
02 May 2024

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

Carbon Nanotubes in Tissue Engineering / Bosi, S.; Ballerini, Laura; Prato, M.. - 348:(2014), pp. 181-204.
[10.1007/128_2013_474]

Original

Carbon Nanotubes in Tissue Engineering

Publisher:

Published
DOI:10.1007/128_2013_474

Terms of use:

Publisher copyright

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/15107 since:

Springer Berlin Heidelberg

note finali coverpage



Cap.9: Carbon nanotubes in tissue engineering 

Susanna Bosi
†
, Laura Ballerini

‡
, Maurizio Prato†*,  

†Department of Chemical and Pharmaceutical Sciences, University of Trieste, 

Via Licio Giorgieri 1, Trieste Italy 

‡ Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Tri-

este Italy 

 

Abstract  

For their peculiar features carbon nanotubes (CNTs) are emerging in many areas 

of nanotechnology applications.  CNT-based technology has been increasingly 

proposed for biomedical applications, to develop biomolecule nanocarriers, biona-

nosensors and smart material for tissue engineering purposes. In the following 

chapter this latter application will be explored, describing why CNTs can be con-

sidered an ideal material able to support and boost the growth and the proliferation 

of many kind of tissues. 

Keywords Carbon nanotubes, tissue engineering, bone replacement, neural 

regeneration, cardiac tissue engineering. 
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Abbreviations 
 
BMP  bone morphogenetic protein 

BP  buckypaper 

CNF  carbon nanofibers 

CNT  carbon nanotubes 

DNA  deoxyribonucleic acid 

DRG  dorsal root ganglia 

ECM  extracellular matrix 

Hap  hydroxyapatite 

HIV  human immunodeficiency virus 

MEA  multielectrode array 

MWNT  multiwalled carbon nanotubes 

NT-3  neurotrophin3 

PLCL  poly (lactide-co-ε-caprolactone) 

PLGA  poly (lactic-co-glycolic acid) 

rhBMP-2 recombinant human bone morphogenetic protein-2 

RNA  ribonucleic acid 

SWNT  singlewalled carbon nanotubes 

 
 

 

1. Introduction 

 
At a time when the nanotechnologies are dominating the scene in almost all the 

branches of sciences, and even invading our daily life, the search for nanostructur-

able materials able to provide active support and effective interactions with bio-

systems at the molecular and submolecular level is very active. In this scenario, in 

recent years carbon nanotubes (CNT) are certainly numbered among the most in-

teresting, fascinating and studied nanomaterials for a variety of applications. This 

particular allotropic form of carbon has in fact so peculiar and unique properties to 

be potentially exploitable in many application areas of nanosciences. 

The need of materials able to interface with biological systems at the nanoscale 

is a very hot topic for the modern medicine. Carbon nanotubes have found many 

possible applications not only as promising materials for technological purposes 

and industrial applications but also in the biomedical field. There is a wide range 

of possible biological applications of CNTs reported in literature, therefore a com-

plete review of this topic is a titanic job. We will only refer to representative ex-

amples, which can provide the reader with a flavour of the potential of CNTs in 

this exciting area.  

 

1.1 Biomedical applications of carbon nanotubes 
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Motivated by the peculiar features of CNTs, research towards their biomedical ap-

plications has been progressing rapidly. 

 

FIG 9.1: CNT features and their possible biomedical fields of application  

 

Due to their ability to trespass biological membranes and the possibility to bear 

multiple functionalization on their backbone, CNTs have been studied as vectors 

for many different classes of therapeutic agents. Even though the specific mecha-

nism of internalisation (endocytosis or needle like penetration) is still not fully 

elucidated, it is generally recognised that CNTs are able to enter cells, regardless 

of cell type and functional groups on their surface [1, 2]. In addition, their high 

surface area provides attachment sites for molecules, allowing for multiple deri-

vatisation. Moreover, several in vitro and in vivo studies have shown, so far, that 

many types of chemically functionalised CNTs are biocompatible with the biolog-

ical milieu, demonstrating how the in vivo behaviour of this material can be 

modulated by the degree and type of functionalisation, both critical aspects that 

need to be accurately tuned [3, 4, 5, 6]. For these reasons CNTs have been used as 

molecular carriers for a variety of therapeutic agents as antitumor drugs [7], anti-

gens for an immunotherapeutic approach [8], targeting moieties (antibodies or 

peptides) [9] and also liposomes that can in turn act as vectors of molecules [10]. 

CNTs can be used as non-viral molecular transporters for the delivery of short in-

terfering RNA (siRNA) into human T cells and primary cells. The delivery ability 

and RNA interference efficiency of nanotubes far exceed those of several existing 

non-viral transfection agents, including various formulations of liposomes. It was 

suggested that nanotubes could be used as generic molecular transporters for vari-

ous types of biologically important cells, from cancer cells to T cells and primary 

cells, with superior silencing effects over conventional liposome-based non-viral 

agents [11, 12]. CNT-mediated nucleic acid transport has also been studied to de-

liver antisense oligonucleotide with proapoptotic activity [13, 14] to achieve gene 

transfer, or to combine a nucleic acid delivery system with photodynamic therapy 

[15]. 

The possibility of hosting small molecules inside the cavity of the nanotube has 

also been explored, allowing the depiction of CNTs as nanocapsules, role that may 

realize the “magic bullet” concept of a molecule capable of detecting and selec-

tively destroying a cancer cell [16].  

