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ABSTRACT

We use the large cosmological Millennium Simulation (MS) to construct the first all-
sky maps of the lensing potential and the deflection angle, aiming at gravitational lens-
ing of the CMB, with the goal of properly including small-scale non-linearities and
non-Gaussianity. Exploiting the Born approximation, we implement a map-making
procedure based on direct ray-tracing through the gravitational potential of the MS.
We stack the simulation box in redshift shells up to z ∼ 11, producing continuous
all-sky maps with arcminute angular resolution. A randomization scheme avoids rep-
etition of structures along the line of sight and structures larger than the MS box
size are added to supply the missing contribution of large-scale (LS) structures to the
lensing signal. The angular power spectra of the projected lensing potential and the
deflection-angle modulus agree quite well with semi-analytic estimates on scales down
to a few arcminutes, while we find a slight excess of power on small scales, which we
interpret as being due to non-linear clustering in the MS. Our map-making proce-
dure, combined with the LS adding technique, is ideally suited for studying lensing
of CMB anisotropies, for analyzing cross-correlations with foreground structures, or
other secondary CMB anisotropies such as the Rees-Sciama effect.

Key words: gravitational lensing, cosmic microwave background, cosmology

1 INTRODUCTION

The cosmic microwave background (CMB) is character-
ized both by primary anisotropies, imprinted at the last
scattering surface, and by secondary anisotropies caused
along the way to us by density inhomogeneities and re-
scatterings on electrons that are freed during the epoch of
reionization, and heated to high temperature when massive
structures virialize. One of the interesting effects that can
generate secondary anisotropies is the weak gravitational
lensing of the CMB, which arises from the distortions in-
duced in the geodesics of CMB photons by gradients in

⋆

E-mail: carbone@ieec.uab.es
† E-mail: volker@MPA-Garching.MPG.DE
‡ E-mail: bacci@sissa.it
§ E-mail: mbartelmann@ita.uni-heidelberg.de
¶ E-mail: sabino.matarrese@pd.infn.it

the gravitational matter potential (Bartelmann & Schneider
2001; Lewis & Challinor 2006). Forthcoming CMB probes
do have the sensitivity and expected instrumental perfor-
mance which may allow a detection of the lensing distor-
tions of the primary CMB anisotropies, which would then
also provide new insights and constraints on the expan-
sion history of the universe and on the process of cosmo-
logical structure formation (Acquaviva & Baccigalupi 2006;
Hu et al. 2006). However, accurate predictions for the ex-
pected anisotropies in total intensity and polarization are
clearly needed for analyzing this future data, which demands
for detailed simulated maps.

The increasing availability of high-resolution N-body
simulations in large periodic volumes makes it possible to di-
rectly simulate the CMB distortions caused by weak lensing
using realistic cosmological structure formation calculations.
This work represents a first step in that direction. Existing
studies already give access to statistical properties of the
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Figure 1. Sketch of the adopted stacking and randomization process. The passage of CMB photons through the dark matter distribution
of the Universe is followed by stacking the gravitational potential boxes of the MS, which are 500 h−1Mpc on a side (comoving). Shells
of thickness 500 h−1Mpc are filled with periodic replicas of the box. All boxes (squares) that fall into the same shell are randomized with
the same coordinate transformation (rotation and translation), which, in turn, differs from shell to shell.

expected all-sky CMB lensing signal, such as the two-point
correlation function and the power spectrum of the lensing
potential and deflection angle, see e.g. (Lewis 2005) and ref-
erences therein. This is based on ‘semi-analytic’ calculations
that use approximate parameterizations of the non-linear
evolution of the matter power spectrum. On the other hand,
up to now N-body numerical simulations have been used to
lens the CMB only on small patches of the sky in order to
exploit the practicality of the flat-sky approximation, see
e.g. (Amblard et al. 2004) and references therein. However,
our approach of propagating rays through the forming dark
matter structures gives access to the full statistics of the
signal, including non-linear and non-Gaussian effects. Fur-
thermore, it allows the accurate characterization of correla-
tions of CMB lensing distortions with the cosmic large-scale
structure, and with other foregrounds such as the Sunyaev-
Zeldovich and Rees-Sciama effects. Hopefully this will allow
improvements in the methods for separating the different
contributions to CMB anisotropies in the data, which would
be of tremendous help to uncover all the cosmological infor-
mation in the forthcoming observations.

