TRANSPORT RAYS AND APPLICATIONS TO HAMILTON-JACOBI EQUATIONS

STEFANO BIANCHINI AND MATTEO GLOYER

1. Introduction

2. Settings

We consider a σ-generated probability space (X, Σ, μ) and a partition $X=\cup_{\alpha \in A} X_{\alpha}$, where $A=X / \sim$ is the quotient space, and $h: X \rightarrow A$ the quotient map. We give to A the structure of a probability space by introducing the σ-algebra $\mathcal{A}=h_{\sharp} \Omega$, where Ω are the saturated sets in Σ (unions of fibers of h), and $m=h_{\sharp} \mu$ the image measure such that $m(S)=\mu\left(h^{-1}(S)\right)$.

Remark 2.1. \mathcal{A} is the largest σ-algebra such that h is measurable.
The following example shows that even though Σ is σ-generated, \mathcal{A} in general is not.
Example 2.2. Consider in $([0,1], \mathcal{B})$ (Borel) the equivalence relation

$$
x \sim y \quad \text { iff } \quad x-y=0 \quad \bmod \alpha,
$$

for some $\alpha \in[0,1]$. If $\alpha=p / q$, with $p, q \in \mathbb{N}$ relatively prime, then we can take

$$
(A, \mathcal{A})=\left(\left[0, \frac{1}{q}\right], \mathcal{B}\right) .
$$

If $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then A is a Vitali set. If $\mu=\left.\mathcal{L}^{1}\right|_{[0,1]}$, then $m=\left.h_{\sharp} \mathcal{L}^{1}\right|_{[0,1]}$ has only sets of either full or negligible measure. Assume by contradiction that $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ generates \mathcal{A}. Since $h^{-1}(x)=\{x+n \alpha$ $\bmod 1: n \in \mathbb{N}\} \in \mathcal{B}$, it follows that each $a \in A$ belongs to a generating set of measure 0 . But this leads to a contradiction:

$$
1=m(A)=m\left(\bigcup_{m\left(a_{n}\right)=0} a_{n}\right) \leq \sum_{m\left(a_{n}\right)=0} m\left(a_{n}\right)=0 .
$$

We now define the measure algebra $(\hat{\mathcal{A}}, \hat{m})$ by the following equivalence relation on \mathcal{A} :

$$
a_{1} \sim a_{2} \quad \text { iff } \quad m\left(a_{1} \triangle a_{2}\right)=0 .
$$

It is easy to check that $\hat{\mathcal{A}}$ is a σ-algebra and \hat{m} is a measure on $\hat{\mathcal{A}}$.
Proposition 2.3. $(\hat{\mathcal{A}}, \hat{m})$ is σ-generated.
$\hat{\mathcal{A}}$ is isomorphic to a sub- σ-algebra of Σ.
Remark 2.4. More generally, if (X, Σ, μ) is generated by a family of cardinality ω_{α}, then each sub- σ algebra $\mathcal{A} \subset \Sigma$ is essentially generated by a family of sets of cardinality ω_{α} or less.

This is a particular case of a deep result, Maharam's Theorem ($[7], 332 \mathrm{~T}(\mathrm{~b})$), which describes isomorphisms between probability spaces: if $(\hat{\Sigma}, \hat{\mu})$ is a probability algebra, then

$$
(\hat{\Sigma}, \hat{\mu}) \simeq \prod_{i} c_{i}\left[\bigotimes_{J_{i}}\{0,1\}\right], \quad \sum_{i} c_{i}=1
$$

where $\bigotimes_{J_{i}}\{0,1\}$ is the measure space obtained by throwing the dice J_{i} times.