The transporter properties of CNTs can also be exploited for in vivo imaging 

application, for examples conjugating CNTs with traceable radionuclides or fluo-

rescent probes [17, 18]. Nanotube-based optical biosensors may be used to detect 

specific targets inside the human body, e.g. tumor cells, wrapping the tubes by a 

protein that can link only to the targeted cells [19]. For example, a coordinated bi-

osensor made of Au nanoparticles and SWNTs [20] has been studied for detecting 

the nanomolar scale of HIV-1 PR, an aspartic protease responsible for virion as-

sembly and maturation [21]. The realization of high-sensitive detection of this pro-

tease was promising to expedite development of effective HIV-1 PR inhibitors. 
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Another example in viral disease diagnosis is the electrical detection of hepatitis C 

virus RNA [22]. A large surface-to-volume ratio and unique electronic properties 

made CNTs an optimal component for fabricating high-sensitive biodetectors, 

which were crucially needed in the diagnosis of viral diseases and the develop-

ment of new anti-viral drugs. It was predictable, therefore, that CNTs might con-

tribute considerably to the treatment of infectious diseases in the future. 

Due to their ability to interact with the infrared radiation, CNTs can be used for 

hypertermal therapy of tumors. In fact, biological tissues are known to be trans-

parent to 700- to 1,100-nm near-infrared light where CNTs show a strong optical 

absorbance. Appropriately functionalized CNTs with targeting moieties can reach 

the desired site (tumor) and release locally therapeutic molecules or cause an ex-

cessive local heating, leading in both cases to cell death [9]. 

Few studies have also described CNT antimicrobial activity: Kang et al. have 

demonstrated that highly purified pristine SWNTs with a narrow diameter distri-

bution, coming in direct contact with cells can cause severe membrane damage 

and subsequent cell inactivation [23]. The same authors investigated the antimi-

crobial potential of SWNTs incorporated within the biomedical polymer 

poly(lactic-co-glycolic acid) (PLGA). They found that Escherichia coli and Staph-

ylococcus epidermidis viability and metabolic activity were significantly dimin-

ished in the presence of SWNT–PLGA, and this effect was correlated with SWNT 

length and concentration [24]. 

Finally. and perhaps more importantly, the branch of biomedical sciences 

where CNTs are finding the widest variety of applications is represented by tissue 

engineering. This discipline studies the possibilities of replacing damaged, un-

functional or degenerated biological tissues by means of artificial (bio)materials 

able to mimic as much as possible the natural environment. 

For their peculiar features of high mechanical strength, elasticity, good thermal 

and electrical conductivity CNTs are largely studied as key components for inno-

vative materials in tissue engineering. They have shown in many cases to be bio-

compatible and to support the growth and the proliferation of many classes of 

cells. However as we will discuss more in detail in the following chapters, the tox-

icity of this carbon form is still an issue to be clarified. 

 

2. CNTs for bone tissue engineering 
 

Treatment of bone defects in humans, including those associated with the re-

moval of tumors, trauma and abnormal bone development, faces important limita-

tions. Current therapies such as autographs, allographs, and metal prostheses do 

not generally favour bone regeneration in itself. Instead, they replace the lost bone 

by an artificial material. One novel aspect of modern tissue engineering is the at-

tempt to create tissue replacement by culturing bone cells on synthetic 3D scaf-

folds or live prosthesis. An ideal scaffold for bone tissue regeneration should pos-

sess mechanical properties similar to the bone tissue being replaced, good 

biocompatibility with surrounding tissue, large degree of porosity and high pore 
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size, high pore interconnectivity for bone tissue ingrowth. The synthetic scaffold 

material should either be biodegradable, disappearing as the new bone grows, or 

non-biodegradable. In the latter case, the non-biodegradable material behaves as 

an inert matrix on which cells proliferate and deposit new live matrix, which must 

become functional, normal bone. Despite extensive research, no existing man-

made scaffold can meet all these requirements [reference here as above]. Hence 

the development of novel biomaterials and scaffold fabrication techniques is criti-

cal for the success of bone tissue engineering. 

Bone structure and function depend intimately on the arrangement of cellular 

and noncellular components at the micro- and nanoscale level [25]. These include 

cell types such as osteoblasts, osteoclasts, and osteocytes embedded in a mineral-

ized extracellular matrix consisting of collagen and a number of noncollagenous 

proteins [25].  

The nanocomposite films or materials are expected to support the colonization 

with cells by some necessary requirements as nanoscale surface roughness, i.e., 

the presence of irregularities smaller than 100 nm, peculiar morphology or specific 

characteristics as hydrophilicity or conducibility. 

The surface nano-roughness of the substrates to be colonized should mimic, as 

much as possible, the nanoarchitecture of the natural extracellular matrix (ECM) 

as well as of the cell membrane, such as the size of some ECM molecules, their 

folding and branching. The nanostructure of a material also improves the adsorp-

tion of cell adhesion-mediating ECM molecules, present in biological fluids or 

synthesized and deposited by cells contacting the material. On nanostructured ma-

terials, the cell adhesion-mediating molecules are adsorbed in advantageous geo-

metrical conformations, allowing for good accessibility of their active sites by the 

cell adhesion receptors [26, 27].  

In comparison with hydrophobic surfaces, wettable surfaces adsorb a lower 

amount of albumin, i.e., a non-adhesive protein for cells. However, the cell adhe-

sion is optimal only on moderately wettable surfaces. Another property that can 

result to be very important is the electroactivity, as electrical charge, electrical po-

tential and electrical conductivity, which could enable the electrical stimulation of 

cells [28]. Interestingly, the adhesion, growth, maturation and function of cells on 

electroactive surfaces are improved even without active stimulation of cells with 

an electrical current. The underlying mechanism probably includes enhanced ad-

sorption of cell adhesion-mediating proteins, a more advantageous geometrical 

conformation of these proteins for their accessibility by cell adhesion receptors 

and facilitation of cellular processes, such as activation of ion channels in the cell 

membrane, movement of charged molecules inside and outside the cell, up-

regulated mitochondrial activity and enhanced proteosynthesis (for a review, 

[29]). Furthermore electroactive substrates can significantly increase the mechani-

cal and chemical resistance of the implant surface, preventing the release of ions 

and material particles from the bulk material. 