From an experimental point of view, the improved preci-
sion of the CMB observations, in particular that of the next
generation experiments1, may in fact require an accurate de-
lensing methodology and a detailed lensing reconstruction.
CMB experiments targeting for instance the CMB polariza-
tion, and in particular the curl component of the polariza-
tion tensor, the so called B-modes from cosmological grav-
itational waves, may greatly benefit from a precise knowl-
edge of the lensing effects in order to separate them from
the primordial cosmological signal (Seljak & Hirata 2004).
In particular, for a correct interpretation of the data from
the forthcoming Planck satellite2 , it will be absolutely es-
sential to understand and model the CMB lensing, as the
satellite has the sensitivity and overall instrumental perfor-
mance for measuring the CMB lensing with good accuracy.
We note that a first detection of CMB lensing in data from
the Wilkinson Microwave Anisotropy Probe (WMAP3) com-

1 See lambda.gsfc.nasa.gov for a complete list of operating and
planned CMB experiments
2 www.rssd.esa.int/PLANCK
3 See map.gsfc.nasa.gov

bined with complementary data has already been claimed by
(Smith et al. 2007) and (Hirata et al. 2008).

In this study we introduce a new methodology for the
construction of all-sky lensing-potential and deflection-angle
maps, based on a very large cosmological simulation, the
Millennium run (Springel et al. 2005). As a first step in the
analysis of the maps produced using the MS dark matter
distribution, we have determined the interval of angular
scales on which these maps match the semi-analytical ex-
pectations, since we expected a lack of lensing power on
large scales, due to the finite volume of the N-body simula-
tion. To compensate for this effect, we have implemented a
method for adding large-scale power which allows to recover
the correct lensing signal on the scales outside this inter-
val, i.e. on scales larger than the MS box size. At the other
extreme, at the smallest resolved scales, we are interested
in the question whether our maps show evidence for extra
lensing power due to the accurate representation of higher-
order non-linear effects in our simulation methodology. On
these small scales, the impact of non-Gaussianities from the
mapping of non-linear lenses is expected to be largest.

This paper is organized as follows. In Section 2, we
briefly describe the basic aspects of lensing relevant to our
work. In Section 3, we describe the N-body simulation and
the details of our map-making procedure. In Section 4, we
present the lensing-potential and deflection-angle maps, and
study the distribution of power in the angular domain. In
Section 5 we provide a summary and discussion.

2 LENSED MAPS OF THE CMB VIA THE

BORN APPROXIMATION

In what follows we will consider the small-angle scattering

limit, i.e. the case where the change in the comoving sepa-
ration of CMB light-rays, owing to the deflection caused by
gravitational lensing from matter inhomogeneities, is small
compared to the comoving separation of the undeflected

rays. In this case it is sufficient to calculate all the rele-
vant integrated quantities, i.e. the so-called lensing-potential

and its angular gradient, the deflection-angle, along the un-
deflected rays. This small-angle scattering limit corresponds
to the so-called “Born approximation”.

We treat the CMB last scattering as an instantaneous

c© 0000 RAS, MNRAS 000, 000–000
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process and neglect reionization. Adopting conformal time
and comoving coordinates in a flat geometry (Ma et al.

1995), the integral for the projected lensing-potential due
to scalar perturbations with no anisotropic stress reads

Ψ(n̂) ≡ −2

Z

r∗

0

r∗ − r

r∗r

Φ(rn̂; η0 − r)

c2
dr , (1)

while the corresponding deflection-angle integral is

α(n̂) ≡ −2

Z

r∗

0

r∗ − r

r∗r
∇n̂

Φ(rn̂; η0 − r)

c2
dr , (2)

where r is the comoving distance, r∗ ≃ 104 Mpc is its
value at the last-scattering surface, η0 is the present con-
formal time, Φ is the physical peculiar gravitational po-
tential generated by density perturbations, and [1/r]∇n̂ is
the two dimensional (2D) transverse derivative with respect
to the line-of-sight pointing in the direction n̂ ≡ (ϑ,ϕ)
(Hu 2000; Bartelmann & Schneider 2001; Refregier 2003;
Lewis & Challinor 2006).

Actually, the lensing potential is formally divergent ow-
ing to the 1/r term near r = 0; nonetheless, this divergence
affects the lensing potential monopole only, which can be set
to zero, since it does not contribute to the deflection-angle.
In this way the remaining multipoles take a finite value and
the lensing potential field is well defined (Lewis & Challinor
2006). Analytically, the full information about the deflection
angle is contained in the lensing potential, but numerically
the two equations (1) and (2) are generally not equivalent,
and it will typically be more accurate to solve the integral
(2) directly to obtain the deflection angle instead of finite-
differencing the lensing potential.

