
Master in High Performance
Computing

Characterization of the
“Generali” customers as a
network and profiling of its

communities

Supervisors :
Dr. Stefano Cozzini,
Dr. Valerio Consorti

Candidate:
Alessia Andò

2nd edition
2015–2016

2

Contents

1 Introduction 5
1.1 Introduction to Clustering . 6
1.2 Cluster analysis on the given dataset 7

2 Methodologies and procedures 9
2.1 The hardware facilities . 9
2.2 The data . 9

2.2.1 Address anonymization 10
2.3 Software implementation . 11

2.3.1 Dealing with graphs 13
2.4 The clustering algorithms . 13

2.4.1 Data clustering - DBSCAN 14
2.4.2 Community detection - Label propagation 16

3 Implementation 19
3.1 Preliminary dataset analysis 19
3.2 Link generation . 21

3.2.1 First attempt of parallelization 22
3.2.2 Final shared memory parallelization 24
3.2.3 Inter-node parallelization 26

3.3 Generation and profiling of the communities 27

4 Results obtained with the clustering algorithms 31

5 Conclusions 37

Chapter 1

Introduction

The work presented in this thesis has been performed within the collab-
oration among MHPC and the Analytic Solution Center (ASC), an office
which is part of Assicurazioni Generali Head Office and is responsible of ad-
vanced analytic and big data projects. Generali proposed the overall topic:
modelling of the customer database as a social network and community iden-
tification. The Analytic Solution Center took also care to identify such a
large dataset within the company and its subsidaries. They finally identify
the Genertel (a subsidiary company of Generali) customer-base archive as
the dataset to work on. The data have been first anonymized by Genertel
and then the anonymized dataset has been delivered for the analysis.
The goal of the project is to implement on HPC resources a software able
to detect the communities from the dataset identified.

The work performed will be presented in this document as follows.
In the rest of this chapter we will give a short introduction to Cluster Anal-
ysis and the most important related algorithms.
In chapter 2 we will describe the hardware and software architecture we
implemented, and we will give more details about the two clustering algo-
rithms we adopted in this work.
In chapter 3 we will describe the implementation on HPC platforms of our
software architecture, and the whole “optimization journey” we performed.
Finally, in chapter 4 we will analyse the performance of our implementa-
tions, and the results obtained in terms of network communities identified.

The whole activity was co-supervised by Generali Big data group (dr.
Valerio Consorti), which suggested for the greatest part the way to proceed.
We remark that some deliverables has been submitted to Genertel and in-
termediate results were periodically discussed during several meetings.

5

6 CHAPTER 1. INTRODUCTION

1.1 Introduction to Clustering

Clustering, or Cluster Analysis is a collection of methods aimed at parti-
tioning a set of objects so that objects in the same subset are “more similar”
to each other than to those in other subsets, according to some similarity
or dissimilarity measure.
Throughout the document, given a set D of objects, a similarity will be a
symmetric function from D × D to [0, 1], while a dissimilarity or distance
will be a symmetric function d from D ×D to [0,+∞) such that

d(x, y) = 0⇔ x = y

for all x, y in D. If d also satisfies the triangle inequality, it will be a metric
distance.

Cluster analysis is not a specific algorithm, but the general partitioning
problem. In fact, there is not even a universal strict definition of what a
cluster is. This leads to different cluster models, into which numerous clus-
tering algorithms are grouped.
Amongst the main models we have, for example, Hierarchical clustering [1],
which seeks to build a hierarchy of clusters, and is further divided into Ag-
glomerative clustering (bottom-up approach) and Divisive clustering (top-
down approach).
Alternatively, we have k-means and k-medoids methods, where clusters are
defined as subsets of points which are closest to their corresponding cluster
center, and the center of the clusters are found through minimization of an
objective function (sum of the square distances).
The main drawback of this last class of clustering algorithms is that they are
not able to detect clusters with an arbitrary shape. This is however achieved
by algorithms based on local density, which is the number of points within
a threshold distance ε, that must be given as a parameter. This means that
for each point we are only interested in the points which are closest to him,
therefore there is no problem, in principle, with using a distance function
which is sometimes evaluated to ∞. Moreover, with both algorithms the
number of clusters is determined automatically and does not need to be
provided in advance (unlike in k-means).
Algorithms based on local density include DBSCAN[2] and Density Peak[3].

When D is a set of vertices in a network and the definition of the similari-
ty/dissimilarity measure involves the network structure (i.e. the set of edges
and their weights) we talk about Community detection. The general idea
behind it is to form strongly linked subnetworks starting from the original
network, and the weight of the edges between the different pairs of vertices
defines a similarity measure.
Community detection can also by achieved by numerous classes of algorithms[4],

1.2. CLUSTER ANALYSIS ON THE GIVEN DATASET 7

but few are efficient enough to be used on a very large network. Among these,
we have Label propagation methods, where the main idea is that objects are
intialized with some labels and then, iteratively, labels are somehow propa-
gated according to the network structure. At the end, two vertices end up
in the same community if and only if they share the same label.

