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1. Introduction

The Nakai-Moishezon criterion states that a line bundle L on an n-dimensional projective

variety X is ample if and only if c1(L)k · [V ] > 0 for every k = 0, . . . , n and every irreducible

k-dimensional subvariety of V of X. In a sense, a line bundle is numerically effective

when it lies in the closure of the space of ample line bundles. This amounts to saying

that c1(L) · [C] ≥ 0 for every irreducible curve C in X. One can extend this notion to

vector bundles E of any rank in terms of the universal rank one quotient OPE(1) on the

projectivized bundle PE: the bundle E is said to be numerically effective if OPE(1) is.

There is also a notion of numerical effectiveness tailored for vector bundles on Kähler

manifolds; this is given in terms of (possibly singular) Hermitian fibre metrics [10, 8].

The notion of numerical effectiveness is tightly related to that of semistability. For

instance, numerically flat bundles (i.e., bundles that are numerically effective together with

their dual) are semistable. Moreover, numerical effectiveness may be used to characterize

semistable bundles, along the lines of a result by Miyaoka which states that a vector

bundle E on a smooth projective curve X is semistable if and only if the numerical class

λ = c1(OPE(1)) − 1
r
π∗(c1(E)) is nef, where π : PE → X is the projection. A number of

results generalizing Miyaoka’s criterion have recently been proved [6, 2, 3] (these apply to

Higgs or principal bundles on projective or Kähler manifolds). One should also cite results

of Gieseker [14], which have been generalized in [6, 4].

In this paper we review these notions of numerical effectiveness for Higgs bundles and

study the main properties of the class of bundles so identified. Thus we give two notions

of numerical effectiveness for a Higgs bundle E = (E, φ), in the framework of (compact)

Kähler manifolds and complex projective manifolds, respectively. In the first case the

definition is given in terms of fibre metrics on the bundle E, in the second it is formulated

in a way which is tantamount to the usual numerical effectiveness of a set of line bundles

associated to E. In both cases we establish several properties of these Higgs bundles,

including the existence of a special filtration for numerically flat Higgs bundles, which

implies that the Chern classes of such bundles vanish. We study the relation between

numerical effectiveness and semistability, and apply this to study the semistable Higgs

bundles having vanishing discriminant (in the projective case, these satisfy the remarkable

property that they are semistable after restriction to any curve in the base manifold). In

the case of projective manifolds we compare the two definitions.



NUMERICAL PROPERTIES OF HIGGS BUNDLES 3

This paper is an expansion of the text of a talk given by the first author at the workshop

“Vector Bundles and Low Codimensional Subvarieties” in Trento, September 11-16, 2006.

It is based on the contents of the papers [4, 5]. The first author thanks the organizers of

the conference for their kind invitation.

2. Metrics and connections on semistable Higgs bundles

Our notion of numerical effectiveness for Higgs bundles on Kähler manifolds is quite

closely related to the notion of (approximate) Hermitian-Yang-Mills structure, i.e., to the

circle of ideas usually known as Hitchin-Kobayashi correspondence. It is quite easy to show

that a vector bundle satisfying the Hermitian-Yang-Mills condition is polystable (i.e., it is

a direct sum of stable sheaves having the same slope). The converse result is much deeper,

and was proved first by Donaldson in the projective case [11, 12], and later by Uhlenbeck

and Yau in the compact Kähler case [23]; they showed that a stable bundle admits a

(unique up to homotheties) Hermitian metric which satisfies the Hermitian-Yang-Mills

condition. Analogously, one can show that if Hermitian bundle satisfies the Hermitian-

Yang-Mills condition in an approximate sense, then it is semistable, while the converse has

been proved only in the case X is projective [18].

Simpson [20, 21] proved a Hitchin-Kobayashi correspondence for Higgs bundles: given

a Higgs bundle with an Hermitian metric, one defines a natural connection whose spe-

cification involve all the data characterizing the Hermitian Higgs bundle (metric, complex

structure, Higgs field). When this connection satisfies the Hermitian-Yang-Mills condition,

the Higgs bundle is polystable, and vice versa. In this section we show that whenever an

Hermitian Higgs bundle satisfies an approximate Hermitian-Yang-Mills condition, then it

is semistable. To this end we shall need to prove a vanishing result.

