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Euclidean spaces as weak tangents of infinitesimally Hilbertian

metric measure spaces with Ricci curvature bounded below

Nicola Gigli ∗ Andrea Mondino † Tapio Rajala ‡

May 9, 2013

Abstract

We show that in any infinitesimally Hilbertian CD∗(K,N)-space at almost every point
there exists a Euclidean weak tangent, i.e. there exists a sequence of dilations of the
space that converges to a Euclidean space in the pointed measured Gromov-Hausdorff
topology. The proof follows by considering iterated tangents and the splitting theorem for
infinitesimally Hilbertian CD∗(0, N)-spaces.
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1 Introduction

Gromov-Hausdorff limits of Riemannian manifolds with Ricci curvature lower bounds, Ricci-
limits for short, have been extensively studied in particular by Cheeger and Colding in a series
of papers [11, 12, 13, 14, 15, 16, 17]. In [12] they proved, among other things, that the tangent
space at almost every point - intended as pointed Gromov-Hausdorff limit of rescaled spaces
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- of a Ricci-limit space is Euclidean, with dimension possibly depending on the point. Only
much later, in [19] Colding-Naber showed that in fact for any Ricci-limit space there exists
k ∈ N such that at almost every point in the space the tangent cone is Rk. Notice however,
that there can be points in the Ricci-limits where the tangent is not unique, see for instance
[18] for examples.

In [30] and [36, 37] Lott-Villani on one side and Sturm on the other independently pro-
posed a definition of ‘having Ricci curvature bounded from below by K and dimension
bounded above by N ’ for metric measure spaces, these being called CD(K,N)-spaces (in
[30] only the cases K = 0 or N =∞ were considered). Here K is a real number and N a real
number at least one, the value N =∞ being also allowed.

The crucial properties of their definition are the compatibility with the smooth Rieman-
nian case and the stability w.r.t. measured Gromov-Hausdorff convergence.

More recently, in [7] Bacher-Sturm proposed a variant of the curvature-dimension con-
dition CD(K,N), called reduced curvature-dimension condition and denoted as CD∗(K,N)
which, while retaining the aforementioned stability and compatibility, has better globalization
and tensorialization properties. For the special case K = 0 we have CD(0, N) = CD∗(0, N).
For arbitrary K we have that any CD(K,N)-space is also CD∗(K,N), but the converse impli-
cation is currently not perfectly understood (it is known that CD∗(K,N) implies CD(K∗, N),
where K∗ = N−1

N K ≤ K but the equivalence is open; for some recent progress see [10] and
[9]).

From both the geometric and analytic perspective, a delicate issue concerning the CD(K,N)
and CD∗(K,N) conditions is that they comprehend Finsler structures (see the last theorem
in [38]), which after the works of Cheeger-Colding are known not to appear as Ricci-limit
spaces.

To overcome this problem, in [4] the first author together with Ambrosio-Savaré intro-
duced, specifically for the case N =∞, a more restrictive condition which retains the stability
properties w.r.t. measured Gromov-Hausdorff convergence and rules out Finsler geometries.
This notion is called Riemannian curvature bound and denoted by RCD(K,∞). According
to the slightly finer axiomatization presented in [2], by the authors and Ambrosio it can be
presented as the reinforcement of the CD(K,∞) condition with the requirement that the
space is ‘infinitesimally Hilbertian’ (see also [21]), the latter meaning that the Sobolev space
W 1,2(X, d,m) of real valued functions on (X, d,m) endowed with its canonical norm (i.e. the
one built with the L2 norm and the Cheeger energy) is Hilbert (in general it is only Banach).

In [4], [5] (see also [24] for the first progresses in this direction) it has been shown that the
RCD(K,∞) condition is equivalent to the (properly written/understood) Bochner inequality

∆
|∇f |2

2
≥ ∇f · ∇∆f +K|∇f |2.

