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INTRODUCTION TO FOURIER-MUKAI AND NAHM
TRANSFORMS WITH AN APPLICATION TO COHERENT

SYSTEMS ON ELLIPTIC CURVES

UGO BRUZZO, DANIEL HERNÁNDEZ RUIPÉREZ, AND CARLOS TEJERO PRIETO

These notes record, in a slightly expanded way, the lectures given by the first two
authors at the School on Moduli Spaces of Vector Bundles that took place at CIMAT
in Guanajuato, Mexico, from November 27th to December 8th, 2006. The School,
together with the ensuing workshop on the same topic, was held in occasion of Peter
Newstead’s 65th anniversary. It has been a great pleasure and a privilege to contribute
to celebrate Peter’s outstanding achievements in algebraic geometry and his lifelong
dedication to the progress of mathematical knowledge. We warmly thank the organizers
of the school and workshop for inviting us, thus allowing us to participate in Peter’s
celebration.

The main emphasis in these notes is on the Fourier-Mukai transforms as equivalences
of derived categories of coherent sheaves on algebraic varieties. For this reason, the
first Section is devoted to a basic (but we hope, understandable) introduction to de-
rived categories. In the second Section we develop the basic theory of Fourier-Mukai
transforms.

Another aim of our lectures was to outline the relations between Fourier-Mukai and
Nahm transforms. This is the topic of Section 3. Finally, Section 4 is devoted to the
application of the theory of Fourier-Mukai transforms to the study of coherent systems.

This is a review paper. Most of the material is taken from [1] and [30], although the
presentation is different in some places. We refer the reader to those works for further
details and for a systematic treatment.

1. Derived categories

Introduction. We start with an introduction to derived categories, especially in con-
nection with Fourier-Mukai transforms. A more comprehensive treatment may be
found in [1]. As a witness to the relevance of derived categories in this theory one
may mention the title of the paper where Mukai introduced the transform now known
as Fourier-Mukai’s: “Duality between D(X) and D(X̂) with its application to Picard
sheaves” [43].

Let us consider the original Mukai transform from a naive point of view. Let X
be a complex abelian variety and E a vector bundle on X. We consider here only
algebraic (or holomorphic) vector bundles, so we can also think of E as a smooth
hermitian bundle E endowed with an hermitian connection ∇ which is compatible
with the complex structure. We fix an index i and look for the various cohomology
spaces H i(X, E ⊗ Pξ) where Pξ varies in the space X̂ of all flat line bundles on X
(the dual abelian variety of X). A natural question is whether the collection of vector

spaces H i(X, E ⊗ Pξ) define a vector bundle on X̂. In some cases this happens, for

instance if one has Hj(X, E ⊗ Pξ) = 0 for any j 6= i and ξ ∈ X̂.
1
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In general one cannot expect to be so lucky, and such a vector bundle (or more
generally sheaf) may not exist. What one can do is to mimic the construction of the

cohomology groups to get objects that play a similar role. On the product X×X̂ there
is a universal line bundle P , called the Poincaré bundle, whose restriction to the fibre
π̂−1(ξ) over ξ of the projection π̂ : X×X̂ → X̂ is the line bundle Pξ; we normalise P so
that it restricts to the trivial line bundle on the fibre of the origin x0 of X for the other
projection π : X×X̂ → X. In analogy with the construction of the cohomology groups
of a sheaf, we take the sheaf F = π∗E ⊗ P (whose restriction to π̂−1(ξ) is precisely
E ⊗ Pξ), a resolution

0→ F → R0 → R1 → · · · → Rn → . . .

by injective sheaves, and define the higher direct images of F under π̂ as the cohomology
sheaves Riπ∗F = Hi(π∗R•) of the complex

0→ π∗F → π∗R0 → π∗R1 → · · · → π∗Rn → . . . .

The relationship between the sheaves Riπ∗(π
∗E ⊗ P) and the cohomology groups

H i(X, E ⊗ Pξ) is given by some “cohomology base change” theorems [26, III.12]. This
shows that the sheaves Riπ∗(π

∗E ⊗ P) encode more information than the cohomology
groups of the fibres. Another classical fact is that the higher direct images are inde-
pendent of the resolution R• of F , that is, if 0→ F → R̃• is another acyclic resolution
of F (meaning that the higher direct images Riπ̂iR̃j of the sheaves Rj are zero for
every i > 0, j ≥ 0), then the complexes of sheaves π∗R• and π∗R̃• have the same
cohomology sheaves. If we identify two complexes of sheaves when they have the same
cohomology sheaves (we say that they are quasi-isomorphic), and write Rπ̂∗F for the
“class” of any of the complexes π∗R•, the information about the cohomology groups
H i(X, E ⊗ Pξ) is encoded in the single object Φ(E) = Rπ̂∗F = Rπ̂∗(π

∗E ⊗ P).
To make good sense of all this, we need to construct, out of any abelian category, an-

other category, which is called the derived category, where quasi-isomorphic complexes
become isomorphic and we can define “derived functors” (such as Rπ̂∗) and also some
derived versions of the pullback functor π∗ and of the tensor product.

1.1. Categories of complexes. A complex (K•, dK•) in an abelian category A is a
sequence

· · · → Kn−1 dn−1

−−−→ Kn dn−→ Kn+1 → · · ·
of morphisms in A such that dn+1 ◦ dn = 0 for all n ∈ Z. The family of morphisms dK•
is called the differential of the complex K•.

The category of complexes C(A) is the category whose objects are complexes (K•, dK•)
in A and whose morphisms f : (K•, dK•) → (L•, dL•) are collections of morphisms
fn : Kn → Ln, n ∈ Z, in A such that the diagrams

· · · // Kn−1 dn−1
//

fn−1
��

Kn dn //

fn��

Kn+1 dn+1
//

fn+1
��

· · ·

· · · // Ln−1 dn−1
// Ln dn // Ln+1 dn+1

// · · ·
commute.

The direct sum K• ⊕ L• of two complexes K• and L• is defined in the obvious way.
One can also describe in a natural way the kernel and the cokernel of a morphism
of complexes, and readily check that the category C(A) of complexes of an abelian
category is abelian as well.
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We can also define the complex of homomorphisms Hom•(K•,L•) by setting

Hom(K•,L•)n =
∏
i

HomA(Ki,Li+n)

for each n ∈ Z, together with a differential defined by

(1.1)
dn : Hom(K•,L•)n → Hom(K•,L•)n+1

f i 7→ di+nL• ◦ f
i + (−1)n+1f i+1 ◦ diK•

When A has tensor products and arbitrary direct sums, we can define the tensor
product of complexes by letting (K• ⊗ L•)n =

⊕
p+q=n(Kp ⊗ Lq) with the differential

dK• ⊗ Id + (−1)pId ⊗ dL• over Kp ⊗ Lq. If A has tensor products but not arbitrary
direct sums, K• ⊗L• is defined whenever for every n there are only a finite number of
summands in

⊕
p+q=n(Kp ⊗ Lq).

The shift K•[n] of a complex K• by an integer number n, is defined by setting
K[n]p = Kp+n with the differential dK•[n] = (−1)ndK• . A morphism of complexes
f : K• → L• induces another morphism of complexes f [n] : K•[n] → L•[n] given by
f [n]p = fp+n. In this way, K• 7→ K•[n] is an additive functor. Sometimes we shall
denote τ(K•) = K•[1], so that τn(K•) = K•[n] for any integer n. The n-th cohomology
of a complex K• is the object

Hn(K•) = ker dn/ Im dn−1 .

We say that Zn(K•) = ker dn are the n-cycles of K• and Bn(K•) = Im dn−1 are the
n-boundaries. A morphism of complexes f : K• → L• maps cycles to cycles and bound-
aries to boundaries, so that it yields for every n a morphism

Hn(f) : Hn(K•)→ Hn(L•) .
One has Hn(K•[m]) ' Hn+m(K•) and Hn(f [m]) ' Hn+m(f).

A complex K• is said to be acyclic or exact if H(K•) = 0; a morphism of complexes
f : K• → L• is a quasi-isomorphism if H(f) : H(K•)→ H(L•) is an isomorphism. The
composition of two quasi-isomorphisms is a quasi-isomorphism.

A morphism of complexes f : K• → L• is homotopic to zero if there is a collection
of morphisms hn : Kn → Ln−1 (a homotopy) such that fn = hn+1 ◦ dnK• + dn−1

L• ◦ hr for
every n. A complex K• is homotopic to zero if its identity morphism is homotopic to
zero. Two morphisms f, g : K• → L• are homotopic if f − g is homotopic to zero.

The sum of two morphisms homotopic to zero is homotopic to zero as well. Further-
more, f ◦ g is homotopic to zero if either f or g is homotopic to zero.

The homotopy category K(A) is the category whose objects are the objects of C(A)
and whose morphisms are

HomK(A)(K•,L•) = HomC(A)(K•,L•)/Ht(K•,L•) ,
where Ht(K•,L•) is the set of morphisms which are homotopic to zero.

One can see from Equation (1.1) that the n-cycles of the complex of homomorphisms
Hom•(K•,L•) are the morphisms of complexes K• → L•[n], while the n-boundaries are
the morphisms homotopic to zero. Thus,

Hn(Hom•(K•,L•)) = HomK(A)(K•,L•[n]) .

If f : K• → L• is homotopic to zero, then H(f) = 0; hence, two homotopic morphisms
induce the same morphism in cohomology and a complex K• which is homotopic to zero
is acyclic.
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The homotopy category K(A) does not have kernels nor cokernels. This can be
overcome by introducing the notion of cone of a morphism.

Definition 1.1. The cone of a morphism of complexes f : K• → L• is the complex
Cone(f) such that Cone(f)n = Kn+1 ⊕ Ln, equipped with differential

dnCone(f) =

(
−dn+1
K• 0

fn+1 dnL•

)
4

Cone(f) is not isomorphic to the direct sum K•[1] ⊕ L• because it has another
differential. There are functorial morphisms β : Cone(f) → K•[1], (k, l) 7→ k , and
α : L• → Cone(f), l 7→ (0, l).

The sequence

K• f−→ L• α−→ Cone f
β−→ K•[1] ,

in K(A) is called a distinguished (or exact) triangle in K(A) and is also written in the
form

K•
f // L•

αwwppppppp

Cone f
β

ggO O O O

where the dashed arrow stands for a morphism Cone f → K•[1]. Notice that α ◦ f = 0
and β ◦ α = 0.

Proposition 1.2. Given an exact triangle K• f−→ L• α−→ Cone f
β−→ K•[1] in K(A), for

every integer n there is an exact sequence of cohomology groups

Hn(K•) H
n(f)−−−→ Hn(L•) H

n(α)−−−→ Hn(Cone f)
Hn(β)−−−→ Hn(K•[1]) ' Hn+1(K•).

�

One also obtains the so-called cohomology long exact sequence:

. . .
Hn−1(β)−−−−−→ Hn(K•) H

n(f)−−−→ Hn(L•) H
n(α)−−−→ Hn(Cone f)

Hn(β)−−−→ Hn+1(K•) . . .
Proposition 1.2 tells us that the functors Hn : K(A) → A are cohomological. This

means the following: if A, B are abelian categories, an additive functor F : K(A)→ B

is cohomological if for every exact triangle K• f−→ L• α−→ Cone f
β−→ K•[1] the sequence

F (K•) F (f)−−→ F (L•) α−→ F (Cone f)
F (β)−−→ F (K•)[1] is exact.

