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Abstract: Tree-level gauge mediation (TGM) is a scenario of SUSY breaking in which

the tree-level exchange of heavy (possibly GUT) vector fields generates flavor-universal

sfermion masses. In this work we extend this framework to the case of E6 that is the

natural extension of the minimal case studied so far. Despite the number of possible E6

subgroups containing GSM is large (we list all rank 6 subgroups), there are only three

different cases corresponding to the number of vector messengers. As a robust prediction

we find that sfermion masses are SU(5) invariant at the GUT scale, even if the gauge

group does not contain SU(5). If SUSY breaking is mediated purely by the U(1) generator

that commutes with SO(10) we obtain universal sfermion masses and thus can derive the

CMSSM boundary conditions in a novel scenario.
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1 Introduction

One of the most popular candidates for new physics at the electroweak scale is the Minimal

Supersymmetric Standard Model (MSSM), tested in this very moment at the LHC. Since

the bulk of its parameter space is made up by soft SUSY breaking terms, a model for SUSY

breaking (and its mediation to the MSSM) is crucial in order to make definite predictions.

While in popular models SUSY breaking is brought to the MSSM via gravitational [1] or SM

gauge interactions at loop-level [2], we recently proposed a new framework in which SUSY

breaking is communicated through new gauge interactions at tree-level [3, 4]. We showed

that this possibility is not only viable (despite the familiar arguments against tree-level

SUSY breaking), but also solves the supersymmetric FCNC problem and, in its simplest

SO(10) implementation, leads to peculiar relations among sfermion masses that make this

scenario testable. In this paper, we want to go beyond the minimal model and analyze

which of its phenomenological features persist and whether we can obtain new predictions

for sfermion mass ratios.

Let us shortly review the basis mechanism of tree-level gauge mediation (TGM). In this

framework sfermion masses arise from an s-channel exchange of a heavy vector superfield

V as in figure 1, where Qi denote the MSSM fields and Z are fields that acquire SUSY

breaking F-term vevs. Since Z has to be a SM singlet, V must be a SM singlet as well.

The above diagram induces sfermion masses given by

m̃2
ij = 2g2(Ta)ij(M

2
V )−1

ab F †
0 TbF0, (1.1)
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Figure 1. Tree-level supergraph inducing sfermion masses.

where a, b run over the SM singlet generators, F0 collectively denote the F-terms vevs and

M2
V is the heavy gauge boson mass matrix. Alternatively one can think of sfermion masses

to arise from a D-term vev of V that is induced by the F-term vevs according to

〈Da〉 = −2g(M2
V )−1

ab F †
0 TaF0. (1.2)

Gaugino masses arise at 1-loop as in ordinary gauge mediation from coupling the above

F-term vevs to heavy chiral fields with SM quantum numbers. Such heavy fields are

naturally present in this scenario as they are required by the mass sum rule. The naively

expected loop hierarchy between sfermion and gaugino masses typically gets reduced by

various effects, e.g. the charges that enter sfermion masses. A slight hierarchy is actually

desirable since it implies that the tree-level contribution to sfermion masses dominates over

the two-loop contribution from ordinary gauge mediation.

Since sfermion masses arise from D-terms of new gauge fields that are SM singlets, we

have to consider gauge groups with rank ≥ 5. While such fields can certainly be present

in generic extensions of the SM group, e.g. of the form GSM × U(1)′, a natural motivation

of their presence is in the context of grand unified theories (GUTs). In earlier works [3, 4]

the minimal case of rank 5 GUT extensions of the SM has been considered. Among the

few, SO(10) is the obvious option, as it allows to embed the quantum numbers of a whole

fermion family (plus a gauge singlet) into its simplest chiral irreducible representation,

the spinorial 16. SO(10) contains only one new SM singlet gauge fields, giving rise to a

particularly predictive supersymmetry breaking spectrum. In this paper we want to extend

our analysis to the case of non-minimal rank 6 GUT extensions. The natural choice of the

GUT group is in this case E6, which, besides being independently well motivated and widely

studied in the literature [5–8], is strongly motivated by TGM. In the context of SO(10)

the chiral superfield spectrum needed for TGM to work contains three families of 16 + 10

representations, which, together with an SO(10) singlet, form precisely the fundamental

of E6: 27 = 16 + 10 + 1. The E6 vector spectrum contains four new SM singlets and

thus allows for a variety of possibilities for combining the corresponding D-terms. To be

general, we will consider the possibility that part of E6 is broken by boundary conditions

in the context of extra dimensions [9, 10], so that we will deal with an effective theory

below the compactification scale with a gauge group that is a rank 5 or rank 6 subgroup

G of E6. As far as the tree-level sfermion mass prediction is concerned, what matter are

the structure and the breaking of the SM singlet generators by scalar and F-term vevs,

inducing D-terms for the corresponding vector superfields. Their number is either one, two
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or four and we will study the three cases in the next sections. Although these generators

are SM singlets and do not contribute to the running of the SM gauge couplings at one

loop, we will assume throughout this paper that they are broken at the GUT scale and

leave an analysis of low-scale TGM to a future work.

2 General framework

Let us determine the possible TGM supersymmetry breaking messengers. The gauge group

we want to consider is a subgroup G of E6 (including E6) containing the SM group GSM.

The messengers are a subset of the SM singlet E6 vectors. In order to identify the latter, let

us decompose the E6 adjoint with respect to GSM and consider the embedding of the SM

group GSM in E6 through the maximal subgroup SO(10)×U(1)10. The relevant subgroup

chain is

E6 → SO(10) × U(1)10 → SU(5) × U(1)5 × U(1)10 → GSM × U(1)5 × U(1)10, (2.1)

and the corresponding decomposition of the E6 adjoint 78 is (we illustrate the decomposi-

tions of the fundamental and adjoint representation of E6 in tables 2 and 3 at the end of

appendix B)

78 → 450 + 16−3 + 163 + 10 (2.2a)

450 → 240,0 + 10−4,0 + 104,0 + 10,0 10 → 1′0,0

16−3 → 5−3,−3 + 101,−3 + 15,−3 163 → 53,3 + 10−1,3 + 1−5,3.
(2.2b)

Therefore the new four SM singlets contained in E6 are the fields 10,0, 1
′
0,0, 15,−3, 1−5,3, the

first two corresponding to the U(1) factors U(1)5 and U(1)10. Since all these generators

commute with SU(5) the sfermion masses from TGM will be SU(5) invariant (provided the

embedding of MSSM fields is in full SU(5) multiplets1). This constitutes one of the main

phenomenological predictions of TGM.