3. Disintegration

Definition 3.1. We introduce the following relation on A :

$$
\begin{aligned}
& a_{1} \sim a_{2} \text { iff the following holds: } \\
& \text { for all } \hat{A} \in \hat{\mathcal{A}}, a_{1} \in \hat{A} \text { iff } a_{2} \in \hat{A}
\end{aligned}
$$

The equivalence classes of this relation are the atoms of the measure m. In particular, we can define the measure space

$$
(\Lambda=A / \sim, \hat{\mathcal{A}}, m)
$$

The σ-algebra is isomorphic to the σ-generated $\hat{\mathcal{A}}$ constructed in the previous section.
Definition 3.2. The disintegration of the measure μ with respect to the partition $X=\bigcup_{\alpha} X_{\alpha}$ is a map

$$
A \rightarrow P(X), \quad \alpha \mapsto \mu_{\alpha},
$$

where $P(X)$ is the class of probability measures on X, such that the following properties hold:
(1) for all $B \in \Sigma$, the map $\alpha \mapsto \mu_{\alpha}(B)$ is m-measurable;
(2) for all $B \in \Sigma, A \in \mathcal{A}$,

$$
\mu\left(B \cap h^{-1}(A)\right)=\int_{A} \mu_{\alpha}(B) \mathrm{d} m(\alpha) .
$$

It is unique if μ_{α} is determined m-a. e.
Remark 3.3. (1) Since we are not requiring the elements of the partition X_{α} to be measurable, in general $\mu_{\alpha}\left(X_{\alpha}\right) \neq 1$ for those X_{α} which are measurable. In this case we say that the disintegration is not strongly consistent with h.
(2) For general spaces which are not σ-generated, sometimes a disintegration nonetheless exists, but in general there is no uniqueness.
(3) The disintegration formula can easily be extended to measurable functions:

$$
\int_{X} f \mathrm{~d} \mu=\int_{A}\left(\int_{X} f \mathrm{~d} \mu_{\alpha}\right) \mathrm{d} m(\alpha) .
$$

We now state the general disintegration theorem.
Theorem 3.4. Assume that (X, Σ, μ) is a σ-generated probability space, $X=\bigcup_{\alpha \in A} X_{\alpha}$ a partition of $X, h: X \rightarrow A$ the quotient map, and (A, \mathcal{A}, m) the quotient measure space. Then the following holds:
(1) There is a unique disintegration $\alpha \mapsto \mu_{\alpha}$.
(2) If $(\Lambda, \hat{\mathcal{A}}, m)$ is the σ-generated algebra equivalent to (A, \mathcal{A}, m), and $p: A \rightarrow \Lambda$ the quotient map, then the sets

$$
X_{\lambda}=(p \circ h)^{-1}(\lambda)
$$

are μ-measurable, the disintegration

$$
\mu=\int_{\Lambda} \mu_{\lambda} \mathrm{d} m(\lambda)
$$

is strongly consistent $p \circ h$, and

$$
\mu_{\alpha}=\mu_{p(\alpha)} \quad \text { for m-a.e. } \alpha .
$$

Definition 3.5. $R \subset X$ is a rooting set for $X=\bigcup_{\alpha \in A} X_{\alpha}$, if for each $\alpha \in A$ there exists exactly one $x \in R \cap X_{\alpha}$.
R is a μ-rooting set if there exists a set $\Gamma \subset X$ of full μ-measure such that R is a rooting set for

$$
\Gamma=\bigcup_{\alpha \in A} \Gamma_{\alpha}=\bigcup_{\alpha \in A} \Gamma \cap X_{\alpha}
$$

Proposition 3.6. If $\mu=\int_{A} \mu_{\alpha} \mathrm{d} m(\alpha)$ is srongly consistent with the quotient map, then there exists a Borel μ-rooting set.

Example 3.7. Consider again

$$
x \sim y \quad \text { iff } \quad x-y=0 \quad \bmod \alpha
$$

If $\alpha=p / q$ with p, q relatively prime, then the rooting set is $[0,1 / q)$, so that we know that the disintegration is strongly consistent with h. One can check that

$$
\mu=\int_{0}^{\frac{1}{q}} \mathrm{~d} \alpha \sum_{n=0}^{q-1} \delta\left(x-\alpha-\frac{n}{q}\right) .
$$