Corollary 1.3. A morphism of complexes f : K• → L• is a quasi-isomorphism if and
only if Cone(f) is acyclic. �

If 0 → K• f−→ L• g−→ N • → 0 is an exact sequence of complexes (in C(A)), then
there is a morphism of complexes Cone(f) → N • defined in degree n by (an+1, bn) ∈
Kn+1⊕Ln 7→ g(bn) ∈ N n. One easily checks that it is a quasi-isomorphism. Combining
this with the cohomology long exact sequence we obtain the more customary form of
the latter, i.e., there exist functorial morphisms δn : Hn(N •) → Hn+1(L•) such that
one has an exact sequence

· · · δ
n−1

−−→ Hn(L•)→ Hn(M•)→ Hn(N •) δn−→ Hn+1(L•)→

→ Hn+1(M•)→ Hn+1(N •) δn+1

−−→ · · ·
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1.2. Derived Category. In our route toward the definition of a category where quasi-
isomorphic complexes are actually isomorphic, we have first identified homotopic mor-
phisms, and then have moved from the category of complexes C(A) to the homotopy
category K(A). A second step is to “localise” by quasi-isomorphims. This localisa-
tion is a fraction calculus for categories. Recall that given a ring A (e.g., the integer
numbers) and S ⊂ A which is a multiplicative system (that is, it contains the unity
and is closed under products), then one can define the localised ring S−1A; elements
in S−1A are equivalence classes a/s of pairs (a, s) ∈ A × S where (a, s) ∼ (a′, s′) (or
a/s = a′/s′) if there exists t ∈ S such that t(as′ − a′s) = 0. The elements s ∈ S
become invertible in S−1A because s/1 · 1/s = 1. One can proceed in a similar way
with morphisms of complexes, since quasi-isomorphisms verify the conditions for being
a multiplicative system; the identity is a quasi-isomorphism and the composition of
two quasi-isomorphisms is a quasi-isomorphism. We can the define a “fraction” f/φ
as a diagram of (homotopy classes of) morphisms of complexes

R•
f

%%KKKKKKφ

yyrrrrrr

K• L•

where φ is a quasi-isomorphism. Two diagrams f/φ and g/ψ of the same type are said
to be equivalent if there are quasi-isomorphisms R• ← T • → S• such that the diagram

T •
&&MMMMMM

xxqqqqqq

R•

f ,,YYYYYYYYYYYYYYYYYYYYYYY
φ

xxqqqqqq S•

ψrreeeeeeeeeeeeeeeeeeeeeeee
g

&&MMMMMM

K• L•

commutes in K(A). Equivalence of fractions is actually an equivalence relation; this
follows from the next Proposition, whose proof is based on the properties of the cone
of a morphism.

Proposition 1.4. Given morphisms of complexes M• f−→ N • g←− R• in K(A), there

are morphisms of complexes M• g′←− Z• f ′−→ R• such that the diagram

Z•
f ′ //

g′ ��

R•
g��

M•
f // N •

is commutative in K(A). Moreover, f ′ (respectively, g′) is a quasi-isomorphism if and
only if f (respectively, g) is so. �

Definition 1.5. The derived category D(A) of A is the category with the same objects
as K(A) (i.e., complexes of objects of A), and whose morphisms are the equivalence
classes [f/φ] of diagrams as above. 4

In order for this definition to make sense we need to say how to compose morphisms.
Given two morphisms [f/φ] and [g/ψ] in D(A), their composition is defined by the
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diagram

T •ψ′

xxqqqqqq f ′

&&MMMMMM

R• f

&&MMMMMMφ

xxqqqqqq S• g

&&NNNNNNψ

xxqqqqqq

K• L• M•

which exists by Proposition 1.4. Hence, we set [g/ψ] ◦ [f/φ] = [(g ◦ f ′)/(φ ◦ ψ′)]; one
can readily see that this definition makes sense and that D(A) is an additive category.

A morphism f : K• → L• in K(A) defines the morphism f/IdK• : K• → L• in the
derived category, which we denote simply by f . This defines a functor K(A)→ D(A)
which is additive.

A morphism f/φ : K• → L• in the derived category induces a morphism in co-

homology H(f/φ) : H(K•) H(φ)−1

−−−−→ H(R•) H(f)−−−→ H(L•), which is independent of the
representative f/φ of the class and is compatible with compositions.

Definition 1.6. Two complexes K• and L• are quasi-isomorphic if there is a complex
Z• with quasi-isomorphisms K• ← Z• → L•. 4

Lemma 1.4 implies that the notion of quasi-isomorphism induces an equivalence
relation between complexes. Eventually, we have the result we were looking for:

Proposition 1.7. A morphism of complexes f : K• → L• is a quasi-isomorphism if
and only the induced morphism in the derived category is an isomorphism. Moreover,
two complexes are quasi-isomorphic if and only if they are isomorphic in D(A). �

Proposition 1.8. Let C be an additive category. An additive functor F : K(A) → C
factors through an additive functor D(A)→ C if and only if it maps quasi-isomorphisms
to isomorphisms. If B is an abelian category, an additive functor G : K(A) → K(B)
mapping quasi-isomorphisms into quasi-isomorphisms induces an additive functor G :
D(A)→ D(B) such that the diagram

C(A)
G //

��

C(B)

��
D(A)

G // D(B)

is commutative. �

We can also define derived categories out of some subcategories of C(A); the only
condition we need is that all the operations we have done can be performed in the new
situation. More precisely, we should be able to construct the corresponding homotopy
category and to localise by quasi-isomorphims; to this end one needs to define the cone
of a morphism inside the new category. Some examples are the following:

Example 1.9. A complex K• is bounded below (resp. bounded above) if there is an
integer n0 such that K•n = 0 for all n ≤ n0 (resp. n ≥ n0). A complex is bounded if it
is bounded on both sides.

Bounded below complexes form a category C+(A). We can define its homotopy
category K+(A) and a “derived” category D+(A) as we did before. By Proposition
1.8, the natural functor K+(A) → D(A) induces a functor γ : D+(A) → D(A). The
latter is fully faithful, that is,

HomD+(A)(K•,M•) ' HomD(A)(γ(K•), γ(M•))
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for any pair of objects K•, M• in D+(A), and its essential image is the faithful sub-
category of D(A) consisting of complexes in A with bounded below cohomology. (The
essential image of the functor γ is the subcategory of objects which are isomorphic
to objects of the form γ(K•) for some K• in D+(A)). One can also define the cate-
gories C−(A) of bounded above complexes and Cb(A) of complexes bounded on both
sides, giving rise to “derived” categories D−(A) and Db(A). These are characterised
as faithful subcategories of D(A) as above. 4
Example 1.10. An abelian subcategory A′ of A is thick if any extension in A of two
objects of A′ is also in A′. If A′ is a thick abelian subcategory of A, we denote by
CA′(A) the category of complexes whose cohomology objects are in A′. We can con-
struct its homotopy category KA′(A) and its derived category DA′(A). The functor
KA′(A)→ D(A) induces a fully faithful functor DA′(A)→ D(A) (cf. Proposition 1.8),
whose essential image is the subcategory of D(A) whose objects are the complexes with
cohomology objects in A′. 4
Example 1.11. We can also introduce the homotopy categories K+

A′(A), K−A′(A) and
Kb

A′(A) of complexes bounded below, above and on both sides, respectively, whose co-
homology objects are in the subcategory A′ of A. The corresponding derived categories
D+

A′(A), D−A′(A) and Db
A′(A) can be defined as well. 4

Let us write ? for any of the symbols +, −, b, or for no symbol at all. The natural
functor K?(A′)→ D(A) maps quasi-isomorphisms to isomorphisms, so that induces a
functor D?(A′) → D?

A′(A). In general, it may fail to be an equivalence of categories.
There are special notations for the derived categories we are most interested in:

• If A is the category of modules over a commutative ring A, we simply write
D(A), D+(A), D−(A), and Db(A).
• If A = Mod(X) is the category of sheaves ofOX-modules on an algebraic variety
X, we write D(X), D+(X), D−(X), and Db(X).
• If A = Mod(X) and A′ = Qco(X) is the category of quasi-coherent sheaves of
OX-modules on X, the derived category DA′(A) of complexes of OX-modules
with quasi-coherent cohomology sheaves is denoted Dqc(X). In a similar way
we have the categories D+

qc(X), D−qc(X) and Db
qc(X).

• If A = Mod(X) and A′ = Coh(X) is the category of coherent sheaves of OX-
modules on X, the derived category DA′(A) of complexes of OX-modules with
coherent cohomology sheaves is denoted Dc(X). One also has the derived cat-
egories D+

c (X), D−c (X) and Db
c(X).

• If A = Qco(X) and A′ = Coh(X), we have the derived categories Dc(Qco(X))
D+
c (Qco(X)), D−c (Qco(X)) and Db

c(Qco(X)).

One has equivalences of categoriesD+
qc(X) ' D+(Qco(X)) andDb

qc(X) ' Db(Qco(X)).
The first equivalence is a consequence of the fact that every quasi-coherent sheaf on an
algebraic variety can be embedded as a subsheaf of an injective quasi-coherent sheaf.
One also has D+

c (X) ' D+
c (Qco(X)) and Db

c(X) ' Db
c(Qco(X)). When X is smooth,

the same is true for unbounded complexes as well, so that D?
qc(X) ' D?(Qco(X)) and

D?(Coh(X)) ' D?
c (Qco(X)) ' D?

c (X) for any value of ?.

1.2.1. The derived category as a triangulated category. Derived categories are examples
of triangulated categories. We shall not give here a formal definition but shall just
point out some of the features of the derived category that make it into a triangulated
category.
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The first is the existence of a shift functor τ : D(A) → D(A), τ(K•) = K•[1], which
is an equivalence of categories. The second is the existence of “triangles”, and among
them a class of “distinguished triangles” satisfying some properties we do not describe
here. A triangle in D(A) is a sequence of morphisms

K• u−→ L• v−→M• w−→ K•[1]

which we also write in the form

K• u // L•

vxxrrrrrr

M•
w

ffM
M

M

where the dashed arrow stands for the morphismM• w−→ K•[1]. A morphism of triangles
is defined in the obvious way, and we say that a triangle is distinguished or exact if it
is isomorphic to the triangle defined by the cone of a morphism f : K• → L•, which is

the triangle K• f−→ L• α−→ Cone(f)
β−→ K•[1]. From Proposition 1.2, an exact triangle in

D(A) induces a long exact sequence in cohomology

· · · → Hi(A•) H
i(u)−−−→ Hi(B•) H

i(v)−−−→ Hi(C•) H
i(w)−−−→

Hi+1(A•) H
i+1(u)−−−−→ Hi+1(B•) H

i+1(v)−−−−→ Hi+1(C•) H
i+1(w)−−−−−→ · · ·

Definition 1.12. If B is another abelian category, an additive functor F : D?
A′(A)→

D(B) is said to be exact if it commutes with the shift functor, F (K•[1]) ' F (K•)[1],
and maps exact triangles to exact triangles. 4

Then, for any exact triangle K• u−→ L• v−→M• w−→ K•[1] we have a long exact sequence

· · · → Hi(F (K•))→ Hi(F (L•))→ Hi(F (M•))→
Hi+1(F (K•))→ Hi+1(F (L•))→ Hi+1(F (M•))→ · · ·

1.3. Derived Functors. The cohomology groups of a sheaf F on an algebraic variety
X are the cohomology objects of the complex of global sections Γ(X, I•) of a resolution
I• of F by injective sheaves; the resulting groups do not depend on the injective
resolution, due to a result known as abstract de Rham theorem. In order to define
derived functors on the derived category we shall mimic this construction. Let A be
an abelian category with enough injectives. Thus, any objectM in A has an injective
resolution M → I0(M) → I1(M) → . . . which can be chosen to be functorial in
M. One can prove (by using bicomplexes, a notion we have not introduced in these
notes) that for any complex M• there is a complex of injective objects I(M•) and a
quasi-isomorphism

M• → I(M•) ,

which defines a functor I : K(A) → K(A). Let B be another abelian category and
F : A → B a left-exact functor. Then F induces a functor RF : K+(A) → D+(B)
defined by RF (M•) = F (I(M•)). Moreover, if J • is an acyclic complex of injective
objects then F (J •) is acyclic, because J • splits. This implies that RF maps quasi-
isomorphisms to isomorphisms and thus (cf. Proposition 1.8) yields a functor

RF : D+(A)→ D+(B) ,

which is the right derived functor of F .
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We can also derive on the right functors from K(A) to K(B) that are not induced
by a left-exact functor. We shall give some examples in Subsection 1.3.3.

As it is customary for the “classical” right i-th derived functor of F , we use the
notation RiF (M•) = H i(RF (M•)). The right derived functor RF is exact. In par-
ticular, an exact triangle in K(A),M′• →M• →M′′• →M′•[1] induces a long exact
sequence

· · · → RiF (M′•)→ RiF (M•)→ RiF (M′′•)→
Ri+1F (M′•)→ Ri+1F (M•)→ Ri+1F (M′′•)→ · · ·

For any bounded below complexM• there is a natural morphism F (M•)→ RF (M•)
in the derived category. M• is said to be F -acyclic if this morphism is an isomorphism
in D+(B).

The right derived functor RF satisfies a version of the de Rham theorem, namely, if
a complex M• is isomorphic in the derived category D+(A) to an F -acyclic complex
J •, then RF (M•) ' F (J •) in D+(B).

Let C be a third abelian category and G : B→ C another left-exact functor.

