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1 Introduction and motivations

Two-point correlators of gauge invariant operators encode useful data of a quantum field

theory. For example, they carry information on the dynamical phases of the theory, and on

its spectrum in given superselection sectors, including both (massless or gapped) discrete

and continuum bound states.

Given a class of theories in which a certain operator is defined, it is often useful to

parametrize its correlators in terms of scalar form factors, after imposing Lorentz invariance

and the appropriate symmetry constraints. Such form factors will then depend on the

couplings that characterize the theory, and on the vacuum.

When a quantum field theory (QFT) is supersymmetric, operators are organized in

supermultiplets. If the vacuum is supersymmetric, form factors of operators belonging to

the same supermultiplet are related to each other. On the other hand, if supersymmetry is
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spontaneously broken, these relation will be valid only at high energies, and their violation

at low scales can be seen as an effective probe of supersymmetry breaking. A concrete

realization of this idea, and an example of its usefulness, is General Gauge Mediation [1],

where the supermultiplet at hand is that of a conserved current of the QFT. In that case,

when the QFT is used as a hidden sector and is coupled to the Standard Model by gauging

the symmetry, the two-point functions fully encode the resulting soft masses.

Here, we will consider correlators of operators belonging to another multiplet, the

supercurrent multiplet, which contains the stress-energy tensor and the supercurrent, i.e.

the conserved current of supersymmetry, and as such is ubiquitous in a supersymmetric

QFT. In addition, this multiplet contains an R-current, which, depending on the theory one

is considering, gets identified with the superconformal R-current or some other R-current,

which may or may not be conserved. We will provide a complete parametrization of the two-

point functions of these operators in terms of form factors, and derive the supersymmetric

relations among them.

The universality of the supercurrent multiplet indicates that its correlators encode

the very general features of a supersymmetric QFT. In particular, they are directly af-

fected by the breaking of conformal invariance, R-symmetry and/or supersymmetry. For

instance, when any of these symmetries is spontaneously broken, 1/k2 poles associated to

the Goldstone modes appear in the relevant correlators. We will organize form factors in

two distinct sets, one associated to the traceless part of the correlators, that computes the

central charge at conformal fixed points, and another one which corresponds to the traces

and is generated by the explicit breaking of conformal invariance.

Having in mind possible applications to hidden sectors in models of gauge mediation,

as well as conformal or nearly-conformal sectors of beyond the Standard Model physics, or

more generically confining theories, one is often interested in theories at strong coupling.

In this case, ordinary field theory techniques are limited, and the (possibly only) analytical

tool one can use is holography, which provides, in fact, a direct way to compute correlators

of gauge invariant operators at strong coupling [2, 3].

This approach was used in [4, 5] in the context of holographic models of gauge media-

tion and in the present paper we pursue it further, in view of wider applications. We will

discuss a class of simple weakly coupled and strongly coupled models, and compute super-

current multiplet correlator form factors in different dynamical regimes, using respectively

ordinary field theory techniques and AdS/CFT ones. The models we discuss are not only

interesting per sé but also as useful playgrounds in view of applications to richer set-ups,

such as holographic constructions within five-dimensional N = 2 gauged supergravity and,

ultimately, supersymmetry breaking backgrounds in string theory. A thorough analysis of

two-point functions of the supercurrent multiplet may help, in fact, in discerning whether

supersymmetry breaking is explicit or spontaneous, and on the stability properties of the

proposed backgrounds.

The rest of the paper is organized as follows. In section 2 we start recalling the

structure of the supercurrent multiplet in four dimensions. Depending on the theory at

hand, this is more conveniently described by a Ferrara-Zumino (FZ) multiplet [6] or a
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R multiplet [7].1 Then, we give the parametrization of the two-point functions in terms

of form factors, and we derive the constraints imposed by supersymmetry and conformal

symmetry. In section 3 we compute supercurrent correlators in simple weakly coupled

examples, enjoying different patterns of symmetry breaking. We consider models where

(super)conformal invariance is preserved, spontaneously or explicitly broken, as well as

models where supersymmetry is spontaneously broken. In section 4 we repeat the same

program for theories at strong coupling, considering the simplest holographic set-up one

can think of, namely a five dimensional hard wall background [10–14], and use holography

to extract two-point functions. This will provide a holographic realization of a variety of

different dynamical behaviors, including, e.g. a holographic description of the Goldstino

mode. We end in section 5 with a summary of our results and an outlook.

2 Supercurrent multiplets and two-point functions

In any supersymmetric field theory one can define an energy-momentum tensor Tµν and a

supercurrent Sµα (i.e. the Noether’s current associated to supersymmetry) which are both

conserved on-shell and can be accommodated in a supercurrent multiplet, the most widely

known being the Ferrara-Zumino (FZ) multiplet [6].

The FZ multiplet can be described2 by a pair of superfields (Jµ, X) satisfying the

relation

−2D
α̇
σµαα̇ Jµ = DαX , (2.1)

with Jµ being a real superfield, Jµ = J ∗µ , and X a chiral superfield, Dα̇X = 0. From

the defining equation above one can work out the component expression of these two

superfields. They read

Jµ =jµ + θ

(
Sµ −

1

3
σµS

)
+ θ

(
Sµ +

1

3
σµS

)
+
i

2
θ2∂µx

∗ − i

2
θ

2
∂µx

+ θσνθ

(
2Tµν −

2

3
ηµνT +

1

2
εµνρσ∂

ρjσ
)

+ . . .

(2.2)

and

X = x+
2

3
θS + θ2

(
2

3
T + i ∂µjµ

)
+ . . . (2.3)

where . . . stand for the supersymmetric completion of the superfield and we have defined

the trace operators T ≡ Tµµ and Sα ≡ σµαα̇S
α̇
µ. All in all, the FZ multiplet contains a (in

general non-conserved) current jµ, a symmetric and conserved Tµν , a conserved Sµα and a

complex scalar x. This makes a total of 12 bosonic + 12 fermionic operators.

From the above expression one can also see that whenever X vanishes the current jµ
becomes conserved and all trace operators vanish. In this case the theory is superconformal

and jµ becomes the always present (and conserved) superconformal R-current.

1We will not consider situations in which none of the two supermultiplets can be defined, and one should

resort to the so-called S multiplet [8, 9]. See [9] for a detailed discussion.
2Here and in the following we adhere to the conventions of [15].
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For theories with an R-symmetry, being it the superconformal one or any other, there

exists an alternative supermultiplet accommodating the energy-momentum tensor and the

supercurrent, the so-called R multiplet [7]. This is defined in terms of a pair of superfields

(Rµ, χα) satisfying

−2D
α̇
σµαα̇Rµ = χα , (2.4)

where Rµ is a real superfield , Rµ = R∗µ, and χα a chiral superfield, Dα̇χα = 0 which

satisfies the identity Dα̇χ
α̇ − Dαχα = 0; this implies, in turn, that ∂µRµ = 0. From the

latter relation it follows that the lowest component of Rµ is indeed a conserved current.

The component expression of the superfields making-up the R multiplet reads

Rµ = jµ + θSµ + θ Sµ + θσνθ

(
2Tµν +

1

2
εµνρσ(∂ρjσ + Cρσ)

)
+ . . . (2.5)

and

χα = −2Sα −
(

4δβαT + 2i (σρστ )βαCρτ

)
θβ + 2i θ2σναα̇∂νS

α̇
+ . . . (2.6)

where again . . . stand for the supersymmetric completion, while Cµν is a closed two-form.

The number of on-shell degrees of freedom is 12 bosonic + 12 fermionic, as for the FZ mul-

tiplet. In a theory where both the FZ and the R multiplets can be defined, they are related

by a shift transformation [9] (which acts as an improvement on Tµν and Sµα) defined as

Rµ = Jµ +
1

4
σα̇αµ

[
Dα, Dα̇

]
U , X = −1

2
D

2
U , χα =

3

2
D

2
DαU , (2.7)

where U is a real superfield.

While in this paper we will not be concerned with theories where the FZ multiplet can-

not be defined [9, 16], it can sometime be interesting, provided an R-symmetry is present,

to consider the R multiplet, instead. Such a situation typically occurs in phenomenological

models [17]. For this reason, we will also discuss R multiplet correlators.

2.1 Parametrization of two-point functions

Let us start focusing on two-point functions of operators belonging to the FZ multiplet. One

can use Poincaré invariance and conservation laws to fix completely the tensor structure

of such correlators, and be left with a set of (model dependent) form factors.

