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Semantic transparency in free stems: the effect of
Orthography–Semantics Consistency in word recognition.

Marco Marelli
Center for Mind/Brain Sciences, University of Trento, Italy

Simona Amenta and Davide Crepaldi
Department of Psychology, University of Milano-Bicocca, Italy

Abstract

A largely overlooked side result in most studies of morphological priming is
a consistent main effect of semantic transparency across priming conditions.
That is, participants are faster at recognizing stems from transparent sets
(e.g., farm) in comparison to stems from opaque sets (e.g., fruit), regardless
of the preceding primes. This suggests that semantic transparency may be
also consistently associated with some property of the stem word. We pro-
pose that this property might be traced back to the consistency, throughout
the lexicon, between the orthographic form of a word and its meaning, here
named Orthography-Semantics Consistency (OSC), and that an imbalance in
OSC scores might explain the “stem transparency” effect. We exploited dis-
tributional semantic models to quantitatively characterize OSC, and tested
its effect on visual word identification relying on large–scale data taken from
the British Lexicon Project (BLP). Results indicated that (a) the “stem
transparency” effect is solid and reliable, insofar it holds in BLP lexical de-
cision times (Experiment 1); (b) an imbalance in terms of OSC can account
for it (Experiment 2); and (c) more generally, OSC explains variance in a
large item sample from BLP, proving to be an effective predictor in visual
word access (Experiment 3).
Keywords: Orthography–Semantics Consistency, distributional semantic
models, megastudies, visual word identification

Recent research on morphological processing has focused on the role played by se-
mantic transparency in the recognition of derived words. Indeed, the meaning of a derived
form can be more or less associated to the meanings of its constituent morphemes: words
like nameless, farmer, bakery can be easily understood given the meaning of their roots
(transparent words), whereas in words like courteous, fruitful, cryptic root meanings are
not fully maintained (opaque words). How early semantic transparency comes to the stage
during visual word processing has been the theoretical issue at the center of a long-standing
debate (for a review, see Rastle & Davis, 2008). Priming was the main methodological tool
adopted in addressing this question, with the assumption that, if the recognition of a root
(e.g., farm) is made quicker by the previous presentation of a related derived form (e.g.,
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farmer) in comparison to a control prime (e.g., speaker), this would mean that the root
is accessed when processing the derived form. Typically, transparent and opaque derived
primes are compared for their effectiveness in facilitating the identification of their (pseudo-
)roots. In order to rule out any strategic effect related to prime awareness, the prime is
often presented very shortly and preceded by an orthographic mask, making it virtually
invisible at an explicit level (masked priming; Forster & Davis, 1984). Under these con-
ditions, priming effect is regularly observed for both transparent and opaque prime-target
pairs (that is, for both farmer-farm and courteous-court), although actual differences in
the effect magnitude are still debated (Rastle, Davis, & New, 2004; Feldman, O’Connor, &
Moscoso del Prado Mart́ın, 2009).

Notwithstanding the large amount of data collected on this issue, a side effect often
emerging in these studies has been largely overlooked. Indeed, a qualitative evaluation of the
published results suggests that a main effect of transparency typically characterises these
data as well, that is, target stems used in the transparent condition elicit quicker response
times than target stems used in the opaque condition, independently of prime type. Table 1
reports average latencies for transparent and opaque pairs in all relevant studies, namely,
those that (a) have stems as visually-presented target words; (b) employ lexical decision
as task; (c) are run on native speakers of the language of interest; and (d) include both
a transparent and an opaque condition in a between-target design. “Transparent” targets
are systematically faster to recognize than “opaque” targets in English: the effect is quite
strong in most of the studies, and even in those reporting smaller differences the effect
direction is still consistent (with the only exception of Andrews & Lo, 2013). Russian,
Dutch and Italian are on par with English. The only oddball seems to be French, where
the difference between target stems in transparent and opaque conditions is not consistent
(Longtin, Segui, & Hallé, 2003; Diependaele, Sandra, & Grainger, 2005).