Proposition 1.13 (Composite functor theorem of Grothendieck). If F transforms
complexes of injective objects into G-acyclic complexes, one has a natural isomorphism
R(G ◦ F )

∼−→RG ◦RF . �

The theory of right derived functors can be applied when A is one of the categories
Mod(X) or Qco(X) because both have enough injectives.

One can develop a parallel theory of derived left exact functors if one assumes that
A has enough projectives, so that any object M has a functorial projective resolution
· · · → P 1(M)→ P 0(M)→M→ 0. Then for every bounded above complexM• there
exists a bounded above complex P (M•) of projective objects which defines a functor
P : K−(A) → K−(A). The functor LF : K−(A) → K−(B) given by LF (M•) =
F (P (M•)) defines as above a left derived functor

LF : D−(A)→ D−(B) .

Analogous properties to those stated for right derived functors hold for left derived
functors.

One should note that the categories Mod(X), Qco(X) and Coh(X) do not have
enough projectives. However if X is a (quasi-)projective, any quasi-coherent sheaf has
a (possibly infinite) resolution by locally free sheaves which may have infinite rank,
and the problem is circumvented by considering complexes P• of locally free sheaves.
We shall come again to this point in Subsection 1.3.2.

1.3.1. Derived Direct Image. Let f : X → Y be a morphism of algebraic varieties.
Since the direct image functor f∗ : Mod(X)→Mod(Y ) is left-exact, it induces a right
derived functor

Rf∗ : D
+(X)→ D+(Y )

described as Rf∗M• ' f∗(I•) where I• is a complex of injective OX-modules quasi-
isomorphic to M•. When f is quasi-compact and locally of finite type (as it often
happens), the direct image of a quasi-coherent sheaf is also quasi-coherent; in this
case, Rf∗ defines a functor Rf∗ : D

+
qc(X) → D+

qc(Y ). When f is proper, so that the
higher direct images of a coherent sheaf are coherent as well (cf. [25, Thm.3.2.1] or
[26, Thm. 5.2] in the projective case), we also have a functor Rf∗ : D

+
c (X)→ D+

c (Y ).
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Moreover, the dimension of X bounds the number of higher direct images of a sheaf of
OX-modules, so that Rf∗ induces also a functor Rf∗ : D

b
qc(X)→ Db

qc(Y ). In this case

Rf∗ extends to a functor Rf∗ : Dqc(X)→ Dqc(Y ) which maps Db
c(X) to Db

c(Y ).
If Y is a point, AY is the category of abelian groups and f∗ is the functor of global

sections Γ(X, ). In this case, Rf∗M• = RΓ(X,M•) and Rif∗M• is called the i-th hy-
percohomology group Hi(X,M•) of the complexM•. It coincides with the cohomology
group H i(X,M) when the complex reduces to a single sheaf.

1.3.2. The derived inverse image. Let f : X → Y be a morphism of algebraic varieties.
One can prove that any sheaf of OX-modules M is a quotient of a flat sheaf of OX-
modules P (M) and that one can choose P (M) depending functorially onM. One then
shows that for any bounded above complexM• there is a complex P (M•) of flat sheaves
and a quasi-isomorphism P (M•) → M• which defines a functor K−(Mod(Y )) →
K−(Mod(Y )). Moreover Lf ∗(M•) = f ∗(P (M•)) gives a left derived functor

Lf ∗ : D−(Y )→ D−(X) ,

which induces functors Lf ∗ : D−qc(X) → D−qc(Y ) and Lf ∗ : D−c (X) → D−c (Y ). In some

cases it also induces a functor Lf ∗ : Dc(X) → Dc(Y ) which maps Db
c(X) to Db

c(Y );
this happens for instance when Y is smooth. Another case is when f is of finite
homological dimension, that is, when for every coherent sheaf G on Y there are only a
finite number of nonzero derived inverse images Ljf

∗(G) = H−j(Lf ∗(G)); in particular,
flat morphisms are of finite homological dimension.

1.3.3. Derived homomorphism functor and derived tensor product. We wish to con-
struct a “derived functor” of the functor of global homomorphisms for complexes. Al-
though this functor is not induced by a left-exact functor between the original abelian
categories, we still can derive the complex of homomorphisms by mimicking the pro-
cedure used so far. We are not detailing here the entire process (see [1, Appendix A]);
let us just mention that one eventually obtains a bifunctor

RHom•X : D(X)0 ×D+(X)→ D(k)

described as RHom•X(K•,L•) ' Hom•(K•, I•), where I• is a complex of injective
sheaves quasi-isomorphic to L•. We use the notation

ExtiX(K•,L•) = RiHom•X(K•,L•) = H i(RHom•(K•,L•)) .

Proposition 1.14. (Yoneda’s formula) If M• ∈ D(X) and N • ∈ D+(X), one has

ExtiX(M•,N •) ' Homi
D(X)(M•,N •) := HomD(X)(M•,N •[i]) .

�

Let Y be another algebraic variety and Ψ: D(X) → D(Y ) an exact functor which
maps bounded complexes to bounded complexes.

Corollary 1.15. (Parseval’s formula) If Ψ is fully faithful, there are isomorphisms

ExtiX(M•,N •) ∼ //

'��

ExtiY (Ψ(M•),Ψ(N •))
'��

Homi
D(X)(M•,N •) ∼ // Homi

D(Y )(Ψ(M•),Ψ(N •))

�
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One can define the complex Hom•OX (M•,N •) of sheaves of homomorphisms; this is

given by Homn(M•,N •) =
∏

iHomOX (Mi,N i+n) with the differential df = f ◦dM•+
(−1)n+1dN • ◦ f . There is also a derived sheaf homomorphism

RHom•OX : D(X)0 ×D+(X)→ D(X) .

By applying Grothendieck’s composite functor theorem we obtain for every open
U ⊆ X an isomorphism in the derived category D(U):

RΓ(U,RHom•OX (K•,L•)) ' RHom•OU (K•|U ,L•|U) .

By following a similar procedure one can derive the “functor tensor product of com-
plexes”: there exists a bifunctor, called derived tensor product

L
⊗ : D(X)×D(X)→ D(X) ,

whose description is M•
L
⊗N • = M• ⊗ P (N •), where P (N •) → N • is a quasi-

isomophism and P (N •) is a complex of flat sheaves.

1.3.4. Base change in the derived category. There are some derived category remark-
able formulas that relate the various derived functors (cf. [26]). Here we describe only
the following strengthened version of the derived category base change formula.

Proposition 1.16. [1, Prop.A.74] Let us consider a cartesian diagram of morphisms
of algebraic varieties

X ×Y Ỹ
g̃ //

f̃��

X
f

��
Ỹ

g // Y

For any complex M• of OX-modules there is a natural morphism

Lg∗Rf∗M• → Rf̃∗Lg̃
∗M• .

Moreover, if M• has quasi-coherent cohomology and either f or g is flat, the above
morphism is an isomorphism. �

2. Integral functors and Fourier-Mukai transforms

2.1. Definitions. We start this section with a general definition of integral functor;
Fourier-Mukai transforms will provide interesting examples. The varieties involved can
be quite general algebraic varieties, though in the applications they will be mainly
smooth and projective. Most of the results described here are valid over an arbitrary
algebraically closed field k, possibly requiring that ch k = 0. However, in order to
simplify our treatment, we shall assume that k is the field C of the complex numbers.

Let us consider the diagram

X × Y
πX

wwppppppp πY

''NNNNNNN

X Y

involving the projections of the cartesian product X × Y onto its factors. Any object
K• in the derived category D−c (X × Y ) is the kernel of an integral functor :

ΦK
•

X→Y : D−c (X)→ D−c (Y )

E• 7→ ΦK
•

X→Y (E•) = RπY ∗(π
∗
XE•

L
⊗K•) .
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The integral functor ΦK
•

X→Y is said to be a Fourier-Mukai functor if it is an equivalence
of categories, and a Fourier-Mukai transform is a Fourier-Mukai functor whose kernel
K• reduces to a single sheaf K.

If K• is of finite Tor-dimension over X, that is, if it is isomorphic in the derived
category to a bounded complex of sheaves that are flat over X, then the integral
functor ΦK

•
X→Y maps Db

c(X) to Db
c(Y ) and can be extended to a functor ΦK

•
X→Y : D(X)→

D(Y ) between the entire derived categories. Note that the condition of finite Tor-
dimensionality is always fulfilled if X and Y are smooth and K• is an object of Db

c(X×
Y ), because in this case K• is isomorphic in the derived category to a bounded complex
of locally free sheaves.

Since an integral functor is the composition of the functors Lπ∗X (which is isomorphic

to π∗X because πX is a flat morphism), ( )
L
⊗K• and RπY ∗, and these functors are

exact, any integral functor is exact as well. In particular, for any exact sequence
0→ F → E → G → 0 of sheaves in X we obtain an exact sequence

· · · → Φi−1(G)→ Φi(F)→ Φi(E)→ Φi(G)→ Φi+1(F)→ . . .

where we have written Φi( ) = Hi(ΦK
•

X→Y ( )).

Definition 2.1. Let ΦK
•

X→Y be an integral functor. A complex F • in D−c (X) is WITi

if ΦK
•

X→Y (F •) ' G[−i] in D(Y ), for a coherent sheaf G on Y . If in addition G is locally
free, we say that F • is the ITi. 4

In Section 3 we shall see a connection between integral functors and index theory.
This will make it clear that the “IT” condition is related with the “index theorem”,
and that the “W” of “WIT” stands for “weak”.

Using the cohomology base change theorem [26, III.12.11] one proves the following
criterion for the WIT condition to hold.

Proposition 2.2. Assume that the kernel Q is a locally free sheaf on the product
X×Y . A coherent sheaf F on X is ITi if and only if Hj(X,F ⊗Qy) = 0 for all y ∈ Y
and for all j 6= i, where Qy denotes the restriction of Q to X × {y}. Furthermore, F
is WIT0 if and only if it is IT0. �

Let us list the simplest examples of integral functors.

Example 2.3. Let δ : X ↪→ X × X denote the diagonal immersion, and write ∆
for its image. The structure sheaf O∆ = δ∗OX of ∆ defines an integral functor
ΦO∆
X→X : D−c (X) → D−c (X), which is isomorphic to the identity functor ΦO∆

X→X ' Id.
Thus, the identity functor is a Fourier-Mukai transform. 4
Example 2.4. If L is a line bundle on X, the functor Φδ∗L

X→X consists of the twist by L.
It is also a Fourier-Mukai transform, whose quasi-inverse is the twist by L−1, that is,
the Fourier-Mukai transform with kernel δ∗L−1. 4
Example 2.5. If f : X → Y is a proper morphism and K• is the structure sheaf of the
graph Γf ⊂ X × Y , one has isomorphisms of functors ΦK

•
X→Y ' Rf∗ : D

−
c (X)→ D−c (Y )

and ΦK
•

Y→X ' Lf ∗ : D−c (Y )→ D−c (X). 4
2.1.1. The abelian Fourier-Mukai transform. Let X be an abelian variety; in the com-
plex case, we can think of X as a torus. Let X̂ be its dual abelian variety; a closed
point ξ ∈ X̂ corresponds to a zero degree line bundle Pξ over X (or a flat line bundle

in the complex case). X̂ is a “fine moduli space”, in the sense that there exists a line
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bundle P over X × X̂, whose restriction to the fibre X ' π−1

X̂
ξ of the projection πX̂

is precisely the flat line bundle Pξ corresponding to ξ. This universal Poincaré line
bundle is uniquely characterised by this property up to twisting by pull-backs π∗

X̂
N of

line bundles N on X̂. To avoid any ambiguity, P is normalised so that its restriction to
the fibre X̂ ' π−1

X (0) of the origin 0 ∈ X is trivial. This fixes P uniquely. An explicit
description of P in differential-geometric terms will be given in Section 3.

The first example of a Fourier-Mukai transform was introduced by Mukai in this
setting [43]. Mukai’s seminal idea was to use the normalised Poincaré bundle P to

define an integral functor S = ΦP
X→X̂ : Db

c(X) → Db
c(X̂), which turns out to be an

equivalence of triangulated categories, that is, a Fourier-Mukai transform. We shall

give a short proof of this fact in Theorem 2.12. Moreover, the functor Φ
P∗[g]
X̂→X , where

g = dimX, is quasi-inverse to ΦP
X→X̂. We shall call S = ΦP

X→X̂ the abelian Fourier-

Mukai transform and Ŝ = ΦP
∗

X̂→X the dual abelian Fourier-Mukai transform. (Actually,

instead of Ŝ Mukai considers the functor S̃ = ΦP
X̂→X : Db

c(X̂) → Db
c(X). One has

S̃ ◦ S ' ι∗
X̂
◦ [−g], where ιX̂ : X̂ → X̂ is the involution which maps a line bundle to its

dual.)

