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1 Introduction

The experiments with solar, atmospheric, reactor and accelerator neutrinos [1–18] have

provided compelling evidences for the existence of flavour neutrino oscillations [19–21]

caused by nonzero neutrino masses and neutrino mixing. These data imply the presence

of neutrino mixing in the weak charged lepton current:

νlL(x) =
∑

j

Ulj νjL(x), l = e, µ, τ, (1.1)

where νlL are the flavour neutrino fields, νjL(x) is the left-handed (LH) component of the

field of the neutrino νj possessing a mass mj and U is a unitary matrix - the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix [19–22].

All compelling neutrino oscillation data can be described assuming 3-flavour neutrino

mixing in vacuum. The data on the invisible decay width of the Z0-boson is compatible

with only 3 light flavour neutrinos coupled to Z0 (see, e.g. [23]). The number of massive

neutrinos νj, n, can, in general, be bigger than 3, n > 3, if, for instance, there exist right-

handed (RH) sterile neutrinos [22] and they mix with the LH flavour neutrinos. It follows

from the existing data that at least 3 of the neutrinos νj, say ν1, ν2, ν3, must be light,

m1,2,3 ∼< 1 eV, and must have different masses, m1 6= m2 6= m3. At present there are no

compelling experimental evidences for the existence of more than 3 light neutrinos.

As is also well known, the data on the absolute scale of neutrino masses (including the

data from 3H β-decay experiments and astrophysical observations) imply that neutrino

masses are much smaller than the masses of the charged leptons and quarks. If we take as an

indicative upper limit mj ∼< 0.5 eV, we have mj/ml,q ∼< 10−6, l = e, µ, τ , q = d, s, b, u, c, t.

It is natural to suppose that the remarkable smallness of neutrino masses is related to

the existence of new fundamental mass scale in particle physics, and thus to new physics

beyond that predicted by the Standard Model.
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A natural explanation of the smallness of neutrino masses is provided by the see-saw

mechanism of neutrino mass generation [24–27]. An integral part of the simplest version

of this mechanism - the so-called “type I see-saw”, are the SU(2)L singlet RH neutrinos

νlR (RH neutrino fields νlR(x)). Within the see-saw framework, the latter are assumed to

possess a Majorana mass term as well as Yukawa type coupling with the Standard Model

lepton and Higgs doublets ψlL(x) and Φ(x), respectively, l = e, µ, τ . In the basis in which

the Majorana mass matrix of RH neutrinos is diagonal, the Majorana mass term of the RH

neutrinos has the standard form (1/2)MkNk(x)Nk(x), Nk(x) being the heavy Majorana

neutrino field possessing a mass Mk > 0. The fields Nk(x) satisfy the Majorana condition

CNk
T
(x) = ρkNk(x), where C is the charge conjugation matrix and ρk is a phase. When

the electroweak symmetry is broken spontaneously, the neutrino Yukawa coupling generates

a Dirac mass term: mD
li νlLNiR(x) + h.c., with mD = vλ, λli being the matrix of neutrino

Yukawa couplings and v = 174 GeV being the Higgs doublet v.e.v. In the case when

the elements of mD are much smaller than Mk, |mD
li | ≪ Mk, i, k = 1, 2, 3, l = e, µ, τ , the

interplay between the Dirac mass term and the Majorana mass term of the heavy Majorana

neutrinos Nk generates an effective Majorana mass (term) for the LH flavour neutrinos (see,

e.g. [24–28]): (mν)l′l ∼= −mD
l′jM

−1
j (mD)Tjl. In grand unified theories, mD is typically of the

order of the charged fermion masses. In SO(10) theories, for instance, mD coincides with

the up-quark mass matrix. Taking indicatively mν ∼ 0.05 eV, mD ∼ 100 GeV, one finds

M ∼ 2 × 1014 GeV, which is close to the scale of unification of the electroweak and strong

interactions, MGUT
∼= 2 × 1016 GeV. In GUT theories with RH neutrinos one finds that

indeed the heavy Majorana neutrinos Nj naturally obtain masses which are by few to

several orders of magnitude smaller than MGUT .

One can similarly obtain an effective Majorana mass term for the LH flavour neutrinos

by introducing i) an SU(2)L triplet of leptons, which includes a heavy neutral lepton and has

an SU(2)L×U(1)Y invariant Yukawa coupling with the Standard Model Higgs doublet Φ(x)

and the lepton doublets ψlL(x) (“type III see-saw mechanism”) [29], or ii) by introducing

additional neutral SU(2)L singlet fields SβL(x) which possess a Majorana mass term and

couple to the RH singlet neutrino fields νlR (“inverse see-saw scenario”) [30].

The estimate of Mj given earlier is effectively based on the assumption that the neu-

trino Yukawa couplings are large: |λli| ∼ 1. The alternative possibility is to have heavy

Majorana neutrino masses Mj in the range of ∼ (100 − 1000) GeV, i.e. TeV scale see-saw

generation of neutrino masses. This possibility has received much attention recently (see,

e.g. [31–36]). One of the attractive features of the TeV scale see-saw scenarios is that the

heavy Majorana neutrinos Nj in such scenarios have relatively low masses which makes Nj

accessible in the experiments at LHC. This opens up the attractive prospect of having a

see-saw mechanism of neutrino mass generation which can be tested experimentally.

One of the characteristic predictions of the type I, type III and the inverse see-saw

models is that both the light massive neutrinos and the heavy neutral neutrinos, which

play a crucial role in these mechanisms, are Majorana particles. The Majorana nature

of the light neutrinos can be revealed in the neutrinoless double beta ((ββ)0ν -) decay

experiments (see, e.g. [28, 37–44]). As was discussed by a large number of authors (see,

e.g. [45] and the references quoted therein), the Majorana nature of the heavy neutrinos of
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the TeV scale see-saw mechanisms can be established, in principle, in experiments at high

energy accelerators, notably at LHC.

In the present article we revisit the low-energy neutrino physics constraints on the

TeV scale type I and inverse see-saw models of neutrino mass generation. We concentrate

on the constraints on the parameters of these models which are associated with the non-

conservation of the total lepton charge L and thus are directly related with the presence of

light and heavy Majorana neutrinos in the indicated models. We discuss the possibility to

test the Majorana nature of the heavy Majorana neutrinos, which are an integral part on

the indicated mechanisms of neutrino mass generation, at high energy accelerators, and in

particular at LHC.

2 See-saw scenarios with two mass scales (MD, MR)

We consider, first, the standard type I see-saw scenario [24–27], in which we extend the

Standard Model (SM) by adding k “heavy” right-handed (RH) neutrino fields νaR, a =

1, . . . , k, k ≥ 2. We assume that the fields νaR are singlets with respect to the Standard

Model gauge symmetry group, that they have Yukawa couplings with the left-handed (LH)

lepton doublet fields and, in the spirit of the see-saw scenario, possess a “large” Majorana

mass. The neutrino mass term in the Lagrangian of the considered extension of the SM is

given by:

Lν = − νℓL (MD)ℓa νaR − 1

2
νC

aL (MN )ab νbR + h.c. , (2.1)

where νC
aL ≡ CνaR

T , C being the charge conjugation matrix, MN = (MN )T is the k × k

Majorana mass matrix of the RH neutrinos, and MD is a 3×k neutrino Dirac mass matrix

which is generated by the matrix of neutrino Yukawa couplings after the electroweak (EW)

symmetry breaking. The matrices MN and MD are complex, in general. The full neutrino

mass matrix in eq. (2.1) can be set in a block diagonal form by the following transformation:

ΩT

(

O MD

MT
D MN

)

Ω =

(

U∗m̂U † O

OT V ∗M̂V †

)

, (2.2)

where Ω is a (3 + k) × (3 + k) unitary matrix, m̂ ≡ diag(m1,m2,m3) is a diagonal matrix

with the masses of the light Majorana neutrinos, M̂ ≡ diag(M1,M2, . . . ,Mk) is a diagonal

matrix containing the masses Mj of the heavy Majorana neutrino mass eigenstates Nj.
1

The matrix O on the left-hand side of (2.2) is a 3 × 3 matrix with all elements equal to

zero. The same symbol is used on the right-hand side of (2.2) to indicate a 3 × k matrix

with all null entries. The dimensions of the matrices O that appear in the block mass

matrix decompositions further in the text will not be specified, but can similarly be easily

deduced.