As for the SM matter, we will consider an embedding in irreps of G that arises from

the fundamental representation 27 of E6. Under the subgroup chain in eq. (2.1) the 27

decomposes as

27 → 161 + 10−2 + 14 (2.2c)

161 → 5−3,1 + 101,1 + 15,1 10−2 → 52,−2 + 5−2,−214 → 10,4. (2.2d)

We therefore have some freedom to embed the SM fields, namely we can choose whether

to embed dc, l into 5−3,1 or 52,−2 (or a linear superposition of both). The choice will be

dictated by the requirement that the sfermion masses from TGM are positive. Moreover

we only want to consider “pure” embeddings of the MSSM matter fields in the 27 of E6.

By pure embedding we mean that each SM fermion multiplet can be embedded into a

single irreducible representation of the gauge group, and the representation is the same (or

equivalent) for the three families. This assumption of pure embeddings is crucial to obtain

1We will see that this is a well-motivated assumption, even if G does not contain SU(5).
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flavor universal sfermion masses (since there is no flavor problem with Higgs soft masses

we allow mixed embeddings for the MSSM Higgs multiplets).

In order to break gauge symmetry and supersymmetry we will need scalar and F-term

vevs of SM singlet fields. For this purpose we introduce a certain number of “higgs” fields,

which are distinguished from the “matter” fields by means of a symmetry like matter

or R-parity. The SM components of the matter will be denoted by small letter and the

components of higgs fields by capital letters. We will consider only singlets contained in

the 27, 27 and 78 of E6, which are 10,4, 15,1, 1−5,3 + conjugated = N c′, N c, S′
+,N

c′
,N

c
, S′

−.

As a gauge group we will consider not only E6 but also a generic rank five or rank

six subgroup G of E6 which contains GSM. This is because we want to consider the

possibility that part of E6 is broken (to G) through boundary conditions in the context of

extra-dimensional GUT models [9, 10]. The model is in this case supposed to describe the

effective theory below the compactification scale. Without loss of generality we can assume

that G ⊇ GSM×U(1)X ≡ Gmin, where the U(1)X is a generic linear combination of the two

U(1)s appear in the subgroup chain in eq. (2.1). The SM singlet generators contained in G

can be either just the linear combination U(1)X , both U(1)5 and U(1)10 or all four singlets

10,0, 1
′
0,0, 15,−3, 1−5,3 (which form a U(1)′ × SU(2)′ subgroup of E6). We now analyze the

three possibilities in this order.

3 One messenger case: G ⊃ U(1)X

We will start with the simplest case in which there is only one SM singlet generator in G,

corresponding to a U(1)X subgroup. We assume that one can choose suitable boundary

conditions such that this generator is given as general linear combination of the normalized

generators t̂5,10

t̂X ≡ sin θX t̂5 + cos θX t̂10 θX ∈ [0, π] . (3.1)

Sfermion masses arise from the breaking of this generator by scalar and F-term vevs ac-

cording to eq. (1.1). The dependence on these vevs can be parametrized by a single real

parameter m2
X , whose expression in terms of the vevs can be found in appendix A. We

obtain for the sfermion mass of the sfermion f with X-charge Xf

m2
f = Xfm2

X , (3.2)

so that the sfermion masses of the candidate matter fields in the 101,1, 5−3,1, 52,−2 are given

by

m2(5−3,1) = (−3ŝX + ĉX)m2
X (3.2a)

m2(101,1) = (ŝX + ĉX)m2
X (3.2b)

m2(52,−2) = 2(ŝX − ĉX)m2
X , (3.2c)

where ŝX ≡ 1/
√

40 sin θX and ĉX ≡ 1/
√

24 cos θX . These masses satisfy the useful tree-level

identity

m2(5−3,1) + m2(52,−2) + m2(101,1) = 0. (3.3)
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We now show that if we assume pure embeddings of MSSM matter and require sfermion

masses to be positive, then the embeddings and therefore sfermion masses are also SU(5)

invariant. First note that the embedding of uc
SM, qSM, ec

SM in the 27 is unique and SU(5)

invariant, namely all fields must reside in the 101,1. As for dc
SM and lSM, in principle we

have two possibilities for each of them: dc
SM = dc ⊂ 5−3,1 or dc

SM = d′c ⊂ 52,−2 and

lSM = l ⊂ 5−3,1 or lSM = l′ ⊂ 52,−2. But the relation (3.3) implies that at least one

of the soft terms m2(101,1),m
2(5−3,1),m

2(52,−2) must be negative. Since we require that

m2(101,1) is positive, either m2(5−3,1) or m2(52,−2) can be positive. This means that dc

and l must be embedded in the same 5, which is 5−3,1 if m2(5−3,1) > 0 and 52,−2 if

m2(52,−2) > 0. Therefore we have the (tree-level) prediction that sfermion soft masses are

SU(5)-invariant and flavour universal:

(m̃2
dc)ij = (m̃2

l )ij = m̃2

5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (3.4)

with generic m̃2

5
and m̃2

10 depending only on θX and m2
X .

We can consider the two simplifying cases in which either U(1)X = U(1)5 or U(1)X =

U(1)10. In the first case we have ŝX = 1/
√

40, ĉX = 0, which implies that we need m2
X > 0

and the light sfermions are dc′, l′ in 52,−2. The ratio m̃2
10/m̃

2

52,−2
is fixed to be 1/2 and we

merely reproduced the SO(10) model already considered in ref. [3].