2.1.2. Orlov’s representation theorem. We have seen a few examples of integral func-
tors. A natural problem is the characterisation of the exact functors Db

c(X)→ Db
c(Y )

that are integral. The most important result in this direction is due to Orlov [48]:

Theorem 2.6. Let X and Y be smooth projective varieties. Any fully faithful exact
functor Ψ: Db

c(X)→ Db
c(Y ) is an integral functor. �

Orlov’s original statement assumed that the exact functor has a right adjoint; how-
ever, Bondal and Van den Bergh proved that any exact functor Db

c(X) → Db
c(Y )

satisfies this property [8].

2.2. General properties of integral functors. The first property of integral func-
tors we would like to describe is that the composition of two of them is again an integral
functor.

If Z is another proper variety, we consider the diagram

X × Y × Z
πXY

uukkkkkkkk
πY,Z��

πXZ

))SSSSSSSS

X × Y Y × Z X × Z
Given kernels K• in D−c (X ×Y ) and L• in D−c (Y ×Z), the composition of the integral
functors defined by them is given by the following Proposition:

Proposition 2.7. There is a natural isomorphism of functors ΦL
•

Y→Z ◦ ΦK
•

X→Y ' ΦL
•∗K•

X→Z ,

where L• ∗ K• = RπXZ∗(π
∗
XYK•

L
⊗ π∗Y ZL•) in D−c (X × Z). �

2.2.1. Action of integral functors on cohomology. Integral functors act on cohomology,
and the study of this action allows one to determine the topological invariants of the
transform of a complex in terms of the topological invariants of the complex. This is
very useful in studying the effect of integral functors on moduli spaces of sheaves.

We need to recall the notion of Mukai vector and pairing. The Mukai vector of a
complex E• in Db

c(X) for a smooth projective variety X is defined as

v(E•) = ch(E•) ·
√

td(X) ,
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where td(X) ∈ A•(X)⊗Q is the Todd class of X. We can define a symmetric bilinear
form 〈·, ·〉 on the rational Chow group A•(X)⊗Q by setting

〈v, w〉 = −
∫
X

v∗ · w · exp(1
2
c1(X)) .

The Mukai pairing naturally extends to the even rational cohomology
⊕

j H
2j(X,Q).

If X and Y are smooth proper varieties, and K• is a kernel in Db
c(X × Y ), by

the Grothendieck-Riemann-Roch theorem the integral functor ΦK
•

X→Y : Db
c(X)→ Db

c(Y )
gives rise to the commutative diagram

Db
c(X)

ΦK
•

X→Y��

v // A•(X)⊗Q
fK
•

��

// H•(X,Q)

fK
•

��
Db
c(Y )

v // A•(Y )⊗Q // H•(Y,Q)

where both fK
•

are the Q-vector space homomorphisms defined by

fK
•
(α) = πY ∗(π

∗
Xα · v(K•)) .

The map fK
•

sends H2•(X,Q) to H2•(Y,Q) and depends functorially on the kernel,
i.e., fL

•∗K• = fL
• ◦ fK• . This implies the following result.

Corollary 2.8. Let X and Y be smooth proper varieties and ΦK
•

X→Y : Db
c(X) → Db

c(Y )
a Fourier-Mukai functor. Then the morphisms fK

•
: A•(X) ⊗ Q → A•(Y ) ⊗ Q and

fK
•
: H•(X,Q) → H•(Y,Q) are isomorphisms. Moreover, the latter induces an iso-

morphism of vector spaces between the even cohomology rings. �

2.2.2. Fully faithful integral functors and Fourier-Mukai functors. In this Subsection
all varieties are smooth and projective unless otherwise stated. The first step in char-
acterising the kernels K• in Db

c(X × Y ) that give rise to equivalences is to determine
the kernels for which ΦK

•
X→Y : Db

c(X) → Db
c(Y ) is fully faithful. The idea is to study

the effect of a fully faithful integral functor ΦK
•

X→Y on the skyscraper sheaves Ox of the
points. Due to the Parseval formula (Corollary 1.15), for any pair of points x1, x2 of
X one has

(2.1) Homi
D(X)(Ox1 ,Ox2) '

Homi
D(Y )(Φ

K•
X→Y (Ox1),ΦK

•

X→Y (Ox2)) ' Homi
D(Y )(Lj

∗
x1
K•,Lj∗x2

K•) .

It follows that if ΦK
•

X→Y is fully faithful, the kernel K• fulfils the following properties:

(1) Homi
D(Y )(Lj

∗
x1
K•,Lj∗x2

K•) = 0 unless x1 = x2 and 0 ≤ i ≤ dimX;

(2) Hom0
D(Y )(Lj

∗
xK•,Lj∗xK•) = C.

Kernels K• satisfying these properties were called strongly simple over X by Maciocia
[39], but this notion had already been used implicitly in [9]. The following crucial result
was originally proved by Bondal and Orlov [9].

Theorem 2.9. Let X and Y be smooth projective varieties, and K• a kernel in Db(X×
Y ). The functor ΦK

•
X→Y is fully faithful if and only if K• is strongly simple over X. �

Building on Bondal and Orlov’s work, Bridgeland and Maciocia [18, 39] determined
the kernels that give rise to equivalences of categories. They called special an object
F • in Db

c(X) such that F •⊗ωX ' F • in Db
c(X), where ωX is the canonical line bundle.



FOURIER-MUKAI AND NAHM TRANSFORMS AND COHERENT SYSTEMS 15

Proposition 2.10. Let X and Y be smooth projective varieties of the same dimension
n, and let K• be a kernel in Db

c(X × Y ). Then ΦK
•

X→Y is a Fourier-Mukai functor if and
only if K• is strongly simple over X and Lj∗xK• is special for all x ∈ X. �

When the canonical bundles of X and Y are trivial this takes a simpler form.

Proposition 2.11. Let X and Y be smooth projective varieties of the same dimension
with trivial canonical bundles and K• an object in Db

c(X × Y ) strongly simple over X.

Then ΦK
•

X→Y is a Fourier-Mukai functor and Φ
K•∨[n]
Y→X is a quasi-inverse to ΦK

•
X→Y . �

The characterisation of the kernels that induce fully faithful integral functors or
equivalences has been generalised to the case of singular Cohen-Macaulay varieties in
[28, 29].

2.2.3. The abelian Fourier-Mukai transform revisited. Here we apply the characteri-
sation of Fourier-Mukai functors to give a simple proof of the fact that the “abelian

Fourier-Mukai transform” S and the “dual abelian Fourier-Mukai transform” Ŝ are
truly Fourier-Mukai transforms, that is, they are equivalences of categories.

Let X be an abelian variety of dimension g and X̂ its dual abelian variety. If P is
the Poincaré line bundle on X × X̂, the restriction Lj∗ξP is the line bundle Pξ on X

corresponding to the point ξ ∈ X̂. Since Homi
D(X)(Pξ1 ,Pξ2)) ' H i(X,P∗ξ1 ⊗ Pξ2) for

any pair of points ξ1 and ξ2 of X̂, one has:

(1) Homi
D(X)(Pξ1 ,Pξ2)) = 0 unless ξ1 = ξ2 and 0 ≤ i ≤ g;

(2) Hom0
D(X)(Pξ1 ,Pξ1) = C for any ξ ∈ X̂.

In other words, P is strongly simple over X̂. By Proposition 2.11, it is strongly simple
over X as well. So we have:

Theorem 2.12. The functors S = ΦP
X→X̂ : Db

c(X)→ Db
c(X̂) and Ŝ = ΦP

∗

X̂→X : Db
c(X̂)→

Db
c(X) are equivalences of categories. �

2.2.4. Fourier-Mukai functors on K3 and abelian surfaces. Let Y be a smooth projec-
tive surface and X a fine moduli space of special stable sheaves on Y with fixed Mukai
vector v. Let Q be a universal sheaf on X × Y for the corresponding moduli problem,
so that Q is flat over X and Qx is a stable special sheaf on Y with Mukai vector v.
Given closed points x and z in X, one has χ(Qx,Qz) = −〈v, v〉 = −v2.

Proposition 2.13. [20] Assume that X is a projective surface. Then X is smooth if
and only if v2 = 0. Moreover, in this case ΦQX→Y : Db

c(X)→ Db
c(Y ) is a Fourier-Mukai

functor. �

With the help of Proposition 2.13 one can construct Fourier-Mukai transforms for
K3 surfaces. Let Y be a K3 surface with a polarisation H and v a Mukai vector
with v2 = 0. Assume that v = (r, c, s) is primitive (i.e., not divisible by an integer)
and that the greatest common divisor of the numbers (r, c1 ·H, s) is 1. If the moduli
space X = Mv(Y ) of sheaves on Y with Mukai vector v that are (Gieseker) stable with
respect to H is nonempty, it is a projective variety of dimension v2 +2 = 2 (cf. [41, 42]).
Moreover, there exists a universal sheaf Q on X × Y . Proposition 2.13 implies that
X is smooth and that ΦQX→Y : Db

c(X)→ Db
c(Y ) is a Fourier-Mukai transform. We shall

also see (cf. Proposition 2.30) that X is again a K3 surface.
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Example 2.14. A first instance of this situation, which has also been the first example of
a nontrivial Fourier-Mukai transform on K3 surfaces, was given in [3], were a class of K3
surfaces called strongly reflexive was introduced. A K3 surface Y is strongly reflexive
if it carries a polarization H and a divisor ` such that H2 = 2, H · ` = 0, `2 = −12, and
X has no nodal curves of degree 1 or 2. Strongly reflexive K3 surfaces do exist, There
is indeed a nonempty coarse moduli space of strongly reflexive K3 surfaces, which is
an irreducible quasi-projective scheme of dimension 18 [4]. On a strongly reflexive K3
surface Y one may take the Mukai vector v = (2, `,−3), which fulfils all the above
requirements. One proves that Mv(Y ) 6= ∅ [3], and then ΦQX→Y : Db

c(X) → Db
c(Y ) is a

Fourier-Mukai transform. This may be used to construct further examples [21]. 4

Example 2.15. Later Mukai provided another example [46]. He considered a K3 surface
Y such that there exist coprime positive integers r, s and a polarization H in Y with
H2 = 2rs. He proved that X = Mv(Y ) is nonempty (and fine) and that the universal
family induces a Fourier-Mukai transform Db

c(X) ' Db
c(Y ). 4

2.2.5. Relative integral functors and base change. In this Subsection we generalise the
notion of integral functor to the relative setting, namely, we shall deal with morphisms
(or families) instead of single varieties.

We consider two (proper) morphisms of algebraic schemes p : X → B and q : Y → B
and denote by π̃X , π̃Y the projections of the fibre product X ×B Y onto its factors. If
we set ρ = p ◦ π̃X = q ◦ π̃Y we have a cartesian diagram

X ×B Yπ̃X

vvnnnnnnn π̃Y

((PPPPPPP

ρ

��
X p

((QQQQQQQQQ Yq

vvmmmmmmmmm

B

An object K• in the derived category D−c (X ×B Y ) (a “relative kernel”), induces a
relative integral functor Φ: D−(X)→ D−(Y ) which is defined as

Φ(E•) = Rπ̃Y ∗(Lπ̃
∗
XE•

L
⊗K•) .

This functor is an (ordinary) integral functor whose kernel in the derived category
D−c (X×Y ) is j∗K•, where j : X×B Y ↪→ X×Y is natural closed immersion. Thus the
results about integral functors can be applied to relative integral functors as well. In
the remainder of this Subection we assume that K• is of finite Tor-dimension over X;
then, Φ can be extended to a functor Φ: D(X)→ D(Y ) which maps Db

c(X) to Db
c(Y ).

One of the most interesting features of relative integral functors interesting is their
compatibility with base changes. Let f : S → B be a morphism. For any morphism
g : Z → B we denote by gS : ZS = Z ×B S → S and fZ : ZS → Z the induced
morphisms. We can consider the kernel K•S = Lf ∗X×BYK

• and the induced relative
integral functor

ΦS : D−c (XS)→ D−c (YS) ; ΦS(E•) = Rπ̃YS∗(Lπ̃
∗
XS
E•

L
⊗K•S) .