. 
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All these peculiar requirements for an optimal bone-compatible scaffolds can 

be met by carbon based materials and composites as demonstrated by an increas-

ing number of scientific publications. Indeed, the tensile strength of SWNT is 

about one hundred times higher than that of the steel, while their specific weight is 

about six times lower [30, 31, 32]. Thus, CNTs could find ideal applications in 

hard tissue surgery, e.g., to reinforce artificial bone implants, particularly scaffolds 

for bone tissue engineering made of relatively soft synthetic or natural polymers. 

CNTs have shown to be fully biocompatible with osteocytes and bone cells 

[33]. MWNTs adjoining bone induce little local inflammatory reaction, show high 

bone-tissue compatibility, permit bone repair, become integrated into new bone, 

and accelerate bone formation stimulated by recombinant human bone morphoge-

netic protein-2 (rhBMP-2) [34]. CNTs have been shown to support nucleation of 

hydroxyapatite (Hap) in correspondence of their defect sites [35]. Moreover CNTs 

can inhibit osteoclastic bone resorption also in vivo as reported by Narita and 

coworkers [36].  

Osteosarcoma cells were cultured on chemically modified single-walled and 

MWNTs [33]. CNTs carrying neutral electrical charge (PEG functionalized) sus-

tained the highest cell growth and production of plate-shaped crystals of mineral-

ized bone matrix. There was a dramatic change in cell morphology in osteoblasts 

cultured on MWNTs, which correlated with changes in plasma membrane func-

tions 

As a consequence of these encouraging preliminary results, the number of stud-

ies on CNTs or CNT composite-based scaffolds for the replacement of defecting 

bone tissue has increased dramatically.  

Many naturally occurring biopolymers have been studies in hard tissue engi-

neering to replace bone tissue. Their major problem consists essentially in the low 

mechanical strength and CNTs have been considered the perfect material to rein-

force three-dimensional structures formed by natural polymers. Many bionano-

composites containing SWNT or MWNT have been developed with biopolymers 

like chitosan [37], alginate [38], hyaluronate [39, 40], collagen [41], polylactic ac-

id (PLA) [42]. All these composites have demonstrated lack of cytotoxicity, to be 

more stable and more mechanically resistant with respect to their homologs with-

out CNTs. 

 

Fig. 9.2 The whole shape of the uncoated collagen sponge honeycomb (a) and 

MWNT-coated sponge (b). (c) SEM image of an MWNT-coated sponge. (d) SEM 

image of the inside surface of an uncoated sponge. (e) SEM image of the inside 

surface of the MWNT-coated sponge.(reprinted with the permission of [40]. 

 

Also synthetic polymers have been utilized together in an attempt to reduce bi-

odegradation rates, although maintaining the tissue requirements, as poly(lactide-

co-glycolide) (PLGA) [42], polymethyl methacrylate [43], polypropyl fumarate 

[44, 45], polyurethanes [46], polycarbosilane [47]. 



7 

Hydroxyapatite, the inorganic calcium-containing constituent of bone matrix 

and teeth, has been integrated in CNT based structures to create a CNT reinforced 

brittle HAp bioceramic [48]. In order to make them more “bone-friendly” unfunc-

tionalized CNTs have been simply mixed in HAp matrices but they have shown 

better results on the spontaneous mineralization of HAp crystals when functional-

ized. Functionalized CNTs have been also further derivatized by in situ deposition 

of HAp providing a good biocompatibility with osteoblasts [49]. 

Another strategy to improve the performances of CNT-based implants as re-

placement of bone tissue provides for a scaffold designed to deliver useful mole-

cules such as bone trophic factors, immobilized and with reproducible gradients, 

or that can be further structured to incorporate cell transplants. In a recent study 

neurotrophin-3 (NT-3) was incorporated in a chitosan-SWCNT hydrogel and, un-

der electrically simulated conditions, a steady release of the agent (NT-3) was ob-

served, suggesting an electrically controlled factor delivery. The presence of 

CNTs into the biohydrogel composite facilitated the electron transfer more effi-

ciently [50]. A similar strategy can be adopted for releasing bone specific factors 

from functionalized CNT dispersed polymer scaffolds for effective bone tissue 

engineering as already done in the case of bone morphogenetic protein (BMP) ad-

sorbed on MWNT-chitosan scaffolds [51]. 

Electrical stimulation of osteoblast cells may not seem intuitive for any practi-

cal advantage, but exposure to alternating currents increased bone cell prolifera-

tion and extracellular calcium production of osteoblasts grown on CNT-polylactic 

acid composites, demonstrating application for accelerated bone repair [28]. 

Some in vivo studies have been conducted in animals, implanting CNT compo-

sites in defecting bones: COOH-functionalized MWNTs reinforced with polyme-

thyl methacrylate/HAp have been implanted in some holes of a sheep tibia and the 

cellular response has been examined [43]. The authors have found that this novel 

composite accelerates cell maturation by providing a mechanically competent 

bone matrix; this likely facilitates osteointegration in vivo. In another study hyalu-

ronic acid functionalized SWNT were injected in rat tooth sockets under condi-

tions in which bone formation is compromised (diabetic rats) [38]: results indicate 

that restore the bone repair process in the tooth sockets in diabetic rats was signifi-

cantly restored 14 days after first molar extraction, suggesting that these materials 

can be potentially useful in therapies for bone tissue reconstruction in normal and 

adverse metabolic states.  