1.2 Cluster analysis on the given dataset

The dataset we are working with is composed by Genertel customers, and
each of the customers is provided with an n-tuple of features. Such features
have different types, they can be represented by real numbers, integers,
strings or lists. Therefore, we are not able to use a standard distance such
as an Lp distance in Rn.
In the following, we will refer sometimes to customers as nodes in the ob-
tained network.
The idea is to assume that each feature f contributes independently with
probability pf (which is defined for each f individually) to the final link
probability, and therefore that the final probability p that two given indi-
viduals are linked is

p = 1−
∏
f

(1− pf).

The probability above is then used as a similarity function.

Starting from the data referring to the last 6 months of the 20-years time
period which is covered by the dataset, we proceed by analyzing bigger and
bigger subsets of the dataset, investigating the evolution of the communities
and of the patterns describing connections between customers/nodes. To
this end, according to the similarity function above, we use two clustering
algorithms. In order to use DBSCAN, we define a metric distance function
which is compliant with the similarity function. In particular, the distance
between two individuals is bigger when they are less similar according to
the function p above.
One possibility is to assume that pf is 0.99 (or some number which is very
close to but less than 1) for each feature that indicates a “deterministic”
link, and then define the distance d as − log p. In this case, d satisfies the
triangle inequality whenever, given individuals A,B,C we have

pA↔B · pB↔C ≤ pA↔C ,

which is a reasonable constraint for a probability function as above.

The second algorithm is Label propagation[5], which requires the dataset
to be first modeled as a network. We compare then the communities ob-

8 CHAPTER 1. INTRODUCTION

tained by both algorithms for different subsets of the set of features.

Chapter 2

Methodologies and
procedures

In this chapter we will describe the basic elements and tools we used to per-
form our work. We will briefly describe the hardware architecture. We will
then discuss the data structure and some preliminary work done on them.
After that we will present the software implementation we performed, dis-
cussing our technical choices.
We will finally illustrate in detail the clustering algorithms that we consid-
ered. We remark here that our implementation choices were mostly dictated
by the company’s needs.

2.1 The hardware facilities

We developed our code and mostly worked, whenever possible, on the EL-
CID cluster, which is property of CNR-IOM. Otherwise, we worked on the
COSILT (Amaro, UD, Italy) cluster.

compute nodes cores per node processor RAM per node

ELCID 8 64 AMD 6376 128 GB

COSILT 10 24 E5-2697 v2 Intel processor 64 GB

The table above summarizes the technical specification of the two infras-
tructures.

2.2 The data

The dataset we have been working with consists of the Genertel customers
(car segment) spawning more than 20 years, for a total of 7.6M customers,
therefore 7.6M nodes in the network. The database, originally stored in an
Oracle DB, has been exported, anonymized and given to us in the form of

9

10 CHAPTER 2. METHODOLOGIES AND PROCEDURES

11 csv files.

The data contained in such files allow us to determine the features asso-
ciated to each customer. Some features are associated to deterministic links,
i.e. similarity 0 or 1 between the pairs of customers. The features that are
associated at first to a deterministic link are:

• credit card number,

• agent code,

• quotation number,

• plate number.

All the features above are actually represented as lists, since each individual
may register more than one credit card, ask for more than one estimate
and so forth. For all the above, we are interested in knowing whether they
are the same for the two individuals, or better if the intersection of the
corresponding lists associated to the individuals are non-empty.
The features that are associated to a probabilistic link are:

• e-mail address, which will be considered together with an estimated
probability that the e-mail address is real

• phone number, same as above

• e-mail domain, which will be considered whenever it refers to a com-
pany, or a workplace in general

• address, which will be analyzed according to the distance between the
two individuals, the population of their towns and their density

• last name, which may indicate a family link whenever the two indi-
viduals are physically close to each other, depending on how much the
last name is spread in that particular area

• date of birth, also to be considered whenever the two individuals are
physically close.

2.2.1 Address anonymization

With regard to the addresses, the company proceeded with the anonymiza-
tion using geocoding, i.e. given an address, they retrieved the correspondent
latitude and longitude, ad then translated all the coordinates by the same
vector. Such procedure is compatible with our analysis, since we only need
the distance between the pairs of customers, in order to compute their sim-
ilarity.

2.3. SOFTWARE IMPLEMENTATION 11

In the preliminary phase, we were also asked to check and verify the use of
Google’s Geocoding API - a service which provides both geocoding and re-
verse geocoding - to anonymize the data. We therefore developed a Python
script to fulfill such request.
The API can be accessed through an HTTP interface. 1

Since the API needed to process an input file with several millions of
addresses, we checked whether the process could be parallelized, for example
by splitting the file in advance and then starting a different independent
process for each chunk of the file at the same time.
The first attempts were made in a 4-core laptop, using an input file with
100 addresses, GNU parallel, and the following Python code:

import googlemaps

import time

import sys

gmaps = googlemaps.Client(key=MYKEY)

start = time.time()

with open(sys.argv [1]) as inputfile:

for line in inputfile:

geocode_result = gmaps.geocode(line)

res = geocode_result [0][u’geometry ’][u’location ’]

print res[u’lat’],res[u’lng’]

print("--- %s seconds ---" % (time.time() - start))

The program scaled very well up to this point: modulo fluctuations, it takes
32.5 seconds with one single process, 16.5 seconds with two processes and
about 9 seconds with 4 processes.
The Python interface to the API requires the modules googlemaps and
requests, both installed through pip in this case.
The program was later tested on ELCID and scaled just as well.

