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1 Introduction

In the past few years there has been increasing interest in the holographic duality relating

fluid dynamics and gravity. The link was first introduced in the 1970’s with the develop-

ment of the membrane paradigm approach [1, 2], where the dissipative black hole horizon

dynamics is recognized to closely resemble that of a viscous fluid. The connection has

been made more concrete in the context of the AdS/CFT correspondence, where quan-

tum gravity in an asymptotically anti-de Sitter (AdS) spacetime is shown to be dual to

a certain gauge theory in flat spacetime in one lower dimension [3]. The gauge theory

can be thought of as living on the timelike AdS boundary, in which the bulk spacetime is

holographically encoded. As a consequence, the relativistic hydrodynamics of the gauge

theory can be effectively described by the long time, long wavelength dynamics of a black

hole in AdS [4]. The relativistic Navier-Stokes equations turn out to be equivalent to the

subset of the General Relativity (GR) field equations called the momentum constraints,

which constrain “initial” data on the timelike AdS boundary. Moreover, the incompressible

Navier-Stokes equations describing ordinary, everyday fluids can be obtained by taking a

particular non-relativistic limit of these results [5].

A key step toward a deeper understanding of the fluid/gravity correspondence can be

found in the question of whether an asymptotically AdS spacetime is actually a required

ingredient. Indeed, there have been a number of hints indicating that this is not the case.

For example, the momentum constraint equations are not affected by the value of the

cosmological constant, which suggests that the full asymptotic structure of the spacetime

is un-important. Secondly, in cases where one can perform a hydrodynamic (long time,
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long wavelength) expansion of the equations describing the horizon dynamics, one finds

they also have the form of Navier-Stokes equations [6–8]. Interestingly, one example where

such an expansion exists is for a Rindler acceleration horizon in flat spacetime [6, 9].

In a recent paper [10], a novel formalism was introduced to describe a holographic

fluid theory defined on an arbitrary timelike surface in a general spacetime with a causal

horizon. On this surface, one fixes the boundary condition that the induced metric is

flat, and in the spirit of the Wilsonian approach to the renormalization, the asymptotic

physics outside this surface plays no role. Moving this surface between the horizon and

the asymptotic boundary can be thought of as a renormalization group flow between a

boundary fluid and a horizon fluid. In [11] the authors considered the specific case of

perturbations about a Rindler metric, taking the timelike surface to be one of the family of

hyperbolas associated with the worldlines of an accelerated observer. Working in the non-

relativistic hydrodynamic expansion, the authors presented a geometry that is a solution

to the Einstein equations if the data on surfaces of rc satisfy the incompressible Navier-

Stokes equations. Alternatively, one can consider the physically inequivalent near-horizon

expansion in small rc and obtain the same results.

Beyond the connection between the classical Navier-Stokes equations and a classical

geometry, these works actually suggested the possibility of an underlying holographic du-

ality relating a theory on fixed rc to the interior bulk of the Rindler spacetime. A first

step toward a detailed study of the behavior of this dual system was taken in [12], with

the introduction of an algorithm for constructing the geometry and the explicit expression

for the viscous transport coefficients to second order in the hydrodynamic expansion.

In this paper, our main goal is to probe further the dual theory by asking what effect

higher curvature terms in the dual gravitational theory have on the transport coefficients

of the fluid dual to the Rindler geometry. In the AdS/CFT correspondence, such terms

are associated with quantum corrections or other deformations, which modify the values

of the transport coefficients. Remarkably, we show here that the shear viscosity of the

Rindler fluid is not modified if higher curvature terms are introduced. Equivalently, at

lowest orders in the non-relativistic expansion, the dual metric solution has the property

of being a solution to GR and to any higher curvature theory of gravity. The first place

the higher curvature corrections appear is in the second order transport coefficients of the

fluid. Working in the case where the higher curvature theory is Einstein-Gauss-Bonnet

gravity, we calculate some of these coefficients.

The plan of this paper is as follows. In section 2, we describe the general construc-

tion of the solutions developed in [10–12]. In section 3, we explicitly show that the shear

viscosity of the dual theory is unchanged when generic higher curvature terms are added

into the gravitational action and we discuss the differences between this calculation and

previous literature on the AdS/CFT correspondence. Section IV is devoted to the calcula-

tion of the second order transport coefficients in Einstein-Gauss-Bonnet. We then conclude

with a discussion of the implications of these results and their possible connection to ap-

proaches using the local Rindler geometry as a tool for a thermodynamical derivation of

gravitational dynamics.
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2 General setup

We want to construct a Lorentzian geometry that acts as the holographic dual description

of a fluid flow in d + 1 dimensions. Based on the holographic principle, we expect the fluid

is defined on a d+ 1 dimensional timelike surface Sc embedded in a d+ 2 dimensional bulk

spacetime. We choose the timelike surface to be defined by fixed bulk radial coordinate,

r = rc. We also specialize to the case where the fluid moves on a flat background. In this

case, the induced metric on Sc should be flat as well, e.g.

