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Abstract

Using the fact that the neutrino mixing matrix U = U
†
e Uν , where Ue and Uν result from the diagonali-

sation of the charged lepton and neutrino mass matrices, we analyse the sum rules which the Dirac phase δ
present in U satisfies when Uν has a form dictated by, or associated with, discrete symmetries and Ue has a 
“minimal” form (in terms of angles and phases it contains) that can provide the requisite corrections to Uν , 
so that reactor, atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with 
the current data. The following symmetry forms are considered: i) tri-bimaximal (TBM), ii) bimaximal 
(BM) (or corresponding to the conservation of the lepton charge L′ = Le − Lμ − Lτ (LC)), iii) golden 
ratio type A (GRA), iv) golden ratio type B (GRB), and v) hexagonal (HG). We investigate the predictions 
for δ in the cases of TBM, BM (LC), GRA, GRB and HG forms using the exact and the leading order sum 
rules for cos δ proposed in the literature, taking into account also the uncertainties in the measured values 
of sin2 θ12, sin2 θ23 and sin2 θ13. This allows us, in particular, to assess the accuracy of the predictions for 
cos δ based on the leading order sum rules and its dependence on the values of the indicated neutrino mixing 
parameters when the latter are varied in their respective 3σ experimentally allowed ranges.
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1. Introduction

One of the major goals of the future experimental studies in neutrino physics is the searches 
for CP violation (CPV) effects in neutrino oscillations (see, e.g., [1,2]). It is part of a more 
general and ambitious program of research aiming to determine the status of the CP symmetry 
in the lepton sector.

In the case of the reference 3-neutrino mixing scheme,2 CPV effects in the flavour neutrino 
oscillations, i.e., a difference between the probabilities of νl → νl′ and ν̄l → ν̄l′ oscillations in 
vacuum [3,4], P(νl → νl′) and P(ν̄l → ν̄l′), l �= l′ = e, μ, τ , can be caused, as is well known, by 
the Dirac phase present in the Pontecorvo, Maki, Nakagawa and Sakata (PMNS) neutrino mixing 
matrix UPMNS ≡ U . If the neutrinos with definite masses νi , i = 1, 2, 3, are Majorana particles, 
the 3-neutrino mixing matrix contains two additional Majorana CPV phases [4]. However, the 
flavour neutrino oscillation probabilities P(νl → νl′) and P(ν̄l → ν̄l′), l, l′ = e, μ, τ , do not 
depend on the Majorana phases3 [4,8]. Our interest in the CPV phases present in the neutrino 
mixing matrix is stimulated also by the intriguing possibility that the Dirac phase and/or the 
Majorana phases in UPMNS can provide the CP violation necessary for the generation of the 
observed baryon asymmetry of the Universe [9,10].

In the standard parametrisation [1] of the PMNS matrix we are going to employ in our further 
discussion, UPMNS is expressed in terms of the solar, atmospheric and reactor neutrino mixing 
angles θ12, θ23 and θ13, respectively, and the Dirac and Majorana CPV phases, as follows:

U = V Q, Q = diag
(

1, ei
α21

2 , ei
α31

2

)
, (1)

where α21,31 are the two Majorana CPV phases and V is a CKM-like matrix,

V =
⎛
⎜⎝

c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎟⎠ . (2)

In Eq. (2), δ is the Dirac CPV phase, 0 ≤ δ ≤ 2π , we have used the standard notation cij = cos θij , 
sij = sin θij , and 0 ≤ θij ≤ π/2. If CP invariance holds, we have δ = 0, π, 2π , the values 0 and 
2π being physically indistinguishable.

The existing neutrino oscillation data allow us to determine the neutrino mixing parameters 
sin2 θ12, sin2 θ23 and sin2 θ13, which are relevant for our further analysis, with a relatively good 
precision [11,12]. The best fit values and the 3σ allowed ranges of sin2 θ12, sin2 θ23 and sin2 θ13, 
found in the global analysis in Ref. [11] read:

(sin2 θ12)BF = 0.308, 0.259 ≤ sin2 θ12 ≤ 0.359, (3)

(sin2 θ23)BF = 0.437 (0.455), 0.374 (0.380) ≤ sin2 θ23 ≤ 0.626 (0.641), (4)

(sin2 θ13)BF = 0.0234 (0.0240), 0.0176 (0.0178) ≤ sin2 θ13 ≤ 0.0295 (0.0298), (5)

where the values (values in brackets) correspond to neutrino mass spectrum with normal ordering 
(inverted ordering) (see, e.g., [1]), denoted further as NO (IO) spectrum.

2 All compelling data on neutrino masses, mixing and oscillations are compatible with the existence of mixing of three 
light neutrinos νi , i = 1, 2, 3, with masses mi ∼< 1 eV in the weak charged lepton current (see, e.g., [1]).

3 The Majorana phases can play important role, e.g., in |	L| = 2 processes like neutrinoless double beta ((ββ)0ν- ) 
decay (A, Z) → (A, Z + 2) + e− + e−, L being the total lepton charge, in which the Majorana nature of massive 
neutrinos νi , if any, manifests itself (see, e.g., [5–7]).
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In the present article we will be concerned with the predictions for the Dirac phase δ and 
will not discuss the Majorana phases in what follows. More specifically, we will be interested 
in the predictions for the Dirac CPV phase δ which are based on the so-called “sum rules” for 
cos δ [13–15] (see also, e.g., [16–18]). The sum rules of interest appear in an approach aiming 
at quantitative understanding of the pattern of neutrino mixing on the basis of symmetry con-
siderations. In this approach one exploits the fact that, up to perturbative corrections, the PMNS 
matrix has an approximate form, Uν , which can be dictated by symmetries. The matrix Uν is 
assumed to originate from the diagonalisation of the neutrino Majorana mass term. The angles in 
Uν have specific symmetry values which differ, in general, from the experimentally determined 
values of the PMNS angles θ12, θ13 and θ23, and thus need to be corrected. The requisite pertur-
bative corrections, which modify the values of the angles in Uν to coincide with the measured 
values of θ12, θ13 and θ23, are provided by the matrix Ue arising from the diagonalisation of the 
charged lepton mass matrix, U = U

†
e Uν . In the sum rules we will analyse in detail in the present 

article the Dirac phase δ, more precisely, cosδ, is expressed, in general, in terms of the mixing 
angles θ12, θ13 and θ23 of the PMNS matrix U and the angles present in Uν , whose values are 
fixed, being dictated by an underlying approximate discrete symmetry of the lepton sector (see, 
e.g., [17]).

2. The sum rules

In the framework of the reference 3 flavour neutrino mixing we will consider, the PMNS 
neutrino mixing matrix is always given by

U = U†
e Uν, (6)

where Ue and Uν are 3 × 3 unitary matrices originating from the diagonalisation of the charged 
lepton and the neutrino (Majorana) mass terms. As we have already indicated, we will suppose 
in what follows that Uν has a form which is dictated by symmetries. More specifically, we will 
assume that

Uν = �1 Ũν Q0 = �1 R23
(
θν

23

)
R12

(
θν

12

)
Q0, (7)

where R23(θ
ν
23) and R12(θ

ν
12) are orthogonal matrices describing rotations in the 2-3 and 1-2 

planes, respectively, and �1 and Q0 are diagonal phase matrices each containing two phases. 
Obviously, the phases in the matrix Q0 give contribution to the Majorana phases in the PMNS 
matrix. In the present article we will consider the following symmetry forms of the matrix Ũν : 
i) tri-bimaximal (TBM) [19], ii) bimaximal (BM), or due to a symmetry corresponding to the 
conservation of the lepton charge L′ = Le −Lμ−Lτ (LC) [20,21], iii) golden ratio type A (GRA) 
form [22,23], iv) golden ratio type B (GRB) form [24], and v) hexagonal (HG) form [25,26]. The 
TBM, BM, GRA, GRB and HG forms can be obtained respectively from, e.g., T ′/A4, S4, A5, 
D10 and D12 discrete (lepton) flavour symmetries (see, e.g., [17,22–24,26–28]). In all these cases 
we have θν

23 = −π/4, and the matrix Ũν is given by

Ũν =

⎛
⎜⎜⎜⎜⎜⎝

cos θν
12 sin θν

12 0

− sin θν
12√

2

cos θν
12√

2
− 1√

2

− sin θν
12√ cos θν

12√ 1√

⎞
⎟⎟⎟⎟⎟⎠ . (8)
2 2 2
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The TBM, BM (LC), GRA, GRB and HG forms of Ũν correspond to different fixed val-
ues of θν

12 and thus of sin2 θν
12, namely, to i) sin2 θν

12 = 1/3, ii) sin2 θν
12 = 1/2, iii) sin2 θν

12 =
(2 + r)−1 ∼= 0.276, r being the golden ratio, r = (1 + √

5)/2, iv) sin2 θν
12 = (3 − r)/4 ∼= 0.345, 

and v) sin2 θν
12 = 1/4. Thus, the matrix Ue in Eq. (6) should provide corrections which not only 

generate nonzero value of θ13, but also lead to reactor, atmospheric and solar neutrino mixing 
angles θ13, θ23 and θ12 which have values compatible with the current data, including a possible 
sizeable deviation of θ23 from π/4. As was shown in [13], the “minimal” form of Ue, in terms of 
angles and phases it contains, that can provide the requisite corrections to Uν includes a product 
of two orthogonal matrices describing rotations in the 2-3 and 1-2 planes, R23(θ

e
23) and R12(θ

e
12), 

θe
23 and θe

12 being two (real) angles. In what follows we will adopt this minimal form of Ue. It 
proves convenient to cast it in the form [13]:

Ue = �
†
2 Ũe = �

†
2 R−1

23

(
θe

23

)
R−1

12

(
θe

12

)
, (9)

where �2 is a diagonal phase matrix including two phases, and

R12
(
θe

12

) =
⎛
⎝ cos θe

12 sin θe
12 0

− sin θe
12 cos θe

12 0

0 0 1

⎞
⎠ , R23

(
θe

23

) =
⎛
⎝1 0 0

0 cos θe
23 sin θe

23

0 − sin θe
23 cos θe

23

⎞
⎠ . (10)

Thus, the PMNS matrix in the approach we are following is given by

U = U†
e Uν = R12

(
θe

12

)
R23

(
θe

23

)
� R23

(
θν

23

)
R12

(
θν

12

)
Q0,

� = �2�1, θν
23 = −π

4
. (11)

The matrices � and Q0 are diagonal phase matrices each containing, in general, two physical 
CPV phases4 [29]:

� = diag
(

1, e−iψ , e−iω
)

, Q0 = diag
(

1, ei
ξ21

2 , ei
ξ31

2

)
. (12)

As was explained earlier, the requirement that Ue has a “minimal” form in terms of angles 
and phases it contains, needed to provide the requisite corrections to Uν , makes not necessary 
the inclusion in Ũe of the orthogonal matrix describing the rotation in the 1-3 plane, R13(θ

e
13). 

Effectively, this is equivalent to the assumption that the angle θe
13, if nonzero, is sufficiently small 

and thus is either negligible, or leads to sub-dominant effects in the observable of interest in the 
present analysis, cos δ. We will use θe

13
∼= 0 to denote values of θe

13 which satisfy the indicated 
condition.