In euclidean momentum-space, the real correlators can be parametrized as follows

〈Tµν(k)Tρσ(−k)〉 = −1

8
Xµνρσ C2(k2)− 1

8

m2

k2
(PµνPρσ − Pρ(µPν)σ)F2(k2) (2.8a)

〈Sµα(k)Sνβ̇(−k)〉 = −(Yµν)αβ̇ C3/2(k2)− i

2
m2 εµνρλ k

ρσλ
αβ̇
F3/2(k2) +M4(σµσ

ρσν)αβ̇
2kρ
k2

(2.8b)

〈jµ(k) jν(−k)〉 = −Pµν C1R(k2)− 1

3
m2ηµν F1(k2) (2.8c)

〈x(k)x∗(−k)〉 =
2

3
m2 F0(k2) (2.8d)

〈jρ(k)Tµν(−k)〉 = i kρ Pµν I3(k2) (2.8e)
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where Pµν ≡ k2ηµν − kµkν is the transverse projector, and we have defined the traceless

tensor

Xµνρσ = PµνPρσ − 3Pρ(µPν)σ , (2.9)

and its fermionic analog (by trace of the supercurrent operator we mean the contraction

with σµ)

(Yµν)αβ̇ = kρσ
ρ

αβ̇
Pµν +

i

2
k2 εµνρλ k

ρσλ
αβ̇
. (2.10)

In some terms a mass scale m appears, which, as we will show below, is related to the

explicit breaking of conformal invariance. Finally, a 1/k2 pole appears in the supercur-

rent correlator when supersymmetry is spontaneously broken at some scale M , defined by

〈Tµν〉 = −M4 ηµν , signalling the presence of a Goldstino mode. Indeed, whenever super-

symmetry is spontaneously broken, we have the (non-transverse) Ward identity

〈(∂µSµα)(k)Sνβ̇(−k)〉 = −〈δαSνβ̇〉 , (2.11)

where3

〈δαSµβ̇〉 = 〈δβ̇Sµα〉 = iσναβ̇ 〈2Tµν〉 6= 0 , (2.12)

By substituting the parametrization (2.8b) of the supercurrent two-point function in (2.11),

one easily sees that the above term provides the 1/k2 pole contribution.

When appropriate, we have separated the structure of correlators in terms of a traceless

and a trace part. The former is given by the functions C2, C3/2 and C1R. Note that C2

determines the central charge c at a conformal fixed point. The form factors F2, F3/2, F1,

F0 contribute instead to the trace operator correlators

〈T (k)T (−k)〉 = −3

4
m2k2F2(k2) (2.13a)

〈Sα̇(k)Sα(−k)〉 = 3σναα̇kνm
2F3/2(k2) + 32M4σ

ν
αα̇kν
k2

(2.13b)

kµkν〈jµ(k) jν(−k)〉 = −1

3
m2k2 F1(k2) (2.13c)

〈x(k)x∗(−k)〉 =
2

3
m2 F0(k2) . (2.13d)

Additional non-trivial two-point functions, given in terms of complex form factors, are

〈Sµα(k)Sνβ(−k)〉 = mεαβ Pµν G3/2(k2)− 2im εµνρλ k
ρ σλταβ kτ G̃3/2(k2) (2.14a)

〈x(k)∗ jµ(−k)〉 = mkµH1(k2) (2.14b)

〈x(k)∗ Tµν(−k)〉 =
1

2
mPµν H2(k2) . (2.14c)

All in all, two-point functions can be parametrized in terms of eight real and four complex

form factors.

3The additional factor of i with respect to the tranformations in appendix A arises when the correlators

are continued in Euclidean space.
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2.2 Supersymmetric relations among form factors

On a supersymmetry preserving vacuum, the supersymmetry algebra imposes the following

relations among form factors

C2 = C3/2 = C1R , F2 = F3/2 = F1 = F0 , I3 = 0 , (2.15a)

H2 = H1 = G3/2 = G̃3/2 . (2.15b)

Hence, when supersymmetry is preserved, one is left with just one complex and two real

independent form factors.

One might like to require conformal invariance on top of supersymmetry. The net effect

on the form factors can be obtained by observing that in such case T = 0 as an operator

and hence, by supersymmetry, X = 0. Let us notice that one could perform a shift [9]

in the superfields (Jµ, X) which leaves the definition (2.1) invariant. Here, choosing X to

be exactly equal to zero, we are fixing this ambiguity. From now on we will always work

within this assumption. The vanishing of X implies that

F2 = F3/2 = F1 = F0 = 0 . (2.16)

As already observed, the vanishing of X also implies that the non-conserved part of the two-

point function of jµ is projected out. Current conservation forces any correlator carrying

a net charge under the R-symmetry to vanish (notice that R(X) = 2 and R(Sµ) = −1).

Hence also all complex form factors vanish in this case

H2 = H1 = G3/2 = G̃3/2 = 0 . (2.17)

Thus, in the superconformal case, only one (real) form factor survives. When conformal

invariance is unbroken its functional dependence on k2 is completely fixed up to an over-

all constant. This also shows that at a superconformal fixed point the central charge c

completely determines the two-point functions of the supercurrent and of the R-current,

besides that of the energy-momentum tensor

C2 = C3/2 = C1R =
c

3π2
log

Λ2

k2
. (2.18)

Eqs. (2.16) and (2.17) give also an a posteriori justification for the presence of a mass

scale in the parametrization of the traceful part of real correlators and of the complex ones.

Indeed, if the theory does not contain any scale, any correlator involving the mass scale m

should vanish.

The most generic situation is obtained in a supersymmetry breaking vacuum, where

both M and m are necessarily different from zero and the form factors are not anymore

related to one another, in general. Notice that since T = 0 is an operator identity in a

conformal theory, in order to break supersymmetry spontaneously and get a non-vanishing

vacuum energy, conformal invariance must be explicitly broken. In other words, one can

never have a situation in which m = 0 and M 6= 0.
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2.3 Two-point functions for the R multiplet

We now comment on the structure of two-point functions for the R multiplet. Correlators

not involving Cµν have the same structure of those of the FZ multiplet (though the form

factors will generically be different functions). One crucial difference, though, is that now

jµ is a conserved current and therefore F1 = I3 = 0.

As for correlators involving Cµν , the only non-vanishing ones are

〈Cµν(k)Cρσ(−k)〉 = 3 (ηµρkνkσ − ηνρkµkσ + ηνσkµkρ − ηµσkνkρ)m2E0(k2) (2.19a)

〈Cµν(k) jρ(−k)〉 =
i

2
(ηµρkν − ηνρkµ)m2E1(k2) , (2.19b)

where E0 and E1 are real form factors, and numerical coefficients have been chosen for

later convenience.

One can easily work out the supersymmetry transformations of the fields belonging to

the R multiplet, and find that in a supersymmetric vacuum the following relations between

form factors should hold

C2 = C3/2 = C1R , F2 = F3/2 = E1 = E0 . (2.20)

So, in this case, one is left with two independent real form factors. Notice the difference with

respect to the FZ multiplet, for which the R-current is not conserved and, in turn, there can

be a non-vanishing complex form factor in a supersymmetric vacuum, see eq. (2.15b). For

ease of notation, in (2.20) we have used the same letters adopted for the FZ multiplet for cor-

relators involving Tµν , Sµα or jµ, but the explicit form of the Fs and Cs is a priori different.

For a superconformal theory, the R and FZ multiplets can be chosen to coincide by

selecting the superconformal R-current as the bottom component of Rµ. In this case, one

finds that F2 = F3/2 = E1 = E0 = 0, while C1R = C3/2 = C2 6= 0, as for the FZ multiplet,

and one is consistently left with only one real form factor. However, in the context of R-

symmetric RG flows, there is another natural choice for the lowest component of Rµ at the

UV fixed point, that is to select the R-symmetry preserved along the flow (let us assume

for simplicity that it is unique). In this case, at the UV and IR fixed points one gets

F2 = F3/2 = E1 = E0 =
1

3

k2

m2

1

(2π)2
τUV, IRU log

Λ2

k2
. (2.21)

The quantities τUVU and τ IRU have been studied in [18], where they were conjectured to

satisfy the inequality τUVU > τ IRU .

3 Supercurrent correlators at weak coupling

In this section, as a warm-up, we will apply the formalism we have introduced to the

simplest class of weakly coupled models one can think of, that is WZ-like models with

a single chiral superfield. By considering a free massless chiral superfield, a massive one

and finally a model with a linear superpotential perturbation (i.e. the Polonyi model),

we will compute the explicit form of the form factors discussed in the previous section

– 7 –
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in toy-examples of superconformal theories (both in vacua preserving and not preserving

conformal invariance), supersymmetric but not conformal theories and, finally, theories

breaking supersymmetry spontaneously.