2.3 Software implementation

Our software implementation was performed using the Python language.
There are two main reasons for our choice:

1To this end, one must first activate the API in their Google API Console[6], then
obtain credentials. The only option for credential in the case of Standard (free) plan is
a server API key[7], which is provided with 1000 free requests per day. Unless specified
otherwise, the same key can be used from different machines.

12 CHAPTER 2. METHODOLOGIES AND PROCEDURES

• Having to deal with several deadlines, dictated by the company’s
needs, it was necessary to keep the developing time short enough

• the company needed a final version of the codes in Python, in order
to export them to their Cloud system.

We identified three main parts in our software implementation.
In the first part we read and process the input files, save the data we need
into some data structures, and then compute the similarities/distances be-
tween the pairs of objects. This part has quadratic complexity, and it is the
most expensive part of the program, therefore it runs in parallel.
The second part consists in running the clustering algorithm on the dataset
we obtained. Since the elapsed time is negligible with respect to the rest of
the program, there was no need for parallelization.
The third part consists in creating two output files containing some infor-
mation about the clusters/communities that have been output by the algo-
rithm, in order to profile them. All the requested information assumes that
the dataset has been modeled into a network, regardless of the clustering
algorithm, which may not require a network structure.
The first output file contains, for each object that ended up in a cluster
(with more than one object), the following:

• cluster ID

• degree within cluster (number of neighbors in the same cluster)

• norm degree (degree within cluster/number of points in the cluster)

• closeness centrality within cluster

• betweenness centrality within cluster

• eigenvector centrality within cluster

• PageRank centrality within cluster

The closeness centrality is the the sum of the length of the shortest paths
between the node and all other nodes in the cluster (viewed as a subnet-
work). The betweenness centrality is the number of shortest paths from
all vertices in the cluster to all others that pass through that node. The
eigenvector centrality is another indicator of the influence of a node in the
cluster, in particular it assigns scores to the nodes with the assumption
that connections to high-scoring nodes contribute more to the score of the
node in question than equal connections to low-scoring nodes. Finally, the
PageRank centrality is the result of one of the algorithm used by Google
Search to rank websites in their search engine results.
Due to the computation of the centralities, the creation of this file has also

2.4. THE CLUSTERING ALGORITHMS 13

quadratic complexity.

The second output file contains, for each cluster (with more than one
object), the following:

• size

• number of edges

• average degree

• maximum lenght of a shortest path between a pair of objects in the
cluster

• degree centralization

The degree centralization is a measure of how central is the most central
vertex (with respect to the degree centrality, i.e. the number of ties a node
has) compared to the other vertices.
Due to the last two pieces of information, the creation of this file has also
quadratic complexity. That is why the creation of the two files runs in
parallel, too.
Given that most of the measures asked are strictly graph-related, we chose
to use a library to manipulate our graphss, igraph[9]. The documentation
also provides a detailed decription of such measures.

2.3.1 Dealing with graphs

igraph is open source graph package, distributed under the terms of the
GNU GPL. It is a collection of network analysis tools, whose main goals are
to provide easy implementation of graph algorithms, and fast handling of
large graphs (millions of vertices and edges). Therefore, it not only provides
efficient data structures for representing graphs and related objects, but
it also contains the implementation of many graph algorithms, including
community detection algorithms such as Label propagation and optimized
algorithms to compute several centrality measures.
It was originally written in C, but can be embedded into higher level lan-
guages. In fact, it has also been developed as a Python extension module,
and this is the form in which we use it.
Being part of the Python Package Index, it was installed through the pip

command.

2.4 The clustering algorithms

As we briefly anticipated previously, the goal is to compare a data clustering
algorithm - therefore, not based on a network structure - and a community
detection algorithm.

14 CHAPTER 2. METHODOLOGIES AND PROCEDURES

2.4.1 Data clustering - DBSCAN

As mentioned in the previous chapter, DBSCAN (Density-based spatial clus-
tering of applications with noise) is based on the concept of local density.
The idea is the following: a core point p is a point with at least minPts
points within ε (minPts is also to be given as parameter) and those points
are said to be directly reachable from p. A point q is reachable from p if
there is a path p = p0 p1 · · · pn = q such that pi+1 is directly reachable
from pi (so, in particular pi is a core point) for each i. Points which are not
reachable from any point are considered noise. A core point will end up in
the same cluster as all points which are reachable from it.

Although DBSCAN may visit each point multiple times, its computa-
tional complexity is mostly determined by the number of regionQuery
calls (see algorithm 1), which are exactly one per point. A meaningful
value for ε is such that on average O(log n) points are returned by each
regionQuery call, therefore the average complexity is in this case given
by O(n log n).

minPts must also be chosen carefully, otherwise DBSCAN will not be
able to detect smaller clusters, or merge some of them that are supposed to
be separate. In general, it is best if ε and minPts are chosen by someone
who knows the data very well.
There is no good choice for the parameters whenever the points in the dataset
have large differences in density. Otherwise, DBSCAN is able to detect clus-
ters of any shape.
The performance of DBSCAN obviously depends on the quality of the dis-
tance function, too.