Since the studies reported in Table 1 all involve the same (or very similar) experimen-
tal conditions, the qualitative observation that target stems in the transparent condition
are generally easier to identify than target stems in the opaque condition can be assessed
statistically in a meta-analysis considering those studies for which we were able to retrieve
item means (and thus compute confidence intervals). Indeed, the forest plot reported in
Figure 1 indicates that the best point estimate for the difference between “transparent” and
“opaque” stems is 19 ms and its 95% confidence interval is 12–25.
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Language Opaque Transparent Effect
Investigated Stems Stems Size

Rastle et al. (2000), Exp. 1 English 612 ms 582 ms 31 ms
Devlin et al. (2004) English 673 ms 639 ms 34 ms
Rastle et al. (2004) English 616 ms 586 ms 30 ms
Lavric et al. (2007) English 688 ms 666 ms 22 ms
Morris et al. (2007) English 669 ms 648 ms 21 ms
Marslen-Wilson et al. (2008) English 548 ms 531 ms 17 ms
McCormick et al. (2008), Exp. 4 English 627 ms 607 ms 20 ms
Rueckl & Aicher (2008), Exp. 1 English 648 ms 613 ms 35 ms
Rueckl & Aicher (2008), Exp. 2 English 667 ms 626 ms 41 ms
Feldman et al. (2009) English 650 ms 617 ms 33 ms
Diependaele et al. (2011), Exp. 1 English 592 ms 589 ms 3 ms
Andrews & Lo (2013) English 576 ms 579 ms -3 ms
Diependaele et al. (2005), Exp. 1* Dutch 629 ms 619 ms 10 ms
Diependaele et al. (2009), Exp. 1 Dutch 599 ms 584 ms 15 ms
Diependaele et al. (2009), Exp. 3* Dutch 602 ms 583 ms 19 ms
Longtin et al. (2003), Exp. 1 French 629 ms 631 ms -2 ms
Diependaele et al. (2005), Exp. 2* French 623 ms 608 ms 15 ms
Marelli et al. (2013), Exp. 2 Italian 631 ms 594 ms 37 ms
Kazanina et al. (2008) Russian 662 ms 643 ms 19 ms
Kazanina (2011), Exp. 2 Russian 679 ms 666 ms 13 ms

Table 1: Average response latencies in the transparent and opaque conditions of published visual
masked priming experiments. *only RTs on visually presented prime-target pairs were considered.

In conclusion, it seems that experiments comparing transparent and opaque morpho-
logical priming do not only provide information on how (pseudo-)complex words (i.e., the
primes) are analyzed morphologically, but also possibly reveal the existence of two groups
of simple words (i.e., the stem targets) that are distinct for some property. Still, prima
facie, it is not easy to identify which property might distinguish between words like cheer,
herb, poet, quiet, train and words like cheek, helm, pond, quest, trail. This paper tests
the hypothesis that these groups of words are characterized by how consistently each stem
form is associated to its meaning, i.e., how informative any particular orthographic string
is about the meaning of the word it identifies.

Before expanding on this idea, however, we need to assess the reliability of the “stem
transparency” effect. Of course, there is a possibility that the difference observed is just a
side effect of (a) some uncontrolled lexical variable, or (b) the presence of the primes. We
cannot exclude (a) since targets for opaque and transparent sets were typically only matched
for mean values (as opposed to distributions), and covariates were not always included in the
statistical analyses. For what concerns (b), the priming effect was smaller for opaque than
transparent pairs in many of the studies considered (e.g., Diependaele et al., 2005; Feldman
et al., 2009; Kazanina, 2011; Marelli et al., 2013), a difference that obviously impacted on
the collapsed mean latencies. For these reasons, in Experiment 1 we aimed at establishing
the reliability of the effect by considering independent evidence from the British Lexicon
Project (Keuleers, Lacey, Rastle, & Brysbaert, 2012).
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Figure 1. Forest plot showing a reliable difference between response times to stems used in traspar-
ent vs. opaque conditions in masked priming experiments manipulating the semantic transparency
of the derived forms.

Experiment 1 – Validating the “stem transparency” effect

In the present analysis, we aim at establishing the validity of the alleged “stem trans-
parency” effect by excluding potential methodological and lexical confounder. In order to
pursue this aim, we prepared an item set including those English words that were used as
stem targets for either opaque or transparent primes in published priming studies; hence,
we tested the difference between the transparent and opaque set on lexical decision latencies
as extracted from the British Lexicon Project (BLP, Keuleers et al., 2012). Observing the
effect under the relatively simple conditions of a pure lexical decision task will indicate that
the phenomenon does not depend on the particular manipulations associated to the priming
paradigm. Moreover, the present approach also allows to control the influence of several
covariates, thus excluding alternative explanations based on other lexical variables.