1The structure of the neutrino mass matrix shown in (2.2) appears also in type III see-saw scenario in

which the SM is extended by adding k SU(2)L triplet fermion fields.
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The unitary diagonalization matrix Ω can be formally expressed as the exponential of

an antihermitian matrix:

Ω = exp

(

O R

−R† O

)

=

(

1 − 1
2RR

† R

−R† 1 − 1
2R

†R

)

+ O(R3) , (2.3)

where R is a 3 × k complex matrix and the second equality is obtained assuming that

R is “small”. This assumption will be justified below. In the case under discussion the

PMNS [19–21] neutrino mixing matrix is given by:

UPMNS = U †
ℓ (1 + η)U , (2.4)

where

η = −1

2
RR† , (2.5)

and U and Uℓ diagonalise the Majorana mass matrix mν of the LH flavour neutrinos and

the charged lepton mass matrix mℓ, respectively:

UTmνU = diag(m1,m2,m3) , (2.6)

Uℓmℓm
†
ℓU

†
ℓ = diag(m2

e,m
2
µ,m

2
τ ) , (2.7)

me, mµ and mτ being the charged lepton masses. The matrix η parametrises the deviation

from unitarity of the neutrino mixing matrix (2.4).

In what follows we will work in the basis in which the charged lepton mass matrix is

diagonal.2 Accordingly, we set Uℓ = 1 in eq. (2.4). The charged current (CC) and the

neutral current (NC) weak interaction couplings involving the light Majorana neutrinos χj

with definite mass mj have the form:

Lν
CC = − g√

2
ℓ̄ γα νℓLW

α + h.c. = − g√
2
ℓ̄ γα ((1 + η)U)ℓi χiLW

α + h.c. , (2.8)

Lν
NC = − g

2cw
νℓL γα νℓL Z

α = − g

2cw
χiL γα

(

U †(1 + η + η†)U
)

ij
χjL Z

α . (2.9)

The charged current and the neutral current interactions of the heavy Majorana fields Nj

with W± and Z0 read:

LN
CC = − g

2
√

2
ℓ̄ γα (RV )ℓk(1 − γ5)Nk W

α + h.c. , (2.10)

LN
NC = − g

2cw
νℓL γα (RV )ℓk NkLZ

α + h.c. . (2.11)

Therefore, independently of its origin, the mixing of the heavy (RH) Majorana neutrinos

with the LH flavour neutrinos is constrained by several low energy data, including (ββ)0ν -

decay [46–49]. More specifically, the diagonal elements of η are constrained taking into

account the lepton universality tests and the invisible decay width of the Z0-boson, while

upper bounds on the absolute values of the off-diagonal elements of η are obtained from

the existing experimental upper limits on the rates of the radiative lepton decays, ℓi →
2This can be done without loss of generality.
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ℓj +γ. For singlet fields Nj with masses above the EW symmetry breaking scale, i.e. bigger

than ∼ 100 GeV, the resulting limits on the non-unitarity of the neutrino mixing matrix

read [49, 50]:

|η| <







4.0 × 10−3 1.2 × 10−4 3.2 × 10−3

1.2 × 10−4 1.6 × 10−3 2.1 × 10−3

3.2 × 10−3 2.1 × 10−3 5.3 × 10−3






. (2.12)

The constraints given above allow to set upper bounds also on the couplings RV of the

heavy singlet fields Nj with the Standard Model W± and charged leptons, and Z0 and the

LH active neutrinos (see (2.10) and (2.11), respectively).

We will standardly assume further that Nj have masses Mj ∼> 100 GeV and that MN

is “much bigger” than MD. Using eq. (2.3) and the expression for the see-saw neutrino

mass matrix (2.2), we obtain the following relations at leading order in R:

MD − R∗MN ≃ O , (2.13)

−MDR
† − R∗MT

D +R∗MN R† ≃ mν = U∗m̂U † , (2.14)

MN +RTMD +MT
DR− V ∗M̂V † ≃ O . (2.15)

Equation (2.13) implies that under assumptions made the matrix R is indeed “small”:

R∗ ≃ MD M
−1
N . (2.16)

We can express the light and heavy neutrino mass matrices in (2.14) and (2.15) in terms

of MN and R:

mν ≡ U∗m̂U † = −R∗MNR
† , (2.17)

V ∗M̂V † ≃ MN +RTR∗MN +MNR
†R . (2.18)

The usual type I see-saw expression for the Majorana mass matrix of the LH flavour

neutrinos is easily recovered from eqs. (2.16) and (2.17): mν ≃ −MDM
−1
N MT

D.

In the basis we choose to work and up to corrections ∝ RR†, the elements of the

light neutrino mass matrix mν are given by: mν ≡ U∗m̂U † ∼= U∗
PMNSm̂U

†
PMNS. Using

the existing upper limits on the absolute scale of neutrino masses and the data on the

neutrino mixing angles, obtained in neutrino oscillation experiments, one can derive the

ranges of possible values of the elements of mν [51]. For the purpose of the present study

it is sufficient to use the approximate upper bounds |(mν)l′l| . 1 eV, l, l′ = e, µ, τ . From

eqs. (2.17) and (2.18) we obtain to leading order in R:

∑

k

|(RV )∗l′k Mk (RV )†kl| . 1 eV , l′, l = e, µ, τ . (2.19)

In the case of the element (mν)ee, the bound follows from the experimental data on

the neutrinoless double beta ((ββ)0ν -) decay [40–44]. In this case, in addition to the stan-

dard contribution due to the light Majorana neutrino exchange, the (ββ)0ν -decay effective

Majorana mass (mν)ee (see, e.g. [28, 37–39]) receives a contribution from the exchange

– 5 –
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of the heavy Majorana neutrinos Nk. Taking into account this contribution as well, we

get [52–54]:

|(mν)ee| ∼=
∣

∣

∣

∣

∣

∑

i

(UPMNS)
2
eimi −

∑

k

F (A,Mk) (RV )2ek Mk

∣

∣

∣

∣

∣

, (2.20)

where F (A,Mk) is a known real (positive) function of the atomic number A of the decaying

nucleus and of the massMk of Nk [52–54]. Using the fact that UPMNS m̂UT
PMNS

∼= U m̂UT

and eqs. (2.17) and (2.18), we obtain:

|(mν)ee| ∼=
∣

∣

∣

∣

∣

∑

k

(RV )2ek Mk (1 + F (A,Mk))

∣

∣

∣

∣

∣

. (2.21)

The function F (A,Mk) exhibits a rather weak dependence on A, which for the purpose of

the present discussion can be neglected, and a relatively strong dependence on Mk. For

Mk = 100 (1000) GeV, an estimate of the largest possible values of F (A,Mk) gives (see,

e.g. [55]): F (A,Mk) ∼= 7× 10−6 (7× 10−8). Clearly, in the case of interest the contribution

due to the exchange of the heavy Majorana neutrinos in (mν)ee is subdominant and can

be neglected. This contribution can be relevant if, for instance, the “leading order” term

is very strongly suppressed or if
∑

k(RV )2ek Mk = 0.

Using the upper bounds in eq. (2.19) and barring “accidental” cancellations or extreme

fine-tuning (at the level of ∼ 109, see, e.g. [57, 58]), we get for the heavy Majorana neutrinos

Nk having masses Mk ∼MR ≥ 100 GeV the well-known strong constraint on the couplings

of Nk to the weak W± and Z0 bosons and charged leptons and light neutrinos:

|(RV )lk| . 3 × 10−6

(

100 GeV

MR

)1/2

, l = e, µ, τ, j = 1, 2, . . . , k . (2.22)

This constraint3 makes the heavy Majorana neutrinos Nj practically unobservable even at

LHC (see, e.g. [45]).