In the second case ĉX = 1/
√

24, ŝX = 0 we need again m2
X > 0, but now the light

sfermions are dc, l in 5−3,1. We have m̃2
10 = m̃2

5−3,1
and therefore obtain SO(10) invariant

sfermion masses, which follows immediately from the fact that U(1)10 commutes with

SO(10) (and the SM fermions are embedded in a single SO(10) representation). Note that

in this way we can reproduce the popular CMSSM boundary conditions for sfermion masses

at the scale where U(1)X is broken (except for the Higgs masses). In this scenario they

are naturally flavor-universal since they arise from (extra) gauge interactions which are

universal for pure embeddings.

What regards the MSSM higgs soft masses we can have in principle a mixed embedding

of Hu and Hd in the 27, 27 and 78 higgs fields. That is, Hd and Hu can in general be a

linear combination of the fields L27, L′27, L27, L78 and L
27

, L′27, L
27

, L
78

, respectively. The

only requirement is that the coefficient of that field that actually couples to the light MSSM

matter fields is sizable, i.e. L
27

for Hu and L27 (L′27) for Hd if the light fields dc
SM , lSM

are in 52,−2 (5−3,1). The Higgs soft masses depend on the precise embedding but can

range only in certain intervals that are set by the soft masses of L27, L′27, L27, L78 and

L
27

, L′27, L
27

, L
78

. We find that

m2
hd

∈
[
min{−3m̃2

10,−m̃2

5
− m̃2

10},max{2m̃2
10, m̃

2

5
}
]

(3.5)

m2
hu

∈
[
min{−2m̃2

10,−m̃2

5
},max{3m̃2

10, m̃
2

5
+ m̃2

10}
]
, (3.6)

In order to discuss gaugino masses we have to specify, at least in part, the superpo-

tential. Let us start from identifying the relevant fields. We first have the chiral “matter”

fields (defined by an appropriate assignment of a negative matter or R parity) associated

to subrepresentations of three E6 fundamentals, 27i, i = 1, 2, 3, and grouped of course in

a set of full G representations. Besides the fields of a whole SM family and two singlets,
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the 27 of E6 contains additional 10 degrees of freedom. We have in fact two copies of the

down quark and lepton fields, dc, dc′, l, l′ and one copy of fields with conjugate quantum

numbers, dc, l. This is welcome, as such extra degrees of freedom need to be (and can be

easily made) heavy and, as such, they can play the role of the chiral messenger responsible

of gaugino masses, as in ordinary gauge mediation.2 Let us see how they get heavy.

As the candidate chiral messengers have different charges under U(1)X , a mass term for

them can only come from the vev of a SM singlet breaking U(1)X . In particular, the only

possibility is to use the N c, N c′ and N c, N c′ contained in “Higgs” 27 and 27. Without loss

of generality, we can choose a basis in the flavour space of each of such singlets in which

only one of them, say N c
M , N c′

M , N c
M , or N c′

M , gets a vev. Mass terms for the chiral

messengers then arise from the following superpotential interactions

(hl
M )ij liljN

c
M + (hd

M )ijdc
id

c
jN

c
M + (h′l

M )ij l
′
iljN

c′
M + (h′d

M )ijd
′c
i dc

jN
c′
M . (3.7)

The couplings in the superpotential terms above can be related to each other and to other

superpotential couplings by gauge invariance, depending on the choice of G.

Assuming that all the couplings are non-vanishing, we need a scalar vev either for N c
M

or N c′
M , but not for both, in order to avoid mixed embeddings. In order to generate gaugino

masses, the fields that get a heavy mass term must also couple to supersymmetry breaking

(but not the light ones, in order to avoid negative contributions to sfermion masses). This

can again be achieved only by coupling them to N c, N c′, N c, N c′ singlets getting an F -term

vev. The relevant superpotential interactions have the same form as above,

(hl
F )ij liljN

c
F + (hd

F )ijdc
id

c
jN

c
F + (h′l

F )ij l
′
iljN

c′
F + (h′d

F )ijd
′c
i dc

jN
c′
F . (3.8)

Gauge invariance (see [4], eq. (10)) is automatically satisfied if the field getting F -term

vev is different from the field getting scalar vev.

In summary we can distinguish two cases depending on the embedding of the light

fields dc
SM , lSM

A) N c′
M = 0, N c′

F = 0, N c
M = M , N c

F = Fθ2 (light sfermions are dc′, l′ in 52,−2)

B) N c
M = 0, N c

F = 0, N c′
M = M , N c′

F = Fθ2 (light sfermions are dc, l in 5−3,1).

This gives rise to one-loop gaugino masses Mi given by

M3 =
g2
3

16π2

F

M
Tr
[
hd

F

(
hd

M

)−1
]

(3.9a)

M2 =
g2
2

16π2

F

M
Tr
[
hl

F

(
hl

M

)−1
]

(3.9b)

M1 =
g2
1

16π2

F

M
Tr

[
3

5
hl

F

(
hl

M

)−1
+

2

5
hd

F

(
hd

M

)−1

]
(3.9c)

for Case A, and for Case B with the replacements hd
F,M → h′d

F,M and hl
F,M → h′l

F,M .

2If the gauge group is not E6, or it does not contain SU(2)′ (see below), those extra components could

actually be absent. We are obviously not interested in such a case.
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Note that the dc and l contributions to gaugino masses can be split into three con-

tributions each, corresponding to the three messenger mass eigenstates that are related to

the three eigenvalues of (hd
M )ijM and (hl

M )ijM . Each of the three contributions should

be evaluated at the corresponding mass scale. If G ⊃ SU(5), one gets universal gaugino

masses, up to corrections from non-renormalizable operators [11–13].

4 Two messengers case: G ⊃ U(1)5 × U(1)10

We now consider the case with two SM singlet generators corresponding to the

U(1)5×U(1)10 subgroup. Since the discussion of gaugino masses and Higgs soft masses

is exactly same as before we will not repeat it again and restrict to tree-level sfermion

masses.