The non-trivial refinement of this result to the finite dimensional case has been carried out
first in [20] by Erbar-Kuwada-Sturm and slightly later with different techniques by the second
author together with Ambrosio-Savaré in [6], where it has been proved that ‘infinitesimal
Hilbertianity plus CD∗(K,N)’ is equivalent to the Bochner inequality

∆
|∇f |2

2
≥ (∆f)2

N
+∇f · ∇∆f +K|∇f |2,

(again, properly understood).
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Although infinitesimal Hilbertianity is a requirement analytic in nature, it has been shown
in [23] that on infinitesimally Hilbertian CD∗(0, N)-spaces the analog of the Cheeger-Colding-
Gromoll splitting theorem holds (see also [26] for the Abresch-Gromoll inequality), thus
providing a geometric property which fails on general CD(K,N)/CD∗(K,N)-spaces. Unlike
general CD(K,N)/CD∗(K,N)-spaces, infinitesimally Hilbertian CD∗(K,N)-spaces are also
known to be essentially non branching [35].

Still in the direction of understanding the geometry of infinitesimally Hilbertian CD∗(K,N)-
spaces, a natural conjecture is that on such setting the tangent spaces (i.e. pointed measured
Gromov-Hausdorff limits of rescaled spaces) are Euclidean at almost every point. Moreover,
like for the Ricci-limits, the tangents should be unique at almost every point. Here we make
a step towards these conjectures by proving the following result:

Theorem 1.1. Let K ∈ R, 1 ≤ N <∞ and (X, d,m) an infinitesimally Hilbertian CD∗(K,N)-
space. Then at m-almost every x ∈ X there exists n ∈ N, n ≤ N , such that

(Rn, dE ,Ln, 0) ∈ Tan(X, d,m, x),

where dE is the Euclidean distance and Ln is the n-dimensional Lebesgue measure normalized
so that

∫
B1(0) 1− |x|dLn(x) = 1.

Here Tan(X, d,m, x) denotes the collection of pointed measured Gromov-Hausdorff limits
of rescaled spaces centered at x. Notice that the normalization of the limit measure expressed
in the statement plays little role and depends only on the choice of renormalization of rescaled
measures in the process of taking limits.

The idea for the proof of Theorem 1.1 is the one used by Cheeger-Colding in [12], namely
to prove that m-a.e. point is the middle point of a non-constant geodesic, noticing that in
the limit of blow-ups the space becomes an infinitesimally Hilbertian CD∗(0, N)-space and
the geodesics a line, then to use the splitting to factorize a direction. At this point it is a
matter of proving that one can factorize enough dimensions to deduce that the limit is really
Euclidean. In order to do so, Cheeger-Colding used some additional geometric information
that is currently unavailable in the non-smooth setting: this is why we can’t really prove that
every tangent is Euclidean but only the existence of such tangent space.

Instead, we use a crucial idea of Preiss [33], adapted by Le Donne [29] to the metric-
measure setting, which states that on doubling metric-measure spaces ‘tangents of tangents
are tangents themselves’, see Theorem 3.2 for the precise statement. Notice that we report
the proof of such result because Le Donne stated the theorem for pointed Gromov-Hausdorff
convergence, while we need it for the pointed measured Gromov-Hausdorff topology. Yet,
such variant presents no additional difficulties so that we will basically just follow Le Donne’s
argument keeping track of the measures involved.

Finally, we remark that given that Theorem 1.1 is proved via such compactness argument,
in fact we prove the following slightly stronger statement: for every sequence of scalings we
have that for m-a.e. x there exists a subsequence (possibly depending on x) converging to a
Euclidean space.

Acknowledgment. A.M. acknowledges the support of the ETH fellowship, part of the work
was written when he was supported by the ERC grant GeMeTheNES directed by Prof. Luigi
Ambrosio. T.R. acknowledges the support of the Academy of Finland project no. 137528.
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2 Preliminaries

2.1 Pointed metric measure spaces

The basic objects we will deal with throughout the paper are metric measure spaces and
pointed metric measure spaces, m.m.s. and p.m.m.s. for short.

For our purposes, a m.m.s. is a triple (X, d,m) where (X, d) is a complete and separable
metric space and m is a boundedly finite (i.e. finite on bounded subsets) non-negative complete
Borel measure on it.

We will mostly work under the assumption that the measure m is boundedly doubling, i.e.
such that

0 < m(B2r(x)) ≤ C(R)m(Br(x)), ∀x ∈ X, r ≤ R, (2.1)

for some given constants C(R) > 0 depending on R > 0. Notice that the map C : (0,∞) →
(0,∞) can, and will, be taken non-decreasing.