Materials and Methods

Items were extracted from a concatenation of the set used by Rastle et al. (2000),
Devlin et al. (2004), Rastle et al. (2004), Morris et al. (2007), Marslen-Wilson et al. (2008),
and Andrews and Lo (2013), leading to a set including 335 stem words. lock and port were
subsequently removed because they appeared in different sets in different studies: port was
used as a target for the transparent prime portable in Morris et al. (2007) and as a target
for the opaque prime porter in Marslen-Wilson et al. (2008), whereas the pair locker–lock
was classified as opaque in Morris et al. (2007) and as transparent in Marslen-Wilson et
al. (2008). Eight items were further removed because they were not included in the BLP.
Therefore, the final set was comprised of 325 words, 157 of which were originally part of a
set of transparent pairs (e.g., cheer, herb, poet, quiet, train) and 168 were originally part of
a set of opaque pairs (e.g., cheek, helm, pond, quest, trail).

Response times (RTs) in lexical decision were extracted from the BLP. The
SUBTLEX-uk database (van Heuven, Mandera, Keuleers, & Brysbaert, in press) was used
to collect word frequency for each target item. The morphological annotation from CELEX
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Transparent set Opaque set
Mean SEM Mean SEM

Word frequency 13914 2762 11804 4519
Word FS 15.87 1.63 12.97 1.84
Word length 4.66 .06 4.41 .07

Table 2: Summary of the predictors for stems from the transparent and the opaque set.

Estimate Std. Error t value p value
Intercept 6.6351 0.0267 248.11 .0001
Word frequency -0.0301 0.0024 12.42 .0001
Word FS -0.0132 .0049 2.72 .0069
Word length -0.0046 .0044 1.06 .2912
Transparency set -0.0217 0.0074 2.95 .0034

Table 3: Results of the regression analyses on the lexical decision latencies extracted from the BLP.

(Baayen, Piepenbrock, & Gulikers, 1995) was exploited to compute morphological family
size (hence, FS), that is, the type frequency of the morphologically complex words where
each stem appears (De Jong, Schreuder, & Baayen, 2000). Table 2 reports a descriptive
summary of the predictors in the opaque and the transparent set. Frequency and FS, along
with word length (in letters), were included as covariates along with the “transparency”
variable in a regression model. RTs, FS and frequency were log-transformed in order to
obtain more Gaussian-like distributions. Once the model was fitted, outlying datapoints
were removed on the basis of the model residuals (adopting 2.5 SD as a threshold). The
model was then refitted to ensure that the analysis outcome was not determined by few
influential outliers. The reported results are those of the refitted model.

Results

Targets from opaque sets elicited longer RTs (mean = 581ms, SD = 56ms) than
targets from transparent sets (mean = 553ms, SD = 47ms). The difference is significant,
even once the effects of the considered covariates are partialled out. Table 3 reports the
results of the regression analysis.

Over and above the transparency effect, frequency and FS also have significant fa-
cilitatory effects on lexical decision latencies (the larger frequency and FS, the shorter the
RTs). The effect of length is not significant, but this may be due to the extremely limited
distribution of the variable in the dataset (80% of the items is either 4 or 5 letter long).
Overall, the model fitted the observed data with an adjusted R-squared of .5081; predicted
values were not correlated with the residuals (r = −.0001).

Discussion

The alleged effect of “stem transparency” received independent support from the
analysis of the BLP data. Stems extracted from transparent sets are recognized faster than
stems extracted from opaque sets, even in an experimental context unrelated to priming
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techniques. The effect is also independent from possible mismatching in terms of frequency,
length, or family size. These results confirm the validity and reliability of the phenomenon:
in previous studies the item grouping based on the transparency of the derived forms also
individuated distinct groups of stems.