We note that θe
13

∼= 0 is a feature of many theories of charged lepton and neutrino mass gener-
ation (see, e.g., [22,27,28,30–32]). The assumption that θe

13
∼= 0 was also used in a large number 

of studies dedicated to the problem of understanding the origins of the observed pattern of lepton 
mixing (see, e.g., [15,29,33–37]). In large class of GUT inspired models of flavour, the matrix 
Ue is directly related to the quark mixing matrix (see, e.g., [28,30,31,38]). As a consequence, in 
this class of models we have θe

13
∼= 0. We will comment later on the possible effects of θe

13 �= 0, 
| sin θe

13| 
 1, on the predictions for cosδ, which are of principal interest of the present study.

4 The diagonal phase matrix � , as we see, can originate from the charged lepton or the neutrino sector, or else can 
receive contributions from both sectors [29].
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More generally, the approach to understanding the observed pattern of neutrino mixing on the 
basis of discrete symmetries employed in the present article, which leads to the sum rule of inter-
est for cos δ, is by no means unique — it is one of the several possible approaches discussed in 
the literature on the subject (see, e.g., [18]). It is employed in a large number of phenomenologi-
cal studies (see, e.g., [15,29,33–37]) as well as in a class of models (see, e.g., [27,28,30,31,38]) 
of neutrino mixing based on discrete symmetries. However, it should be clear that the conditions 
which define the approach used in the present article are not fulfilled in all models with discrete 
flavour symmetries. For example, they are not fulfilled in the models with discrete flavour sym-
metry 	(6n2) studied in [39,40], with the S4 flavour symmetry constructed in [41] and in the 
models discussed in [42].

Following [13], we will use the following rearrangement of the product of matrices R23(θ
e
23)�

R23(θ
ν
23 = −π/4) in the expression Eq. (11) for UPMNS:

R23(θ
e
23)� R23(θ

ν
23 = −π/4) = P1 �R23(θ̂23)Q1, (13)

where the angle θ̂23 is determined by

sin2 θ̂23 = 1

2

(
1 − 2 sin θe

23 cos θe
23 cos(ω − ψ)

)
, (14)

and

P1 = diag
(

1,1, e−iα
)

, � = diag
(

1, eiφ,1
)

, Q1 = diag
(

1,1, eiβ
)

. (15)

In Eq. (15)

α = γ + ψ + ω, β = γ − φ, (16)

and

γ = arg
(
−e−iψ cos θe

23 + e−iω sin θe
23

)
, φ = arg

(
e−iψ cos θe

23 + e−iω sin θe
23

)
. (17)

The phase α in the matrix P1 can be absorbed in the τ lepton field and, thus, is unphysical. The 
phase β gives a contribution to the matrix Q̂ = Q1 Q0; the diagonal phase matrix Q̂ contributes 
to the matrix of physical Majorana phases. In the setting considered the PMNS matrix takes the 
form:

UPMNS = R12(θ
e
12)�(φ)R23(θ̂23)R12(θ

ν
12) Q̂, (18)

where θν
12 has a fixed value which depends on the symmetry form of Ũν used. For the angles 

θ13, θ23 and θ12 of the standard parametrisation of the PMNS matrix U we get in terms of the 
parameters in the expression Eq. (18) for U [13]:

sin θ13 = |Ue3| = sin θe
12 sin θ̂23, (19)

sin2 θ23 =
∣∣Uμ3

∣∣2

1 − |Ue3|2
= sin2 θ̂23

cos2 θe
12

1 − sin2 θe
12 sin2 θ̂23

= sin2 θ̂23 − sin2 θ13

1 − sin2 θ13
, (20)

sin2 θ12 = |Ue2|2
1 − |Ue3|2

=
(

1 − cos2 θ23 cos2 θ13

)−1 [
sin2 θν

12 sin2 θ23

+ cos2 θν
12 cos2 θ23 sin2 θ13 + 1

sin 2θν
12 sin 2θ23 sin θ13 cosφ

]
, (21)
2
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where Eq. (19) was used in order to obtain the expression for sin2 θ23 in terms of θ̂23 and θ13, 
and Eqs. (19) and (20) were used to get the last expression for sin2 θ12. Within the approach 
employed, the expressions in Eqs. (19)–(21) are exact.

It follows from Eqs. (1), (2) and (18) that the four observables θ12, θ23, θ13 and δ are func-
tions of three parameters θe

12, θ̂23 and φ. As a consequence, the Dirac phase δ can be expressed 
as a function of the three PMNS angles θ12, θ23 and θ13 [13], leading to a new “sum rule” re-
lating δ and θ12, θ23 and θ13. For an arbitrary fixed value of the angle θν

12 the sum rule for cos δ

reads [14]:

cos δ = tan θ23

sin 2θ12 sin θ13

[
cos 2θν

12 +
(

sin2 θ12 − cos2 θν
12

) (
1 − cot2 θ23 sin2 θ13

)]
. (22)

For θν
12 = π/4 and θν

12 = sin−1(1/
√

3) the expression Eq. (22) for cos δ reduces to those found 
in [13] in the BM (LC) and TBM cases, respectively. A similar sum rule for an arbitrary θν

12 can 
be derived for the phase φ [13,14]. It proves convenient for our further discussion to cast the sum 
rules for cos δ and cosφ of interest in the form:

sin2 θ12 = cos2 θν
12 + sin 2θ12 sin θ13 cos δ − tan θ23 cos 2θν

12

tan θ23(1 − cot2 θ23 sin2 θ13)
, (23)

sin2 θ12 = cos2 θν
12 + 1

2
sin 2θ23

sin 2θν
12 sin θ13 cosφ − tan θ23 cos 2θν

12

(1 − cos2 θ23 cos2 θ13)
. (24)

The phases δ and φ are related by [14]:

sin δ = − sin 2θν
12

sin 2θ12
sinφ, (25)

cos δ = sin 2θν
12

sin 2θ12
cosφ

(
−1 + 2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)

+ cos 2θν
12

sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13
. (26)

Within the scheme considered the sum rules Eqs. (22)–(24) and the relations Eqs. (25) and (26)
are exact. In a complete self-consistent theory of (lepton) flavour based on discrete flavour sym-
metry, the indicated sum rules and relations are expected to get corrections due to, e.g., θe

13 �= 0, 
renormalisation group (RG) effects, etc. Analytic expression for the correction in the expres-
sion for cos δ, Eq. (22), due to | sin θe

13| 
 1 was derived in [14]. As was shown in [14], for 
the best fit values of the lepton mixing angles θ12, θ13 and θ23, a nonzero θe

13 ∼< 10−3 pro-
duces a correction to the value of cosδ obtained from the “exact” sum rule Eq. (22), which 
does not exceed 11% (4.9%) in the TBM (GRB) cases and is even smaller in the other three 
cases of symmetry forms of Ũν analysed in the present article. A value of θe

13 ∼< 10−3 is a 
feature of many theories and models of charged lepton and neutrino mass generation (see, 
e.g., [22,27,28,30–32]). The RG effects on the lepton mixing angles and the CPV phases are 
known to be negligible for hierarchical neutrino mass spectrum (see, e.g., [43,44] and the refer-
ences quoted therein); these effects are relatively small for values of the lightest neutrino mass 
not exceeding approximately 0.05 eV.5 We will call the sum rules and the relations given in 

5 In supersymmetric theories this result is valid for moderate values of the parameter tan β ∼< 10 (see [43,44]); for 
tanβ = 50 the same statement is true for values of the lightest neutrino mass smaller than approximately 0.01 eV.
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Eqs. (22)–(24), (25) and (26) “exact”, keeping in mind that they can be subject to corrections, 
which, however, in a number of physically interesting cases, if not absent, can only be sub-
dominant.

A parametrisation of the PMNS matrix, similar to that given in Eq. (11), has been effectively 
employed in Ref. [15]: the hierarchy of values of the angles in the matrices Ue and Uν assumed 
in [15] leads the authors to consider the angles θe

13 and θν
13 of the 1-3 rotations in Ue and Uν as 

negligibly small. As a consequence, the PMNS matrix is effectively parametrised in [15] with 
four angles θe

12, θe
23, θν

12, θν
23 and6 four phases δe

12, δe
23, δν

12, δν
23. As is shown in Appendix A

(see also Ref. [14]), these phases are related to the phases ψ , ω, ξ21 and ξ31 present in the 
parametrisation in Eq. (11) as follows:

ψ = δe
12 − δν

12 + π, ω = δe
23 + δe

12 − δν
23 − δν

12, (27)

ξ21 = −2δν
12, ξ31 = −2(δν

12 + δν
23). (28)

Treating sin θe
12 and sin θe

23 as small parameters, | sin θe
12| 
 1, | sin θe

23| 
 1, neglecting terms 
of order of, or smaller than, O((θe

12)
2), O((θe

23)
2) and O(θe

12θ
e
23), and taking into account that 

in this approximation we have sinθe
12 = √

2 sin θ13, the following “leading order” sum rule was 
obtained in [15]:

θ12 ∼= θν
12 + θ13 cos δ. (29)

This sum rule can be derived from the sum rule

sin θ12 ∼= sin θν
12 + sin 2θν

12

2 sin θν
12

sin θ13 cos δ, (30)

by treating sin 2θν
12 sin θ13 cos δ ∼= sin 2θν

12θ13 cos δ as a small parameter and using the Taylor 
expansion sin−1(a + b x) ∼= sin−1(a) + b x/

√
1 − a2, valid for |bx| 
 1.

From Eqs. (23) and (24), employing the approximations used in Ref. [15], we get:

sin2 θ12 ∼= sin2 θν
12 + sin 2θ12 sin θ13 cos δ, (31)

sin2 θ12 ∼= sin2 θν
12 + sin 2θν

12 sin θ13 cosφ. (32)

The first equation leads (in the leading order approximation used to derive it and using sin2θ12 ∼=
sin 2θν

12) to Eq. (29), while from the second equation we find:

sin θ12 ∼= sin θν
12 + sin 2θν

12

2 sin θν
12

sin θ13 cosφ, (33)

and correspondingly,

θ12 ∼= θν
12 + θ13 cosφ. (34)

This implies that in the leading order approximation adopted in Ref. [15] we have [14] cos δ =
cosφ. Note, however, that the sum rules for cosδ and cosφ given in Eqs. (31) and (32), differ 
somewhat by the factors multiplying the terms ∼ sin θ13.