In order for the CC and NC couplings of the heavy Majorana neutrinos Nj to W±

and Z0, eqs. (2.10) and (2.11), to be sufficiently large so that the see-saw mechanism could

be partially or completely tested in experiments at the currently operating and planned

future accelerators (LHC included), the suppression implied by the inequality (2.19) should

be due to strong mutual compensation between the terms in the sum in the left-hand

side of (2.19). Such cancellations arise naturally from symmetries in the lepton sector,

corresponding, e.g. to the conservation of some additive lepton charge L̂ (see, e.g. [28, 60–

63]). However, in the exact symmetry limit in this case the heavy neutrinos with definite

mass and relatively large couplings to the W± and Z0 should be Dirac particles, which is

possible for all heavy neutrinos only if the number of the RH singlet neutrino fields k is even:

k = 2q, q = 1, 2, . . .. If their number is odd, barring again “accidental” cancellations some

(odd number) of the discussed heavy Majorana neutrinos will have strongly suppressed

3In principle, one can obtain a more refined constraint on |(RV )ek| using the existing limits on |(mν)ee|

(see, e.g. [40–44]). However, the approximate upper bound of 1 eV we are using is sufficient for the purposes

of the present discussion.
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couplings to the W± and charged leptons and will be practically unobservable in the

current and the future planned accelerator experiments. Further, the spectrum of masses

of the three light neutrinos, which depends on the assumed symmetry, typically would not

correspond to the observations. The correct light Majorana neutrino mass spectrum can

be generated by small perturbations that violate the corresponding symmetry, leading to

the non-conservation of the lepton charge L̂. These perturbations split each heavy Dirac

neutrino into two heavy Majorana neutrinos with close but different masses, i.e. the heavy

Dirac neutrinos become heavy pseudo-Dirac neutrinos [64, 65]. The perturbations will

have practically negligible effect on the couplings of the heavy Dirac states to the W±

and Z0. If, for instance, |(RV )lj | ∼ 10−3 (10−4), the splitting between the masses of the

two heavy Majorana neutrinos forming a pseudo-Dirac pair, as it follows from eq. (2.19),

should satisfy roughly |∆MPD| . 1 (100) MeV for masses of the order of 100 (1000) GeV.

Thus, the effect of the perturbations on the low-energy phenomenology of the indicated

heavy neutrino states will be essentially negligible and to a high level of precision they will

behave like Dirac fermions.4

The preceding discussion implies that the Majorana nature of the heavy Majorana

neutrinos of the type I see-saw mechanism will be unobservable at LHC and the planned

future accelerator experiments. If heavy neutrinos are observed and they are associated

with the type I see-saw mechanism without any additional TeV scale “new physics” (e.g. in

the form of Z ′ boson associated with an additional U(1) local gauge symmetry, see, e.g. [67,

68] and references quoted therein), they will behave like Dirac fermions to a relatively

high level of precision. The observation of effects proving their Majorana nature would

imply that these heavy neutral leptons have additional relatively strong non-Standard

Model couplings to the Standard Model particles, or that MDM
−1
N MT

D
∼= 0 and mν 6= 0

compatible with the observations arises as one and/or two loop higher order correction

(see, e.g. [63, 69, 70]).

We will illustrate some of these conclusions/considerations with few simple examples.

The Case of a Broken Symmetry. We will consider first the case when the Majo-

rana mass matrix for the LH flavour neutrinos mν 6= 0 arises as a result of breaking of a

global symmetry corresponding to the conservation of a lepton charge. In the symmetry

limit one has mν = 0.

Suppose we have two LH flavour neutrino fields νlL, l = e, µ, and two RH neutrino

fields νaR, a = 1, 2. Let us assign a lepton charge La to each of the two RH neutrino fields:

La(νbR) = −δab, i.e. ν1R has lepton charge L1 = −1 and lepton charges L2 = Ll = 0,

l = e, µ. Suppose that the Majorana mass matrix MN in eq. (2.1) has the form:

MN =

(

0 M12

M12 0

)

. (2.23)

We take (for concreteness) M12 to be real and positive, M12 > 0, and assume also that

M12 ≥ 100 GeV. The motivation for the choice made of the form of MN is that, as is well

4For the signatures of production of such TeV scale pseudo-Dirac neutrinos at LHC see, e.g. [45, 66].
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known, the matrix in eq. (2.23) has two eigenvalues which have equal absolute values but

opposite signs. Thus, one can expect that this may lead to the requisite suppression of the

sum in the left-hand side of eq. (2.19).

The Majorana mass term of the RH neutrinos in eq. (2.1) with the mass matrix MN

given by eq. (2.23) conserves the lepton charge (L1 − L2). It is diagonalised with the help

of a 2 × 2 orthogonal matrix V(θ) with θ = π/4. The heavy Majorana mass-eigenstates

N1,2 have masses M1 = M2 = M12 ≡ M and satisfy the Majorana conditions CNk
T

=

ρkNk, k = 1, 2, where ρ1 = −1 and ρ2 = +1.5 They are equivalent to one heavy Dirac

neutrino field ND = (N1 + N2)/
√

2 having a mass M . The relations between the fields

νaR, νC
aL, a = 1, 2, and the fields NkL, NkR, k = 1, 2, and NDL, NDR, CNDL

T ≡ NC
DR and

CNDR
T ≡ NC

DL have the form:

ν1R = NDR =
1√
2

(N1R +N2R) , ν2R = NC
DR =

1√
2

(−N1R +N2R) , (2.24)

νC
1L = NC

DL =
1√
2

(−N1L +N2L) , νC
2L = NDL =

1√
2

(N1L +N2L) . (2.25)

Let us denote the elements of the Dirac mass matrix MD (see eq. (2.1)) as (MD)lk ≡ mD
lk,

l = e, µ, k = 1, 2. We will assume for simplicity that MD is a real matrix and that

|mD
lk| ≪ M12. The Majorana mass matrix for the LH flavour neutrinos, generated by the

see-saw mechanism, has the form:

mν = −R∗MNR
† ≃ −MDM

−1
N MT

D (2.26)

= − 1

M

(

2mD
e1m

D
e2 mD

e1m
D
µ2 +mD

e2m
D
µ1

mD
e1m

D
µ2 +mD

e2m
D
µ1 2mD

µ1m
D
µ2

)

. (2.27)

The matrix of CC and NC couplings of the heavy Majorana neutrinos N1,2 to the SM W±

and Z0 bosons reads:

RV =
1√
2

1

M

(

mD
e2 −mD

e1 mD
e1 +mD

e2

mD
µ2 −mD

µ1 m
D
µ1 +mD

µ2

)

. (2.28)

The form of mν , eq. (2.27), reflects the the fact that the contributions due to N1 and

N2 tend to cancel each other: we have, for instance, (mν)ee = −[(mD
e2 +mD

e1)
2 − (mD

e1 −
mD

e2)
2]/(2M), etc.

With |(mν)l′l| ∼< 1 eV and M ≥ 100 GeV we indeed get, in general, |(RV )lk| ∼< 10−6,

l = e, µ, k = 1, 2. The constraints under discussion on some of the elements of the matrix

(RV ) (and thus on some of the couplings ofN1,2 to theW± and Z0 bosons) can be avoided if

some of the elements of the Dirac mass matrix are sufficiently small, so that |(mν)l′l| ∼< 1 eV

is satisfied, and at the same time not all elements of (RV ) are suppressed. This possibility

can be realised if, for instance, mD
e1/M and mD

µ1/M are sufficiently small. We will set them

5The difference in the sign factors in the Majorana conditions for N1,2 which have positive masses,

reflects the difference in the signs of the two eigenvalues of the matrix MN , eq. (2.23) (for a more detailed

discussion see [28]).
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to zero in what follows. In this limit we have |(mν)l′l| = 0. The couplings mD
e2/M and

mD
µ2/M are not constraint, except by the assumption that |mD

l2|/M ≪ 1, l = e, µ.