In conclusion, CNTs could be a very good choice as structural and functional 

constituents of 3D scaffolds for bone tissue engineering. Probably the best solu-

tion consists in a complex composite of nanocarbon materials, biopolymers and 

biominerals enriched with bone growth factors, to take advantage of all the posi-

tive features typical of each class of materials. An important issue is that so far no 

sufficient pre-clinical or clinical studies with nanomaterials for bone repair have 

been conducted while exhaustive toxicological studies on these materials have to 

be performed. 
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3. CNTs for neural tissue engineering 
 

Due to the complexity of the nervous system anatomy and function, repairing 

damaged nerves as well as recovering full function of injured nerves have been 

particularly challenging when compared to other tissue repairs (such as bone re-

pair). Traditional neural implantation and surgery (such as using autografts, allo-

grafts, xenografts, and silicon probes for the continuous diagnosis and treatment of 

neural tissue or other biomaterial nerve graft devices) have posed a variety of 

problems as rejection, immune response, incomplete functional recovery, instabil-

ity of the materials. For these reasons the demand for new biocompatible and 

long–term stable materials for neural regeneration and total functional recovery is 

very urgent. Current strategies to approach neuronal regeneration use nerve con-

duits and synthetic guidance devices, made of degradable or non-degradable com-

pounds, that can guide and facilitate peripheral nerve regeneration. Various con-

duits have been fabricated for bridging nerve gaps after injury, and both natural 

and synthetic materials have been used [53]. The main characteristic of these ma-

terials is a longitudinal organization mimicking the natural structure of the nerve 

pathway within the brain and spinal cord. They are designed to serve as conduits 

for axonal elongation and to constrain the direction of regenerative outgrowth. 

Moreover, they should be able to direct regenerating axons to reconnect with their 

target neurons and enhance functional restoration of the nerve [54]. Many experi-

ments have been performed to study functional recovery after injury in animal 

models. A promising strategy for treatment of neuronal injuries is to support and 

promote axonal growth by the use of nanometer-scale materials, especially nano-

tubes and nanofibres. They mimic tubular structures that appear in nature, such as 

microtubules, ion channels and axons. Nanotubes can be produced from various 

materials, such as carbon, synthetic polymers, DNA, proteins, lipids, silicon and 

glass. With their exceptional properties of small size, flexibility, strength, inert-

ness, electrical conductivity and ease of combination with various biological com-

pounds are the perfect candidates for interfacing successfully with damaged neu-

ronal tissues. 

Since when, in 2000, Mattson and colleagues have found that CNTs deposited 

on functionalized CNTs were not only surviving but also elongating their neurites 

in all directions [55], the study of these materials as functional components of 

composites for the support of the regeneration of neural tissue has been set up by 

many research groups.  

CNTs seem to be particularly appealing in these applications for all their physi-

cal features but above all for their relatively high conductivity, useful to sustain 

the electrical communication among neuronal cells. Moreover, as in the case of 

bone regeneration, they can be functionalized with chemical groups or molecules 

able to improve the growth and the survival of cells. It has also been demonstrated 

that the charge surface on the CNT wall is crucial for the cell wellness as indicated 

by the presence of increased growth cones, longer average neurite length and more 
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elaborated neurite branching. These boosting effects are mainly achieved when 

positive charges are exposed on CNT surface [56]. 

Neurons and several other cell types appear to adhere and grow extremely well 

on surfaces with topography on the nanoscale [57]. Just varying its degree of 

roughness, a substrate can be cell adhesive or non-adhesive depending exclusively 

on the surface roughness (as observed for rough or smooth SiO2). CNTs can be 

deposited to form bidimensional films or can give the formation of 3D structures 

in such a way to control their surface roughness. It was shown that neuronal cells 

are able to grow and elongate their neurites onto CNT-based substrates with a pre-

cise nanotopography [58]. Conductive CNTs have demonstrated to modulate the 

growth and the morphology of neuronal cells in a narrow range of conductivity 

promoting the outgrowth of neurites with a decrease in the number of growth 

cones as well as an increase in cell body area [59]. Furthermore, the orientation of 

CNTs can be controlled and is able to affect the direction of neurites outgrowth 

[60] and accordingly it should be possible that they drive the direction of the elec-

tric signal propagation. CNTs deposited via a combination of microlithography 

and chemical vapor deposition supported the growth of neurons, affecting their 

capability of extending neurites and guiding these cell processes along their 

length. Surface topography in terms of length of nanotubes was observed to play 

an important role in process guidance [61]. Neurite processes showed preferential 

adhesion to the edges of long CNT patterns whereas no selectivity was observed 

in the short CNT patterns. This behaviour could also be due to the rigidity of 

CNTs: short CNTs do not offer the motile growth cone with a suitable surface for 

process development. The long CNTs in comparison are flexible and undergo de-

formation to accommodate the proliferating neurite. 

 

Fig. 9.3: Scanning electron micrograph demonstrating guided neurite growth 

along a MWNT array pattern. The extending neurite is shown interacting with the 

edges of the pattern. This morphology is observed 24 h after initial seeding of the 

cells (reprinted with the permission of Zhang X et al) 

 

In order to further improve the biocompatibility of unconstrained CNTs and to 

produce 3D-structures able to be colonized by neuronal cells and to foster the 

communication among them, many research groups have tried to incorporate 

CNTs in polymeric scaffolds where they can play a strengthening and electrically 

functional role. CNTs have been integrated into various biopolymer-based hydro-

gels as collagen [62], chitosan [63], agarose [64]. In general, all these substrates 

are very good supports for neuronal cells, able to sustain their growth and their 

ability to extend neurites and growth cones without a remarkable toxicity. None of 

these scaffolds has however been tested in vivo yet. 