2.4. THE CLUSTERING ALGORITHMS 15

Algorithm 1 DBSCAN

Require: dataset D, ε > 0, m = minPts
1: function regionQuery(p,ε)
2: return all points in p’s ε-neighborhood

3: function expandCluster(p, neighPts, C, ε, m)
4: add p to cluster C
5: for point p′ in neighPts do
6: if p′ is not visited then
7: mark p′ as visited
8: neighPts′ ← regionQuery(p′, ε)
9: if size of neighPts′ ≥ m then

10: neighPts← neighPts ∪ neighPts′

11: if p′ is not yet in any cluster then
12: add p′ to cluster C

13: function DBSCAN(D, ε, m)
14: C ← 0
15: for point p in D do
16: if p is visited then
17: continue
18: mark p as visited
19: neighPts← regionQuery(p, ε)
20: if size of neighPts < m then
21: mark p as NOISE
22: else
23: C ← nextCluster
24: expandCluster(p, neighPts, C, ε,m)

16 CHAPTER 2. METHODOLOGIES AND PROCEDURES

2.4.2 Community detection - Label propagation

Label propagation is a community detection algorithm that also works with
networks where edges are weighted (unlike other such algorithms).

The main idea is the following: suppose that each of the neighbors of
some node carries a label denoting the community to which its belong to.
Then the node determines its community based on the labels of its neigh-
bors, in particular it joins the community to which the maximum number
of its neighbors belong to, with ties broken uniformly randomly.
At first each node is initialized with a unique label, then labels propagate at
each step, until each node’s label is the one which appears most frequently
among its neighbors (or one of them, in case of ties).
Whenever the edges have weights, each neighbor counts as much as the
weight of the edge connecting the it to the original node.

The update process is asynchronous, meaning that if Cx(t) represents the
label given to node x at step t, x0, . . . , xk are x’s neighbors and x0, . . . , xm
(with m ≤ k) are exactly the nodes that have already been visited at step
t, then we have

Cx(t) = f(Cx0(t), . . . , Cxm(t), Cxm+1(t− 1), . . . , Cxk
(t− 1)),

where f returns the label occurring with the highest (weighted) frequency
among neighbors.

The variation with synchronous updates, i.e. such that

Cx(t) = f(Cx0(t− 1), . . . , Cxk
(t− 1)),

is closer to be discrete but has drawbacks, in particular it leads to oscillations
in the presence of subnetworks which are bipartite or closer to be bipartite.

The initialization runs in O(n) (linear) time. At each step, each node has
to compute the maximum in a list of at most d labels, where d is its degree.
Therefore, its label is updated in O(d) time, for a total of O(m) time at
each step, where m is the number of edges. The algorithm is experimentally
proven to converge in a few steps, and that the number of steps does not
depend on n. Therefore, the overall time complexity is O(m+n), near linear
time.

2.4. THE CLUSTERING ALGORITHMS 17

Algorithm 2 Label propagation

Require: network N
1: for node x in N do
2: t← 0
3: Cx(t)← x

4: repeat
5: t← t + 1
6: X ← random rearrangement of the order of the nodes
7: for x in X do
8: update label asynchronously

9: until every node has a label that the maximum number of its neighbors
(counted with weights) has

18 CHAPTER 2. METHODOLOGIES AND PROCEDURES

Chapter 3

Implementation

In this chapter we will describe all the steps that we performed in order to
reach the final software implementation on HPC platforms.

The first step was to write the Python software to deal with the program
according to section 2.3.
We developed two Python scripts: the first one takes part of the dataset
- according to the links we need to compute - as input, and outputs all
the necessary information to describe the resulting graph (i.e. the pairs of
nodes and corresponding weights defining the links). We call this action the
Link generation. This is indeed the most time-consuming part of the whole
implementation. We will discuss in section 3.2 the parallel implementation
of this algorithm. The second script takes the obtained list of edges as in-
put, together with the list of vertices (which is information contained in the
dataset), performs either DBSCAN or Label propagation, and creates the
two tables described in section 2.3. We will discuss this in detail in section
3.3, Generation and profiling of the communities.
As soon as we were able to access the dataset, we moved everything to the
Lustre file system on ELCID. Before starting to work on the actual program,
we spent some time to give a closer look at the dataset and try to figure out
how to address the encountered issues. This took longer than expected.

In the next section we will explain in a bit more detail the analysis we
performed in order to better understand how to use the dataset.

3.1 Preliminary dataset analysis

After a brief discussion with Generali, we concluded that our first goal was
to compute the so-called Broker links, perform a clustering algorithm on
the obtained network, and profile the communities. The idea behind the
Broker link is that two people are connected whenever they have, at some

19

20 CHAPTER 3. IMPLEMENTATION

point, interacted with the same agent in order to get an quotation for some
policy.
The first thing we needed to understand was then how to determine when
two quotations were given by the same agent, from the information contained
in the dataset. In particular, one of the files defining the dataset gives
information related to each quotation, including sometimes the agent code
and/or the branch code.
We discussed possible ways to determine the probability that two customers
were linked whenever the agent code information was missing for all the
estimates asked by one of (or both) the customers. To this end we ran a few
Python scripts to compute, for istance:

• how many estimates had both the agent code and the branch code
information

• how many branch codes were never associated to an agent code

• how many agent codes were never associated to a branch code

• for each agent code, the list of branch codes that were at least once
associated to it.

