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Abstract

Noisy waveforms, sampled from an episode of fictive locomotion (FL) and

delivered to a dorsal root (DR), are a novel electrical stimulating protocol

demonstrated as the most effective for generating the locomotor rhythm in

the rat isolated spinal cord. The present study explored if stimulating proto-

cols constructed by sampling real human locomotion could be equally effi-

cient to activate these locomotor networks in vitro. This approach may extend

the range of usable stimulation protocols and provide a wide palette of noisy

waveforms for this purpose. To this end, recorded electromyogram (EMG)

from leg muscles of walking adult volunteers provided a protocol named

ReaListim (Real Locomotion-induced stimulation) that applied to a single DR

successfully activated FL. The smoothed kinematic profile of the same gait

failed to do so like nonphasic noisy patterns derived from standing and

isometric contraction. Power spectrum analysis showed distinctive low-frequency

domains in ReaListim, along with the high-frequency background noise. The

current study indicates that limb EMG signals (recorded during human loco-

motion) applied to DR of the rat spinal cord are more effective than EMG

traces taken during standing or isometric contraction of the same muscles to

activate locomotor networks. Finally, EMGs recorded during various human

motor tasks demonstrated that noisy waves of the same periodicity as ReaLis-

tim, could efficiently activate the in vitro central pattern generator (CPG),

regardless of the motor task from which they had been sampled. These data

outline new strategies to optimize functional stimulation of spinal networks

after injury.

Introduction

One important goal for spinal network rehabilitation is

the possibility to activate locomotor patterns with electri-

cal stimuli applied to afferent inputs (Harkema et al.

2011). This is particularly attractive as a tool to recover,

at least in part, locomotor activity after spinal cord injury.

In the attempt to optimize the parameters for such a

stimulation using as a test model the in vitro spinal cord

preparation, we recently discovered a new stimulating

protocol, named FListim (Fictive Locomotion-induced

stimulation) based on high-frequency sampling of FL

records from a ventral root (VR) of an isolated neonatal

rat spinal cord and delivering it to a single dorsal root

(DR) of the same preparation (Taccola 2011; Dose and

Taccola 2012). This special stimulation pattern, even

when applied at amplitude lower than the one required

by standard square pulses, was able to induce locomotor-

like oscillations of longer duration and with a greater

number of cycles than hitherto described (Taccola 2011).

The specific recruitment of the locomotor central pattern

generator (CPG) made by FListim is confirmed by its

ability to synergize the FL induced by NMDA (N-Methyl-

D-aspartate) + 5-HT (5-hydroxytryptamine; Dose and
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Taccola 2012). Although the precise mechanisms through

which FListim can activate locomotor CPG remain

unclear, its intrinsic noise turns out to be a crucial feature

(Taccola 2011). The results so far were exclusively

obtained using FL patterns sampled from neonatal rat

spinal cords. We wondered if collecting records of limb

muscle activity during real locomotion from healthy

human volunteers might also have the ability to induce

FL in the isolated rat spinal cord. This seems to be a

desirable goal because the characteristics of human and

rodent locomotor patterns, although similar, are not

identical. Furthermore, using human electromyogram

(EMG) data also allows DR stimulation with noisy, non-

phasic traces (obtained during isometric or postural con-

traction of antigravity muscles) to assess the relative role

of noise in the CPG activation.

Furthermore, detailed analysis of the EMG recorded

from human leg muscles has allowed identifying distinct

activation profiles during the execution of a specific

motor task (Raasch and Zajac 1999; Bizzi et al. 2008;

Wakeling and Horn 2009). Thus, we can hypothesize

that stimulating protocols obtained from EMGs sampled

during several motor tasks may activate, more or less

efficiently, the in vitro CPG. To this aim, EMGs referred

to distinct rhythmic movements, such as pedaling, hop-

ping, or jumping, were recorded from volunteers, digi-

tized and applied to a single DR to assess their impact

on the locomotor CPG in vitro. Finally, stimulating pat-

terns obtained from the EMG captured from repetitive

flexions of the ankle joint were used to evaluate whether

noisy waves sampled from monoarticular rhythmic oscil-

lations were per se sufficient to activate the in vitro

CPG.

Methods

Electrophysiological recordings

All procedures were conducted in accordance with the

guidelines of the National Institutes of Health and the

Italian Act Decreto Legislativo 27/1/92 n. 116 (imple-

menting the European Community directives n. 86/609

and 93/88) and under the authorization of the Italian

Ministry of Health. All efforts were made to reduce the

number of animals and their suffering.

Experiments were performed on spinal cord prepara-

tions after isolation from neonatal rats (P0-P4), as pre-

viously reported (Taccola et al. 2004). Briefly, spinal

cords were sectioned from the midthoracic region to the

cauda equina, maintained at a constant room tempera-

ture of 22°C and continuously superfused (5 mL/min)

with oxygenated (95% O2; 5% CO2) Krebs solution of

the following composition (in mmol/L): 113 NaCl, 4.5

KCl, 1 MgCl27H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3,

and 11 glucose, pH 7.4. VR recordings in DC mode

were taken from L2 VRs, which contain axons from

motoneurons that innervate mainly hindlimb flexor

muscles, and from L5 VRs containing axons which drive

primarily hindlimb extensor muscles (Kiehn and Kjaer-

ulff 1996). The alternation of discharges between flexor

and extensor motor pools and between left (l) and right

(r) sides of the cord represents the hallmark of FL

(Juvin et al. 2007).