If $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, then we know that

$$
(\Lambda, \hat{\mathcal{A}}, m) \simeq\left(\{\lambda\},\{\emptyset,\{\lambda\}\}, \delta_{\lambda}\right)
$$

so that

$$
\mu=\int \mathrm{d} m \mu
$$

4. Hamilton-Jacobi equation and monotonicity

In the following we consider the Hamilton-Jacobi equation

$$
\left\{\begin{array}{l}
u_{t}+H(\nabla u)=0 \\
u(0, x)=\bar{u}(x)
\end{array}\right.
$$

where $(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{d}$ and $\bar{u} \in L^{\infty}\left(\mathbb{R}^{d}\right)$. We assume that $H: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is C^{1} and convex. We denote by $L=H^{*}$ the Legendre transform of H and assume that it has at least linear growth,

$$
L(x) \geq \frac{1}{c}(|x|-c)
$$

and is locally Lipschitz. By the properties of the Legendre transform, L is strictly convex.
For example, we can consider $H(x)=L(x)=\frac{1}{2}|x|^{2}$.
The viscosity solution is given explicitly by

$$
u(t, x)=\inf \left\{\bar{u}(y)+t L\left(\frac{x-y}{t}\right): y \in \mathbb{R}^{d}\right\}
$$

Remark 4.1. The following properties can easily be checked:
(1) Finite speed of propagation: $u(t, x)$ depends only on the values of $\bar{u}(y)$ for $|x-y| \leq c$.
(2) Uniform Lipschitz continuity: For fixed y, the function $\bar{u}(y)+t L((x-y) / t)$ is uniformly Lipschitz in x for $|x-y| \leq c$. Hence $u(t, x)$ is uniformly Lipschitz in x for all $t>0$.
(3) Semigroup property: For $t>s>0$, we have that

$$
u(t, x)=\min \left\{u(s, z)+(t-s) L\left(\frac{x-z}{t-s}\right): z \in \mathbb{R}^{d}\right\}
$$

(4) If $D^{2} H \in[1 / c, c] \mathbb{I}$, then $D^{2} L \in[1 / c, c] \mathbb{I}$, and thus $u(t, x)-c|x|^{2} / 2 t$ is concave in x. Hence $u(t, \cdot)$ is quasi-concave for $t>0$.

We can solve the backward problem

$$
\left\{\begin{array}{l}
v_{t}+H(\nabla v)=0 \\
v(1, x)=\bar{u}(1, x)
\end{array}\right.
$$

Then v has the same properties as above for $t<1$, and the following duality holds:

$$
\begin{aligned}
& u(1, x)=\min \{v(0, y)+L(x-y)\} \\
& v(0, y)=\max \{u(1, x)-L(x-y)\}
\end{aligned}
$$

We say that $u(1, x)$ and $v(0, y)$ are L-conjugate functions.

Definition 4.2. The couple $[y, x] \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ such that

$$
u(1, x)=v(0, y)+L(x-y)
$$

is called an optimal couple. The corresponding segment

$$
\{(1+t) y+t x: 0 \leq t \leq 1\}
$$

is called an optimal ray.
Remark 4.3. Due to the strict convexity of L, two rays cannot intersect anywhere except at their end points.

Remark 4.4. In general, the duality of $u(1, x)$ and $v(0, y)$ does not imply that $u(t, x)=v(t, x)$ for $0<t<1$.

Example 4.5. In the case $H(x)=L(x)=|x|^{2} / 2$, the optimal rays are the graph of the maximal monotone operator

$$
x \mapsto y(x)=\partial_{x}\left(\frac{|x|^{2}}{2}-u(1, x)\right)
$$

It follows from Minty's Theorem ([2], p.142) that the map

$$
x \mapsto t x+(1-t) y(x)
$$

is surjective. Since the rays do not intersect, it follows that for all $0<t<1$ and all $z \in \mathbb{R}^{d}$, there exists a unique optimal couple $[y, x]$ such that