The bound (2.1) implies that suppm = X and m 6= 0 and by iteration one gets

m(BR(a)) ≤ m(Br(x))
(
C(R)

)log2( r
R

)+2
, ∀0 < r ≤ R, a ∈ X, x ∈ BR(a). (2.2)

In particular, this shows that bounded subsets are totally bounded and hence that boundedly
doubling spaces are proper.

A p.m.m.s is a quadruple (X, d,m, x̄) where (X, d,m) is a metric measure space and
x̄ ∈ supp(m) is a given ‘reference’ point. Two p.m.m.s. (X, d,m, x̄), (X ′, d′,m′, x̄′) are declared
isomorphic provided there exists an isometry T : (supp(m), d) → (supp(m′), d′) such that
T]m = m′ and T (x̄) = x̄′.

We say that a p.m.m.s. (X, d,m, x̄) is normalized provided
∫
B1(x̄) 1 − d(·, x̄) dm = 1. Ob-

viously, given any p.m.m.s. (X, d,m, x̄) there exists a unique c > 0 such that (X, d, cm, x̄) is
normalized, namely c := (

∫
B1(x̄) 1− d(·, x̄) dm)−1.

We shall denote by MC(·) the class of (isomorphism classes of) normalized p.m.m.s. ful-
filling (2.1) for given non-decreasing C : (0,∞)→ (0,∞).

2.2 Pointed measured Gromov-Hausdorff topology and measured tangents

The definition of convergence of p.m.m.s. that we shall adopt is the following (see [38], [25]
and [8]):

Definition 2.1 (Pointed measured Gromov-Hausdorff convergence). A sequence (Xj , dj ,mj , x̄j)
is said to converge in the pointed measured Gromov-Hausdorff topology (p-mGH for short) to
(X∞, d∞,m∞, x̄∞) if and only if there exists a separable metric space (Z, dZ) and isometric
embeddings {ιj : (supp(mj), dj) → (Z, dZ)}i∈N̄ such that for every ε > 0 and R > 0 there
exists i0 such that for every i > i0

ι∞(BX∞
R (x̄∞)) ⊂ BZ

ε [ιj(B
Xj

R (x̄j))] and ιj(B
Xj

R (x̄j)) ⊂ BZ
ε [ι∞(BX∞

R (x̄∞))],

where BZ
ε [A] := {z ∈ Z : dZ(z,A) < ε} for every subset A ⊂ Z, and∫

Y
ϕd((ιj)](mj)) →

∫
Y
ϕd((ι∞)](m∞)) ∀ϕ ∈ Cb(Z),

where Cb(Z) denotes the set of real valued bounded continuous functions with bounded support
in Z.
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Sometimes in the following, for simplicity of notation, we will identify the spaces Xj with
their isomorphic copies ιj(Xj) ⊂ Z.

It is obvious that this is in fact a notion of convergence for isomorphism classes of p.m.m.s.,
the following proposition also follows by standard means, see e.g. [25] for details:

Proposition 2.2. Let C : (0,∞)→ (0,∞) be a non-decreasing function. Then there exists a
distance DC(·) on MC(·) for which converging sequences are precisely those converging in the
p-mGH sense. Furthermore, the space (MC(·),DC(·)) is compact.

Notice that the compactness of (MC(·),DC(·)) follows by the standard argument of Gro-
mov: the measures of spaces in MC(·) are uniformly boundedly doubling, hence balls of given
radius around the reference points are uniformly totally bounded and thus compact in the
GH-topology. Then weak compactness of the measures follows using the doubling condition
again and the fact that they are normalized.

The object of study of this paper are measured tangents, which are defined as follows. Let
(X, d,m) be a m.m.s., x̄ ∈ supp(m) and r ∈ (0, 1); we consider the rescaled and normalized
p.m.m.s. (X, r−1d,mx̄

r , x̄) where the measure mx̄
r is given by

mx̄
r :=

(∫
Br(x̄)

1− 1

r
d(·, x̄) dm

)−1

m. (2.3)

Then we define:

Definition 2.3 (The collection of tangent spaces Tan(X, d,m, x̄)). Let (X, d,m) be a m.m.s.
and x̄ ∈ supp(m). A p.m.m.s. (Y, dY , n, y) is called a tangent to (X, d,m) at x̄ ∈ X if there
exists a sequence of radii ri ↓ 0 so that (X, r−1

i d,mx̄
ri , x̄) → (Y, dY , n, y) as i → ∞ in the

pointed measured Gromov-Hausdorff topology.
We denote the collection of all the tangents of (X, d,m) at x̄ ∈ X by Tan(X, d,m, x̄).