Experiment 2 – An explanation for the effect

As anticipated in the Introduction, the hypothesis that we take up in this paper is that
the difference described above is related to how reliable each word is as an orthographic
cue for its meaning. Genuine morphological stems may also form opaque words – e.g.,
invent is a genuine stem in invention or inventive, but clearly does not contribute to the
meaning of inventory. This phenomenon can be observed to different extent in the lexicon.
At one extreme of the continuum, there are stems that always appear in words whose
meaning is related to their own; in these cases, stems carry orthographic information that
is consistently associated to a certain meaning, e.g., the orthographic chunk widow will be
always associated to the WIDOW meaning, irrespective of the words it appears in (widower,
widowed, widowhood). At another extreme, stems that mostly appear in opaque forms (e.g.,
corn), and therefore are found in words in which their meanings is not maintained (corner,
corny), will not be very reliable orthographic cues for their semantics. As a result, the
association between form and meaning in stems from the “opaque sets” will be potentially
more difficult to learn, and hence weaker (see Andrews & Lo, 2013). In a sense, “opaque”
stems are worse symbols than “transparent” stems, which may drive to slower response
times.

One way to assess this hypothesis is to develop a measure that reflects how much a
word is a reliable orthographic cue for its semantics, and then showing that stems in the
opaque sets had lower scores than stems in the transparent sets in previous priming experi-
ments. We call this new measure Orthography–Semantics Consistency (hence OSC), and we
show in the present Experiment how it was defined (based on methods from distributional
semantics) and how it explains indeed the “stem transparency” effect.

Materials and methods

We considered the same English item set employed in the previous analysis, including
157 items originally part of a set of transparent pairs and 168 items originally part of a set of
opaque pairs, for a total of 325 items. We then collected all words starting with these items
from a list including the top 30k most frequent content words (i.e., nouns, verbs, adjectives,
adverbs) in a 2.8–billion corpus (detailed below), thus forming a family of “orthographic
relatives” for each target stem. As an example, the family for the stem whisk includes
whisky, whiskey, whisker, whiskered.

The next step was to compute a measure of semantic similarity between a stem and
each of its orthographic relatives. In order to do so, we exploited methods borrowed from
distributional semantics (Turney & Pantel, 2010), that have proven to be extremely effec-
tive in providing cognitively sound estimates of semantic association (e.g., LSA, Landauer
& Dumais, 1997; HAL, Lund & Burgess, 1996) . This approach is based on the assumption
that the meaning of a word can be approximated by the way that word co-occurs with other
words in the lexicon. In a Distributional Semantic Model (hence, DSM) word meanings are
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represented as vectors that are derived from these co-occurrences. The more two words tend
to occur with the same set of other words (i.e., in similar contexts), the more their vectors
will be close, the more their meanings will be considered to be similar. Geometrically, this
amounts to measuring the cosine of the angle formed by the two vectors: the more similar
the vectors, the smaller the angle between them, the higher their cosine. In the present
study, we build a DSM by using a large part-of-speech tagged and lemmatized corpus,
formed by a concatenation of the ukWaC (http://wacky.sslmit.unibo.it/), English
Wikipedia (http://en.wikipedia.org/), and BNC (http://www.natcorp.ox.ac.uk/)
corpora (about 2.8 billion words in total)1. We focused on the co-occurrences involving the
top 30k most frequent content words (i.e., nouns, verbs, adjectives, adverbs), collected using
a 5-word window. Raw counts were re-weighted using Positive Pointwise Mutual Informa-
tion (Church & Hanks, 1990), and we reduced matrix dimensions by means of Non-negative
Matrix Factorization (Arora, Ge, & Moitra, 2012), setting the number of dimensions of the
reduced space to 350. These parameters were adopted because they were shown to produce
high quality semantic spaces in previous studies (e.g., Bullinaria & Levy, 2007). For model
implementation we relied on the freely available DISSECT toolkit (Dinu, The Pham, &
Baroni, 2013).

Given a target word and the set of its k orthographic relatives, OSC was computed
as the frequency-weighted average semantic similarity. In formal terms:

OSC(t) =

∑k
x=1 frx ∗ cos(~t, ~rx)∑k

x=1 frx

Where t is the target word, rx each of its k orthographic relatives, and frx the corre-
sponding frequencies extracted from the above described corpus. Since cosine values range
from 0 to 12, the resulting OSC measure is a 0-to-1 score where values close to 0 identify
words that are bad orthographic cues for their associated meanings, and values close to 1
indicate an almost perfect association between form and meaning.

The item frisk was not included in the semantic space and its OSC could not be
computed; it was thus excluded from the following analysis. After having computed OSC
for each target, we regressed it against log-transformed RTs extracted from the BLP, as for
Experiment 1. Again, in accordance with Experiment 1, we also included in the regression
analysis log-transformed frequency (from SUBTLEX-uk), family size (from CELEX), and
length in letters.

