoro algebra corresponding to

the SCFT sectors.

In section 2, we construct SU(2) quiver gauge theory coupled to SCFTs. The basic

building block, called Dn theory [9], is a deformation of the D-type superconformal fixed

point in the classification of [11]. This theory has global SU(2) flavor symmetry and, by

gauging it, we get the SU(2) gauge theory coupled to the Dn SCFT. The Seiberg-Witten

curve of the Dn theory can be described as a double cover of a sphere with an irregular

and a regular puncture, which extends Gaiotto’s construction in [8] for the A1 case. To

obtain the generic SU(2) quiver coupled to Dn SCFTs one further building block is needed,

namely the T2 theory of [8] which consists of four free hypermultiplets and is associated to

the sphere with three regular punctures. We call the resulting theories SU(2) wild quiver

gauge theories because of the link with Hitchin systems with wild ramification that will be

explained below.

In section 3, we relate these gauge theories with the Hitchin integrable system. The

Dn theory corresponds to the Hitchin system with wild ramification: we describe how the

most general irregular singularity encodes the relevant deformation parameters from the

corresponding superconformal fixed point and provide a precise prescription defining the

moduli of the theory, i.e. the vevs of relevant operators.

In section 4, we consider the CFT approach to the wild quiver gauge theory. We

first find that the CFT counterpart of the Dn theory is a generalization of the coherent

state [12] in the Verma module. These states correspond to the operators creating irregular

singularities of the stress-energy tensor on the Riemann surface. Therefore, we propose that

the corresponding irregular conformal blocks describe the partition functions of the wild

quiver gauge theories. We provide evidence of this proposal by reproducing the correct

prepotential of SU(2) gauge theories coupled to one or two Dn SCFTs. By studying

the insertions of degenerate fields on the irregular conformal blocks we then obtain the

quantization of the SL(2,C) Hitchin system with wild ramification.

We conclude with several open questions in section 5. In appendix A, we show the

calculation of the integral of the Seiberg-Witten differential which is used in the comparison

with the CFT approach.

2 Gauge theories with strongly coupled sectors

In [9] (see also [13]), a class of N = 2 gauge theories associated with a Riemann surface

with higher order singularities was discussed. Such a class of theories is specified by BPS
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quiver diagrams related with triangulations of the Riemann surface. Among them, we focus

on the so-called Dn theory which is associated with a sphere with a regular puncture of

degree 2 and an irregular puncture of degree n+ 2.

In section 2.1 we will see that this theory is obtained as a deformation of the maximally

superconformal fixed point of N = 2, SU(n − 1) gauge theory with two fundamental

hypermultiplets [11, 14]. Since Dn theories have an SU(2) flavor symmetry corresponding

to the regular puncture, we can gauge it to obtain SU(2) gauge theories coupled to them.

In section 2.2, we will see that for one SU(2) gauge group, at most two Dn theories can

be coupled and the corresponding Riemann surface is a sphere with at most two irregular

punctures. We will call this as Âm,n theory following [9]. Finally, we will discuss more

generic situations, namely SU(2) wild quiver gauge theory associated with a Riemann

surface with various regular and irregular punctures in section 2.3. The analysis in this

section is purely field-theoretical. The geometric viewpoint from string and M-theory will

be analyzed in the next section.

2.1 Dn theories

Let us first see that the Seiberg-Witten curve of the Dn theory is realized as a double cover

of a sphere with an irregular puncture of degree n + 2 and a regular one of degree 2. Let

us start with the Seiberg-Witten curve of SU(n − 1) gauge theory with two fundamental

hypermultiplets which has U(2) flavor symmetry [15–18]

y2 = (x̂n−1 + û2x̂
n−3 + . . .+ ûn−1)

2 − Λ2n−4
∏

i=1,2

(x̂+mi), (2.1)

where mi are the mass parameters of the fundamentals and ûi are the Coulomb moduli.

We follow the procedure used in [19] to obtain the maximally conformal point. Let us

define u1 = −n−1
2 (m1 + m2) and C2 = −1

4(m1 − m2)
2 which are related with the mass

parameters associated with the U(1) and the SU(2) flavor symmetries respectively. We

first shift x̂ = x+ u1

n−1 to obtain

y2 = (xn−1 + u1x
n−2 + u2x

n−3 + . . .+ un−1)
2 − Λ2n−4(x2 + C2), (2.2)

where ui with i = 2, . . . , n − 1 are defined to include the shifts due to the change of the

coordinate x. Then, this curve can be written as

y2 = (xn−1+ . . .+ ũn−2x+un−1)(x
n−1+ . . .+(ũn−2− 2Λn−2)x+un−1)−Λ2n−4C2, (2.3)

where ũn−2 = un−2 + Λn−2. We can easily see that when the moduli ui, ũn−2 and C2 are

small compared with Λ the curve around x = 0 degenerates to

y2 ∼ −2Λn−2xn, (2.4)

which indicates the maximally conformal point. In this limit, the Seiberg-Witten differen-

tial can be written as

λ = 2x̂
P 2

M
d
( y

P

)

∼ 1

Λn−2

ydx

x
, (2.5)
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where P = x̂n−1 + û2x̂
n−3 + . . .+ ûn−1 and M = P 2 − y2.

To see a small deformation from this point, we define ỹ2 = y2

Λ2n−4x2 . The Seiberg-

Witten curve of the deformed theory is

ỹ2 = xn−2 + c1x
n−3 + . . .+ cn−2 +

cn−1

x
+

C2

x2
, (2.6)

with Seiberg-Witten differential λ = ỹdx. The parameters ci descend from the moduli

parameters ui of the original curve. Note that we have rescaled x and ui to get rid of the

dynamical scale. It is obvious that the quadratic differential λ2 = ỹ2(dx)2 has a pole of

degree 2 at x = 0 and a pole of degree n+ 2 at x = ∞. Thus, we can see that similarly to

Gaiotto’s construction, the Seiberg-Witten curve (2.6) is a double cover of the sphere with

one regular puncture and one degree n+ 2 puncture, which is the curve of the Dn theory.

The topology of the curve is as follows: if we define ỹ2 = x−2Pn(z), then the branch points

are at the roots of Pn for even n and at the roots of Pn and ∞ for odd n. Therefore, the

genus of the Seiberg-Witten curve is n
2 − 1 for n even and n−1

2 for n odd.

The scaling dimensions of the deformation parameters can be easily determined by

demanding ∆(λ) = 1. It follows that

∆(C2) = 2, ∆(ci) =
2i

n
, i = 1, . . . , n− 1 (2.7)

Let us consider the meaning of these dimensions. In general, from a non-trivial supercon-

formal fixed point on the Coulomb branch in an N = 2 gauge theory, one can consider

a deformation by adding to the Lagrangian δL =
∫

d2θ1d
2θ2mV , where θ1,2 are the su-

perspace variables of N = 2 supersymmetry and V is the N = 2 vector superfield whose

lowest component is the chiral primary field v. Since we consider a non-trivial CFT, v

is a relevant operator if 1 < ∆(v) ≤ 2, and equivalently m is a relevant parameter if

0 ≤ ∆(m) < 1. Then, returning to the Dn theory, one can find a remarkable relation be-

tween the dimensions: ∆(ci) + ∆(cn−i) = 2 and when n is even ∆(cn/2) = 1. This implies

that ci for i = [n2 ] + 1, . . . , n − 1, where ∆(ci) > 1, are the vevs of the relevant operators

while for i = 1, . . . , [n2 ], where ∆(ci) ≤ 1, the coefficients ci are their corresponding cou-

plings and a dimension 1 parameter when n is even.1 The number of relevant operators is

therefore [n−1
2 ]. In order to make the difference explicit, we rename the vevs as va where

a = 1, . . . , [n−1
2 ] in the following.

The parameter C2, whose dimension is 2, comes from the Casimir of the mass parameter

associated with the SU(2) flavor symmetry. Since the superconformal fixed point keeps

this SU(2) flavor symmetry, C2 is still the Casimir mass parameter. Indeed, for a mass

parameter associated with a non-Abelian flavor symmetry, the scaling dimension does not

acquire an anomaly [14]. Note that when n = 3 the original flavor symmetry is enhanced

to SO(4) ∼ SU(2) × SU(2). However, the fixed point preserves only one of the SU(2)’s,

because of u1 ∼ Λ at that point. (Note that we have defined ũ1 = u1 + Λ for n = 3.)

Note also that these fixed points are in the same universality class of the ones which

can be obtained from N = 2, SO(2n) pure Yang-Mills theory as maximally conformal

1[s] is the integer part of s.
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points called as MDn in [11]. In fact, the dimensions of the parameters (2.7) are the same

as those in the table 3 in [11]. The name Dn seems to be more suitable from this viewpoint.

However, from the SO(2n) gauge theory viewpoint, it is not trivial to see how the SU(2)

flavor symmetry arises, though this was trivially seen in the analysis in this subsection.