$$
z=(1-t) y+t x
$$

Hence, using the explicit formula for the optimal ray, we obtain

$$
u(t, x)=v(t, x) \quad \text { for all } t \in[0,1], x \in \mathbb{R}^{d}
$$

Hence the solution is both $(2 t)^{-1}$-concave and $(2(1-t))^{-1}$-convex, thus $u \in C^{1,1}$.
The set $y(x)$ is convex, therefore the rays departing from a given point form a convex set.
The example can be generalized to the case $H(x)=1 / 2\langle x, A x\rangle$ by a linear change of variable.
Example 4.6. A more difficult case is $\mathrm{D}^{2} H, \mathrm{D}^{2} L \in[1 / c, c]$ I. One can use that $v(0, y)+|y|^{2} /(2 c)$ is convex to compute the optimal rays for $t \ll 1$:

$$
\begin{aligned}
u(t, z) & =\min \left\{v(0, y)+t L\left(\frac{z-y}{t}\right)\right\} \\
& =\min \left\{v(0, y)+\frac{|y|^{2}}{2 c}+t L\left(\frac{z-y}{t}\right)-\frac{|y|^{2}}{2 c}\right\}
\end{aligned}
$$

The last two terms together are convex for $t<c^{-2}$, so that the minimizer is given by

$$
\nabla L\left(\frac{z-y}{t}\right)=\partial^{-} v(0, y)
$$

where $\partial^{-} v(0, y)$ denotes the subdifferential of v at y :

$$
\partial^{-} f(x)=\left\{p: \liminf \frac{f(x+h)+f(x)-p h}{|h|} \geq 0\right\}
$$

Similarly, we can introduce the superdifferential

$$
\partial^{+} f(x)=\left\{p: \lim \sup \frac{f(x+h)+f(x)-p h}{|h|} \leq 0\right\}
$$

These sets are convex, but in general they are empty. We thus obtain

$$
z=y+t \nabla H\left(\partial^{-} v(0, y)\right) \quad \text { for } 0 \leq t \ll 1
$$

The strict convexity implies that the map $z \mapsto y$ is single-valued and Lipschitz. For $t \ll 1$, the projections of the rays $z(y)$ are still convex sets. However, in general the rays do not extend to $t=1$.

Example 4.7. Taking

$$
\begin{gathered}
L(x)=3|x|+x_{1}|x| \\
u(1, x)=\min \left\{L\left(x-\binom{0}{1}\right), L\left(x-\binom{0}{1}\right)\right\}
\end{gathered}
$$

and computing the corresponding $v(0, y)$, one can prove that there is a gap between the rays, i. e. there exists a region inside of which one has

$$
u(t, x)>v(t, x) .
$$

Example 4.8. In the general case, when L is only strictly convex, there is no notion of subdifferential or superdifferential. One then has no quasi-concavity or quasi-convexity, hence no BV regularity. The graph of the optimal rays $[y, x]$ is in general full of holes, and there is no interval where one could prove $C^{1,1}$ regularity.

5. Regularity properties of L-COnjugate functions and optimal rays

We consider a pair of L-conjugate functions $u, v \in L^{\infty} \cap \operatorname{Lip}$,

$$
\begin{aligned}
& u(x)=\min \left\{v(y)+L(x-y): y \in \mathbb{R}^{d}\right\}, \\
& v(y)=\max \left\{u(x)-L(x-y): x \in \mathbb{R}^{d}\right\},
\end{aligned}
$$

where as before $L: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is strictly convex and has at least linear growth.
We define the set

$$
F=\left\{[y, x] \in \mathbb{R}^{d} \times \mathbb{R}^{d}:[x, y] \text { optimal couple }\right\}
$$

and its projection

$$
F(t)=\{z: z=(1-t) y+t x \text { for some }[y, x] \in F\} .
$$

By the duality, we know that $F(0)=F(1)=\mathbb{R}^{d}$. On the set $F(t)$ we define the vector field

$$
\begin{aligned}
\mathbf{p}_{t}(z) & =\left(1, p_{t}(z)\right) \\
& =(1, x-y), \quad \text { where }[y, x] \in F \text { such that } z=(1-t) y+t x .
\end{aligned}
$$

We also introduce the set-valued functions

$$
\begin{aligned}
& y(x)=\{y:[y, x] \in F\}, \\
& x(y)=\{x:[y, x] \in F\} .
\end{aligned}
$$

From the fact that u and v are L-conjugate, we obtain the following lemma.
Lemma 5.1. The set F and its projections $F(t)$ are closed, and the set-valued functions $x(y), y(x)$ have locally compact images.