Notice that if (X, d,m) satisfies (2.1) for some non-decreasing C : (0,∞) → (0,∞), then
(X, r−1d,mx

r , x̄) ∈MC(·) for every x̄ ∈ X and r ∈ (0, 1) and hence the compactness stated in
Proposition 2.2 ensures that the set Tan(X, d,m, x̄) is non-empty.

It is also worth to notice that the map

supp(m) 3 x 7→ (X, d,mx
r , x),

is (sequentially) d-continuous for every r > 0, the target space being endowed with the p-mGH
convergence.

2.3 Lower Ricci curvature bounds

Here we quickly recall those basic definitions and properties of spaces with lower Ricci cur-
vature bounds that we will need later on.

We denote by P(X) the space of Borel probability measures on the complete and separable
metric space (X, d) and by P2(X) ⊂ P(X) the subspace consisting of all the probability
measures with finite second moment.

For µ0, µ1 ∈P2(X) the quadratic transportation distance W2(µ0, µ1) is defined by

W 2
2 (µ0, µ1) = inf

γ

∫
X
d2(x, y) dγ(x, y), (2.4)
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where the infimum is taken over all γ ∈P(X×X) with µ0 and µ1 as the first and the second
marginal.

Assuming the space (X, d) to be geodesic, also the space (P2(X),W2) is geodesic. We
denote by Geo(X) the space of (constant speed minimizing) geodesics on (X, d) endowed
with the sup distance, and by et : Geo(X) → X, t ∈ [0, 1], the evaluation maps defined by
et(γ) := γt. It turns out that any geodesic (µt) ∈ Geo(P2(X)) can be lifted to a measure
π ∈ P(Geo(X)), so that (et)#π = µt for all t ∈ [0, 1]. Given µ0, µ1 ∈ P2(X), we denote by
OptGeo(µ0, µ1) the space of all π ∈P(Geo(X)) for which (e0, e1)#π realizes the minimum in
(2.4). If (X, d) is geodesic, then the set OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈P2(X).

We turn to the formulation of the CD∗(K,N) condition, coming from [7], to which we also
refer for a detailed discussion of its relation with the CD(K,N) condition (see also [10] and
[9]).

Given K ∈ R and N ∈ [1,∞), we define the distortion coefficient [0, 1] × R+ 3 (t, θ) 7→
σ

(t)
K,N (θ) as

σ
(t)
K,N (θ) :=



+∞, if Kθ2 ≥ Nπ2,
sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2,

t if Kθ2 = 0,
sinh(tθ

√
K/N)

sinh(θ
√
K/N)

if Kθ2 < 0.

Definition 2.4 (Curvature dimension bounds). Let K ∈ R and N ∈ [1,∞). We say that a
m.m.s. (X, d,m) is a CD∗(K,N)-space if for any two measures µ0, µ1 ∈ P(X) with support
bounded and contained in supp(m) there exists a measure π ∈ OptGeo(µ0, µ1) such that for
every t ∈ [0, 1] and N ′ ≥ N we have

−
∫
ρ

1− 1
N′

t dm ≤ −
∫
σ

(1−t)
K,N ′ (d(γ0, γ1))ρ

− 1
N′

0 + σ
(t)
K,N ′(d(γ0, γ1))ρ

− 1
N′

1 dπ(γ) (2.5)

where for any t ∈ [0, 1] we have written (et)]π = ρtm + µst with µst ⊥ m.

Notice that if (X, d,m) is a CD∗(K,N)-space, then so is (supp(m), d,m), hence it is not
restrictive to assume that supp(m) = X, a hypothesis that we shall always implicitly do from
now on. It is also immediate to establish that

If (X, d,m) is CD∗(K,N), then the same is true for (X, d, cm) for any c > 0.

If (X, d,m) is CD∗(K,N), then for λ > 0 the space (X,λd,m) is CD∗(λ−2K,N).
(2.6)

On CD∗(K,N) a natural version of the Bishop-Gromov volume growth estimate holds (see
[7] for the precise statement), it follows that for any given K ∈ R, N ∈ [1,∞) there exists a
function C : (0,∞) → (0,∞) depending on K,N such that any CD∗(K,N)-space (X, d,m)
fulfills (2.1).