Results

The density distributions of OSC in the two transparency sets is represented in Figure
2. The average OSC was significantly different in the transparent-set stems v́ıs-a-v́ıs the
opaque-set stems (t(322) = 7.41, p = .0001), with the former showing larger OSC than
the latter (.72 ± .22 vs. .50 ± .31 respectively). This OSC difference can explain the

1Since the reference corpora were POS-tagged, in the resulting DSM we obtained separate vectors for
homographs with different grammatical class (e.g., a vector for the noun run and a vector for the verb run).
When target items were ambiguous in relation to their grammatical class, they were assigned the one most
frequently observed in the corpus in order to extract the corresponding vector.

2When all vector components are non-negative (as resulting from the settings of our DSM), the cosine is
also non-negative.
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Figure 2. Density distribution of Orthography-Semantics Consistency in stems extracted from
either transparent or opaque sets.

Estimate Std. Error t value p value
Intercept 6.6341 0.0266 249.84 .0001
Word frequency -0.0282 0.0025 11.21 .0001
Word FS -0.0147 .0048 3.06 .0024
Word length -0.0031 .0045 0.71 .4826
OSC -0.0461 0.0133 3.47 .0006

Table 4: Results of the regression analyses on the lexical decision latencies extracted from the BLP,
when including OSC in place of transparency as predictor.

transparency effect in lexical decision latencies discussed above: indeed, if OSC is introduced
in place of transparency in the regression model summarized in Table 3, its effect emerges
as significant (b = −0.046, t = 3.47, p = .0006) and larger than the estimate previously
observed for the transparency dummy variable (b = −0.022). This observation is confirmed
by the Relative Importance Indicators extracted from a model including both predictors:
normalized LMG (Lindeman, Merenda, & Gold, 1980; Kruskal, 1987) for transparency
and OSC is, respectively, .05 and .11. The results of the model where transparency-set is
substituted by OSC as a predictor are summarized in Table 4.

Along with OSC, also frequency and FS have significant facilitatory effects, whereas
the effect of length is not significant. Overall, the model fitted the observed data with
an adjusted R-squared of .5133; predicted values were not correlated with the residuals
(r = .0001). The model with OSC provides a better fit to the data than the one reported
in Experiment 1 (AIC -860.55 and -857.04, respectively); according to Wagenmakers and
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Farrell (2004), ∆AIC = 3.51 indicates that the OSC model is 5.78 times more likely to be
the best one than the model including transparency as predictor.

Discussion

In this analysis, we have tested the effect of OSC in (a) distinguishing stems coming
from either opaque or transparent sets in previous priming experiments; and (b) predicting
lexical decision latencies for those items in the BLP. In both tests, OSC proved to have a
significant effect in the expected direction: stems taken from transparent sets have signifi-
cantly higher OSC than stems taken from opaque sets, and OSC has a facilitatory effect on
RTs in lexical decision. This suggest that the bizarre phenomenon that inspired this study,
that is, the main effect of semantic transparency on simple stem targets in priming experi-
ments, may be explained by considering how much, in the whole lexicon, the orthographic
information carried by the stem is consistent with its associated semantics. In conclusion,
the grouping based on the semantic properties of the derived forms also identifies two sets
of stems that are distinguishable for their level of Orthography-Semantics Consistency.

Once we consider the issue from this point of view, it is not surprising that OSC
provides a better fit to RT data than the transparency predictor: the latter just happens to
be a dichotomization of the former, and it is well known that, when dealing with naturally
continuous variables, a continuous indicator has to be preferred to its dichotomized coun-
terpart in terms of both statistical power and estimation accuracy (Cohen, 1983; Maxwell
& Delaney, 1993). Concerning the difference in OSC distributions between transparent and
opaque sets (Figure 2), it arguably reflects a selection bias in the item samples from the
original studies. English derivational morphology is a productive system, leading to opaque
words being naturally scarce; as a consequence, stems having at least an opaque form were
most likely assigned to opaque sets in order to obtain as large samples as possible. Still,
one single opaque form does not guarantee that OSC will be low, leading to the vaguely
uniform OSC distribution observed for the opaque set. On the other hand, the transparent
set is likely to include stems having only transparent forms (if they were associated also to
opaque words, they would have been assigned to an opaque set); for this reason, the OSC
distribution in the trasparent set is negatively skewed.