The sfermion masses of the candidate matter fields in the 101,1, 5−3,1, 52,−2 depend

only on their charges under U(1)5× U(1)10 and the two parameters m2
5 and m2

10 that are

calculated in appendix A. We get

m2(5−3,1) = −3m2
5 + m2

10 (4.0d)

m2(101,1) = m2
5 + m2

10 (4.0e)

m2(52,−2) = 2m2
5 − 2m2

10 (4.0f)

with the tree-level identity

m2(5−3,1) + m2(52,−2) + m2(101,1) = 0. (4.1)

As in the previous section we can use this identity to show that for pure embeddings of

the matter fields and positive sfermion masses we get SU(5) invariant sfermion masses.

Therefore we have the (tree-level) prediction that sfermion soft masses are SU(5)-invariant

and flavour universal:

(m̃2
dc)ij = (m̃2

l )ij = m̃2

5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (4.2)

with generic m̃2

5
and m̃2

10 that depend on the scalar and F -term vevs according to the

formulae given in appendix A. We did not find simplifying limits with definite predictions

for sfermion mass ratios other than m̃2

5
/m̃2

10 = 1/2 which was considered already in ref. [3].

The ranges for the Higgs masses are the same as in section 3.

5 Four messenger case: G ⊃ U(1)′
× SU(2)′

Let us now consider the case in which all the four E6 candidate supersymmetry breaking

messengers belong to G. The four messengers correspond to the E6 subgroup U(1)′×
SU(2)′. The SU(2)′ is the one appearing in the E6 maximal subgroup E6 ⊃ SU(6)×SU(2)′

and the U(1)′ is the subgroup of SU(6) that commutes with SU(5), as shown in appendix B.

We denote the corresponding generators as t′ and t′a, a = 1, 2, 3. The two additional

generators, with respect to the previous section, are t′1 and t′2, which can be combined into

– 7 –
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two complex generators t′± = (t′1 ± it′2)/
√

2, while t′3 and t′ are linear combinations of t5
and t10 given by t′3 = (t10 − t5)/8 and t′ = (3t5 + 5t10)/4.

The role of the SU(2)′ symmetry is to make the two 5 and the two singlets of SU(5)

in the 27 of E6 equivalent, i.e. belonging to the same SU(2)′ doublet. Denoting by (a, b)q
the representation which transforms as (a, b) under SU(5)×SU(2)′ and has t′ = q, we have

in fact

5−3,1 + 52,−2 = (5, 2)−1 10,4 + 15,1 = (1, 2)5 (5.1)

while the 10 and 5 of SU(5) in the 27 are SU(2)′ singlets and have charge t′ = 2,−4

respectively. This makes a qualitative difference in the way sfermion masses are generated

but does not alter the conclusion in eq. (5.4).

The masses of the supersymmetry breaking messengers and the breaking of

U(1)′×SU(2)′ are due to the vevs of the singlets N c′, N c,N c′,N c, S′
+, S′

−, as before, which

are now grouped into doublets and triplets of SU(2)′×U(1)′. As shown in appendix A, in

the presence of an arbitrary number of such representations, the masses for the sfermions

in the case of the SU(2)′ singlets in the 27 are given by

m2((10, 1)2) = 2m2
1 (5.2a)

m2((5, 1)−4) = −4m2
1. (5.2b)

Note that the need for non-negative tree-level soft terms for the sfermions embedded in

the 10 of SU(5) requires m2
1 ≥ 0. The SU(2)′ doublets in the 27 can mix, and their mass

matrices are given by

m2((5, 2)−1) =




m2
3

2
− m2

1

m2
+√
2

m2
−√
2

−m2
3

2
− m2

1


 (5.3a)

m2((1, 2)5) =




m2
3

2
+ 5m2

1

m2
+√
2

m2
−√
2

−m2
3

2
+ 5m2

1


 . (5.3b)

The four parameters m2
3, m2

1, m2
± correspond to the four messengers. The first two are

real, while m2
+ = (m2

−)∗.

The MSSM masses of the sfermions that can be embedded in a 10 of SU(5) are universal

and given by 2m2
1 at the tree level. In order to identify the masses of the MSSM sfermions

that can be embedded in a 5 of SU(5), we have to identify the light dc
i and li in the

multiplets (5, 2)−1. In principle, the three light leptons lli could be superpositions of the

three t′3 = 1/2 lepton doublets li and of the three t′3 = −1/2 lepton doublets l′i contained

in three (5, 2)−1. On the other hand, it can be shown that the natural solution of the

flavour problem requires that it must be possible to identify the three light leptons with,

for example, the t′3 = 1/2 lepton doublets li: lli = li, up to an SU(2)′ rotation. This is

indeed what is obtained in simple models, as shown below. The three leptons turn then

out to have universal soft terms proportional to m2

5
= m2

3/2 − m2
1.
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If the gauge group contains SU(5), the same results hold in the dc sector. If not, the

three light dc are also aligned in SU(2) space, but they could in principle be oriented in

a different direction. We will see that, under plausible hypotheses, this is not the case,

so that we get again the prediction that the sfermion soft masses are SU(5)-invariant and

flavour universal at the tree level:

(m̃2
dc)ij = (m̃2

l )ij = m̃2

5
δij (m̃2

uc)ij = (m̃2
q)ij = (m̃2

ec)ij = m̃2
10δij , (5.4)

with generic m̃2

5
and m̃2

10.

The discussion of MSSM higgs soft masses is similar as before. Now Hd and Hu can

in general be a linear combination of the doublets in (5, 2)−1,(5, 1)−6, (5, 1)4 and (5, 2)1,

(5, 1)6, (5, 1)−4 respectively. The range for the Higgs masses (for simplicity we consider

the case m2
+ = 0) is

m2
hd

∈
[
min

{
− 6m2

1,
m2

3

2
− m2

1,−
m2

3

2
− m2

1

}
,max

{
m2

3

2
− m2

1,−
m2

3

2
− m2

1, 4m
2
1

}]

m2
hu

∈
[
min

{
− m2

3

2
+ m2

1,
m2

3

2
+ m2

1,−4m2
1

}
,max

{
6m2

1,−
m2

3

2
+ m2

1,
m2

3

2
+ m2

1

}]
.