3.1 Conformal case: massless chiral multiplet

Let us consider a theory of one chiral massless superfield Φ with canonical Kähler potential

and no superpotential, that is a free theory. The FZ multiplet is given by (see, e.g. [9])

Jµ = −1

6

(
DΦ∗

)
σµ (DΦ) +

2

3
i (Φ∗∂µΦ− Φ∂µΦ∗) (3.1a)

X = −1

3
ΦD

2
Φ∗ . (3.1b)

The equations of motion for Φ are simply

D2Φ = D
2
Φ∗ = 0 , (3.2)

thus we see that on-shell X = 0, as appropriate for a superconformal field theory.

From the component expression of the FZ superfield (3.1a) we get

Tµν =
1

3

(
4 ∂(µφ∂ν)φ

∗ − ηµν∂ρφ∂ρφ∗ − φ∗∂µ∂νφ− φ∂µ∂νφ∗
)

+
i

2

(
ψσ(µ∂ν)ψ − ∂(µψσν)ψ

)
(3.3a)

Sµα =
2
√

2

3
i

(
φ∗∂µψα − ψα∂µφ∗ +

1

2
(σρσµ) β

α ψβ∂
ρφ∗
)

(3.3b)

jµ =
1

3
ψσµψ +

2

3
i (φ∗∂µφ− φ∂µφ∗) , (3.3c)

where we have neglected terms which vanish on-shell, and we have used the usual parametri-

zation for a chiral superfield, i.e. Φ(x, θ, θ) = φ+
√

2θψ+θ2F + . . . where the ellipses stand

for the supersymmetric completion.

One can easily check that T , S and ∂µj
µ are all zero on-shell. As expected for a

superconformal theory, some of the real form factors and all the complex ones vanish in

this case

G3/2 = G̃3/2 = H2 = H1 = I3 = 0 , F2 = F3/2 = F1 = F0 = 0 . (3.4)

So we are left with the computation of the traceless part of the correlators (2.8a), (2.8b)

and (2.8c), namely of C2, C3/2 and C1R. This can be done by evaluating the one-loop

diagrams in figure 1. In what follows we discuss separately the cases where the vacuum

preserves or does not preserve the superconformal symmetry.

Unbroken conformal invariance. Evaluating the one-loop diagrams of figure 1, one

gets the following result

C2(k2) = C3/2(k2) = C1R(k2) =
1

(4π)2

2

9

(
log

Λ2

k2
+

7

3

)
. (3.5)

As expected, the three form factors are equal and have the correct logarithmic behavior

for a conformal theory. In particular, comparing our result with (2.18), we get the value
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c

+

a b

d e

+

Figure 1. The one-loop contributions to 〈jµjν〉: (a+ b), 〈SµαSνβ̇〉: c and 〈TµνTρσ〉: (d+ e). The

external lines are meant to represent the source (supergravity) fields for each operator.

of the central charge c = 1/24 which is in agreement with the expected result for a free

theory with one chiral multiplet [19].

In evaluating the one-loop diagrams we have used dimensional regularization in the

minimal subtraction scheme. Terms which are polynomial in the external momentum

can of course be scheme-dependent, and in that case they do not correspond to physical

observables. For instance, in our scheme there is a finite contribution such that F2 =

F3/2 = 1
4π2

2
9
k2

m2 6= F1 = 0. This is not surpising, because dimensional regularization does

neither preserve conformal symmetry nor supersymmetry, as it is evident considering that

in d = 4 − 2ε dimensions T 6= 0 and S 6= 0 while it remains true that ∂µj
µ = 0.4 For

instance, using differential regularization [27], both the residual constant terms in the Cs
form factors and the Fs form factors can be shown to vanish. Anyhow, since they do not

play any important role in our discussion, we will not be concerned with contact terms

from now on.

Spontaneous breaking of conformal invariance. We now want to consider situations

in which conformal symmetry (and hence, by supersymmetry, also the superconformal R-

symmetry) is broken spontaneously. Sticking to our simple toy-model, this can be achieved

by choosing a non-zero VEV for the lowest component of the chiral superfield Φ, that is

〈φ〉 = v.5

4A contact-term contribution to F2 in a CFT is related to the a′ coefficient in the trace of the energy-

momentum tensor on a curved background, first discussed in [20] (where the coefficient is dubbed h) and

then extended to the supersymmetric case in [21–23]. Since it can be shifted by adding a local counterterm,

this coefficient is not a real anomaly, neither its value can be considered as a datum of the CFT. See

however [24–26] for a tentative interpretation of the difference a′UV − a′IR in the presence of an RG-flow.
5Note that two vacua with a different value of v are not really physically different in this simple model,

because of an additional symmetry shifting the superfield Φ by a constant. This additional spurious sym-

metry can be removed considering a model closer in spirit to, e.g., the Coulomb branch of N = 4 SYM.
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Since conformal invariance is broken spontaneously, the operator identity X = 0 still

holds, on-shell. Hence all correlators that were vanishing before are still vanishing, see

eqs. (3.4). On the other hand, we should now find poles in the traceless part of the

correlators, corresponding to the Goldstone modes associated to the broken symmetries.

Since supersymmetry is not broken, Goldstone modes should appear in supermultiplets.

Therefore, we expect a dilaton, an axino/dilatino, and an R-axion in this case, which

correspond to poles in C2, C3/2 and C1R, respectively.

A simplification, in what follows, is that in order to find the poles, it will be sufficient to

determine the piece of the current operators which is linear in the fields, and then compute

the correlators at tree level (the loop parts will be closely related to the ones discussed in the

conformal case). We thus start by finding the linear pieces in the operators (3.3a), (3.3b)

and (3.3c) which read

T lin
µν =− 1

3
v∂µ∂ν(φ+ φ∗) (3.6a)

Slin
µ =

2
√

2

3
iv∂µψ (3.6b)

jlin
µ =

2

3
iv∂µ(φ− φ∗) , (3.6c)

where we have taken v to be real, for simplicity.

Let us start with the tree-level correlator of jlin
µ , which can be easily evaluated to be

〈jlin
µ (k)jlin

ν (−k)〉 =
8

9
v2kµkν

1

k2
. (3.7)

The trasversality can be restored by introducing the seagull-like term familiar in scalar

QED, and adding the corresponding contact term −8
9v

2ηµν to the tree-level correlator.

The end result we get for the form factor reads

C1R(k2) =
8

9

v2

k2
, (3.8)

correctly displaying the pole associated to the R-axion.

The supercurrent and energy-momentum tensor correlators can be equivalently evalu-

ated and read

〈Slin
µ (k)S

lin
ν (−k)〉 = −8

9

v2

k2
Yµν =

8

9

v2

k2
kµkνkρσ

ρ + contact terms , (3.9a)

〈T lin
µν (k)T lin

ρσ (−k)〉 = −1

9

v2

k2
Xµνρσ = −1

9

v2

k2
kµkνkρkσ + contact terms , (3.9b)

where again, contact terms have been added to get a transverse result, and Xµνρσ and

Yµν are defined in eqs. (2.9) and (2.10). These correlators lead to form factors which are

identical to (3.8), and the corresponding poles are associated to the axino/dilatino and the

dilaton, respectively.

However, the poles that one would recover will be analogous to those in our single field model, to which we

then focus for simplicity.
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Let us finally remark that the contact terms we have added to restore transversality

for the supercurrent and the energy-momentum tensor can be put in correspondence to

quadratic local terms in the sources which are present in the supergravity lagrangian [15],

in analogy with the seagull for the vector field.

3.2 Supersymmetry without conformal invariance: massive chiral multiplet

We will now consider a case in which a mass term is added, W = 1
2mΦ2. This superpotential

term, while breaking the superconformal R-symmetry together with conformal symmetry,

still allows for a different R-symmetry, under which R(Φ) = 1. The superfield definition

for Jµ is unchanged with respect to the conformal case given in (3.1a), but the final

expression for the component operators contains new terms, because it is obtained by

using the modified equations of motion. The result is

Tµν =
1

3

(
4∂(µφ∂ν)φ

∗ − φ∗∂µ∂νφ− φ∂µ∂νφ∗ − ηµν∂ρφ∂ρφ∗ − ηµν |mφ|2
)

(3.10a)

+
i

2

(
ψσ(µ∂ν)ψ − ∂(µψσν)ψ

)
Sµα =

2
√

2

3
i

(
φ∗∂µψα − ψα∂µφ∗ +

1

2
(σρσµ) β

α ψβ∂
ρφ∗
)

+

√
2

3
σµψm∗φ∗ . (3.10b)

The presence of a superpotential introduces a new term in the expression for X

X = 4W − 1

3
ΦD

2
Φ∗ . (3.11)

which, by using the equations of motion becomes

X =
2

3
mΦ2 =

2

3
mφ2 +

2

3
θ
(

2
√

2mφψ
)
− 4

3
θ2

(
|mφ|2 +

1

2
mψ2

)
. (3.12)

Comparing the above expression with (2.3) we can easily read the expressions of the trace

operators

T = −2|mφ|2 −
(

1

2
mψ2 + c.c.