If mD
e1/M = mD

µ1/M = 0, the heavy Majorana neutrinos N1,2 couple to the weak W±

and Z0 bosons only in the combination (N1L +N2L)/
√

2 = NDL, i.e. only through the LH

component of the Dirac field ND. Moreover, in this case there is a conserved lepton charge

L̂ = Le + Lµ + (L1 − L2). This implies that [28, 60] the theory contains one heavy Dirac

neutrino ND and two massless neutrinos n1,2. The massless neutrino fields n1L and n2L are

the dominant components of the LH flavour neutrino fields νlL, l = e, µ, while the NDR and

NC
DR are the dominant components of the two RH neutrino fields, νaR, a = 1, 2. For the

Majorana mass matrix of the LH flavour neutrinos we have in this approximation: mν = 0.

It should be clear that in the approximation being discussed, there are no physical

(observable) effects associated with the fact that N1,2 are Majorana particles: N1,2 always

appear in the interaction Lagrangian in the combination (N1L +N2L)/
√

2 which is equiv-

alent to a Dirac fermion. The probability of having, e.g. same sign dilepton events,6 which

would be a signature of the Majorana nature of N1,2, is zero. This is a consequence of

the fact that the contributions of N1 and N2 in the amplitudes of the processes of same

sign dilepton production are equal in absolute value, but have opposite signs and cancel

completely each other.

Indeed, consider the process of same sign di-muon production in p − p collisions, as-

suming that one of the muons, say µ−, is produced together with real or virtual N1,2,

while the second µ− originates from the decay N1,2 →W+ + µ−, with virtual or real W+

(see, e.g. [45]). The W+ decays further into, e.g. two hadron jets. If in the general case

of M1 6= M2, M1 < M2, the heavy Majorana neutrino N1 is real, the invariant mass of

the two jets and the second muon should be equal to the mass of N1. Note that N1,2 are

not directly detected. The observation of this process with the characteristic Breit-Wigner

enhancement of the cross section due to the N1 propagator when the invariant mass of

the two jets and the second muon approaches the mass of N1, would be a signature of the

Majorana nature of N1. The part of the amplitude of the process under discussion, which

is of interest for the purposes of the present analysis, has the form:

P1,2 =
(mD

µ2)
2

M2
12

[

s2M2

p2 −M2
2 + iΓ2M2

− c2M1

p2 −M2
1 + iΓ1M1

]

, (2.29)

where p is the four momentum of the real (or virtual) N1,2, Γ1,2 is the width of N1,2,

c2 = cos2 θ, s2 = sin2 θ, where θ is the angle in V which diagonalises the RH neutrino mass

matrix. In deriving eq. (2.29) we have taken into account the fact that the sign factors in

the Majorana conditions for N1 and N2 are opposite: ρ1 = −1 and ρ2 = +1. For the width

of N1,2 one has for the ranges of masses of N1,2 of interest [45]: Γ1(2) ∝ GF M
3
1(2) ≪M1(2).

We note that p2 is equal to the square of the invariant mass of the two jets and the second

muon in the final state of the process (see, e.g. [45]). The above expression is valid for

any value of the invariant mass p2. It should be emphasised that even when N1 is on

mass shell, p2 = M2
1 , and the second term in eq. (2.29) dominates due to the fact the

6One of the charged leptons (say µ−) is produced together with N1,2, while the second (µ−) is supposed

to originate from the N1,2 decay into W± + charged lepton (W + + µ−).
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M2 is significantly bigger than M1, the contribution of the virtual N2 (i.e., the first term

in eq. (2.29)) is always present in the amplitude. In the specific case we are considering

one has actually M1 = M2, Γ1 = Γ2, c
2 = s2 = 1/2, and therefore P1,2 = 0, as was

suggested earlier.

Consider next the “perturbation” of the scheme discussed by having, e.g. mD
µ1 = 0 but

mD
e1 6= 0. In this case L̂ is no longer conserved: there is no conserved lepton charge in the

theory. Correspondingly, mν 6= 0 (except for the element (mν)µµ = 0). The two heavy

Majorana neutrinos N1,2 have slightly different masses now, |M1 −M2| ∼= 2|mD
e1m

D
e2|/M ,

forming a pseudo-Dirac neutrino NPD = (N1 +N2)/
√

2. [64, 65]. The light neutrinos n1,2

have nonzero masses m1,2
∼= mD

e1[
√

(mD
e2)

2 + (mD
µ2)

2 ∓mD
e2]/M .

If we assume that |mD
e1| is of the same order as |mD

e2| and |mD
µ2|, the constraint (2.19)

applies and N1,2 would be hardly observable, e.g. at LHC. If, however, mD
e1 6= 0 is generated

as a small perturbation, i.e. if |mD
e1| ≪ |mD

e2|, |mD
µ2|, one can have (mν)l′l . 1 eV for

relatively large |mD
e2|/M and/or |mD

µ2|/M couplings of N1,2 to the W± and Z0 bosons. This

would make possible the production of N1,2 with observable rates at LHC. However, also

in this case N1 and N2 couple to W± and Z0 only in the combination (N1L + N2L)/
√

2.

Moreover, they form a pseudo-Dirac neutrino with an extremely small mass splitting.

Indeed, if for instance, |mD
e2|, |mD

µ2| ∼= 10−3 M and M = 100 GeV, using |m1,2| ∼< 1 eV we

get |mD
e1| ∼< 1 keV and |M1−M2| ∼< 1 eV. Actually, we have |M1−M2| ∼= |m2−m1|. Thus, N1

and N2 form a pseudo-Dirac neutrino which, given the tiny mass splitting between N1 and

N2, will behave for all practical purposes as a Dirac neutrino. The magnitude of all effects

revealing the Majorana nature of the heavy neutral leptons N1,2 is proportional to their

mass difference, i.e. to the factor |mD
e1m

D
e2|/M2, which renders these effects unobservable

(e.g. at LHC).

We will extend next the previous rather straightforward analysis to the case of 3 LH

flavour neutrinos and three RH neutrinos νaR, a = 1, 2, 3. Consider for simplicity a model

in which one of the three light Majorana neutrinos is massless:

MD =







0 mD
e2 mD

e3

0 mD
µ2 m

D
µ3

0 mD
τ2 m

D
τ3






, MN =







M11 0 0

0 0 M23

0 M23 0






. (2.30)

As a consequence of the simplifying choice made mD
l1 = 0, l = e, µ, τ , the field N1 =

(ν1R + νC
1L)/

√
2 is decoupled. In the limit mD

ℓ2 = 0, ℓ = e, µ, τ , there is a conserved lepton

charge: L′ ≡ Le + Lµ + Lτ + L3 − L2. In this case the theory contains three massless

and one massive Dirac neutrinos [60] (see also [28]). The three massless neutrinos are

the dominant components of the three LH flavour neutrinos. The massive Dirac neutrino

ND = (N2 +N3)/
√

2 has a mass M = M23 > 0, where the two heavy Majorana neutrinos

N2 and N3 have the same mass M2 = M3 = M23 and satisfy the Majorana conditions

CNk
T

= ρkNk, k = 2, 3, where ρ2 = −1 and ρ3 = +1. It should be clear that in this case

there are no observable effects associated with the Majorana nature of the N2 and N3.

Consider next the case of mD
ℓ2,3 6= 0, ℓ = e, µ, τ . Now there is no conserved lepton
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charge and the resulting light neutrino mass spectrum has the form:

m1 = 0 , m2
∼= 1

M23

(√
∆ −A

)

, m3
∼= 1

M23

(√
∆ +A

)

, (2.31)

where

∆ =
(

mD 2
e2 +mD 2

µ2 +mD 2
τ2

) (

mD 2
e3 +mD 2

µ3 +mD 2
τ3

)

, (2.32)

and

A = mD
e2m

D
e3 +mD

µ2m
D
µ3 +mD

τ2m
D
τ3 . (2.33)

The heavy neutrino mass spectrum is given by:

M1 = M11 , M2
∼= M23 −

A

M23
, M3

∼= M23 +
A

M23
, (2.34)

with ρ3 = −ρ2 = 1. Note that M3 −M2 = 2A/M23 = m3 −m2 and therefore, as in the

preceding case, the splitting between M3 and M2 is exceedingly small and unobservable

in practice. The corrections to the matrix V which diagonalises MN are of the order of

A/M2
23 and are negligible. The elements of the matrix R, which parametrises the mixing

between the light and the heavy neutrinos, have the form: R∗
ℓ1 = 0, R∗

ℓ2 = mD
ℓ3/M23 and

R∗
ℓ3 = mD

ℓ2/M23, for ℓ = e, µ, τ . For the Majorana mass matrix for the LH flavour neutrinos

we get an expression similar to the one in eq. (2.27): (mν)ll′ ∼= −(mD
l2m

D
l′3 +mD

l3m
D
l′2)/M23.