For future reference, let us consider the curve (2.6) in the w = 1
x coordinate:

y2 =
1

wn+2
+

c1
wn+1

+ . . .+
c[n

2
]

w[n+3

2
]+1

+
v[n−1

2
]

w[n+3

2
]
+ . . .+

v1
w3

+
C2

w2
, (2.8)

with the Seiberg-Witten differential λ = ydw. We call this as Dn curve. Note that we

have assumed from the beginning that n ≥ 3. However, even for n = 1, 2 the curve exists,

although this does not describe a nontrivial theory. We will see these explicitly below.

The flavor central charges of these theories have been computed in [19, 20] as

k =
4(n− 1)

n
. (2.9)

We will use this later.

2.2 Âm,n theories

Now, we consider Âm,n theories. As already stated in [9], this is an SU(2) gauge theory

coupled to two SCFTs Dm and Dn. Let us first consider the small m and n cases.

Â1,1 theory. The simplest one is Â1,1 which is SU(2) pure super Yang-Mills theory. The

curve is x2 = φ2 with [2]

φ2 =
Λ2

z3
+

u

z2
+

Λ

z
, (2.10)

where u is the Coulomb moduli parameter. The Seiberg-Witten differential is denoted as

λ = xdz. The quadratic differential φ2(dz)
2 = λ2 has poles of degree 3 at z = 0 and ∞.

The Seiberg-Witten curve is a double cover of the sphere with two irregular punctures of

degree 3.

We can obtain the D1 curve by taking the weak coupling limit Λ → 0 of the above. By

redefining z = Λ2w, we obtain x̃2 = φ̃2 = Λ4φ2 → 1
w3 + u

w2 , where the differential is once

again λ = x̃dw. This is the D1 curve (2.8). Conversely, we can obtain the SU(2) pure Yang-

Mills theory by gauging the diagonal SU(2) flavor symmetries of two D1 theories. However,

these theories are empty and do not contribute to the beta function of the coupled SU(2)

gauge theory.

Â1,2 theory. This is SU(2) gauge theory with one fundamental hypermultiplet. The

curve is given by [2]

φ2 =
Λ2

z4
+

mΛ

z3
+

u

z2
+

Λ2

z
. (2.11)

The quadratic differential has poles of degree 4 at z = 0 and of degree 3 at z = ∞. Thus,

this theory is associated with the sphere with two punctures of degree 4 and 3.
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Similarly to the previous case, we can obtain the D2 curve from the above one by

redefining z = Λw and taking Λ → 0. In other words, by looking at the region near

z = 0 we get φ̃2 = Λ2φ2 → 1
w4 + m

w3 + u
w2 . Indeed the D2 theory is that of four free

half-hypermultiplets and contributes to the one-loop beta function coefficient by −1 once

the SU(2) symmetry is gauged.

Â1,3 theory. This is the first example which includes a nontrivial SCFT. By generalizing

the curve (2.11), we obtain the Seiberg-Witten curve x2 = φ2 where

φ2 =
Λ2

z5
+

Λ
4

3 c1
z4

+
Λ

2

3 v1
z3

+
u

z2
+

Λ2

z
. (2.12)

This theory is the SU(2) gauge theory coupled to the D3 theory. Indeed, by redefining

z = Λ2/3w and taking the weak coupling limit Λ → 0, we obtain

φ̃2 = Λ4/3φ2 →
1

w5
+

c1
w4

+
v1
w3

+
u

w2
, (2.13)

which is the D3 curve (2.8). As can be expected, the Coulomb moduli parameter

u corresponds to the mass parameter C2 associated with the SU(2) flavor symmetry

after decoupling.

The Seiberg-Witten curve of the Â1,3 theory (2.12) is a double cover of the sphere

with two punctures of degree 5 and 3. The branch points are at z = 0, ∞ and at the four

roots of the polynomial P4(z), where we defined φ2 = z−5P4(z). Therefore the genus of the

Seiberg-Witten curve is two. This matches with the fact that this theory can be seen as

a deformation of the superconformal point of a parent SU(2)× SU(2) quiver gauge theory

with one bifundamental hypermultiplet, whose Seiberg-Witten curve is indeed genus 2.

One can also see that the derivatives of the Seiberg-Witten differential λ with re-

spect to u and Λ
2

3 v1 give a basis of holomorphic differentials on the curve. Note that

the derivative with respect to c1 does not give an independent holomorphic differential

since c1 corresponds to a mass parameter not associated to the moduli of the original

SU(2)× SU(2) theory.

Since the D3 sector contributes to the one-loop beta function coefficient of the SU(2)

gauge theory by −k
2 = −4

3 , where k is given by (2.9), this coupled theory has b0 =
8
3 . This

fractional number reflects the fractional power of Λ in (2.12).

Âm,n theory. It is straightforward to generalize the above construction to the Â1,n, that

is to the SU(2) gauge theory coupled to the Dn SCFT. The curve is

φ2 =
Λ2

zn+2
+

Λ
2n−2

n c1
zn+1

+
Λ

2n−4

n c2
zn

+ . . .+
Λ

2

n v2
z4

+
Λ

2

n v1
z3

+
u

z2
+

Λ2

z
(2.14)

which is associated to a sphere with punctures of degree n + 2 and 3. Indeed, by taking

the weak coupling limit with z = Λ
2

nw, we reproduce the Dn curve (2.8). Let us check

the genus of this curve. We define φ2 = z−(n+2)Pn+1(z) where Pn+1 is a polynomial of

degree n+ 1. When n is even, the branch points of the curve are at the roots of Pn+1 and

at z = ∞, thus the genus is n
2 . When n is odd, the branch points are at the roots and
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z = 0,∞, leading to genus n+1
2 . This is greater than the genus of the Dn curve by one, as

can be expected.

Again, the one-loop beta function coefficient of this SU(2) gauge theory is

b0 =
2n+ 2

n
. (2.15)

We can expect that this theory can be obtained as a fixed point of SU(n − 1) × SU(2)

quiver gauge theory with a bifundamental field in (n − 1,2) representation.

Now, we consider the most general case Âm,n which is the SU(2) gauging of the Dn

and Dm SCFTs. The corresponding curve is

φ2 =
Λ2

zn+2
+

Λ
2n−2

n c1
zn+1

+
Λ

2n−4

n c2
zn

+ . . .+
Λ

2

n v1
z3

+
u

z2
+

Λ
2

m ṽ1
z

+ . . .+ Λ
2m−2

m c̃1z
m−3 + Λ2zm−2, (2.16)

where ci and va (c̃j and ṽb) are the relevant parameters and the vevs of the relevant

operators of the Dn (Dm) theory respectively. The one-loop beta function coefficient is

b0 = 2( 1n + 1
m).

At this stage, let us count the number of moduli of this theory. Obviouslus there is

a single Coulomb modulus while the other parameters are associated to the vevs of the

relevant operators va. As found in the previous subsection, the number of them for the Dn

theory is [n−1
2 ]. Therefore, the total number of the moduli is

(# of moduli) = 1 +

[

m− 1

2

]

+

[

n− 1

2

]

. (2.17)

When n = 2 or m = 2, the coupled sector is just a fundamental hypermultiplet. Hence

the Ân,2 theory is an SU(2) gauge theory coupled to the Dn SCFT and one fundamental

hypermultiplet. The parameter c̃1 in this case is nothing but the mass parameter of the

hypermultiplet. Finally, when n = m = 2, this reduces to the SU(2) gauge theory with

two fundamental hypermultiplets whose Seiberg-Witten curve is described by [2]

φ2 =
Λ2

z4
+

mΛ

z3
+

u

z2
+

m̃Λ

z
+ Λ2. (2.18)

Of course, the number of moduli (2.17) is one for the m = n = 2 case.

In summary, we constructed the Seiberg-Witten curve of the SU(2) gauge theory cou-

pled to two SCFTs by using as building blocks the Dn theories, the theory being associated

to the sphere with two irregular punctures. It is also possible to consider gauge theories

associated to generic Riemann surfaces with many irregular and regular punctures. This

turns out to be an SU(2) wild quiver gauge theory. We will see this below.

2.3 Generalization to wild quivers

In this subsection we generalize the above analysis to Riemann surface with ℓ regular

punctures and k irregular punctures with degree nα + 2 (α = 1, . . . , k) which we denote as

Cg,ℓ,{nα}. By definition, nα ≥ 1.
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The basic building blocks are C0,3 and C0,1,{n} where C0,3 = C0,3,{∅} and ∅ denotes

the absence of irregular punctures. The theory corresponding to C0,3 is that of four free

hypermultiplets which was called T2 theory in [8]. On the other hand, as analyzed in

the previous section, the latter is the new ingredient inducing the Dn theory. We can

construct a large class of SU(2) wild quiver gauge theories with (bi and tri)fundamental

hypermultiplets and coupled to SCFTs, by gauging SU(2) flavor symmetries of the T2 and

Dn theories. This gauging process corresponds to connect regular punctures of C0,3’s and
C0,1,{n}’s by thin tubes. In this way one can get any Riemann surface Cg,ℓ,{nα}.