Parameters of spinal network activity

Electrical stimuli were delivered, using bipolar suction

electrodes, in order to evoke single VR responses. Stimuli

were considered as threshold (Th) according to their abil-

ity to elicit fast synaptic responses from the homologous

VR (see Marchetti et al. 2001). In response to DR stimu-

lation with repetitive stimulating patterns, epochs of FL

arise over a background of cumulative depolarization. FL

cycles were analyzed for their periodicity (time between

the onset of two consecutive cycles of oscillatory activity)

and regularity, expressed by the coefficient of period vari-

ation (CV; displayed as standard deviation [SD] mean�1).

The correlation among signals arising from pairs of VRs

was expressed by the cross-correlogram function (CCF),

obtained using Clampfit� 10.3 software (Molecular

Devices LLC, CA). While a CCF greater than �0.5 indi-

cated that two VRs were synchronous, a CCF less than

�0.5 showed full alternation (Ryckebusch and Laurent

1994; Taccola et al. 2010).

The power spectrum for stimulating patterns was

obtained through Clampfit� 10.3 software (Molecular

Devices, LLC, CA).

Designing the ReaListim

EMG recordings from several muscles were obtained dur-

ing various motor tasks carried out by two healthy volun-

teers. Epochs (60 sec) of EMG traces were promptly

processed for off-line analysis (Clampfit� 10.3 software;

Molecular Devices) and records from one muscle were

randomly selected for use. The sampled trace was

imported into a spreadsheet of Origin� 9 (OriginLab,

North Hampton, MA), where the x-axis considered each

sampling time for the epoch duration and the y-axis was

used for the corresponding current amplitude. The two

columns of values were then exported (as an ASCII text

file) to a programmable stimulation device (STG� 2004;

Multi Channel Systems, Reutlingen, Germany). The stim-

ulating protocol resulting from this procedure was termed

ReaListim (Real Locomotion-induced stimulation) and

was applied to a DR.
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Subjects

Two healthy right leg dominant subjects (female, 31 years

old, 62 kg, 1.74 m; male, 43 years old, 76 kg, 1.77 m)

volunteered for the experiments. Human recordings were

performed by specialized health care professionals in the

SPINAL Clinical lab at Istituto di Medicina Fisica e Riabi-

litazione (Udine, Italia) and in the Gait & Motion Analy-

sis Laboratory at Sol et salus hospital (Torre Pedrera,

Rimini, Italy). The study conformed to the Declaration of

Helsinki and the written informed consent was obtained

from participants according to the clinical protocols

established by the Istituto di Medicina Fisica e Riabilitazi-

one (Udine, Italia).

EMG recordings

Spectrum profiles of EMG intensities were continuously

obtained for 60 sec during different motor tasks, namely

standing, overground walking at a self selected speed,

incremental squats at 30°, 60°, and 90° of knee flexion,

hopping, two legged or one legged jumping, and pedaling

on an Ergoselect� 100K bicycle ergometer (Ergoline

GmbH, Deutschland) at the frequency of 60 rpm and

power output of 120 W.

EMG recordings from rhythmic oscillations of the right

ankle joint, featuring a cycle period approximating that

for walking and cycling, were also taken from a subject

lying supine with one foot supported by a researcher.

During the performance of these exercises, subjects

were instructed to generate stepping, jumping, or ankle

flexions at the same frequency using an auditory metro-

nome.

Briefly, EMG Ag/AgCl surface electrodes (10 mm diam-

eter, 21 mm interelectrode distance) were positioned on

the right leg and connected to TELEMG� system (BTS,

Milano, Italia). Guidelines provided by the European Pro-

ject SENIAM (Surface EMG for Non Invasive Assessment

of Muscles, 1996–1999; Hermens et al. 2000) were fol-

lowed in positioning electrodes. EMG signals were simul-

taneously recorded from the tibialis anterior (TA), medial

gastrocnemius (GM), vastus medialis (VM), rectus fem-

oris (RF), and vastus lateralis (VL). The EMG signals

were band-pass filtered, with cut-off frequencies from 5

to 200 Hz, amplified 10009 and then sampled at 500 Hz.

Analysis of EMG signals and gait

As a control to define the role of intrinsic variability of

the stimulating pattern in effectively activating the CPG,

we compared alternating oscillations induced by noisy

waves recorded from limb muscles with the effects elicited

by simultaneously derived kinematic patterns (from limb

markers) that were smooth sinusoids. Kinematic profiles

were obtained with the Elite� 2000 system (BTS, Milano,

Italia) consisting of six infrared cameras (positioned

4.5 m along the progression line of the subjects) operat-

ing at a sampling frequency of 50 Hz (Ferrigno and Pe-

dotti 1985). After three-dimensional calibration, the

spatial accuracy of the system was greater than 1.5 mm.

Infrared reflective marks were positioned in correspon-

dence to the lateral condyle of the knee (knee), the lateral

malleolus (mall), between the lateral condyle of the knee

and the lateral malleolus in the midpoint (bar), the heel,

and the 5th metatarsal (met; Davis et al. 1991). Subjects

were asked to walk barefoot as naturally as possible, look-

ing straightforward. During the acquisition of kinematic

data, the activity of soleus muscle was simultaneously

recorded as described above.