If we assume that |(mν)ll′ | ∼< 1 eV and and that M23 ≈ 100 GeV, we obtain the following

constraint on the elements of the Dirac mass term:

|mD
ℓ2m

D
ℓ′3| ∼< 10−7GeV2

(

M23

100GeV

)

, l, l′ = e, µ, τ . (2.35)

There are two distinct possibilities.

Democratic case: |mD
ℓ2| and |mD

ℓ3| are of the same order. We have:

|mD
ℓ2| ≈ |mD

ℓ3| ∼< 3 × 10−4 GeV . (2.36)

For M23 ≈ 100 GeV, this case corresponds to exceedingly small couplings of the heavy

Majorana neutrinos N2,3 to the W± and Z0: |Rℓ2,3| ∼< 3 × 10−6. As a consequence,

N2,3 will be unobservable at LHC.

Hierarchical case: suppose that |mD
ℓ2| ≪ |mD

ℓ3|. Consider, for instance the possibility:

mD
ℓ2 ≈ 5 × 10−9 GeV , mD

ℓ3 ≈ 1GeV . (2.37)

This choice allows to have relatively large |Rℓ2|, |Rℓ2| ≈ 10−2 for M23 ≈ 100 GeV,

and thus relatively large |(RV )ℓ2| and |(RV )ℓ3|. Thus, in principle, N2 and N3 can

be produced with sufficiently large rates at, e.g. LHC, which might allow to observe

them. However, it would be hardly possible to obtain experimental evidences for their

Majorana nature. Indeed, one has (RV )ℓ2 = (RV )ℓ3 = mD
ℓ3/(

√
2M23). Therefore N2

and N3 couple to a given charged lepton l (neutrino νl) in the weak charged (neutral)

current always in the combination (N2 + N3)/
√

2 = NPD. As a consequence, the

magnitude of all physical effects associated with the Majorana nature of N2 and N3

will be determined by the mass difference M3−M2 = m3−m2 ∼< 1 eV, which renders

these effects unobservable in the experiments investigating the properties of the heavy

neutrinos N2,3.
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No symmetry but mν = 0 at leading order. This case has been analised in detail

recently in [63], where also the general conditions for having MD M
−1
N MT

D = 0 have been

derived. We will consider one simple realisation of the indicated possibility. Namely, let us

assume that mD
l1,m

D
l2 = 0, but mD

l3 6= 0, l = e, µ, τ , and that the matrix MN has the form

MN =







M11 0 0

0 0 M23

0 M23 M33






. (2.38)

In this case we have MD M−1
N MT

D = 0, and thus to leading order mν = 0. Given the

assumed simple structure of MD and MN , the heavy Majorana neutrino N1 having a mass

M11 decouples from the rest of the neutrino system, while N2,3 couple via W± and Z0 to

the Standard Model particles. For M33 6= 0, there does not exist a conserved lepton charge

and therefore higher order (one or two loop) contributions (see, e.g. [63]) lead to mν 6= 0.

Thus, this scheme does not belong to the class of see-saw scenarios (type I or inverse)

which are the main subject of this study. Nevertheless, it is instructive to consider on

this simple example the constraints that have to be satisfied, which are specifically related

to the presence of the heavy Majorana neutrinos. It should be clear from the preceding

discussion that all |∆L| = 2 Majorana type effects should vanish in the limit of M33 = 0.

Since mν = 0 to leading order, the constraint given in eq. (2.19) is not applicable and

the couplings of the two heavy Majorana neutrinos N2,3 to the W± and Z0 bosons can

be relatively large. This in turn could lead to sufficiently large N2,3 production rates at

LHC to make the observation of the two heavy Majorana neutrinos possible. We will show

that the effects associated with the Majorana nature of N2,3 are always proportional to

the difference of the masses of N3 and N2, i.e. to M33. This is not surprising since in the

limit of M33 = 0, there is a conserved lepton charge and all observable effects related to

the Majorana nature of N2,3 disappear.

We will assume for simplicity in what follows that mD
l3, M23 and M33 are real and

that M23,M33 > 0. The diagonalisation of the neutrino mass Lagrangian (which includes

the Dirac and Majorana mass matrices MD and MN ) shows that there are three massless

mass-eigenstates n1,2,3 and three massive Majorana mass-eigenstates N1,2,3 with masses

M1 = M11,

M ′
2,3 =

1

2

[√

M2
33 + 4(M2

23 + (mD
e3)

2 + (mD
µ3)

2 + (mD
τ3)

2) ∓M33

]

, (2.39)

satisfying the Majorana conditions: CNk
T

= ρkNk, k = 2, 3, where ρ2 = −1 and ρ3 = +1.

In this case the angle θ of the 2× 2 orthogonal sub-matrix of the 3× 3 matrix V(θ) which

diagonalises MN is different, in general, from π/4: we have cos2 θ = M3/(M3+M2), sin2 θ =

M2/(M3 +M2), where M2,3 = (
√

M2
33 + 4M2

23 ∓M33)/2 coincide up to the sign of M2 with

the 2nd and 3rd eigenvalues of the matrix MN . We have M3−M2 = M ′
3−M ′

2 = M33. It is

not difficult to find the matrices R = MD M−1
N and η = −R∗R†/2: ηll′ = −mD

l3m
D
l′3/(2M

2
23).

The existing limits on |ηl′l| imply |(mD
e3/M23)

2| ∼< 8 × 10−3, |(mD
µ3/M23)

2| ∼< 2.4 × 10−4.

Given these limits we have to a good approximation M ′
2,3

∼= M2,3. The matrix RV is
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given by:

RV =
1

M23







0 mD
e3 cos θ mD

e3 sin θ

0 mD
µ3 cos θ mD

µ3 sin θ

0 mD
τ3 cos θ mD

τ3 sin θ






. (2.40)

ForM33 ≪ 2M23, we recover the scheme with a heavy pseudo-Dirac neutrino: N2,3 have

different but close masses, 2(M ′
3 −M ′

2)/(M
′
3 +M ′

2)
∼= M33/

√

M2
23 + (mD

e2)
2 + (mD

µ2)
2 ≪ 1,

θ ∼= π/4, and N2,3 couple to the W± and Z0 bosons only in the combination NPDL
∼=

(N2L +N3L)/
√

2.

Consider the contribution to the (ββ)0ν -decay effective Majorana mass due to the

exchange of the two heavy Majorana neutrinos:

|(mν)ee| ∼=
∣

∣

∣

∣

(mD
e3)

2

M2
23

(

M3 F (A,M3) sin2 θ −M2 F (A,M2) cos2 θ
)

∣

∣

∣

∣

. (2.41)

The function F (A,Mk) to a very good approximation can be represented as (see, e.g. [53–

56]) F (A,Mk) ∼= (Ma/Mk)2f(A,Mk), where Ma
∼= 0.9 GeV and f(A,Mk) exhibits a weak

dependence on A and very weak dependence on Mk. For Mk ∼ (100 − 1000) GeV of

interest, the dependence of f(A,Mk) on Mk is so weak [55] that can be safely neglected:

f(A,M2) ∼= f(A,M3) ≡ f(A). Taking this into account we get:

|(mν)ee| ∼=
∣

∣

∣

∣

(mD
e3)

2

M2
23

M2
a

M2M3

M2
3 f(A,M2) −M2

2 f(A,M3)

M3 +M2

∣

∣

∣

∣

(2.42)

∼=
∣

∣

∣

∣

(mD
e3)

2

M2
23

f(A)M2
a

M3 −M2

M2M3

∣

∣

∣

∣

∼=
∣

∣

∣

∣

f(A)
(mD

e3)
2

M2
23

M2
a

M2
23

M33

∣

∣

∣

∣

, (2.43)

where we expressed the cos2 θ and sin2 θ in terms of M2,3. For M2,3 in the range of interest,