As was shown in [14], the leading order sum rule (29) leads in the cases of the TBM, GRA, 
GRB and HG forms of Ũν to largely imprecise predictions for the value of cosδ: for the best 

6 In contrast to θν
23 = π/4 employed in [15], we use θν

23 = −π/4. The effect of the difference in the signs of sin θe
12

and sin θe utilised by us and in [15] is discussed in Appendix A.
23
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fit values of sin2 θ12 = 0.308, sin2 θ13 = 0.0234 and sin2 θ23 = 0.425 used in [14], they differ 
approximately by factors (1.4–1.9) from the values found from the exact sum rule. The same 
result holds for cosφ. Moreover, the predicted values of cos δ and cosφ differ approximately 
by factors of (1.5–2.0), in contrast to the prediction cosδ ∼= cosφ following from the leading 
order sum rules. The large differences between the results for cos δ and cosφ, obtained using 
the leading order and the exact sum rules, are a consequence [14] of the quantitative importance 
of the next-to-leading order terms which are neglected in the leading order sum rules (29)–(34). 
The next-to-leading order terms are significant for the TBM, GRA, GRB and HG forms of Ũν

because in all these cases the “dominant” terms |θ12 −θν
12| ∼ sin2 θ13, or equivalently7 | sin2 θ12 −

sin2 θν
12| ∼ sin2 θ13. It was shown also in [14] that in the case of the BM (LC) form of Ũν we have 

|θ12 − θν
12| ∼ sin θ13 and the leading order sum rules provide rather precise predictions for cosδ

and cosφ.
The results quoted above were obtained in [14] for the best fit values of the neutrino mixing 

parameters sin2 θ12, sin2 θ23 and sin2 θ13. In the present article we investigate in detail the pre-
dictions for cos δ and cosφ in the cases of the TBM, BM (LC), GRA, GRB and HG forms of 
Ũν using the exact sum rules given in Eqs. (23) (or (22)) and (24) and the leading order sum 
rules in Eqs. (31) and (32), taking into account also the uncertainties in the measured values 
of sin2 θ12, sin2 θ23 and sin2 θ13. This allows us to better assess the accuracy of the predictions 
for cos δ and cosφ based on the leading order sum rules and its dependence on the values of 
the neutrino mixing angles. We investigate also how the predictions for cosδ and cosφ, ob-
tained using the exact and the leading order sum rules, vary when the PMNS neutrino mixing 
parameters sin2 θ12, sin2 θ23 and sin2 θ13 are varied in their respective experimentally allowed 3σ

ranges.
In what follows we will present numerical results using the values of sin2 θ12, sin2 θ23 and 

sin2 θ13 quoted in Eqs. (3)–(5) and corresponding to NO spectrum of neutrino masses, unless 
another choice is explicitly specified. The results we obtain in the case of IO spectrum differ 
insignificantly from those found for NO spectrum.

3. The case of negligible θe
23

The case of negligible θe
23

∼= 0 was investigated by many authors (see, e.g., [15,30,34–36,45,
46]). It corresponds to a large number of theories and models of charged lepton and neutrino mass 
generation (see, e.g., [28,30,31,33,45]). For θe

23
∼= 0, the sum rules of interest given in Eqs. (23)

(or (22)), (24) and in Eqs. (31), (32) were analysed in detail in Ref. [14].
In the limit of negligibly small θe

23 we find from Eqs. (14), (16) and (17):

sin2 θ̂23 = 1

2
, γ = −ψ + π, φ = −ψ = δν

12 − δe
12 − π, β = γ − φ = π. (35)

The phase ω is unphysical.
In the limiting case of negligible θe

23 the exact sum rules for cos δ and cosφ take the following 
form [14]:

7 Note that [14] since cos δ and cosφ in Eqs. (29)–(34) are multiplied by sin θ13, the “dominant” terms |θ12 − θν
12| and 

the next-to-leading order terms ∼ sin2 θ13 give contributions to cos δ and cosφ, which are both of the same order and are 
∼ sin θ13.
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cos δ = (1 − 2 sin2 θ13)
1
2

sin 2θ12 sin θ13

[
cos 2θν

12 +
(

sin2 θ12 − cos2 θν
12

) 1 − 3 sin2 θ13

1 − 2 sin2 θ13

]
, (36)

cosφ = 1 − sin2 θ13

sin 2θν
12 sin θ13 (1 − 2 sin2 θ13)

1
2

×
[

sin2 θ12 − sin2 θν
12 − cos 2θν

12
sin2 θ13

1 − sin2 θ13

]
. (37)

From the above equations, to leading order in sinθ13 we get:

cos δ = 1

sin 2θ12 sin θ13

(
sin2 θ12 − sin2 θν

12

)
+ O(sin θ13), (38)

cosφ = 1

sin 2θν
12 sin θ13

(
sin2 θ12 − sin2 θν

12

)
+ O(sin θ13), (39)

or equivalently,

sin2 θ12 = sin2 θν
12 + sin 2θ12 sin θ13 cos δ + O(sin2 θ13), (40)

sin2 θ12 = sin2 θν
12 + sin 2θν

12 sin θ13 cosφ + O(sin2 θ13). (41)

The last two equations coincide with Eqs. (31) and (32) which were derived from the exact sum 
rules keeping the leading order corrections in both sinθ13 and sin θe

23. This implies, in particular, 
that the correction due to | sinθe

23| 
 1 appears in the sum rules of interest only in the next-to-
leading order terms. Casting the results obtained in a form we are going to use in our numerical 
analysis, we obtain:

sin θ12 = sin θν
12 + sin 2θ12

2 sin θν
12

sin θ13 cos δ + O(sin2 θ13) (42)

= sin θν
12 + sin 2θν

12

2 sin θν
12

sin θ13 cos δ + O(sin2 θ13), (43)

sin θ12 = sin θν
12 + sin 2θν

12

2 sin θν
12

sin θ13 cosφ + O(sin2 θ13). (44)

We have replaced sin 2θ12 with sin 2θν
12 in Eq. (43), so that it corresponds to Eqs. (29) and 

(30). In the cases of the TBM, GRA, GRB and HG symmetry forms of Ũν we are considering 
and for the best fit value of sin2 θ12 = 0.308 we indeed have | sinθ12 − sin θν

12| ∼ sin2 θ13. Thus, 
if one applies consistently the approximations employed in [15], which lead to Eqs. (29)–(34)
(or to Eqs. (38) and (39)), one should neglect also the difference between θ12 and θν

12. This leads 
to cos δ = cosφ = 0.

In Fig. 1 we show predictions for cos δ and cosφ in the cases of the TBM, GRA, GRB and 
HG forms of the matrix Ũν , as functions of sin θ13 which is varied in the 3σ interval given in 
Eq. (5) and corresponding to NO neutrino mass spectrum. The predictions are obtained for the 
best fit value of sin2 θ12 = 0.308 using the exact sum rules Eqs. (36) and (37) for cos δ (solid 
lines) and cosφ (dashed lines) and the leading order sum rules Eqs. (43) and (44) (dash-dotted 
lines). As we see in Fig. 1, the predictions for cos δ vary in magnitude and sign when one varies 
the symmetry form of Ũν . More specifically, from the exact sum rule in Eq. (36), using the best 
fit value of sin2 θ13 = 0.0234 we get for cos δ in the cases of the TBM, BM (LC), GRA, GRB 
and HG forms of Ũν , respectively: cos δ = (−0.114); (−1.29); 0.289; (−0.200); 0.476.
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Fig. 1. Predictions for cos δ and cosφ in the cases of the TBM (upper left panel), GRA (upper right panel), GRB (lower 
left panel) and HG (lower right panel) forms of the matrix Ũν , as functions of sin θ13 and for the best fit value of 
sin2 θ12 = 0.308. The solid lines (dashed lines) correspond to cos δ (cosφ) determined from the exact sum rule given 
in Eq. (36) (Eq. (37)). The dash-dotted line in each of the 4 panels represents (cos δ)LO = (cosφ)LO obtained from the 
leading order sum rule in Eq. (43). The vertical dash-dotted line corresponds to the best fit value of sin2 θ13 = 0.0234; 
the three coloured vertical bands indicate the 1σ , 2σ and 3σ experimentally allowed ranges of sin θ13 (see text for further 
details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

The unphysical value of cosδ in the case of the BM (LC) form of Ũν is a reflection of the 
fact that the scheme under discussion with the BM (LC) form of the matrix Ũν does not provide 
a good description of the current data on θ12, θ23 and θ13 [13]. One gets a physical result for 
cos δ, cos δ = −0.973, for, e.g., values of sin2 θ12 = 0.32, and sin θ13 = 0.16, lying in the 2σ

experimentally allowed intervals of these neutrino mixing parameters. We have checked that 
for the best fit value of sin2 θ13, physical values of (cos δ)E, (cos δ)LO and (cosφ)E in the BM 
(LC) case can be obtained for relatively large values of sin2 θ12. For, e.g., sin2 θ12 = 0.359 and 
sin2 θ13 = 0.0234 we find (cos δ)E = −0.915, (cos δ)LO = −0.998 and (cosφ)E = −0.922. In 
this case the differences between the exact and leading order sum rule results for cosδ and cosφ

are relatively small.
The above results imply that it would be possible to distinguish between the different symme-

try forms of Ũν considered by measuring cosδ [14], provided sin2 θ12 is known with sufficiently 
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Table 1
The predicted values of cos δ and cosφ, obtained from the exact sum rules in Eqs. (36) and (37), (cos δ)E and (cosφ)E, 
and from the leading order sum rule in Eq. (43), (cos δ)LO = (cosφ)LO, using the best fit values of sin2 θ13 = 0.0234 and 
sin2 θ12 = 0.308, for the TBM, GRA, GRB and HG forms of the matrix Ũν . The values of the ratios (cos δ)E/(cos δ)LO, 
(cos δ)E/(cosφ)E and (cosφ)E/(cosφ)LO are also shown.

sin2 θ12 = 0.308 TBM GRA GRB HG

(cos δ)E −0.114 0.289 −0.200 0.476
(cos δ)LO −0.179 0.225 −0.265 0.415
(cos δ)E/(cos δ)LO 0.638 1.29 0.756 1.15
(cosφ)E −0.231 0.153 −0.309 0.347
(cos δ)E/(cosφ)E 0.494 1.89 0.649 1.37
(cosφ)E/(cosφ)LO 1.29 0.680 1.16 0.837

high precision. Even determining the sign of cosδ will be sufficient to eliminate some of the 
possible symmetry forms of Ũν .

The leading order sum rules Eqs. (43) and (44) lead to values of cos δ and cosφ, (cos δ)LO
and (cosφ)LO, which coincide: (cos δ)LO = (cosφ)LO. These values differ, however, from the 
values obtained employing the exact sum rules: (cosδ)E �= (cos δ)LO, (cosφ)E �= (cosφ)LO. 
The exact sum rule values of cosδ and cosφ also differ: (cos δ)E �= (cosφ)E. We are inter-
ested both in the predictions for the values of (cos δ)E, (cos δ)LO, (cosφ)E and (cosφ)LO, and 
in the differences between the exact and the leading order sum rule predictions. In Table 1 we 
give the values of (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO, and of the ratios (cos δ)E/(cosφ)E, 
(cos δ)E/(cos δ)LO and (cosφ)E/(cosφ)LO, calculated for the best fit values of sin2 θ13 = 0.0234
and sin2 θ12 = 0.308.