Statistical analysis

All data are reported as mean � SD, where n indicates

the number of spinal cord preparations. After distinguish-

ing between parametric or nonparametric data, using a

normality test, all parametric values were analyzed with

Student’s t-test (paired or unpaired) to compare two

groups of data or with analysis of variance (ANOVA) for

more than two groups. For nonparametric values, Mann–
Whitney test was used for two groups, while, for multiple

comparisons, ANOVA on Ranks was first applied, fol-

lowed by a post hoc test (Dunnett’s method). Statistical

analysis was performed using SigmaStat 3.5 software (Sy-

stat Software Inc, IL). Results were considered significant

when P < 0.05.

Results

Noisy waves obtained from EMG recordings
of the lower limb during human locomotion
activate the in vitro CPG

We aimed at assessing whether electrical stimulation with

noisy waveforms corresponding to locomotor patterns of

an adult volunteer was able to trigger the CPG of the in

vitro neonatal rat spinal cord. Thus, we first recorded

EMGs from five muscles in the lower limb (RF, VM, TA,

GM, and VL; Fig. 1A) of a volunteer walking at a freely

chosen stride frequency (average speed = 1.01 m/sec). For

each EMG trace, a 60 sec segment was randomly sampled

in order to design the stimulation protocol, that we

named ReaListim, which, in this example, was character-

ized by noisy waves with average 1.25 sec period.

Figure 1A exemplifies how the noisy traces obtained

from the VL muscle (shaded box), when delivered

(intensity = 0.54 Th) to rL6 DR of the isolated rat spinal
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Figure 1. EMG recordings during human locomotion provide noisy waveforms able to activate the in vitro CPG. In A, EMGs are simultaneously

recorded from five muscles of the right leg during real locomotion in an adult volunteer walking overground at normal speed. The superficial

electrodes are positioned as indicated by the black lines in the cartoon (right). A segment of 60 sec duration is extracted through offset analysis

from the VL EMG (shaded box) and used for designing the ReaListim protocol, later delivered to the DRrL6 of a neonatal rat isolated spinal

cord (intensity = 0.54 Th), while the motor response is continuously monitored through recording suction electrodes from VRs L2 and L5 (B).

During electrical stimulation with ReaListim, VRs are depolarized with a superimposed episode of locomotor-like oscillations (C), as confirmed by

the negative peaks centered at zero lag value in the cross-correlogram functions in D. In E, F, and G, histograms show, respectively, that the

mean number and the mean period of FL oscillations, as well as the mean cumulative depolarization amplitude, do not statistically change,

even in response to delivery of noisy waveforms obtained from different leg muscles (n = 7; P = 0.723 for E; P = 0.740 for F; P = 0.967 for G).
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cord (Fig. 1B), evoked cumulative VR depolarization

(1.17 mV) with superimposed 28 oscillating cycles

(2.06 � 0.41 sec period and 0.20 CV; Fig. 1C). Oscilla-

tions between L2 and L5 VRs on the two sides of the

spinal cord were alternated, as confirmed by the value of

the cross-correlograms illustrated in Figure 1D (CCF

homolateral = �0.71; CCF homosegmental = �0.66),

indicating, therefore, their characteristic FL property.

EMG recordings obtained in three sessions of locomo-

tion (average speed of 1.11 � 0.07 m/sec) provided Rea-

Listims (period = 1.12 � 0.11 sec for 60 sec epoch),

which induced, in 11 preparations, cumulative VR depo-

larization of 0.71 � 0.33 mV with a superimposed epi-

sode of FL (52.15 � 7.08 sec long, 21 � 4 locomotor

cycles of 2.73 � 0.65 sec period and 0.28 � 0.11 CV). In

six experiments, ReaListims, simultaneously sampled from

flexor and extensor muscles of leg and calf, and delivered

in sequence to a single DR of the isolated rat spinal cord,

were equally capable of evoking locomotor-like responses

of similar duration, period, and cumulative depolarization

(Fig. 1E–G).

Different responses of the in vitro CPG to
electrical stimulation with EMGs or
kinematic profiles

Stimulating patterns composed of noisy or smooth

sinusoidal waves of identical main frequency were

obtained by simultaneously recording, during the same

session of human locomotion, the activity of the soleus

muscle, and the variations in the joint profile of the

heel, on the y-axis. The two traces were imported into

the programmable stimulator and corrected to obtain

waveform traces of the same maximal amplitude.

Hence, the two stimulating patterns (ReaListims and

kinematic profiles) provided either a noisy baseline or a

smooth baseline.

Figure 2A shows that stimulation of the DRrS1 of the

isolated spinal cord with ReaListim (intensity = 0.33 Th)

induced cumulative depolarization (0.46 mV) with FL of

57.31 sec duration with 22 cycles (period and CV of

2.73 � 1.03 sec and 0.38, respectively). Conversely, on

the same preparation, electrical stimulation of the same

DR with the protocol obtained from the kinematic profile

of the heel (intensity = 0.33 Th) induced very small

cumulative depolarization (0.08 mV), with a series of

synchronous discharges among the four VRs. The cross-

correlogram analysis (Fig. 2C and E) confirms that

ReaListim evoked FL with alternating oscillations among

homosegmental (lL2 and rL2, CCF = �0.88) and

homolateral (lL2 and lL5, CCF = �0.66) VRs, while a

sinusoidal stimulation obtained from the heel kinematic

profile evoked only synchronous oscillations both at

homosegmental (VRlL2 and VRrL2, CCF = 0.65) and ho-

molateral (VRlL2 and VRlL5, CCF = 0.75) levels.