Mk ∼ (100− 1000) GeV, and for, e.g. 76Ge, 82Se, 130Te and 136Xe, the function f(A) takes

the following values [55] (see also [54]) f(A) ∼= 0.079, 0.073, 0.085 and 0.068, respectively;

f(A) has a somewhat smaller value of 48Ca: f(48Ca) ∼= 0.033. Given Ma and f(A), the

existing limits on |(mν)ee| imply a constraint on ((mD
e3)

2/M2
23)MaM33/M

2
23. If (mD

e3)
2/M2

23

will be determined from an independent measurement, the constraint on |(mν)ee| will lead

to a constraint on M33/M23. Taking, e.g. |(mν)ee| ∼< 1 eV, f(A) = 0.078 (corresponding

to 76Ge) and the maximal value of (mD
e3)

2/M2
23 allowed by the data and quoted earlier,

8 × 10−3, one finds: M33 ∼< 1.8 × 10−5 M23(M23/Ma). For M23 = 100 GeV this implies

M33 ∼< 2 × 10−3M23
∼= 0.2 GeV ≪ M23. Such a small N2 − N3 mass difference would

render the Majorana-type effects associated with N2,3 hardly observable. If, however,

|(mD
e3/M23)

2| ∼< 1.6 × 10−6, we get M33 ∼< M23.

Consider next the process of same sign di-muon production in p−p collisions, assuming

that one of the muons, say µ−, is produced together with real or virtual N2,3 in the decay

of a virtual W−, while the second µ− originates from the decay N2,3 → W+ + µ−, with

virtual or real W+ which decays further into, e.g. two hadronic jets. The analysis is very

similar to the one preceding eq. (2.29) - one has to replace N1(2) with N2(3), M12 with M23,
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M1(2) with M2(3) and Γ1(2) with Γ2(3). The relevant part of the amplitude of the process

under discussion can be obtained from eq. (2.29) by replacing mD
µ2 with mD

µ3 and making

the changes indicated above:

P2,3 =
(mD

µ3)
2

M2
23

[

s2M3

p2 −M2
3 + iΓ3M3

− c2M2

p2 −M2
2 + iΓ2M2

]

, (2.44)

where now p is the four momentum of the real (or virtual)N2,3, c
2 = cos2 θ = M3/(M3+M2)

and s2 = sin2 θ = M2/(M3+M2). Also in this case p2 is equal to the square of the invariant

mass of the two jets and the second muon in the final state of the process (see, e.g. [45]).

We note that even when N2 or N3 is on mass shell, i.e. p2 = M2
2 or p2 = M2

3 , and one

of the two terms in eq. (2.44) dominates, the contribution of the second term (i.e. of the

virtual N3 or N2) is always present in the amplitude. The expression in eq. (2.44) can be

cast in the form:

P2,3 =
(mD

µ3)
2

M2
23

M2M3

M3 +M2

M2
3 −M2

2 − i(Γ3M3 − Γ2M2)

(p2 −M2
3 + iΓ3M3)(p2 −M2

2 + iΓ2M2)
. (2.45)

Taking into account that M2M3 = 4M2
23, (M3−M2) = M33, and that Γ2(3) ∝ GF M

3
2(3) [45],

it is possible to show that P2,3 vanishes in the limit of M3 = M2: P2,3 ∝ (M3−M2) = M33.

Thus, if M33 ≪M23, the amplitude of the process p+p→ µ− +µ− +2 jets+X, generated

by the production and decay of real or virtual N2,3, will be strongly suppressed.

The extreme fine-tuning case. It is well known that the see-saw mechanism is under-

constrained, namely there is an infinite set of Dirac neutrino mass matrices leading to the

observed neutrino parameters. The most general Dirac neutrino mass matrix that satisfies

mν = −MDM
−1
N MT

D, with mν ≃ U∗
PMNSm̂U

†
PMNS and MN ≃ V ∗M̂V †, can be parametrized

as [59]:

MD = iU∗
PMNS

√
m̂Ω

√

M̂V † , (2.46)

where Ω is an arbitrary complex orthogonal matrix. Hence, by choosing conveniently the

matrix Ω, it is always possible to find a Dirac neutrino mass matrix with at least one large

eigenvalue leading to the observed neutrino parameters, while keeping the right-handed

neutrino masses in the range (100 − 1000) GeV. However, as we will show below, this

possibility requires in general a huge tuning of parameters.

Let us consider for simplicity the two-generation case. Then, the Ω-matrix can be

decomposed in:

Ω =

(

cos θ̂ sin θ̂

− sin θ̂ cos θ̂

)

=
eiθ̂

2

(

1 −i
i 1

)

+
e−iθ̂

2

(

1 i

−i 1

)

≡ Ω+ + Ω− , (2.47)

where θ̂ = ω − iξ is a complex parameter. Accordingly, the Dirac neutrino mass matrix

can be decomposed as MD = MD+ +MD−, in a self-explanatory notation.

Taking for definiteness ξ > 0, it follows that MD+ (MD−) grows (decreases) expo-

nentially with ξ. Therefore, for sufficiently large ξ it is possible to compensate the huge

suppression in eq. (2.46) from the tiny observed neutrino masses and the light right-handed
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neutrino masses. Note however that MD− cannot be neglected, even though it is expo-

nentially suppressed compared to MD+, since the naive approximation MD ≃ MD+ leads

to mν = 0, due to Ω+ΩT
+ = 0. Therefore, reproducing the correct neutrino parameters

requires a large amount of tuning, concretely

(MD−)ij
(MD+)ij

∼ e−2ξ ∼ miMj

(MD)2ij
. (2.48)

For instance, demanding (MD)ij ∼ O(1GeV) and Mj ∼ O(100GeV) requires a tuning

of one part in 109 in order to produce a neutrino mass mi ∼ O(10−2 eV). The fine-

tuning problem of this scenario is exacerbated by the presence of radiative corrections to

the see-saw parameters which usually spoil the tuning, unless the radiative corrections to

the different parameters are highly correlated in such a way that the tuning is preserved.

This possibility is extremely unnatural unless originated by an underlying approximate

symmetry, such the one proposed before eq. (2.23).

Furthermore, such light right-handed neutrinos with such large couplings can induce a

rate for (ββ)0ν -decay in conflict with the experimental constraints. The contribution from

the right-handed neutrinos to the (ββ)0ν -decay is approximated by:

|(mν)ee| ∼=
∣

∣

∣

∣

∣

∑

k

F (A,Mk) (RV )2ek Mk

∣

∣

∣

∣

∣

, (2.49)

where in this case

RV = −iUPMNS

√
m̂Ω∗

√

M̂−1 . (2.50)

Using as before that F (A,Mk) ∼= (Ma/Mk)2f(A,Mk), where Ma
∼= 0.9 GeV and f(A,Mk)

has a weak dependence with Mk, we finally obtain:

|(mν)ee| ∼=
∣

∣

∣

∣

∣

∑

k

(UPMNS

√
m̂Ω∗)2ek

M2
a

M2
k

f(A,Mk)

∣

∣

∣

∣

∣

. (2.51)

The dominant contribution to this expression is given by the exponentially-enhanced

Ω+ matrix, yielding:

|(mν)ee| ∼=
∣

∣

∣

∣

e2ξ

4

M2
2 −M2

1

M2
1M

2
2

[
√
m1(UPMNS)11 − i

√
m2(UPMNS)12]

2f(A)M2
a

∣

∣

∣

∣

∼=
∣

∣

∣

∣

1

4

M2
D

M2
2

M2
a

M2
2

f(A)(M2 −M1)

∣

∣

∣

∣

∼= 10−10(M2 −M1) , (2.52)

for MD ∼ O(1GeV) and M2 ∼ O(100GeV). Therefore, the non-observation of the (ββ)0ν -

decay requires in this scenario a degeneracy in the right-handed neutrino masses of at least

one per cent. As discussed above, the cross section for same sign di-muon production in p−p
collisions is proportional to the mass difference of the right-handed neutrinos. Thus, even

in this extremely fined-tuned scenario, the Majorana nature of the right-handed neutrinos

will be difficult to probe at colliders.
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3 Multiple mass scale see-saw scenarios

We will consider next versions of the see-saw scenario, in which we allow couplings of

the RH neutrinos with other SM singlets that are therefore involved in the mechanism of

generation of light neutrino masses. This implies the presence of more than two mass scales

in the latter.