We established a first definition of the Broker (probabilistic) link which used
the above information.

Meanwhile, we tried to address the problem of missing information in
the file containing personal/anagraphic information on the customers. We
needed to use the (anonymized) fiscal code as a node-identifier but most
customer IDs did not have that information. In order to find a possible way
to retrieve a new fiscal code ID for at least some of the customers, we ran a
few Python scripts in order to compute, for istance:

• how many customers without fiscal code information had information
on name, date of birth or other data which normally defines the fiscal
code

• how many of them had a VAT number code (such customers would in
fact be companies, and not physical persons)

• whether any tuple {name, date of birth, place of birth, gender} was
associated to more than one customer.

Given the not ideal results, we decided to stick to the customers who were
provided with fiscal code information.
After further consultation with Genertel, we also decided to only consider
estimates which were provided with an agent code, in order to define the
Broker link.

3.2. LINK GENERATION 21

3.2 Link generation

In order to determine the list of edges according to any kind of link, we
needed to read (part of the) file containing personal information on the cus-
tomers. This is because the fiscal code ID had to be used as a node-identifier,
so we needed to know which fiscal code ID each customer ID was mapped
to. Moreover, within all our tests/attempts we selected a subset of the cus-
tomers according to the time they were first registered in the database, and
the file above also contains that kind of information.
The first results we were asked to provide Genertel concerned the network
consisting of the customers who were first registered in the past six months
(slightly less than 1 million customers), connected through the Broker links.
Therefore, we did all our first attempts with the Broker links in mind.
In order to generate the Broker links we needed two more tables of the
database: the first one maps each estimate to the people who were involved,
and the second one maps each estimate to other information including the
agent code (whenever present). The first part of the script is all about read-
ing the input files and storing the needed data into well-suited dictionaries
which were then used to define the Point class:

class Point(object):

def __init__(self , name , rolesdict , entdict):

self.name = name

self.ent = rolesdict[self.name]

self.ci = []

for e in self.ent:

try:

if entdict[e] != ’’:

self.ci.append(entdict[e])

except KeyError:

pass

def link(self , other):

listci = [a for a in self.ci if a in other.ci]

if len(listci):

return 1

The link method of the class returns the weight of the link (whenever
present) between two Points.

Once the set of points is defined, we need to compute the links between
them. Given their amount, the computation must be parallelized.

22 CHAPTER 3. IMPLEMENTATION

3.2.1 First attempt of parallelization

Our first attempt of parallelization involved the pp (Parallel Python) library[8]
. We only needed to compute, in fact, the upper-triangular part of the ad-
jacency matrix, since the graph is not oriented, and the work was divided
between the processes according to the Figure 3.1.

Figure 3.1: Case of 24 processors, as in one COSILT node. Each color
corresponds to one thread

The width of the slices varies so that each thread performs the same
amount of computations. Memory consumption is however not balanced:
the last process (assuming processes are numbered from left to right) needs
to know everything about all customers - therefore, it consumes a lot of
memory - while the first one only needs to know the data concerning a small
subset of the customers.
At the end of the computation, one single process collects all the results and
does the actual writing to the output file.

We performed two different kinds of measure: we first measured scal-
ability fixing the number of customers and increasing the number of pro-
cesses, then fixing the number of processes to the maximum (24 when using
COSILT, 64 for ELCID) and increasing the number of customers.

3.2. LINK GENERATION 23

Figure 3.2: Scalability on a node of the COSILT cluster, elapsed time is
expressed in seconds

The computation scales almost perfectly with the number of process, as
Figure 3.2.

Figure 3.3: Scalability on a full node of the COSILT cluster, elapsed time is
expressed in seconds

The scalability with respect the size of the network seems to be quadratic
(as it should be). However, we were not able to complete the computation
for 1 million customers within the expected amount of time according to

24 CHAPTER 3. IMPLEMENTATION

Figure 3.3.

Parallel Python copies everything which is needed by the different threads,
so the memory occupation grows a lot with the number of threads. There-
fore, the number of threads (together with the size of the network) is actually
a bottleneck. Indeed, we were only able to analyse up to 500 thousand cus-
tomers using one full ELCID node (64 cores) without filling up its RAM,
less than the 700 thousands we were able to analyse on a COSILT node (24
cores).

3.2.2 Final shared memory parallelization

For the final implementation, we switched then to the multiprocessing li-
brary. Despite being normally a little less efficient than Parallel Python,
multiprocessing solves the memory problem, being able to work with
shared memory.