Similar results have been achieved by CNT composites based on synthetic pol-

ymers, mostly polyesters polymers such as electrospun fibers of poly( d , l -lactic-

co-glycolic acid (PLGA) [65] and of poly (l-lactic acid-co-caprolactone) (PLCL) 

[66].  
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The most outstanding results concerning the interface between CNTs and neu-

rons are related to the effects on the electrical activity of neuronal networks. In a 

study performed in 2005, we compared the electrical activity of hippocampal neu-

ronal networks directly grown on this MWNT mat with that of control networks 

grown on pure glass by means of the patch-clamp technique [67]. The frequency 

of spontaneous events (postsynaptic currents, PSCs) in networks cultured on 

CNTs was strongly boosted and increased (approximately six fold) compared with 

controls. Moreover the balance between inhibitory and excitatory components in 

the neuronal network was not affected. By means of single-cell electrophysiology 

techniques, electron microscopy analysis and theoretical modelling, it has been 

hypothesized that CNTs can provide a kind of shortcut between the proximal and 

distal compartments of the neuron [68]. This theory, supported by the observation 

that neuronal membranes establish a tight but discontinuous contact with the CNT 

substrate, was further corroborated by other experiments where, when cells were 

forced to fire trains of action potentials, the presence of extra-membrane after de-

polarization potentials was detected, and this was much more frequent on CNT 

deposited cells with respect of those grown on an inert glassy support. This kind 

of backpropagating action potentials represents a regenerative ability that neurons 

exhibit in cellular processes as the tuning of synaptic activity, the expression of 

spike timing-dependent plasticity, the release of modulatory messengers and the 

modulation of synaptic plasticity [69]. Another interesting observation concerns 

the impact of CNTs on the synaptic activity of neuronal networks: the probability 

of finding synaptically connected pairs of neurons is almost doubled in presence 

of the CNT substrate. Moreover the synaptic plasticity was also affected because 

cells grown on CNTs demonstrate potentiated short-term synaptic condition in-

stead of a normal depression after a presynaptic spike train. All these impressive 

effects are entirely attributable to the peculiar features of conductivity and physi-

cal chemical properties of CNTs that impact on the network activity and spike 

propagation. 

Not only cells but also more complex neuronal systems have been tested on 

CNTs: embryonic spinal cord and dorsal root ganglia (DRG) explants have been 

interfaced to a film of purified MWNTs [70]. With respect to the controls, DRG 

cultured on CNTs displayed a higher number of longer neuronal processes grow-

ing in tight contact with the substrate bearing a higher number of growth cones at 

their tips. These neuronal processes seemed to slack on the CNT carpet increasing 

their contact surface and were less stiff than in the control. The overall interaction 

of the DRG with the substrate appears to be very intimate and similar to that re-

ported for cell cultures. DRGs were stimulated and the response to an afferent 

stimulation was registered by single neurons located in a portion of the slice that 

was not in contact with the CNTs layer. We found that the amplitude of the re-

sponse to DRG stimulation was strongly increased in both its excitatory and inhib-

itory components but the ability to integrate repetitive stimulations was preserved. 

In addition, the spontaneous activity was also preserved.  
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CNT coated surfaces can potentially be used for a wide variety of applications 

such as retinal implants, network repair, and neuro-welding. 

Recently many research groups have dedicated their attention to the production 

and the study of neuronal performances. One of the first contributions in this field 

was that of Khraiche et al. (2009). The authors cultured rat hippocampal neurons 

on multi-arrayed electrodes (MEAs), whose tips were covered with CNT (SWNT). 

They observed that the electrical activity of the neuronal networks was detectable 

four days after seeding and continued to grow until day 7, while neurons devel-

oped on control (bare gold) electrodes showed no electrical activity until day 7. 

The hypothesis is that the rough SWNTs surface provides cells with a larger sur-

face area to adhere leading to an increased activation of adhesion molecules (such 

as integrins), which might in turn promote a faster neuronal differentiation [71]. In 

this direction Shein and coworkers coated MEA electrodes with CNTs, obtaining 

islands with a conductive, three-dimensional, exceptionally high surface area [72]. 

Dissociated cortical neurons cultured on these electrodes adhered only and directly 

to these islands, and self-assembled in neuronal networks patterned on the CNT 

neurochip. Once the neurons had adhered and self-organized, the CNT–MEA al-

lowed very high fidelity, direct recording of neuronal activity, and an effective 

electrical stimulation of neurons at the electrode sites. An interesting application 

of this kind of devices was explored by Shoval et al.: they investigated the use of 

MWNT coated microelectrodes as an interface for retinal recording and stimula-

tion applications [73]. Whole-mount retinas isolated from neonatal mice were 

placed on the electrodes allowing electrical recordings of the spontaneous, typical, 

propagating retinal waves. With respect to commercially available electrodes, re-

cordings from MWNT–MEAs showed a consistently higher signal-to-noise ratio 

and a relevant increase in the amplitude of the recorded spikes over a period of 

minutes to hours was observed. The proposed hypothesis is that a dynamic inter-

action between MWNTs and neurons produces an improvement in cell–electrode 

coupling, resulting in the phenomena detected. Finally the authors validated the 

suitability of their MWNT electrodes for sustained neuronal stimulation. 

In an additional paper where SWNTs were deposited directly on standard plati-

num electrodes to fabricate MEAs for electrophysiological recordings, the ad-

vantages of CNT–MEAs over metal electrodes in neuronal recordings were further 

confirmed [74]. In this report, the application of SWNT-modified MEAs to record 

electrical activity from whole-mount rabbit to standard, platinum electrode-based 

MEAs. 