Since K•S is of finite Tor-dimension over S, ΦS maps Db
c(XS) to Db

c(YS). Base change
compatibility is expressed by the following result, whose proof uses base change in the
derived category (cf. Proposition 1.16).
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Proposition 2.16. Assume either that f : S → B or p : X → B is flat. Then for
every object E• in Db(X) there is a functorial isomorphism Lf ∗Y Φ(E•) ' ΦS(Lf ∗XE•)
in the derived category of YS. �

If the morphism p : X → B is flat there is no need to assume that the base change
morphism is flat, a fact which is often neglected. In this case, by denoting by jt the
immersions of both fibres Xt = p−1(t) ↪→ X and Yt = q−1(t) ↪→ over a closed point
t ∈ B, one has Lj∗t Φ(E•) ' Φt(Lj

∗
t E•). One has the following result.

Corollary 2.17. Assume that p : X → B is flat, and let E• be an object in Db(X).
Then the derived restriction Lj∗t E• to the fibre Xt is WITi for every t if and only if E•
is WITi and Φi(E) is flat over B. �

The condition of being WITi is open on the base, as the following Proposition asserts.

Proposition 2.18. Let p : X → B be a flat morphism and E be a sheaf on X flat over
B. The set U of points in B such that the restriction Et of E to the fibre Xt is WITi

is a nonempty open subscheme of B. �

2.2.6. Fourier-Mukai functors between moduli spaces. Integral transforms define in
many cases algebraic morphisms between moduli spaces. Assume that X and Y are
smooth projective varieties and let Φ: Db(X) → Db(Y ) be an integral functor. We
consider the functor MX,P which associates to any variety T the set of all coherent
sheaves E on T ×X, flat over T and whose restrictions Et = j∗t E to the fibres Xt ' X of
πT : T ×X → T have Hilbert polynomial P . Let MX be a subfunctor of MX,P which
parametrises WITi sheaves for a certain index i. By Corollary 2.17, if E is in MX(T )

the sheaf Ê = Φi
T (E) is flat over T , so that for a fixed i the fibres (Ê)t ' Êt have the

same Hilbert polynomial P̂ . Thus the transforms Ê are in MY,P̂ (T ). Proposition 2.16
implies now that Φ yields a morphism of functors ΦM : MX →MY,P̂ .

Proposition 2.19. If MX has a coarse moduli scheme MX and Φ is a Fourier-Mukai
functor, then MY = Φ(MX) is coarsely representable by a moduli scheme MY , and Φ
induces an isomorphism of schemes MX 'MY . Moreover MX is a fine moduli scheme
if and only if MY is a fine moduli scheme. �

When MX is the moduli functor of all the skyscraper sheaves Ox, one has:

Corollary 2.20. If Φ is a Fourier-Mukai functor, then X is a fine moduli space for the
moduli functor of the sheaves Φi(Ox) over Y . Moreover these sheaves are simple. �

2.3. Fourier-Mukai partners. The fact that two smooth algebraic varieties have
equivalent derived categories entails strong constraints on their geometry. We already
know that this fact is equivalent to the existence of a Fourier-Mukai functor between
their derived categories (cf. Theorem 2.6). In this Section we describe some important
results in this direction. All the varieties are projective.

Definition 2.21. Two varieties X and Y are Fourier-Mukai partners if there is an
exact equivalence of triangulated categories F : Db

c(X)
∼−→Db

c(Y ). 4

Lemma 2.22. Let X be a smooth variety. Every Fourier-Mukai partner of X is
smooth. �

Theorem 2.23. Let X, Y be smooth Fourier-Mukai partners, so that there is a
Fourier-Mukai functor ΦK

•
X→Y : Db(X)→ Db(Y ).
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(1) X and Y have the same dimension.
(2) There is an isomorphism H0(X,ωiX) ' H0(Y, ωiY ) for every integer i, so that

X and Y have the same Kodaira dimension.
(3) ωX and ωY have the same order, that is, ωkX is trivial if and only if ωkY is trivial.

Thus, ωX is trivial if and only if ωY is trivial and in this case the functor Φ
K•∨[n]
Y→X

is a quasi-inverse to ΦK
•

X→Y . Moreover, ωrX ' OX and ωrY ' OY with r = rk(K•).

�

Theorem 2.23 implies that if the kernel K• has positive rank a certain power ωrX of
the canonical bundle of X is trivial, with r 6= 0. If X is a curve, it has to be elliptic
(and then ωX ' OX); if X is a surface, it is either abelian, K3, Enriques or bielliptic
(corresponding to the cases cases ωX ' OX , ω2

X ' OX and ω12
X ' OX , cf. [26, Thm.

6.3]). In dimension 3 the most important example is provided by Calabi-Yau varieties
(for which, by definition, ωX ' OX).

The following result will be useful later on.

Proposition 2.24. Let X, Y be proper smooth algebraic varieties of dimension n
and Φ: Db

c(X)
∼−→Db

c(Y ) a Fourier-Mukai functor. For every (closed) point x ∈ X the
inequality

∑
i dim Hom1

D(Y )(Φ
i(Ox),Φi(Ox)) ≤ n holds true.

Proof. There is a spectral sequence Ep,q
2 =

⊕
i Homp

D(Y )(Φ
i(Ox),Φi+q(Ox)) converging

to Ep+q
∞ = Homp+q

D(Y )(Φ(Ox),Φ(Ox)). The exact sequence of lower terms of the spectral

sequence gives 0 → E1,0
2 → E1

∞. By the Parseval formula (Corollary 1.15), one has
Hom1

D(Y )(Φ(Ox),Φ(Ox)) ' Hom1
D(X)(Ox,Ox) ' Cn. �

2.3.1. D-equivalence implies K-equivalence. Two smooth algebraic varieties X and Y

are K-equivalent if there are a normal variety Z̃ and birational morphisms p̃X : Z̃ → X,

p̃Y : Z̃ → Y such that p̃∗XKX and p̃∗YKY are Q-linearly equivalent.
The next result is due to Kawamata.

Theorem 2.25. (“D-equivalence implies K-equivalence”) [34, 35] Let X, Y be smooth
Fourier-Mukai partners.

(1) The line bundle ωX (resp. ω∗X) is nef if and only if ωY (resp. ω∗Y ) is nef.
(2) If the Kodaira dimension κ(X) is equal to dimX (or if κ(X,ω∗X) = dimX),

then X and Y are K-equivalent.

�

A consequence of this result is Bondal and Orlov’s “reconstruction theorem” [10].

Theorem 2.26. Let X, Y be smooth Fourier-Mukai partners. If either ωX or ωY is
ample or anti-ample, there is an isomorphism X ' Y . �

Very few results are available for Fourier-Mukai partners of singular varieties. It is
known that any Fourier-Mukai partner of a Cohen-Macaulay (resp. Gorenstein) variety
is Cohen-Macaulay (resp. Gorenstein) as well [29].

2.3.2. Fourier-Mukai partners of curves. Here we prove that the only Fourier-Mukai
partner of a smooth projective curve is the curve itself.

Theorem 2.27. A smooth curve X has no Fourier-Mukai partners but itself.
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Proof. Let Y be a Fourier-Mukai partner of X of genus g. By Theorem 2.26, one has
X ' Y if g > 1 or g = 0 because in these cases the canonical line bundle is ample
or anti-ample, respectively. Assume then that X is elliptic and take a Fourier-Mukai
functor Φ: Db

c(Y ) → Db
c(X). One has

∑
i dim Hom1

D(X)(Φ
i(Oy),Φi(Oy)) ≤ 1 for any

point y ∈ Y (cf. Proposition 2.24), and then there is a unique value of i for which
Φi(Oy) 6= 0. By Proposition 2.18, i is actually independent of y, and then Y is a fine
moduli space of simple sheaves over X by Corollary 2.20. If the sheaves Φi(Oy) are
torsion-free, they are stable by Corollary 4.6 and thus Y ' X by Corollary 4.7. If they
have torsion, they are skyscraper sheaves of length 1, so that Y ' X. �

2.3.3. Fourier-Mukai partners of surfaces. The main result about Fourier-Mukai part-
ners of algebraic surfaces is the following Theorem.

Theorem 2.28. A smooth surface has a finite number of Fourier-Mukai partners. �

This was proved by Bridgeland and Maciocia [20] for minimal surfaces. Kawamata
[34] completed the result by including the surfaces with (−1)-curves. His proof is
actually simpler and more direct, and exploits the geometric properties of the support
of the kernel of the corresponding Fourier-Mukai functor.

The case of minimal surfaces is treated with a case-by-case approach, essentially
based on the Enriques-Kodaira classification, in view of the fact that Fourier-Mukai
partners have the same Kodaira dimension (Theorem 2.23).

Proposition 2.29. Two smooth surfaces X and Y that are Fourier-Mukai partners
have the same Picard number, the same Betti numbers, and therefore the same topo-
logical Euler characteristic.

The study of the Fourier-Mukai partners of K3 and abelian surfaces is particularly
interesting.

Proposition 2.30. Let X be a K3 (resp. an abelian) surface and Y a Fourier-Mukai
partner of X. Then Y is a K3 (resp. an abelian) surface as well.

Proof. Since ωX is trivial, ωY is trivial as well by Theorem 2.23. Then Y is either K3
or abelian. Moreover H•(X,Q) ' H•(Y,Q) by Corollary 2.8, then if X is K3, Y is also
K3 and if X is abelian, Y is abelian as well. �

By a result of Orlov, the Fourier-Mukai partners of a K3 or an abelian surface are
completely characterised in terms of isometries of the transcendental lattice T(X).
This is defined as the orthogonal complement to Pic(X) in H2(X,Z).

Proposition 2.31. [48, Thm. 3.3] Let X, Y be two K3 or abelian surfaces. X and
Y are Fourier-Mukai partners if and only if the lattices T(X) and T(Y ) are Hodge
isometric. �

2.3.4. Fourier-Mukai partners for threefolds. Minimal models of threefolds are in gen-
eral not characterised; at present, one is only able to prove in some special cases that
birational threefolds have equivalent derived categories. Two important results in this
sense are the following, both due to Bridgeland.

Theorem 2.32. [19, Thm. 1.1] Let X be a (complex) threefold with terminal singular-
ities and f1 : Y1 → X, f2 : Y2 → X crepant resolutions of singularities. Then there is
an equivalence of triangulated categories Db

c(Y1) ' Db
c(Y2). �
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Since any birational map between smooth Calabi-Yau threefolds is crepant, we de-
duce the following result.

Theorem 2.33. [19] Let X and Y be two birational smooth Calabi-Yau threefolds.
Then X and Y are Fourier-Mukai partners. �

The proof of Theorem 2.32 relies on the fact that any crepant birational map be-
tween threefolds with only terminal singularities can be decomposed into a sequence of
particularly simple birational transformations, called flops. This reduces the proof to
the case of flops. There are two different proofs, one due to Bridgeland [19], who ex-
plicitly constructs the flop using a moduli spaces of point perverse sheaves, and another
due to Van den Bergh [52] who uses noncommutative techniques. The description of
all the Fourier-Mukai partners of a Calabi-Yau threefold is still unknown. Căldăraru
[22] has found some explicit models of Fourier-Mukai partners for three-dimensional
Calabi-Yau threefolds.

3. The Nahm transform

This construction was introduced by Nahm in 1983 [47] in 1983. Starting from an
instanton on a 4-dimensional flat torus, it yields an instanton on the dual torus. Later
this was formalised by Schenk [51] and Braam and van Baal [11]. According to their
picture, the Nahm transform is an index-theoretic construction, where, given a vector
bundle E on a flat torus X equipped with an anti-self-dual connection ∇, the dual
torus X̂ is regarded as the parameter space of a family of Dirac operators twisted by
∇. The index of this family yields, under suitable conditions, an instanton ∇̂ on X̂.
A survey of some properties of the standard version of the Nahm transform was given
by M. Jardim in [33].

The connection between the Nahm and the Fourier-Mukai transform was seemingly
first realised by Braam-van Baal and Schenk, and a first formalization is given by
Donaldson and Kronheimer [23]. The link between the two constructions is a relation
between index bundles and higher direct images, in accordance with Illusie’s definition
of the “analytical index” of a relative elliptic complex [32].

Mainly following [2], we shall describe here the relation between the Fourier-Mukai
and Nahm transforms by considering the second as a particular case of a more general
class of transforms, that we call Kähler Nahm transforms. We shall also introduce
a special case of such transforms when the manifolds involved have a hyperkähler
structure, considering a generalization of the notion of instanton (the quaternionic
instantons) and proving that the “hyperkähler Fourier-Mukai transform” preserves the
quaternionic instanton condition. This will be mainly taken from [6]. However, the
whole theory recalled in this section is described in more detail in [1].