Switching to a different library is not the only thing that changed in our
implementation. In fact, we also changed the distribution among processes:

Figure 3.4: Case of 24 processors, as in one COSILT node. Each color
corresponds to one thread

The adjacency matrix was divided into blocks of size around 10000 ×
10000 (a bit less in some cases, depending on the remainder of the divi-

3.2. LINK GENERATION 25

sion {size of the matrix}/10000), and processes have to analyse the upper-
triangular blocks. The number of cores is always an upper bound for the
number of blocks analysed at the same time. Therefore, in the case of a
COSILT node, the first 24 blocks are assigned to the 24 processes, as soon
as a process completes its job it takes care of the next block that must be
analysed, and so forth. After this change, processes are also balanced in
memory.

The block size was chosen so that each process takes a “reasonable”
amount of time (about 4 minutes in the case of Broker links), meaning that
processes do not need to be reassigned too often, and at the same time there
is no memory-related issue.

Figure 3.5: Scalability on a full node of the COSILT cluster, elapsed time is
expressed in seconds

As Figure 3.5 shows, we were able to run the script for the entire network
consisting of 1 million customers.

The elapsed time for this Python script is obviously dependent on the
type of link we have to analyse.
Normally - at least in the deterministic case - in order to determine whether
two customers are linked we have to compare lists and check whether they
have any intersection, and the length of these lists is highly variable depend-
ing on what they represent.

Sometimes more than one type of link must be used in order to build
the network. This is never a problem, since if the definition of the link

26 CHAPTER 3. IMPLEMENTATION

becomes too complicated one can just run the script once for each type of
link and then merge the output files, provided that the graph which is later
obtained through the second Python script is simplified (i.e. multiple links
are removed) - more about it in the next section.

After trying a few runs with the other deterministic links, given that the
maximum time that can be asked for a run on a COSILT node is 48 hours,
we concluded that 1 million is a good size for a network to be analysed by
one single shared-memory node.

3.2.3 Inter-node parallelization

Due to the fact that the entire dataset consists however of over 7 million
customers, it is clearly needed to perform a further parallelization level in-
cluding more than one node.

Figure 3.6: Example for 2 million customers

Our parallel approach consisted in splitting the adjacency matrix over
multiple nodes. The matrix is divided into blocks of size around 1 million×
1 million, and each node takes care of one block in the diagonal just as we
described so far in the single node case with 1 million customers. As for
the other blocks in the upper-triangular part, they need to be split in two
parts for memory reasons, and this way they perform the same amount of
computations as the blocks in the diagonal. The number of nodes we need
to complete the computation for n million customers is therefore

n + n(n− 1) = n2.

3.3. GENERATION AND PROFILING OF THE COMMUNITIES 27

After each node is done with its block, the output files only need to be
merged. This means that, if an arbitrarily high number of nodes were avail-
able, the time needed to compute all edges within a graph with over 1 million
vertices would be the same as the 1 million case.

3.3 Generation and profiling of the communities

The second Python script makes large use of the igraph library. After read-
ing the vertices file, it creates a graph with exactly those vertices, using the
fiscal code as a name for each vertex. After that, it reads the edges file
while storing the edges and corresponding weights in separate lists, with the
purpose of adding all edges to the graph at the same time. This is simply
because it is a lot more efficient with igraph to add all edges at once (when-
ever there are “many” of them).

Then, the clustering algorithm is applied. In the case of Label propaga-
tion, the algorithm is already implemented in the library, while DBSCAN
was implemented manually through a class. The way DBSCAN is used
in our program basically means that a core point is a point with at least
minPts neighbors connected to it through edges with weight greater than a
fixed r > 0, and those neighbors are precisely the points directly reachable
from it. Therefore, in the DBSCAN case, we could simply only add the
edges with weight greater than r and define the class as follows:

class DBSCAN(object):

def __init__(self , minPts , g):

self.minPts = minPts

self.graph = g

self.npoints = g.vcount ()

self.it = iter(range(self.npoints))

self.clusters = []

def createCluster(self , p):

p["group"] = self.it.next()

self.clusters.append ([p])

def expandCluster(self , c):

for p in c:

if p["checked"] != None:

continue

if len(self.graph.neighbors(p.index)) >= self.minPts:

for j in self.graph.neighbors(p.index):

q = self.graph.vs()[j]

if q["group"] == None:

q["group"] = p["group"]

28 CHAPTER 3. IMPLEMENTATION

c.append(q)

p["checked"] = 1

The group attribute of a vertex defines the cluster it belongs to, and it is
set as soon as a point is visited by the algorithm.

The clustering algorithm is then followed by the production of the two
output files described in the previous section. This last part was also par-
allelized. In both cases, we have to compute graph-related measures within
the obtained clusters, therefore the overall computation consists of a loop
over the clusters. We divided the computation so that each process takes
care of the same amount of clusters, and measured the scalability in the La-
bel propagation case, fixing the number of processes and varying the number
of customers (using the Broker links):

Figure 3.7: Scalability on a full node of the COSILT cluster for the first
output file with Label propagation, elapsed time is expressed in seconds

3.3. GENERATION AND PROFILING OF THE COMMUNITIES 29

Figure 3.8: Scalability on a full node of the COSILT cluster for the second
output file with Label propagation, elapsed time is expressed in seconds

Overall, we notice that the time taken by the generation and profiling of
the communities is definitely not negligible with respect to the time taken
by the generation of the links. However, it is less. Moreover, such part can
trivially be split in two parts, each of which performs the same clustering
algorithm independently and produces one of the two output files. This
means that the overall computation can additionally benefit from this fur-
ther trivial parallelization, and that the total time taken only depends on
the creation of the slowest of the output tables.