In order to enforce, in some weak sense, a Riemannian-like behavior of spaces with a
curvature-dimension bound, in [4] (see also [2], [21], [20], [6], [32]), a strengthening of the
CD∗(K,N) has been proposed: it consists in requiring that the space (X, d,m) is such that
the Sobolev space W 1,2(X, d,m) is Hilbert, a condition we shall refer to as ‘infinitesimal
Hilbertianity’. It is out of the scope of this note to provide full details about the definition
of W 1,2(X, d,m) and its relevance in connection with Ricci curvature lower bounds. We will
instead be satisfied in recalling the definition and two crucial properties which are relevant
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for our discussion: the stability (see [25] and references therein) and the splitting theorem
(see [23]).

First of all recall that on a m.m.s. there is not a canonical notion of ‘differential of a
function’ f but at least we can speak of ‘modulus of the differential’, called weak upper
differential and denoted with |Df |w; with this object one defines the Cheeger energy

Ch(f) :=
1

2

∫
X
|Df |2w dm.

The Sobolev space W 1,2(X, d,m) is by definition the space of L2(X,m) functions having finite
Cheeger energy, and it is endowed with the natural norm ‖f‖2W 1,2 := ‖f‖2L2 + 2Ch(f) which
makes it a Banach space. We remark that, in general,W 1,2(X, d,m) is not Hilbert (for instance,
on a smooth Finsler manifold the space W 1,2 is Hilbert if and only if the manifold is actually
Riemannian); in case W 1,2(X, d,m) is Hilbert then we say that (X, d,m) is infinitesimally
Hilbertian. Now we state two fundamental properties of infinitesimally Hilbertian CD∗(K,N)
spaces.

Theorem 2.5 (Stability). Let K ∈ R and N ∈ [1,∞). Then the class of normalized p.m.m.s
(X, d,m, x̄) such that (X, d,m) is infinitesimally Hilbertian and CD∗(K,N) is closed (hence
compact) w.r.t. p-mGH convergence.

Theorem 2.6 (Splitting). Let (X, d,m) be an infinitesimally Hilbertian CD∗(0, N)-space
with 1 ≤ N < ∞. Suppose that supp(m) contains a line. Then (X, d,m) is isomorphic to
(X ′×R, d′× dE ,m

′×L1), where dE is the Euclidean distance, L1 the Lebesgue measure and
(X ′, d′,m′) is an infinitesimally Hilbertian CD∗(0, N − 1)-space if N ≥ 2 and a singleton if
N < 2.

Notice that for the particular case K = 0 the CD∗(0, N) condition is the same as the
CD(0, N) one. Also, in the statement of the splitting theorem, by ‘line’ we intend an isometric
embedding of R.

Notice that Theorem 2.5 and properties (2.6) ensure that for any K,N we have that

If (X, d,m) is an infinitesimally Hilbertian CD∗(K,N)-space and x ∈ X we have

that every (Y, d, n, y) ∈ Tan(X, d,m, x) is infinitesimally Hilbertian and CD∗(0, N).
(2.7)

3 Proof of the main result

We will first show that at almost every point in a CD∗(K,N)-space there exist a geodesic for
which the point is an interior point. After that, we prove that iterated tangents of CD∗(K,N)-
spaces are still tangents of the original space (actually we prove this part in the slightly more
general framework of m.m.s. satisfying (2.1) ). Finally, we use the interior points of geodesics
and iterated tangents together with the splitting theorem (Theorem 2.6) to conclude the proof
of Theorem 1.1.

3.1 Prolongability of geodesics

The following result is a simple consequence of the definition of CD∗(K,N)-space. The same
argument was used in [22] and [34], which were in turn inspired by some ideas in [31].
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Lemma 3.1 (Prolongability of geodesics). Let K ∈ R, N ∈ [1,∞) and (X, d,m) be a
CD∗(K,N)-space that is not a singleton. Then at m-almost every x ∈ X there exists a non-
constant geodesic γ ∈ Geo(X) so that γ 1

2
= x.

Proof. Take x0 ∈ X and R > 0. Define µ0 = 1
m(BR(x0))m BR(x0) and µ1 = δx0 . Let π ∈

OptGeo(µ0, µ1) be the measure satisfying (2.5). With the notation of (2.5) we then have

−
∫
ρ

1− 1
N

t dm ≤ −
∫
σ

(1−t)
K,N (d(γ0, γ1))ρ

− 1
N

0 dπ(γ) → −m(BR(x0))
1
N , as t ↓ 0.