2.1. Main definitions. LetX be an n-dimensional compact Kähler manifold, with Kähler

form ω. The degree deg(F ) of a coherent sheaf F on X is defined as

deg(F ) =

∫
X

c1(F ) · ωn−1,

and its slope as

µ(F ) =
deg(F )

r

provided that r = rk(F ) > 0.
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Definition 2.1. A Higgs sheaf E on X is a pair E = (E, φ), where E is a coherent sheaf,

and φ is a morphism E → E ⊗ Ω1
X such that φ ∧ φ : E → E ⊗ Ω2

X vanishes. A Higgs

subsheaf F of a Higgs sheaf E = (E, φ) is a subsheaf of E such that φ(F ) ⊂ F ⊗ Ω1
X . A

Higgs bundle is a Higgs sheaf E such that E is a locally-free OX-module.

A Higgs sheaf E = (E, φ) on X is semistable (resp. stable) if E is torsion-free, and

µ(F ) ≤ µ(E) (resp. µ(F ) < µ(E)) for every proper nontrivial Higgs subsheaf F of E.

Let h be an Hermitian fibre metric on a Higgs bundle E, and let D(E,h) be the unique

connection on E which is compatible with both the metric h and the holomorphic structure

of E (the Chern connection of the Hermitian bundle (E, h)). Moreover, let φ̄ be the adjoint

of φ with respect to the metric h, i.e., the morphism φ̄ : E → E ⊗ Ω0,1
X such that

h(s, φ(t)) = h(φ̄(s), t)

for all sections s, t of E. The operator

(1) D(E,h) = D(E,h) + φ+ φ̄

defines a connection on the bundle E, which is neither compatible with the holomorphic

structure of E, nor with the Hermitian metric h, and is called the Hitchin-Simpson con-

nection of the Hermitian Higgs bundle (E, h). Its curvature will be denoted by R(E,h) =

D(E,h) ◦ D(E,h); if this vanishes, we say that (E, h) is Hermitian flat.

Let K(E,h) ∈ End(E) be the mean curvature of the Hitchin-Simpson connection, i.e.,

K(E,h) = iΛR(E,h), where Λ : Ap → Ap−2 is the adjoint of the operation of wedging by the

Kähler 2-form (here Ap is the sheaf of C-valued smooth p-forms on X). We may regard

the mean curvature as a bilinear form on E by letting

K(E,h)(s, t) = h(K(E,h)(s), t) .

We recall the form that the Hitchin-Kobayashi correspondence acquires for Higgs bundles

[21, Thm. 1].

Theorem 2.2. A Higgs vector bundle E = (E, φ) over a compact Kähler manifold is

polystable if and only if it admits an Hermitian metric h such that the curvature of the

Hitchin-Simpson connection of (E, h) satisfies the Hermitian-Yang-Mills condition

K(E,h) = c · IdE

for some constant real number c.
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The constant c is related to the topological invariants of E by the formula

(2) c

∫
X

ωn = 2nπ µ(E)

where n = dim(X).

2.2. Approximate Hermitian-Yang-Mills structure and semistability. Given an

Hermitian vector bundle (E, h), we introduce a norm on the space of Hermitian endo-

morphisms ψ of (E, h) by letting

|ψ| = max
X

√
tr(ψ2) .

Definition 2.3. A Higgs bundle E = (E, φ) has an approximate Hermitian-Yang-Mills

structure if for every positive real number ξ there is an Hermitian metric hξ on E such

that

(3) |K(E,h) − c · IdE | < ξ .

The constant c is again given by equation (2).

The next result was proved in [18, VI.10.13]) in the case of vector bundles.

Theorem 2.4. A Higgs bundle E = (E, φ) on a compact Kähler manifold admitting an

approximate Hermitian-Yang-Mills structure is semistable.

As in the vector bundle case, we need a vanishing result. A section s of a Higgs bundle

E = (E, φ) is φ-invariant if it is an eigenvector of φ, namely, there is a holomorphic 1-form

λ on X such that φ(s) = λ⊗ s.