Why should OSC impact word processing? In order to account for their masked
priming results, Andrews and Lo (2013) proposed that the association between an opaque
derived word and its stem may be difficult to learn because of their similarity in form
paired with their discrepancy in meaning. The present results suggest that this has not
only consequences when both the derived word and the stem are explicitly used during the
experiment, but also under simpler conditions when skilled readers are just presented with
isolated stems: the knowledge that those stems have opaque and/or transparent derived
forms is stored in the mental lexicon, and influences the way they are processed even when
(pseudo-)morphological relatives are not involved by the experimental paradigm.

Experiment 3 – Generalization of the OSC effect

So far, OSC was shown to explain human performance on stems that happened to
be used in previous priming experiments. Of course, before being able to make any general
point about the role of OSC in visual lexical identification, we need to demonstrate that
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Mean SEM 1st quartile Median 3rd quartile Asymmetry Kurtosis

OSC .69 .01 .56 .75 .88 -0.91 0.04
Word frequency 16119 1482 570 2515 10882 11.68 (-0.17*) 188.59 (-0.09*)
Word FS 14.13 1.07 4 7 14 24.46 (0.17*) 775.57 (1.08*)
Word length 5.26 0.03 4 5 6 0.34 -0.39

Table 5: Summary of the predictors considered in Experiment 3. *values obtained once the variable
is log-transformed.

Estimate Std. Error t value p value
Intercept 6.5922 0.0109 602.89 .0001
Word frequency -0.0308 0.0009 33.41 .0001
Word FS -0.0041 0.0021 1.97 .0495
Word length 0.0035 0.0013 2.74 .0061
OSC -0.0254 0.0066 3.84 .0002

Table 6: Results of the regression analyses on the lexical decision latencies extracted from the BLP
for a large set of random words.

this effect holds in a much wider word sample that is independent from previous research.
In our hypothesis, OSC is not an effect that can be limitedly observed in the two peculiar,
extreme sets we have been considering so far, but rather something that regularly affects
word processing in a continuous way. This is the issue that we take up in the present
Experiment.

Materials and methods

For this analysis we considered a dataset of 1821 words, randomly sampled from
the words included in both the semantic space described in Experiment 2 and the BLP
database, and having at least one orthographic relative over and above itself (in order to
exclude words with OSC = 1 that could have distorted the distribution of the variable of
interest). OSC was defined following the same approach described in the Experiment 2.
Again, for each target word we also collected frequency (from SUBTLEX-uk), family size
(from CELEX), and length in letters. RTs in lexical decision were extracted from the BLP.
Table 5 summarizes the distribution of the variables in the considered dataset.

OSC was not correlated with any of the other predictors (frequency: ρ = .06; FS:
ρ = −.08; length: ρ = .15). RTs, FS and frequency were log-transformed in order to obtain
more Gaussian-like distributions. The four predictors were tested in a regression model with
RTs as dependent variable. The same procedure described for the previous experiments was
followed.

Results

The results of the regression model are summarized in Table 6.

All the considered effects are significant. OSC, frequency and FS have facilitatory
effects (larger values are associated to shorter RTs), whereas the effect of length is inhibitory
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Mean SD 1st quartile Median 3rd quartile Confidence Interval

Intercept 6.5922 0.0124 6.5839 6.5924 6.6008 6.5919 6.5926
Word frequency -0.0309 0.0011 -0.0316 -0.0308 -0.0301 -0.0309 -0.0308
Word FS -0.0041 0.0021 -0.0055 -0.0041 -0.0026 -0.0041 -0.0039
Word length 0.0035 0.0013 0.0027 0.0035 0.0044 0.0035 0.0036
OSC -0.0255 0.0071 -0.0301 -0.0253 -0.0207 -0.0256 -0.0252

Table 7: Summary of the distributions of the effect parameters across 5,000 bootstrap samples.

(larger values are associated to longer RTs). Overall, the model fitted the observed data
with an adjusted R-squared of .5222; predicted values were not correlated with the residuals
(r = .0001).

The obtained model was validated in a bootstrap procedure with 5,000 resamples (see
Wu, 1986). The resulting optimism indexes are small for both the R-squared and the mean
standard error (.0023 and .0001 respectively), indicating that overfitting is extremely limited
and thus confirming the reliability of the model. Table 7 summarizes the distributions of
the effect parameters across the bootstrap samples.