If the gravitational potential Φ is Gaussian, the lensing
potential is Gaussian as well. However, the lensed CMB
is non-Gaussian, as it is a second order cosmological
effect produced by cosmological perturbations onto CMB
anisotropies, yielding a finite correlation between different
scales and thus non-Gaussianity. This is expected to be
most important on small scales, due to the non-linearity
already present in the underlying properties of lenses.

The most advanced approach developed so far for the
construction of all-sky lensed CMB maps (Lewis 2005) em-
ploys a semi-analytical modeling of the non-linear power
spectrum (Smith et al. 2003), and derives from that the
lensing potential and deflection angle templates assuming
Gaussianity. This approach is therefore accurate for what
concerns the two point correlation function of the lensing
potential, as long as the non-linear two-point power of the
matter is modeled correctly, but it ignores the influence of
any statistics of higher order, which is expected to become
relevant on small scales, where the non-linear power is most
important. The use of N-body simulations to calculate the
lensing has the advantage to possess a built-in capability of
accurately taking into account all the effects of non-linear
structure formation. On the other hand, the use of N-body
simulations also faces limitations due to their limited mass
and spatial resolution, and from their finite volume, as we
will discuss later on in more detail.

For what concerns the line-of-sight integration in
Eqs. (1) and (2), the Born-approximation along the unde-

flected photon path holds to good accuracy and allows to
obtain results which include the non-linear physics. Even on

small scales, in fact, this approximation can be exploited in
the small-angle scattering limit, i.e. for typical deflections
being of the order of arcminutes or less (Hirata & Seljak
2003; Shapiro & Cooray 2006). For example, a single clus-
ter typically gives deflection angles of a few arcminutes,
while smaller structures, such as galaxies, lead to arcsecond
deflections. Furthermore, it can be shown that the Born-
approximation also holds in ‘strong’ lensing cases, provided
that the deflection angles are equally small. Finally, second
order corrections to the Born approximation (for instance
a non-vanishing curl component) are expected to be sub-
dominant with respect to the non-linear structure evolution
effects on small scales (Lewis & Challinor 2006). For these
reasons, we argue that this approximation should be accu-
rate enough for calculating all-sky weak lensing maps of the
CMB based on cosmological N-body simulations.

3 MAP-MAKING PROCEDURE FOR THE

MILLENNIUM SIMULATION

The Millennium Simulation (MS) is a high-resolution N-
body simulation carried out by the Virgo Consortium
(Springel et al. 2005). It uses N = 21603 ≃ 1.0078 × 1010

collisionless particles, with a mass of 8.6 × 108 h−1M⊙, to
follow structure formation from redshift z = 127 to the
present, in a cubic region 500 h−1Mpc on a side, and with
periodic boundary conditions. Here h is the Hubble con-
stant in units of 100 kms−1Mpc−1. With ten times as many
particles as the previous largest computations of this kind
(Colberg et al. 2000; Evrard et al. 2002; Wambsganss et al.

2004), it features a substantially improved spatial and time
resolution within a large cosmological volume.

The cosmological parameters of the MS are as follows.
The ratio between the total matter density and the criti-
cal one is Ωm = 0.25, of which Ωb = 0.045 is in baryons,
while the density of cold dark matter (CDM) is given by
ΩCDM = Ωm − Ωb. The spatial curvature is assumed to be
zero, with the remaining cosmological energy density made
up by a cosmological constant, ΩΛ = 0.75. The Hubble
constant is taken to be H0 = 73km s−1Mpc−1. The pri-
mordial power spectrum of density fluctuations in Fourier
space is assumed to be a simple scale-invariant power law of
wavenumber, with spectral index ns = 1. Its normalization
is set by the rms fluctuations in spheres of radius 8h−1 Mpc,
σ8 = 0.9, in the linearly extrapolated density field at the
present epoch. The adopted parameter values are consistent
with a combined analysis of the 2dF Galaxy Redshift Sur-
vey (2dfGRS) and the first year WMAP data (Colless et al.