)
(3.13a)

S = 2
√

2mφψ (3.13b)

∂µj
µ = i

1

3

(
mψ2 − c.c

)
(3.13c)

x =
2

3
mφ2 . (3.13d)

The main difference between this example and the previous ones is that, since conformal

symmetry is explicitly broken, we expect one more real form factor to be generated (the

complex one, which generically can be non-zero in the non-conformal case, is forbidden by

the unbroken R-symmetry). This is the form factor corresponding to the traceful part of

the correlators, namely F2, F3/2 and F1 in our parametrization, which are predicted to be

equal when supersymmetry is unbroken.
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+

dc

Figure 2. The one-loop contributions to 〈jµjν〉 in the massive case. Diagram b is a contact term

needed for (bosonic) current conservation. For the R multiplet, only bosonic loops contribute, since

R(Φ) = 1 and hence R(ψ) = 0.

Evaluating the one-loop diagrams of figure 2, one gets the following result for the

corresponding form factors

C
1R̃

=
1

(4π)2

2

9

(
log

Λ2

m2
+

7

3
+

4m2

k2
− k2 + 2m2

k2
L
(
k2

m2

))
(3.14a)

F1 =
1

(4π)2

4

3

(
log

Λ2

m2
+ 2− L

(
k2

m2

))
, (3.14b)

where

L(x) = 2

√
4 + x

x
arctanh

(√
x

4 + x

)
(3.15)

and R̃ stands for the non-conserved superconformal R-current. For k2 � m2, both C
1R̃

and F1 go to a finite constant, which is what we expect from a theory with a mass gap.

Note that expanding the above expression for C
1R̃

at fixed k2 for m going to zero we

approach the free conformal fixed point and we recover the central charge c = 1
24 as the

coefficient of the leading term in the series. Conversely, for m approaching the cut-off Λ

C
1R̃

goes to zero, in agreement with the fact that the end of the flow is the empty theory.

C
1R̃

is indeed a good candidate for being a central function which interpolates between the

central charges of two superconformal field theories connected by an RG flow [19].

Let us finally notice that when continued in (mostly plus) lorentzian signature, there is

a branch cut for −k2 > 4m2 associated to the multi-particle channel and also that only the

fermion loops contribute to F1, since the bosonic part of the R-current is still conserved.

The supersymmetric relation between non-conformal form factors can be verified by

explicitly calculating the two-point functions of the energy-momentum tensor and of the

supercurrent operators in the presence of the mass perturbation. A simpler way is to rely

on the relation between the traces and the mass operator, as explained in appendix B. In

this case this amounts to substituting the relations (3.13) in the correlators (2.13), and one

can easily see that indeed F2 = F3/2 = F1.
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Since there is a conserved R-symmetry in this case, it is also possible to define an R
multiplet, and it is instructive to see how the two-point correlators of this multiplet behave

in this simple case, comparing the results with the ones obtained for the FZ multiplet.

Starting from the general superfield definition of the R multiplet for a theory in which

also the FZ multiplet is well defined, it is easy to see that

Rµ = i (Φ∗∂µΦ− Φ∂µΦ∗) , χα = −1

2
D

2
Dα (ΦΦ∗) , (3.16)

where the conserved current sitting in the bottom component of the R multiplet is indeed

associated with the R-symmetry under which R[Φ] = 1.

From the component expression of the R multiplet (2.5) we derive that

Tµν =
1

2
(∂µφ∂νφ

∗ + ∂νφ∂µφ
∗ − φ∂µ∂νφ∗ − φ∗∂µ∂νφ) (3.17a)

+
i

2

(
ψσ(µ∂ν)ψ − ∂(µψσν)ψ

)
Sµα = i

√
2(φ∗∂µψα − ψα∂µφ∗) (3.17b)

jµ = i(φ∗∂µφ− φ∂µφ∗) , (3.17c)

where jµ only depends on the scalar (consistently with the fact that R(ψ) = 0), while Tµν
and Sµα are obtained from the FZ ones in (3.10a)–(3.10b) via an improvement transfor-

mation of the type (2.7) with U = −1
3ΦΦ∗. Since the current is conserved, we expect a

transverse correlator determined by only one form factor which is

C1R =
1

(4π)2

1

3

(
log

Λ2

m2
+

8

3
+

8m2

k2
− k2 + 4m2

k2
L
(
k2

m2

))
. (3.18)

Even if similar in form, the result (3.18) differs from the analogous one for the FZ multi-

plet (3.14a). In particular the leading term in the UV expansion gives the central charge

associated with a U(1)R which is not the superconformal R-symmetry and therefore cannot

be identified with the central charge c.

Since the conserved R-current depends only on the scalar, the mixed correlator with

Cµν ends up to be proportional to C1R. In particular we get

E1 =
k2

m2
C1R . (3.19)

Taking k2 fixed and inserting the form factor (3.19) in the correlator (2.19b), we see that

the latter does not go to zero in the limit in which m2 goes to zero. The coefficient of the

logarithmic divergence gives the τU quantity defined in (2.21), as expected.

3.3 Spontaneous supersymmetry breaking

Finally, we want to consider a case where supersymmetry is (spontaneously) broken. The

simplest such model is the Polonyi model, which amounts to add a linear potential to the

theory of a free massless chiral superfield of section 3.1

W = fΦ . (3.20)
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In the vacuum of the Polonyi model we have that 〈F 〉 = −f∗, while the one-point function

of Tµν is simply given by 〈Tµν〉 = −|f |2ηµν , signalling the spontaneous breaking of super-

symmetry. This implies the existence of a Goldstino in the spectrum, which, as discussed

in section 2, should show up as a pole in the two-point function (2.8b). Finally, form

factors are not expected anymore to respect equalities like those in (2.15a) and (2.15b),

since supersymmetry is broken.

In our present model we have that

X =
8

3
fΦ =

8

3
f
(
φ+
√

2θψ − θ2f∗ + . . .
)
, (3.21)

which implies, by comparison with eq. (2.3), that at linear level the supercurrent Sµα reads

Slin
µα =

√
2f∗(σµψ)α . (3.22)

From this expression, the real fermionic correlator can be easily computed to be

〈Slin
µα(k)S

lin
νβ̇(−k)〉 = 2|f |2σµσρσν

kρ
k2
, (3.23)

which, by setting |f | = M2, agrees with the expected expression (2.8b) and the existence

of a Goldstino mode.

At linear level there is no contribution to the form factors C3/2 and F3/2. In fact, due to

the simplicity of the superpotential perturbation, the supersymmetry breaking deformation

does not affect the one-loop computation of the form factors, and one gets the same result

as for the superconformal case. In particular, F3/2 = 0. The same holds for all other real

correlators, hence F1 = F2 = 0. This could seem at odds with the fact that the theory

breaks supersymmetry, but is in fact the price to pay for having chosen such a simple model

(which is a free theory). The violation of the supersymmetric relations (2.15a), though,

can be seen by computing F0, which does get a contribution at linear level and is different

from zero. From eq. (3.21) one easily gets

〈x(k)x∗(−k)〉 =
64

9
|f |2 1

k2
6= 0 . (3.24)

The appearance of a pole is due to the presence of a massless sGoldstino (the pseudomoduli

space is not lifted quantum mechanically in the Polonyi model). Such massless mode can

be lifted if one considers, e.g., a model where the complex boson is given a mass or is

removed from the spectrum, as by imposing the constraint Φ2 = 0.

4 Supercurrent correlators at strong coupling

In this section we consider theories at strong coupling, and compute correlators of the super-

current multiplet using holography. According to the field/operator correspondence [2, 3],

the bulk fields dual to the stress-energy tensor, the supercurrent and the R-current are

the graviton, the gravitino and the graviphoton, respectively. Hence, in order to get two-

point functions of the supercurrent multiplet we will consider linearized fluctuations of the

graviton multiplet.
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As we did in the previous section, we will stick, in what follows, to the simplest possible

set-up, namely a field theory whose gravity dual is Anti-de Sitter space-time possibly cut-

off by a hard wall in the bulk [10–14]. This is a bottom-up model, which is however flexible

enough to let one reproduce most of the physics we discussed in the weakly coupled case.

The background is described by an AdS metric which can be written as

ds2 =
1

z2

(
dz2 + ηµνdx

µdxν
)
, (4.1)

understood to be extending from the boundary at z = 0 to a cut-off at z = 1/µ, which

geometrically is indeed a hard wall. The boundary z = 0 corresponds to the deep UV of

the quantum field theory, while the cut-off z = 1/µ represents the smallest scale in the IR,

here given by µ.