Let us consider these quiver gauge theories more explicitly starting with the g = 0

case. According to our general construction, the (effective) beta function coefficients could

be vanishing or positive. Actually, connecting two C0,3’s leads to an SU(2) gauge group

whose one-loop beta function coefficient is zero. Connecting C0,3 and C0,1,{n} gives rise to an

asymptotically free gauge group. Therefore, the number of the asymptotically free SU(2)

gauge groups is k, the number of the irregular singularities.2 Then, there are ℓ+k−3 SU(2)

gauge groups which have vanishing beta function coefficients. The (bi and tri)fundamental

hypermultiplets couple with these gauge groups preserving a total flavor symmetry SU(2)ℓ.

Correspondingly, ℓ+ k − 3 complex structure moduli of the Riemann surface C0,ℓ,{nα}

are identified with the gauge coupling constants of the gauge groups with vanishing beta

function coefficients qi = e2πiτi . The Seiberg-Witten curve is the double cover of this

sphere: x2 = φ2(z). The quadratic differential locally has the following structures: at the

regular punctures z = zf (f = 1, . . . , ℓ),

φ2 ∼
m2

f

(z − zf )2
+ . . . , (2.19)

The residues of λ at z = zf are the mass parameters associated with the SU(2)ℓ flavor

symmetry. Near the irregular punctures, z = zα (α = 1, . . . , k)

φ2 ∼
Λ2
α

(z − zα)nα+2
+

Λ
2nα−2

nα
α cα1

(z − zα)nα+1
+

Λ
2nα−4

nα
α cα2

(z − zα)nα
+ . . .+

Λ
2

nα
α vα1

(z − zα)3
+

uα
(z − zα)2

+ . . . (2.20)

where uα and Λα are, respectively, the Coulomb moduli and the dynamical scale of the

gauge group which couples to the Dnα theory, and cαi (i = 1, . . . , [nα

2 ]) and vαa (a =

1, . . . , [nα−1
2 ]) are the parameters labeling the deformations from the fixed point. The

other Coulomb moduli parameters are encoded in the less singular terms in φ2.

The case with ℓ = 0 and k = 2 is exceptional in the sense that the above counting of

the number of the gauge groups is invalid. This corresponds to the Âm,n theory analyzed

in the previous section. The case with ℓ = 2 and k = 1 was analyzed in [9] where it

was called D̂n theory. These are the only two cases having one asymptotically free SU(2)

gauge group.

For g > 0, the construction is similar to the above one. The number of asymptotically

free gauge groups is still equal to k, and the number of gauge groups with vanishing beta

function coefficient is 3g − 3 + ℓ + k, which agrees with the number of complex structure

2This counting changes in the Âm,n case which is obtained by connecting two C0,1,{m} and C0,1,{n}.
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moduli of the Riemann surface Cg,ℓ,{nα}. There are in total 3g−3+ ℓ+2k Coulomb moduli

of the SU(2) gauge groups. Let us now include in the counting the vevs of the relevant

operators vαa . Therefore, the total number of moduli is

(# of the moduli) = 3g − 3 + ℓ+ 2k +
k

∑

α=1

[

nα − 1

2

]

. (2.21)

The Seiberg-Witten curve is given by a double cover of Cg,ℓ,{nα} and its local behavior at

the singularities is that of (2.19) or (2.20).

3 Geometric interpretation

So far, we considered four-dimensional SU(2) wild quiver gauge theories from a purely

field theoretical point of view. Linear and elliptic quivers are induced as world-volume

theories of an appropriate intersecting D4-NS5 brane system. Its M-theory lift leads to two

M5-branes wrapping the corresponding Riemann surface which is the base of the Seiberg-

Witten double cover [8, 21]. As found in [8], even if type IIA brane configuration does not

exist, a large class of superconformal quiver gauge theories can be obtained by wrapping

M5-branes on Cg,ℓ,{∅}, that is the one with only regular singularities. More precisely, the

theory is superconformal only at the origin of the moduli space and with vanishing masses.

The analysis in the previous section suggests that the SU(2) wild quiver gauge theory with

Dn sectors can also be obtained from two M5-branes compactified on Cg,ℓ,{nα}.

The low energy dynamics of two M5-branes, after decoupling the center of mass

mode, is governed by the N = (2, 0) A1 theory in six dimensions. Thus, the gauge the-

ory constructed in the previous section is given by compactifying the A1 (2, 0) theory

on R
1,3 × Cg,ℓ,{nα}.

In this section, we develop the geometrical interpretation of SU(2) wild quiver gauge

theories. In order to do that, it is crucial to find the related integrable system. As discussed

in [22] and more recently in [2, 23], for a large class of N = 2 superconformal quiver gauge

theories obtained from the (2, 0) theory on R
1,3×Cg,ℓ,{∅}, the Seiberg-Witten fibration was

identified with the Hitchin integrable system (or Hitchin fibration) associated to Cg,ℓ,{∅} [24–
28]. The singularity in the SU(2) superconformal case is the mildest one: we allow at most

double poles of the quadratic differential φ2. In terms of the Hitchin moduli space, this

corresponds to tame ramifications where the gauge and Higgs fields have simple poles.

However, we can allow a higher order singularity of the Higgs field, which is called wild

ramification [29]. Therefore, it is natural to expect that our theory associated with Cg,ℓ,{nα}

where we allow higher order singularities is related to the Hitchin moduli space with wild

ramifications. The case with g = 0, ℓ = 0 and nα ≤ 2 has been already discussed in [30].

Let us explain why such a connection with the Hitchin moduli space appears, starting

from the (2, 0) theory in six dimensions. As argued above, the (2, 0) theory compactified

on a Riemann surface induces a four-dimensional N = 2 gauge theory. Furthermore, let

us consider its compactification on R
1,1 × S1 × S1. By compactifying on S1, we get a

three-dimensional gauge theory whose Coulomb moduli space M is an hyper-Kähler man-

ifold. This, in a particular complex structure, is the Seiberg-Witten fibration of the four-
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dimensional theory [31]. By further compactifying on S1, we are led to a two-dimensional

N = (4, 4) sigma model with target spaceM. Let us go back to the (2, 0) theory and reverse

the order of the compactifications, namely we first compactify the (2, 0) theory on S1×S1,

which leads to N = 4 super Yang-Mills theory in four dimensions. Then, by compactifying

on the Riemann surface with a suitable twist, we get a sigma model whose target space is

the Hitchin moduli space MH [32–36]. Therefore, comparing the two perspectives of the

compactification of the (2, 0) theory suggests a relation between the low energy physics of

four-dimensional N = 2 gauge theory and the Hitchin moduli space. Note that a similar

argument for the case of R1,2 × S1 also leads to the same conclusion [2, 37, 38].

We will see below that wild quiver gauge theories are indeed related to Hitchin systems

with wild ramifications, and that this gives a further geometric understanding of the gauge

theory. We first give a review of the Hitchin system with wild ramifications in section 3.1.

Then, we discuss the correspondence with the Dn theories in section 3.2 and finally, in

section 3.3, we describe the wild quiver gauge theory in terms of the Hitchin systems with

wild ramifications.

3.1 Hitchin system with wild ramifications

In this subsection, we review the Hitchin system with wild ramifications. While the gauge

theory considered above corresponds to the Hitchin moduli space with the gauge group

SU(2), here we discuss the case of a generic gauge group.

First of all, we consider the case without ramification. Let G be a Lie group whose

algebra is denoted by g. Let E be a G-bundle on a Riemann surface Cg ≡ Cg,0,{∅} with

a connection A and φ be a one-form valued in ad(E). The space parametrized by (A, φ)

has an hyper-Kähler structure, with three complex structures conventionally written as I,

J and K satisfying IJ = K. In particular, in the complex structure I, Az̄ and φz are

holomorphic, Az̄ and φz being the (0, 1) and (1, 0) components of A and φ respectively. In

the complex structure J instead, Az + iφz and Az̄ + iφz̄ are holomorphic. In other words,

the GC valued connection A = A+ iφ is holomorphic. This implies that J does not depend

on the complex structure of Cg.3 Correspondingly, there are three symplectic structures

ωI , ωJ and ωK . Let us define ΩI = ωJ + iωK , and ΩJ and ΩK as its cyclic permutations.

In this notation, ΩI and ΩJ can be written as

ΩI ∼
∫

Cg

d2zTr δφz ∧ δAz̄, ΩJ ∼
∫

Cg

d2zTr δA ∧ δA, (3.1)

where δ denotes the exterior derivative on the space of (A, φ). These are holomorphic (2,0)

forms in the complex structures I and J respectively.

The Hitchin equations are

F − φ ∧ φ = 0,

Dφ = D ⋆ φ = 0 (3.2)

where F is the curvature of the connection and ⋆ is the Hodge star. The Hitchin moduli

space Mreg
H is the set of regular solutions to (3.2) divided by G gauge transformations.