3.1. Line bundles on complex tori. We provide here a few basic facts about the
description of line bundles on complex tori, which will be useful to introduce the Nahm
transform. If V is a g-dimensional complex vector space, and Ξ a nondegenerate lattice
in it, the quotient T = V/Ξ comes with a natural structure of g-dimensional complex
manifold, and is said to be a complex torus of dimension g. Any generator of the lattice
Ξ corresponding to a loop in T , one has natural identifications Ξ ' π1(T ) ' H1(T,Z),
and as a consequence, also Hk(T,Z) ' ΛkΞ∗. Moreover, the space H(T ) of hermitian
forms H : V × V → C that satisfy the condition Im(H(Ξ,Ξ)) ⊂ Z may be identified
with the Néron-Severi group NS(T ).
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Definition 3.1. A semicharacter associated with an element H ∈ H(T ) is a map
χ : Ξ → U(1) such that χ(λ + µ) = χ(λ)χ(µ) eiH(λ,µ). An element H ∈ H(T ) and
an associated semicharacter χ define an automorphy factor a : V × Ξ → U(1) by
a(v, λ) = χ(λ) eπH(v,λ)+π

2
H(λ,λ).

Proposition 3.2. [7] The holomorphic functions s on V that satisfy the condition
s(v + λ) = a(v, λ) s(v) for all v ∈ V and λ ∈ Ξ, where a is an automorphy factor
associated with an element H ∈ H(T ), are in a one-to-one correspondence with sections
of a line bundle L on T such that c1(L) = H.

One may define the dual torus T ∗ as follows. Let Ω be the conjugate dual space of
V , and let Ξ∗ = {` ∈ Ω | `(Ξ) ⊂ Z} be the lattice dual to Ξ. If we set T ∗ = Ω/Ξ∗, by
the natural isomorphism T ∗ ' HomZ(Ξ, U(1)) and the exact sequence

0→ T ∗ → Pic(T )→ NS(T )→ 0

we see that T ∗ parametrises flat U(1) bundles on T .
Proposition 3.2 may be used to construct the Poincaré bundle P on T × T ∗. Let

H ∈ H(T × T ∗) be given by

(3.1) H(v, w, α, β) = β(v) + α(w)

where v, w ∈ V , α, β ∈ Ω, and consider associated semicharacter

(3.2) χ(λ, µ) = eiπ µ(λ) .

The Poincaré bundle is the line bundle P given by the hermitian form (3.1) and the
semicharacter (3.2). This Poincaré bundle is automatically normalised as in Section 2.
Moreover, it comes with a natural hermitian metric, which is expressed on the functions
on the universal covering of T × T ∗ corresponding (via the automorphy condition) to
sections of P in terms of the standard hermitian metric on Cn. For any element ξ ∈ T ∗
we shall denote Pξ = P|T×{ξ} the line bundle on T parametrised by ξ.

3.2. Nahm transform. Let us briefly recall Nahm’s transform in its original version.
Let T be a flat Riemannian 4-torus, equipped with a compatible complex structure,
T ∗ its dual torus. As we have seen, the Poincaré bundle on T × T ∗ comes with a
natural hermitian metric. Let ∇P be the corresponding Chern connection (the unique
connection on P compatible both with the hermitian metric and the complex structure
of P). Furthermore, let E be an hermitian vector bundle on E whose Chern connection
∇ is anti-self-dual (ASD), i.e., its curvature F∇ satisfies the ASD condition F∇ = −∗F∇,
where ∗ is Hodge duality on forms on T . A survey of the Nahm transform and their
most recent generalisations can be founded in [33].

If ξ ∈ T ∗ one has a coupled connection ∇ξ in E ⊗Pξ, and correspondingly, a family
of twisted Dirac operators

(3.3) Dξ : Γ(E ⊗ Pξ ⊗ S+)→ Γ(E ⊗ Pξ ⊗ S−)

where S± is the spin bundle of positive/negative helicity on T . If the pair (E,∇) satis-
fies an irreducibility condition (it is without flat factors, i.e., there is no ∇-compatible
splitting E = E ′ ⊕ L, where L is a flat line bundle), then for every ξ ∈ T ∗ we have
kerDξ = 0, and then by Atiyah-Singer’s index theory (minus) the index of the family

of Dirac operators is a vector bundle Ê on T ∗, whose fibre at ξ ∈ T ∗ is the vector space
cokerDξ.
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The bundle Ê may be equipped with a metric and a compatible connection. Indeed,
completing the spaces of sections appearing in Eq. (3.3) in the natural L2 norms, we
have for every ξ ∈ T ∗ an exact sequence

0→ Êξ → L2(E ⊗ Pξ ⊗ S−)
D∗ξ−→ L2(E ⊗ Pξ ⊗ S+)→ 0

By restricting the scalar product in the space in the middle in this sequence one defines
an hermitian metric in the bundle Ê. Moreover, if we regard the spaces L2(E⊗Pξ⊗S±)
as the fibres of trivial ∞-dimensional bundles on T ∗, this exact sequence allows one to
define a connection on Ê by a projection formula: one takes a section of Ê, regards
it as section of the bundle in the middle, takes the covariant derivative with respect
to the trivial connection, and then projects back to Ê using the scalar product. One
shows that the resulting connection ∇̂ is compatible with the metric, and is ASD.

The pair (Ê, ∇̂) is the Nahm transform of (E,∇). The Atiyah-Singer theorem for

families allows one to compute the topological invariants of Ê, getting

(r̂, c1(Ê), ch2(Ê)) = −(ch2(E), c1(E), r)

where to compare the first Chern classes we use the natural identification of the groups
H2(T,Z) and H2(T̂ ,Z).

3.3. Fourier-Mukai vs. Nahm. In order to compare the Fourier-Mukai transform
with Nahm’s construction, it is convenient to recast the latter into a more general
form. To this end, we consider a flat proper submersive holomorphic morphism of
complex manifolds f : Z → Y . We call the sheaf OZ/Y = f−1C∞Y ⊗f−1OY OZ the sheaf
of “relatively holomorphic functions” (locally, if x and y a holomorphic coordinates on
the fibres of f and on Y respectively, the sections of OZ/Y are functions of the variables
x, y, ȳ.

If F is a holomorphic vector bundle on Z (whose sheaf of sections we shall denote
by F), then F r = F ⊗OZ OZ/Y has a relative holomorphic structure i.e., its sheaf of
sections has a structure of OZ/Y -module. The relative Dolbeault complex provides a
(fine) resolution of this OZ/Y -module:

0→ F r → F ⊗OZ C∞Z
∂̄Z/Y−→ F ⊗OZ Ω0,1

Z/Y → . . .

Moreover, one has Rif∗F r ' Rif∗F ⊗OY C∞Y , i.e., the higher direct images of F r come
with a natural holomorphic structure.

Definition 3.3. The bundle F satisfies the even (odd) IT condition if Rif∗F r = 0 for
i odd (even), and the non-vanishing higher direct images are locally free.

Now, let us assume that the sheaf of relative differentials Ω1
Z/Y has a relative Kähler

structure, i.e., it is equipped with an hermitian metric such that the corresponding
2-form is closed under the relative exterior differential. We define relative spin bundles
Σ± =

⊕
k even, odd

∧k Ω0,1
Z/Y , and a relative Dirac operator D = ∂̄Z/Y + ∂̄∗Z/Y : f∗(F ⊗OZ

Σ+)→ f∗(F ⊗OZ Σ−). By restricting to the fibres of f , this provides a family of Dirac
operators parametrised by Y .

Theorem 3.4. Assume that the relative canonical bundle of f : Z → Y is trivial. If F
satisfies (e.g.) the even IT condition, then kerD = 0, and

− ind(D) = coker(D) '
⊕
k odd

Rkf∗F r .
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If F has an hermitian metric, let ∇ be the corresponding Chern connection. By
generalizing the constructions we have seen in the case of the original Nahm transform,
one can use these data to induce on coker(D) an hermitian metric and a connection ∇̂,
which turns out to be a Chern connection, and may be regarded as a “direct image”
of ∇.

Now we apply these constructions to the case when Z is a product X × Y to define
a generalised Nahm transform. We denote by πX , πY the projections of X×Y onto its
factors. Let X be a compact Kähler manifold with trivial canonical bundle, Y a Kähler
manifold, E an hermitian holomorphic vector bundle on X, and finally, let Q be an
hermitian holomorphic vector bundle on X × Y . Applying the previous construction
to the (hermitian holomorphic) bundle π∗XE ⊗Q on X × Y we construct an hermitian

bundle Ê on Y . The pair (Ê, ∇̂), where ∇̂ is the Chern connection of the hermitian

holomorphic bundle Ê, is the generalised Nahm transform of (E,∇).
The formalism we have so far developed provides a direct proof of the following

compatibility condition between the Fourier-Mukai and generalised Nahm transforms.

Theorem 3.5. Assume that F = π∗XE ⊗ Q satisfies an IT condition (say the even

one). Then the sheaf of holomorphic sections of Ê = coker(D) is isomorphic to the
Fourier-Mukai transform ΦQX→Y (E) of the sheaf E of holomorphic sections of E.

Here Q is the sheaf of holomorphic sections of the bundle Q.

3.4. Hyperkähler Fourier-Mukai transform. In some situations the Fourier-Mukai
transform preserves the stability of the sheaves it acts on. We have seen that original
Nahm transform maps instantons to instantons. These two results are actually related
by the so-called Hitchin-Kobayashi correspondence, according to which on a compact
Kähler manifold, a holomorphic vector bundle is polystable (i.e., it is a direct sum of
stable sheaves having the same slope) if and only if it carries an hermitian metric which
satisfies a certain differential condition (it is an Hermitian-Yang-Mills metric). In the
case of complex dimension 2, and for bundles of zero degree, the Hermitian-Yang-Mills
condition is equivalent to saying that the Chern connection is ASD, and this establishes
the link between the two “preservation” results. One might wonder if our generalised
Nahm transform may provide further examples of preservation of some instanton-like
condition. One such instance is provided by hyperkähler geometry.

Let X be a hyperkähler manifold, and let Ik be 3 basic complex structures. The
automorphism Σk Ik⊗Ik acting on Λ2T ∗X has two eigenspaces, with eigenvalues 3 and
-1 respectively: Λ2T ∗X = e1 ⊕ e2. One has (e1)x =

⋂
u∈Zx(Λ

2T ∗X)1,1
u , where Z → X is

the twistor space of X.

Definition 3.6. A connection ∇ on a complex vector bundle E on X is a quaternionic
instanton if its curvature F∇ takes values in e1.

Let us say that a complex vector bundle E is hyperstable if it is stable with respect
to any Kähler structure in the hyperkähler family of X.

Theorem 3.7. Let X and Y be hyperkähler manifolds, (E,∇) a quaternionic instanton
on X, and (Q, ∇̃) a quaternionic instanton on X×Y . The Nahm transform of (E,∇)
with kernel (Q, ∇̃) is a quaternionic instanton on Y .

This may be regarded as a “stability preservation” result in view of the following
extension of the Hitchin-Kobayashi correspondence, which is not difficult to prove.
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Theorem 3.8. Let E be a vector bundle on a hyperkähler manifold X which has zero
degree with respect to all Kähler structures in the hyperkähler family of X. Then E
is hyperstable if and only if it admits an hermitian metric such that the corresponding
Chern connection is an irreducible quaternionic instanton.

The proof of Theorem 3.7 exploits a generalization of the classical Atiyah-Ward
correspondence. The latter states that there is a one-to-one correspondence between
instantons on a compact, connected, orientable ASD Riemannian 4-manifold X, and
holomorphic vector bundles on the twistor space Z of X that are holomorphically trivial
along the fibres of the projection Z → X (as stated, this correspondence holds true for
instantons whose structure group is the general linear group. Unitary instantons on X
correspond to bundles on Z that carry an additional structure, called a real form).

The generalization of this correspondence to quaternionic instantons on higher-dim-
ensional hyperkähler manifolds reads ad follows.

Theorem 3.9. There is a one-to-one correspondence between the following objects:

(1) gauge equivalence classes of (hermitian) quaternionic instantons on a hyper-
kähler manifold X;

(2) isomorphism classes of holomorphic vector bundles on the twistor space Z of
X, holomorphically trivial along the fibres of Z (carrying a positive real form).

The proof of Theorem 3.7 is based on the natural isomorphism ZX×Y ' ZX ×P1 ZY
and on the following commutative diagram

ZX

p1

��

ZX×Y
t1oo t2 //

q

��

ZY

p2

��
X X × Y

π1oo π2 // Y

.