Locally, for all values of z larger than the IR cut-off, the whole (conformal) isometry

group of AdS is unbroken. Thus a hard wall is a (very simplified) model for a theory which

flows from a UV conformal fixed point to a gapped phase in the IR, with spontaneously

broken conformal symmetry [10, 11]. On the contrary, one recovers a fully conformal field

theory when µ → 0 and AdS space-time is no longer cut-off. Indeed, by considering the

fluctuations of the graviton, the gravitino and the graviphoton, and applying the standard

AdS/CFT machinery, we will see that one gets the correlators of a SCFT in unbroken and

broken phases, for µ = 0 and µ 6= 0, respectively. In particular, in the latter case, we will

show that 1/k2 poles arise in the form factors, corresponding to massless dilaton, dilatino

and R-axion.

In theories where conformal symmetry is explicitly broken, X 6= 0. In this case, the

graviton multiplet does not have enough degrees of freedom to describe, holographically,

the FZ multiplet (in particular, one cannot generate non-trivial Fs form factors), and at

least one hypermultiplet, dual to X, must be added.6

This agrees with the fact that specific non-trivial profiles of scalar fields are needed

in order to describe, holographically, non-conformal theories, the scalar being dual to the

operator perturbing the fixed point. One should then consider the backreacted solution

for the coupled system given by the scalar and the metric (and possibly their supersym-

metric partners). This implies that the hard wall is a too simple background to describe

field theories in which conformal invariance is explicitly broken and, eventually, theories

with spontaneously broken supersymmetry. The analysis of richer backgrounds, with fully

backreacted scalar profiles, is left for future work. Here we will take an effective approach,

which consists in working at the lowest order in the relevant perturbation of the fixed

point. The basic idea is that we start with the conformal theory in the non-conformal

vacuum parametrized by the scale µ of the IR wall, and then treat a perturbation with

relevant coupling m, in an expansion in m/µ. By means of the Ward identities of (bro-

ken) conformal invariance, eqs. (B.6) and (B.7a)–(B.7d), this will allow us to recover the

non-conformal form factors Fs at lowest order in this expansion, simply by considering

6Completely analogous statements can be made for the R multiplet, where the extra fields sit in a

vector multiplet dual to the real superfield U (or in a tensor multiplet dual to χα, in theories where the FZ

multiplet is not defined).
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fluctuations of the hypermultiplet on the un-backreacted hard wall background. This same

short-cut approach will enable us to describe, holographically, supersymmetry breaking

models and get, in particular, the expected Goldstino pole in 〈Sα̇Sα〉.
In what follows, correlators are computed through the procedure of holographic renor-

malization [28–31]. These are by now standard techniques, hence we will not go into

any technicality in the remainder of this section, and just discuss the results we obtain.

However, several useful technical details of the procedure, specialized to the hard wall back-

ground, are presented in appendix C, to which the interested reader can refer to. We will al-

ways set our computations in the framework of N = 2 gauged supergravity, and exploit the

holographic dictionary to compute correlators at the complete supermultiplet level, as initi-

ated in [4, 5]. This is a necessary ingredient in order to deal with strongly coupled supersym-

metric QFT systematically, and have control on their (supersymmetry breaking) dynamics.

4.1 Unbroken conformal symmetry

We start by the most symmetric case, which amounts to consider fluctuations of the gravi-

ton supermultiplet on a pure AdS5 background. This multiplet contains the graviton hMN ,

the gravitino ψM and the graviphoton AM , and the corresponding action is

S =
N2

4π2

∫
d5x
√
G
(
− 1

2
R− 6 + ψM

(
ΓMNPDN −

3

2
ΓMP

)
ψP +

1

4
GMPGNQFMNFPQ

)
,

(4.2)

where we have not written boundary terms. The five dimensional Newton constant is fixed

in terms of the AdS5 × S5 ten-dimensional solution, taking LAdS = α′ = 1, and we use

indices such that xM = (z, xµ). Unbroken conformal symmetry implies, by supersymme-

try, also unbroken superconformal R-symmetry, so that, consistently, the graviphoton is

massless. Also, supersymmetry in AdS implies the gravitino has mass |m| = 3
2 , in units of

the AdS radius.

In order to compute two-point correlators, we need to consider only quadratic fluctu-

ations of the bulk fields. In this simple set-up, we can restrain to fluctuations that are

completely gauge-fixed, hMz = Az = ψz = 0. We can furthermore consider transverse and

traceless hµν , transverse and Γ-traceless ψµ, and transverse Aµ.

The essence of extracting correlators holographically is the following. In a near-

boundary expansions, fluctuations have two independent modes, one leading and one sub-

leading, that determine the whole solution. Regularity conditions in the deep interior of

AdS or boundary conditions at the hard-wall then fix the dependence of the subleading

mode in terms of the leading one. The two-point correlator is precisely given by this de-

pendence, up to some local contact terms that can be set to zero in a suitable subtraction

scheme (see appendix C for details).

In pure AdS, the bulk condition is that the fluctuation does not explode in the deep

interior. This fixes the solution uniquely, and going through all the procedure of holographic

renormalization one gets the correlators (2.8a)–(2.8c), expressed in terms of the following

form factors

C2(k2) = C3/2(k2) = C1R(k2) = CAdS(k2) =
N2

12π2
log

Λ2

k2
, (4.3)
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where Λ is a UV regulator, and there can be additional constant pieces according to the

subtraction scheme (see appendix C). All other form factors vanish. These results are

the expected ones for a superconformal field theory. In particular, the value for C2 is the

well-known result [2] of the holographic derivation of the central charge of N = 4 SYM,

for which c = a = N2

4 in the large N limit. What we have explicitly shown here is that the

same central charge is recovered from the R-current correlator and from the supercurrent

correlator, consistently with supersymmetry and eq. (2.15a).

4.2 Spontaneously broken conformal symmetry

In order to reproduce a situation where the field theory has a vacuum where conformal

symmetry is spontaneously broken, we consider AdS space-time cut-off at z = 1/µ where

the scale µ is identified with the scale of the VEV that breaks the conformal symmetry.

The hard wall is modeling a theory where such spontaneous breaking leads to a discrete

spectrum, typical of a confining theory.

Differently from pure AdS, the geometry now ends abruptly at the wall z = 1/µ, and

we have to impose there generic homogeneous boundary conditions for the field fluctuations

(hµν(z, k) + ρ2z∂zhµν(z, k))|z=1/µ = 0 (4.4a)

(ψµ(z, k) + ρ3/2z∂zψ
µ(z, k))|z=1/µ = 0 (4.4b)

(Aµ(z, k) + ρ1z∂zAµ(z, k))|z=1/µ = 0 . (4.4c)

The boundary conditions being homogeneous, it is obvious that they introduce only IR

data to the theory, and no dependence on the UV. In other words, the different boundary

conditions parametrize the way in which conformal symmetry is spontaneously broken.

Interestingly, we will actually see that consistency and unitarity of the resulting field theory

will force us with a unique choice of boundary conditions.

Through the holographic renormalization procedure, the resulting two-point func-

tions are

C2(k2) = CAdS(k2) +
N2

6π2

ρ2
k
µK1( kµ)−K2( kµ)

ρ2
k
µI1( kµ) + I2( kµ)

(4.5a)

C3/2(k2) = CAdS(k2) +
N2

6π2

ρ3/2
k
µK1( kµ)− (1 +

ρ3/2
2 )K2( kµ)

(1 +
ρ3/2

2 )I2( kµ) + ρ3/2
k
µI1( kµ)

(4.5b)

C1R(k2) = CAdS(k2) +
N2

6π2

K1( kµ)− ρ1
k
µK0( kµ)

I1( kµ) + ρ1
k
µI0( kµ)

, (4.5c)

where Kn and In are (modified) Bessel functions.

The trademark of the hard wall model is that correlation functions approach their su-

perconformal limit exponentially fast, at large momentum. On the other hand, in the deep

infrared the physics is determined by the choice of boundary conditions and in particular

correlators can develop massless poles for specific choices of ρs. By expanding the above
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expression for k2/µ2 � 1 we get

C2(k2) '
k2→0

N2

6π2

(
− 16

1 + 4ρ2

µ4

k4
+

16(1 + 6ρ2(1 + ρ2))

3(1 + 4ρ2)2

µ2

k2
+ . . .

)
(4.6a)

C3/2(k2) '
k2→0

N2

6π2

(
−

16(2 + ρ3/2)

(2 + 9ρ3/2)

µ4

k4
+

16(4 + ρ3/2(28 + 37ρ3/2))

3(2 + 9ρ3/2)2

µ2

k2
+ . . .

)
(4.6b)

C1R(k2) '
k2→0

N2

6π2

(
2

1 + 2ρ1

µ2

k2
+ . . .