3.1 Scenario 1

Consider the following mass Lagrangian:

Lµ = − νℓL(mD)ℓaνaR − SβL(MR)βaνaR − 1

2
SβL(µ)ββ′SC

β′R + h.c. (3.1)

where SC
β′R ≡ CSβ′L

T
. We have introduced an arbitrary fixed numbers of RH neutrinos

νaR and left-handed SM gauge singlets SβL. We comment on their numbers below.

In what follows we assume that the scale of MR is much bigger than the scales of mD

and µ. If we assign one unit of the total lepton charge L to νℓL, νaR and SβL, the terms

involving the mass matrices mD and MR conserve L, while the term with µ 6= 0 changes

L by 2 units. Thus, the µ-term breaks explicitly the U(1) symmetry associated with the

lepton charge conservation. In the limit of µ = 0, there is a conserved lepton charge

and the particles with definite mass are either massless or are massive Dirac fermions.

Given the number of the LH flavour neutrino fields νlL, n(νL), the numbers of massless

and massive Dirac states depends [60] (see also [28]) on the number of RH neutrino fields

νaR, n(νR), and on the number of LH singlets SβL, n(SL). If, for instance, we have

n(νL) = n(νR) = n(SL) = 1, there is one massless and one massive Dirac neutrinos. In

the case of n(νL) = n(νR) = 3 and , e.g. n(SL) = 1, we will have 3 massive Dirac states

and one massless neutrino. In the general case the numbers of massive Dirac and massless

states are given by [60] ND = min(nL + n(SL), n(νR)) and N0 = |nL + n(SL) − n(νR)|,
respectively. Thus, if n(SL) = n(νR), the number of massless states coincides with the

number of the LH flavour neutrinos. This is the case we will be interested in what follows.

In this case the three massless states acquire nonzero Majorana masses when µ 6= 0. At

the same time each massive Dirac neutrino is split into two Majorana neutrinos having

different but very close masses.

In view of the above one can expect that the light neutrino Majorana mass matrix

depends linearly on µ in such a way that in the limit µ→ 0, the lepton charge conservation

symmetry is restored and the three LH flavour neutrinos become massless. The heavy

neutrino sector is given by the mixing of the fields νaR and SβL, with relatively small mass

splittings. This scenario is the well known inverse see-saw model [30, 61].

Formally, we can derive the expressions of the light neutrino mass matrix mν and the

corresponding non unitarity mixing parameters η from expressions (2.16), (2.17) and (2.5),
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by replacing the matrices MD and MR with7

MD ≡
(

mD O
)

, MN ≡
(

O MT
R

MR µ

)

. (3.2)

We assume further that MR ≫ mD > µ. We note that the parameters in the µ term in

the lagrangian (3.1) can be arbitrarily small because, as we have already noticed before,

this is the term in the Lagrangian that breaks explicitly the lepton number. The actual

scale of the µ term depends on the model considered, which at low energy is reduced to an

effective field theory described by the Lagrangian (3.1) . This mass scale can, indirectly,

affect the non-unitarity effects in the neutrino mixing as well as the couplings of the heavy

singlet Majorana fields to the EW gauge bosons, due to the interplay with the other scales

in the theory, namely, mD and mR in the see-saw mass formula (see eq. (3.5)).

The full mass matrix corresponding to eq. (3.1) takes the form:

M ≡







O mD O

mT
D O MT

R

O MR µ






. (3.3)

From eq. (2.16) we obtain:

R† =

(

−M−1
R µ

(

M−1
R

)T
mT

D
(

M−1
R

)T
mT

D

)

. (3.4)

Consequently, light neutrino Majorana mass matrix is given by:

mν = U∗m̂U † ≃ −R∗MNR
† = mDM

−1
R µ

(

M−1
R

)T
mT

D . (3.5)

The expression for the non unitary correction matrix η includes two terms:

η = −1

2
m∗

D

(

M−1
R

)∗
µ∗
(

M−1
R

)† (
M−1

R

)

µ
(

M−1
R

)T
mT

D − 1

2
m∗

D

(

M−1
R

)† (
M−1

R

)

mT
D . (3.6)

According to the hierarchy of the mass scales that enter in the theory, the second term is the

dominant one and it does not depend on the LNV parameters in µ. Therefore, it is possible

to have an observable deviation from unitarity of the PMNS neutrino mixing matrix,

without interfering with the tight constraints on the neutrino mass scale, mν . 1 eV,

which is proportional to the “small” Majorana mass matrix µ. If we take large non-

unitarity effects η ≈ 10−4, and right-handed fields at the scale MR ≈ 1 TeV, the lepton

number breaking parameters in the lagrangian are given at the scale:

µ ≈ mν

η
≈ 10 keV . (3.7)

7In principle, one can add a non zero k × k block in the 11 entry of the block Majorana mass matrix

MN in eq. (3.2), which acts as a small perturbation that breaks lepton number explicitly. However, it can

be proven that such term does not enter in the expression of the light neutrino mass matrix (see, e.g. [71]

for an explicit model) and, therefore, we do not consider this case.
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This estimate shows that if the scenario can be tested in neutrino experiments and ex-

periments studying LFV processes (see e.g. [48]), the generation of the µ term cannot be

associated with the EW symmetry breaking. Indeed, assuming new physics at the scale

ΛNP ≈ 1TeV, a coupling of the form (1/ΛNP )H†HSLS
C
R (see, e.g. [73]) implies:

µ ≈ v2

ΛNP
≈ 10 GeV . (3.8)

It follows from the see-saw mass formula that in this case the non-unitarity effects and the

couplings of the heavy neutral fermions to SM particles are respectively η ≈ 10−11 and

RV ≈ 10−6, which are too small to produce measurable effects in the ongoing and the

planned future experiments.

Apart from the possibility of observing sizable deviations from unitarity of the light

neutrino mixing in the forthcoming experiments, in this scenario the production of the

Majorana SM singlets at colliders might not be suppressed. However, all lepton charge

violating (LCV) processes involving the heavy singlets, which are associated with their

Majorana nature, are strongly suppressed, which renders them unobservable in the current

and currently planned future experiments. Therefore, the heavy Majorana singlets, even if

produced with sufficiently large rates to be observable, will behave like heavy Dirac neutral

singlets to a relatively high level of precision.

In order to illustrate this point, we consider for simplicity the case n(νL) = 2 and

n(νR) = n(SL) = 1. We assume all parameters in the theory to be real with positive MR

and µ. The Dirac mass term is simply mT
D = (mD

e1 mD
µ1). Therefore, the non unitary part

of the PMNS neutrino mixing matrix reads:

η ∼= 1

M2
R

(

(mD
e1)

2 mD
e1m

D
µ1

mD
e1m

D
µ1 (mD

µ1)
2

)

. (3.9)

In the framework considered, the particle content of the theory is given by one massless

neutrino, a light Majorana neutrino with mass mν = µ(mD/MR)2 and two heavy Majorana

neutrinos N1,2 having different but close masses M1 6= M2 of the order of M1,2
∼= MR ≈

100 ÷ 1000 GeV and a mass splitting |M1 − M2| ≈ µ. The heavy Majorana neutrino

fields satisfy the Majorana conditions: CN1,2
T ≡ ρ1,2N1,2, with ρ1 = −1 and ρ2 = 1.