As Fig. 1 indicates, the differences |(cos δ)E − (cos δ)LO| and |(cosφ)E − (cosφ)LO| exhibit 
weak dependence on the value of sinθ13 when it is varied in the 3σ interval quoted in Eq. (5). 
The values of cos δ, obtained using the exact sum rule Eq. (36) in the TBM, GRA, GRB and HG 
cases, differ from those calculated using the approximate sum rule Eq. (43) by the factors 0.638, 
1.29, 0.756 and 1.15, respectively. The largest difference is found to hold in the TBM case. As 
was shown in [14], the correction to (cos δ)LO — the leading order sum rule result for cos δ — is 
given approximately by cos 2θν

12 sin θ13/(sin 2θ12). For given θν
12, the relative magnitude of the 

correction depends on the magnitude of the ratio | sin2 θ12 − sin2 θν
12|/ sin θ13. The largest correc-

tion occurs for the symmetry form of Ũν , for which this ratio has the smallest value. For the best 
fit value of sin2 θ12, the smallest value of the ratio of interest corresponds to the TBM form of Ũν

and is equal approximately to 0.166.
The absolute values of the difference |(cos δ)E − (cos δ)LO| for the TBM, GRB, GRA and 

HG symmetry forms, as it follows from Table 1, lie in the narrow interval (0.061–0.065). These 
differences seem to be rather small. However, they are sufficiently large to lead to mislead-
ing results. Indeed, suppose cos δ is measured and the value determined experimentally reads: 
cos δ = −0.18 ± 0.025. If one compares this value with the value of cos δ predicted using the 
leading order sum rule, (cos δ)LO, one would conclude that data are compatible with the TBM 
form of Ũν and that all the other forms considered by us are ruled out. Using the prediction based 
on the exact sum rule, i.e., (cos δ)E, would lead to a completely different conclusion, namely, that 
the data are compatible only with the GRB form of Ũν .8 In this hypothetical example, which is 

8 The same hypothetical example can be used to illustrate the significance of the difference between the exact and the 
leading order sum rule predictions for cos δ also in the case of θe �= 0 (see Table 4).
23
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Fig. 2. The same as in Fig. 1, but for sin2 θ12 = 0.259 (see text for further details).

included to illustrate the significance of the difference between the predictions for cosδ obtained 
using the exact and the leading order sum rules, we have assumed that the prospective uncer-
tainties in the predicted values of (cos δ)LO and (cos δ)E due to the uncertainties in the measured 
values of sin2 θ12, sin2 θ13 and sin2 θ23 are sufficiently small. These uncertainties will be dis-
cussed in Section 5 (see Fig. 13). The relative difference between (cos δ)E and (cos δ)LO, i.e., 
the ratio |(cos δ)E − (cos δ)LO|/|(cos δ)E|, is also significant. For the TBM, GRA, GRB and HG 
symmetry forms it reads: 57.0%, 22.1%, 32.5% and 12.8%, respectively.

The behaviour of cos δ and cosφ when sin θ13 increases is determined by the sign of 
(sin2 θ12 − sin2 θν

12): cos δ and cosφ increase (decrease) when this difference is negative (posi-
tive). For the best fit value of sin2 θ12 = 0.308, this difference is negative in the TBM and GRB 
cases, while it is positive in the GRA and HG ones. For the four symmetry forms of Ũν , TBM, 
GRB, GRA and HG, and the best fit values of sin2 θ13 = 0.0234 and sin2 θ12 = 0.308, the ratio 
(sin2 θ12 − sin2 θν

12)/ sin θ13 reads, respectively: (−0.166), (−0.245), 0.207 and 0.379.
Given the fact that the magnitude of the ratio (sin2 θ12 −sin2 θν

12)/ sin θ13 determines the factor 
by which (cos δ)E and (cos δ)LO (and (cosφ)E and (cosφ)LO) differ, we have checked how the re-
sults described above change when sin2 θ12 is varied in its 3σ allowed region, Eq. (3). In Figs. 2
and 3 we show the dependence of the predicted values of (cosδ)E, (cosφ)E and (cos δ)LO =
(cosφ)LO on sin θ13 for the minimal and maximal 3σ allowed values of sin2 θ12, sin2 θ12 = 0.259
and 0.359. The results shown correspond to the TBM, GRA, GRB, HG forms of Ũν . For 
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Fig. 3. The same as in Fig. 1, but for sin2 θ12 = 0.359 (see text for further details).

Table 2
The same as in Table 1, but for sin2 θ12 = 0.259.

sin2 θ12 = 0.259 TBM GRA GRB HG

(cos δ)E −0.469 −0.0436 −0.559 0.153
(cos δ)LO −0.548 −0.129 −0.637 0.0673
(cos δ)E/(cos δ)LO 0.855 0.338 0.878 2.28
(cosφ)E −0.571 −0.206 −0.646 −0.0225
(cos δ)E/(cosφ)E 0.821 0.212 0.866 −6.82
(cosφ)E/(cosφ)LO 1.04 1.59 1.01 −0.334

sin2 θ12 = 0.259 (sin2 θ12 = 0.359) and sin2 θ13 = 0.0234, the ratio (sin2 θ12 −sin2 θν
12)/ sin θ13 in 

the TBM, GRA, GRB and HG cases takes respectively the values: (−0.486), (−0.114), (−0.565)

and 0.059 (0.168, 0.540, 0.088 and 0.713). As in the preceding case, we give the predicted values 
of (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO, and the ratios between them, for sin2 θ12 = 0.259
(sin2 θ12 = 0.359) and sin2 θ13 = 0.0234 in Table 2 (Table 3).

It follows from the results presented in Tables 1–3 that the exact sum rule predictions of cos δ, 
(cos δ)E, for the three values of sin2 θ12 = 0.308, 0.259 and 0.359, differ drastically. For the TBM 
form of Ũν , for instance, we get, respectively, the values: (cosδ)E = (−0.114), (−0.469) and 
0.221. For the GRA and GRB forms of Ũν we have, respectively, (cos δ)E = 0.289, (−0.044), 
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Table 3
The same as in Table 1, but for sin2 θ12 = 0.359.

sin2 θ12 = 0.359 TBM GRA GRB HG

(cos δ)E 0.221 0.609 0.138 0.789
(cos δ)LO 0.175 0.564 0.092 0.749
(cos δ)E/(cos δ)LO 1.27 1.08 1.50 1.05
(cosφ)E 0.123 0.526 0.042 0.733
(cos δ)E/(cosφ)E 1.80 1.16 3.29 1.08
(cosφ)E/(cosφ)LO 0.702 0.931 0.456 0.979

0.609, and (cos δ)E = (−0.200), (−0.559), 0.138. Similarly, for the HG form we find for the 
three values of sin2 θ12: (cos δ)E = 0.476, 0.153, 0.789. Thus, in the cases of the symmetry forms 
of Ũν considered, the exact sum rule predictions for cosδ not only change significantly in mag-
nitude when sin2 θ12 is varied in its 3σ allowed range, but also the sign of cos δ changes in the 
TBM, GRA and GRB cases (see Fig. 4).

We observe also that for sin2 θ12 = 0.259, the values of cosδ, obtained using the exact sum 
rule Eq. (36) in the TBM, GRA, GRB and HG cases differ from those calculated using the leading 
order sum rule in Eq. (43) by the factors 0.855, 0.338, 0.878 and 2.28, respectively; in the case 
of sin2 θ12 = 0.359 the same factors read: 1.27, 1.08, 1.50 and 1.05.

For sin2 θ12 = 0.259, the largest difference between the exact and leading order sum rule 
results for cos δ occurs for the GRA and HG forms of Ũν , while if sin2 θ12 = 0.359, the largest 
difference holds for the TBM and GRB forms.

As Figs. 1–3 and Tables 1–3 show, similar results are valid for cosφ obtained from the exact 
and the leading order sum rules.

It is worth noting also that the values of cosφ and cos δ, derived from the respective exact sum 
rules differ significantly for the TBM, GRA, GRB and HG forms of Ũν considered. As pointed 
out in [14], for the best fit values of sin2 θ13 and sin2 θ12 they differ by factors (1.4–2.0), as can 
be seen also from Table 1. This difference can be much larger for sin2 θ12 = 0.259 and 0.359: for 
these two values of sin2 θ12, cos δ and cosφ differ in the cases of the different symmetry forms 
of interest approximately by factors (1.2–6.8) and (1.1–3.3), respectively.

4. The case of nonzero θe
23

For θe
23 = 0 we have in the scheme we are considering: θ23 ∼= π/4 − 0.5 sin2 θ13. A nonzero 

value of θe
23 allows for a significant deviation of θ23 from π/4. Such deviation is not excluded 

by the current data on sin2 θ23, Eq. (4): at 3σ , values of sin2 θ23 in the interval (0.37–0.64) are 
allowed, the best fit value being sin2 θ23 = 0.437 (0.455). The exact sum rules for cos δ and cosφ, 
Eqs. (22), (23) and (24), depend on θ23, while the leading order sum rules, Eqs. (29) and (34), 
are independent of θ23. In this Section we are going to investigate how the dependence on θ23
affects the predictions for cos δ and cosφ, based on the exact sum rules.

We note first that from the exact sum rules in Eqs. (23) and (24) we get to leading order in 
sin θ13:

sin2 θ12 = sin2 θν
12 + sin 2θ12

tan θ23
sin θ13 cos δ + O(sin2 θ13), (45)

sin2 θ12 = sin2 θν
12 + sin 2θν

12 sin θ13 cosφ + O(sin2 θ13). (46)

tan θ23
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Fig. 4. The same as in Fig. 1, but for sin2 θ13 = 0.0234 and varying sin2 θ12 in the 3σ range. The vertical dash-dotted 
line corresponds to the best fit value of sin2 θ12 = 0.308 (see text for further details).