)
. (4.6c)

All these expressions have poles for generic values of the boundary conditions. The ap-

pearance of double-poles in C2 and C3/2 is a sign of non-unitarity. Such double poles can

(and have to) be cancelled by a specific choice of boundary conditions, i.e. ρ2 → ∞ and

ρ3/2 = −2. This choice leaves us with form factors with only single poles, and makes also

C2(k2) equal to C3/2(k2). We then see that the only hard wall configuration which gives

a dual QFT with a unitary spectrum has massless modes in both the stress-energy tensor

and the supercurrent correlator, with positive residue. This shows that this configuration

is mimicking a flow in which conformal symmetry is broken spontaneously.

Since the theory is superconformal in the UV, supersymmetry cannot be broken along

the flow because having a non-zero vacuum energy would contradict the operator identity

T = 0, which remains true when conformal invariance is spontaneously broken. The C1R

form factor (which does not display double poles and hence does not have any unitarity

problem) is hence dictated by supersymmetry to be equal to C2 and C3/2, and this fixes

the last parameter, ρ1 = 0. This choice of boundary condition for Aµ might be interpreted

as the only one which corresponds to the correct superconformal R-current in the IR.

In summary, in the spontaneously broken conformal symmetry case we have

C2(k2) = C3/2(k2) = C1R(k2) = CAdS(k2) +
N2

6π2

K1( kµ)

I1( kµ)
'

k2→0

N2

6π2

µ2

k2
+ . . . . (4.7)

The massless pole in the above form factors signals the presence of a supermultiplet of

massless particles in the dual field theory: these are the dilaton for broken conformal sym-

metry [11], its superpartner the dilatino, and the R-axion, associated to the spontaneous

breaking of the superconformal R-symmetry. The presence of these strongly coupled com-

posite massless states nicely mirrors the same states that we found in the weakly coupled

model of section 3.1. Note, however, the difference in the rest of the spectrum. In the

weakly coupled model one finds a massless state and a continuum, after (possibly) a gap,

while in the present case it is easy to see, by continuing the Bessel functions to negative

values of k2, that the spectrum is composed exclusively of discrete states.

4.3 Explicitly broken conformal symmetry

We now discuss the holographic version of a model with explicitly broken conformal in-

variance but preserved supersymmetry. We expect Cs form factors without massless poles,

and non-vanishing Fs form factors.

We will consider the perturbation which breaks conformal invariance as given by a

certain chiral operator O in the superpotential, dual to a hypermultiplet in the gravity
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theory. As anticipated, even if only a fully backreacted solution with a non-trivial profile

for the hyperscalars can fully encode breaking of conformality, here we will take a short-cut.

Our approximation consists in considering only the lowest order effects in the expansion

parameter m/µ, where m is the scale of the perturbation, dual to the leading mode of the

hyperscalar at the boundary, and µ is the scale of the IR wall. The operator Tµµ and its

supersymmetric partners have an explicit overall dependence on the scale m, reflecting the

fact that they vanish in the limit m→ 0. In superfield language the relation reads

X =
4

3
(3−∆)m3−∆O , (4.8)

where ∆ is the dimension of the operator O, and 1 ≤ ∆ < 3. It is clear, then, that to lowest

order in m/µ the correlators of the trace operators are determined by those of O evaluated

at m = 0, i.e. in the conformal theory. This expansion corresponds, via holography, in an

expansion in the profile of the hyperscalar dual to the coupling m. This argument then

shows that the Fs form factors can be obtained, to leading order, by simply fluctuating the

hyperscalar dual to O in the background without any scalar profile, i.e. the hard wall. For

a derivation of the precise relation between the correlators of O and the form factor Fs,

see appendix B (the relations are derived there without reference to a small m expansion,

and therefore are valid independently from this limit). Note that, on the other hand, our

crude approximation cannot capture the effect of the perturbation on the traceless part of

two-point correlators. The dilaton, dilatino and axino should get a mass proportional to

the scale m of explicit breaking of conformal invariance, and correspondingly in the small

k2 limit the Cs should take the gapped form ∼ (k2 +m2)−1. We expect this correction to

be visible only working at higher order in the scalar profile. Already at the second order,

however, the backreaction starts to be relevant, and therefore no calculation in the simple

hard wall background can show this effect.

Let us focus, for simplicity, on an operator with ∆ = 2. The relation between X and

O is in this case

X =
4

3
mO . (4.9)

From appendix B, we can read the relation between the Fs form factors and the form

factors of the operators in the chiral multiplet O

F2 = F1 =
8

3
ZF , F3/2 =

8

3
Zψ , F0 =

8

3
Zφ . (4.10)

Implementing the holographic machinery we get

ZF (k2) = ZAdS(k2) +
N2

4π2

(1 + ρ1)K1( kµ)− ρ1
k
µK0( kµ)

(1 + ρ1)I1( kµ) + ρ1
k
µI0( kµ)

(4.11a)

Zψ(k2) = ZAdS(k2) +
N2

4π2

(1 + 3
2ρ1/2)K1( kµ)− ρ1/2

k
µK0( kµ)

(1 + 3
2ρ1/2)I1( kµ) + ρ1/2

k
µI0( kµ)

(4.11b)

Zφ(k2) = ZAdS(k2) +
N2

4π2

−(1 + 2ρ0)K0( kµ) + ρ0
k
µK1( kµ)

(1 + 2ρ0)I0( kµ) + ρ0
k
µI1( kµ)

, (4.11c)
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where ZAdS(k2) is the usual conformal form factor containing the log Λ2/k2 term. Note

that the non-trivial part of the form factors is very similar to the ones computed in [5] for a

vector supermultiplet, the dimensions of the corresponding operators being the same. The

parameters ρ1, ρ1/2 and ρ0 are defined similarly as in (4.4a)–(4.4c), for the bulk fields of a

hypermultiplet dual to O.

The only choice of parameters making all form factors equal and with no massless

poles is ρ0 = 0, ρ1 = −1, ρ1/2 = −2
3 which gives

Z(k2) = ZAdS(k2)− N2

4π2

K0( kµ)

I0( kµ)
'

k2→0

N2

8π2

(
log

Λ2

µ2
− k2

2µ2
+O

(
k4
))

. (4.12)

Through Ward identities, this implies that all Fs form factors are non-vanishing, equal to

one another, as expected, and gapped

F2(k2) = F3/2(k2) = F1(k2) = F0(k2) =
N2

3π2

(
log

Λ2

k2
− 2

K0( kµ)

I0( kµ)

)
. (4.13)

4.4 Spontaneously broken supersymmetry

We now consider the case of spontaneously broken supersymmetry. We remind that for

this to be possible, conformal symmetry has to be explicitly broken. In a supersymmetry

breaking vacuum we expect a Goldstino and, specifically, a massless pole in the supercurrent

correlator. Using Ward identities as in the previous section, in particular eq. (B.7b), this

corresponds to a massless pole in the fermionic correlator 〈ψO(k)ψO(−k)〉. In fact, for any

choice of the parameter ρ1/2 but the one discussed in the previous section, such a pole

develops at low momenta

Zψ(k2) '
k2→0

N2

4π2

1 + 3
2ρ1/2

1
2 + 7

4ρ1/2

µ2

k2
+ . . . (4.14)

Using (B.7b) we thus get, e.g. for ρ1/2 = 0

〈Sα̇(k)Sα(−k)〉 = σµαα̇kµ
N2

π2

4m2µ2

k2
+ . . . (4.15)

This massless fermionic state, a composite state of the strongly coupled gauge theory, is the

Goldstino of spontaneously broken supersymmetry. We have thus provided a holographic

realization of the Goldstino (albeit using the trick of the Ward identities) as the dual of the

lowest lying excitation of the fermionic operator in O. Note that here again we used the

approximation of small m/µ, and therefore the Goldstino propagator is expressed by the

fermionic correlator evaluated in the conformal limit m = 0. The scale of supersymmetry

breaking M can be read from the residue of the massless pole to be

M =
√
mµ . (4.16)

This approximate formula nicely reflects that the effect responsible for the breaking of

supersymmetry are the boundary conditions at the IR wall (M = 0 when µ = 0) and also
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that conformal symmetry must be explicitly broken to have a non-supersymmetric vacuum

(M = 0 when m = 0).