2001; Spergel et al. 2003).
Thanks to its large dynamic range, the MS has been

able to determine the non-linear matter power spectrum
over a larger range of scales than possible in earlier works
(Jenkins et al. 1998). Almost five orders of magnitude in
wavenumber are covered (Springel et al. 2005). This is a
very important feature for studies of CMB lensing, as we ex-
pect that this dynamic range, combined with the method for
adding large-scale structures described in the next section,
can be leveraged to obtain access to the full non-Gaussian
statistics of the lensing signal, limited only by the the max-
imum angular resolution resulting from the gravitational
softening length and particle number of MS. We stress again

c© 0000 RAS, MNRAS 000, 000–000
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Figure 2. The simulated all-sky map of the lensing potential computed with the map-making procedure combined with the LS adding

method as described in the text.

that the lensed CMB is non-Gaussian even if the underly-
ing lenses do possess a Gaussian distribution. Moreover, the
non-linear evolution of large scale structures produces a de-
gree of non-Gaussianity in the lenses distribution which con-
tributes to the non-Gaussian statistics of the lensed CMB
on small scales. This non-Gaussian contribution can be com-
puted only via the use of N-body simulations which are able
to accurately describe the non-linear evolution of the lenses.
These non-linearities are known to alter the lensed tempera-
ture power spectrum of CMB anisotropies by about ∼ 0.2%
at ℓ ∼ 2000 and by ∼ 1% or more on smaller scales. But,
much more notably, they introduce ∼ 10% corrections to
the B-mode polarization power on all the scales (Lewis 2005;
Lewis & Challinor 2006).

Our map-making procedure is based on ray-tracing of
the CMB photons in the Born approximation through the
three-dimensional (3D) field of the peculiar gravitational po-
tential. The latter is precomputed and stored for each of
the MS output times on a Cartesian grid with a mesh of
dimension 25603 that covers the comoving simulation box
of volume (500 h−1Mpc)3. The gravitational potential itself
has been calculated by first assigning the particles to the
mesh with the clouds-in-cells mass assignment scheme. The
resulting density field has then been Fourier transformed,
multiplied with the Green’s function of the Poisson equa-
tion in Fourier space, and then transformed back to obtain
the potential. Also, a slight Gaussian smoothing on a scale
rs equal to 1.25 times the mesh size has been applied in
Fourier space in order to eliminate residual anisotropies on
the scale of the mesh, and a deconvolution to filter out the
clouds-in-cells mass assignment kernel has been applied as
well. The final potential field hence corresponds to the den-
sity field of the MS (which contains structures down to the

gravitational softening length of 5 h−1kpc) smoothed on a
scale of ≃ 200 h−1kpc.

In order to produce mock maps that cover the past light-
cone over the full sky, we stack the peculiar gravitational po-
tential grids around the observer (which is located at z = 0),
producing a volume which is large enough to carry out the
integration over all redshifts relevant for CMB lensing. For
simplicity, we only integrate out to z∗ = 11.22 in this study,
which corresponds to a comoving distance of approximately
r∗ ∼ 7236 h−1Mpc with the present choice of cosmological
parameters. Indeed, the lensing power from still higher red-
shifts than this epoch is negligible for CMB lensing, as we
will discuss in the next section. But we note that our method
could in principle be extended to still higher redshifts, up to
the starting redshift z = 127 of the simulation.

The above implies that the simulation volume needs to
be repeated roughly 14.5 times along both the positive and
negative directions of the three principal Cartesian axes x, y,
and z, with the origin at the observer. However, the spacing
of the time outputs of the MS simulation is such that it cor-
responds to an average distance of 140 h−1Mpc (comoving)
on the past light-cone. We fully exploit this time resolution
and use 53 outputs of the simulation along our integration
paths. In practice this means that the data corresponding
to a particular output time is utilized in a spherical shell of
average thickness 140 h−1Mpc around the observer.

The need to repeat the simulation volume due to its fi-
nite size immediately means that, without augmenting large-
scale structures, the maps will suffer from a deficit of lensing
power on large angular scales, due to the finite MS box size.
More importantly, a scheme is required to avoid the repe-
tition of the same structures along the line of sight. Previ-
ous studies that constructed simulated light-cone maps for
small patches of the sky typically simply randomized each

c© 0000 RAS, MNRAS 000, 000–000



Full-sky maps for gravitational lensing of the CMB 5

Figure 3. Simulated all-sky maps of the deflection-angle components along the ϑ direction (top panel), and along the ϕ direction (bottom
panel), in radians.

of the repeated boxes along the past lightcone by apply-
ing independent random translations and reflections (e.g.
Springel et al. 2001). However, in the present application
this procedure would produce artefacts like ripples in the
simulated deflection-angle field, because the gravitational
field would become discontinuous at box boundaries, leading
to jumps in the deflection angle. It is therefore mandatory
that the simulated lensing potential of our all sky maps is
everywhere continuous on the sky, which requires that the
3D tessellation of the peculiar gravitational potential is con-
tinuous transverse to every line of sight.