γµνdxµdxν = −Φ(rc)dt2 + e2Ψ(rc)dxidxi, (2.1)

where Φ and Ψ are some functions of r. We use the notation that coordinates on the

hypersurface Sc are xµ = (t, xi), where i = 1 . . . d. The (d+2) dimensional bulk coordinates

are defined with the notation xA = (t, xi, r). The final requirement is that the bulk

spacetime must contain a regular, stationary causal horizon. The bulk spacetime therefore

has a timelike Killing vector field, which becomes null on the horizon. The full bulk metric

therefore has the general form [10],

ds2 = −Φ(r)dt2 + 2dtdr + e2Ψ(r)dxidxi, . (2.2)

where at some radius r = rh there is a horizon where Φ(r) = 0 and the timelike Killing vec-

tor χA = (∂t)
A becomes null. If one considers quantum field theory on the background (2.2),

one finds equilibrium thermal states associated with the presence of the horizon. For ex-

ample, one can compute the Hawking temperature (in units where ~ = c = 1)

TH =
κ

2π
=

Φ′(rh)

4π
, (2.3)

where the surface gravity κ can be defined via χB∇BχA = κχA. Dividing by the redshift

factor at rc,
√−gtt =

√

Φ(rc) yields the local Tolman temperature

Tloc =
Φ′(rh)

4π
√

Φ(rc)
. (2.4)

There is also an associated Bekenstein-Hawking entropy proportional to the cross-sectional

area of the horizon

SBH = 4πedΨ(rh), (2.5)

where here and throughout we use units such that 16πG = 1. We want to identify these

thermodynamical properties with the thermodynamical properties of the dual fluid in d +

1 dimensions. Therefore, the general metric can be thought of as the dual geometrical

description of an equilibrium thermal state associated with some lower dimensional theory

defined on the surface r = rc.

The metric (2.2) can describe many different black hole solutions. Here we will focus

on the special case of a region of flat (d + 2) dimensional Minkowski spacetime in “ingoing

Rindler” coordinates

ds2 = −rdt2 + 2dtdr + dxidxi, (2.6)

– 3 –
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where in terms of the above parametrization, Φ(r) = r and Ψ(r) = 0. The null surface

r = 0 acts as a horizon to accelerated observers, whose worldlines correspond to surfaces

of constant r = rc.

Although the Rindler metric is just a patch of flat spacetime, the associated quantum

field theory on this background has many of the same properties as a black hole solution.

In particular, surfaces of r = rc have a local Unruh temperature

T =
1

4π
√

rc
. (2.7)

Strictly speaking, a Rindler horizon does not have a Bekenstein-Hawking entropy density.

However, one can assign the Rindler horizon this entropy based on the holographic princi-

ple, or, more concretely, take the entropy to be the thermal entanglement entropy of the

quantum fields in Rindler wedge [16, 17]. This statistical entropy scales like an area, but is

a UV divergent quantity. If a Planck scale cutoff is chosen appropriately, the entanglement

entropy agrees with the Bekenstein-Hawking formula, i.e.

s = 4π. (2.8)

Given the existence of an equilibrium Unruh temperature and a Bekenstein-Hawking en-

tropy density, the metric (2.6) can be thought of as a dual geometrical description of a

perfect fluid in one lower dimension. This duality can be formalized by considering the

Brown-York stress energy tensor [13], which in GR takes the form,

TBY
µν = 2(Kγµν − Kµν), (2.9)

where Kµν = 1
2LNγµν and LN is the Lie derivative along the normal to the slice NA.

One can show that TBY
µν (and its generalization for higher curvature gravity) is indeed

equivalent to the stress energy tensor of the perfect fluid with a rest frame energy density

ρ and pressure P . In this case

ρ = 0, p =
1

√
rc

. (2.10)

3 Equivalence of viscous hydrodynamics in Einstein and higher curva-

ture gravities

3.1 The seed metric

In this section we will argue that the first order viscous hydrodynamics of the fluid defined

on Sc is independent of whether the dual gravitational theory is Einstein or some higher

curvature generalization. In order to study the hydrodynamics of this fluid, we must per-

turb the background Rindler geometry. To start, we review the formalism for perturbing

the Rindler metric developed in [12]. The first step is to make a set of coordinate transfor-

mations to obtain a new metric (or class of metrics). These transformations should keep

the induced metric at rc flat. The transformed metric should also preserve a perfect fluid

form of the stress energy tensor associated to the slice, as well as the time-like Killing vector
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and the homogeneity in the xi direction. It was shown in [12] that these set of conditions

uniquely identify the two diffeomorphisms, namely a boost and the translation.

The boost of the metric takes the form,

√
rct →

√
rct − γβix

i, xi → xi − γβi√rct + (γ − 1)
βiβj

β2
xj , (3.1)

where γ = (1 − β2)−1/2 and βi = r
−1/2
c vi is the boost parameter. The linear shift of the

radial coordinate and re-scaling of t, which moves the horizon from r = 0 to an r = rh < rc,

is instead

r → r − rh, t → (1 − rh/rc)
−1/2t. (3.2)

The resulting metric for the flat spacetime is

ds2 =
dt2

1 − v2/rc

(

v2 − r − rh

1 − rh/rc

)

+
2γ

√

1 − rh/rc

dtdr − 2γvi

rc

√

1 − rh/rc

dxidr

+
2vi

1 − v2/rc

(

r − rc

rc − rh

)

dxidt +

(

δij −
vivj

r2
c (1 − v2/rc)

(

r − rc

1 − rh/rc

))

dxidxj. (3.3)

We now want to investigate the hydrodynamic system dual to the above metric. To do

that, we need to consider the dynamics of the metric perturbations within a hydrodynamic

limit. One can perturb (3.3) by promoting the spatial velocity and horizon radius to be

functions of space and time: vi(t, xi) and rh(t, xi). Now the metric is no longer flat and no

longer a solution of the vacuum Einstein equation. However, one can introduce a particular

non-relativistic hydrodynamical expansion [5, 14] in terms of a small parameter ǫ,

vi ∼ ǫvi(ǫxi, ǫ2t) P ∼ ǫ2P (ǫxi, ǫ2t), (3.4)

where the non-relativistic pressure P (t, xi) is defined in the following way as a small per-

turbation of the horizon radius,1

rh = 0 + 2P + O(ǫ4). (3.5)

Using (3.4) one scales down the amplitudes (ǫ can be thought of as the inverse of the

speed of light), while at the same time scaling to large times t and spatial distances xi.