In particular $y(x), x(y)$ are Borel measurable, because the inverse of compact sets is compact
Example 5.2. When $\nabla u, \nabla v$ exist, then they are related to p by

$$
\begin{aligned}
\nabla v(y) & =\partial L\left(p_{0}(y)\right), \\
\nabla u(x) & =\partial L\left(p_{1}(x)\right) .
\end{aligned}
$$

If we consider for example

$$
\begin{gathered}
L(x)=\frac{1}{2}|x|^{2}+\left|x_{1}\right| \\
u(x)=\min \left\{L\left(x-\binom{1}{0}\right), L\left(x-\binom{-1}{0}\right)\right\}
\end{gathered}
$$

then it is easy to check that $u(0)$ has no subdifferential or superdifferential.
5.1. Rectifiability property of jumps. Define the sets

$$
J_{m}=\left\{x \in \mathbb{R}^{d}: \text { there exist } y_{1}, y_{2} \in y(x) \text { such that }\left|y_{1}-y_{2}\right| \geq \frac{1}{m}\right\}
$$

and

$$
J=\bigcup_{m \in \mathbb{N}} J_{m}
$$

Lemma 5.3. J_{m} is closed and countably $(d-1)$-rectifiable, i. e. it can be covered with a countable number of images of Lipschitz functions $\mathbb{R}^{d-1} \rightarrow \mathbb{R}^{d}$.

The lemma can be proved by applying the rectifiability criterion [1], Theorem 2.61. The proof is analogous to Lemma 3.4 in [4].

In a similar way we obtain the following proposition:
Proposition 5.4. The set

$$
\begin{aligned}
J^{k} & =\bigcup_{m \in \mathbb{N}} J_{m}^{k} \\
& =\bigcup_{m \in \mathbb{N}}\left\{x \in \mathbb{R}^{d}: \text { there exist } y_{1}, \ldots, y_{k+1} \in y(x) \text { s.t. } B\left(0, \frac{1}{m}\right) \subset \operatorname{co}\left\{y_{1}, \ldots, y_{k+1}\right\}\right\}
\end{aligned}
$$

is countably $(d-k)$-rectifiable, i.e. it can be covered with a countable number of images of Lipschitz functions $\mathbb{R}^{d-k} \rightarrow \mathbb{R}^{d}$.
5.2. Some approximations. To prove the estimates on the vector field \mathbf{p}_{t} or p_{t}, we need an approximation technique. The following proposition will be an essential tool.

Proposition 5.5. Assume that

$$
\bar{u}_{n}(y) \rightarrow \bar{u}(y), \quad L_{n}(x) \rightarrow L(x)
$$

locally uniformly, and that we have the uniform bound

$$
L_{n}(x) \geq \frac{1}{c}(|x|-c) \quad \text { for all } n \in \mathbb{N}
$$

where c does not depend on n.
Then the conjugate functions $u_{n}(1, x), v_{n}(0, y)$ converge uniformly to $u(1, x), v(0, y)$, and the graph F_{n} converges locally in Hausdorff distance fo a closed subset of F.
5.3. Fundamental example. Let $\left\{y_{i}: i \in \mathbb{N}\right\}$ be a dense sequence in \mathbb{R}^{d}, and define

$$
u_{N}(x)=\min \left\{u\left(y_{i}\right)+L\left(x-y_{i}\right): i=1, \ldots, N\right\} .
$$