Although the way to a functionally efficient neural prosthesis is still very long 

to go, there are some promising nanomaterials that seem to be very useful for this 

purpose and CNTs are definitely among them. Their good conductivity and effi-

cient supporting ability together with a confirmed biocompatibility with neuronal 

cells make CNTs particularly interesting as constituents in biomimetic scaffolds to 

guide axon regeneration and improve neural activities. 

 

4. Carbon nanotubes for cardiac tissue engineering 
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Another tissue in which electrical signals are propagated that can potentially be 

successfully interfaced with an electroconductive material like CNTs is the cardiac 

tissue. As for the neuronal system, the possibility to have a bi- or three-

dimensional substrate able to reinforce and regenerate the cardiac functionality 

could be an incredible progress in many heart pathologies, including heart failure 

(myocardial infarction) and congenital cardiovascular defects. 

Cardiac tissue engineering aims for the development of a bioengineered con-

struct that can provide physical support to the damaged cardiac tissue by replacing 

certain functions of the damaged extracellular matrix and prevent adverse cardiac 

remodelling and dysfunction after myocardial infarction. Cardiovascular bio-

materials can be based on either biodegradable or on non-biodegradable materials. 

Within this matrix of conductive vs. non-conductive and biodegradable vs. non-

biodegradable materials lie the most commonly studied materials and techniques 

used to promote heart health. Synthetic polymers offer advantages in their ability 

to tailor the mechanical properties, and natural polymers offer cell recognition 

sites necessary for cell, adhesion and proliferation. The most of the injectable scaf-

folds developed for myocardial applications are however non-conductive, lack 

nanofibrous architectures at submicrometer scale (10-100 nm in diameter) and are 

typically mechanically weaker than the native heart tissues. For these reasons 

CNTs seem to be theoretically the ideal material for a successful biomaterial for 

cardiac applications. 

The first study of biocompatibility of CNTs with cardiac cells has been per-

formed with rat cardiac cells cultured onto a suspension of SWNTs [75]. Within 

short term (3 days) CNTs did not display a significant toxicity while for longer 

time the toxic effect have been ascribed to physical interactions. These long-term 

negative effects have been evidenced after reseeding the cardiac cells: non-viable 

cells coming from SWNT-treated samples increased by 25%, when compared to 

reseeded cells not treated with SWNT. 

We discovered outstanding effects on cardiac cells cultured on CNTs sub-

strates. Neonatal rat ventricular myocytes (NRVM) were able to interact with non-

functionalized CNTs (MWNT) deposited glass coverslips by forming tight con-

tacts with the material (fig 4.1) [76]. Cardiac myocytes modify their viability, pro-

liferation, growth, maturation and electrophysiological properties when interacting 

with CNT scaffolds. CNTs appear to have two opposing effects on the develop-

ment: they prolong the proliferative state, which maintains some cells in an undif-

ferentiated state, and they accelerate the maturation of the differentiated cardiac 

myocytes, in terms of a more negative NRVM resting potential compared to con-

trol, indication of the fact that the cells become more adult-like. The mechanism 

that regulates these effects is not clear yet but we observed by TEM microscopy 

that CNTs develop irregular tight contacts with the membranes, contacts that are 

morphologically similar to those seen in neurons cultured on MWNTs [67]. More-

over it is not excluded that other modifications, indirectly brought about by 

MWNTs, such as the deposition of the extracellular matrix or the cell contact 
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driven cytoskeletal dynamics, are ultimately responsible for the detected positive 

effects. 

 

Fig. 9.4: Characterization of MWNT substrates and ultrastructural interaction 

between MWNTs and cultured cardiac myocytes. TEM planar section (c) of 

NRVM grown on carbon nanotube layer reveals a healthy organization of cardiac 

myocyte networks, accompanied by the presence of desmosome-like contacts (ar-

rows). TEM sagittal sections (d−f) illustrate nanotube−membrane contacts. In 

panel d, it is possible to appreciate the continuous layer of MWNTs interacting 

with cells (arrowheads); panels e and f are a series of further high-magnification 

micrographs from the same section. Note how nanotubes are “pinching” cell 

membranes (arrows). Reprinted with the permission of [67]. 

 

The development of three-dimensional architectures of cardiac cells at the na-

noscale able to improve next generation transplantable cell-enriched devices for 

tissue implants is the main requirement for the progress towards a practical appli-

cation of these materials for the heart regenerative medicine [77]. Carbon nano-

materials in the form of carbon nanofibers (CNFs) have been integrated in compo-

sites in order to achieve conductive matrices able to accommodate myocardial 

cells. Carbon nanofibers have been added to biodegradable PLGA to increase the 

conductivity and cytocompatibility of pure PLGA [78]. Human cardiomiocytes 

proliferated on the different PLGA: CNF ratios, an increase in proliferation densi-

ty from 530% on day 1 to 700% on day 5 resulted between the 100:0 and 25:75 

(PLGA:CNF wt.%) ratio. CNF are characterized by a structure called stacked-cup 

carbon nanotubes (the overall structure appears like concentric cylinders) hence 

CNFs possess nanoscale geometries which imitate the extracellular matrix of vari-

ous tissues (such as the heart), potentially leading to improved cytocompatibility 

of these materials [79]. Although requiring further study, CNF can play a similar 

important role in promoting cardiomyocyte by increasing victronectin and laminin 

adsorption, two adhesion glycoproteins of the extracellular matrix that in turn will 

induce cell adhesion and proliferation. While the mechanism of enhanced cardio-

myocyte density is not clearly detailed at this time, it could have to do with the to-

pography of PLGA-CNF composites and/or the increased presence of CNF on 

PLGA surfaces, which can control initial protein adsorption through altered sur-

face energetics. Pedrotty et al. showed that numerous cardiac cell functions (in-

cluding adhesion, proliferation, and migration) might be modulated by electrical 

stimulation [80], hence requiring the use of a conductive material in cardiac appli-

cations. Also, Mihardjo et al. demonstrated that enhanced myocardial repair fol-

lowing ischemic injury could be achieved using conductive polymers, such as 

polypyrrole [81]. The conductivity values measured for PLGA-CNF substrates 

were lower than those of heart tissue (ranging from 0.16 longitudinally to 0.005 S 

m–1 transversely) [82], but future techniques (such as CNF or CNT alignment) 

may increase the anisotropic conductivity to match that of heart tissue [83]. It is 
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also important not to exceed the stimulatory conductivity of the cells, avoiding a 

possible decreased cell function. 