It follows from Eqs. (14) and (20) that in the case of | sin θe
23| 
 1 considered in Ref. [15], we 

have [14] (tan θ23)
−1 ∼= 2 cos2 θ23 = 1 + O(sin θe

23). Applying the approximation employed in 
Ref. [15], in which terms of order of, or smaller than, sin2 θ13, sin2 θe

23 and sin θ13 sin θe
23, in the 

sum rules of interest are neglected, we have to set (tan θ23)
−1 = 1 in Eqs. (45) and (46). This 

leads to Eqs. (31) and (32) and, correspondingly, to Eqs. (29) and (34).
In Fig. 5 we show the predictions for cosδ and cosφ in the cases of the TBM, GRA, GRB 

and HG forms of the matrix Ũν , derived from the exact sum rules in Eqs. (23) and (24), (cos δ)E
(solid line) and (cosφ)E (dashed line), and from the leading order sum rule in Eq. (30) (Eq. (33)), 
(cos δ)LO = (cosφ)LO (dash-dotted line). The results presented in Fig. 5 are obtained for the best 
fit values of sin2 θ12 = 0.308 and sin2 θ23 = 0.437. The parameter sin2 θ13 is varied in its 3σ

allowed range, Eq. (5). In Table 4 we give the values of (cosδ)E, (cos δ)LO, (cosφ)E and of their 
ratios, corresponding to the best fit values of sin2 θ12, sin2 θ23 and sin2 θ13. We see from Table 4
that for the TBM, GRA, GRB and HG forms of Ũν , cos δ determined from the exact sum rule 
takes respectively the values (−0.091), 0.275, (−0.169) and 0.445. The values of cos δ, found 
using the exact sum rule, Eq. (23), differ in the TBM, GRA, GRB and HG cases from those 
calculated using the leading order sum rule, Eq. (30), by the factors 0.506, 1.22, 0.636 and 1.07, 
respectively. Thus, the largest difference between the predictions of the exact and the leading 
order sum rules occurs for the TBM form of Ũν .
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Fig. 5. Predictions for cos δ and cosφ in the cases of the TBM (upper left panel), GRA (upper right panel), GRB (lower 
left panel) and HG (lower right panel) forms of the matrix Ũν , as functions of sin θ13 and for the best fit values of 
sin2 θ12 = 0.308 and sin2 θ23 = 0.437. The solid lines (dashed lines) correspond to cos δ (cosφ) determined from the 
exact sum rule given in Eq. (23) (Eq. (24)). The dash-dotted line in each of the 4 panels represents (cos δ)LO = (cosφ)LO
obtained from the leading order sum rule in Eq. (30) (Eq. (33)). The vertical dash-dotted line corresponds to the best fit 
value of sin2 θ13 = 0.0234; the three coloured vertical bands indicate the 1σ , 2σ and 3σ experimentally allowed ranges 
of sin θ13 (see text for further details). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Table 4
The predicted values of cos δ and cosφ, obtained from the exact sum rules in Eqs. (23) and (24), (cos δ)E and (cosφ)E, 
and from the leading order sum rule in Eq. (30) (Eq. (33)), (cos δ)LO = (cosφ)LO, using the best fit values of sin2 θ13 =
0.0234, sin2 θ12 = 0.308 and sin2 θ23 = 0.437, for the TBM, GRA, GRB and HG forms of the matrix Ũν . The values of 
the ratios (cos δ)E/(cos δ)LO, (cos δ)E/(cosφ)E and (cosφ)E/(cosφ)LO are also shown.

(sin2 θ12, sin2 θ23) = (0.308,0.437) TBM GRA GRB HG

(cos δ)E −0.0906 0.275 −0.169 0.445
(cos δ)LO −0.179 0.225 −0.265 0.415
(cos δ)E/(cos δ)LO 0.506 1.22 0.636 1.07
(cosφ)E −0.221 0.123 −0.290 0.297
(cos δ)E/(cosφ)E 0.41 2.24 0.581 1.50
(cosφ)E/(cosφ)LO 1.23 0.547 1.10 0.716
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Fig. 6. The same as in Fig. 5, but for sin2 θ12 = 0.259 (lower bound of the 3σ interval in Eq. (3)) and sin2 θ23 = 0.437
(best fit value).

Since the predictions of the sum rules depend on the value of θ12, we show in Fig. 6 and Fig. 7
also results for the values of sin2 θ12, corresponding to the lower and the upper bounds of the 
3σ allowed range of sin2 θ12, sin2 θ12 = 0.259 and 0.359, keeping sin2 θ23 fixed to its best fit 
value. The predictions for (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO and their ratios, obtained for 
the best fit values of sin2 θ13 = 0.0234 and sin2 θ23 = 0.437, and for sin2 θ12 = 0.259 (sin2 θ12 =
0.359) are given in Table 5 (Table 6). For sin2 θ12 = 0.259, the exact sum rule predictions of 
cos δ for the TBM, GRA, GRB and HG forms of Ũν read (see Table 5): (cos δ)E = (−0.408), 
(−0.022), (−0.490) and 0.156. As in the case of negligible θe

23 analysed in the preceding Section, 
these values differ drastically (in general, both in magnitude and sign) from the exact sum rule 
values of cos δ corresponding to the best fit value and the 3σ upper bound of sin2 θ12 = 0.308
and 0.359. The dependence of (cosδ)E, (cos δ)LO and (cosφ)E on sin2 θ12 under discussion is 
shown graphically in Fig. 8.

Further, for sin2 θ12 = 0.259, the ratio (cos δ)E/(cos δ)LO in the TBM, GRA, GRB and HG 
cases reads, respectively, 0.744, 0.172, 0.769 and 2.32 (see Table 5). Thus, the predictions 
for cos δ of the exact and the leading order sum rules differ by the factors of 5.8 and 2.3 in 
the GRA and HG cases. For the upper bound of the 3σ range of sin2 θ12 = 0.359, the ratio 
(cos δ)E/(cos δ)LO takes the values 1.2, 0.996, 1.46 and 0.969 for the TBM, GRA, GRB and HG 
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Fig. 7. The same as in Fig. 5, but for sin2 θ12 = 0.359 (upper bound of the 3σ interval in Eq. (3)) and sin2 θ23 = 0.437
(best fit value).

Table 5
The same as in Table 4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 = 0.259 (lower bound of the 3σ range) and 
sin2 θ23 = 0.437 (best fit value).

(sin2 θ12, sin2 θ23) = (0.259,0.437) TBM GRA GRB HG

(cos δ)E −0.408 −0.0223 −0.490 0.156
(cos δ)LO −0.548 −0.129 −0.637 0.0673
(cos δ)E/(cos δ)LO 0.744 0.172 0.769 2.32
(cosφ)E −0.529 −0.202 −0.596 −0.0386
(cos δ)E/(cosφ)E 0.771 0.110 0.822 −4.05
(cosφ)E/(cosφ)LO 0.966 1.57 0.935 −0.573

forms of Ũν , respectively (see Table 6). For the GRA and HG symmetry forms the leading order 
sum rule prediction for cos δ is very close to the exact sum rule prediction, which can also be 
seen in Fig. 7.

We will investigate next the dependence of the predictions for cos δ and cosφ on the 
value of θ23 given the facts that i) sin2 θ23 is determined experimentally with a relatively 
large uncertainty, and ii) in contrast to the leading order sum rule predictions for cosδ and 
cosφ, the exact sum rule predictions depend on θ23. In Figs. 9 and 10 we show the de-
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Table 6
The same as in Table 4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 = 0.359 (upper bound of the 3σ range) and 
sin2 θ23 = 0.437 (best fit value).

(sin2 θ12, sin2 θ23) = (0.359,0.437) TBM GRA GRB HG

(cos δ)E 0.210 0.562 0.135 0.725
(cos δ)LO 0.175 0.564 0.092 0.749
(cos δ)E/(cos δ)LO 1.20 0.996 1.46 0.969
(cosφ)E 0.100 0.461 0.0279 0.647
(cos δ)E/(cosφ)E 2.09 1.22 4.83 1.12
(cosφ)E/(cosφ)LO 0.573 0.817 0.303 0.864

Fig. 8. The same as in Fig. 5, but for sin2 θ13 = 0.0234, sin2 θ23 = 0.437 (best fit values) and varying sin2 θ12 in the 3σ

range. The vertical dash-dotted line corresponds to the best fit value of sin2 θ12 = 0.308.

pendence of predictions for cos δ and cosφ on sin θ13 for the best fit value of sin2 θ12 =
0.308 and the 3σ lower and upper bounds of sin2 θ23 = 0.374 and 0.626, respectively. For 
sin2 θ23 = 0.374 (0.626) and the best fit values of sin2 θ13 and sin2 θ12, the exact and the 
leading order sum rule results (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO and their ratios 
are given in Tables 7 and 8. Comparing the values of (cos δ)E quoted in Tables 7 and 8
with the values given in Table 4 we note that the exact sum rule predictions for cos δ for 
sin2 θ23 = 0.374 (lower 3σ bound) and sin2 θ23 = 0.437 (best fit value) do not differ signif-
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Fig. 9. The same as in Fig. 5, but for sin2 θ12 = 0.308 (best fit value) and sin2 θ23 = 0.374 (lower bound of the 3σ interval 
in Eq. (4)).

icantly in the cases of the TBM, GRA, GRB and HG forms of Ũν considered. However, 
the differences between the predictions for sin2 θ23 = 0.437 and sin2 θ23 = 0.626 are rather 
large — by factors of 2.05, 1.25, 1.77 and 1.32 in the TBM, GRA, GRB and HG cases, re-
spectively.

In what concerns the difference between the exact and leading order sum rules predictions 
for cos δ, for the best fit values of sin2 θ13 and sin2 θ12, and for sin2 θ23 = 0.374, the ratio 
(cos δ)E/(cos δ)LO = 0.345, 1.17, 0.494 and 0.993 for TBM, GRA, GRB and HG forms of Ũν . 
For sin2 θ23 = 0.626 we have for the same ratio (cosδ)E/(cos δ)LO = 1.04, 1.52, 1.13 and 1.42. 
Thus, for sin2 θ23 = 0.374 (0.626), the leading order sum rule prediction for cosδ is rather pre-
cise in the HG (TBM) case. For the other symmetry forms of Ũν the leading order sum rule 
prediction for cos δ is largely incorrect. As can be seen from Figs. 5–10 and Tables 4–8, we get 
similar results for cosφ.

In the case of the BM (LC) form of Ũν , physical values of (cos δ)E, (cosφ)E and (cos δ)LO can 
be obtained for the best fit values of sin2 θ13 and sin2 θ23 if sin2 θ12 has a relatively large value. 
For, e.g., sin2 θ12 = 0.359, sin2 θ13 = 0.0234 and sin2 θ23 = 0.437 we find (cos δ)E = −0.821, 
(cos δ)LO = −0.998, (cosφ)E = −0.837, and (cos δ)E/(cos δ)LO = 0.823.
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Fig. 10. The same as in Fig. 5, but for sin2 θ12 = 0.308 (best fit value) and sin2 θ23 = 0.626 (upper bound of the 3σ

interval in Eq. (4)).

Table 7
The same as in Table 4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 = 0.308 (best fit value) and sin2 θ23 = 0.374
(lower bound of the 3σ range).

(sin2 θ12, sin2 θ23) = (0.308,0.374) TBM GRA GRB HG

(cos δ)E −0.0618 0.262 −0.131 0.412
(cos δ)LO −0.179 0.225 −0.265 0.415
(cos δ)E/(cos δ)LO 0.345 1.17 0.494 0.993
(cosφ)E −0.211 0.0866 −0.271 0.237
(cos δ)E/(cosφ)E 0.293 3.03 0.483 1.74
(cosφ)E/(cosφ)LO 1.18 0.385 1.02 0.572

5. Statistical analysis

In the present Section we perform a statistical analysis of the predictions for δ, cosδ and the 
rephasing invariant JCP which controls the magnitude of CPV effects in neutrino oscillations 
[47], in the cases of the TBM, BM (LC), GRA, GRB and HG symmetry forms of the matrix Ũν

(see Eq. (8)). In this analysis we use as input the latest results on sin2 θ12, sin2 θ13, sin2 θ23 and δ, 
obtained in the global analysis of the neutrino oscillation data performed in [11]. Our goal is to 
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Table 8
The same as in Table 4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 = 0.308 (best fit value) and sin2 θ23 = 0.626
(upper bound of the 3σ range).