The presence of the SU(2)′ guarantees that the MSSM li and dc
i (and the singlets N c

needed to generate masses) come together with SU(2)′ partners l′i and dc′
i (and N c′), which

need to be heavy and, as such, can play the role of the chiral supersymmetry breaking

messengers responsible for one-loop gaugino masses through ordinary gauge mediation

mechanism. Since they must get heavy with their conjugates, the presence of the li, dc
i

from the 27i is also guaranteed.

Let us see how they get heavy. First, let us denote the three SU(2)′ doublets containing

the light fields as li = (li, l
′
i)

T , dc
i = (dc

i , d
′c
i)

T . Mass terms for the extra charged matter

fields can only come from superpotential interactions

(hl
M )ijliljN

c
M + (hd

M )ijdc
id

c
jN

c
M , (5.5)

where we have assumed for simplicity that only one doublet Nc
M = (N c′, N c)T gets

a vev in the scalar component. If G ⊂ SU(5), hl
M = (hd

M )T , up to corrections from

non-renormalizable operators [11–13]. We can rotate without loss of generality the vev

in the N c component: 〈Nc
M 〉 = (0,M)T . Then, the li and dc

i fields automatically end

up being also massless, and the flavour problem is naturally solved. Note also that this

represents an improvement with respect to the SO(10) theory studied in [3, 4] and with

respect to the 1 and 2 messenger cases studied in the previous sections. In those cases,

in fact, the possible presence of a bare mass term µijlilj could give rise to a non-pure

embedding and to flavour non-universal soft masses. In this case, such a bare mass term

is forbidden by the SU(2)′ symmetry.

If more than one Nc gets a vev coupled to the light fields, the flavour problem is auto-

matically solved if, in an appropriate SU(2)′ basis, all those vevs lie in the N c component

only. If that is the case, we can use a basis in the Nc flavour space such that only one of

them gets a vev, and we can still use eq. (5.5). In order to avoid negative, tree-level contri-

butions to sfermion masses from chiral superfield exchange, we need the N c′ components
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not to get an F -term either. In order to generate gaugino masses, one of the N c must

however take an F -term vev. Gauge invariance (see [4], eq. (10)) is automatically satisfied

if the field getting the F -term vev, Nc
F , with 〈Nc

F 〉 = (0, Fθ2)T , is different from the one

getting the scalar vev, Nc
M . Let

(hl
F )ijliljN

c
F + (hd

F )ijdc
id

c
jN

c
F (5.6)

be its coupling to the chiral messengers. The gaugino masses are then given by

M3 =
g2
3

16π2

F

M
Tr
[
hd

F (hd
M )−1

]
(5.7a)

M2 =
g2
2

16π2

F

M
Tr
[
hl

F (hl
M )−1

]
(5.7b)

M1 =
g2
1

16π2

F

M
Tr

[
3

5
hd

F (hd
M )−1 +

2

5
hd

F (hd
M )−1

]
. (5.7c)

The dc and l contributions to gaugino masses can be split into 3 contributions each,

corresponding to the three messenger mass eigenstates, namely to the three eigenvalues

of Mdc and Ml. Each of the three contributions should be evaluated at the corresponding

mass scale.

6 Phenomenology

In this section we briefly comment on some general aspects of TGM phenomenology in the

setup we considered. A thorough analysis of the peculiar phenomenological implications

including collider signals of TGM is in progress [11].

In TGM models sfermion masses arise at tree level, while gaugino masses arise at one

loop. As mentioned, the hierarchy between gaugino and sfermion masses that one might

naively expect, potentially leading to sfermions outside the reach of the LHC and to a

serious fine-tuning problem, turns out to be reduced by various effects down to a mild

hierarchy. The hierarchy could actually easily be fully eliminated, but a mild hierarchy is

actually welcome, as it makes the ordinary 2-loop gauge mediated pollution of tree-level

sfermion masses subleading, and will be assumed in the following.

The Higgs sector parameters are not tightly related to sfermion and gaugino masses.

The µ and Bµ parameters are highly model dependent,3 and the Higgs soft masses depend

on the Higgs embedding, which is allowed to be mixed in different representation of the

gauge group, as discussed above eqs. (3.5). The coefficients Xeff will be conveniently taken

in their ranges, while µ and Bµ will be treated as free parameters and as usual traded for

MZ and tan β.

Trilinear A-terms arise typically at one loop as they are generated by the exchange of

heavy chiral messengers that couple directly to MSSM fields in the superpotential. Their

value is model dependent, as it is controlled by unknown superpotential parameters, but

it can safely neglected in a sizeable part of the parameter space [3, 4, 11].

3For some possible implementations see [4].
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Figure 2. Overall parameters: m = F/M = 4.5 TeV, m2

hu
= −1/5 m2, m2

hd
= 3/40 m2, tanβ = 30.

Case A: m2

5̄
= 1/5 m2, m2

5̄
= 2 m2

10
Case B: m2

5̄
= 1/14 m2, m2

5̄
= 1/2 m2

10
.

In the following we present two representative low energy spectra that can be obtained

in the present framework. As a result of the previous sections we found that the main

phenomenological prediction of extended TGM is that the tree level contribution to the

sfermion masses is SU(5) invariant and flavor universal, and thus parametrized by two

parameters m̃2
5̄
, m̃2

10 which are independent in the general case. These tree level predictions

for sfermion masses hold at the messenger scale where the soft terms are generated. In

order to recover the low energy spectra we have to keep into account both the finite two loop

contributions from ordinary gauge mediation and the RG effects. Since sfermion masses

are in our example heavier than gaugino masses, the predictions for the sfermion mass

patterns are approximately preserved at low energy. One therefore expects two separated

sets of sfermions grouped according to their SU(5) representation. In figure 2 we show

two illustrative spectra, one in the case m̃2
5̄

> m̃2
10 and the other in the case m̃2

5̄
< m̃2

10.