We can split \mathbb{R}^{d} into at most N open regions Ω_{i} (Voronoi-like cells), inside which we have

$$
u_{N}(x)=u\left(y_{i}\right)+L\left(x-y_{i}\right), \quad x \in \Omega_{i}
$$

together with the negligible set

$$
\bigcup_{i \neq j}\left(\bar{\Omega}_{i} \cap \bar{\Omega}_{j}\right) .
$$

The boundary of each region is Lipschitz, and inside each region the corresponding directional field p_{N} is given by

$$
p_{N}(x)=x-y_{i}, \quad x \in \Omega_{i} .
$$

5.4. Divergence estimate. In the points x where the field $p(x)$ is single valued, the approximate $p_{n}(x)$ converges to $p(x)$. This implies that

$$
p_{n}(x) \rightarrow p(x) \quad \mathcal{L}^{d} \text {-a.e. }
$$

Using this fact we can prove the following proposition:
Proposition 5.6. $\operatorname{div} p$ is a locally bounded measure satisfying

$$
\operatorname{div} p-d \mathcal{L}^{d} \leq 0
$$

Proof. The approximating fields satisfy the bound, thus by the above convergence we get the bound for $\operatorname{div} p$. It is a measure because positive distributions are measures.

6. Jacobian estimates

As in the previous section, we take a dense sequence $\left\{y_{i}: i \in \mathbb{N}\right\}$ in \mathbb{R}^{d}. For a fixed time $t \in(0,1)$, we consider the approximation with finitely many points at $t=0$,

$$
u_{N}(t, x)=\min \left\{u\left(0, y_{i}\right)+t L\left(\frac{x-y_{i}}{t}\right): i=1, \ldots, N\right\} .
$$

Take a compact subset $A(t) \subset F(t)$. We denote by $A_{N}(s)$ the push-forward of the set $A(t)$ along the approximating rays $p_{N}(t, x)$. Then we get

$$
\mathcal{L}^{d}\left(A_{N}(s)\right) \geq\left(\frac{s}{t}\right)^{d} \mathcal{L}^{d}(A(t)) \quad \text { for } s \leq t
$$

Up to a set of measure ϵ, we can assume that $p_{N}(t), p(t)$ are continuous and $p_{N}(t) \rightarrow p(t)$ uniformly on $A(t)$. Then $A_{N}(s)$ is compact for $s \leq t$, and it converges to $A(s)$ in Hausdorff distance. Since \mathcal{L}^{d} is upper semicontinuous with respect to the Hausdorff distance, this implies that

$$
\mathcal{L}^{d}(A(s)) \geq\left(\frac{s}{t}\right)^{d} \mathcal{L}^{d}(A(t)) \quad \text { for } s \leq t
$$

By repeating the above approximation with finitely many points at $t=1$, one obtains the corresponding estimate

$$
\mathcal{L}^{d}(A(s)) \geq\left(\frac{1-s}{1-t}\right)^{d} \mathcal{L}^{d}(A(t)) \quad \text { for } s \geq t
$$

We thus obtain the following estimate for the push-forward of the Lebesgue measure.
Lemma 6.1. Let

$$
\mu(s)=[z+(s-t) p]_{\sharp} \mathcal{L}^{d} .
$$

Then

$$
\mu(s)=\left.c(s, t, z) \mathcal{L}^{d}\right|_{F(t)},
$$

with

$$
\begin{aligned}
& c(s, t, z) \in\left[\left(\frac{s}{t}\right)^{d},\left(\frac{1-s}{1-t}\right)^{d}\right] \quad \text { for } s \leq t \\
& c(s, t, z) \in\left[\left(\frac{1-t}{1-s}\right)^{d},\left(\frac{t}{s}\right)^{d}\right] \quad \text { for } t \leq s .
\end{aligned}
$$

Proof. By the previous estimates, we have for $s \geq t$,

$$
\left(\frac{1-t}{1-s}\right)^{d} \mathcal{L}^{d}(A(s)) \leq \mathcal{L}^{d}(A(t)) \leq\left(\frac{t}{s}\right)^{d} \mathcal{L}^{d}(A(s))
$$