These results were confirmed in five preparations

(Fig. 2D) with mean CCF of �0.68 � 0.12 for homoseg-

mental VRs and of �0.38 � 0.14 for homolateral VRs dur-

ing ReaListim. In the same preparations, delivery of waves

obtained from the kinematic analysis of the heel evoked syn-

chronous discharges (homosegmental CCF = 0.60 � 0.16

and homolateral CCF = 0.70 � 0.07) only.

We tested whether the inability to activate the in vitro

FL with Kstim was due to the absence of noise in kinematic

profiles. For this reason, numerous kinematic patterns were

simultaneously sampled, on the y-axis, from different track

positions in the lower limb during the same locomotor ses-

sion. As schematized in Figure 3A, in correspondence to

gait phases exemplified as a stick diagram, kinematic traces

from different tracks of the lower limb were recorded for

the first two steps of a locomotor session. These traces were

synchronized with the EMG recorded from the right soleus

(bottom record in Fig. 3A). The metatarsal trace presented

the most different profile from the one from the heel as it

comprises a second peak in coincidence with ankle flexion.

Fourier analysis (Fig. 3B1–C1) confirms that both traces

had a main peak at 0.9 Hz and a second component at

1.8 Hz, while the metatarsal trace shows a further compo-

nent at 2.9 Hz (Fig. 3C).

As illustrated in Figure 3B2 and C2, we subsequently

delivered, to the same DR in the same preparation, first,

a smoothed wave obtained from the heel trace and, then,

the one recorded from the metatarsus, both at the same

maximum amplitude. Responses from VRs (see Fig. 3B2–
and C2) indicate that, in both cases, the stimulation

induced similar cumulative depolarization (0.35 lV for

the heel and 0.41 lV for the metatarsus), followed by

baseline repolarization despite continuous stimulation.

Reflex discharges were observed during each stimulating

cycle plus sporadic, slow bursts. The cross-correlogram

analysis (Fig. 3D and E) confirms events synchronicity

among homosegmental (heel CCF = 0.66; met

CCF = 0.83) and homolateral (heel CCF = 0.88; met

CCF = 0.96) VRs. The same observations were obtained

from three spinal cords. These results indicate that, unlike

ReaListim, Kstim could not evoke FL, suggesting that the

noise contained in the stimulating traces sampled from

the motor output of a human individual was a crucial

characteristic for activating the in vitro CPG.

Noisy traces obtained during isometric
contractions or static posture do not induce
FL

To further clarify the characteristics of ReaListim respon-

sible for the activation of the in vitro CPG, we have
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explored whether the EMG phasic patterns, used to

design ReaListim, were a crucial characteristic. Thus, we

compared stimulation using ReaListim (see top record in

Fig. 4A) with noisy traces derived from the tonic

activation of the same muscle, either during the antigrav-

ity contraction for standing (top trace in Fig. 4B) or

during an isometric contraction task (top record in

Fig. 4C and D).

As demonstrated by Figure 4A, 60 sec stimulation with

ReaListim (VM muscle) evoked (intensity = 0.15 Th)

cumulative depolarization (0.80 mV) with a longlasting

episode of FL (57.77 sec, 23 oscillations, period and CV of

2.62 � 0.51 sec and 0.20, respectively). Oscillations alter-

nated among homosegmental VRs, as confirmed by the

cross-correlogram analysis (homosegmental CCF = �0.50;

not shown).

On the other hand, stimulation with EMG traces sam-

pled during static posture or isometric contraction did

not evoke cumulative depolarization, but only sporadic

tonic discharges (Fig. 4B and C). Even when increasing

the amplitude of the EMG trace from the isometric con-

traction to that of the ReaListim one, no alternating oscil-

lations appeared, although the stimulating protocol was

able to induce cumulative VR depolarization (0.31 mV;

Fig. 4D).

Analogous observations were replicated with six prepa-

rations, in which ReaListim induced an average cumula-

tive depolarization of 0.66 � 0.29 mV, superimposed by

A

C D

B

E

Figure 2. Kstim, unlike ReaListim, does not trigger FL. In A, ReaListim, designed from right soleus EMG (intensity = 0.33 Th), when applied to

DRrS1, evokes an episode of FL from VRs L2 and L5 on both side of the spinal cord. In the same experiment, delivery of Kstim, sampled from

the kinematic profile of right heel (intensity = 0.33 Th), generates only a slight cumulative depolarization with sporadic electrical discharges (B).