Let us write Et := {x ∈ X : ρt(x) > 0}. By Jensen’s inequality we get

−
∫
ρ

1− 1
N

t dm = −
∫
Et

ρ
1− 1

N
t dm ≥ −m(Et)

(
1

m(Et)

∫
Et

ρt dm

)1− 1
N

≥ −m(Et)
1
N .

Since the optimal transport is performed along geodesics connecting the points of BR(x0) to
x0, we have the inclusion Et ⊂ BR(x0); therefore m(Et) → m(BR(x0)) as t ↓ 0, hence m-a.e.
x ∈ BR(x0) belongs to Et for some tx > 0. By construction, for m-a.e. x ∈ Et there exists
γ ∈ Geo(X) and t > 0 with γt = x and γ1 = x0, thus for m-a.e. x ∈ BR(x0) there exists a
non-constant geodesic γ ∈ Geo(X) so that γ 1

2
= x. The conclusion follows by covering the

space X with countably many balls.

3.2 Tangents of tangents are tangents

In this subsection we adapt the celebrated theorem of Preiss [33] of iterated tangents of
measures in Rn to our setting. In particular we are inspired by [29, Theorem 1.1], where Le
Donne proved that for metric spaces with doubling measure almost everywhere the tangents
of tangents are tangents of the original space. The difference here is that we also include the
weak convergence of measures to the notion of tangents.

Theorem 3.2 (‘Tangents of tangents are tangents’). Let (X, d,m) be a m.m.s. satisfying
(2.1) for some C : (0,∞)→ (0,∞).

Then for m-a.e. x ∈ X the following holds: for any (Y, dY , n, y) ∈ Tan(X, d,m, x) and any
y′ ∈ Y we have

Tan(Y, dY , n
y′

1 , y
′) ⊂ Tan(X, d,m, x),

the measure ny
′

1 being defined as in (2.3).

Proof. Before starting let us recall that in our convention supp(m) = X. We need to prove
that

m
({
x ∈ X : there exist (Y, dY , n, y) ∈ Tan(X, d,m, x) and

y′ ∈ Y such that (Y, dY , n
y′

1 , y
′) /∈ Tan(X, d,m, x)

})
= 0,

This will follow if we can show that for all k,m ∈ N one has

m

({
x ∈ X : there exist (Y, dY , n, y) ∈ Tan(X, d,m, x) and y′ ∈ Y such that dY (y, y′) ≤ m

and DC(·)

(
(Y, dY , n

y′

1 , y
′), (X, r−1d,mx

r , x)
)
≥ 2k−1 for all r ∈ (0,m−1)

})
= 0.
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Fix k,m ∈ N and notice that since (MC(·),DC(·)) is compact, it is also separable. Hence it is
sufficient to show that for any closed set U ⊂MC(·) with diamDC(·)(U) < (2k)−1 the set

A =

{
x ∈X : ∃ (Y, dY , n, y) ∈ Tan(X, d,m, x) and y′ ∈ Y such that (Y, dY , n

y′

1 , y
′) ∈ U,

dY (y, y′) ≤ m and DC(·)

(
(Y, dY , n

y′

1 , y
′), (X, r−1d,mx

r , x)
)
≥ 2k−1 ∀r ∈ (0,m−1)

}
,

has m-measure zero. We start by proving that A is Suslin, and thus m-measurable (this
implies that the two subsets defined in the beginning of the proof are Suslin and thus m-
measurable as well). To this aim, let A ⊂ X ×MC(·) be given by the couples

(
x, (Y, dY , n, y)

)
with (Y, dY , n, y) ∈ Tan(X, d,m, x) and recall that for every r ∈ R the map X 3 x 7→
(X, rd,mx

1/r, x) ∈ (MC(·),DC(·)) is continuous. Thus the set ∪x∈X{x}×B1/i(X, rd,m
x
1/r, x) ⊂