By the definition of the image measure,

$$
\mathcal{L}^{d}(A(t))=\mu(s)(A(s)) .
$$

Thus the result follows.
The function $c(s, t, z)$ is the Jacobian of the transformation.
6.1. Disintegration of the Lebesgue measure. Using Lemma 6.1, we now apply the Fubini-Tonelli theorem to a measurable set $A=\bigcup_{t}\{t\} \times A(t) \subset \bigcup_{t}\{t\} \times F(t)$ to obtain

$$
\begin{aligned}
\int_{A} \mathrm{~d} t \times \mathcal{L}^{d} & =\int \mathrm{d} t \int_{A(t)} \mathcal{L}^{d} \\
& =\int \mathrm{d} t \int_{A(t, s)} c(t, s) \mathcal{L}^{d} \\
& =\int \mathcal{L}^{d} \int \mathrm{~d} t c(t, s) \chi_{A(t, s)}
\end{aligned}
$$

where $A(t, s)$ is the image of the set $A(t)$ by

$$
A(t, s)=(z+(s-t) p(z))(A(t))
$$

Remark 6.2. In the new coordinates, $\mathrm{d} t c(t, s)$ is concentrated on a single optimal ray.
Since the rays do not intersect, we can disintegrate the Lebesgue measure along rays,

$$
\mathcal{L}^{d} \times\left.\mathrm{d} t\right|_{F}=\int \mathrm{d} m(\alpha) \mu_{\alpha} .
$$

We can parameterize the rays by the points of the plane $t=1 / 2$, then the support of μ_{α} is the optimal ray passing through $\alpha \in F(1 / 2)$. Using the previous formula, we obtain the following theorem:

Theorem 6.3. The disintegration of the Lebesgue measure on the set of optimal rays F is

$$
\int \mathrm{d} m(\alpha) \mu_{\alpha}
$$

with

$$
\begin{aligned}
m(\alpha) & =\mathcal{L}^{d} \int_{0}^{1} c\left(t, \frac{1}{2}\right) \mathrm{d} t \\
\mu_{\alpha} & =\left(\int_{0}^{1} c\left(t, \frac{1}{2}\right) \mathrm{d} t\right)^{-1} c\left(t, \frac{1}{2}\right) \mathrm{d} t
\end{aligned}
$$

where $c\left(t, \frac{1}{2}\right)$ is the Jacobian along the ray $\alpha+(t-1 / 2) p(\alpha)$.
Remark 6.4. By Fubini's theorem,

$$
\int_{0}^{1} c\left(t, \frac{1}{2}\right) \mathrm{d} t<+\infty \quad \mathcal{L}^{d} \text {-a.e. }
$$

therefore the formula makes sense.
In the following we denote $c(t, \alpha)=c(t, 1 / 2, \alpha)$.

6.2. Regularity of the Jacobian and applications.

Lemma 6.5. $c(t, \alpha) \in W_{t}^{1,1}$, and there exists a $K_{d}>0$ such that

$$
\int_{0}^{1}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} c(t, \alpha)\right| \mathrm{d} t \leq K_{d}
$$

Proof. Since

$$
\frac{\mathrm{d}}{\mathrm{~d} t} c(t, \alpha)+\frac{d}{1-t} c(t, \alpha) \geq 0
$$

we can estimate

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} c(t, \alpha)\right| \mathrm{d} t & \leq \int_{0}^{\frac{1}{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} c(t, \alpha)+2 \frac{d}{1-t} c(t, \alpha) \mathrm{d} t \\
& \leq c\left(\frac{1}{2}, \alpha\right)+4 d \int_{0}^{\frac{1}{2}} c(t, \alpha) \mathrm{d} t
\end{aligned}
$$

and similarly

$$
\int_{\frac{1}{2}}^{1}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} c(t, \alpha)\right| \mathrm{d} t \leq c\left(\frac{1}{2}, \alpha\right)+4 d \int_{\frac{1}{2}}^{1} c(t, \alpha) \mathrm{d} t
$$

Hence

$$
\begin{equation*}
\text { Tot.Var. }(c(\cdot, \alpha)) \leq 4 d+2 c\left(\frac{1}{2}, \alpha\right) \tag{6.1}
\end{equation*}
$$