In terms of carbon nanomaterial-based devices for functional regenerative pur-

poses, an interesting cardiac construct has been produced by Shin and colleagues 

[84]: CNTs were embedded into photo-crosslinkable gelatin methacrylate (Gel-

MA) hydrogels, resulting in ultra-thin 2D patches where neonatal rat cardiomyo-

cytes were seeded. These cells showed strong spontaneous and stimulated syn-

chronous beating. In addition, a protective effect against doxorubicin (cardio-

toxic) and heptanol (cardio-inhibitor) was observed. When released from glass 

substrates, the 2D cardiac patches (centimeter size) formed 3D soft actuators with 

controllable linear contractile, pumping, and swimming actuation behaviours. 

CNT concentration of 3 mg/mL led to tissues with optimal electrophysiological 

functions, while 5 mg/mL showed the maximal protective effect. CNTs formed 

electrically conductive and collagen fibril-like nanofibers bridging pores, which 

mechanically strengthened the gel, promoted cardiac cell adhesion and maturation, 

and improved cell-cell electrical coupling. Compared to existing scaffold materi-

als, CNT-GelMA seems to be a very promising multifunctional cardiac scaffold. 

 

5. Other tissue engineering possibilities for CNTs 

 
Some recent papers describe attempts to explore CNTs as substrates for a varie-

ty of different tissues. 

Rat hepatocytes have been seeded onto CNTs-coated surfaces and their mor-

phological and their functional behaviour has been studied [85]. Primary hepato-

cytes exhibit different morphological and functional characteristics depending on 

the surface properties on which they are deposited. Hepatocytes in a serum-

containing medium adhered on the CNT surface and formed monolayer configura-

tion in form of spheroids. This peculiar shape seems to be due to the hydrophobic 

features of the CNT substrate. Furthermore the expression levels of connexin-32 

(a molecule that forms gap junctions for cell–cell communication) were higher on 

the CNT-coated than on the collagen- and CNT/collagen-coated surfaces used as 

controls, indicating the development of intracellular communication between cells 

under those conditions. This study is a very preliminary exploration of CNT-based 

substrates for hepatocyte cultures that needs further data to verify the real efficacy. 

Another interesting practical application of CNT-based composite materials in-

volves the regeneration of dermal tissue in wound healing. From the combination 

of SWNT and polyvinylpirrolydone in aqueous media, Simmons and coworkers 

have produced a highly pure microporous film that, due to the iodine non-

covalently linked to SWNT, have antiseptic properties and can be used as an anti-

septic bandage. Electrical pulses sent through the composite may allow for en-

hanced cell growth and faster reconstitution of the damaged tissue [86]. 

Lima and coauthors described a faster and longer-stroke artificial muscle based 

on yarns made from sheets of CNTs with a solid guest or filler material such as 

wax; melting and solidifying the wax twists or untwists the yarn and generates 
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motion [87]. Other guest materials are activated by chemical absorption or illumi-

nation by light. The new artificial muscle outperforms existing artificial muscles, 

allowing possible applications such as linear and rotary motors, and might replace 

biological muscle tissue if biocompatibility can be established. 

The so-called buckypaper (BP), a macroscopic assembly of entangled carbon 

nanotubes, is a relatively new material that can be formed by single, double, mul-

tiwalled CNTs with different lengths, diameters or aspect ratios. BP has been pro-

posed for the encapsulation of islet cells for diabete treatment, as an artificial 

membrane for retinal and iris pigment epithelial transplantation, as a flexible anti-

septic bandage, as immune shielding for cells and tissues, as a carrier for gene or 

drug delivery, and as a scaffold for tissue engineering. BP was recently shown to 

be not toxic and not to affect the in vitro proliferation and viability of both normal 

human arterial smooth muscle cells and human dermal fibroblasts. Martinelli et al. 

have studied the adhesive properties of BP on a wet compliant substrate [88]. By 

means of shear and peeling adhesion tests they have showed that BP readily and 

strongly adhere to a trimmed muscular fascia of a rabbit abdominal wall, chosen 

as the model substrate. The material has been compared to commercially available 

prosthetic materials and it was demonstrated to possess superior properties of ad-

hesion and stability. BP could find applications in abdominal prosthetic surgery or 

for wound closure, thus allowing not only easier surgery procedures but also re-

duction in the use of conventional perforating fixation, to which serious post-

operative complications are usually associated. 