This corresponds to looking at small perturbations in the hydrodynamic limit.

Expanding the metric (3.3) out to O(ǫ2) in this manner yields the “seed metric” solu-

tion originally found by Bredberg, Keeler, Lysov and Strominger in [11],

ds2 = −rdt2 + 2dtdr + dxidxi

− 2

(

1 − r

rc

)

vidxidt − 2vi

rc
dxidr

+

(

1 − r

rc

)[

(v2 + 2P )dt2 +
vivj

rc
dxidxj

]

+

(

v2

rc
+

2P

rc

)

dtdr. (3.6)

1Note that the ǫ expansion is performed in such a way that at zeroth order v
i = rh = 0 so that the

standard Rindler metric (2.6) is recovered. Also, there is no scaling of bulk radial derivatives.
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The seed metric is the unique singularity-free solution to the vacuum Einstein equations

up to O(ǫ3), provided ∂iv
i = 0. As required, the induced metric on the slice r = rc is flat.

In GR, the momentum constraint equations on the surface Sc can be expressed in

terms of the Brown-York stress tensor

RµANA = ∂νTBY
µν = 0. (3.7)

At second and third order in ǫ, momentum constraint equations are

R
(2,3)
µA NA = r−1/2

c R
(2,3)
tµ + r1/2

c R(2,3)
rµ = 0, (3.8)

while the Brown-York stress-tensor for the seed metric is given by [11]

TBY
µν dxµdxν =

d~x2

√
rc

− 2vi√
rc

dxidt +
v2

√
rc

dt2+r−3/2
c

[

Pδij +vivj−2rc∂ivj

]

dxidxj + O(ǫ3) .

(3.9)

Then, at second order, using the expression in (3.9), the momentum constraint equa-

tions (3.7) reduce to the incompressibility condition ∂iv
i = 0 we discussed above. At third

order one finds the Navier-Stokes equations with a particular kinematic viscosity

∂tvi + vj∂jvi + ∂iP − rc∂
2vi = 0. (3.10)

Therefore, imposing the the incompressible Navier-Stokes equations on the fluid variables

guarantees the dual metric is a solution to the field equations.

Noticeably, these results can be obtained as a non-relativistic expansion of a relativistic

viscous fluid stress tensor. To see this, we work in the relativistic hydrodynamic expansion

in derivatives of the fluid velocity and pressure: ∂u and ∂p. Then, at first order, the

relativistic viscous fluid stress tensor has the form,

T fluid
µν = ρuµuν + phµν − 2ηKµν − ξhµν(∂λuλ). (3.11)

Here hµν = γµν + uµuν , while Kµν = hλ
µhσ

ν∂(λuσ) is the fluid shear, η the shear viscosity,

and ξ the bulk viscosity.

The viscous terms above are written in the Landau or transverse frame [19], which can

be defined as a condition on the first order part of the stress tensor

T fluid (1)
µσ uσ = 0. (3.12)

This frame is constructed so that the viscous fluid velocity is defined as the velocity of

energy transport. The seed stress tensor in (3.9) follows from the ǫ expansion of (3.11), if

we identify

uµ =
1√

rc − v2
(rc, v

i), ρ = 0 + O(ǫ3), p =
1

√
rc

+
P

r
3/2
c

, η = 1. (3.13)

This is consistent with the earlier equilibrium calculation of ρ and p in (2.10). Note also

that the bulk viscosity term in (3.11) actually drops out and bulk viscosity is not an

independent transport coefficient. This is due to the fact that at viscous order we can

impose the ideal order equation ∂µuµ = 0, which follows from ρ = 0 and continuity.

– 6 –
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3.2 Higher curvature gravity

Now we want to study how the hydrodynamics of the fluid is modified when the gravity

theory is not GR, but instead some theory with higher curvature terms. The first question

is whether we need a new, modified seed metric in a higher curvature theory of gravity.

Interestingly, we can show that the seed metric (3.6) and its O(ǫ3) correction is a solution

to a wide class of higher curvature gravity theories at lowest orders in the ǫ expansion.

We start by noting that the flat, equilibrium Rindler metric at zeroth order is a vacuum

solution to both Einstein and higher curvature gravity theories. The higher curvature terms

could be thought of as modified gravity theories in their own right or they can be seen as

quantum corrections to Einstein gravity in an effective field theory picture. Here we will

not consider exotic theories involving inverse powers of curvature invariants.

As a first example of a higher curvature theory we consider Einstein-Gauss-Bonnet

gravity (in the absence of a cosmological constant), defined by the action

IGB =

∫

dd+2x
√
−g
[

R + α
(

R2 − 4RCDRCD + RCDEF RCDEF
)]

, (3.14)

where α is the Gauss-Bonnet coupling constant. We consider d ≥ 3 since for d < 3 the

Gauss-Bonnet term is topological and does not affect the field equations. The interest in

looking at a Gauss-Bonnet term is twofold. Such a term arises in the low energy limit of

string theories. Secondly, Einstein-Gauss-Bonnet gravity is notable because even though

the action is higher order in the curvature, for the unique combination of curvature invari-

ants in the second term of (3.14), the field equations remain second order in derivatives of

the metric.

Varying this action with respect to the metric yields the field equations,

GAB + 2αHAB = 0, (3.15)

where the Lovelock tensor HAB is

HAB = RRAB − 2RACRC
B − 2RCDRACBD + RA

CDERBCDE

− 1

4
gAB

(

R2 − 4RCDRCD + RCDEF RCDEF
)

. (3.16)

Now, using the seed metric, the first non-zero components of the Riemann tensor RABC
D

are at O(ǫ2). If we examine the Lovelock tensor, (3.16), it is clear that the first contributions

from the Gauss-Bonnet terms can only appear at O(ǫ4) at the lowest. A similar conclusion

obviously holds for Lovelock gravities [15], which are the extension of the action (3.14)

including contributions with higher powers of the curvature but still yielding 2nd order

field equations.