Proposition 2.5. If a Higgs bundle E = (E, φ) has an Hermitian metric h such that the

mean curvature K(E,h) of the Hitchin-Simpson connection is a seminegative definite form,

and s is a φ-invariant section of E, then D(E,h)(s) = 0 and K(E,h)(s, s) = 0.

Proof. We start by writing the relation between the curvatures of the Chern and Hitchin-

Simpson connections for (E, h). One has

(4) R(E,h) = R(E,h) +D′
(E,h)(φ) +D′′

(E,h)(φ̄) + [φ, φ̄]

where we have split the Chern connection D(E,h) = D′
(E,h) +D′′

(E,h) into its (1,0) and (0,1)

parts, and [φ, φ̄] = φ ◦ φ̄+ φ̄ ◦ φ is an element in Ω1,1
X (End(E)).
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Let s be a φ-invariant section of E. We have

R(E,h)(s) = R(E,h)(s) + d(λ+ λ̄)⊗ s .

Moreover, from the Weitzenböck formula [1] one has the identity

∂∂̄h(s, s)) = h
(
D′

(E,h)(s), D
′
(E,h)(s)

)
− h

(
R(E,h)(s), s

)
+ h(s, s) d(λ+ λ̄) .

Let us set f = h(s, s) and L(f) = Λ(∂∂̄ f). Due to the current hypotheses,

L(f) = ‖D′
(E,h)(s)‖2 −K(E,h)(s, s) ≥ 0

where ‖D′
(E,h)(s)‖2 is the scalar product of D′

(E,h)(s) with itself using the fibre metric h

and the Kähler metric on X. By Hopf’s maximum principle (see e.g. [18]) this implies

L(f) = 0, which in turn yields D′
(E,h)(s) = 0 and K(E,h)(s, s) = 0. Since s is holomorphic,

we also have D(E,h)(s) = 0. �

Corollary 2.6. Let (E, h) be an Hermitian Higgs bundle. If the mean curvature K(E,h) of

the Hitchin-Simpson connection is seminegative definite everywhere, and negative definite

at some point of X, then E has no nonzero φ-invariant sections.

Proof. If s is a nonzero φ-invariant section of E, then it never vanishes on X since

D(E,h)(s) = 0 by Proposition 2.5. By the same Proposition K(E,h)(s, s) = 0, and this

contradicts the fact that K(E,h) is negative at some point. �

Corollary 2.7. Let E = (E, φ) be a Higgs bundle over X which admits an approxim-

ate Hermitian-Yang-Mills structure. If deg(E) < 0 then E has no nonzero φ-invariant

sections.

Proof. Since E admits an approximate Hermitian-Yang-Mills structure, for every ξ > 0

there exists an Hermitian metric hξ on E such that K(E,hξ) − c · hξ < ξ · hξ with c < 0.

For ξ small enough K(E,hξ) is negative definite, and the result follows from the previous

corollary. �

Proof of Theorem 2.4. Assume that E admits an approximate Hermitian-Yang-Mills struc-

ture and let F be a Higgs subsheaf of E, with rk(F ) = p. Let G be the Higgs bundle

(G,ψ), where G = ∧pE ⊗ det(F )−1, and ψ is the Higgs field naturally induced on G by

the Higgs fields of E and F. The inclusion F ↪→ E induces a morphism det(F) → ∧pE,

and, tensoring by det(F)−1, we obtain a ψ-invariant section of G. On the other hand, the
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approximate Hermitian-Yang-Mills structure of E induces a structure of the same kind on

G, with constant

cG =
2npπ

n! vol(X)
(µ(E)− µ(F )) .

By Corollary 2.7 we have cG ≥ 0, so that µ(F ) ≤ µ(E), and E is semistable. �

3. Metric characterization of numerical effectiveness for Higgs bundles

Since a Kähler manifold may not contain embedded curves at all, the usual notion of

numerical effectiveness, which works well for projective manifolds, is no longer viable. An

alternative approach, pursued by Demailly, Peternell and Schneider [10] and by de Cataldo

[8], may be given in terms of fibre metrics. In particular, de Cataldo’s treatment in terms

of metrics on the bundle E seems to be well suited to an extension to the case of Higgs

bundles, again replacing the Chern connection with the Hitchin-Simpson connection.