All data in the spaces in the bottom row are lifted to the first row by using the gen-
eralised Atiyah-Ward correspondence. Then one performs a (relative) Fourier-Mukai
transform between ZX and ZY , and descends from ZY to Y using the generalised
Atiyah-Ward correspondence again, after several consistency checks.

4. Moduli spaces of sheaves and coherent systems on elliptic curves

Since its very first appearance the Fourier-Mukai transform has been an important
tool in the study of moduli spaces of sheaves. A key feature is that, under suitable
hypotheses, the Fourier-Mukai transform preserves the stability (or semistability) of
sheaves and thus produces isomorphisms between different moduli spaces. Among
such applications, one can list the original contributions by Mukai [45, 44] and the
study of moduli spaces of stable sheaves on abelian or K3 surfaces [40, 24, 21, 5].

Since a complete account of all the applications of the Fourier-Mukai transform
exceeds the scope of these notes (see [1] for a comprehensive treatment), we devote
this Section to describing two particularly interesting examples. The first, which can
be nowadays considered as classical, is the moduli spaces of sheaves on elliptic curves.
The second is the theory of coherent systems on an elliptic curve.

In the first case, the Fourier-Mukai transform provides new and easier proofs of
Atiyah’s classical theorems. This approach was introduced in [17, 49, 27] but our
treatment, taken directly from [1, Chap. 3], is somehow different.
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The application of the Fourier-Mukai transform to the study of coherent systems on
elliptic curves follows recent work by two of the authors [30]. Coherent systems on
algebraic curves are “decorated objects” and their definition, notion of stability and
moduli spaces have been introduced and studied by Le Potier [38], King and Newstead
[36], Garćıa-Prada, Bradlow, Muñoz and Newstead [12, 13]. The specific case of elliptic
curves has been studied by Lange and Newstead [37].

4.1. Application of Fourier-Mukai transforms to the moduli spaces of sheaves
on elliptic curves. Let X be an elliptic curve, i.e., a smooth curve of genus 1 with a
fixed point x0. Then X can be regarded as an abelian variety of dimension one such
that x0 is the identity of the group law in X. The morphism X → X̂ mapping x
to the line bundle OX(x − x0) is an isomorphism, so that we can identify X with its

dual variety X̂. Using this identification we can write the Poincaré bundle described
in Section 2 in the form

(4.1) P ' OX×X(∆ι)⊗ π∗1OX(−x0)⊗ π∗2OX(−x0) ,

where ∆ι is the graph of the isomorphism ι : X → X defined as ι(x) = −x. Both the

abelian Fourier-Mukai transform S and the dual abelian Fourier-Mukai transform Ŝ
are autoequivalences of Db

c(X).
Given an object E• of Db

c(X), we can write its Chern character as ch(E•) = (n, d),
where n = ch0(E•) is its rank and d = ch1(E•) its degree, thought as an integer number.
Equation (4.1) and Grothendieck-Riemann-Roch give the following result.

Proposition 4.1. If ch(E•) = (n, d), then ch(S(E•)) = (d,−n). �

When E• is WITi, one has S(E) = Ê [−i] so that ch(S(E•)) = (−1)i ch(Ê).

4.1.1. (Semi)stable sheaves on an elliptic curve. µ-semistable sheaves on an elliptic
curve X are characterized by the following result [49, Lemma 14.5].

Proposition 4.2. Any indecomposable torsion-free sheaf on X is semistable.

Proof. If E is a torsion-free sheaf on X and 0 ⊂ E1 ⊂ · · · ⊂ En = E is its Harder-
Narasimhan filtration, the quotient sheaves Gi = Ei/Ei−1 are µ-semistable with µ(Gi) >
µ(Gi+1). Thus HomX(Gi,Gi+1) = 0 so that Ext1

X(Gi+1,Gi) = 0 by Serre duality. This
implies that the Harder-Narasimhan filtration splits, then if E is indecomposable it is
also semistable. �

Corollary 4.3. Let E be a semistable sheaf of rank n and degree d on X.

(1) If d < 0, then E is IT1 for both S and Ŝ, and both transforms are semistable.

(2) If d > 0, then E is IT0 for both S and Ŝ, and both transforms are semistable.
(3) If d 6= 0, then E is locally free.
(4) If d = 0 and E is stable, then E is a line bundle. Thus, any semistable sheaf of

degree 0 is WIT1 and the unique transform Ê is a skyscraper sheaf. Moreover
a torsion-free sheaf of degree 0 is semistable if and only if it is S-equivalent to
a direct sum of degree 0 line bundles: E ∼ ⊕iL⊕nii , with

∑
i ni = n.

Proof. 1. One has H0(X, E ⊗ Pξ) ' HomX(P∗ξ , E) = 0 for every point ξ ∈ X̂ since
E is semistable and d < 0. Then E is IT1 by Proposition 2.2. Assume that E is

semistable. To prove that Ê is semistable we can assume that E is indecomposable;
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then Ê is indecomposable as well, and then it is semistable by Proposition 4.2. A

similar argument proves the semistability of Ŝ(E).
2. One has H1(X, E ⊗ Pξ)∗ ' HomX(E ⊗ Pξ,OX) ' HomX(E ,P∗ξ ) by Serre duality.

Since E is semistable of positive degree, the second group is zero and then E is IT0.

Proceeding as in the first part one proves the semistability of Ê . The proof for Ŝ is
analogous.

3. If d 6= 0, E is either IT0 or IT1 with respect to S, according to whether d > 0 or

d < 0, due to part 1 or 2. Moreover, Ê is semistable of nonzero degree, so that it is IT1

or IT0 with respect to Ŝ. It follows that E ' Ŝ1−i(Si(E)) (with i = 0 or 1) is locally
free.

4. If E is stable of degree 0, then H0(X, E ⊗Pξ) ' HomX(P∗ξ , E) = 0 unless E ' P∗ξ .

Thus if E is not a line bundle, it is IT1; by Proposition 4.1 Ê is locally free of rank 0;

thus Ê = 0 so that E = 0 by the invertibility of S. For the second part, assume that E is
semistable of degree 0; then it has a Jordan-Holder filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ En =
E whose quotients Gi = Ei/Ei−1 are stable of degree 0, that is, they are line bundles

of degree 0. Thus, Gi ' Pξi for a point ξi ∈ X̂. Since the sheaves Pξi are WIT1 and

P̂ξi ' Oι(ξi), we see that E is WIT1 and Ê is a skyscraper sheaf. Analogous arguments

prove that E is WIT1 with respect to Ŝ and that Ŝ1(E) is a skyscraper sheaf. �

4.1.2. Geometry of the moduli spaces of stable sheaves on elliptic curves. Let us con-
sider the full subcategory Cohssn,d(X) of the category Coh(X) of coherent sheaves on
X whose objects are semistable sheaves of rank n and degree d. We also consider the
category Skyn(X) of skyscraper sheaves of length n on X. Corollary 4.3 implies the
following result.

Proposition 4.4. The abelian Fourier-Mukai transform induces equivalences of cate-
gories Cohssn,d(X) ' Cohssd,−n(X) if d > 0, and Cohssn,0(X) ' Skyn(X). �

The Fourier-Mukai transform Ψ = Φδ∗L
X→X : Db(X)

∼−→Db(X), which is nothing but the
twist by L = OX(x0), also induces an equivalence Cohssn,d(X) ' Cohssn,d+n(X). By
composing the Fourier-Mukai transforms S and Ψ in an appropriate way, and using
Euclid’s algorithm we have:

Proposition 4.5. For every pair (n, d) of integers (n > 0), there is a Fourier-Mukai

functor Φ̃ : Db(X)
∼−→Db(X) which induces an equivalence of categories

Cohssn,d(X) ' Cohssn̄,0(X)
S' Skyn̄(X) ,

where n̄ = gcd(n, d). �

Corollary 4.6. Let E be a torsion-free sheaf of rank n and degree d on X. Then E is
stable if and only if it is simple, and if and only if it is semistable and gcd(n, d) = 1.
Thus, the integral functors of Proposition 4.5 map stable sheaves to stable sheaves. �

The structure of the coarse moduli space Mss(n, d) of semistable sheaves of rank n
and degree d on X can be also obtained in a similar way. Let SymnX be the n-th
symmetric product.

Corollary 4.7. For every pair (n, d) of integers (n > 0), there is a Fourier-Mukai
functor which induces an isomorphism of moduli spaces

Mss(n, d) 'Mss(n̄, 0)
S' Symn̄X ,
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where n̄ = gcd(n, d). Then, if Y is a nonempty moduli space of stable torsion-free
sheaves on X, there is an isomorphism Y ' X.

Proof. Propositions 4.5 and 2.19 imply the first part, because Symn̄X is a coarse
moduli space for the moduli functor of skyscraper sheaves of length n̄ on X. The last
part follows now from Corollary 4.6. �

4.1.3. Autoequivalences of the derived category of an elliptic curve. Let X be an elliptic
curve. Since Heven(X,Z) ' Z⊕Z, if Φ = ΦK

•
X→X : Db

c(X)→ Db
c(X) is an integral functor

(K• ∈ Db
c(X ×X)), Equation (2.2.1) yields a diagram

Db
c(X)

Φ //

v ��

Db
c(X)
v��

Z⊕ Z
Φ∗ // Z⊕ Z

where Φ∗ = fK
•
. When Φ is a Fourier-Mukai functor, Φ∗ is a matrix in SL(2,Z).

For instance, if P is the Poincaré line bundle on X ×X and S = ΦPX→X is the abelian
Fourier-Mukai transform, one has S∗ = ( 0 1

−1 0 ) (cf. Proposition 4.1).
Due to Orlov’s representation Theorem 2.6, we have a representation in SL(2,Z) of

the group Aut(Db
c(X)) of derived auto-equivalences of the derived category of X. The

study of such representation is due to Bridgeland [16], who proved the following result.

Proposition 4.8. Given a matrix A =
(
α β
γ δ

)
∈ SL(2,Z) such that β > 0, there exist

vector bundles on X ×X that are strongly simple over both factors, and which restrict
to give bundles of Chern character (β, α) on the first factor and (β, δ) on the second.
For any such bundle Q(A), the associated integral functor ΦQ(A) is a Fourier-Mukai

transform, and moreover Φ
Q(A)
∗ = A. �

Thus, Proposition 4.8 essentially describes all the Fourier-Mukai functors on an el-
liptic curve. A more precise result was proved by Hille and van den Bergh [31].

Theorem 4.9. Let X be an elliptic curve. There is an exact sequence of groups

0→ 2 Z× Aut(X) n Pic0(X)→ Aut(Db
c(X))

ch−→ SL(2,Z)→ 0 ,

where n ∈ Z acts as shift functor [n], the transform corresponding to (ϕ,L) ∈ Aut(X)n
Pic0(X) sends E• to ϕ∗(L ⊗ E•). �

Here we have set ch(Φ) = Φ∗. Given A =
(
α β
γ δ

)
∈ SL(2,Z) with β > 0, by

proceeding as in the proof of Corollary 4.3 one can determine the behaviour of the
transforms ΦQ(A) [30].

Proposition 4.10. Let E be a semistable (resp. stable) vector bundle of Chern char-
acter ch(E) = (r, d).

(1) If α r+ β d > 0 then E is IT0 with respect to ΦQ(A) and the unique transform Ê
is also semistable (resp. stable).

(2) If α r+ β d = 0 then E is WIT1 with respect to ΦQ(A) and the unique transform

Ê is a torsion sheaf.

(3) If α r+ β d < 0 then E is IT1 with respect to ΦQ(A) and the unique transform Ê
is also semistable (resp. stable).

�
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If we write ΨQ(A) = ΦQ(A)∗ , the functor ΨQ(A)[1] is a quasi-inverse of ΦQ(A).
We are now interested in the Fourier-Mukai functors Φ such that Φ(OX) ' OX [i]

for some integer i; that is, OX is WITi with respect to Φ and Φi(OX) = OX . These
Fourier-Mukai functors will be relevant in the study of coherent systems on an elliptic
curve, as we will see in Section 4.2. Using Proposition 4.10 and the similar statement
for Ψ one proves:

Proposition 4.11. Let a be a positive integer. There exists a Fourier-Mukai transform
Φa : Db

c(X)→ Db
c(X), unique up to composition with an automorphism of X, such that

(Φa)∗ = ( 1 a
0 1 ) and Φa(OX) ' OX (that is, OX is IT0 and Φ0

a(OX) = OX). �

4.2. Coherent systems. A coherent system of type (r, d, k) on a smooth projective
curve X is defined as a pair (E , V ) consisting of a vector bundle E (a locally free sheaf)
of rank r and degree d over X and a vector subspace V ⊂ H0(X, E) of dimension k.
A morphism f : (E ′, V ′) → (E , V ) of coherent systems is a homomorphism of vector
bundles f : E ′ → E such that f(V ′) ⊂ V . If E ′ is a subbundle of E then we say that
(E ′, V ′) is a coherent subsystem of (E , V ). Coherent systems on X form an additive
category S(X) (see [38] §4.1).