The field equations of other higher curvature theories of gravity generally involve co-

variant derivatives of the Riemann tensor and its contractions. These are no longer second

order in metric derivatives. At second order in the curvature the gravitational action has

the form

I =

∫

dd+2x
√
−g
(

R + β1R
2 + β2RABRAB + β3RABCDRABCD

)

. (3.17)
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The field equations can be expressed in the form GAB = Seff
AB , where

Seff
AB = β1

(

RRAB −∇A∇BR + gAB

(

�R − 1

2
R2

))

+ β2

(

gABRCDRCD + 4∇C∇BRC
A − 2�Rµν − gAB�R − 4RC

ARCB

)

+ β3

(

gABRABCDRABCD − 4RACDERB
CDE

− 8�RAB + 4∇B∇AR + 8RC
ARCB − 8RCDRACBD

)

. (3.18)

Let’s consider the possible terms that can appear at the lowest orders in ǫ. First, the

second covariant derivative terms of R could in principle contribute βi corrections at O(ǫ2).

However, the Ricci scalar R = gABRAB can be expanded out as follows,

R = gttRtt + 2grtRtr + 2gtiRti + 2griRri + grrRrr + gijRij . (3.19)

Before imposing incompressibility, one can show that the only non-zero component of RAB

at O(ǫ2) is

Rtt = 1
2∂iv

i. (3.20)

However, for the background Rindler metric (2.6), the zeroth order gtt
(0) is zero, so the

Ricci scalar R is in fact higher order. Since one cannot form a scalar constructed from vi,

P , ∂t, and ∂i with odd powers of ǫ, we expect R is of O(ǫ4). For instance, the spatial vector

Rti is O(ǫ3), but this multiplies gti, which is O(ǫ). Therefore, R is O(ǫ4) and its covariant

derivatives are of the same order or higher.

The remaining terms of interest are the �RAB and ∇C∇BRC
A terms proportional to

β2 and β3. We know that RAB a priori has non-zero components at O(ǫ2) and O(ǫ3).

The question is whether the radial derivatives and background connection for the Rindler

metric (2.6) allow the above two terms to also contribute at these orders in ǫ thereby

affecting the hydrodynamics at these orders. This we checked with an explicit calculation.

The result is again negative.

Thus, as a general principle, higher curvature corrections to the Einstein equations

come in at O(ǫ4), at least when we perturb the fluid dual to the flat Rindler spacetime

geometry. Terms of even higher order in the curvature (schematically ∼ Rn, where n > 2)

will typically appear at even higher orders. This includes the often studied case of f(R)

theories, when f can be expanded around the Hilbert term: f = R + R2 + R3 + · · · .
As a result, the solution to the higher curvature theories at the lowest orders O(ǫ2)

and O(ǫ3) is the same as the GR solution found previously [11, 12]. Since all the higher

curvature quantities vanish at the lowest orders, this solution has the property of being

approximately strongly universal [18] . The explicit solution at O(ǫ3) can be constructed

from the algorithm for Einstein gravity given in [12], which we will expand upon and

generalize to Einstein-Gauss-Bonnet in the next section. At the present, we note that the

equivalence of the solutions to O(ǫ4) implies that the 1st order viscous hydrodynamics of

the dual fluid is the same both in Einstein gravity and its higher curvature generalizations.

In particular, the incompressible Navier-Stokes equations (3.10) are the same in any theory,

– 8 –
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with the kinematic viscosity fixed to be rc. Furthermore, as Compère, et. al. pointed out,

it is clear that the non-relativistic ǫ expansion is capturing the non-relativistic limit of a

relativistic fluid theory whose full structure is unknown. Nevertheless, the ǫ expansion

seems to be able to capture some of the transport properties of this fluid theory. In

particular, the shear viscosity of the relativistic fluid, η, is apparently fixed to be 1 (or

(16πG)−1 if we restore the gravitational constant).

One may worry about using the non-relativistic limit to draw conclusions about the

properties of the relativistic parent fluid. However, we can show that our analysis of higher

curvature terms can be extended to the relativistic hydrodynamics. The first step is write

the metric (3.3) in a manifestly boost covariant form. This metric turns out to be

ds2 = −(1 + p2(r − rc))uµuνdxµdxν − 2puµdxµdr + hµνdxµdxν . (3.21)

In this line element we have replaced rh with the relativistic pressure p using the gen-

eral formula

p =
1√

rc − rh
. (3.22)

Expanding uµ and p in terms of vi and P using (3.13), the metric (3.21) reproduces the

seed metric up to O(ǫ2). In addition, if we compute the Brown-York stress tensor at r = rc

for this metric (3.21), we find directly

Tµνdxµdxν = phµνdxµdxν , (3.23)

which is the ideal part of (3.11) with ρ = 0.

To perturb in this case, we now treat uµ(xµ) and p(xµ), but leave rc fixed. The metric

is no longer a solution to the vacuum Einstein equations, but one can expand and work

order by order in derivatives of uµ and p as discussed earlier. This follows the standard

approach used in the fluid-gravity correspondence [4].