According to Figures 3.7 and 3.8, scalability is quadratic on the number
of customers. These preliminary scalability tests, nevertheless, do not ex-
plain the situation very accurately. In fact, given the computations involved,
the elapsed time is highly dependent on the size of the obtained communi-
ties. Computational complexity is (in both cases) not O(n2), where n is the
number of customers, but rather∑

communities

|size of community|2.

The bottleneck is then the size of the biggest community and the corre-
sponding process takes inevitably longer than the others to complete its
computations.
In the Broker case, customers are connected whenever thay have interacted
with the same agent. In the entire dataset relatively few (tens of thousands)
agent codes appear, and few people have interacted with more than one
agent. Therefore, we expect clusters to be “grouped” by one single agent. It
is also not strange that all (or most) agent codes appear within the 1-million
- or less - subset of customers, given their number. Summing up everything,

30 CHAPTER 3. IMPLEMENTATION

it is probably the case that in the Broker case the ratio n/{size of greatest
community} does not vary too much with n, therefore the apparent O(n2)
complexity. This is however highly dependent on the type of link.

Chapter 4

Results obtained with the
clustering algorithms

In this chapter we will show some results obtained with our clustering algo-
rithms concerning the following links:

• Broker links

• Credit Card links

• Plate links

• E-mail links

As previously mentioned, the first results we were asked to provide con-
cerned the Broker link for the 1 million customers registered in the past
six months. The main purpose was to test both clustering algorithms and
compare them. For our first runs with DBSCAN, we set minPts to 15. As
for ε there is no real choice in the case of deterministic links: we have to
include all neighbors in the graph in order to compute the local density.

The results are rather different with the two algorithms:

DBSCAN Label propagation

communities 191 1373

communities with more than 15 nodes 191 494

nodes in communities 63020 67438

max size 55128 4207

min size 16 2

The huge community found by DBSCAN is definitely not represented by
one single agent code. Indeed, in order to merge two of them it is sufficient
that one customers has interacted with both and has at least 15 neighbors
in total (which is true in most cases). Of course we could try to increase

31

32CHAPTER 4. RESULTS OBTAINEDWITH THE CLUSTERING ALGORITHMS

the value of minPts heavily, however in that case there would be many
more agents not forming any community. This is in fact an example of bad
performance of DBSCAN in the case of high variations in local density.
Label propagation found a much higher number of communities because
most of them are very small (2 or 3 customers). It is not theoretically im-
possible for DBSCAN to find clusters of size less than minPts, but it would
be strange if it did in this case, given how the links are defined.

Figure 4.1 shows the distribution of the community size if we only con-
sider cluster of size between 15 and 400. The main difference between the
two outputs is due to the huge community found by DBSCAN, which is not
considered here.

Figure 4.1: Distribution of community size among communities

The difference between the two outputs also results in more internally
interconnected communities in the case of Label propagation, being the
communities smaller on average and not subjected to “undesired merging”.
This can be easily observed from the distribution of the norm degrees in the
two cases, as shown in Figure 4.2.

33

Figure 4.2: Distribution of norm degree within community among nodes

The second output file provides the degree centralization for each com-
munity, that is a measure of how central is the most central vertex (with
respect to the degree centrality) compared to the other vertices. For both
algorithms, in most communities this centralization is close to 0: all cus-
tomers have about the same role within the community, as expected given
the type of link.

Figure 4.3: Distribution of centralization among communities

34CHAPTER 4. RESULTS OBTAINEDWITH THE CLUSTERING ALGORITHMS

As another example, we will show now the results obtained using the
Credit Card link, i.e. two people are connected if and only if they share
a credit card number. As expected, a lot less customers are part of some
cluster in this case, and communities are smaller on average.

DBSCAN Label propagation

communities 71 1080

communities with more than 15 nodes 71 96

nodes in communities 4169 7317

max size 443 278

min size 16 2

Extending the computation to all the customers registered in the past year
(almost 2 million) the results are the following:

DBSCAN Label propagation

communities 119 2762

communities with more than 15 nodes 119 216

nodes in communities 11445 18311

max size 3713 598

min size 16 2

The behavior is similar when restricting to communities of size between 15
and 100:

Figure 4.4: Distribution of community size among communities

In this example we can also notice that communities are smaller and
more interconnected with Label propagation, but the difference between the
two algorithms is smaller compared to the Broker example.

35

Figure 4.5: Distribution of norm degree within community among nodes

The peak at 0.5 is due to the high number of communities of size 2.
Overall, we can see that DBSCAN has still a non-ideal behavior - after all
the function we are using as a distance is not a metric - since it merges too
much and finds very big clusters. However the situation is not as dramatic
as the Broker case, also because the local densities of the points in this case
are not as unbalanced.