As for many other decorated objects, the notion of stability (and semistability) for
coherent systems depends on the choice of a real parameter. For any real number α,
the α-slope of a coherent system (E , V ) of type (r, d, k) is defined by

µα(E , V ) =
d

r
+ α

k

r
.

A coherent system (E , V ) is called α-stable (α-semistable) if

µα(E ′, V ′) < µα(E , V ) (µα(E ′, V ′) ≤ µα(E , V ))

for every proper coherent subsystem (E ′, V ′) of (E , V ).
A coherent system (E , V ) gives rise to an evaluation map V ⊗OX → E . This enables

us to consider coherent systems as objects of the abelian category C(X) whose objects
are arbitrary sheaf maps ϕ : V ⊗ OX → E , where V is a finite dimensional vector
space and E is any coherent sheaf (cf. [36]). A morphism from ϕ1 : V1 ⊗ OX → E1

to ϕ2 : V2 ⊗ OX → E2 in C(X) is defined by a linear map f : V1 → V2 and a sheaf
morphism g : E1 → E2 such that the obvious diagram commutes. With this definition,
the category S(X) of coherent systems is a full subcategory of C(X).

One can easily see that the condition for an object ϕ : V ⊗OX → E of C(X) to repre-
sent a coherent system is that E is a vector bundle and the induced map H0(ϕ) : V →
H0(X, E) is injective. The latter condition is equivalent to H0(X, kerϕ) = 0.

One can extend to C(X) the notion of α-(semi)stability of coherent systems, and
this extension does not introduce new semistable objects (cf. [36]). Moreover, the full
subcategory Sα,µ(X) of C(X) consisting of α-semistable coherent systems with fixed
α-slope µ is a Noetherian and Artinian abelian category whose simple objects are
precisely the α-stable coherent systems [36, 50].

4.3. Moduli spaces of coherent systems. There exists a (coarse) moduli space for
the α-stable coherent systems of type (r, d, k) on X. It is a quasiprojective variety
which we denote by G(α; r, d, k). The reader is referred to [13, Section 2.1] and [14] for
further information about G(α; r, d, k).

Here, we only recall that α-stable coherent systems exist only for α > 0 if k ≥ 1. The
range of the parameter α is divided into open intervals determined by a finite number
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of critical values
0 = α0 < α1 < · · · < αL .

The moduli spaces for all values of α in the interval (αi, αi+1) are isomorphic; if k ≥ r
this is also true for the interval (αL,∞) (see [13, Propositions 4.2 & 4.6]).

In this Section we describe some wll known fact about the moduli spaces of coherent
systems for the two limit cases of small and large values of α. We will always assume
d 6= 0 and k > 0.

4.3.1. Small values of the parameter. We denote by G0(r, d, k) the moduli space of α-
stable coherent systems of type (r, d, k) with 0 < α < α1, where α1 is the first critical
value.

Proposition 4.12. [50] A coherent system (E , V ) of type (r, d, k) is α-stable, with
0 < α < α1, if and only if E is semistable and k′/r′ < k/r, for all coherent subsystems
(E ′, V ′) of type (r′, d′, k′) with 0 6= E ′ 6= E and µ(E ′) = µ(E). �

4.3.2. Large values of the parameter. Let us denote by GL(r, d, k) the moduli space of
α-stable coherent systems of type (r, d, k) with αL < α < d

r−k (we are assuming that
0 < k < r). GL(r, d, k) has been described by Bradlow and Garćıa-Prada [12] (see also
[13]) in terms of the Brambilla-Grzegorczyk-Newstead extensions, BGN extensions for
short [15].

BGN extensions of type (r, d, k) are defined as extensions of vector bundles

0→ O⊕kX → E → F → 0 ,

where E has rank r > k and degree d > 0, which satisfy the following conditions:

(1) H0(X,F∗) = 0
(2) If (e1, . . . , ek) ∈ Ext1

X(F ,O⊕kX ) ' H1(X,F∗)⊕k denotes the class of the exten-
sion, then e1, . . . , ek are linearly independent as vectors in H1(X,F∗).

Coherent systems can be regarded as BGN-extensions due to the following result.

Proposition 4.13. [12, Proposition 4.1] Let (E , V ) be an α-semistable coherent system
of type (r, d, k) with αL < α < d

r−k . The evaluation map of (E , V ) defines a BGN

extension 0→ O⊕kX → E → F → 0, with F semistable. Moreover, any BGN extension
0 → O⊕kX → E → F → 0 where the quotient F is stable gives rise to an α-stable
coherent system, with αL < α < d

r−k �

A complete characterisation of the BGN-extensions which give rise to α-stable co-
herent systems has been given in [30].

Proposition 4.14. A BGN extension of type (r, d, k), 0→ O⊕kX → E → F → 0 defines
an α-stable coherent system, with αL < α < d

r−k , if and only if F is semistable and

one has k′/r′ > k/r for all subextensions 0 → O⊕k′X → E ′ → F ′ → 0 of type (r′, d′, k′)
with µ(F ′) = µ(F). �

We now denote by BGN (r, d, k), BGN s(r, d, k) the families of BGN extension classes
of type (r, d, k) on X in which the quotient is semistable or stable, respectively. Due
to Proposition 4.13 we have inclusions BGN s(r, d, k) ↪→ GL(r, d, k) ↪→ BGN (r, d, k).

Proposition 4.15. [37, Proposition 3.2 and Lemma 4.1] Let (E , V ) be an α-stable
coherent system of type (r, d, k) on an elliptic curve X with d 6= 0, k > 0. Then every
indecomposable direct summand of E has positive degree. �
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4.4. Fourier-Mukai transforms of coherent systems on elliptic curves. In this
Subsection X is an elliptic curve. We also assume that d 6= 0, k > 0

Recall (Proposition 4.11) that for every integer number a > 0 there is a Fourier-
Mukai transform Φa such that OX is IT0, Φ0

a(OX) = OX and (Φa)∗ = ( 1 a
0 1 ). If

Ψa[1] : Db
c(X) → Db

c(X) is the quasi-inverse of Φa, the Fourier-Mukai transforms Φa,
Ψa define functors Φ0

a : C(X)→ C(X), Ψ1
a : C(X)→ C(X) that send the object ϕ : V ⊗

OX → E to Φ0
a(ϕ) : V ⊗OX → Φ0

a(E) and Ψ1
a(ϕ) : V ⊗OX → Ψ1

a(E), respectively.

Proposition 4.16. Let ϕ : V ⊗OX → E be a coherent system.

(1) The Φ0
a-transform Φ0

a(ϕ) : V ⊗OX → Φ0
a(E) is a coherent system.

(2) If E is IT1 with respect to Ψa, Ψ1
a(ϕ) : V ⊗OX → Ψ1

a(E) is a coherent system.

�

Therefore, the functor Φ0
a : C(X)→ C(X) preserves the subcategory S(X) of coher-

ent systems and induces a functor Φ0
a : S(X)→ S(X).

4.4.1. Preservation of stability. Small α. In this subsection α-stability refers to a pos-
itive α which smaller than the first critical value.

As a consequence of Propositions 4.12 and 4.15, if ϕ : V ⊗ OX → E is a coherent
system in the moduli space G0(r, d, k), then E is semistable of positive degree. Hence,
r + ad > 0 and Proposition 4.10 implies that E is IT0 with respect to Φa and that
Φ0
a(E) is semistable with Chern character ch(Φ0

a(E)) = (r+ ad, d). This is not enough
to prove that the transformed coherent system Φ0

a(ϕ) : V ⊗ OX → Φ0
a(E) is stable,

but one can prove that the remaining conditions required by Proposition 4.12 are also
fulfilled. One then gets the following result [30].

Theorem 4.17. The Fourier-Mukai transform Φa induces an isomorphism of moduli
spaces

Φ0
a : G0(r, d, k)

∼−→G0(r + ad, d, k) ,

whose inverse is induced by Ψa. Therefore, the isomorphism type of G0(r, d, k) depends
only on the class [r] ∈ Z/dZ. �

4.4.2. Preservation of stability. Large α. In this subsection we suppose that 0 < k < r.
Under this assumption, Lange and Newstead proved in [37, Theorem 5.2] that for an
elliptic curve the moduli space G(α; r, d, k) is non empty if and only if 0 < α < d

r−k
and either k < d or k = d and gcd(r, d) = 1. Moreover, in this case the largest critical
value αL verifies αL <

d
r−k .

Recall that for large α the moduli spaces G(α; r, d, k) are described in terms of BGN-
extensions. If 0→ O⊕kX → E → F → 0 is a BGN-extension, the quotient F is IT0 with
respect to Φa and Φ0

a(F ) is semistable by Proposition 4.10. Since OX is also IT0, it
follows that we have an exact sequence 0→ O⊕kX → Φ0

a(E)→ Φ0
a(F)→ 0. Using again

Proposition 4.10, one can prove that this exact sequence is actually a BGN-extension
and that it is stable if the original BGN-extension is so. One then has:

Theorem 4.18. ([30, Thm. 4.12]) The Fourier-Mukai transform Φa induces an iso-

morphism Φ0
a : BGN (r, d, k)

∼−→BGN (r + ad, d, k) by sending a BGN extension 0 →
O⊕kX → E → F → 0 to 0→ O⊕kX → Φ0

a(E)→ Φ0
a(F)→ 0. This restricts to an isomor-

phism Φ0
a : BGN s(r, d, k)

∼−→BGN s(r+ ad, d, k). The inverse isomorphism is induced by
Ψa. �
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Theorem 4.19. [30] The Fourier-Mukai transform Φa induces an isomorphism

Φ0
a : GL(r, d, k)

∼−→GL(r + ad, d, k) .

Therefore, the isomorphism type of GL(r, d, k) depends only on the class [r] ∈ Z/dZ.

Proof. We only sketch an idea of the proof. Given a coherent system in GL(r, d, k), we
know by Proposition 4.13 that it defines an extension 0→ O⊕kX → E → F → 0 which
belongs to BGN (r, d, k). By Proposition 4.18 the transformed extension 0 → O⊕kX →
Φ0
a(E) → Φ0

a(F) → 0 belongs to BGN (r + ad, d, k). The importance of Proposition
4.14 becomes apparent here, because it tells us what conditions a BGN-extension has
to fulfil in order to define an α-stable coherent system. The proof then consists in
checking that the transformed extension fulfils those additional conditions. This is a
rather technical issue and we shall omit it here. �

One may draw a diagram which summarises all this information.

BGN s(r, d, k)
Φ0
ao ��

� � // GL(r, d, k)
Φ0
ao ��

� � // BGN (r, d, k)
Φ0
ao ��

BGN s(r + ad, d, k) � � // GL(r + ad, d, k) � � // BGN (r + ad, d, k)

4.4.3. Birational type of the moduli spaces G(α; r, d, k). Let 0 = α0 < α1 < · · · < αL
be the critical values for coherent systems of type (r, d, k), so that the moduli spaces
G(α; r, d, k) for any two values of α ∈ (αi, αi+1) coincide. Then, there is only a finite
number of different moduli spaces. Moreover, one has:

Theorem 4.20. [37, Theorem 4.4] The birational type of G(α; r, d, k) is independent
of α ∈ (α0, αL). �

It follows that we can determine the birational type of any of the finitely many
different moduli spaces simply by computing one of them. We then choose G0(r, d, k),
which has been studied in full generality.

Theorem 4.21. ([30, Thm. 5.2]) Let a be a positive integer. The birational types
of G(α; r, d, k) and G(α; r + ad, d, k) are the same. Therefore, the birational type of
G(α; r, d, k) depends only on the class [r] ∈ Z/dZ.

Proof. The birational types of G(α; r, d, k) and G(α; r+ad, d, k) are the same as those of
G0(r, d, k) and G0(r + ad, d, k), respectively, by Theorem 4.20. Moreover, the Fourier-
Mukai transform Φa induces an isomorphism Φ0

a : G0(r, d, k) → G0(r + ad, d, k) by
Theorem 4.17 and we finish by Theorem 4.20. �
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Beiträge Algebra Geom., 46 (2005), pp. 423–434.
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Departamento de Matemáticas and Instituto Universitario de F́ısica Fundamental
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