We now have that (3.21) is a zeroth order solution, i.e. RAB = 0 + O(λ), where the

parameter λ counts derivatives of uµ and p. Therefore, RABC
D ∼ O(λ) and the curvature

squared terms in (3.18) must appear at O(λ2). The other terms involve the covariant

derivatives of the Ricci scalar and tensor. The generalization of (3.19) is

R(1) = grrR(1)
rr + 2grµR(1)

rµ + gµνR(1)
µν . (3.24)

From (3.21) we find

R(1)
rr = 0

R(1)
rµ = 0

R(1)
µν = ∂(µpuν) + Dp uµuν +

1

2
p(∂λuλ)uµuν + pu(µaν), (3.25)

where we have defined D = uµ∂µ and aµ = uλ∂λuµ. Since gµν = hµν , which projects

orthogonal to uµ, R(1) = 0. Finally, the fact that the remaining terms �RAB and ∇C∇BRC
A

are also of O(λ2) can be shown by explicit calculation as before.

– 9 –
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Therefore, we conclude again that the higher curvature terms affect only the second

order viscous hydrodynamics. The equilbrium stress tensor will be given by eq. (3.23) in

any higher curvature theory of gravity. This follows just from the fact that the zeroth

order metric (3.21) is a solution in any theory. Computing the O(λ) corrections to (3.21)

and (3.23) confirms that η = 1 and the bulk viscosity is not a transport coefficient, but we

will save the details for another paper [20].

In higher curvature theories, the entropy is given by the Wald formula [21]. In general,

Bekenstein-Hawking area entropy will be modified by the higher curvature terms, leading

to an expression that can depend on both the intrinsic and extrinsic geometry of horizon.

However, since we are working with a Rindler horizon in flat spacetime, all these corrections

vanish and the equilibrium entropy density s remains 4π. The ratio η/s = 1/4π was

first derived in the context of the AdS/CFT correspondence [22]. It was shown that

the ratio goes to this value for any infinitely strongly coupled holographic gauge theory

fluid with an Einstein gravity dual [23]. On the gauge theory side, the number of colors

N → ∞ and the ’t Hooft coupling λ → ∞. This is essentially a classical limit; quantum

corrections to the η/s ratio at finite N and λ, which can be calculated in specific string

theory realizations [24], correspond to specific higher derivative corrections to the dual

gravitational theory. Another approach is to work outside the context of particular string

theories and consider a generic higher curvature gravity action of the form given in (3.17).

In this case, it has been shown [25–27] that ratio changes to

η

s
=

1

4π
(1 − 8β3). (3.26)

This result holds in five spacetime dimensions and to linear order in the βi, which are

effectively suppressed by powers of the Planck length. It is also important to note that

while the ratio is unchanged when β3 = 0, both η and s do depend on β1,2. Finally, in

the special case of Einstein-Gauss-Bonnet, (3.14), β3 = α. Given the nice properties of

this theory (linked to the field equations remaining 2nd order in derivatives), one can work

non-perturbatively and consider finite α corrections which allow the ratio to approach zero.

It is then remarkable that in the case of a flat Rindler background there is no higher

curvature correction to the ratio or to the viscosity itself. The viscosity is protected against

quantum corrections or other deformations to the dual theory. At a technical level, the

difference is that the result (3.26) follows by considering perturbations around a background

asymptotically AdS black brane solution in the higher curvature gravity theory. In Einstein-

Gauss-Bonnet gravity with negative cosmological constant, this solution is [28]

ds2 = N2f(r) − 1

f(r)
dr2 + r2dxidxi (3.27)

where N is some constant and

f(r) =
r2

4α



1 −

√

1 − 8α

(

1 − r4
h

r4

)



 , (3.28)
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with rh the value of the horizon radius. In this solution, thermodynamic quantities such

as the temperature and entropy density depend explicitly on α, which translates into the

calculations of the entropy and shear viscosity.

In contrast, in the Rindler case the metric does not depend on α and the Unruh

temperature and entanglement entropy are kinematical quantities in the sense that they

are independent of the underlying gravitational theory. The shear viscosity seems to have

the same behavior since it is also unaffected by the choice of gravitational dynamics. This

is further evidence for the picture of η/s = 1/4π as a kinematical property associated with

entanglement in Rindler spacetime [29].

4 Second order transport coefficients

Now let’s consider the hydrodynamic expansion at higher order in derivatives. Here we

expect the gravitational dynamics to affect the hydrodynamics of the dual fluid. To second

order, O(λ2), the general stress tensor for a relativistic fluid with zero energy density (hence

incompressible) has the form [12]

T fluid
µν = ρuµuν + phµν − 2ηKµν

+ c1K
λ
µKλν + c2K

λ
(µΩ|λ|ν) + c3Ω

λ
µ Ωλν + c4P

λ
µ P σ

ν DλDσ ln p

+ c5σµν D ln p + c6D
⊥
µ ln p D⊥

ν ln p, (4.1)

where D = uµ∂µ, D⊥
µ = P ν

µ ∂ν , and Ωµν = P λ
µ P σ

ν ∂[λuσ]. There are also viscous corrections

to the energy density ρ at this order, which can be parameterized as

ρ = b1KµνKµν + b2ΩµνΩ
µν + b3D ln p D ln p + b4D

2 ln p + b5D
⊥
µ ln p D⊥µ ln p. (4.2)

The ci, i = 1 . . . 6, and bj , j = 1 . . . 5, are the possible new transport coefficients. When one

expands these expressions in powers of ǫ, many of the second order transport coefficients

appear at O(ǫ4) in a general non-relativistic fluid stress tensor,

T fluid (4)
µν dxµdxν = r−3/2

c

[

v2(v2 + P ) − ηrcσijv
ivj +

b1r
3/2
c

2
σijσ

ij +
b2r

3/2
c

2
ωijω

ij
]

dt2

+ r−5/2
c

[

vivj(v
2 + P ) + 2ηrcv(i∂j)P + c4r

3/2
c ∂i∂jP +

c1

4
r3/2
c σikσ

k
j

+
c3

4
r3/2
c ωikω

k
j −

c2

4
r3/2
c σk(iωj)

k − 2ηr2
cv(i∂

2vj) − ηrcv(i∂j)v
2

− rc

2
ησijv

2
]

dxidxj . (4.3)

Here σij = 2∂(ivj) and ωij = 2∂[ivj]. Only c5, c6 and b3, b4, and b5 are absent at this order

in the ǫ expansion.