3.1. Numerically effective Higgs bundles. In this section X is a compact Kähler

manifold of dimension n and (E, h) is a rank r Hermitian vector bundle on X. We adapt

the De Cataldo’s terminology to Higgs bundles. For finite-dimensional complex vector

bundles, V , W and Hermitian forms θ1, θ2 on V ⊗W , let t be any positive integer. Then

θ1 ≥t θ2 means that the Hermitian form θ1 − θ2 is semipositive definite on all tensors in

V ⊗W of rank ρ ≤ t (where the rank is that of the associated linear map V ∗ → W ). The

relevant range for t is 1 ≤ t ≤ N = min(dimV, dimW ).

Definition 3.1. If (E, h) is equipped with a connection D, we may associate with the

curvature R of D an Hermitian form R̃ on TX ⊗ E, defined by

(5) R̃(u⊗ s, v ⊗ t) =
i

2π
〈h(R(1,1)(s), t), u⊗ v〉 .

where R(1,1) is the (1, 1) part of R.

We consider now a Hermitian Higgs bundle E = (E, φ, h) on X.

Definition 3.2. Let 1 ≤ t ≤ N . We say that E is

(i) t-H-nef if for every ξ > 0 there is an Hermitian metric hξ on E such that

R̃(E,hξ) ≥t −ξω ⊗ hξ;

(ii) t-H-nflat if both E and E∗ are t-H-nef.
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In the following we establish some basic properties of t-H-nef Higgs bundles on a compact

Kähler manifold X.

Proposition 3.3. (i) Let f : X → Y be a holomorphic map between compact Kähler

manifolds, and let E = (E, φ) be a t-H-nef Higgs vector bundle on Y . Then

f ∗E = (f ∗E, f ∗φ) is a 1-H-nef Higgs bundle over X.

(ii) Let E = (E, φE) and F = (F, φF ) be Higgs bundles. If E is t′-H-nef and F is

t′′-H-nef, then E⊗ F = (E ⊗ F, ρ) is t-H-nef, where

ρ : E ⊗ F −→ E ⊗ F ⊗ Ω1
X

ρ(e⊗ f) 7→ φE(e)⊗ f + e⊗ φF(f)

and t = min(t′, t′′).

(iii) If E = (E, φ) is a t-H-nef Higgs bundle, then for all p = 2, . . . , r = rk(E) the p-th

exterior power ∧pE = (∧pE,∧pφ) is a t-H-nef Higgs bundle, and for all m, the

m-th symmetric power SmE = (SmE, Smφ) is a t-H-nef Higgs bundle.

(iv) Let (Q, hQ) be an Hermitian Higgs quotient of (E, h). The respective Hitchin-

Simpson curvatures verify the inequality R̃(Q,hQ) ≥1 R̃(E,h)|Q.

(v) A Higgs quotient Q of a 1-H-nef Higgs bundle E = (E, φ) is 1-H-nef.

(vi) If 0 → S → E → Q → 0 is an exact sequence of Higgs bundles, with E and

det(Q)−1 1-H-nef, then S is 1-H-nef.

(vii) An extension of 1-H-nef Higgs bundles is 1-H-nef.

Proof. (i) This is proved as in [8, Proposition 3.2.1(1)].

(ii) Since E = (E, φE) (analog., F = (F, φF )) is t′-H-nef, for all ξ > 0 there exists a

metric h(E,ξ/2) over E (analog. h(F,ξ/2) over F) such that the Hitchin-Simpson curvature

R̃(E,h(E,ξ/2)) satisfies R̃(E,h(E,ξ/2)) ≥t′ − ξ
2
ω ⊗ h(E,ξ/2) (analogously, R̃(F,h(F,ξ/2)) ≥t′′ − ξ

2
ω ⊗

h(F,ξ/2)). Considering on E⊗ F the metrics hξ = h(E,h(E,ξ/2)) ⊗ h(F,h(F,ξ/2)) we have

R̃(E⊗F,hξ) = R̃(E,h(E,ξ/2)) ⊗ h(F,ξ/2) + h(E,ξ/2) ⊗ R̃(F,h(F,ξ/2)) ≥t −ξω ⊗ hξ.