X ×MC(·) is open and hence the identity

A =
⋂
i∈N

⋂
j∈N

⋃
r≥j

⋃
x∈X
{x} ×B1/i(X, rd,m

x
1/r, x)

shows that A ⊂ X ×MC(·) is Borel. Next notice that the set B ⊂MC(·) defined by

B := U ∩
{

(Y, dY , n, ȳ) : DC(·)
(
(Y, dY , n, ȳ), (X, r−1d,mx

r , x)
)
≥ 2k−1, ∀r ∈ (0,m−1)

}
,

is closed. Then using the fact that spaces in MC(·) are proper it is easy to deduce that the
set C ⊂MC(·) given by

C :=
{

(Y, dY , n, ȳ) : ∃y′ ∈ Y such that dY (y′, ȳ) ≤ m and (Y, dY , n
y′

1 , y
′) ∈ B

}
,

is closed as well. Hence, as A is the projection on the first factor of A ∩ (X × C), it is Suslin,
as claimed.

Now we proceed by contradiction and assume that for some k,m,U and A as above one
has m(A) > 0. Let a ∈ A be an m-density point of A, i.e.

lim
r↓0

m(A ∩Br(a))

m(Br(a))
= 1. (3.1)

Since a ∈ A, there exist (Y, dY , n, y) ∈ Tan(X, d,m, a) and y′ ∈ Y such that (Y, dY , n
y′

1 , y
′) ∈ U

and the fact that (Y, dY , n, y) ∈ Tan(X, d,m, a) grants the existence of a sequence ri ↓ 0 such
that

(X, r−1
i d,ma

ri , a)→ (Y, dY , n, y) p-mGH. (3.2)

Let (Z, dZ) be the separable metric space and ιi, i ∈ N∪{∞}, the isometric embeddings given
by the definition of p-mGH convergence in (3.2). It is then immediate to check directly from
Definition 2.1 that there exists a sequence {xi}i∈N ⊂ X such that

lim
i→∞

dZ(ιi(xi), ι∞(y′)) = 0. (3.3)

Notice that we have

lim
i→∞

dZ(ιi(xi), ιi(a)) ≤ lim
i→∞

dZ(ιi(xi), ι∞(y′)) + dZ(ι∞(y′), ι∞(y)) + lim
i→∞

dZ(ι∞(y), ιi(a))

= dZ(ι∞(y′), ι∞(y)),
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and thus by the definition of rescaled metrics we get

d(a, xi) ≤ C ′ri, ∀i ∈ N, (3.4)

for some constant C ′ > 0.
Claim: There exists a sequence {ai}i∈N ⊂ A ⊂ X such that

lim
i→∞

dZ(ιi(ai), ι∞(y′)) = 0. (3.5)

Proof of the claim. Here we use the fact that m is locally doubling. This assumption is needed
to deduce that for every ε > 0 there exists i0 ∈ N such that for every i ≥ i0 we have
A ∩Bεri(xi) 6= ∅. Indeed if it is not the case, there exists ε0 > 0 such that it holds

A ∩Bε0ri(xi) = ∅, ∀i ∈ J, (3.6)

for some infinite set of indexes J ⊂ N. Up to choosing a smaller ε0, (3.4) implies that
Bε0ri(xi) ⊂ B2C′ri(a) and so by the estimate (2.2) we get

m(Bε0ri(xi)) ≥ C ′′m(B2Cri(a)), ∀i ∈ N, (3.7)

for some constant C ′′ independent on i (but possibly depending on all other objects). Com-
bining (3.6), (3.7) we get

m(A ∩B2Cri(a)) ≤ m(B2Cri(a) \Bε0ri(xi)) ≤ (1− C ′′)m(B2Cri(a)), ∀i ∈ J,

and thus

lim
i→∞

m(A ∩B2Cri(a))

m(B2Cri(a))
≤ 1− C ′′ < 1

contradicting that a is an m-density point of A, namely (3.1).
Hence for every ε > 0 eventually it holds A ∩ Bεri(xi) 6= ∅. With a diagonalization

argument we can then find a sequence (ai) ⊂ A such that limi→∞ r
−1
i d(ai, xi) = 0. Recalling

that dZ(ιi(ai), ιi(xi)) = rid(ai, xi), our claim (3.5) follows from (3.3).

By (3.5) and directly from the definition of p-mGH convergence, using the same space
(Z, dZ) and the same embeddings ιi granting the convergence in (3.2) we deduce that

(X, r−1
i d,ma

ri , ai)→ (Y, dY , n, y
′) p-mGH.