(sin2 θ12, sin2 θ23) = (0.308,0.626) TBM GRA GRB HG

(cos δ)E −0.186 0.343 −0.299 0.588
(cos δ)LO −0.179 0.225 −0.265 0.415
(cos δ)E/(cos δ)LO 1.04 1.52 1.13 1.42
(cosφ)E −0.272 0.244 −0.376 0.506
(cos δ)E/(cosφ)E 0.684 1.41 0.794 1.16
(cosφ)E/(cosφ)LO 1.52 1.09 1.42 1.22

derive the allowed ranges for δ, cos δ and JCP, predicted on the basis of the current data on the 
neutrino mixing parameters for each of the symmetry forms of Ũν considered. We recall that in 
the standard parametrisation of the PMNS matrix, the JCP factor reads (see, e.g., [1]):

JCP = Im
{
U∗

e1U
∗
μ3Ue3Uμ1

}
= 1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13. (47)

We construct χ2 for the schemes considered — TBM, BM (LC), GRA, GRB and HG — as 
described in Appendix B. We will focus on the general case of non-vanishing θe

23 in order to 
allow for possible sizeable deviations of θ23 from the symmetry value π/4.

In the five panels in Fig. 11 we show Nσ ≡ √
χ2 as a function of δ for the five symmetry forms 

of Ũν we have studied. The dashed lines correspond to the results of the global fit [11]. The solid 
lines represent the results we obtain by minimising the value of χ2 in sin2 θ13 and sin2 θ23 (or, 
equivalently, in sin2 θe

12 and sin2 θ̂23) for a fixed value of δ.9

The blue (red) lines correspond to NO (IO) neutrino mass spectrum. The value of χ2 at the 
minimum, χ2

min, which determines the best fit value of δ predicted for each symmetry form of Ũν , 
allows us to make conclusions about the compatibility of a given symmetry form of Ũν with the 
current global neutrino oscillation data.

It follows from the results shown in Fig. 11 that the BM (LC) symmetry form is disfavoured 
by the data at approximately 1.8σ , all the other symmetry forms considered being compatible 
with the data. We note that for the TBM, GRA, GRB and HG symmetry forms, a value of δ
in the vicinity of 3π/2 is preferred statistically. For the TBM symmetry form this result was 
first obtained in [13] while for the GRA, GRB and HG symmetry forms it was first found in 
[14]. In contrast, in the case of the BM (LC) form the best fit value is very close to π [13,
14]. The somewhat larger value of χ2 at the second local minimum in the vicinity of π/2 in 
the TBM, GRA, GRB and HG cases, is a consequence of the fact that the best fit value of 
δ obtained in the global analysis of the current neutrino oscillation data is close to 3π/2 and 
that the value of δ = π/2 is statistically disfavoured (approximately at 2.5σ ). In the absence of 
any information on δ, the two minima would have exactly the same value of χ2, because they 
correspond to the same value of cos δ. In the schemes considered, as we have discussed, cos δ

is determined by the values of θ12, θ13 and θ23. The degeneracy in the sign of sinδ can only 
be solved by an experimental input on δ. In Table 9 we give the best fit values of δ and the 

9 We note that in the scheme considered by us, fixing the value of δ implies that one of the three neutrino mixing angles 
is expressed in terms of the other two. We choose for convenience this angle to be θ12.
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Fig. 11. Nσ ≡
√

χ2 as a function of δ. The dashed lines represent the results of the global fit [11], while the solid lines 
represent the results we obtain for the TBM, BM (LC), GRA (upper left, central, right panels), GRB and HG (lower left 
and right panels) symmetry forms of Ũν . The blue (red) lines are for NO (IO) neutrino mass spectrum (see text for further 
details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

corresponding 3σ ranges for the TBM, BM (LC), GRA, GRB and HG forms of Ũν , found by 

fixing 
√

χ2 − χ2
min = 3.

In Fig. 12 we show the likelihood function versus cos δ for NO neutrino mass spectrum. The 
results shown are obtained by marginalising over all the other relevant parameters of the scheme 
considered (see Appendix B for details). The dependence of the likelihood function on cosδ in 
the case of IO neutrino mass spectrum differs little from that shown in Fig. 12. Given the global 
fit results, the likelihood function, i.e.,

L(cos δ) ∝ exp

(
−χ2(cos δ)

2

)
, (48)

represents the most probable value of cosδ for each of the considered symmetry forms of Ũν . 
The nσ confidence level region corresponds to the interval of values of cosδ in which L(cos δ) ≥
L(χ2 = χ2 ) · L(χ2 = n2).
min
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Table 9

Best fit values of JCP, δ and cos δ and corresponding 3σ ranges (found fixing 
√

χ2 − χ2
min = 3) in our setup using the 

data from [11].

Symmetry form Best fit 3σ range

TBM JCP (NO) −0.034 −0.038 ÷ −0.028 ⊕ 0.031 ÷ 0.036
JCP (IO) −0.034 −0.039 ÷ −0.025 ⊕ 0.029 ÷ 0.037
δ/π (NO) 1.48 0.49 ÷ 0.58 ⊕ 1.34 ÷ 1.57
δ/π (IO) 1.48 0.47 ÷ 0.65 ⊕ 1.30 ÷ 1.57
cos δ (NO) −0.07 −0.47 ÷ 0.21
cos δ (IO) −0.07 −0.60 ÷ 0.23

BM (LC) JCP (NO) −0.005 −0.026 ÷ 0.021
JCP (IO) −0.002 −0.025 ÷ 0.023
δ/π (NO) 1.04 0.80 ÷ 1.24
δ/π (IO) 1.02 0.79 ÷ 1.23
cos δ (NO) −0.99 −1.00 ÷ −0.72
cos δ (IO) −1.00 −1.00 ÷ −0.72

GRA JCP (NO) −0.033 −0.037 ÷ −0.027 ⊕ 0.030 ÷ 0.035
JCP (IO) −0.033 −0.037 ÷ −0.025 ⊕ 0.028 ÷ 0.036
δ/π (NO) 1.58 0.35 ÷ 0.46 ⊕ 1.50 ÷ 1.70
δ/π (IO) 1.58 0.31 ÷ 0.48 ⊕ 1.47 ÷ 1.74
cos δ (NO) 0.25 −0.08 ÷ 0.69
cos δ (IO) 0.25 −0.08 ÷ 0.69

GRB JCP (NO) −0.034 −0.039 ÷ −0.026 ⊕ 0.031 ÷ 0.036
JCP (IO) −0.033 −0.039 ÷ −0.022 ⊕ 0.026 ÷ 0.037
δ/π (NO) 1.45 0.51 ÷ 0.61 ⊕ 1.31 ÷ 1.54
δ/π (IO) 1.45 0.50 ÷ 0.70 ⊕ 1.25 ÷ 1.54
cos δ (NO) −0.15 −0.57 ÷ 0.13
cos δ (IO) −0.15 −0.70 ÷ 0.13

HG JCP (NO) −0.031 −0.035 ÷ −0.020 ⊕ 0.026 ÷ 0.034
JCP (IO) −0.031 −0.036 ÷ −0.015 ⊕ 0.019 ÷ 0.034
δ/π (NO) 1.66 0.27 ÷ 0.41 ⊕ 1.55 ÷ 1.80
δ/π (IO) 1.63 0.19 ÷ 0.42 ⊕ 1.55 ÷ 1.86
cos δ (NO) 0.47 0.16 ÷ 0.80
cos δ (IO) 0.40 0.16 ÷ 0.80

As can be observed from Fig. 12, a rather precise measurement of cos δ would allow one to 
distinguish between the different symmetry forms of Ũν considered by us. For the TBM and 
GRB forms there is a significant overlap of the corresponding likelihood functions. The same 
observation is valid for the GRA and HG forms. However, the overlap of the likelihood functions 
of these two groups of symmetry forms occurs only at 3σ level in a very small interval of values 
of cos δ, as can also be seen from Table 9. This implies that in order to distinguish between 
TBM/GRB, GRA/HG and BM symmetry forms a not very demanding measurement (in terms of 
accuracy) of cos δ might be sufficient. The value of the non-normalised likelihood function at the 
maximum in Fig. 12 is equal to exp(−χ2

min/2), which allows us to make conclusions about the 
compatibility of the symmetry schemes with the current global data, as has already been pointed 
out.

In the left panel of Fig. 13 we present the likelihood function versus cosδ within the Gaus-
sian approximation (see Appendix B for details), using the current best fit values of the mixing 
angles for NO neutrino mass spectrum in Eqs. (3)–(5) and the prospective 1σ uncertainties in 
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Fig. 12. The likelihood function versus cos δ for NO neutrino mass spectrum after marginalising over sin2 θ13 and sin2 θ23
for the TBM, BM (LC), GRA, GRB and HG symmetry forms of the mixing matrix Ũν (see text for further details). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The same as in Fig. 12, but using the prospective 1σ uncertainties in the determination of the neutrino mixing 
angles within the Gaussian approximation (see text for further details). In the left (right) panel sin2 θ12 = 0.308 (0.332), 
the other mixing angles being fixed to their NO best fit values.

the determination of sin2 θ12 (0.7% from JUNO [48]), sin2 θ13 (almost 3% derived from an ex-
pected error on sin2 2θ13 of 3% from Daya Bay, see A. de Gouvea et al. in [2]) and sin2 θ23 (5%10

derived from the potential sensitivity of NOvA and T2K on sin2 2θ23 of 2%, see A. de Gouvea 
et al. in [2]). The BM case is very sensitive to the best fit values of sin2 θ12 and sin2 θ23 and is 
disfavoured at more than 2σ for the current best fit values quoted in Eqs. (3)–(5). This case might 
turn out to be compatible with the data for larger (smaller) measured values of sin2 θ12 (sin2 θ23), 
as can be seen from the right panel of Fig. 13, which was obtained for sin2 θ12 = 0.332. With 
the increase of the value of sin2 θ23 the BM form becomes increasingly disfavoured, while the 
TBM/GRB (GRA/HG) predictions for cos δ are shifted somewhat — approximately by 0.1 — to 
the left (right) with respect to those shown in the left panel of Fig. 13. This shift is illustrated in 
Fig. 14, which is obtained for sin2 θ23 = 0.579, more precisely, for the best fit values found in 

10 This sensitivity can be achieved in future neutrino facilities [49].



758 I. Girardi et al. / Nuclear Physics B 894 (2015) 733–768
Fig. 14. The same as in Fig. 13, but using the IO best fit values taken from [12].

[12] and corresponding to IO neutrino mass spectrum. The measurement of sin2 θ12, sin2 θ13 and 
sin2 θ23 with the quoted precision will open up the possibility to distinguish between the BM, 
TBM/GRB, GRA and HG forms of Ũν . Distinguishing between the TBM and GRB forms would 
require relatively high precision measurement of cosδ.