(iii) This is proved much in the same way as (ii).

(iv) In [5] we have written equations of the Gauss-Codazzi type, which relate the Hitchin-

Simpson curvatures of three Hermitian Higgs bundles sitting in an exact sequence. These

equations state that the Hitchin-Simpson curvature of Q is given by the restriction of the

Hitchin-Simpson curvature of E to Q (if we embed Q into E by orthogonally splitting the

latter) plus a semipositive term.
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(v) Let ξ > 0 and hξ be an Hermitian metric on E with R̃(E,hξ) ≥1 −ξω ⊗ hξ. We can

endow Q with the quotient metric h(Q,ξ) and embed it into E as a C∞ Higgs subbundle.

The claim follows from Lemma (iv).

(vi) The proof is as in Proposition 1.15(iii) of [10]. Let r = rk(E) and p = rk(S).

By taking the (p − 1)-th exterior power of the morphism E∗ → S∗ obtained from the

exact sequence in the statement, and using the isomorphism S ' ∧p−1S∗ ⊗ det(E), we

get a surjection ∧p−1E∗ → S ⊗ det(S)−1. Tensoring by det(S) ' det(E) ⊗ det(Q)−1 we

eventually obtain a surjection ∧r−p+1E ⊗ det(Q)−1 → S. Propositions (ii) and (v) now

imply the claim.

(vi) Let us consider an extension of Higgs bundles 0 → F → E → G → 0 where F and

G are 1-H-nef. Then for every ξ > 0 the latter bundles carry Hermitian metrics h(F,ξ) and

h(G,ξ) such that

R̃(F,h(F,ξ/3)) ≥1 − ξ
3
ω ⊗ h(F,ξ/3), R̃(G,h(G,ξ/3)) ≥1 − ξ

3
ω ⊗ h(G,ξ/3).

Fixing a C∞ isomorphism E ' F ⊕ G, these metrics induce an Hermitian metric hξ on

E. A simple calculation, which involves the second fundamental form of E, shows that

R̃(E,hξ) ≥1 −ξω⊗hξ, so that E is 1-H-nef (details in the ordinary case are given in [8]). �

3.2. Numerical effectiveness, semistability and a characterization of 1-H-nflat

Higgs bundles. We study some relations between semistability and numerical effective-

ness of Higgs bundles. Together with the vanishing result proved in the next Proposition,

this will be the basic tool for providing a characterization of 1-H-nflat Higgs bundles which

is one of the main results in this paper (Theorem 3.7).

Proposition 3.4. Let E = (E, φ) and E∗ = (E∗, φ∗) be a 1-H-nef Higgs bundle and its

dual Higgs bundle respectively. A φ∗-invariant section of E∗ has no zeroes.

Proof. Our proof is closely inspired by Proposition 1.16 in [10]. For a given ξ > 0, let hξ

be the metric on E such that R̃(E,hξ) ≥1 −ξω ⊗ hξ, and consider the closed (1, 1) current

Tξ =
i

2π
∂∂̄ log h∗ξ(s, s);

this satisfies the inequality

Tξ ≥ −
R̃(E∗,h∗

ξ)(s, s)

h∗ξ(s, s)
,
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where R̃(E∗,h∗
ξ)(s, s) is regarded as a 2-form on X. If s is φ∗-invariant one has [φ∗, φ

∗
](s) = 0,

so that R̃(E∗,h∗
ξ)(s, s) = R̃(E∗,h∗

ξ)(s, s). On the other hand, since E is 1-H-nef, we have

−R̃(E∗,h∗
ξ)(s, s) ≥ −ξ hξ(s, s)ω. Thus, Tξ ≥ −ξω.

Since ∂∂̄ωn−1 = 0, we have∫
X

(Tξ + ξω) ∧ ωn−1 = ξ

∫
X

ωn.