In the specific case where m̃2
5̄

= m̃2
10 as in section 3 the spectrum we obtain is analogue

to the CMSSM case with non universal Higgs masses [14–19]. The remarkable point is

that, in contrast to the CMSSM case, in which universality of sfermion masses is an ad-hoc

phenomenological assumption, in our extended TGM setup it follows from the fact that

SUSY breaking is mediated by a heavy U(1) gauge field which universally couples to the

MSSM fields.
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Finally, we comment about the gravitino. A general feature of TGM is the fact that

the gravitino is the LSP, just as in ordinary gauge mediation. Its mass is given by

m3/2 =
F0√
3MP

(6.1)

where MP = (8πGN )−1/2 = 2.4× 1018 GeV is the reduced Planck mass and F 2
0 =

∑
i |Fi|2,

where the sum runs over all the fields taking F -term vevs.

We note that, contrary to the minimal case, the ratios of gravitino mass and other

superpartners masses are not fixed, since they depend on the specific pattern of F -term

vevs. This happens because the F -terms vevs of different fields enter the gravitino mass

through F 2
0 =

∑
i |Fi|2, while they enter the expression for sfermion masses weighted by

their charges. A lower bound for the ratio is obtained when just one F -term vev is switched

on. For example, in the one messenger case discussed in section 3 one obtains

m2
3/2

m2
ef

&
XF

Xf

√
3

M2

M2
P

= 4 × 10−5 XF

Xf

(
M

2 × 1016 GeV

)2

, (6.2)

where Xf (XF ) is the charge of the sfermion (singlet breaking SUSY), and M is the

scalar vev responsible for U(1) breaking. On the other hand, the gravitino mass cannot be

made arbitrarily large. While gauge contributions to sfermion masses are flavour universal,

gravitational ones are expected not to be. Their typical size is set by the gravitino mass,

thus one has to require that (for m2
ef

around TeV scale)

m2
3/2

m2
ef

∼
(
m2

ef

)
i6=j(

m2
ef

)
i=j

. 10−4 (6.3)

in order to avoid flavour problems [20].

7 Conclusions

In this work we have extended the framework of TGM to the case of extensions of the SM

gauge group derived from E6, a unified group that besides its interest for other reasons is

strongly motivated by TGM. To be general, we have allowed for the possibility that part

of E6 is broken by boundary conditions in extra dimensions, so that we performed our

analysis for an effective theory with a gauge group that is a rank 5 or rank 6 subgroup

of E6. Despite the large number of possible gauge groups (we gave a complete list of

the rank 6 subgroups in appendix B), we needed to study only three cases, depending

on the number of vector messengers that could be one, two or four. As a result we have

found that for pure embeddings of MSSM fields we obtain SU(5) invariant (and flavor-

universal) sfermion masses provided that they are positive. This feature is a pretty robust

prediction of TGM that should make this scenario testable at the LHC. In the case of a

rank 6 subgroup the ratio m̃2
10/m̃

2
5 remains undetermined in the general case but can be

fixed by considering special limits in the parameter space of scalar and F-term vevs to

be 1/2, which is the same prediction obtained in ref. [3]. In the case of rank 5 subgroup
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the ratio is fixed and depends only on the specific form of the U(1) factor. If this is the

U(1) subgroup of E6 that commutes with SO(10) we can obtain SO(10) invariant sfermion

masses. Therefore TGM offers an interesting possibility to reproduce the popular CMSSM

boundary conditions for sfermion masses in a novel scenario. In particular sfermion masses

are naturally flavor-universal since, similar to ordinary gauge mediation, they arise from

universal gauge interactions and in contrast to gravity mediated scenarios they can be

generated at the GUT scale.
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A Complete expressions of sfermion masses

In the presence of n supersymmetry breaking vector messengers associated to broken gen-

erators T a, a = 1 . . . n, sfermion masses are given by the general expression

m̃2
ij = 2g2T a

ij(M
2
V )−1

ab F †
0kT b

klF0l, (A.1)

where the indices ijkl denote the chiral superfields, F0i are the corresponding F -term vevs,

and M2
V is the n × n messenger vector mass matrix. No matter how complicated is the

Higgs mechanism giving rise to M2
V and F0i, the sfermion masses effectively depend only

on the n real parameters m2
a ≡ 2g2(M2

V )−1

ab F †
0kT b

klF0l:

m̃2
ij = T a

ijm
2
a. (A.2)

The real parameters can be of course combined in complex parameters corresponding to

complex generators, if needed. In each of the three cases considered in this paper, the

parameters m2
a can be recovered as functions of the parameters of the model.

In the case of one and two messengers sfermion masses arise from scalar and F -term

vevs of the SM singlets

N c′, N c, S′
+,N

c′
,N

c
, S′

− (A.3)

which are understood as vectors in flavor space. We denote (x, y) =
∑

i x
∗
i yi, |x|2 = (x, x),

where i runs over the flavour indices and introduce the shorthand notation

x ≡ |N c|2 + |N c|2 y ≡ |N c′|2 + |N c′|2 z ≡ |S′
+|2 + |S′

−|2

fx = |FNc |2 − |FNc |2 fy = |FNc′ |2 − |FNc′ |2 fz = |FS′

+
|2 − |FS′

−

|2, (A.4)

where we have denoted the vevs by the same symbol used for the fields and called

FNc′ , FNc , FNc′ , FNc , FS′

+
, FS′

−

the F -term vevs of N c′, N c,N c′,N c, S′
+, S′

− , respectively.