Our solution is to divide up the volume out to z∗ into
spherical shells, each of thickness 500 h−1Mpc comoving (ob-
viously the innermost shell is actually a sphere of comoving
radius 250 h−1Mpc, centered at the observer). All the simu-
lation boxes falling into the same shell are made to undergo
the same, coherent randomization process, i.e. they are all
translated and rotated with the same random vectors gener-
ating a homogeneous coordinate transformation throughout
the shell. But this randomization changes from shell to shell.
Figure 1 shows a schematic sketch of this stacking process.
For simplicity, the diagram does not illustrate the additional

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. Top panel: Simulated all-sky map of the deflection-angle modulus (in radians), obtained with the map-making procedure

combined with the LS adding method as described in the text.

shell structure stemming from the different output times
of the simulation. As discussed before, this simply means
that the underlying potential grid is updated on average
3-4 times with a different simulation output when integrat-
ing through one of the rotated and translated 500 h−1Mpc
shells, but without changing the coordinate transformation.
Notice that our stacking procedure eliminates any preferred
direction in the simulated all-sky maps.

In order to define the gravitational potential at each
point along a ray in direction n̂, we employ spatial tri-
linear interpolation in the gravitational potential grid. It is
then easy to numerically calculate the integral potential for
each ray, based for example on a simple trapezoidal formula,
which we use in this study. Obtaining the deflection angle
could in principle be done by finite differencing a calculated
lensing potential map, either in real space or the harmonic
domain. However, the accuracy of this approach would de-
pend critically on the angular resolution of the map. Also,
the sampling of the gravitational potential in the direction
transverse to the line-of-sight varies greatly with the dis-
tance from the observer, so in order to extract the maximum
information from the simulation data down to the smallest
resolved scales in the potential field, we prefer to directly
integrate up the deflection angle vector along each light ray
in our map. For this purpose we first use a fourth-order
finite-differencing scheme to compute the local 3D grid of the
gradient of the gravitational potential, which is then again
tri-linearly interpolated to each integration point along a
line-of-sight. In this way, we calculate the deflection angle
directly via equation (2) along the paths of undeflected light
rays.

Finally, we need to select a pixelization of the sky with a
set of directions n̂ ≡ (ϑ, ϕ). We here follow the standard ap-

proach introduced by the HEALPix4 hierarchical tessellation
of the unit sphere (Gorski et al. 2005).

4 SIMULATED MAPS OF THE LENSING

POTENTIAL AND DEFLECTION ANGLE

In Figs. 2, 3, and 4, we show full-sky maps of the lens-
ing potential, the deflection angle ϑ/ϕ-components, and the
deflection angle modulus |α|, respectively, obtained with
the map-making technique described in the previous section
combined with a semi-analytic procedure (to be explained
below) augmenting the lensing power on scales beyond the
MS box size. These maps are generated with a HEALPix pix-
elization parameter Nside = 2048, and have an angular reso-
lution of ∼ 1.72′ (Gorski et al. 2005), with 50331648 pixels
in total.

Several interesting features should be noted in these
maps. The distribution of the lensing potential, where the
monopole and dipole have been cut to simplify the visual in-
spection, appears to be dominated by large features, which
are probably simply arising from the projection of the largest
scale gravitational potential fluctuations along the line-of-
sight. However, the strength of local lensing distortions in
the CMB cannot be directly inferred from the map of the
lensing potential, as for the lensing deflection only the gra-
dient of the potential is what really matters.

The maps showing the lensing deflection angle compo-
nents have interesting features as well. First of all, the sig-
nal in the two components of the deflection angle appears to
possess two morphologically distinct regimes, characterized
on one hand by a diffuse background distribution, caused

4 healpix.jpl.nasa.gov
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Figure 5. Top panel: The power spectrum of the simulated lensing potential map of Fig. 2 (blue solid line), compared with the power
spectrum of the lensing potential obtained with the CAMB code (dashed-dotted black line), which also includes an estimate of the
non-linear contributions (Smith et al. 2003). The red dashed-3dotted and orange dotted lines differ only in the starting redshift for the
line-of-sight integration used in the map-making. While the result shown in red begins at z = 0, the orange line gives the result for a start
at z = 0.22. Finally, the light-green dashed line represents the linear lensing potential power spectrum from the CAMB code. Bottom
panel: The power spectrum (in radians squared) of the simulated deflection angle modulus map shown in the upper panel of Fig. 4 (blue
solid line), compared with the power spectrum (dashed-dotted black line) of the synthetic deflection angle modulus map obtained as a
Gaussian realization from the CAMB lensing potential power spectrum. As above, the red dashed-3dotted and orange dotted lines differ
only in the starting redshift of the line-of-sight integration, as labelled. The red line is for the full redshift interval, the orange one for a
start at z = 0.22, as described in the text.

probably by the lines-of-sight where no dominant structures
are encountered, and on the other hand by sharp features,
caused probably by massive CDM structures which give rise
to the largest deflections in the line-of-sight integration it-
self. The same features are evident in the map of the mod-
ulus of the deflection-angle.