3We are following here the notation in [34].
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Let us consider Mreg
H in the complex structure I. The Hitchin equations in the second

line of (3.2) are equivalent to Dz̄φz = 0 and its complex conjugate. This is holomorphic

in I since this only depends on Az̄ and φz. (This equation is equivalent to the vanishing

of the moment map associated with ΩI .) On the other hand, the first equation is a “real”

equation (which is equivalent to the vanishing of the real moment map with ωI). It turns

out to be convenient to treat these equations separately. Let us define ϕ = φzdz and call

it as the Higgs field. The equation Dz̄φz = 0 means that ϕ is a holomorphic section of

KCg ⊗ ad(E) where KCg is the canonical line bundle on Cg. Thus, the solutions to the

holomorphic equation are described by a pair (E,ϕ) where E is a holomorphic G-bundle

determined by Az̄.

Then, we impose the real equation F − φ∧ φ = 0. It can be shown that imposing this

equation and quotienting by G is equivalent to quotienting the pair (E,ϕ) by complexified

GC gauge transformations, modulo stability. Summarizing, the Hitchin moduli space MH,

in the complex structure I, is the pair (E,ϕ) divided by GC.

A similar analysis can be applied to the system in the complex structure J . The result

is that Mreg
H is the space of GC flat connections A divided by GC gauge transformations,

again modulo stability. Indeed, the vanishing of the moment map associated with ΩJ

is equivalent to the flatness condition. The complex dimension of the moduli space is

dimCMreg
H = 2(g − 1) dim(G). Since A is a flat connection, the moduli space can be

specified by the monodromies around the independent A and B cycles of Cg, Aα and Bα

(α = 1, . . . , g). These are GC valued and satisfy the condition:

1 = A1B1A
−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g . (3.3)

By dividing the GC gauge transformations, one can obtain the dimension above.

Let us now go back to the complex structure I and describe the so-called Hitchin

fibration as a completely integrable system [24]. For simplicity and for the purpose of this

paper, we choose G = SU(2). Then, we consider the space of gauge invariant polynomials

of ϕ. In the SU(2) case, this is generated by Trϕ2, a holomorphic quadratic differential

parametrizing Q = H0(Cg,K2
C). The Hitchin fibration is specified by a map Mreg

H → Q.

The complex dimension of the base space Q is simply given by 3(g − 1) which is one half

of the complex dimension of Mreg
H .

The commuting HamiltoniansHp (p = 1, . . . , 3(g−1)) can be constructed from Trϕ2 as

Hp =

∫

Cg

αp ∧ Trϕ2, (3.4)

where αp are basis of Beltrami differentials. We can easily show that these Hamiltoni-

ans commute with each other with respect to the holomorphic symplectic form ΩI (3.1),

because (3.4) depends only on φz. The spectral curve of the integrable system is defined by

x2 = Trϕ2, (3.5)

where we omitted (dz)2 and considered Trϕ2 as the coefficient of the quadratic differential.

This is identified with the Seiberg-Witten curve of the corresponding SU(2) quiver gauge

theory. In particular, Trϕ2 is identified with φ2 in the Seiberg-Witten curve in section 2.
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Wild ramification. Let us consider now the singular solutions. We focus on the case

with one singularity of degree m at z = 0 where z is a local coordinate on the Riemann

surface. The generalization to more singularities is straightforward, as we will see in sub-

sequent subsections.

Let T be the maximal torus of G. Let also t and tC be the Lie algebras of T and its

complexification respectively. We define the parameters ti ∈ tC and α ∈ t. The singular

solution which we focus on here is

A = αdθ + . . . ,

φ = dz

(

tm
zm

+ . . .+
t1
z

)

+ . . .+ c.c., (3.6)

where the ellipsis denotes the regular part. The moduli space MH is given by a space

parametrized by (A, φ) divided by G gauge transformations preserving the singular struc-

ture (3.6). As in the case of the regular solutions, we consider the moduli space MH in

the complex structures I and J .

In the complex structure J , the moduli space is a space of a GC valued flat con-

nection A with a singularity at z = 0. A can be transformed to the local form

A = dz
(

2tm
zm + . . .+ 2t2

z2
− iα−i2Imt1

z

)

. The moduli space is again parametrized by the mon-

odromies. However, compared to the regular case, the inclusion of the singularity induces

additional monodromy factors to (3.3) which are basically written in terms of the Stokes

matrices. By counting the dimension of them, one obtains [36]

dimCMH = 2(g − 1) dim(G) +m(dim(G)− r). (3.7)

where r is the rank of G. Note that the contribution of the singularity corresponds to the

second term in (3.7).

In the complex structure I, we give a local trivialization of E which reduces D̄ =

dz̄(∂z̄ +Az̄) to the ∂̄ operator. The Higgs field ϕ is given by the holomorphic part of (3.6)

ϕ = dz

(

tm
zm

+ . . .+
t1
z

)

+ . . . . (3.8)

Therefore, the moduli space is described by the pair (E,ϕ) where E is a holomorphic G-

bundle. This moduli space in this complex structure I varies holomorphically with the

parameters t1, . . . , tm.

Now, let us consider the Hitchin fibration MH → Q where Q is the space of a quadratic

differential, focusing again to the SU(2) case. The quadratic differential is locally

Trϕ2 =
Tr t2m
z2m

+
2Tr tmtm−1

z2m−1
+ . . .+

2Tr tmt1 + . . .

zm+1
+ . . . . (3.9)

Note that the terms less singular than 1/zm+1 depend on the regular terms of the Higgs

field. This will be very important to make a connection to the gauge theory. The base space

Q is of complex dimension 3g− 3+m. Indeed, this can be seen as follows: the parameters

in Q are the ones needed to specify the last dots in (3.9), since the more singular terms

are fixed by ti’s. This is one half of the complex dimension of MH counted above.
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3.2 Dn theory and Hitchin system

We are ready to describe the singularity structure of the Higgs field which corresponds to

the Dn theory. Here we focus on the Hitchin fibration in the complex structure I.

Before going into the Dn theory, let us briefly recall the case for N = 2 superconformal

SU(2) gauge theories associated to the Riemann surface Cg,ℓ. In this theory the relation with

the Hitchin system is as follows: the Coulomb moduli space, parametrized by ui =
〈

trφ2
i

〉

,

is identified with the base space Q of the Hitchin fibration, as in [22]. Note that mass

parameters do not correspond to the variables parametrizing Q. Indeed, the quadratic

differential has at most double poles which correspond to regular singularities of degree

1 of the Higgs field. Thus, the parameter t1 of the Higgs field is related to the mass

parameter which is the residue of the Seiberg-Witten differential. As argued above, the

Hitchin fibration depends holomorphically on this parameter. Thus, the Coulomb moduli

and the mass parameters are on different footings.

We will see below that these relations are slightly modified in the Dn theory case. First

of all, let us consider n = 2m. Our claim is that the Hitchin moduli space associated with

the D2m theory is the one in which the Higgs field has a singularity of order m+1 at z = 0

ϕ ∼ dz

(

tm+1

zm+1
+ . . .+

t1
z
+ . . .

)

, (3.10)

and of order 1 at z = z∞

ϕ ∼ dz

(

t̃1
z − z∞

+ . . .

)

. (3.11)

More explicitly, by comparing with (2.8), we identify the parameters as

tm+1 = σ3, tm =
c1
2
σ3, tm−1 =

1

2

(

c2 −
c21
4

)

σ3, . . . . (3.12)

where σ3 = diag(1,−1)/
√
2.

Let us first see the dimension of the moduli space MH and interpret it from the gauge

theory point of view. The complex dimension ofMH with the required singularity structure

is dimCMH = −6 + 2(m + 1) + 2 = 2(m − 1). Correspondingly, the complex dimension

of Q is m − 1. With m = 1, this has to correspond to the D2 theory. Indeed, the D2

theory is simply that of the four free half-hypermultiplets and does not have any modulus

in agreement with dimCQ = 0. What are the m− 1 moduli in the D2m theory for m > 1?

As discussed at the end of section 2.1, this theory has m− 1 parameters va which are the

vevs of relevant operators. Therefore, we identify them with the moduli parametrizing the

base space Q of the Hitchin fibration.

Indeed, this can be made more concrete by comparing the spectral curve and the

Seiberg-Witten curve. Let us write down the local behavior of the spectral curve at z = 0

Trϕ2 ∼ Tr t2m+1

z2m+2
+ . . .+

2Tr tm+1t1 + . . .

zm+2
+ . . . (3.13)

As already noted in (3.9), the terms of order higher than 1/zm+1 depend only on the

parameters ti which specify the singularity of the Higgs field. The regular part of the
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Higgs field will enter the equation from the order 1/zm+1 on. In the Seiberg-Witten curve

of the Dn theory, the vevs of the relevant operators va will also enter from the order 1/zm+1

as in (2.8). Therefore, the geometric meaning of the parameters of the D2m theory now

becomes clear: the relevant parameters ci correspond to the parameters ti of the Higgs field

specifying the singular part. The Hitchin fibration varies holomorphically with them. On

the other hand, the vevs of the relevant operators va correspond to the moduli of the base

space of the Hitchin fibration. So, we see that the parameters are on different footings, as

in the case with regular singularities.