– 13 –



J
H
E
P
1
0
(
2
0
1
1
)
0
2
2

In the one messenger case sfermion masses depend on these paramters only through a

single parameter m2
X given by

m2
X ≡ (5ŝX + ĉX)fx + 4ĉXfy + (−5ŝX + 3ĉX)fz

(5ŝX + ĉX)2x + 16ĉX
2y + (−5ŝX + 3ĉX)2z

, (A.5)

where ŝX ≡ 1/
√

40 sin θX and ĉX ≡ 1/
√

24 cos θX .

In the two messenger case we have two parameters m2
5 and m2

10 for which we get
(

m2
5

m2
10

)
=

1

20(xy + xz + yz)

(
fx(4y + 3z) + fy(3z − x) − fz(x + 4y)

5fxz + 5fy(x + z) + 5fzx

)
. (A.6)

Note that at least two among x, y, z must be non-vanishing in order to completely break

U(1)5×U(1)10, since a single vev would leave a linear combination of the two U(1) fac-

tors unbroken.

In the four messenger case sfermion masses are generated by the scalar and F -term

vevs of n flavours of doublets and antidoublets and m flavours of triplets

(1, 2)5 =

(
N c′

N c

)
(1, 2)−5 =

(
N

c′

N
c

)
(1, 3)0 =




S′
+

S′
0

S′
−


 . (A.7)

In addition to eqs. (A.4) we define

w ≡ |S′
0|2, α ≡ (N c′, N c) + (N

c
,N

c′
), β ≡ (S′

+, S′
0) + (S′

0, S
′
−), γ ≡ (S′

+, S′
−),

where α, β, γ ∈ C, and |α| ≤ √
xy, |β| ≤

√
2zw, |γ| ≤ z/2. We use the same notation as

before for the F -term vevs and further denote by FS′

0
the F -term of S′

0.

The sfermion masses depend on the above vevs through four parameters

m2
+,m2

−,m2
3,m

2
1 given by




m2
+

m2
−

m2
3

m2
1


 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1/
√

60


 2g2(M̂2

V )−1




F 2
+

F 2
−

F 2
3

F 2
1


 , (A.8)

where

F 2
+ ≡ F †

0 T̂ ′
+F0 =

fα√
2
− fβ F 2

− ≡ F †
0 T̂ ′

−F0 =
(
F 2

+

)∗

F 2
3 ≡ F †

0 T̂ ′
3F0 = fz +

fy − fx

2
F 2

1 ≡ F †
0 T̂ ′F0 =

5√
60

(fx + fy)

(A.9)

M̂2
V = g2




x + y + 2z + 4w

2
−2γ∗ −β∗

√
5

6
α∗

−2γ
x + y + 2z + 4w

2
−β

√
5

6
α

−β −β∗ x + y + 4z

2

1

2

√
5

3
(y − x)

√
5

6
α

√
5

6
α∗ 1

2

√
5

3
(y − x)

5

6
(x + y)




. (A.10)
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B Rank 6 subgroups of E6 containing GSM

We now provide a complete list of the rank 6 subalgebras g of the E6 Lie algeba containing

the SM algebra. We distinguish the two (t′± /∈ g) and four (t′± ∈ g) messenger cases. We

will write the subalgebras as direct sums of the decomposition of the E6 Lie algebra with

respect to Gmin = GSM × U(1)10 × U(1)5 and G′
min = GSM × U(1)′ × SU(2)′ respectively.

The 78 decomposes as in eq. (2.2). The Gmin irreducible subalgebras (besides the ones

in gmin) can be labelled as follows:

240,0+10,0+1′0,0 = gmin + V0,0 + V 0,0

10−4,0 = q−3,1/2 + uc
−3,1/2 + ec

−3,1/2 104,0 = q3,−1/2 + uc
3,−1/2 + ec

3,−1/2

101,−3 = q−3,−1/2 + uc
−3,−1/2 + ec

−3,−1/2 10−1,3 = q3,1/2 + uc
3,1/2 + ec

3,1/2

5−3,−3 = l−6,0 + dc
−6,0 53,3 = l6,0 + dc

6,0

15,−3 = s′0,−1 1−5,3 = s′0,1. (B.1)

where ra,b denotes the subalgebra with the quantum numbers of the SM representation r

and with t′ = a, t′3 = b (we use t′ and t′3 instead of t5, t10 here because it makes easier

to compute commutators). V denotes the (3,2,-5/6) SM representation that describes the

heavy SU(5)/GSM vectors.

The rank 6 subalgebras g of the E6 Lie algeba containing the SM algebra, but not t′±,

are then

su(5) + u(1)5 + u(1)10 = gmin + V0,0 + V 0,0 (B.2a)

su(5)f + u(1)5f + u(1)10 = gmin + q−3,1/2 + q3,−1/2 (B.2b)

su(4)c + su(2)L + u(1)3R + u(1)10 = gmin + uc
−3,1/2 + uc

3,−1/2 (B.2c)

su(3)c+su(2)L+su(2)R+u(1)B−L+u(1)10 = gmin + ec
−3,1/2 + ec

3,−1/2 (B.2d)

su(3)c + su(3)L + u(1)′8 + u(1)′3 = gmin + l−6,0 + l6,0 (B.2e)

su(4)cf + su(2)L + u(1)′3 + u(1)10f = gmin + dc
−6,0 + dc

6,0 (B.2f)

so(10) + u(1)10 = gmin + (V0,0 + q−3,1/2 + uc
−3,1/2 + ec

−3,1/2 + conj) (B.2g)

su(6) + u(1)′3 = gmin + (V0,0 + l−6,0 + dc
−6,0 + conj) (B.2h)

su(6)f + u(1)′3R = gmin+(q−3,1/2+uc
−3,−1/2+l−6,0+conj) (B.2i)

su(5)f + su(2)′R + u(1)′f = gmin + (q−3,1/2 + ec
−3,−1/2 + conj) (B.2j)

su(6)f + su(2)′R = gmin + (q−3,1/2 + uc
−3,−1/2 + l−6,0 + ec

−3,−1/2 + conj) (B.2k)

su(4)c + su(2)L + su(2)R + u(1)10 = gmin + (uc
−3,1/2 + ec

−3,1/2 + conj) (B.2l)

su(5)′fR + su(2)L + u(1)′fR = gmin + (uc
−3,1/2 + ec

−3,−1/2 + dc
−6,0 + conj) (B.2m)

su(3)c + su(3)L + su(2)R + u(1)R = gmin + (ec
−3,1/2 + l−6,0 + conj), (B.2n)

besides of course su(3)c + su(2)L + u(1)Y + u(1)5 + u(1)10 = gmin. For the definition of the

U(1) factors see table 1.