The mean value of |α| in our simulated maps is 2.36′,
while its standard deviation is 1.25′. The latter has to be
compared with the corresponding value obtained via the an-

gular differentiation of synthetic Gaussian maps produced
with the lensing potential power spectrum generated by the
publicly available Code for Anisotropies in the Microwave
Background (CAMB5) using the MS cosmological parame-
ters, as we explain in detail below. We find only a 0.03%
difference for the rms of the |α|-maps from MS and CAMB,

5 See camb.info.
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when using the same maximum redshift of line-of-sight in-
tegration, i.e. zmax = 11.22. On the other hand, if we set
zmax = 1100 in CAMB, we find that our estimate is ∼ 1.7%
smaller than the semi-analytic one, due to the missed contri-
bution from sources beyond z ∼ 11 in our map-making pro-
cedure. For comparison, we also evaluate semi-analytically
the expected change in the standard deviation of |α| when
inserting in CAMB more recent estimates of the cosmo-
logical parameters (Komatsu et al. 2008). In this case the
rms from MS is ∼ 6% and ∼ 4.2% greater than the semi-
analytical prediction when in CAMB we set zmax = 11.22
and zmax = 1100, respectively.

The lensing potential and deflection angle maps of
Figs. 2 and 4 have been obtained combining the map-making
procedure described in the previous section with the method
for adding large-scale power that we now explain.
Firstly, we have measured the power spectra of the simu-
lated maps obtained from the MS scales only, i.e., using the
routine ANAFAST of the HEALPix package, we have inde-
pendently measured the power spectra of the lensing po-
tential (CΨΨ

l ) and deflection angle modulus (Cαα

l ) of the
MS simulated maps, without exploiting the relations be-
tween the lensing potential and the ±1-spin components of
the deflection angle, which hold in the spherical harmonic
domain (Hu 2000). Secondly, using the MS cosmological pa-
rameters, we have evaluated the semi-analytical power spec-
trum of the lensing potential from CAMB, including the es-
timate of the contribution from non-linearity (Smith et al.

2003) and stopping the line-of-sight integration redshift up
to z = 11.22. Using the lensing potential power spectrum
from CAMB, we have then produced the corresponding syn-
thetic map (and its angular differentiation) obtained as a
Gaussian realization generated with the HEALPix code SYN-

FAST, in order to produce the synthetic map of the deflec-
tion angle modulus from the semi-analytic expectations of
CAMB. From this map we have then extracted the power
spectrum of the deflection angle modulus, and after decon-
volution from the HEALPix pixel window function, we have
compared it, together with the lensing potential power spec-
trum, to the corresponding deconvolved MS power spectra.

The top panel of Fig. 5 shows the primary result of
this comparison. The black dashed-dotted line represents
the semi-analytic prediction of the lensing potential angular
power spectrum obtained from CAMB as discussed above.
This has been compared with the red dashed-3dotted line
obtained with the map-making procedure previously de-
scribed, and which represents the result for the full inte-
gration starting at z = 0 and ending at z = 11.22. In this
case, a power deficiency on large scales with respect to the
semi-analytical prediction is evident, and confined to a mul-
tipole range corresponding to one degree or more in the sky.
The same for the orange dotted line which gives the MS lens-
ing potential power spectrum obtained from a line-of-sight
integration starting at a redshift of z = 0.22 and ending
at z = 11.22; comparing the two curves, a power decrease
at low ℓ is easily observable in the orange dotted line, with
respect to the red dashed-3dotted one, illustrating the influ-
ence of the lack of comoving scales greater than 500 h−1Mpc
in the MS. As expected, this effect is evident in the multi-
pole range corresponding to a few degrees or more, which
is about the size of the MS box at the redshift most rele-
vant for CMB lensing, i.e. z ≃ 1. However, towards larger

ℓ, the deficit of large-scale power quickly decreases, and be-
comes negligible at scales l ∼