In the limit µ = 0, the lepton charge symmetry is restored and the spectrum consists

of two massless LH neutrinos and a Dirac heavy neutrino ND ≡ (−N1 + N2)/
√

2, with

νR ≡ NDR. Therefore, in the LCV regime (µ 6= 0) we have a heavy pseudo-Dirac neutrino

field NPD ≡ (−N1 + N2)/
√

2 which is coupled to the EW gauge bosons via the neutrino

mixing. Indeed, the heavy LH components of the two heavy Majorana fields N1 and N2

have the following couplings to the W± and Z0 bosons:

RV =
1√
2





− µ
MR

mD
e1

MR
− mD

e1

MR
− µ

MR

mD
e1

MR
+

mD
e1

MR

− µ
MR

mD
µ1

MR
− mD

µ1

MR
− µ

MR

mD
µ1

MR
+

mD
µ1

MR



 . (3.10)

Consequently, the CC Lagrangian (2.10) can be cast in the form:

LNPD

CC = − g

2
√

2

(

ǫℓ ℓγα(1 − γ5)NPD + ǫ′ℓNPDγα(1 + γ5)ℓ
C
)

Wα + h.c. , (3.11)
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where ℓ = e, µ and

ǫℓ =
mD

ℓ1

MR
, ǫ′ℓ =

µ

MR

mD
ℓ1

MR
. (3.12)

Therefore, similarly to the previous scenario, large production rates of the heavy Majorana

neutrinos N1,2 are possible at colliders, but LCV decays (processes) associated with their

Majorana nature are strongly suppressed. Indeed, the suppression factor for the rate of

the LCV decay NPD → ℓ+W− is given by: |ǫ′ℓ|2 ∼= m2
ν/(ηM

2
R), and for η ≈ 10−4 and

MR ≈ 100 GeV we have |ǫ′ℓ|2 ≈ 10−18.

3.2 Scenario 2

We consider now a variation of the previous scenario in which the source of the lepton

number breaking parameter is a (small) Dirac-type mass term between the heavy singlets.

The Dirac and Majorana neutrino mass matrices of this model are the following:

MD ≡
(

mD µ′
)

, MN ≡
(

O MT
R

MR O

)

. (3.13)

We assume also in this case a hierarchical mass pattern: MR ≫ mD, µ
′. The neutrino mass

matrix and the deviation of UPMNS from unitarity in the scheme considered are given by:

U∗m̂U † ≃ −R∗MNR
† = −mDM

−1
R µ′T − µ′

(

M−1
R

)T
mT

D , (3.14)

η = −1

2
m∗

D

(

M−1
R

)∗ (
M−1

R

)T
mT

D − 1

2
µ′∗
(

M−1
R

)† (
M−1

R

)

µ′T . (3.15)

In the case considered, a large mixing between the light and heavy singlet neutrinos cor-

responds to a much smaller lepton number breaking scale µ′, which is given roughly by

µ′ ≈ mν/
√

|η| ≈ 10 eV. It is not difficult to prove that also in this case the lepton num-

ber non-conserving couplings of the heavy singlet neutrinos to the EW gauge bosons W±

and Z0 are exceedingly small which makes the |∆L| = 2 effects unobservable: the cou-

plings of interest are given approximately by mν/(
√

|η|MR) and for, e.g. η ≈ 10−9 and

MR ≈ 100 GeV we have |mν |/(
√

|η|MR) ≈ 10−7.

4 Avoiding the constraints: non-singlet heavy neutrinos

The previous general argument shows that the requirement |(mν)ll′ | . 1 eV, l, l′ = e, µ, τ ,

translates into an extremely suppressed charged and neutral current interactions of the

heavy Majorana fields Nj with the Standard Model charged leptons and neutrinos, unless

the heavy Majorana neutrinos form a pseudo-Dirac pair. Therefore, if these interactions

are the only portal to the Standard Model, the Majorana nature of the heavy neutrinos

will not be detected in collider experiments: either the production cross section is highly

suppressed or the heavy neutrinos behave to a high level of precision as Dirac fermions.

This result may not be valid if there exist additional TeV scale interaction terms in

the Lagrangian between the heavy Majorana neutrinos and the Standard Model particles.

If this is the case, the production cross section of heavy neutrinos will not necessarily be
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suppressed, while their charged and neutral current interactions with the Standard Model

charged leptons and neutrinos can still be tiny.

One possibility is the existence of an extra U(1) local gauge symmetry, which is broken

at the TeV scale and under which the Standard Model particles and the heavy (RH)

neutrinos are charged (see, e.g. [67, 68]). In this case, the production cross section of two

heavy Majorana neutrinos can be largely enhanced. At the same time, the heavy neutrinos

can decay only into Standard Model particles and they can do it only through the tiny

charged current and neutral current couplings. This implies that the heavy neutrinos will

be relatively long-lived and thus will have a relatively large decay length which in turn will

yield a characteristic displaced vertex in the detectors (see, e.g. [72]). More importantly,

if the heavy neutrinos are true Majorana particles, their production and decay will lead to

events with a pair of same-sign muons in the final state. The cross section can be large

enough to allow the observation of this lepton number violating process at colliders.

A second example can be found in the TeV scale type III see-saw mechanism. In this

case, the heavy states form an SU(2)L triplet of leptons, L±, L0, with essentially the same

mass, L± being somewhat heavier than L0 (see, e.g. [72]). A pair of these leptons, say

L+ and L0, can be produced in colliders via their gauge coupling to the W±-boson. The

charged heavy lepton L+ can decay into µ+ + Z0. The heavy neutral Majorana lepton

L0 has an interaction Lagrangian with the Standard Model charged leptons and neutrinos,

which is similar to that given in eqs. (2.8) and (2.9). Thus, being a Majorana particle, L0

can decay into µ+ +W−, leading to same-sign dimuon (plus 4 jets) events with observable

displaced vertices of the two muons in the detectors. Detailed calculations have shown

that for masses of L+ and L0 not exceeding 1000 GeV, the µ+µ+ + 4 jets events can have

observable rates at LHC (see, e.g. [72]).

5 Conclusions

In this article we have discussed the possibility to test the Majorana nature of the heavy

Majorana neutrinos Nj which are an integral part of the TeV scale type I and inverse see-

saw scenarios of neutrino mass generation. In the indicated TeV scale see-saw scenarios the

heavy Majorana neutrinos typically have masses in the range of Mj ∼ (100 − 1000) GeV.

The fact that Nj are Majorana particles can be revealed by observation of processes with

real or virtual Nj , in which the total lepton charge L changes by two units, |∆L| = 2, like

p+p→ µ−+µ−+2jets+X at LHC, etc. We have shown that the physical effects associated

with the Majorana nature of these heavy neutrinos Nj, are so small that they are unlikely

to be observable in the currently operating and future planned accelerator experiments

(including LHC). This is a consequence of the existence of very strong constraints on the

parameters and couplings, responsible for the corresponding |∆L| = 2 processes in whichNj

are involved, and/or on the couplings ofNj to the weakW± and Z0 bosons. The constraints

are related to the fact that the elements of the Majorana mass matrix of the left-handed

flavour neutrinos mν , generated by one of the indicated see-saw mechanisms, should satisfy,

in general, |(mν)ll′ | . 1 eV, l, l′ = e, µ, τ ; in the case of the (mν)ee element, the upper limit

follows from the experimental searches for neutrinoless double beta ((ββ)0ν -) decay. Even in
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the case of extreme fine tuning (at the level of one part in 109 or 1010), in which the neutrino

Yukawa couplings can be of order 1, the upper limit on |(mν)ee| obtained in the (ββ)0ν -

decay experiments implies a strong constraint on the |∆L| = 2 heavy Majorana neutrino

mass splitting(s) (or masses), which makes it very difficult (if not impossible) to probe the

Majorana nature of the heavy Majorana neutrinos in experiments at colliders. The simple

illustrative examples we have considered suggest that if the heavy Majorana neutrinos Nj

are observed and they are associated with the type I or inverse see-saw mechanisms and

no additional TeV scale “new physics”, they will behave like Dirac fermions to a relatively

high level of precision, being actually pseudo-Dirac particles. The observation of effects

proving the Majorana nature of Nj would imply that these heavy neutrinos have additional

relatively strong couplings to the Standard Model particles (as, e.g. in the TeV scale type

III see-saw scenario), or that the light neutrino masses compatible with the observations

are generated by a mechanism other than the see-saw (e.g., radiatively at one or two loop

level) in which the heavy singlet Majorana neutrinos Nj are nevertheless involved.

The considerations presented in this article and the conclusions reached concern a

rather large number of TeV scale see-saw models discussed in the literature (see, e.g. [31–

36, 73]).
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