We argued that O(ǫ4) is the first to receive corrections from any higher curvature

terms in the gravity theory. In the next section, we will solve for the fourth order (non-

relativistic) metric in five dimensional Einstein-Gauss-Bonnet gravity. With this result in

hand, we will use the corresponding Brown-York stress tensor to read-off various second

order transport coefficients for the dual fluid.
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4.1 Constructing the Einstein-Gauss-Bonnet solution

We first outline the construction due to [12], where one starts with the metric solution

at O(ǫn−1). In practice, the first n is 3 , i.e. one starts the process with the seed metric

solution (3.6). We then want to add to the metric a new piece g
(n)
AB that solves the field

equations to O(ǫn+1). Since radial derivatives carry no powers of ǫ, the addition of g
(n)
AB

produces a change in the bulk curvature tensors at the same order. This is effectively a

perturbation around the zeroth order background Rindler metric (2.6). We work in the

gauge where

g
(n)
rA = 0, (4.4)

for all the contributions with n ≥ 3. With this choice, we find that changes in the Einstein

tensor δGAB = δRAB − 1
2g

(0)
ABδR have the form

δG(n)
rr = −1

2
∂2

r g
(n)
ii ,

δG
(n)
ij = −1

2
∂r(r∂rg

(n)
ij ) − 1

2
δij

(

∂2
r g

(n)
tt − ∂r(r∂rg

(n)
ij )
)

,

δG
(n)
ti = −rδG

(n)
ri = −r

2
∂2

r g
(n)
ti ,

δG
(n)
tt = −rδG

(n)
rt = −r

4

(

2r∂2
rg

(n)
ii + ∂rg

(n)
ii

)

. (4.5)

We define g
(n)
ii ≡ δijg

(n)
ij and δG

(n)
ii ≡ δijδG

(n)
ij . In contrast, there is no change to the

Lovelock tensor (3.16) at the same order n since the curvature of the Rindler background

is zero and any term in the variation would contain some factor of curvature at zero order.

We want to find the g
(n)
AB that cancels out the O(ǫn) part of the field equations arising

from the pre-existing solution at O(ǫn−1). That is, we require

δG
(n)
AB + Ĝ

(n)
AB + 2αĤ

(n)
AB = 0 (4.6)

where the hat denotes the parts of the curvature arising from the pre-existing solution. In

order for this set of equations to be consistent, one must impose the integrability conditions

Ê
(n)
tt + rÊ

(n)
tr = 0 (4.7)

Ê
(n)
ti + rÊ

(n)
ri = 0 (4.8)

∂r(Ê
(n)
tr + rÊ(n)

rr ) + (1/2)Ê(n)
rr = 0 (4.9)

where we have defined Ê
(n)
AB = Ĝ

(n)
AB + 2αĤ

(n)
AB . These are consistent with the Bianchi

identity and (4.7) follows from the conservation of the Brown-York stress tensor extended

to Gauss-Bonnet gravity [30], i.e.

(GAν + 2αHAν)NA = ∂µTµν = 0, (4.10)

where

Tµν = 2(Kγµν − Kµν) + 4α(Jγµν − 3Jµν − 2P̂µρνσKρσ). (4.11)
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The symbol P̂µρνσ = R̂µρνσ + 2R̂ρ[νγσ]µ − 2R̂µ[νγσ]ρ + R̂γµ[νγσ]ρ is the divergence free part

of the induced Riemann tensor and can be neglected here because we work with a flat

induced metric, while

Jµν =
1

3
(2KKµσKσ

ν + KσλKσλKµν − 2KµσKσλKλν − K2Kµν). (4.12)

Using (4.5), one can solve the differential equations subject to two conditions: (i) that

g
(n)
AB = 0 at r = rc (the metric on Sc remains flat) and (ii) that there is no singularity at

r = 0. The resulting solution is

g
(n)
tt = (1 − r/rc)F

(n)
t (t, xi) +

∫ rc

r
dr′
∫ rc

r′
dr′′

2

3

(

Ê
(n)
ii − 4Ê

(n)
tr − 2rÊ(n)

rr

)

(4.13)

g
(n)
ti = (1 − r/rc)F

(n)
i (t, xi) − 2

∫ rc

r
dr′
∫ rc

r′
dr′′Ê

(n)
ti (4.14)

g
(n)
ij = − 2

∫ rc

r
dr′

1

r

∫ r′

0
dr′′

(

R̂
(n)
ij + 2α

(

Ĥ
(n)
ij − 1

3
Ĥ

(n)
kk

))

(4.15)

where F
(n)
t (t, xi) and F

(n)
i (t, xi) are arbitrary functions.