In C, the cross-correlogram analysis performed for the traces shown in A reports negative values, representing the double alternation among

pairs of homosegmental L2 (top) and homolateral L2 and L5 (bottom) VRs. Conversely, in E, the cross-correlogram analysis for traces in B

shows positive peaks, describing full synchrony among discharges recorded from homosegmental (top) and homolateral (bottom) VRs. In D,

histograms summarize the mean CCF values obtained for homosegmental (dark gray) and homolateral (light gray) VRs in response to

stimulation of the same cords with ReaListim (right) and Kstim (left), respectively. While ReaListim always evokes alternating oscillations, Kstim

generates only synchronous events (n = 5).
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B1 C1

B2 C2

D E

Figure 3. Kstims sampled from different tracks of the lower limb are ineffective in eliciting FL. The kinematic analysis of locomotion is

performed on several tracks of the right leg (knee, bar, mall, heel, and met), as reconstructed for consecutive phases of the first step in A. The

kinematic profiles are indicated in gray scale and synchronized with the soleus muscle EMG. Segments of 60 sec duration are sampled from

heel and met profiles to produce the stimulating protocols heel Kstim (B) and met Kstim (C), for which power spectra are obtained

(B1 and C1, respectively). Heel Kstim applied to DRrS4 (intensity = 0.33 Th) evokes a small cumulative depolarization accompanied by single

reflex responses, corresponding to stimulating pattern peaks, and by the sporadic appearance of bursts (B2). Analogously, met Kstim

(intensity = 0.33 Th) depolarizes VRs, with single reflex responses and sporadic bursts that are synchronous among all VRs (C2). The cross-

correlogram analysis from pairs of homosegmental (left) and homolateral (right) VRs quantifies the synchrony among discharges elicited by

Kstims (D for heel Kstim and E for met Kstim).
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G

Figure 4. Human EMGs sampled during standing and isometric contraction fail in inducing FL. In A, ReaListim is designed from rVM EMG

recording and applied to DRlL7 (intensity = 0.15 Th) to elicit an epoch of alternating oscillations from L2 VRs. In the same experiments, delivery

of the EMGs recorded from rVM during standing static posture (B, intensity = 0.01 Th) or isometric muscle contraction (C, intensity = 0.09 Th)

does not depolarize VRs, although elicits few uncorrelated discharges. Finally, when the peaks of the EMG in C are artificially adjusted to the

same maximum amplitude of ReaListim in A, the resulting stimulating protocol can generate a small cumulative depolarization with

synchronous events (D). In E, a segment of the same ReaListim shown in A is displayed at a faster time base scale, while the power spectrum

of the entire stimulating pattern (60 sec) is reported below. An analogous Fourier analysis is performed also for isometric EMGs (F, in top panel

see a sample episode of the DRstim in C, at a faster time base scale). Note in the inserts the magnification of spectra in the high-frequency

regions. The power spectra of the two protocols are superimposed in G (black trace, ReaListim; gray trace, isometric contraction), emphasizing

that, among the noisy waveforms sampled from EMGs, only ReaListim presented a series of components in the low-frequency domain.
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FL of 53.65 � 3.98 sec duration with 20 � 2 alternating

cycles of period and CV 2.90 � 0.36 sec and 0.29 � 0.11,

respectively. In the same spinal cords, in response to

stimulation with EMGs recorded during standing posture

or isometric contractions, we did not observe any depo-

larization or appearance of locomotor oscillations. Even

stimulation with the EMG traces of an isometric contrac-

tion with amplitude brought to ReaListim values, did not

induce any locomotor cycles, despite an average cumula-

tive depolarization of 0.36 � 0.13 mV. These findings

suggest that the basic intrinsic noise of the human EMG

was unable to elicit FL.

To look for discrete frequency domains within the

noisy waveforms necessary for activate FL, we analyzed

the power spectra of the ReaListim record (see, in Fig. 4E,

example at high gain and faster time base taken from the

record shown in A) and isometric contraction trace (see,

in Fig. 4F, example at high gain and faster time base

taken from the record shown in C). While the power

spectrum of ReaListim (Fig. 4E, bottom) revealed princi-

pal components clustered at the low frequency, on the

other hand, the spectrum of isometric contraction lacked

these peaks and contained only small components at

higher frequency (Fig. 4F, bottom). The insets to Fig-

ure 4E and F show that, in the high-frequency domain, a

similar pattern for both protocols (albeit smaller in

amplitude for ReaListim) was present. Figure 4G indicates

that, after alignment of both traces in the frequency range

below 25 Hz, ReaListim (black trace) was characterized

by a series of components between 0 to 10 Hz, whereas

the isometric contraction stimulus (gray trace) lacked any

elements. On the contrary, from 15 to 25 Hz, only the

isometric contraction profile was observed (Fig. 4G).

Effect of stimuli sampled from human EMGs
during nonlocomotor rhythmic activity

We next tested whether stimulation with noisy waveforms

from EMG recordings of the right GM during the execu-

tion of nonlocomotor rhythmic activities could activate

the in vitro CPG. Thus, we sampled 60 sec EMG records

taken while one volunteer was pedaling or hopping.

Figure 5A shows that ReaListim (period = 1.07 �
0.10 sec and intensity of stimulation peak = 0.5 Th; top

row shows pattern at fast time base) depolarized VRs by

0.22 mV and evoked FL of 53.04 sec duration, with 22

locomotor cycles (period = 2.51 � 0.55 sec; CV = 0.22).