Let us now discuss the case n = 2m − 1 (m ≥ 1). At first sight, we encounter a

contradiction because the most singular term of the spectral curve is always of even degree.

Therefore, it is impossible to describe this case from solutions of section 3.1. Notice however

that when we wrote down (3.6) we restricted to ti ∈ tC. Thus, we relax this condition and

allow tm to be a nilpotent element of GC, which, in the SL(2,C) case, corresponds to

σ± = σ1 ± iσ2.

As discussed in [36], after a gauge transformation, one can recover an analogous local

behavior to the previous case but on the double cover of the z-plane, namely

A = 0, φ = dt
( sm
t2m

+
sm−1

t2(m−1)
+ . . .+

s1
t2

)

+ . . .+ c.c.. (3.14)

where si ∈ tC and t2 = z. The dimension of the SL(2,C) Hitchin moduli space is

dimCMH = 6(g−1)+2(m+1) and, in the complex structure I, the Hitchin fibration varies

holomorphically with respect to the parameters si. By going back to the z-coordinate,

we get

A = 0, φ = dz

(

sm

zm+1/2
+

sm−1

zm−1/2
+ . . .+

s1

z3/2

)

+ . . .+ c.c., (3.15)

where the fractional power indicates the presence of a cut in the z-plane.

Now, our claim is that the D2m−1 theory can be described by the Hitchin fibration

with a singularity as above at z = 0 and a regular singularity as in (3.11) at z = z∞. The

complex dimension of the Hitchin moduli space in this case is −6+2(m+1)+2 = 2(m−1).

Indeed, the spectral curve near to z = 0 is

Trϕ2 ∼ Tr v2m
z2m+1

+
2Tr vmvm−1

z2m
+ . . .+

2Tr vmv1 + . . .

zm+2
+ . . . . (3.16)

As in the previous case, the terms less singular than 1/zm+2 include the regular terms, and

the dimension of the space Q of these quadratic differentials is m−1. So, the parameters si
are related with the relevant deformation parameters ci and the moduli of Q corresponds

to the vevs of the m − 1 relevant operators va. Therefore, the geometric meaning of the

gauge theory parameters is the same as in the n = 2m case.

3.3 Wild quiver gauge theories and Hitchin systems

In this subsection, we shortly consider the Hitchin moduli space corresponding to SU(2)

wild quiver gauge theories in section 2.3. Associated with Cg,ℓ,{nα} where α = 1, . . . , k, we
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constructed SU(2) quiver gauge theory with k strongly coupled sectors Dnα . Here nα is

the degree minus 2 of the singularity of the quadratic differential φ2 (2.20).

The corresponding Hitchin moduli space is formulated on a genus g Riemann surface

with k irregular and ℓ regular singularities. The singularity structure of the Higgs field is

specified by (3.10) when nα = 2m and (3.15) when nα = 2m− 1, and by (3.11) for regular

singularities. Let us check the dimension of the Hitchin moduli space. As in the previous

subsection, the singular behavior of the Higgs field, corresponding to an irregular singularity

of the Dn theory, contributes to the complex dimension by 2[n+3
2 ]. Moreover, each regular

singularity contributes by 2 to the dimension of the Hitchin moduli space. Therefore, the

complex dimension of the Hitchin moduli space is dimCMH = 6(g−1)+2ℓ+2
∑k

α=1[
nα+3

2 ]

and correspondingly,

dimCQ = 3g − 3 + ℓ+
k

∑

α=1

[

nα + 3

2

]

. (3.17)

This agrees with the counting of the moduli on the gauge theory side (2.21).

4 Irregular conformal blocks

In [1], it was proposed that the instanton partition function of a weakly coupled N = 2,

SU(2) gauge theory associated with a particular marking of the Riemann surface Cg,ℓ can
be obtained from the Virasoro conformal block on Cg,ℓ. In this section we claim that

the partition function of the wild quiver gauge theory can be obtained from irregular

conformal blocks on Cg,ℓ,{nα}. To make this statement more precise, we have to specify

what corresponds to the basic building block C0,1,{n}. It is already known that for n = 1, 2

cases, this can be described by the coherent state in the Verma module [12].4 Here, we

need to find the generalization of this state, which we will refer to as |Gn〉 corresponding
to C0,1,{n}.

First of all, let us review the properties of the state for n = 1, 2. For n = 1 the state

is specified by the coherent condition:

L1 |G1〉 = Λ̂2 |G1〉 , Ln |G1〉 = 0, (for n > 1) (4.1)

in the Verma module of conformal weight ∆. Equivalently, this state can be written as [50]

|G1〉 =
∞
∑

k=0

Λ̂2kQ−1
∆ (1k;Y )L−Y |∆〉 , (4.2)

where |∆〉 is the primary state of weight ∆ and Q−1
∆ is the inverse of the Shapovalov

matrix: Q∆(W ;Y ) = 〈∆|LWL−Y |∆〉 and we use the notation L−Y = (L−1)
m1(L−2)

m2 . . .

for Y = {Y1, Y2, . . .} = [1m12m2 . . .]. Indeed, one can show that 〈∆|LY |G1〉 = Λ̂2kδY,1k ,

and this implies (4.1).

4Analogous coherent states were discussed in [39–49] for various different conformal algebras. These

states are also called Whittaker vectors in mathematics.
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The inclusion of the mass parameter, that is the state corresponding to the D2 theory,

is specified by

L1 |G2〉 = m̂Λ̂ |G2〉 , L2 |G2〉 = Λ̂2 |G2〉 , Ln |G2〉 = 0, (for n > 2) . (4.3)

This state can be written as

|G2〉 =
∞
∑

k=0

∑

p=0

m̂k−2pΛ̂kQ−1
∆ (2p1k−2p;Y )L−Y |∆〉 , (4.4)

where the sum over p is taken such that k − 2p is not negative. As above, one can check

that 〈∆|LY |G2〉 = m̂k−2pΛ̂kδY,2p1k−2p , which leads to (4.3).

By using these states, one can write the Nekrasov partition function of SU(2) gauge

theories withNf = 0, 1, 2, which are the Âm,n theories withm,n = 1, 2. For the Â1,1 theory,

it was checked in [12] that the partition function is just the norm of the simplest state:

Z
Â1,1

Nek = 〈G1|G1〉 . (4.5)

Moreover, for the Â1,2 and Â2,2 theories we have Z
Â1,2

Nek = 〈G1|G2〉 and Z
Â2,2

Nek = 〈G2|G2〉.
The identification of the parameters is as follows. First of all, since the parameters in the

conformal block are dimensionless, we have to supply a scale which we denote by ~. The

Nekrasov deformation parameters are then identified as

ǫ1 = b~, ǫ2 = −~/b. (4.6)

In other words, ~2 = −ǫ1ǫ2. The mass parameters and the vev of the scalar multiplet are

identified as m = ~m̂, ia = ~α and Λ = ~Λ̂, where α is the internal momentum and the

conformal dimension is ∆ = Q2

4 −α2. Note that we identified the scalar multiplet vev up to

an i factor for later convenience. The relation (4.5) was proved in [51] by using recursion

relations [52–55].

In [1], it was found that the Seiberg-Witten curve can be obtained from the classical

limit ǫ1,2 → 0 of the vev of the energy-momentum tensor in the conformal block. This

works also in the above examples [12]:

− ǫ1ǫ2
〈G1|T (z) |G1〉

〈G1|G1〉
→ Λ2

z3
+

U

z2
+

Λ2

z
≡ φCFT

2 , (4.7)

where we have taken the gauge theory limit ǫ1,2 → 0. U is denoted by

U = lim
ǫ1,ǫ2→0

(−ǫ1ǫ2)
〈G1|L0 |G1〉
〈G1|G1〉

= a2 − lim
ǫ1,ǫ2→0

ǫ1ǫ2
4

∂ ln 〈G1|G1〉
∂ ln Λ

= a2 +
1

4

∂F

∂ ln Λ
, (4.8)

where we have defined 〈G1|G1〉 = e
− F

ǫ1ǫ2
+...

. This U therefore coincides with the Coulomb

moduli u in the Seiberg-Witten curve by using the Matone relation [56]. Thus, (4.7) agrees

with (2.10). Similarly, it is easy to see that

− ǫ1ǫ2
〈G1|T (z) |G2〉

〈G1|G2〉
→ Λ2

z4
+

mΛ

z3
+

U

z2
+

Λ2

z
,

−ǫ1ǫ2
〈G2|T (z) |G2〉

〈G2|G2〉
→ Λ2

z4
+

mΛ

z3
+

U

z2
+

m̃Λ

z
+ Λ2, (4.9)

which are (2.11) and (2.18).
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4.1 Generalization of the coherent states

The form of the Seiberg-Witten curve and the above observations suggest that the partition

functions of the Âm,n theory and of more general wild quiver gauge theories can be obtained

by generalizing the above coherent state. However, the naive generalization like Lk |Gn〉 ∼
|Gn〉 for k ≤ k0, and Lk |Gn〉 = 0 for k > k0 is inconsistent with the Virasoro algebra.