These two remaining functions can be fixed by imposing gauge choices on the Brown-

York stress tensor of the fluid (4.11). The addition of the new metric piece at O(ǫn) has

the following effect on the extrinsic curvature at the same order

δK(n)
µν = 1

2

√
rc∂rg

(n)
µν

∣

∣

∣

Sc

(4.16)

implying that

δK
(n)
tt = − F

(n)
t (t, xi)

2
√

rc
, δK

(n)
ti = −F

(n)
i (t, xi)

2
√

rc
,

δK
(n)
ij = +

1
√

rc

∫ rc

0
dr′
(

R̂
(n)
ij + 2α

(

Ĥ
(n)
ij − 1

3
δijĤ

(n)
kk

))

. (4.17)

By explicit calculation, we verified that there is no corresponding O(ǫn) variation of the

Jµν part of the stress tensor. Thus, the variation δT
(n)
µν comes only from the linear part in

the extrinsic curvature:

δT
(n)
tt = −√

rc

∫ rc

0
2R

(n)
ii , δT

(n)
ti =

F
(n)
i (t, xi)√

c

δT
(n)
ij = δij

(

F
(n)
t (t, xi)

r
3/2
c

+
2

√
rc

∫ rc

0
dr′
(

R
(n)
kk +

2α

3
Ĥ

(n)
kk

)

)

− 2
√

rc

∫ rc

0
dr′(R̂

(n)
ij + 2αĤ

(n)
ij ). (4.18)

The complete stress-tensor has the form

T (n)
µν = δT (n)

µν + 2
(

K̂(n)γµν − K̂(n)
µν

)

+ 4α
(

Ĵ (n)γµν − 3Ĵ (n)
µν

)

, (4.19)
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where as before, the hat notation indicates the part of the stress-tensor originating from

the solution at O(ǫn−1). The function F
(n)
i (t, xi) is fixed by imposing the Landau gauge

condition (3.12) order by order in the non-relativistic expansion. This plays a role only at

odd orders in ǫ. The other function F
(n)
t (t, xi), which appears at even orders, is fixed by

requiring that there are no higher order corrections to the definition of the non-relativistic

pressure, i.e. the isotropic part of Tij is

T iso
ij =

(

1
√

rc
+

P

r
3/2
c

)

δij (4.20)

at all orders.

4.2 Solution to O(ǫ5)

We now apply the algorithm to solve for the metric to O(ǫ5). One first starts with the

seed metric solution (3.6) and constructs the solution at O(ǫ3). As we argued earlier,

the corrections due to the Gauss-Bonnet coupling constant arise at O(ǫ4). Therefore, the

Gauss-Bonnet terms do not contribute and the solution reduces to the GR one found

previously in [12], where the only non-vanishing component is

g
(3)
ti =

r − rc

2rc

[

(

v2 + 2P
) 2vi

rc
+ 4∂iP − (r + rc)∂

2vi

]

. (4.21)

The next step is to compute the R̂
(4)
AB and Ĥ

(4)
AB using this metric. Via direct calculation

of the Lovelock tensor (3.16), we find that

H
(4)
ij =

3

4r2
c

(

ωikω
k
j + 1

2δijωklω
kl
)

(4.22)

with all other components of H
(4)
AB equal to zero. At even order in ǫ, Rti = 0 and as a result

g
(4)
ti = 0. The remaining components to compute are R

(4)
tt , R

(4)
rr , R

(4)
rt , and R

(4)
ij , which we

will not display explicitly here.

Using (4.22), the solution for g
(4)
tt in (4.13) reduces to

g
(4)
tt = (1 − r/rc)F

(4)
t (t, xi) +

∫ rc

r
dr′
∫ rc

r′
dr′′

(

R̂
(n)
ii +

4

3
αĤ

(4)
ii − 2R̂

(4)
rt − rR̂(4)

rr

)

(4.23)

and we find that

g
(4)
tt = (1 − r/rc)F

(4)
t (t, xi) +

(r − rc)
2

8rc

(

8vk∂2vk − σklσ
kl
)

+
(r − rc)

2(r−rc+2α)

8rc
ωklω

kl.

(4.24)

The gauge condition on the stress tensor (4.20) fixes

F
(4)
t (t, xi) =

9

8rc
v4 +

5

2rc
Pv2 +

P 2

rc
− 2rcvi∂

2vi

−
(

rc + α

2

)

σklσ
kl − α

2
ωklω

kl − 2∂tP + 2vk∂kP. (4.25)
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Note that in these expressions we have imposed incompressibility ∂iv
i = 0, used the Navier-

Stokes equation (3.10) to eliminate time derivatives of vi, and imposed

∂2P = −∂ivj∂
jvi, (4.26)

which also follows from (the divergence of) Navier-Stokes. Meanwhile eq. (4.15), yields

g
(4)
ij =

(

1 − r

rc

)[

1

r2
c

vivj(v
2 + 2P ) +

2

rc
v(i∂j)P − 4∂i∂jP − 1

2
σikσ

k
j

+
r − 5rc + 12α

4rc
ωikω

k
j + σk(iωj)

k − r + rc

rc
v(i∂

2vj) +
r + 5rc

4
∂2σij

− 1

rc
v(i∂j)v

2 − 1

2rc
σij(v

2 + 2P ) +
α

rc
δijωklω

kl

]

. (4.27)

We now use (4.19) and (4.18) to find the stress tensor components T
(4)
tt and T

(4)
ij . The

non-zero components of the J
(4)
µν tensor are

J
(4)
tt = − 1

24r
1/2
c

σijσ
ij , J

(4)
ij =

1

12r
3/2
c

σikσ
k
j (4.28)

Using this result, we find

T
(4)
tt = r−3/2

c

[

v2(v2 + P ) − r2
c

2
σijσ

ij − rcσijv
ivj

]

(4.29)

and

T
(4)
ij =r−5/2

c

[

vivj(v
2 + P ) + 2rcv(i∂j)P − 4r2

c∂i∂jP − r2
c

2

(

1 +
2α

rc

)

σikσ
k
j

− r2
c

(

1 +
3α

rc

)

ωikω
k
j + r2

cσk(iωj)
k − 2r2

cv(i∂
2vj)

+
3r3

c

2
∂2σij − rcv(i∂j)v

2 − rc

2
σijv

2

]

. (4.30)