Figure 5B indicates that, on the same in vitro preparation,

the EMG pattern obtained during pedaling (period =
1.07 � 0.11 sec; intensity of stimulation peak = 0.4 Th;

top row shows pattern at fast time base) delivered to the

same DR induced cumulative depolarization (0.23 mV)

with FL (lasting 41.09 sec with 18 locomotor-like oscilla-

tions; period = 2.42 � 0.44 sec; CV = 0.18). Finally, stim-

ulation with a pattern corresponding to the repeated

hopping (Fig. 5C; period = 0.58 � 0.02 and amplitude of

stimulation peak = 0.5 Th; top row shows pattern at fast

time base) generated a cumulative depolarization

(0.20 mV) with short FL (13 oscillations for 28.96 sec;

cycle period = 2.41 � 0.34 sec; CV = 0.14).

FL episodes have been quantified with respect to the

number of oscillations (Fig. 5D), cycle period (Fig. 5E)

and peak of cumulative depolarization (Fig. 5F), for the

three different stimulating protocols delivered to the same

five preparations. The ReaListim appeared to activate the

in vitro CPG more efficiently than the EMG pattern

recorded during hopping, as shown by the significantly

greater number of alternating cycles evoked.

We next designed another stimulating pattern that

requires the synchronous activation of limbs, like hop-

ping, carried out at a periodicity approximating the one

of ReaListim. To this aim, EMGs of right VM, TA, and

GM during both two legged and one legged jumping were

sampled. Figure 6A–C compares the EMG records used

for ReaListim (see example of a single burst in the gray

box; period of 1.00 � 0.01 sec), with two legged or one

legged jumping. It is noteworthy that despite the EMG

similar periodicity, namely of 1.25 � 0.04 and

1.20 � 0.03 sec, respectively, bursts for EMGs referred to

the two legged or one legged jumping (see examples in

the gray boxes of Fig. 6B and C), show the characteristic

biphasic component due to, first, contraction of the

muscle for the spring phase and, second, the contraction

during the return phase.

In Figure 6A, ReaListim sampled from the rGM

induced, at the peak of a cumulative depolarization of

0.49 mV, an episode of 60.58 sec with 30 oscillations,

of 2.08 sec period (CV = 0.30). In the same spinal

cord, a stimulus of an amplitude approximating that of

ReaListim, sampled from the rGM during jumping,

depolarized VRs by 0.51 mV and induced a locomotor

episode of 31.591 sec duration and 18 oscillations

(period = 1.87 sec and CV = 0.20; Fig. 6B). Similarly,

the subsequent delivery to the same DR of EMGs pro-

vided of equal intensity and sampled during one legged

jumping, determined a depolarization of 0.46 mV and

an episode of FL comparable to the ones obtained with

the other two patterns of stimulation (duration = 38.30,

number of oscillations = 21; period = 1.91 sec,

CV = 0.22; Fig. 6C).

The histograms of Figure 6D–F quantify FL episodes

evoked by these stimulating patterns (average of six prep-

arations) in terms of the number of oscillations (Fig. 6D),

cycle period (Fig. 6E), and peak of cumulative depolariza-

tion (Fig. 6F): thus, noisy patterns with a periodicity sim-

ilar to that of ReaListim, but sampled during tasks
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involving the synchronous activation of lower limbs, were

equally able to activate the in vitro CPG.

Stimulating patterns sampled from human
EMGs during rhythmic single joint flexions
can activate FL

We wanted to assess whether phasic EMGs, with the same

periodicity as ReaListim and obtained in the absence of

multisegmental movement of lower limbs, were appropri-

ate to generate FL. For this reason, the activity from TA

and GM muscles was recorded during rhythmic oscilla-

tions of the ankle joint under weight-bearing conditions,

with a cycle period (1.09 � 0.01 sec) approximating that

for walking, cycling, and jumping (gray trace in Fig. 7B).

Stimulation with a ReaListim sampled from the rGM

induced a depolarization of 1.20 mV with a superimposed

episode of 60.37 sec duration with 26 locomotor oscilla-

A C

D

B

FE

Figure 5. Stimulating protocols obtained from human EMGs during walking, cycling, and hopping induce a different number of FL cycles. In

A, ReaListim is designed from the EMG recording (duration 60 sec; in top panel is reported a faster sample trace) of rGM during locomotion.

The stimulating pattern is applied to DRlL6 (intensity = 0.50 Th), evoking an episode of FL from L2 and L5 VRs on both side of the cord. A FL

episode of duration similar is generated by a stimulating protocol (duration = 60 sec; intensity = 0.40 Th), sampled from the rGM EMG

recording while the volunteer is pedaling (B, in top panel is reported a faster sample trace). Contrarily, by applying a rGM EMG trace

(duration = 60 sec; intensity = 0.50 Th; in top panel is reported a faster sample trace) recorded during hopping a shorter episode of FL is

obtained. Note that A, B, and C are referred to the same preparation. Histograms in D, E, and F summarize the mean value for number and

period of oscillations and for cumulative depolarization amplitude. Note that the number of locomotor-like oscillations using the hopping

pattern is significantly reduced with respect to ReaListim (n = 5; P = 0.011).
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tions of a period of 2.41 sec (CV = 0.38; Fig. 7A). A

pattern of similar amplitude to the one of ReaListim,

but obtained from the rTA during repetitive ankle

flexions, generated an episode of FL with similar features

(cumulative depolarization = 1.14 mV; duration = 58.50

sec; number of oscillations = 23; period of oscillations =
2.67 sec with CV = 0.39; Fig. 7B). Average values