In order to go beyond the lowest order in m/µ and find a massless pole in the su-

percurrent correlator directly, we would need a backreacted space-time with scalar profiles

that break supersymmetry by sub-leading modes (i.e. corresponding to the VEV of some

F-term in the field theory). The latter would also be the only approach that would give us

a non-vanishing one-point function 〈Tµν〉.
As a final remark, let us notice that there is in fact a special choice of parameters

which, while keeping the massless pole in the fermionic correlator, makes all form factors

equal, namely ρ0 = −1
2 , ρ1 = 0, ρ1/2 = 0. This corresponds to a common Z form factor

Z(k2) =
N2

8π2

(
log

Λ2

k2
+ 2

K1( kµ)

I1( kµ)

)
'

k2→0

N2

2π2

µ2

k2
. (4.17)

This gives 1/k2 poles at low momenta for all real correlators of operators in the FZ multi-

plet. While such result might be interpreted as a supersymmetric vacuum with a massless

chiral superfield in an otherwise gapped spectrum, the most natural interpretation is in fact

that the apparent spectrum degeneracy is just an accident of the specific model. This is

reminiscent of a Polonyi model which, while breaking supersymmetry, has a massless super-

symmetric spectrum as the Goldstino is matched with a pseudomodulus and an R-axion.

5 Summary and outlook

In this paper we have studied two-point functions of operators belonging to the supercur-

rent multiplet(s) of N = 1 supersymmetric field theories, parametrizing the correlators

in terms of momentum dependent form factors. We have discussed explicit field theory

examples, both weakly and strongly coupled, in different dynamical phases: we considered

superconformal theories, both in symmetry preserving vacua and in vacua with sponta-

neously broken conformal symmetry, as well as non-conformal ones, both in supersymmetry

preserving and breaking vacua.

In the holographic context we focused on pure AdS and hard wall backgrounds. While

the former case represents vacua preserving superconformal symmetry, the latter describes

vacua where conformal symmetry is spontaneously broken, and massless poles associated

to the corresponding Goldstone modes appear. In order to describe non-conformal theories

holographically, one should consider less trivial backgrounds, in which additional hyper-

multiplets, dual to a superpotential perturbation, have non-trivial profiles, and as such

backreact on the metric, deforming the AdS-ness of the background. Still, we have shown

that working at the leading order in the perturbation, one can get non-trivial traceful

contributions to the correlators by evaluating hypermultiplet two-point functions in the

unperturbed, purely hard wall, background. This is just the leading contribution to the Fs
form factors, of course, but the only one the hard wall can capture. Finally, by considering

non-supersymmetric IR boundary conditions for the hypermultiplet, we were also able to

realize a holographic toy-model of spontaneous supersymmetry breaking, and to show that

the supercurrent correlator has the expected massless pole corresponding to the Goldstino.
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The holographic model we have used in this work, despite the virtue of being flexible

and easily calculable, is not obtained as a solution of the supergravity equations of motion.

One obvious future direction would be to work at the level of a consistent N = 2 truncation

of N = 8 gauged five-dimensional supergravity, and consider backreacted backgrounds,

such as (non-supersymmetric deformations of) those discussed in [32–36]. In such models,

one would be able to compute holographically Cs and Fs form factors for non-conformal

theories, to all orders in the relevant perturbation.

Our approach could also be useful to analyze supersymmetry breaking models in the

context of string theory, and possibly consider backgrounds which are not asymptotically

AdS, as for example the one discussed in [37–40]. Indeed, two-point correlators can be

effectively used as a probe of the dynamics which breaks supersymmetry, for instance by

discriminating an explicit breaking from a spontaneous one. To this aim, a discerning

result would be to obtain, via holography, the massless pole associated to the Goldstino.
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A Supersymmetry transformations

In this appendix we collect the supersymmetry transformations between operators belong-

ing to the FZ and R multiplets. The supersymmetric variation of the operators in the FZ

multiplet can be obtained from the component expressions (2.2) and (2.3). The result can
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be summarized as follows

δx =
2

3
εS , (A.1a)

δjµ = ε

(
Sµ −

1

3
σµS

)
+ ε

(
Sµ +

1

3
σµS

)
, (A.1b)

δSµα = 2i (σµνε)α ∂
νx∗ + (σνε)α

(
2Tµν + i∂νjµ − iηµν∂ρjρ +

1

2
εµνρλ∂

ρjλ
)
, (A.1c)

δTµν = −i ε σρ(µ∂
ρSν) + i ε σρ(µ∂

ρSν) , (A.1d)

where the indices between round brackets are symmetrized with the combinatorial factor.

We also list, below, the supersymmetry transformation for the trace operators of the FZ

multiplet and the divergence of the current

δS = ε (2T + 3 i ∂µj
µ) + 3 i σµε ∂µx , (A.2a)

δT =
i

2
ε σµ∂µS +

i

2
ε σµ∂µS , (A.2b)

δ (∂µj
µ) = −1

3
ε σµ∂µS +

1

3
ε σµ∂µS . (A.2c)

Notice that these last three variations plus (A.1a) close the algebra on their own (indeed,

they make up the chiral multiplet X defined in (2.3)). This is also consistent with the

superconformal case, where these four operators can all be consistently set to zero.

The supersymmetry transformations of the fields belonging to the R multiplet read

δjµ = εSµ + εSµ , (A.3a)

δSµ = σνε

(
i∂νjµ + 2Tµν +

1

2
εµνρσ(∂ρjσ + Cρσ)

)
, (A.3b)

δTµν = −i ε σρ(µ∂
ρSν) + i ε σρ(µ∂

ρSν) , (A.3c)

δCµν = ε σ[µ∂ν] S − ε σ[µ∂ν] S . (A.3d)

B Perturbation of the fixed point and non-conformal form factors

In the general parametrization of correlators in terms of form factors of section 2, it has

been stressed that some of them are generated only when conformal symmetry is explicitly

broken. In this appendix we will show that non-conformal form factors are in fact deter-

mined by correlators of the operator which perturbs the fixed point and starts the RG flow.

We will do this for the FZ multiplet, and briefly comment on the analogous relations for

the R multiplet. The Lagrangian is that of a SCFT, perturbed by a relevant operator. As

shown in [41], the only possible relevant deformation is given by a superpotential, namely

by a chiral operator O of dimension ∆ with 1 ≤ ∆ < 3

Dα̇O = 0 , O = φO +
√

2θψO + θ2FO + . . . (B.1)

L = LSCFT +m3−∆FO + c.c. . (B.2)
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We can parametrize the real two-point functions of O in terms of the following real form

factors

〈φ∗O(k)φO(−k)〉 = m2∆−4 Zφ (B.3a)

〈ψOα̇(k)ψOα(−k)〉 = m2∆−4 σµαα̇kµZψ (B.3b)

〈F ∗O(k)FO(−k)〉 = −m2∆−4 k2ZF , (B.3c)

and the following complex form factors

〈φO(k)φO(−k)〉 = m2∆−4 Yφ (B.4a)

〈ψOα(k)ψOβ(−k)〉 = m2∆−3εαβ Yψ (B.4b)

〈FO(k)FO(−k)〉 = m2∆−4 k2YF (B.4c)

〈φO(k)FO(−k)〉 = m2∆−3 YφF (B.4d)

〈φ∗O(k)FO(−k)〉 = m2∆−3 ỸφF . (B.4e)

In a vacuum which preserves supersymmetry, the following relations hold

Zφ = Zψ = ZF , Yψ = YφF , Yφ = YF = ỸφF = 0 . (B.5)

The relation between the chiral superfield X of the FZ multiplet and the operator O reads

X =
4

3
(3−∆)m3−∆O , (B.6)

which implies the following relations between the correlators (up to possible contact terms,

because the relation is only valid on-shell)

〈T (k)T (−k)〉 = 2(3−∆)2m6−2∆ (Re〈FO(k)FO(−k)〉+ 〈F ∗O(k)FO(−k)〉) (B.7a)

〈Sα̇(k)Sβ(−k)〉 = 8(3−∆)2m6−2∆ 〈ψOα̇(k)ψOβ(−k)〉 (B.7b)

〈∂j(k)∂j(−k)〉 =
8

9
(3−∆)2m6−2∆ (−Re〈FO(k)FO(−k)〉+ 〈F ∗O(k)FO(−k)〉) (B.7c)

〈x∗(k)x(−k)〉 =
16

9
(3−∆)2m6−2∆〈φ∗O(k)φO(−k)〉 . (B.7d)

Comparing with eqs. (2.13a)–(2.13d), one gets for the FZ form factors

F2 =
8

3
(3−∆)2 (ZF − ReYF ) (B.8a)

F3/2 +
32

3

M4

m2k2
=

8

3
(3−∆)2Zψ (B.8b)

F1 =
8

3
(3−∆)2 (ZF + ReYF ) (B.8c)

F0 =
8

3
(3−∆)2Zφ. (B.8d)

In eq. (B.8b) the additional term displaying the expected massless pole associated to the

Goldstino is present, see eq. (2.8b).
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Let us also mention the case of the R multiplet. In this case, the operator giving the

superpotential perturbation is related on-shell to a real superfield OR

O = D
2OR. (B.9)

The relation with the operator χα that contains the trace is

χα = −4 (3−∆)m3−∆D
2
DαOR (B.10)

and the non-conformal form factors in this case can be expressed in terms of those of the

operator OR.