In particular the limits

$$
\lim _{t \rightarrow 0^{+}, 1^{-}} c(t, \alpha)
$$

exist. From the normalization

$$
\int_{0}^{1} c(t, \alpha) \mathrm{d} t=1
$$

and the estimate

$$
c(t, \alpha) \geq \min \left\{2^{d}|t|^{d}, 2^{d}|1-t|^{d}\right\} c\left(\frac{1}{2}, \alpha\right)
$$

it follows that there is K_{d}^{\prime} such that

$$
c\left(\frac{1}{2}, \alpha\right) \leq K_{d}^{\prime}
$$

so that by (6.1) there is K_{d} such that

$$
\operatorname{Tot.Var} .(c(\cdot, \alpha)) \leq K_{d}
$$

Corollary 6.6.

$$
\frac{1}{c}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} c\right| \in L_{\mathrm{loc}}^{1}(\mathrm{~d} t \mathrm{~d} x)
$$

6.3. Divergence formulation.

Proposition 6.7. We have the following relation between c and the divergence of the vector field p :

$$
\operatorname{div}\left(1, p \chi_{F}\right)=\left.\frac{1}{c} \frac{\mathrm{~d} c}{\mathrm{~d} t} \mathrm{~d} t \mathrm{~d} z\right|_{F}
$$

From

$$
\frac{1}{c} \frac{\mathrm{~d} c}{\mathrm{~d} t} \in\left(-\frac{d}{1-t}, \frac{d}{t}\right)
$$

it follows that it is an absolutely continuous measure.
Proof. Take a test function $\phi \in C_{c}^{1}(F)$. Applying the disintegration along the rays, one obtains

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \int_{0}^{1} \phi(t, z) \operatorname{div}\left(1, p_{t} \chi_{F(t)}\right) \mathrm{d} t \mathrm{~d} z \\
& \quad=-\int_{\mathbb{R}^{d}} \int_{0}^{1} \chi_{F(t)}(z) \phi_{t}(t, z)+p_{t}(z) \cdot \nabla \phi(t, z) \mathrm{d} t \mathrm{~d} z \\
& \quad=-\int \mathrm{d} m(\alpha) \int_{0}^{1} \mathrm{~d} t c(t, \alpha)\left[\phi_{t}(t,(1-t) y+t x)+(x-y) \cdot \nabla \phi(t,(1-t) y+t x)\right] \\
& \quad=-\int \mathrm{d} m(\alpha) \int_{0}^{1} \mathrm{~d} t c(t, \alpha) \frac{\mathrm{d}}{\mathrm{~d} t} \phi(t,(1-t) y+t x) \\
& \quad=\int \mathrm{d} m(\alpha) \int_{0}^{1} \mathrm{~d} t \frac{\mathrm{~d} c}{\mathrm{~d} t}(t, \alpha) \phi(t,(1-t) y+t x) \\
& \quad=\int_{\mathbb{R}^{d}} \int_{0}^{1}\left(\frac{1}{c} \frac{\mathrm{~d} c}{\mathrm{~d} t}\right) \phi(t, z) \mathrm{d} t \mathrm{~d} z
\end{aligned}
$$

References

[1] L. Ambrosio and N. Fusco and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000.
[2] F. Aubin and A. Cellina. Differential inclusions, set-valued maps and viability theory. Springer, 1984
[3] S. Bianchini, C. De Lellis and R. Robyr. SBV regularity for Hamilton-Jacobi equations in \mathbb{R}^{d}. In preparation.
[4] S. Bianchini and M. Gloyer. On the Euler-Lagrange equation for a variational problem: the general case II. To appear in Math. Z.
5] P. Cannarsa, A. Mennucci and C. Sinestrari. Regularity Results for Solutions of a Class of Hamilton-Jacobi Equations. Arch. Rational Mech. Anal., 140:197-223, 1997.
[6] D.H. Fremlin. Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, 2004.
[7] D.H. Fremlin. Measure Theory, Vol. 4: Topological Measure Spaces. Torres Fremlin, 2006.
SiSSA-ISAS, via Beirut 2-4, I-34014 Trieste, ITALY
E-mail address: bianchin@sissa.it
URL: http://www.sissa.it/~ ${ }^{\text {bianchin/ }}$
SISSA-ISAS, via Beirut 2-4, I-34014 Trieste, ITALY
E-mail address: gloyer@sissa.it