obtained from six spinal cords are quantified in terms of

number of oscillations, cycle period, and cumulative

depolarization in Figure 7D–F.
In conclusion, in the present study, all stimulating

patterns obtained from noisy and phasic EMGs,

characterized by a periodicity approximating that of Rea-

Listim, were able to activate the in vitro CPG, regardless

A C

D

B

FE

Figure 6. Human EMGs sampled during walking, two legged jumping and one legged jumping provide stimulating waveforms that similarly

activate the in vitro CPG. A, ReaListim is designed from the EMG recordings of the rGM during locomotion (duration 60 sec; top panel shows

faster sample trace). The gray box on the left (1 sec width) shows a typical single burst of an EMG during a gait cycle. The stimulating pattern

applied to DRrL7 (intensity = 0.1 Th) elicited an epoch of FL from the controlateral L2 and L5 VRs. A similar locomotor-like response was

generated by EMGs obtained from rGM muscle (duration = 60 sec; intensity = 0.1 Th) and sampled while the volunteer was jumping on two

legs (B). B, top panel on the left shows a single burst, while a sample of the stimulating pattern is illustrated on a faster time base scale.

Applying a rGM EMG trace (duration = 60 sec; intensity = 0.1 Th) recorded during one legged jumping generated a comparable episode of FL

(C). Top panels in C show one single burst, and 10 sec stimulating pattern (faster time scale). Note that all data depicted in A, B, and C were

obtained from the same preparation. Histograms in D, E, and F indicate that no statistical difference appeared in response to the three

stimulating protocols, as far as number and period of oscillations, and cumulative depolarization amplitude were concerned (n = 6).
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of the type of rhythmic task from which they were

obtained.

Discussion

The present study shows that using the EMG records

obtained from human leg muscles during normal gait

(ReaListim) and applying them to a single DR of the rat

isolated spinal cord was very effective in eliciting a

long-lasting series of FL cycles. This novel observation

demonstrates that the type of DR stimulus (containing

locomotor-related signals) was important rather than its

origin (in vitro rat spinal cord or human muscle activity)

and that, whether recorded from an in vitro preparation

or a healthy volunteer, the rat locomotor networks

reacted with similar responses.

Characteristics of the ReaListim protocol to
activate FL

A protocol of undulatory, noisy stimuli from the human

leg EMG during real locomotion (named ReaListim)

activated locomotor-like oscillations in the isolated spinal

cord even when the stimulus amplitude was subthreshold

A

C

B

ED

Figure 7. Stimulating patterns obtained from human EMGs from the rhythmic oscillations of ankle joint generate locomotor-like responses

similar to the ones induced by ReaListim. A, ReaListim (60 sec duration, 0.2 Th intensity), sampled from rGM and delivered to DRrS4, induced a

series of alternating oscillations among VRs. At the top, a segment of the trace comprised in the open box is displayed at faster time scale. An

analogous response is recorded in B from the same preparation when stimulated with the EMG (60 sec duration, 0.2 Th intensity) captured

from rTA during rhythmic oscillations of the ankle joint. A segment of the stimulating pattern (open box) is displayed at the top on a faster

time scale. The mean values of pooled data from six experiments are summarized in the histograms below, as for number of oscillations (C),

cycle period (D), and peak of cumulative depolarization (E), demonstrating that these two stimulating patterns were similarly effective in

inducing an episode of FL with similar characteristics.
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to induce a VR reflex. Interestingly, EMG records sam-

pled from flexor or extensor leg muscles were equally

effective to evoke FL.

Nevertheless, reconstructing the DR stimulation proto-

cols from the kinematic records of the same human walk-

ing activity (Kstim) was not able to induce FL despite

collecting stimulus data from either the heel or the meta-

tarsal joint. Thus, the information of simple stimulus

alternation contained in the kinematic profile at walking

speed could not be sufficient for FL. Likewise, sustained

EMG discharge sampled during standing posture or dur-

ing the execution of isometric squat exercises failed to

activate FL. These results are reminiscent of previous data

when a broad range of DR stimulation patterns was used

to elicit sustained FL in vitro with poor success (Taccola

2011). Thus, we reasoned that the original FL record

obtained from the spinal cord in vitro or the ReaListim

obtained from human gait must contain certain proper-

ties that confer them the ability to activate the locomotor

CPG.

In fact, an epoch of FL analogous for duration and

number of oscillations to the one evoked by ReaListim

has been previously observed with FListim elicited by

NMDA + 5-HT (Taccola 2011; Dose and Taccola 2012).

The importance of noise for electrical
stimuli eliciting FL

If the smooth kinematic stimulus pattern as well as the

high-frequency firing during isometric contraction were

unable to produce FL, we suspected that the intrinsic

variability of the stimulating traces used in this study was

a crucial element for an optimal CPG activation. This

notion is in accordance with previous observations that

the efficacy of stimulation with noisy waves was lost when

the stimulating pattern was smoothed (Taccola 2011).

This result reaffirms the importance of variability for

spinal CPG function (Ziegler et al. 2010; Lee et al. 2011),

in line with error-based motor learning paradigms

(Huang et al. 2011).