Discussion

Even when considering a large set of items extracted from the BLP, the effect of
OSC on lexical decision latencies is significant, and independent from frequency, FS, and
length. This indicates that the effect of OSC is generally in place during word recognition,
and not simply a bizarre consequence of the choice of particularly extreme item sets in the
previous literature. The effect of OSC in such a large sample of words, along with the low
correlations with the other predictors, suggests that the measure proposed in the present
paper describes an important aspect, even if so far unexplored, of visual word recognition.

General Discussion

In the present paper we have investigated a curious side effect in priming experiments
on morphological processing, namely that stems assigned to the transparent condition are
identified more quickly than stems assigned to the opaque condition, regardless of any
primes preceding them. This effect is puzzling because the difference between transparent
and opaque conditions was exclusively related to the primes in those experiments, that is,
there was nothing a priori that differentiated the stems in the two conditions; why corn,
fruit, whisk (chosen as opaque targets because part of corner, fruitful, whisker) should be
processed slower than adore, farm, widow (chosen as transparent targets because part of
adorable, farmer, widower), even when the corresponding derived form is not presented
to the participants? This question, springing from the casual observation of a bizarre yet
empirically solid phenomenon, has led us to wonder about the semantic relations intercurring
between a word and its orthographic relatives, and how this underexplored aspect may
influence visual word processing. The outcome of this venture was the development of a
new measure (OSC: Orthography-Semantics Consistency) quantifying the consistency of
the carried orthographic and semantic information.

In a series of three experiments, we showed that (a) the “stem transparency” effect
is solid and reliable, insofar it holds on BLP lexical decision times where no primes are
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involved whatsoever (Experiment 1); (b) an imbalance in terms of Orthography–Semantics
Consistency can account for this effect (Experiment 2); and (c) OSC explains variance in a
large item sample from BLP that is independent of frequency, family size and word length
(Experiment 3).

The OSC effect indicates that word processing is influenced by the relative distri-
bution of form and meaning in the lexicon or, in other words, that the strength of the
association between orthography and semantics contributes to determining how easily a
word is recognized. The effect fits naturally well with learning models that see lexical and
morphological effects as emerging at the interface between orthography and meaning (e.g.,
Plaut & Gonnerman, 2000; Baayen, Milin, Durdević, Hendrix, & Marelli, 2011). In these
approaches, a word will be more difficult to process when part of opaque derived forms
because of competition during learning: the same orthographic information (e.g., bat) is
associated to several meanings in this case (e.g., BAT, BATTERY, BATTLE, BATMAN ),
with the result that it becomes a relatively unreliable cue for the associated semantic repre-
sentation. Therefore, the result of the present study is a natural consequence of the learning
process implemented in these models, and the OSC effect fits well with these kinds of ar-
chitectures because it can be considered a proxy of the distributed nodes/weights linking
orthography to semantics. It is also true, however, that, the same effect could be accounted
for under a spreading–activation framework (e.g., Taft, 2004), although it is probably not
an obvious prediction of most of these models. In these architectures, the effect would
depend on competition between dissimilar semantic representations (e.g., BAT vs. BAT-
TLE ), activated at the same time by the corresponding lexical (or sub-lexical) units (e.g.,
bat, battle), that are in turn accessed because of the common orthographic input (e.g., b, a,
t).

Being born from a side effect emerged in priming studies, one may wonder whether
OSC could have any impact on the priming phenomenon itself. Could this effect be primarily
driven by properties of the stems targets, as opposed to the derived primes? Indeed, if
we hypothesize that priming effects can emerge for high-OSC words only, the facilitation
observed for both transparent and opaque items will be explained by the OSC distributions
in the target sets, since they both include words characterized by high levels of OSC (Figure
2). The more uniform distribution in the opaque set would also explain the much discussed
variability in priming results for opaque forms (Rastle & Davis, 2008): item samples will
be more or less likely to elicit a priming effect on the basis of their average OSC. As
interesting as this idea may seem, we don’t believe it to be fully supported by existing
data. Järvikivi and Pyykkönen (2011) and Feldman, Kostić, Gvozdenović, O’Connor, and
Moscoso del Prado Mart́ın (2012) have convincingly shown that different priming effects are
found for transparent vis-a-vis opaque primes in a within-target design, that is, even when
OSC is kept constant. However, OSC may still modulate the magnitude of the priming
effect, orthogonally to the properties of the derived primes. A preliminary analysis on the
data reported by Rastle et al. (2004) indicates a mild, positive correlation between target
OSC and priming effect size (ρ = .19). Although this correlation is very close to being
significantly different from zero (p = .0594), further results, on purposedly created sets, are
clearly needed in order to draw a conclusion.3