 

6. Toxicity of CNTs 

 
The main prevention in the use of CNTs based materials in biological environ-

ment is the controversial question of their potential toxicity. In the literature there 

are a number of conflicting reports concerning this issue: some investigations have 

reported toxic effects following the exposure of several cell types to both SWNTs 

and MWNTs, while others demonstrate very low or insignificant cellular respons-

es. This debate is mainly due to the fact that toxicity depends by factors like purity 

(metal content), surface modification (charge), dimensions (aspect ratio <3), layer 

number, degree of dispersion (aggregate formation) [89]. (See table 9.1).  

 
cell ty-

pes/animals 
type of CNTs CNT toxicity 

metal impurities H460 

SWCNTs containing 

19.4%Ni/5.49%Y; 

14.3%Ni/2.09%Y; 

3.15%Ni/9.21%Co; 

22.8%Ni/4.79%Y; 

24.1%Ni/4.17%Y ; 

3.3%Co/1.27%Mo 

nickel is bioavailable at 

toxicologically signifi-

cant concentrations 

 NR8383; A549 purified SWCNTs; SWCNTs con- dose- and time-



16  

taining 

0.009%Fe/2.8%Co/4.2%Mo; 

purified MWNTs; MWNTs con-

taining Ni 

dependent increase of 

intracellular 

 

ROS; decrease of mito-

chondrial membrane 

potential 

 RAW264.7 
SWCNTs containing 26% Fe or 

0.23% Fe 

hydroxyl radical gener-

ation: loss of intracellu-

lar low molecular 

weight thiols; accumu-

lation of lipid hydrop-

eroxides 

 HaCaT SWCNTs containing 30% Fe 

formation of free radi-

cals; accumulation of 

peroxidative product; 

antioxidant depletion; 

loss of cell viability 

surface charge 

and modification 
HMMs 

acid-treated, water-soluble 

SWCNTs 

acid-treated SWCNTs 

are less aggregated 

within lysosomes and 

cytoplasm and cause no 

significant changes in 

cell viability or struc-

ture 

shape HUVEC 
pristine SWCNTs; oxidized 

SWCNTs 

functionalized and pris-

tine SWCNTs have 

limited cytotoxicity 

 normal mice MWNTs 1520 µm or longer 

length-dependent in-

flammation and for-

mation of granulomas 

 
human primary 

macrophages 

short CNTs; long, tangled CNTs; 

long, needle-like CNTs 

tangled CNTs are swal-

lowed into cells; long, 

needle-like CNTs acti-

vate secretion of IL-1α 

and IL-1β 

lenghth normal mice MWNTs 15–20 µm or longer 

long MWNTs cause in-

flammation and granu-

lomas 

 
human primary 

macrophages 

short CNTs; long, tangled CNTs; 

long, needle-like CNTs 

long, needle-like CNTs 

activate secretion of IL-

1α and IL-1β 

 THP-1; rat MWNTs 500 nm to 5 µm 

MWNT with an aver-

age length of 825 nm 

induce higher inflam-

mation than those with 

an average length of 

220 nm 

 
A549; THP-1; 

normal mice 

MWNTs: length 5–15 µm, diame-

ter 20–60 nm; length 1–2 µm, di-

ameter 60–100 nm; length 1–2 

µm, diameter <10 nm 

long and thick MWNTs 

induce the strongest 

DNA damageand in-

crease the total cell 

number in abdominal 

lavage fluid while simi-

lar SWCNTs caused lit-

tle effect 

 P53+/-mice long MWNTs 1–20 µm 
Long MWNTs (short 

not included) can form 
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fibrous or rod-shaped 

particles of length 

around 10-20 microme-

ter (µm) and induce 

mesothelioma 

agglomeration  SPC; DRG 
agglomerated SWCNTs; better 

dispersed SWCNT bundles 

highly agglomerated 

SWCNTs significantly 

decrease the overall 

DNA content 

 MSTO-211H CNT agglomerates; CNT bundles 

suspended CNT-

bundles are less cyto-

toxic than asbestos, 

rope-like agglomerates 

layer number RAW 264.7 pristine graphene 

depletion of the mito-

chondrial membrane 

potential and increase 

of intracellular ROS 

and apoptosis 

 
alveolar mac-

rophage 

SWCNTs; MWNTs (diameters 

10–20 nm)  
SWCNTs > MWNTs 

Table 9.1: Basis of CNT toxicity. Reprinted with permission of [89] 

 

Metal impurities, especially catalyst metal contaminants, such as Fe, Y, Ni, 

Mo, and Co coming from production methods are the most important factor in 

CNT cytotoxicity. Even if it is almost impossible to remove all the impurities 

completely because they are entrapped into graphitic shells, they can be released 

in the biological medium causing negative effects [90]. However acid treated 

SWNT and MWNT with a very small metal content are commercially available. 

The functionalization of CNT surface is determinant to reduce the toxicity: indeed, 

it has been demonstrated that appropriately functionalized CNTs are uptaken by B 

and T lymphocytes as well as macrophages in vitro, without affecting cell viability 

[91]. Furthermore the functionalization and the surface charge affect the binding 

of blood proteins and this could greatly alter their cellular interaction pathways 

and their metabolic fate and can reduce the cytotoxicity [92]. We have demon-

strated that chemical functionalization reactions and appended functionalities that 

lead to shortening or untangling/debundling of aqueous dispersions of f-MWNTs 

will help to resolve toxicological risks associated with long-fibre exposure [93]. 

Another important aspect to take into consideration is the administration route 

used combined with the dose. In general it is very difficult to evaluate the toxicity 

of CNTs because of the extreme heterogeneity of samples described through the 

literature. To make experimental results comparable, it is needed to establish rec-

ognized standard CNT samples in toxicity testing and also to establish standard-

ized and reliable methods for evaluating CNT toxicity.  
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3 Summary and conclusions 

Among the different possibilities of application of CNTs for biomedical purposes, 

tissue engineering can be acknowledged as one of the more interesting. Thanks to 

their physical and chemical features CNTs can provide the final composite with 

those biomimetic requirements that are fundamental for a full biocompatibility and 

a functional efficiancy. In general the research in this field is still at an early stage 

and there is still much to do in order to improve the interaction between tissues 

and materials at cellular and sub-cellular level and to clarify all the doubts 

regarding toxicity issues but, as reported in this overview, preliminary results are 

very promising, indicating CNTs as ideal support for tissue growth and recovery. 
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