As EMG records cannot provide detailed information

on the nature of these electrical signals, we have indicated

such traces as “noisy”, based on the sole macroscopic

observation of the ragged baseline. In line with this point

of view, the ReaListim protocol apparently possesses the

same level of noise as FListim. However, intrinsic variabil-

ity of FListim mainly corresponds to the firing profile of

motoneurons within the same pool during FL (Berg et al.

2007), while for the EMG of real locomotion in a

volunteer, additional nonlinear sources of variability

need to be considered. For instance, stiffness, viscoelastic

properties of muscles, coupling among limb segments and

biomechanical constrains, anticipatory adjustments from

supraspinal centers, and reflex responses to external per-

turbations are likely contributors to the noise within in

vivo EMGs (Thrasher et al. 2011). Other forms of vari-

ability in human EMG signals are attributable to specific

muscle pennation and fiber composition (Johnson et al.

1973) or to the proximity of EMG electrodes to the mus-

cle innervation (De Luca 1997). These sources of EMG

variability seemed negligible in activating the CPG

because EMGs from either different leg muscles or the

same muscle in different recording sessions appeared to

have the same ability to elicit FL.

Thus, baseline noise associated with a certain waveform

with main frequency within the real or fictive locomotion

rhythms was the crucial requirement for activating the

locomotor network in vitro. Another possibility is that

the noise sampled from the EMG or from the FL contains

distinctive information that codifies the state of network

activity and the type of motor task undertaken. In sup-

port of this notion is the report that in the cerebral cortex

the noise fluctuations in neuronal network output rely on

the frequency of sensory stimuli in a state-dependent

manner (White et al. 2012).

Comparison of power spectra of noisy waveforms

shows low-frequency domain components, which seem to

distinguish ReaListim from the isometric contraction pro-

tocol (ineffective in recruiting the CPG). Future work will

be necessary to explore whether low-frequency compo-

nents are sufficient per se in activating FL or if they also

need the high-frequency background that characterizes all

noisy stimulating patterns from EMG recordings.

Phasic EMGs of frequency similar to
ReaListim equally activated the CPG
regardless of their task specificity

The first part of the study reported the optimal locomo-

tor-like response evoked by stimulating waves, sampled

from limb muscles during the execution of rhythmic

tasks, such as walking and cycling, that both involve an

alternated pattern. On the other hand, EMGs obtained

during synchronous rhythmic activation of lower limbs

(e.g., hopping) appeared less effective. This difference

may be attributed to certain intrinsic characteristics of the

various EMGs. In fact, although the stimulating pattern

was always recorded from one single leg, the EMG of

even one muscle during alternated activation of lower

limbs (running or pedaling) may contain distinct infor-

mation for the activation of the in vitro CPG. The same

does not seem to occur, though, with the EMG sampled

during the execution of tasks that require the synchro-

nous activation of limbs, like hopping (Bizzi et al. 2008).

Examples of task specificity in network output have

already been reported and attributed to the modulation
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provided by the differential afferent feedback that charac-

terizes different motor tasks (Brooke et al. 1992).

In the present experiments, comparing the stimulating

effectiveness of EMGs from hopping or walking is mis-

leading, as their cycle period was clearly different. Despite

repeated attempts, volunteers failed to hop and to walk at

identical frequency. Hence, to compare ReaListim with

the one obtained with EMGs from two legged synchro-

nous movements, we recorded EMGs from different mus-

cles during jumping with both legs at the same main

frequency as gait. Stimulation with EMGs obtained from

one legged jumping was also tested to evaluate the influ-

ence of the proprioceptive information coming from the

rhythmic movement of the controlateral limb (Savin et al.

2010). In fact, it has been demonstrated the existence of a

movement-related afferent feedback originating from net-

work interaction of inputs arising from the two limbs

(McIlroy et al. 1992; Peper and Carson 1999) and this

modulation seems to be accounted by presynaptic inhibi-

tory mechanisms (Stein 1995). In particular, passive

movement of one limb can drive phase and frequency of

the controlateral one (Gunkel 1962; deGuzman and Kelso

1991).

In our experiments, stimulation with EMGs obtained

from both two legged and one legged jumping did not

appear to be statistically different from ReaListim in

inducing FL. Thus, most noisy patterns recorded during

limb movement, as long as they possess a main frequency

similar to the one of ReaListim, appeared to be equally

effective in activating the CPG, regardless of the motor

task under which they were taken.

Furthermore, to confirm the scarce task specificity of

EMG traces to induce a FL, we stimulated the isolated

spinal cord with noisy and phasic patterns of a main fre-

quency equal to that of locomotor patterns, but recorded

during a nonpropulsive action of lower limbs, such as

rhythmic flexions of the ankle in weight-bearing condi-

tions and observed little task specificity of the stimulating

patterns.

Future perspectives

Although stimulation of a dorsal or sacral afferent with a

noisy wave represents the most powerful tool to electri-

cally generate the locomotor rhythm in the isolated neo-

natal rat spinal cord (Taccola 2011), to date there is no

clinical experience in the use of a similar protocol for epi-

dural or peripheral stimulation.

Solving the complexity of the undulatory asynchronous

stimulus used in our experiments may facilitate the intro-

duction of new parameters for clinical electrostimulators.

For this purpose, the isolated spinal cord, thanks to its

well defined dorsal input and ventral motor output, rep-

resents a very useful model to assess the degree of recruit-

ment of locomotor network through afferent electrical

inputs.
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