> 350. Between these scales and
l ∼ 2500, there is quite good agreement between the MS
lensing power spectrum and the semi-analytic prediction,
but at 2500 . l . 4000 the full MS signal for the lensing
potential actually slightly exceeds the semi-analytic result.
On this multipole range, the red dashed line is dominated
by Poisson noise, but the slight excess of power is clearly
observable from the orange dot line, in which there is no
contribution from the low redshift integration at z . 0.2.
We ascribe this power excess to the matter non-linearities
accurately reproduced from the Millennium Simulation. Fi-
nally, at l ∼ 4000 the MS signal is dominated by Poisson
sampling noise from low-redshift potential integration. In
fact, at very low redshifts, the 1.72′ angular resolution of
our map is comparable and even smaller than the intrin-
sic angular resolution corresponding to the spatial grid of
the 3D gravitational potential field we use. This is evident
in Fig. 6, where we compare the map angular resolution of
1.72′ (red dashed line) with the effective angular resolution
corresponding to the intrinsic grid spacing (195 h−1kpc) of
the 3D gravitational potential field as function of redshift.
Because the line-of-sight integral for the projected lensing
potential involves a 1/r weighting term, the resulting noise
terms are unfavourably amplified when the lensing potential
is considered.

The comparison above has been used to evaluate the
multipole range, 0 . l . 350, not covered by the MS scales.
On this interval we have applied the LS adding method:
from the CAMB and MS maps of the lensing potential, we
have extracted the two corresponding ensembles ΨCAMB

lm

and ΨMS

lm of spherical harmonic coefficients, respectively.
Since on low multipoles the effects of the non-Gaussianity
from the non-linear scales are negligible and the Ψlm are
independent, we have generated a joined ensemble of Ψ̃lm,
where Ψ̃lm = ΨCAMB

lm for 0 ≤ l ≤ 350 and Ψ̃lm = ΨMS

lm for
l > 350. Finally, we have generated the synthetic maps of
the lensing potential and deflection angle as non-Gaussian
constrained realizations, inserting the Ψ̃lm as input in SYN-

FAST, as shown in Figs. 2-4.

These maps have the peculiarity of reproducing the
non-linear and non-Gaussian effects of the MS non-linear
dark matter distribution at multipoles l > 350, while at the
same time including the contribution from the large scales
at l ≤ 350, where the lensing potential follows mostly the
linear trend as shown from the light-green dot-dashed line
in Fig. 5. The blue solid curve in the same Figure represents
the resulting power spectrum of the lensing potential map
after the LS addition.

The bottom panel of Fig. 5, shows the corresponding
power spectra for the physically and numerically more
meaningful deflection angle. Here we show a comparison of
the power spectrum of the deflection angle modulus (Cαα

l )
measured for the MS simulated maps, in the absence of LS
supplying, with the semi-analytic prediction constructed
with CAMB and SYNFAST, as explained above. Again, we
find a deficit of power on large scales, and a reassuring
agreement over about one order of magnitude in l on
intermediate scales. However, a slight excess of power over
the semi-analytic predictions is easily seen at l ∼

> 2500.
As previously mentioned, it can be attributed to the
non-linear evolution of the MS structures. Finally, the blue
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solid line represents the power spectrum extracted from
the deflection angle modulus map of Fig. 4, after adding
large-scale structures.

Our map making procedure offers very good resolution
at the most important redshift for lensing of the CMB,
z ∼ 1 (see also Fig. 7), where the intrinsic angular resolution
of our potential grid is six times better than the angular
resolution of the full-sky map. We therefore think that
this higher small-scale power is a direct result of the more
accurate representation of non-linear structure formation
in our map simulation methodology. In fact, in our current
maps we are still far from probing the most non-linear
scales accessible in principle with our simulation. Those are
a factor 40 smaller (namely 5 h−1kpc) than resolved by the
potential grid we have employed. However, using such a fine
mesh is currently impractical, and would lead to angular
resolutions in full-sky maps that are unaccessible even by
the Planck satellite. However, for a smaller solid-angle
of the map, these scales can be probed with a different
ray-tracing technique (Hilbert et al. 2007).

We note that the semi-analytic prediction for the power
spectrum of the deflection angle modulus has been evalu-
ated as an angular gradient in the harmonic domain of a
synthetic lensing potential Gaussian map; that is accurate
since in this approach we work with Fourier modes right
from the start anyway. From a numerical point of view, the
integral and derivative operators in Eq. (2) do however not
commute, even if they analytically do, in the sense that fi-
nite differencing our measured projected potential will not
necessarily give the same result as numerically integrating
the deflection angle along each line of sight. The latter ap-
proach is more accurate, expecially at very high resolution,
and it has been used by us in the comparison above since
numerically integrating the deflection angle along each line
of sight allows to preserve the contribution from the non-
linear scales in a more efficient way than simply operating
in the harmonic domain.