– 15 –



J
H
E
P
1
0
(
2
0
1
1
)
0
2
2

Generator Definition

U(1)5f t5f (t5 + 24y)/5

U(1)3R t3R (t5 − 6y)/10

U(1)B−L tB−L (t5 + 4y)/5

U(1)′8 y′ (−3t5 + 48y − 5t10)/60

U(1)′3 t′3 (t10 − t5)/8

U(1)10f t10f (3t5 + 5t10 + 72y)/20

U(1)′3R t′3R (t5 − 5t10 + 24y)/40

U(1)′f t′f (3t5 + 25t10 + 72y)/20

U(1)′fR t′fR (−3t5 + 5t10 + 18y)/5

U(1)R tR (−3t5 − 12y + 5t10)/30

U(1)′ t′ (5t10 + 3t5)/4

U(1)′10f t′10f (3t5 + 5t10 + 72y)/20

U(1)′c t′c (−3t5 − 5t10 + 18y)/5

U(1)8L yL (−3t5 − 5t10 − 12y)/30

Table 1. Definition of U(1) factors.

Some comments are in order. All the subgroup factors in eqs. (B.2) are orthogonal.

Adding a subalgebra with opposite values of t′3 leads to an equivalent embedding that

can be obtained from the original one by means of a SU(2)′ rotation flipping the sign of

t′3. The subalgebra su(5)f gives the flipped embedding of SU(5) in SO(10)⊂ E6 with the

flipped U(1) generator t5f . The “flipped SU(4)c” subalgebra su(4)cf can be seen as the

SU(4) subgroup of SU(6) generated by su(3)c+dc
−6,0+dc

6,0 and the “flipped B-L” generator

tfB−L ≡ (t′−2y)/5. The flipped su(6)f subalgebra is spanned by su(5)f +5−3,−3+53,3+u(1)′f .

The SU(5)′fR subgroup is the one obtained from the unification of SU(3)c and SU(2)′R
instead of SU(2)L

In the case in which the gauge group contains SU(2)′ (i.e. t′± ∈ g), it is convenient to

decompose the E6 adjoint with respect to G′
min. One has

78→ (24, 1)0 + (5, 1)6 + (5, 1)−6 + (1, 1)0 + (1, 3) + (10, 2)−3 + (10, 2)3

(24, 1)0 + (1, 1)0 + (1, 3)0 = g
′
min + (V, 1)0 + (V , 1)0

(10, 2)−3 = (q, 2)−3 + (uc, 2)−3 + (ec, 2)−3 (10, 2)3 = (q, 2)3 + (uc, 2)3 + (ec, 2)3

(5, 1)−6 = (l, 1)−6 + (dc, 1)−6 (5, 1)6 = (l, 1)6 + (dc, 1)6, (B.3)

where (a, b)q denotes a subalgebra with quantum numbers a under SU(5) (first line) of

GSM (other lines), b under SU(2)′, and t′ = q.

The rank 6 subalgebras g of the E6 Lie algeba containing the SM algebra and t′±, are
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J
H
E
P
1
0
(
2
0
1
1
)
0
2
2

SU(6)×SU(2)′ SU(5)×SU(2)′×U(1)′ SU(5)×U(1)5×U(1)10 SM SO(10)×U(1)10
(15,1) (10,1)2 101,1 q, uc, ec 161

(5,1)−4 5−2,−2 dc, l 10−2

(6,2) 5−3,1 (5,2)−1 dc, l 161

52,−2 d′c, l′ 10−2

(1,2)5 10,4 νc′ 14

15,1 νc 161

Table 2. Decomposition of 27.

SU(6) × SU(2)′ SU(5) × SU(2)′ × U(1)′ SU(5) × U(1)5 × U(1)10 SM SO(10) × U(1)10

(35,1) (24,1)0 240,0 450

(5,1)6 53,3 163

(5,1)−6 5−3,−3 16−3

(1,1)0 10,0 s′ (10,450)

(20,2) (10,2)−3 10−4,0 450

101,−3 16−3

(10,2)3 10−1,3 163

104,0 450

(1,3) (1,3)0 1−5,3 s′+ 163

10,0 s′0 (10,450)

15,−3 s′− 16−3

Table 3. Decomposition of 78.

then

su(5) + u(1)′ + su(2)′ = g
′
min + [(V, 1)0 + conj] (B.4a)

su(6) + su(2)′ = g
′
min + [(V, 1)0 + (l, 1)−6 + (dc, 1)−6 + conj] (B.4b)

so(10)′f + u(1)′10f = g
′
min + [(q, 2)−3 + (dc, 1)−6 + conj] (B.4c)

su(5)c + su(2)L + u(1)′c = g
′
min + [(uc, 2)−3 + conj] (B.4d)

su(6)c + su(2)L = g
′
min + [(uc, 2)−3 + (ec, 2)−3 + (dc, 1)−6 + conj] (B.4e)

su(3)c+ su(2)L+ su(3)′+u(1)8L = g
′
min + [(ec, 2)−3 + conj] (B.4f)

su(3)c + su(3)L + su(3)′ = g
′
min + [(ec, 2)−3 + (l, 1)−6 + conj] (B.4g)

su(3)c + su(3)L + su(2)′+u(1)′8 = g
′
min + [l−6,0 + conj] (B.4h)

su(4)cf +su(2)L+su(2)′+u(1)10f = g
′
min + [dc

−6,0 + conj], (B.4i)

besides of course e6 itself.
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