Note that the T
(4)
tt has no α corrections. They cancel out and the energy density Tµνu

µuν

is not affected by α at fourth order. Comparing with the general form of the fluid stress

tensor (4.3) we read off that

b1 = −√
rc , b2 = 0 , c1 = −2

√
rc

(

1 +
2α

rc

)

,

c3 = −4
√

rc

(

1 +
3α

rc

)

, c2 = c4 = −4
√

rc (4.31)

as expected, there is no change in the value of η = 1. However, the Gauss-Bonnet term

does modify the two transport coefficients c1 and c3 from their purely GR values.
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5 Discussion

We have argued that higher curvature corrections to the Einstein equations always come

in at O(ǫ4) in the non-relativistic hydrodynamic expansion and at O(λ2) in the relativistic

Knudsen number expansion, at least when we perturb the fluid dual to the flat Rindler

spacetime geometry. Hence, the solution to the higher curvature theories at the lowest

orders is the same as the GR solution found previously [11, 12]. Working in the specific

case where the higher curvature theory is Einstein-Gauss-Bonnet gravity, we then showed

explicitly that the 1st order viscous hydrodynamics of the dual fluid is the same both

in Einstein gravity and its higher curvature generalization, while the effect of the higher

curvature corrections shows up in the second order transport coefficients of the fluid. We

calculated some of these transport coefficients and found that two of them depend on

the Gauss-Bonnet coupling constant. It would be interesting to complete the relativistic

calculation outlined in section 3 B in order to find all the second order transport coefficients

in both the Einstein and Einstein-Gauss-Bonnet examples.

The approximate strong universality [18] of the seed solution about which the hydrody-

namic expansion is made is an interesting result. The lack of a higher curvature correction

to the viscosity implies that it is protected against quantum corrections or other deforma-

tions to the dual theory. One way of thinking about these results is to note that shear

viscosity and entropy density typically scale like T d, where T is the equilibrium temperature

of the thermal system. In AdS/CFT, this temperature is given by the Hawking tempera-

ture TH of the black brane solution, which would depend in this case on the Gauss-Bonnet

coupling constant, due to the non-trivial curvature of the background solution. In contrast,

the shear viscosity and entropy density are constants independent of the temperature in

the Rindler case. This suggests the two types of holographic duality are different.

The independence of the fluid/Rindler holographic duality from the asymptotic geom-

etry makes this correspondence interesting beyond the AdS/CFT context. For example,

the Rindler metric is associated to an accelerated observer in the locally flat surroundings

of any point in spacetime. Therefore, one can ask whether the flat spacetime duality can

be applied locally and then possibly used to patch together a holographic description of

any spacetime [12].

In a similar manner, the local Rindler system is also crucial the idea that gravity may

emerge from the holographic hydrodynamics of some microscopic, quantum system [9,

31–33]. Here one assumes that the local Minkowski vacuum state carries a finite area

entanglement entropy which can be holographically identified with the entropy of the local

Rindler horizon. Perturbations to the horizon system are assumed to obey an entropy

balance law, relating a change in the entropy to the “heat” associated with a flux of

matter, plus an internal entropy production term from shear viscosity. Demanding that

this equation holds at each point in spacetime then yields the GR Einstein equation and

fixes the shear viscosity to entropy density ratio to be 1/4π. Also, bulk viscosity does not

appear as an independent transport coefficient [9, 34], which is strikingly similar to the

viscous hydrodynamics of the global Rindler fluid.

However, extensions of this type of derivation to f(R) gravities [32–34] require the
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horizon entropy to depend on the curvature, which inevitably leads to the same behavior

in the shear viscosity. Ultimately, while the metric around any point is flat, the curvature

itself does not vanish at the point. This fact means that one cannot simply import results

pertaining to perturbations of the globally flat Rindler solution into the locally flat patch.

On the other hand, there is some evidence that the inherent fuzziness in the local Killing

vector, which is associated with the local notion of thermal equilbrium, may be of the same

order of magnitude as higher curvature corrections [32]. If this is the case, the approximate

notion of a local fluid would not be affected by these corrections. It would be interesting

to investigate further the relationship between the fluid/Rindler correspondence and these

ideas of emergent graviational dynamics.

Finally, to conclude, we want to point out an interesting duality here between the

relativistic λ expansion in derivatives in the holographic theory and an effective field theory

expansion of the bulk gravitational theory. First note that the λ expansion is equivalent

to an expansion in small dimensionless Knudsen number, which is defined as Kn =
ℓmfp

L ,

where ℓmfp is the mean free path associated with the microscopic system and L is the

characteristic size of the perturbations to the system. Secondly, although the bulk gravity

theory is non-renormalizable, it is still valid as an effective theory when the dimensionless

ratio of the Planck length to the radius of curvature,
Lplanck

Rcurv
, is small. The effective action

is given as an expansion in this ratio. At zeroth order there is some cosmological constant,

at first order, the Hilbert term, and then the pieces higher order in curvature invariants.

In the duality, the scale of perturbations L in the system on r = rc is linked to the scale

Rcurv of perturbations to the flat bulk spacetime. As we have seen, a flat spacetime is dual

to the fluid in equilibrium, Einstein gravity dual to the viscous hydrodynamics characterized

by a shear viscosity, and second order transport coefficients linked to curvature squared

terms. It is tempting to associate the universality of the shear viscosity with the universality

of the Hilbert action at low energies and take ℓmfp ∼ Lplanck, the scale at which gravity

is strongly coupled. This line of reasoning also suggests it may be interesting to consider

a seed metric constructed from the region of a de Sitter spacetime where there is also

a causal “observer dependent” horizon and the associated thermodynamics. What effect

does a non-zero cosmological constant have on the dual fluid?
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