We have performed also a statistical analysis in order to derive predictions for JCP. In Fig. 15
we present Nσ ≡ √

χ2 as a function of JCP for NO and IO neutrino mass spectra. Similarly to the 
case of δ, we minimise the value of χ2 for a fixed value of JCP by varying sin2 θ13 and sin2 θ23

(or, equivalently, sin2 θe
12 and sin2 θ̂23). The best fit value of JCP and the corresponding 3σ range 

for each of the considered symmetry forms of Ũν are summarised in Table 9. As Fig. 15 shows, 
the CP-conserving value of JCP = 0 is excluded in the cases of the TBM, GRA, GRB and HG 
neutrino mixing symmetry forms, respectively, at approximately 5σ , 4σ , 4σ and 3σ confidence 
levels with respect to the confidence level of the corresponding best fit values.11

These results correspond to those we have obtained for δ, more specifically to the confidence 
levels at which the CP-conserving values of δ = 0, π , 2π , are excluded (see Fig. 11).

In contrast, for the BM (LC) symmetry form, the CP-conserving value of δ, namely, δ ∼= π , 
is preferred and therefore the CP-violating effects in neutrino oscillations are predicted to be 
suppressed. At the best fit point we obtain a value of JCP = −0.005 (−0.002) for NO (IO) neu-
trino mass spectrum, which corresponds to the best fit value of δ/π = 1.04 (1.02). The allowed 
range of the JCP factor in the BM (LC) includes the CP-conserving value JCP = 0 at practi-
cally any confidence level. As can be seen from Table 9, the 3σ allowed intervals of values of 
δ and JCP are rather narrow for all the symmetry forms considered, except for the BM (LC) 
form.

Finally, for completeness, we present in Appendix C also results of a statistical analysis of the 
predictions for the values of sin2 θ23 for the TBM, BM (LC), GRA, GRB and HG neutrino mixing 
symmetry forms considered. We recall that of the three neutrino mixing parameters, sin2 θ12, 
sin2 θ13 and sin2 θ23, sin2 θ23 is determined in the global analyses of the neutrino oscillation data 
with the largest uncertainty.

11 The confidence levels under discussion differ in the cases of NO and IO neutrino mass spectra, but as Fig. 15 indicates, 
in the cases considered these differences are rather small and we have not given them.
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Fig. 15. Nσ ≡
√

χ2 as a function of JCP. The dashed lines represent the results of the global fit [11], while the solid lines 
represent the results we obtain for the TBM, BM (LC), GRA (upper left, central, right panels), GRB and HG (lower left 
and right panels) neutrino mixing symmetry forms. The blue (red) lines are for NO (IO) neutrino mass spectrum (see text 
for further details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

6. Summary and conclusions

Using the fact that the neutrino mixing matrix U = U
†
e Uν , where Ue and Uν result from the 

diagonalisation of the charged lepton and neutrino mass matrices, we have analysed the sum rules 
which the Dirac phase δ present in U satisfies when Uν has a form dictated by, or associated with, 
discrete symmetries and Ue has a “minimal” form (in terms of angles and phases it contains) that 
can provide the requisite corrections to Uν , so that the reactor, atmospheric and solar neutrino 
mixing angles θ13, θ23 and θ12 have values compatible with the current data.

We have considered the following symmetry forms of Uν : i) tri-bimaximal (TBM), ii) bi-
maximal (BM) (or corresponding to the conservation of the lepton charge L′ = Le − Lμ − Lτ

(LC)), iii) golden ratio type A (GRA), iv) golden ratio type B (GRB), and v) hexagonal (HG). 
For all these symmetry forms Uν can be written as Uν = �1 Ũν Q0 = �1 R23(θ

ν
23)R12(θ

ν
12)Q0, 

where R23(θ
ν ) and R12(θ

ν ) are orthogonal matrices describing rotations in the 2-3 and 1-2 
23 12
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planes, respectively, and �1 and Q0 are diagonal phase matrices each containing two phases. 
The phases in the matrix Q0 give contribution to the Majorana phases in the PMNS matrix. 
The symmetry forms of Ũν of interest, TBM, BM (LC), GRA, GRB and HG, are charac-
terised by the same value of the angle θν

23 = −π/4, but correspond to different fixed values 
of the angle θν

12 and thus of sin2 θν
12, namely, to i) sin2 θν

12 = 1/3 (TBM), ii) sin2 θν
12 = 1/2

(BM (LC)), iii) sin2 θν
12 = (2 + r)−1 ∼= 0.276 (GRA), r being the golden ratio, r = (1 + √

5)/2, 
iv) sin2 θν

12 = (3 − r)/4 ∼= 0.345 (GRB), and v) sin2 θν
12 = 1/4 (HG).

The minimal form of Ue of interest that can provide the requisite corrections to Uν , so that 
the neutrino mixing angles θ13, θ23 and θ12 have values compatible with the current data, in-
cluding a possible sizeable deviation of θ23 from π/4, includes a product of two orthogonal 
matrices describing rotations in the 2-3 and 1-2 planes [13], R23(θ

e
23) and R12(θ

e
12), θ

e
23 and 

θe
12 being two (real) angles. This leads to the parametrisation of the PMNS matrix U given in 

Eq. (11), which can be recast in the form [13]: U = R12(θ
e
12)�(φ)R23(θ̂23) R12(θ

ν
12) Q̂, where 

� = diag
(
1, eiφ,1

)
, φ being a CP violation phase, θ̂23 is a function of θe

23 (see Eq. (14)), and 
Q̂ is a diagonal phase matrix. The phases in Q̂ give contributions to the Majorana phases in the 
PMNS matrix. The angle θ̂23, however, can be expressed in terms of the angles θ23 and θ13 of the 
PMNS matrix (Eq. (20)) and the value of θ̂23 is fixed by the values of θ23 and θ13.

In this scheme the four observables θ12, θ23, θ13 and the Dirac phase δ in the PMNS ma-
trix are functions of three parameters θe

12, θ̂23 and φ. As a consequence, the Dirac phase δ can 
be expressed as a function of the three PMNS angles θ12, θ23 and θ13, leading to a new “sum 
rule” relating δ and θ12, θ23 and θ13. This sum rule is exact within the scheme considered. Its 
explicit form depends on the symmetry form of the matrix Ũν , i.e., on the value of the angle θν

12. 
For arbitrary fixed value of θν

12 the sum rule of interest is given in Eq. (22) (or the equivalent 
Eq. (23)) [14]. A similar exact sum rule can be derived for the phase φ (Eq. (24)) [14].

A parametrisation of the PMNS matrix, similar to that given in Eq. (11), has been effec-
tively employed in Ref. [15]. Treating sin θe

12 and sin θe
23 as small parameters, | sin θe

12| 
 1, 
| sin θe

23| 
 1, and neglecting terms of order of, or smaller than, O((θe
12)

2), O((θe
23)

2) and 
O(θe

12θ
e
23), the following “leading order” sum rule was obtained in [15]: θ12 ∼= θν

12 + θ13 cos δ. 
This sum rule, in the approximation used to obtain it, is equivalent to the sum rule sinθ12 ∼=
sin θν

12 + cos θν
12 sin θ13 cos δ, which was shown in Ref. [14] to be the leading order approxima-

tion of the exact sum rule given in Eq. (22) (or the equivalent Eq. (23)). In the present article 
we have investigated the predictions for cosδ in the cases of TBM, BM (LC), GRA, GRB and 
HG symmetry forms of the matrix Ũν using the exact and the leading order sum rules for cosδ

discussed above and given in Eqs. (23) and (30). It was shown in [14], in particular, using the 
best fit values of the neutrino mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13 and the exact sum 
rule results for cos δ derived for the TBM, GRA, GRB and HG forms of Ũν , that the leading 
order sum rule provides largely imprecise predictions for cos δ. Here we have performed a thor-
ough study of the exact and leading order sum rule predictions for cosδ in the TBM, BM (LC), 
GRA, GRB and HG cases taking into account the uncertainties in the measured values of sin2 θ12, 
sin2 θ23 and sin2 θ13. This allowed us, in particular, to assess the accuracy of the predictions for 
cos δ based on the leading order sum rules and its dependence on the values of the indicated neu-
trino mixing parameters when the latter are varied in their respective 3σ experimentally allowed 
ranges. In contrast to the leading order sum rule, the exact sum rule for cos δ depends not only 
on θ12 and θ13, but also on θ23, and we have investigated this dependence as well.

In the present study we have analysed both the cases of θe
23 = 0, in which sin2 θ23 ∼= 0.5(1 −

sin2 θ13), and of arbitrary θe . In the second case θ23 can deviate significantly from π/4.
23
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We confirm the result found in [14] that the exact sum rule predictions for cosδ vary signifi-
cantly with the symmetry form of Ũν . This result implies that the measurement of cosδ can allow 
us to distinguish between the different symmetry forms of Ũν [14] provided sin2 θ12, sin2 θ13 and 
sin2 θ23 are known with a sufficiently good precision. Even determining the sign of cosδ will be 
sufficient to eliminate some of the possible symmetry forms of Ũν .

We find also that the exact sum rule predictions for cos δ exhibit strong dependence on the 
value of sin2 θ12 when the latter is varied in its 3σ experimentally allowed range (0.259–0.359) 
(Tables 1–6). The predictions for cos δ change significantly not only in magnitude, but in the 
cases of TBM, GRA and GRB forms of Ũν also the sign of cos δ can change. These significant 
changes take place both for θe

23 = 0 and θe
23 �= 0.

We have investigated the dependence of the exact sum rule predictions for cosδ in the cases of 
the symmetry forms of Ũν considered on the value of sin2 θ23 varying the latter in the respective 
3σ allowed interval 0.374 ≤ sin2 θ23 ≤ 0.626 (Figs. 9 and 10, and Tables 7 and 8). The results we 
get for sin2 θ23 = 0.374 and sin2 θ23 = 0.437, setting sin2 θ12 and sin2 θ13 to their best fit values, 
do not differ significantly. However, the differences between the predictions for cosδ obtained 
for sin2 θ23 = 0.437 and for sin2 θ23 = 0.626 are relatively large (they differ by the factors of 
2.05, 1.25, 1.77 and 1.32 in the TBM, GRA, GRB and HG cases, respectively).

In all cases considered, having the exact sum rule results for cos δ, we could investigate the 
precision of the leading order sum rule predictions for cosδ. We found that the leading order sum 
rule predictions for cos δ are, in general, imprecise and in many cases are largely incorrect, the 
only exception being the case of the BM (LC) form of Ũν [14].

We have performed a similar analysis of the predictions for the cosine of the phase φ. The 
phase φ is related to, but does not coincide with, the Dirac phase δ. The parameter cosφ obeys a 
leading order sum rule which is almost identical to the leading order sum rule satisfied by cosδ. 
This leads to the confusing identification of φ with δ: the exact sum rules satisfied by cosφ and 
cos δ differ significantly. Correspondingly, the predicted values of cosφ and cos δ in the cases of 
the TBM, GRA, GRB and HG symmetry forms of Ũν considered by us also differ significantly 
(see Figs. 1–10 and Tables 1–8). This conclusion is not valid for the BM (LC) form: for this form 
the exact sum rule predictions for cosφ and cos δ are rather similar. The phase φ appears in a 
large class of models of neutrino mixing and neutrino mass generation and serves as a “source” 
for the Dirac phase δ in these models.