C Traceless form factors in holography

In this section we give some details about the holographic computation of the traceless

form factors Cs(k
2). We will consider a quadratic action describing free fluctuations of the

supergravity bulk multiplet {hMN , ψM , AM} over an AdS5 background. This is enough

for computing two-point functions of the stress-energy tensor Tµν , supercurrent Sµ and

superconformal R-symmetry current jµ in the QFT dual to either pure AdS5 or AdS5 with

a hard wall. The supergravity action reads

S =
N2

4π2

∫
d5x
√
G
(
−1

2
R−6+ψM (ΓMNPDN−

3

2
ΓMP )ψP+

1

4
GMPGNQFMNFPQ

)
, (C.1)

The overall constant is fixed in terms of the AdS5×S5 ten-dimensional solution, 1
8πGN

= N2

4π2

with LAdS = α′ = 1, and we use indices such that xM = (z, xµ). The AdS5 background

metric is

ds2 =
1

z2
ηMNdx

MdxN =
1

z2

(
dz2 + ηµνdx

µdxν
)

(C.2)

and the graviton field hMN is defined as the fluctuation around ηMN . As usual we can

exploit bulk gauge freedom and consider fluctuations in the axial gauge Az = hMz =

ψz = 0. Inspection of the AdS5 equations of motion reveals that the transverse-traceless

part of the bulk fields decouple from the rest and satisfy homogeneous ordinary differential

equations which after Fourier-transforming from xµ to kµ read7

(z2∂2
z − 3z∂z − z2k2)httµν(z, k) = 0 (C.4){

(z2∂2
z − 4z∂z − z2k2 + 9

4)ξttµ (z, k) = 0

zσνkνχ
tt
µ (z, k) = (−z∂z + 1

2)ξttµ (z, k)
(C.5)

(z2∂2
z − z∂z − z2k2)Atµ(z, k) = 0 , (C.6)

7Notice that, analogously to the case of the spinor previously discussed in [4, 5], we have traded the

first order equation of motion for a Dirac field with a second order equation of motion for one of its Weyl

components plus a first order constraint for the other Weyl component, choosing

ψµ =

(
ξµ
χµ

)
. (C.3)
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where httµµ = ∂µhttµν = 0, γµψttµ = ∂µψttµ = 0 and ∂µAtµ = 0. Since we are only interested

in computing transverse-traceless form factors we can focus on the tt part of the bulk field

and disregard the rest of the equations of motion. For ease of notation we will omit the tt

superscript in the rest of the discussion.

Solutions to the above differential equations behave near z = 0 as

hµν(z, k) '
z→0

h0µν(k) + z2 h2µν(k) + z4 log(zΛ)h4µν(k) + z4 h̃4µν(k) +O(z6) (C.7)
ξµ(z, k) '

z→0
z1/2

(
ξ0µ(k) + z2 ξ2µ(k) + z4 log(zΛ) ξ4µ(k) + z4 ξ̃4µ(k) +O(z6)

)
χµ(z, k) '

z→0
z3/2

(
χ0µ(k) + z2 log(zΛ)χ2µ(k) + z2 χ̃2µ(k) +O(z4)

) (C.8)

Aµ = a0µ(k) + z2 log(zΛ) a2µ(k) + z2 ã2µ(k) +O(z4) . (C.9)

The coefficients of the near-boundary expansion satisfy the following relations

h2µν(k) = −k
2

4
h0µν(k) , h4µν(k) = −k

4

16
h0µν(k) , (C.10)

ξ2µ = −k
2

4
ξ0µ , ξ4µ = −k

4

16
ξ0µ ,

χ0µ = −1

2
σνkν ξ0µ , χ2µ = −k

2

4
σνkνξ0µ , σ

νkν χ̃2µ = −4 ξ̃4µ +
k4

16
ξ0µ , (C.11)

a2µ(k) =
k2

2
a0µ(k). (C.12)

The leading terms {hµν0 (k), ξµ0 (k), aµ0 (k)} are identified as the sources of the corresponing

boundary operators {Tµν(k), Sµ(k), jµ(k)}. Note that the scaling behavior at the boundary,

which depends on the mass of the fluctuating field in AdS5, is the correct one to get a

multiplet of operators of dimension {4, 7/2, 3} respectively. Also, having chosen a positive

sign for the mass for the gravitino field, the leading terms at the boundary has positive

chirality. The undetermined sub-leading terms {h̃4µν(k), ξ̃4µ(k), ã2µ(k)} are associated to

the one-point functions of the boundary operators, and their functional dependence on the

sources will be determined imposing boundary conditions in the bulk.

The on-shell boundary action at the regularizing surface z = ε is

Sreg =
N2

4π2

∫
z=ε

d4k

(2π)4

[
1

4z3
hµνh′µν −

3

2z4
hµνhµν + 6 +

1

2z4
(ξµχµ + χµξµ) +

1

2z
Aµ∂zAµ

]
.

(C.13)

the 4d space-time indices are raised and lowered using the flat metric and we have added

all the boundary terms that are needed to have a well defined variational principle [42–44].

The above action can be made finite by adding appropriate 4d-covariant counterterms

at the regularizing surface [28–30]

Sct =
N2

4π2

∫
z=ε

d4k

(2π)4

√
γ

[
6−R[γ] + (log(εΛ) + α2)

RµνRµν [γ]

4
− i

2
ψ
µ
γνkνψµ

+
i

4
(log(εΛ) + α3/2)ψ

µ
k2γνkνψµ +

1

4
(log(εΛ) + α1)FµνFµν

]
,

(C.14)
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where we have defined the metric at the regularizing surface as γµν = 1
ε2

(ηµν + hµν) (mean-

ing that 4d space-time indices are raised and lowered using γµν) and the action should be

intended up to quadratic order in the fields. Notice that the counterterms are defined up

to possible finite contributions αs which can be reabsorbed rescaling the renormalization

scale Λ. A choice of such finite counterterms defines a particular renormalization scheme.

The resulting renormalized action Sren = Sreg + Sct can be expressed purely in terms of

the leading and the subleading modes of the fluctuations

Sren =
N2

4π2

∫
d4k

(2π)4

[
1

2
hµν0 h̃4µν +

1

2
(ξµ0 χ̃2µ + ξ

µ
0 χ̃2µ) +

1

2
aµ0 ã2µ

+ terms quadratic in the sources] . (C.15)

The operators of the boundary theory are defined through the AdS/CFT correspondence

as the composite operators sourced by the leading modes of each fluctuation

Sint[h
µν
0 , ξµ0 , ξ

µ
0 , a

µ
0 ] =

∫
d4k

(2π)4

[
1

2
hµν0 Tµν +

1

2

√
3

2
(ξµ0Sµ + ξ

µ
0Sµ) +

√
3

2
aµ0 jµ

]
. (C.16)

where the relative coefficients between the different terms, normalized as to match the

c = a charges of N = 4 SYM, are fixed by supersymmetry.

The corresponding two-point functions are then obtained differentiating twice the

renormalized action with respect to the sources

〈T ttµν(k)T ttρσ(−k)〉0 =
N2

4π2

[
2
δh̃4µν

δhρσ0

+ 2
δh̃4 ρσ

δhµν0

+
(9− 4α2)k4

32
(ηµρηνσ + ηµσηνρ)

]
(C.17)

〈Sµα(k)S
ν
α̇(−k)〉0 =

2N2

3π2

−
2σρ

αβ̇
kρ

k2

δξ̃
µβ̇

4

δξ
α̇
0 ν

+ c.c.

+
5− 4α3/2

16
k2σραα̇kρη

µν

 (C.18)

〈Sµα(k)Sνβ(−k)〉0 =
2N2

3π2

−2σρ
αβ̇
kρ

k2

δξ̃
µβ̇

4

δξβ0 ν
+ (α↔ β)

 (C.19)

〈jµ(k)jν(k)〉 =
N2

6π2

[
δã2µ

δaν0
+
δã2 ν

δaµ0
+

(1− 2α1)

2
k2ηµν

]
. (C.20)

As a final remark, it is worth noticing that because of our gauge fixing we are computing

only a piece of the tensor structure of each correlator. The latter are then promoted in

a unique way to the full transverse-traceless tensor structure. Of course the same results

would have been obtained without fixing the transverse gauge and reconstructing the full

tensor structure at the level of the action.

The results in the text are presented in a particular subtraction scheme in which all the

finite contributions which deviate from the pure logarithmic behavior in the superconformal

case are reabsorbed by finite counterterms. In particular we choose α1 = 3 − α2 = −1
2 +

α3/2 = α to define a one parameter family of supersymmetric scheme choices and then we

set α = − ln 2 + γ.
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