The Plate links (two people are connected if and only if they share a
plate number) led to a similar behavior for both algorithms after we filtered
the presumably fake plate numbers, found in a list that we were given by
Genertel.

Given the results so far, we decided together with Generali to stick to
Label propagation for the following runs. In order to better understand
the meaning of the Broker links and the way different links interact, we
were asked to run the first script a few times using the Credit Card link as
deterministic and the Broker link as probabilistic with some fixed probability
p < 1. The results were the following:

p = 0.5 p = 0.1 p = 0.01

communities 2112 2145 3963

nodes in communities 72002 72005 72003

max size 4207 4210 4283

min size 2 2 2

The number of customers who are part of some community is basically al-
ways the same. Given the results for the Broker and Credit Card links

36CHAPTER 4. RESULTS OBTAINEDWITH THE CLUSTERING ALGORITHMS

separately, we may conclude that almost all customers who have at least
one neighbor in the network end up in some community (this is technically
always true with Label propagation if we also count communities of size 1,
but here we are not considering them).

The last link we were able to examine was the E-mail link (two people
are connected if and only if they share an e-mail). Unlike the Plates case,
it is hard to tell whether an e-mail is fake given the data, therefore we were
not able to use a similar filter, and the links obtained were a lot more:

E-mail E-mail+Plates E-mail+Plates+Credit Card

communities 41921 75892 75427

nodes in communities 243747 303770 298478

max size 18744 18753 18753

min size 2 2 2

Chapter 5

Conclusions

In this last chapter we briefly summarize the activities performed within
this thesis, underlining the most important achievements we reached. The
overall goal of the thesis described in the Introduction has been achieved.
In particular, we implemented on HPC resources cluster algorithms able to
process and evaluate communities on the dataset provided. The usage of
HPC resources allowed us to process and analyse an amount of data several
times larger than the amount of data Genertel is able to process internally.

The main results of the thesis concern two important aspects, the HPC
implementation and the Cluster analysis.

From the HPC implementation point of view:

• We implemented an intra-node parallelization by means of a shared
memory approach

• We implemented an inter-node parallelization

• The total amount of HPC resources used is more than 77000 core-
hours. This means 855 jobs submitted so far

• We parallelized and measured speed-up of the tools developed within
the node and on a multinode infrastructure

Our implementation is able in principle to deal with arbitrarily large datasets
for all kinds of links. However, we did not extend all the computations to
the entire dataset for the following reasons:

• Genertel was more interested in analysing different kinds of links on
smaller subsets (mostly 1 or 2 million customers) than analysing one
single link on the whole dataset

37

38 CHAPTER 5. CONCLUSIONS

• The HPC resources available to us are shared with other users, which
did not allow us to complete all the jobs in a sufficiently small amount
of time

With respect to clustering algorithms:

• We generated communities for different kinds of links

• We compared two algorithms for the generation of such communities

Given the limited amount of time, we were only able to analyse only
some of the links, mostly deterministic ones.
In order to complete the work, the following has to be done:

• Complete the analysis for all the probabilistic links independently

• Complete the analysis for all the links together

• Extend the analysis to the complete dataset consisting of 7.6 million
customers

Bibliography

[1] Lior Rokach, Oded Maimon, Clustering methods, Data mining and
knowledge discovery handbook, Springer US, pp. 321-352, 2005;

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, A density-
based algorithm for discovering clusters in large spatial databases with
noise, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), AAAI Press, pp. 226–231, 1996;

[3] Alex Rodriguez, Alessandro Laio, Clustering by fast search and find of
density peaks, Science, 344(6191), pp. 1492-1496, 2014;

[4] Santo Fortunato, Community detection in graphs, Physics reports
486(3), pp.75-174, 2010;

[5] Usha Nandini Raghavan, Reka Albert, Soundar Kumara, Near linear
time algorithm to detect community structures in large-scale networks,
Physical Review E, 76(3), 2007;

[6] https://console.developers.google.com/flows/enableapi?apiid=
geocoding backend&keyType=SERVER SIDE&reusekey=true

[7] https://developers.google.com/maps/faq#using-google-maps-apis

[8] http://www.parallelpython.com/

[9] Gábor Csárdi, Tamás Nepusz, The igraph software package for complex
network research, InterJournal Complex Systems, 1695, 2006;

39

https://console.developers.google.com/flows/enableapi?apiid=geocoding_backend&keyType=SERVER_SIDE&reusekey=true
https://console.developers.google.com/flows/enableapi?apiid=geocoding_backend&keyType=SERVER_SIDE&reusekey=true
https://developers.google.com/maps/faq#using-google-maps-apis
http://www.parallelpython.com/

	Introduction
	Introduction to Clustering
	Cluster analysis on the given dataset

	Methodologies and procedures
	The hardware facilities
	The data
	Address anonymization

	Software implementation
	Dealing with graphs

	The clustering algorithms
	Data clustering - DBSCAN
	Community detection - Label propagation

	Implementation
	Preliminary dataset analysis
	Link generation
	First attempt of parallelization
	Final shared memory parallelization
	Inter-node parallelization

	Generation and profiling of the communities

	Results obtained with the clustering algorithms
	Conclusions