Thus we can no longer use the coherent condition to describe these theories. It turns out

to be easier to approach the problem using the explicit expression of the state like (4.2)

and (4.4).

As a generalization of the states |G1〉 and |G2〉, we introduce

|Gn〉 =
∞
∑

k=0

∑

ℓp

Λ̂2k/n

[n
2
]

∏

i=1

ĉ
ℓn−i

i

[n−1

2
]

∏

a=1

v̂ℓaa Q−1
∆ (nℓn(n− 1)ℓn−1 · · · 2ℓ21ℓ1 ;Y )L−Y |∆〉 , (4.10)

with ℓ1 = k −∑n
m=2mℓm, which is associated with the Dn theory. The parameters Λ̂, ĉi

and v̂a are identified with the dynamical scale of the theory and the parameters of the Dn

theory as ~Λ̂ = Λ, ~2i/nĉi = ci and ~
2(n−a)/nv̂a = va.

Let us derive the conditions satisfied by this state. It is easy to see that

〈∆|LY |Gn〉 =







Λ̂2k/n
∏[n

2
]

i=1 ĉ
ℓn−i

i

∏[n−1

2
]

a=1 v̂ℓaa , for Y = nℓn(n− 1)ℓn−1 · · · 2ℓ21ℓ1

0, otherwise
(4.11)

which implies that

L1 |Gn〉 = Λ̂
2

n v̂1 |G3〉 , Lk |Gn〉 = 0 for k > n. (4.12)

To compute the action of Ln, we first observe that LY Ln = LY ′ + . . ., where the dots

denote terms involving Lk with k > n and Y ′ = nℓn+1(n− 1)ℓn−1 · · · 2ℓ21ℓ1 . Therefore, we

obtain 〈∆|LY Ln |Gn〉 = 〈∆|LY ′ |Gn〉 = Λ̂2 〈∆|LY |Gn〉 which implies

Ln |Gn〉 = Λ̂2 |Gn〉 . (4.13)

We note that the state (4.10) is not an eigenfunction of Lk with 1 < k < n. For

example, for k = n − 1 the argument goes as follows. Let us observe that LY Ln−1 =

LY
′′ + (2 − n)ℓ1LY

′′′ + . . ., where again the dots denote terms involving Lk with k > n.

Also, Y
′′
= nℓn(n − 1)ℓn−1+1 · · · 2ℓ21ℓ1 and Y

′′′
= nℓn+1(n − 1)ℓn−1 · · · 2ℓ21ℓ1−1. Therefore,

we obtain

〈∆|LY Ln−1 |Gn〉 = Λ̂2(n−1)/nĉ1 〈∆|LY |Gn〉+(2−n)ℓ1Λ̂
2(k+n−1)/n

[n
2
]

∏

i=1

ĉ
ℓn−i

i

[n−1

2
]

∏

a=2

v̂ℓaa v̂ℓ1−1
1

= Λ̂2(n−1)/n

(

ĉ1 + (2− n)
∂

∂v̂1

)

〈∆|LY |Gn〉 , (4.14)

which implies that

Ln−1 |Gn〉 = Λ̂2(n−1)/n

(

ĉ1 + (2− n)
∂

∂v̂1

)

|Gn〉 . (4.15)
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The action of the other Lk’s can be calculated in a similar way, for example

Ln−2 |Gn〉 = Λ̂2(n−2)/n

(

ĉ2 + (3− n)ĉ1
∂

∂v̂1
+

(2− n)(3− n)

2

∂2

∂v̂21
+ (4− n)

∂

∂v̂2

)

|Gn〉 ,

(4.16)

and so on. A generic feature is that the action of Ln−k starts with a linear term in the

corresponding parameter and the remaining terms, although involved, can be written as

linear differential operators in the parameters.

4.2 Irregular conformal block on Cg,ℓ,{nα}

Now we are ready to consider the conformal block on Cg,ℓ,{nα} (with a particular marking),

by using the sewing procedure. Without irregular punctures, the only building block

corresponding to C0,3 is the chiral three-point function. Connecting two C0,3’s through a

tube generates the four-point conformal block

∑

Y,W

〈∆1|Vα2
L−Y |∆〉Q−1

∆ (Y ;W ) 〈∆|LWVα3
|∆4〉 . (4.17)

By repeatedly applying this procedure we can in principle construct the conformal block

on any Cg,ℓ,{∅}. This was proposed to be equivalent to the Nekrasov partition function of

a weakly coupled N = 2 gauge theory with vanishing beta function, associated with the

same (marking of) Cg,ℓ,{∅} [1]. (See [57, 58] for higher genus case).

The inclusion of the second building block C0,1,{n} is easily understood as follows: con-

necting two regular punctures of C0,3 and C0,1,{n} can be denoted by the three-point function

〈∆1|Vα2
|Gn〉 , (4.18)

where |Gn〉 is the state constructed in the previous subsection. In the gauge theory, this

denotes an SU(2) gauge theory coupled with two fundamental flavors, corresponding to

two regular punctures, and one strongly coupled sector Dn (denoted as D̂n theory in [9]).

Note that in the case with n = 1, 2, this corresponds to SU(2) gauge theory with two and

three flavors respectively and was already analyzed in [12]. By further connecting this with

other building blocks as in (4.17) we obtain the generic conformal block on Cg,ℓ,{nα}. This

describes the wild quiver gauge theory constructed in section 2.3.

One exception of this construction is the case C0,0,{m,n}, namely a sphere with two

irregular punctures. This is simply the scalar product of the states |Gm〉 and |Gn〉, and
corresponds to the Âm,n gauge theory. Namely, we conjecture that the partition function

of the Âm,n theory is the scalar product of the generalized states:

Z
Âm,n

Nek = 〈Gm|Gn〉 , (4.19)

in the appropriate identification of the parameters. A weaker statement, which we will

check in the present paper, is that the prepotential of the gauge theory can be obtained

from F = − limǫ1,2→0(ǫ1ǫ2) log 〈Gm|Gn〉.
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For a check of this relation we can see that the insertion of the energy-momentum

tensor can be written as

− ǫ1ǫ2
〈Gm|T (z) |Gn〉

〈Gm|Gn〉
→ φCFT

2 =
Λ2

zn+2
+

Λ
2n−2

n (c1 + s1)

zn+1
+

Λ
2n−4

n (c2 + s2)

zn
+ . . .+

Λ
2

n v1
z3

+
U

z2
+

Λ
2

m ṽ1
z

+ . . .+ Λ
2m−2

m (c̃1 + s̃1)z
m−3 + Λ2zm−2

(4.20)

where ci, va and c̃i, ṽa are the parameters in the |Gm〉 and |Gn〉 states and we supplied

the dimension to the parameters. si and s̃i can be written in terms of the derivatives of F

with respect to va and ṽa, which comes from the derivative terms in the definition of the

state (4.15) and (4.16). We defined the coefficient of the double pole as

U = a2 +
1

b0

∂F

∂ ln Λ
. (4.21)

where b0 is the one-loop beta function coefficient of the Âm,n theory. This shows that φCFT
2

has a similar structure as that of φ2. Let us below consider a few example more explicitly

and check the agreement with the gauge theory.

Irregular conformal block for the Â1,3 theory. The state |G3〉 is given by

|G3〉 =
∞
∑

k=0

∑

p,q

Λ̂2k/3ĉq1v̂
k−3p−2q
1 Q−1

∆ (3p2q1k−3p−2q;Y )L−Y |∆〉 , (4.22)

which satisfies 〈∆|LY |G3〉 = Λ̂2k/3ĉq1v̂
k−3p−2q
1 for Y = 3p2q1k−3p−2q. From the general

argument above, this state is also specified by

L1 |G3〉 = Λ̂
2

3 v̂1 |G3〉 , L2 |G3〉 = Λ̂
4

3

(

ĉ1 −
∂

∂v̂1

)

|G3〉 , L3 |G3〉 = Λ̂2 |G3〉 , (4.23)

and Lk |G3〉 = 0 for k > 3. We will consider the scalar product 〈G1|G3〉.
The insertion of the energy-momentum tensor can be written as

− ǫ1ǫ2
〈G1|T (z) |G3〉

〈G1|G3〉
→ φCFT

2 =
Λ2

z5
+

Λ4/3(c1 + s)

z4
+

Λ2/3v1
z3

+
U

z2
+

Λ2

z
, (4.24)

where we supplied the dimensions to the parameters and introduced

s = − ∂F

∂v1
. (4.25)

Note that s comes from the derivative term in the L2 action on |G3〉 (4.23).
Let us then compute the scalar product explicitly. By expanding in Λ, this is written as

〈G1|G3〉 =
∑

k=0

Λ8k/3Bk, (4.26)
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where Λ = ~Λ̂, B0 = 1 and the lowest orders are

B1 =
v1

2(ǫ1ǫ2)2∆
, B2 =

(8∆ + c)v21 − 12∆c1
4(ǫ1ǫ2)4∆(2∆(8∆− 5) + (1 + 2∆)c)

, . . . . (4.27)

Then, it is easy to get

F =
v1
2a2

Λ8/3 +
5v21 − 12c1a

2

64a6
Λ16/3 +

9v31 − 28c1v1a
2 + 32a4

192a10
Λ8 + . . . (4.28)

One may think that this might be equivalent to the prepotential of the Â1,3 theory. How-

ever, there is a subtlety associated to the presence of s in (4.24). As we will see in detail

in a moment, this provides a redefinition of the c1 modulus of the CFT curve which gives

back the u modulus of the Seiberg-Witten curve. We will postpone the discussion on the

agreement with the prepotential to the next subsection.