3In a sample of similar size (n = 113) extracted from the Semantic Priming Project (Hutchison et al.,
2013) no correlation between OSC and priming effect was found (ρ = −.01; p = .8898). This additional piece



ORTHOGRAPHY-SEMANTICS CONSISTENCY 13

The measure we proposed seemed to efficiently capture the Orthography-Semantics
Consistency by computing the weighted average semantic similarity between a word (e.g.,
whisk) and the words that have similar orthographic onsets (e.g., whisky, whisker). Of
course, the way we formalized OSC has not to be taken for granted and alternative im-
plementations of the measure may be proposed, in particular with regards to the way we
defined the relatives. For example, we may consider as an orthographic relative any string
including the word, independently of its position. Although previous results has shown that
the onset of a word is crucial for its orthographic processing (Jordan, Thomas, Patching, &
Scott-Brown, 2003; White, Johnson, Liversedge, & Rayner, 2008), the same does not hold
when semantics is at stake. Indeed, in English, crucial meaning information is often carried
by the final portion of the word; this is the case, for example, for all prefixed words (e.g.,
heat in reheat) and most compounds (e.g., a swordfish is a fish, not a sword). The present
version of the measure, that focuses only on word onsets (e.g., a swordfish is considered a
relative for sword, but not for fish), is likely loosing a certain degree of information in this
regard.

An even more radical approach would be to extract orthographic relatives by means of
a continuous measure of orthographic similarity (e.g., Grainger & Whitney, 2004; Yarkoni,
Balota, & Yap, 2008; Davis, 2010), in place of taking the whole word as a unique or-
thographic chunk. We could consider as relatives all the words that are above a certain
threshold of similarity, irrespective of them beginning with the same string or not. If we
adopt as similarity threshold a Levenshtein Distance (LD, Yarkoni et al., 2008) of 2, for
example, we will extract as relatives of boat words like moat (LD = 1), boot (LD = 1),
boast (LD = 1), board (LD = 2), boost (LD = 2), etc., over and above boater (LD = 2)
that would have been already considered in the present version of the measure.

Finally, morphological family members may be considered in place of orthographic
relatives – e.g., dealer would be a relative for deal, fruitful would be a relative for fruit, but
dialog would not be a relative for dial because dialog is not a morphologically complex word).
This approach would be closely related to that adopted in experiments showing that opaque
family members do not contribute to the family size effect on word recognition (Bertram,
Baayen, & Schreuder, 2000; De Jong et al., 2000; Moscoso del Prado Mart́ın, Bertram,
Häikiö, Schreuder, & Baayen, 2004). However, despite their theoretical association, family
size and morphological OSC are quite different measures from a mathematical point of
view. Whereas family size is a discrete count of how many semantically related members
a word has in its morphological family, morphological OSC would be a continuos estimate
of the meaning consistency within a morphological family. The actual count of family
members does not influence directly OSC: being computed as an average between those very
members, it is entirely possible to have words with identical OSC and very different family
size, and vice-versa. In conclusion, the two measures, not being quantitavely associated,
will arguably capture different word properties and it will be hence worth considering their
combined effects on word recognition.

It is beyond the scope of this paper to investigate which of the above parameter
settings may be better at capturing Orthography–Semantics Consistency. The crucial point

of evidence confirms that OSC is efficiently capturing a dimension encompassing both form and meaning : in
fact, it is associated with morphological priming, but becomes irrelevant when purely semantic conditions
are under exam.
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that we want to make here, independently of any specific implementation, is that OSC does
influence visual word access, even when target words are isolated stems. Importantly, we
were able to show that this is the case using a measure that (a) is easily interpretable – it goes
from 0, no consistency, to 1, perfect consistency; (b) can be computed automatically – one
does not need to rely on human annotations; and (c) is also theory-independent – although
its spirit is surely more in line with learning approaches than with more classic box–and–
arrows models, the measure itself is completely bottom-up. In conclusion, OSC should be
considered when implementing and developing models of visual word processing, and taken
into the appropriate consideration when planning and running reading experiments.
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