Finally, we have performed a statistical analysis of the predictions for δ, cosδ and the rephas-
ing invariant JCP which controls the magnitude of CPV effects in neutrino oscillations [47], in 
the cases of the TBM, BM (LC), GRA, GRB and HG symmetry forms of the matrix Ũν consid-
ered. In this analysis we have used as input the latest results on sin2 θ12, sin2 θ13, sin2 θ23 and δ, 
obtained in the global analysis of the neutrino oscillation data performed in [11]. Our goal was 
to derive the allowed ranges for δ, cosδ and JCP, predicted on the basis of the current data on 
the neutrino mixing parameters for each of the symmetry forms of Ũν considered. The results 
of this analysis are shown in Figs. 11, 12 and 15, and are summarised in Table 9, in which we 
give the predicted best fit values and 3σ ranges of JCP, δ and cos δ for each of the symmetry 
forms of Ũν considered. We have shown, in particular, that the CP-conserving value of JCP = 0
is excluded in the cases of the TBM, GRA, GRB and HG neutrino mixing symmetry forms, 
respectively, at approximately 5σ , 4σ , 4σ and 3σ confidence levels with respect to the confi-
dence level of the corresponding best fit values (Fig. 15). These results reflect the predictions we 
have obtained for δ, more specifically, the confidence levels at which the CP-conserving values 
of δ = 0, π , 2π , are excluded in the discussed cases (see Fig. 11). We have found also that the 
3σ allowed intervals of values of δ and JCP are rather narrow for all the symmetry forms con-
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sidered, except for the BM (LC) form (Table 9). More specifically, for the TBM, GRA, GRB 
and HG symmetry forms we have obtained at 3σ : 0.020 ≤ |JCP| ≤ 0.039. For the best fit values 
of JCP we have found, respectively: JCP = (−0.034), (−0.033), (−0.034), and (−0.031). Our 
results indicate that distinguishing between the TBM, GRA, GRB and HG symmetry forms of 
the neutrino mixing would require extremely high precision measurement of the JCP factor.

Using the likelihood method, we have derived also the ranges of the predicted values of cosδ

for the different forms of Ũν considered, using the prospective 1σ uncertainties in the deter-
mination of sin2 θ12, sin2 θ13 and sin2 θ23 respectively in JUNO, Daya Bay and accelerator and 
atmospheric neutrino experiments (Fig. 13). In this analysis the current best fit values of sin2 θ12, 
sin2 θ13 and sin2 θ23 have been utilised (left panel of Fig. 13). The results thus obtained show that 
i) the measurement of the sign of cos δ will allow to distinguish between the TBM/GRB, BM and 
GRA/HG forms of Ũν , ii) for a best fit value of cos δ = −1 (−0.1) distinguishing at 3σ between 
the BM (TBM/GRB) and the other forms of Ũν would be possible if cos δ is measured with 1σ

uncertainty of 0.3 (0.1).
The predictions for δ, cos δ and JCP in the case of the BM (LC) symmetry form of Ũν , as 

the results of the statistical analysis performed by us showed, differ significantly from those 
found for the TBM, GRA, GRB and HG forms: the best fit value of δ ∼= π , and, correspondingly, 
of JCP ∼= 0. For the 3σ range of JCP we have obtained in the case of NO (IO) neutrino mass 
spectrum: −0.026 (−0.025) ≤ JCP ≤ 0.021 (0.023), i.e., it includes a sub-interval of values 
centred on zero, which does not overlap with the 3σ allowed intervals of values of JCP in the 
TBM, GRA, GRB and HG cases.

The results obtained in the present study, in particular, reinforce the conclusion reached in 
Ref. [14] that the experimental measurement of the cosine of the Dirac phase δ of the PMNS 
neutrino mixing matrix can provide unique information about the possible discrete symmetry 
origin of the observed pattern of neutrino mixing.
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Appendix A. Relations between phases in two parametrisations

In this section we present the relations between the phases of the two different parametrisa-
tions of the PMNS matrix employed in [15] and [14]. In the parametrisation used in [15] the 
PMNS matrix after setting θe

13 = θν
13 = 0 reads:

UPMNS = U
eL†
12 U

eL†
23 U

νL

23 U
νL

12 , (49)

where the subscripts 12 and 23 stand for the rotation plane, e.g., the matrix UeL

12 being defined as

U
eL

12 =
⎛
⎝ cos θe

12 sin θe
12 e−iδe

12 0
− sin θe

12 eiδe
12 cos θe

12 0

⎞
⎠ , (50)
0 0 1



I. Girardi et al. / Nuclear Physics B 894 (2015) 733–768 763
and the others analogously. We can factorise the phases in the charged lepton and the neutrino 
sectors in the following way:

U
eL†
12 U

eL†
23 =

⎛
⎝1 0 0

0 ei(δe
12+π) 0

0 0 ei(δe
12+δe

23)

⎞
⎠

⎛
⎝ cos θe

12 sin θe
12 0

− sin θe
12 cos θe

12 0

0 0 1

⎞
⎠

×
⎛
⎝1 0 0

0 cos θe
23 sin θe

23

0 − sin θe
23 cos θe

23

⎞
⎠

⎛
⎝1 0 0

0 e−i(δe
12+π) 0

0 0 e−i(δe
12+δe

23)

⎞
⎠ , (51)

U
νL

23 U
νL

12 =
⎛
⎝1 0 0

0 eiδν
12 0

0 0 ei(δν
23+δν

12)

⎞
⎠

⎛
⎝1 0 0

0 cos θν
23 sin θν

23

0 − sin θν
23 cos θν

23

⎞
⎠

×
⎛
⎝ cos θν

12 sin θν
12 0

− sin θν
12 cos θν

12 0

0 0 1

⎞
⎠

⎛
⎝1 0 0

0 e−iδν
12 0

0 0 e−i(δν
23+δν

12)

⎞
⎠ . (52)

Combining Eqs. (51) and (52) and comparing with the parametrisation of the PMNS matrix 
employed in [14] and given in Eqs. (11) and (12), we find the following relations:

ψ = δe
12 − δν

12 + π, ω = δe
23 + δe

12 − δν
23 − δν

12 , (53)

ξ21 = −2δν
12, ξ31 = −2(δν

12 + δν
23). (54)

Appendix B. Statistical details

In order to perform a statistical analysis of the models considered we construct the χ2 function 
in the following way:

χ2(sin2 θ12, sin2 θ13, sin2 θ23, δ)

= χ2
1 (sin2 θ12) + χ2

2 (sin2 θ13) + χ2
3 (sin2 θ23) + χ2

4 (δ), (55)

in which we have neglected the correlations among the oscillation parameters, since the functions 
χ2

i have been extracted from the 1-dimensional projections in [11]. In order to quantify the 
accuracy of our approximation we show in Fig. 16 the confidence regions at 1σ , 2σ and 3σ

for 1 degree of freedom in the planes (sin2 θ23, δ), (sin2 θ13, δ) and (sin2 θ23, sin2 θ13) in blue 
(dashed lines), purple (solid lines) and light-purple (dash-dotted lines) for NO (IO) neutrino 
mass spectrum, respectively, obtained using Eq. (55). The parameters not shown in the plot have 
been marginalised. It should be noted that what is also used in the literature is the Gaussian 
approximation, in which χ2 can be simplified using the best fit values and the 1σ uncertainties 
as follows:

χ2
G =

∑
i

(xi − xi)
2

σ 2
xi

. (56)

Here xi = {sin2 θ12, sin2 θ13, sin2 θ23, δ}, xi and σxi
being the best fit values and the 1σ uncer-

tainties12 taken from [11]. We present in Fig. 17 the results of a similar two-dimensional analysis 

12 In the case of asymmetric errors we take the mean value of the two errors.
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Fig. 16. Confidence regions at 1σ , 2σ and 3σ for 1 degree of freedom in the planes (sin2 θ23, δ), (sin2 θ13, δ) and 
(sin2 θ23, sin2 θ13) in the blue (dashed lines), purple (solid lines) and light-purple (dash-dotted lines) for NO (IO) neutrino 
mass spectrum, respectively, obtained using Eq. (55). The best fit points are indicated with a cross (NO) and an asterisk 
(IO). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)

for the confidence level regions in the planes shown in Fig. 16, but using the approximation 
for χ2 given in Eq. (56). It follows from these figures that the Gaussian approximation does 
not allow to reproduce the confidence regions of [11] with sufficiently good accuracy. For this 
reason in our analysis we use the more accurate procedure defined through Eq. (55). In both 
the figures the best fit points are indicated with a cross and an asterisk for NO and IO spectra, 
respectively.

Each symmetry scheme considered in our analysis, which we label with an index m, de-
pends on a set of parameters ym

j , which are related to the standard oscillation parameters through 
expressions of the form xi = xm

i (ym
j ). In order to produce the 1-dimensional figures we min-

imise

χ2
(
xm
i (ym

j )
)

=
4∑

i=1

χ2
i

(
xm
i (ym

j )
)

(57)

for a fixed value of the corresponding observable α, i.e.,

χ2(α) = min
[
χ2

(
xm
i (ym

j )
) ∣∣

α=const

]
, (58)

with α = {δ, JCP, sin2 θ23}. The likelihood function for cosδ has been computed by taking
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Fig. 17. The same as in Fig. 16, but using Eq. (56).

Table 10

Best fit values of sin2 θ23 and corresponding 3σ ranges (found fixing 
√

χ2 − χ2
min = 3) in our 

setup using the data from [11].

Symmetry form Best fit 3σ range

TBM sin2 θ23 (NO) 0.44 0.37 ÷ 0.63
sin2 θ23 (IO) 0.46 0.38 ÷ 0.65

BM (LC) sin2 θ23 (NO) 0.42 0.37 ÷ 0.52
sin2 θ23 (IO) 0.42 0.37 ÷ 0.56

GRA sin2 θ23 (NO) 0.44 0.37 ÷ 0.63
sin2 θ23 (IO) 0.46 0.38 ÷ 0.65

GRB sin2 θ23 (NO) 0.44 0.37 ÷ 0.63
sin2 θ23 (IO) 0.46 0.38 ÷ 0.65

HG sin2 θ23 (NO) 0.44 0.37 ÷ 0.63
sin2 θ23 (IO) 0.46 0.38 ÷ 0.64

L(cos δ) ∝ exp

(
−χ2(cos δ)

2

)
, (59)

which was used to produce the likelihood function for the different symmetry forms in Fig. 12. 
It is worth noticing that in the case of flat priors on the mixing parameters, the posterior proba-
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Fig. 18. Nσ ≡
√

χ2 as a function of sin2 θ23. The dashed lines represent the results of the global fit [11], while the solid 
ones represent the results we obtain for the TBM, BM (LC), GRA (upper left, central, right panels), GRB and HG (lower 
left and right panels) neutrino mixing symmetry forms. The blue (red) lines are for NO (IO) neutrino mass spectrum. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

bility density function reduces to the likelihood function. Although we did not use the Gaussian 
approximation for obtaining Figs. 11, 12, 15 and 18, we employed it to obtain Figs. 13 and 14.

Appendix C. Results for the atmospheric angle

For completeness in Fig. 18 we give Nσ ≡ √
χ2 as a function of sin2 θ23. The best fit values 

and the 3σ regions are summarised in Table 10.
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