At this stage, we can however check at least the equivalence between φ2 and φCFT
2 . In

order to get the same expression, we have to identify the parameter c1 in the gauge theory

with c1 + s in (4.24). A subtlety here is that s is an infinite series in Λ. However, we can

do the identification order by order in the Λ expansion. Then U , which depends on c1,

should be considered under this identification

U = a2 +
3

8

∂F

∂ ln Λ

∣

∣

∣

∣

∣

c1→c1−s

= a2 +
v1
2a2

Λ8/3 +
5v21 − 12c1a

2

32a6
Λ16/3 +

9v31 − 28c1v1a
2 + 20a4

64a10
Λ8 + . . . . (4.29)

We can see that this agrees with the u modulus (A.7) calculated in the appendix A from

the Seiberg-Witten curve.

Irregular conformal block for the Â1,4 theory. Let us next consider the state |G4〉
which is characterized by

L1 |G4〉 = Λ̂
1

2 v̂1 |G4〉 , L2 |G4〉 = Λ̂

(

ĉ2 − ĉ1
∂

∂v̂1
+

∂2

∂v̂21

)

|G4〉 ,

L3 |G4〉 = Λ̂
3

2

(

ĉ1 − 2
∂

∂v̂1

)

|G4〉 , L4 |G4〉 = Λ̂2 |G4〉 , Lk |G4〉 = 0, (k > 4)

(4.30)

We consider the scalar product 〈G1|G4〉. The insertion of the energy-momentum tensor

and the limit ǫ1,2 → 0 lead to

φCFT
2 =

Λ2

z6
+

Λ3/2(c1 + s1)

z5
+

Λ(c2 + s2)

z4
+

Λ1/2v1
z3

+
U

z2
+

Λ2

z
, (4.31)

where

s1 = −2
∂F

∂v1
, s2 = −c1

∂F

∂v1
−
(

∂F

∂v1

)2

. (4.32)
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These are obtained from the derivative terms in (4.30). As explained for the previous case,

in order to compare with the Seiberg-Witten curve we have to identify the gauge theory

parameters ci (i = 1, 2) with ci + si appearing in (4.31). The function F can be calculated

to be

F =
v1
2a2

Λ5/2 +
5v21 − 12c2a

2

64a6
Λ5 +

9v31 − 28c2v1a
2 + 32c1a

4

192a10
Λ15/2 + . . . . (4.33)

As in the previous case, the value of U after the shifting ci → ci − si (i = 1, 2) can be

checked to agree with the u modulus (A.8) calculated from the gauge theory.

Irregular conformal block for the Â2,3 theory. As a last example, we consider

〈G2|G3〉 corresponding to the Â2,3 theory. As before, the energy-momentum tensor inser-

tion in the ǫ1,2 → 0 limit lead to

φCFT
2 =

Λ2

z5
+

Λ4/3(c1 + s)

z4
+

Λ2/3v1
z3

+
U

z2
+

Λm

z
+ Λ2, (4.34)

where s is expressed by (4.25), and F can be calculated as

F =
mv1
2a2

Λ5/3 +
5m2v21 − 12(m2c1 + v21)a

2 + 16c1a
4

64a6
Λ10/3

+
m(9m2v31 − 28(m2c1v1 + v31)a

2 + (80c1v1 + 32m2)a4 − 64a6)

192a10
Λ5 + . . . (4.35)

Again by taking the existence of s in φCFT
2 into account, we find that U agrees with the

gauge theory result (A.8).

4.3 Insertion of degenerate field

In this subsection, we consider the insertion of a degenerate field in the conformal blocks.

We concentrate on the degenerate field Φ1,2, which is the operator with Liouville momentum

− 1
2b (and thus the dimension ∆1,2 = −1

2 − 3
4b2

) and define the conformal block with the

additional degenerate field as Ψ(z), e.g., in the case of the scalar product of the states that

we considered in the previous subsection we define

Ψ(z) = 〈Gm|Φ1,2(z) |Gn〉 . (4.36)

We will obtain below the second order differential equation satisfied by (4.36) which follows

from the null field condition (b−2L−2+(L−1)
2)Φ1,2(z) = 0 [59]. The equations for the case

with m = n = 1 and with m,n ≤ 2 were calculated in [60] and [61, 62] respectively. We

will also consider the monodromies of Ψ along some non-contractible cycles of the Riemann

surface. As in [63], this leads, in the ǫ1,2 → 0 limit, to the special geometry relation

identified with the Seiberg-Witten one. By using this idea, we will calculate the prepotential

of the gauge theory from the CFT analysis performed in the previous subsection.

In [63], it was claimed that the insertion of the degenerate field corresponds to the

Nekrasov partition function in presence of a surface operator. This was checked and ana-

lyzed in [61, 62, 64–66]. It is natural to think that Ψ here describes the surface operator

insertion in the wild quiver gauge theory.
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First of all, we note that in the limit ǫ1,2 → 0, the semiclassical expansion of (4.36)

dictates the dependence on z to start from the subleading order in ~ as

Ψ = exp

(

− 1

ǫ1ǫ2

(

F +
~

b
W(z) +O(~2)

))

, (4.37)

where the first term is the leading term in the scalar product that we computed in the

previous subsection.

Let us then derive the differential equation for Ψ(z). While this can be obtained in any

irregular conformal block which includes several generalized states, we focus here on the

case of (4.36). Let ∆ = ∆(α−1/4b) and ∆′ = ∆(α+1/4b) be the conformal dimensions of

the level zero parts of |Gm〉 and |Gn〉, in accordance with the fusion rule. Then, what we

need to calculate is 〈Gm|L−2Φ1,2(z) |Gn〉. In order to do that, we consider the insertion of

the energy momentum tensor:

〈Gm|T (w)Φ1,2(z) |Gn〉

=
∞
∑

n=0

1

wn+2
〈Gm| [Ln,Φ1,2(z)] |Gn〉

+
1

w2
〈Gm|Φ1,2(z)L0 |Gn〉 −

1

ǫ1ǫ2
φ̂CFT
2 〈Gm|Φ1,2(z) |Gn〉

=

[

z

w(w − z)

∂

∂z
+

∆1,2

(w − z)2
− 1

ǫ1ǫ2
φ̂CFT
2

+
2

b0w2

(

− z

m

∂

∂z
− ∆1,2

m
+

1

2

∂

∂ ln Λ
+

m∆+ n∆′

mn

)

]

Ψ(z), (4.38)

where we used [Ln,Φ1,2(z)] =
(

zn+1∂z + (n+ 1)zn∆1,2

)

Φ1,2 and

∂

∂ ln Λ
Ψ(z) =

2

m
〈Gm| [L0,Φ1,2(z)] |Gn〉+ b0 〈Gm|Φ1,2(z)L0 |Gn〉 − 2

(

∆′

m
+

∆

n

)

Ψ(z),

in order to rewrite 〈Gm|Φ1,2(z)L0 |Gn〉 in the second line. Moreover, we defined φ̂CFT
2 as

φ̂CFT
2 = φCFT

2 − U

z2
. (4.39)

By reading off the coefficients of (w − z)0 in (4.38), we get 〈Gm|L−2Φ1,2(z) |Gn〉 =

L̂Ψ(z) where

L̂ = − 1

ǫ1ǫ2
φ̂CFT
2 − 1

z2

(

1 +
2

b0m

)

z
∂

∂z
+

2

b0z2

(

−∆1,2

m
+

1

2

∂

∂ ln Λ
+

m∆+ n∆′

mn

)

. (4.40)

Therefore, the differential equation is

(

b2
∂2

∂z2
+ L̂

)

Ψ(z) = 0. (4.41)

As discussed in [61, 67–69] (see also [70, 71]), this equation, in the ǫ2 → 0 limit, is related to

the quantization of the corresponding integrable system, namely the Hitchin system with
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wild ramification. The quantization of the related Gaudin model with irregular singularity

was discussed e.g. in [72–74]. It would be interesting to study this direction further.