Finally, we consider the distribution of the deflection
angle power along the line-of-sight. In Fig. 7, we show the
cumulative and differential variance of the deflection angle as
a function of redshift. We see that the most important con-
tributions to the final signal stem from z ∼ 1, i.e. about half
ways between the last scattering surface and the observer,
as expected. This also allows us to assess the relative error
introduced by stopping the integration at z ≃ 11, which is
of the order of a few percent, as mentioned above.

5 CONCLUSIONS

We constructed the first all sky maps of the cosmic mi-
crowave background (CMB) weak-lensing potential and de-
flection angle based on a high-resolution cosmological N-
body simulation, the Millennium Run Simulation (MS). The
lensing potential and deflection angle are evaluated in the
Born approximation by directly ray-tracing through a three-
dimensional, high-resolution mesh of the evolving peculiar
gravitational potential and its gradient. The time evolution
is approximated by 53 simulation outputs between redshift

Figure 6. Comparison between the angular resolution of 1.72′ of
our full-sky maps (red dashed line) and the redshift-dependent,
effective angular resolution (blue solid line) corresponding to the
intrinsic grid spacing (∼ 200 h−1kpc) of the three-dimension grav-
itational potential field constructed from the Millennium Simula-
tion.

z = 0 and z ≃ 11, each used to cover a thin redshift interval
corresponding to a shell in the past light-cone around the
observer. To prevent artificial repetition of structures along
the line-of-sight, while at the same time avoiding disconti-
nuities in the force transverse to a line-of-sight, we tessellate
shells of comoving thickness corresponding to the size of the
box (500 h−1Mpc) with periodic replicas which are coher-
ently rotated and translated within each shell by a random
amount. Moreover, in order to include the contribution to
the lensing signal from the scales larger than the MS box
size, we have implemented a method for adding large-scale
structure as described in the text.

Using the Hierarchical Equal Area Latitude Pixelization
(HEALPIX) package for obtaining a uniform sky-coverage,
we have constructed simulated CMB lensing maps with ∼ 5
million pixels and an angular resolution of ∼ 1.72′, based on
potential fields calculated on 25603 meshes from the Millen-
nium simulation. In the present study, we analyze the power
spectrum of the lensing potential and the deflection an-
gle, and compare it with predictions made by semi-analytic
approaches. We note that our general approach for map-
making can be extended to other CMB foregrounds, includ-
ing the Integrated Sachs-Wolfe (ISW) and Rees-Sciama ef-
fects at low redshifts, as well as estimates of the Sunyaev
Zel’dovich (SZ) effects, or of the X-ray background. This
will in particular allow studies of the cross-correlation of the
lensing of CMB temperature and polarization with these ef-
fects, which will be the subject of a forthcoming study. In
our approach we do not take into account the contributions
of the baryonic physics to the lensing effects on the CMB.
We expect in fact that these contributions could be non-
negligible only on the typical scales of cluster cores and be-
low, thus well above l ∼ 3000. Our comparison of the angular
power spectrum of the lensing-potential and the deflection-
angle with semi-analytic expectations reveals two different
regimes in our results. First, for multipoles up to l ∼ 2500,
our simulated maps produce a lensing signal that matches
the semi-analytic expectation. Second, we find evidence for
a slight excess of power in our simulated maps on scales cor-
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Figure 7. The cumulative and differential variance of the deflec-
tion angle map as a function of redshift. The symbols mark the
different output times of the Millennium Simulation. The vertical
dashed line gives the redshift that corresponds to the 50% quar-
tile of the total variance in our maps, which is approximately at
z ∼ 1. The dotted lines mark the 5% and 95% percentiles, indicat-
ing that 90% of our signal in the deflection angle power spectrum
is produced in the redshift range z ∼ 0.1 to z ∼ 6.0. Note how-
ever that we have lost a few percent of the total power due to our
truncation of the integration at z = 11.22. When included, this
would slightly shift these precentiles to higher redshift.

responding to few arcminutes and less, which we attribute
to the accurate inclusion of non-linear power in the Millen-
nium simulation. It will be especially interesting to study
the non-Gaussianities in the signal we found and its implied
consequences for CMB observations.

The new method proposed here demonstrates that an
all-sky mapping of CMB lensing can be obtained based on
modern high-resolution N-body simulations. This opens the
way towards a full and accurate characterization of CMB
lensing statistics, which is unaccessible beyond the power
spectrum with the existing semi-analytical techniques. This
is relevant in view of the forthcoming CMB probes, both as
a way to detect, extract and study the CMB lensing signal,
which carries hints on the early structure formation as well
as the onset of cosmic acceleration, and as a tool to distin-
guish CMB lensing from the Gaussian contribution due to
primordial gravitational fluctuations.
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