Since in the normalization (2.3) we use functions of the form χBr(x̄)(·) (1 − dZ(·, x̄)) ∈ Cb,
from weak convergence it follows that

(X, r−1
i d,mai

ri , ai)→ (Y, dY , n
y′

1 , y
′) p-mGH,

and thus for i large enough

DC(·)
(
(X, r−1

i d,mai
ri , ai), (Y, dY , n

y′

1 , y
′)
)
≤ 1

2k
. (3.8)

Since by construction we have ai ∈ A, there exist spaces (Yi, di, ni, yi) ∈ Tan(X, d,m, ai)

and points y′i ∈ Yi such that (Yi, di, (ni)
y′i
1 , y

′
i) ∈ U and

DC(·)

(
(Yi, di, (ni)

y′i
1 , y

′
i), (X, r

−1d,mai
r , ai)

)
≥ 2

k
for all r ∈ (0,m−1), (3.9)
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where (ni)
y′i
1 is the normalization of the measure ni at y′i as in (2.3).

Therefore by combining the bound diamDC(·)(U) ≤ (2k)−1 with (3.8) and (3.9), for suffi-
ciently large i we have

2

k
≤ DC(·)

(
(Yi, di, (ni)

y′i
1 , y

′
i), (X, r

−1
i d,mai

ri , ai)
)

≤ DC(·)

(
(Yi, di, (ni)

y′i
1 , y

′
i), (Y, dY , n

y′

1 , y
′)
)

+ DC(·)

(
(Y, dY , n

y′

1 , y
′), (X, r−1

i d,mai
ri , ai)

)
≤ diamDC(·)(U) + DC(·)

(
(Y, dY , n

y′

1 , y
′), (X, r−1

i d,mai
ri , ai)

)
≤ 1

2k
+

1

2k
=

1

k
,

which is a contradiction.

3.3 Iterating tangents to conclude

Proof of Theorem 1.1 Let Z ⊂ X be the set of full m-measure where both Theorem 3.2
and Lemma 3.1 hold, and fix x ∈ Z. We will prove that there exists a tangent space to x
isomorphic to (Rn, dE ,Ln, 0) for some n ≤ N .

Thanks to Lemma 3.1 there exists a non-constant geodesic γ ∈ Geo(X) so that γ 1
2

= x,

therefore every tangent (Y1, d1, n1, y1) ∈ Tan(X, d,m, x) contains an isometric image of R
going through the point y1.

As a tangent of an infinitesimally Hilbertian CD∗(K,N)-space, (Y1, d1, n1) is an infinites-
imally Hilbertian CD∗(0, N)-space (property (2.7)) and so by Theorem 2.6 it splits into
(R×X1, dE × d′1,L1 ×m1) with (X1, d

′
1,m1) infinitesimally Hilbertian CD∗(0, N − 1)-space.

If X1 is not a singleton, it contains a point x1 where again both Theorem 3.2 and Lemma
3.1 can be used. Therefore, again by Theorem 2.6, every tangent space (Y2, d2, n2, y2) ∈
Tan(X1, d1,m1, x1) splits as (R×X2, dE×d′2,L1×m2) with (X2, d

′
2,m2) infinitesimally Hilber-

tian CD∗(0, N − 2)-space.
By Theorem 2.6 this process can be iterated at most ‘integer part of N ’-times before

producing a space Xn. Tracing back the lines that have been factorized we conclude that
(Rn, dE ,Ln, 0) ∈ Tan(X, d,m, x) for some n ≤ N , as desired. �
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[19] , Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature
bound and applications, Ann. of Math. 176 (2012), 1173–1229.

[20] M. Erbar, K. Kuwada and K.-T. Sturm, On the equivalence of the entropic
curvature-dimension condition and Bochner’s inequality on metric measure spaces,
Preprint, arXiv:1303.4382, (2013).

[21] N. Gigli, On the differential structure of metric measure spaces and applications, Sub-
mitted paper, arXiv:1205.6622, (2012).

[22] , Optimal maps in non branching spaces with Ricci curvature bounded from below,
Geom. Funct. Anal. 22 (2012), 990–999.

12



[23] , The splitting theorem in non-smooth context, Submitted paper, arXiv:1302.5555,
(2013).

[24] N. Gigli, K. Kuwada, and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure
Appl. Math. 66 (2013), 307–331.
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