Here, we are interested in the limit ǫ1,2 → 0. It follows from the expansion −ǫ1ǫ2∆ =

a2 + . . . and a similar one for ∆′, that

lim
ǫ1,2→0

(−ǫ1ǫ2)L̂Ψ = φCFT
2 Ψ. (4.42)

Therefore, we finally obtain in the scaling limit

(

(b~)2
∂2

∂z2
+ φCFT

2

)

Ψ = 0. (4.43)

By formally solving this, we get

W(z) = ±i

∫ z √

φCFT
2 dz′, (4.44)

where W(z) was defined (4.37). The ± sign reflects the two-fold degeneracy of the solution

to the quadratic differential equation. In what follows, we consider the case with the

plus sign.

As found in [63], the monodromies of the conformal block with a degenerate field

insertion along the A- and B-cycles correspond to Wilson and t’ Hooft loop operators on

the surface operator in the gauge theory. In [63], these monodromies have been calculated

in the conformal field theory:

Ψ(a, z +A) = exp

(

2πa

~b

)

Ψ(a, z), Ψ(a, z +B) = Ψ

(

a+
i~

2b
, z

)

, (4.45)

where Ψ(z+A(or B)) denotes the monodromy along the A(orB)-cycle. Since Ψ is expanded

in ~ as (4.37), after the semi-classical expansion we obtain
∮

A

√

φCFT
2 dz = 2πia,

∮

B

√

φCFT
2 dz =

i

2

∂F

∂a
. (4.46)

Note that we have already checked that U in the integrand can be identified with the

Coulomb modulus u computed from the A-cycle integral in the Â1,3, Â2,3 and Â1,4 theories.

We expect that this result is generic for all conformal blocks involving irregular states |Gn〉
and the corresponding wild quiver gauge theories. Since the integrand is the Seiberg-Witten

differential, the result of the B-cycle integral is the same too.

However, from the conformal field theory side, we do not need to calculate the B-cycle

integral, since it can be obtained directly from the derivative of F . The final caution

is the shift in the ci parameters found in the previous subsection. Indeed, only after

taking into account this shift, the B-integral matches the computation from F , namely
∂F
∂a |ci→ci−si agrees with the B-cycle integral of the Seiberg-Witten differential. By using the

definition (A.2), the prepotential F is obtained as the primitive function in a of ∂F
∂a |ci→ci−si .

E.g., from the scalar product 〈G1|G3〉, we get

FÂ1,3
=

8a2

3
lnΛ +

v1
2a2

Λ8/3 +
5v21 − 12c1a

2

64a6
Λ16/3 +

9v31 − 28c1v1a
2 + 20a4

192a10
Λ8 + . . . (4.47)
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while from 〈G1|G4〉 and 〈G2|G3〉, we get

FÂ1,4
=

5a2

2
lnΛ+

v1
2a2

Λ5/2+
5v21 − 12c2a

2

64a6
Λ5+

9v31 − 28c2v1a
2 + 20c1a

4

192a10
Λ15/2+. . . , (4.48)

and

FÂ2,3
=

5a2

3
lnΛ +

mv1
2a2

Λ5/3 +
5m2v21 − 12(v21 +m2c1)a

2 + 16c1a
4

64a6
Λ10/3

+
m(9m2v31 − 28(v31 +m2c1v1)a

2 + 20(m2 + 4c1v1)a
4 − 52a6)

192a10
Λ5 + . . . (4.49)

respectively.

Note that the monodromies found in [63] are valid for the regular conformal blocks

corresponding to the N = 2 superconformal gauge theories. The monodromies of the

irregular conformal block have not been calculated yet. However, in some cases we can

verify this: for the Â1,3 theory which is obtained from the SU(2)× SU(2) superconformal

theory, the corresponding conformal block might be also obtained from the five-point reg-

ular conformal block. The limit which one takes to get the Â1,3 theory does not affect the

monodromies and therefore (4.46) is correct in this case.

5 Conclusions and discussions

In this paper we proposed a quantitative approach to calculate the full prepotential in the

Ω-background of SU(2) wild quiver gauge theories coupled to nontrivial SCFTs via the

AGT correspondence.

It would be interesting to generalize the construction of wild quivers to the higher rank

case. Indeed, when we consider the AN−1 (2, 0) theory on a Riemann surface, various types

of singularities, labeled by Young diagrams, can be allowed [8, 75–80]. These corresponds to

N = 2 quiver gauge theories with vanishing beta function coefficients. More in general, it

is possible to consider irregular singularities also in the higher rank case. These correspond

to asymptotically free gauge theories, as exemplified in [2, 30] and, in the A1 case, reduce

to the D1 and the D2 type singularities studied in our paper. Therefore, our results suggest

to investigate more general singularities and the corresponding irregular conformal blocks

which should give a generalization of the one found in [39] for the SU(3)/W3 case.

We observe that it would be useful to gain insight in the CFT on a more direct and

geometrical construction of the coherent state and its generalizations that we discussed in

section 4. In the specific case of the Liouville theory, the operator creating an irregular

puncture is naturally induced by the boundary condition at the insertion point resulting

by the solution of the classical Liouville field generating higher order singularities in the

classical stress-energy tensor. The very definition of the operator is anyway independent

on the specific CFT at hand and having a geometric counterpart of the state building

recipe (4.10) would be interesting. Also the role of these states in the matrix model

approach to AGT correspondence [81–84] should be clarified.

Our construction of the irregular conformal blocks is shown to be strictly related to

Hitchin systems with wild ramification and provides a scheme to quantize them which
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should be further developed. This should be obtained by analyzing the irregular conformal

block in the ǫ2 → 0 limit [85, 86].

Last but not least our results pave the way towards a topological string interpretation

of the strongly couples systems which would be very interesting to analyze. A useful tool

in this context would be the study of the generalized holomorphic anomaly equation, as

done for example in [87].
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A Computation of u(a)

In this appendix we calculate the A-cycle integral of the Seiberg-Witten differential. As

seen in section 4.3, it is enough to compute it in order to check the correspondence with

the conformal block. While the way which will be explained here can be applied to the

generic Âm,n case, we mainly consider the Â1,3 theory for illustration. We also give the

relevant results for the Â1,4 and Â2,3 theories.

Let us analyze the curve of the Â1,3 theory which is x2 = φ2 where

φ2 =
Λ2

z5
+

Λ
4

3 c1
z4

+
Λ

2

3 v1
z3

+
u

z2
+

Λ2

z
=

Λ2

z5
P4(z). (A.1)

The corresponding Seiberg-Witten differential is λ = xdz. We want to calculate the A-cycle

integral when the dynamical scale Λ is very small. This corresponds to the classical limit.

In order to do that, we have to specify the A-cycle of the curve. As seen in section 2.2, the

branch points are at the roots of P4(z) and z = 0,∞. Among the four roots of P4, one of

them, say a1, scales as Λ
−2 and the others as Λ2/3. Therefore, in the classical limit Λ → 0,

the root a1 collapses to infinity, and the others collapse to z = 0. Thus, it is natural to

take the A-cycle as the contour around the cut between a1 and infinity. Then it is possible

to deform the contour to the one around z = 0 with radius r ≃ O(Λ0). Let this contour

be C.

Now we consider the Seiberg-Witten relation

2πia =

∮

A
λ, 2πiaD =

∮

B
λ, (A.2)
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where the prepotential is given by

aD =
1

4π

∂F
∂a

. (A.3)

It follows from the observation above that the A-cycle integral of the differential can be

expanded as

2πia =

∮

A
λ =

∮

C

√
u

z

(

1 +
X

2u
− X2

8u2
+ . . .

)

, (A.4)

where

X =
Λ2

z3
+

Λ
4

3 c1
z2

+
Λ

2

3 v1
z

+ Λ2z (A.5)

Note that this expansion is valid for our choice of the contour C. Since the integrand has

a pole only at z = 0, what one has to do is to find out the coefficient in z−1 in each order

in the expansion in Λ. This gives the result:

a =
√
u

(

1− v1
4u2

Λ8/3 +
12c1u− 15v21

64u4
Λ16/3 − 40u2 − 140c1v1u+ 105v31

256u6
Λ8 + . . .

)

. (A.6)

By inverting this equation, we obtain

u = a2 +
v1
2a2

Λ8/3 +
5v21 − 12c1a

2

32a6
Λ16/3 +

9v31 − 28c1v1a
2 + 20a4

64a10
Λ8 + . . . . (A.7)

This agrees with U calculated from 〈G1|G3〉 in section 4.2.

In the same way, we can calculate the u’s of the Â1,4 and Â2,3 theories. The results are

uÂ1,4
= a2 +

v1
2a2

Λ5/2 +
5v21 − 12a2c2

32a6
Λ5 +

9v31 − 28c2v1a
2 + 20c1a

4

64a10
Λ15/2 + . . . ,

uÂ2,3
= a2 +

mv1
2a2

Λ5/3 +
5m2v21 − 12(v21 +m2c1)a

2 + 16c1a
4

32a6
Λ10/3

+
m(9m2v31 − 28(v31 +m2c1v1)a

2 + 20(m2 + 4c1v1)a
4 − 48a6

64a10
Λ5 + . . . . (A.8)

These agree with the U ’s computed from 〈G1|G4〉 and 〈G2|G3〉 respectively.
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