For ξ ranging in the interval (0, 1] the masses of the currents Tξ +ξω are uniformly bounded

from above, so that the sequence {Tξ + ξω} contains a subsequence which, by weak com-

pactness, converges weakly to zero. (For details on this technique see e.g. [9]). Therefore,

the Lelong number of Tξ at each point x ∈ X (which coincides with the vanishing order of

s at that point) is zero [22], so that s never vanishes. �

Theorem 3.5. A 1-H-nflat Higgs bundle E = (E, φ) is semistable.

Proof. Since the mean curvature K(E,hξ) may be written in the form

K(E,hξ)(s, s) = −2π
n∑

i=1

R̃(E,hξ)(ei ⊗ s, ei ⊗ s),

where the ei’s are a unitary frame field on X, the fact that E is 1-H-nef implies

K(E,hξ)(s, s) ≤ 2π n ξ hξ(s, s).

On the other hand, since det(E)−1 is 1-H-nef, the Higgs bundle E∗ ' ∧r−1E⊗ det(E)−1

is 1-H-nef with the dual metric h∗ξ , so that K(E∗,h∗
ξ) = −Kt

(E,hξ), and

K(E,hξ)(s, s) ≥ −2π n ξ hξ(s, s).

As c1(E) = 0 because det(E) is numerically flat [10, Corollary 1.5], after rescaling ξ these

equations imply |K(E,hξ)| ≤ ξ, so that E is semistable by Theorem 2.4. �

Let E = (E, φ) be a Higgs bundle on X.

Lemma 3.6. (i) If E is 1-H-nef with c1(E) = 0 then it is 1-H-nflat.

(ii) If rank(E) = 1, and moreover E is 1-H-nef and has zero degree, then it is Her-

mitian flat.

(iii) If E is 1-Hnflat, and {hξ} is a family of metrics which makes E 1-H-nef, then the

family of dual metrics {h∗ξ} makes E∗ 1-H-nef.

(iv) If E is stable and 1-H-nflat then it is Hermitian flat.
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Proof. (i) This follows again from the fact that E∗ ' ∧r−1E⊗ det(E)−1 is an isomorphism

of Higgs bundles.

(ii) We proceed as in [10, Cor. 1.19]. For every ξ > 0 one has on L an Hermitian metric

kξ satisfying the inequality

0 ≤
∫

X

( i
2π
R(L,kξ) + ξω) · ωn−1 = deg(L) + ξ

∫
X

ωn.

By the same argument as in the proof of Proposition 3.4, if deg(L) = 0 by taking the limit

ξ → 0 one shows that c1(L) = 0, so that L is Hermitian flat.

(iii) The determinant line bundle det(E) is 1-nef with respect to the family of determinant

metrics {dethξ}. The dual line bundle det−1(E) is 1-nef as well, and it is such with

respect to a family {a(ξ) det−1 hξ}, where the homothety factor a(ξ) only depends on ξ

[10, Cor. 1.5]. From the isomorphism E∗ ' ∧r−1E ⊗ det−1(E) (where r = rk(E)) we see

that E∗ is made 1-H-nef by the family of metrics {h′ξ = a(ξ)h∗ξ}, so that for every ξ > 0

the condition R̃(E∗,h′
ξ) ≥1 −ξ ω ⊗ h′ξ holds. But this implies R̃(E∗,h∗

ξ) ≥1 −ξ ω ⊗ h∗ξ .

(iv) As before, let us denote by ‖R(E,hξ)‖2 the scalar product of the Hitchin-Simpson

curvature with itself obtained by using the Hermitian metric of the bundle E and the

Kähler form on X (thus, ‖R(E,hξ)‖ is a function on X). Note that in terms of a local

orthonormal frame {eα} on X and a local orthonormal basis of sections {sa} of E we may

write

‖R(E,hξ)‖2 = 4π2
∑
α,a

(
R̃(E,hξ)(eα ⊗ sa, eα ⊗ sa)

)2

.

Since E is 1-H-nef, for every ξ > 0 there is an Hermitian metric hξ on E such that

R̃(E,hξ) ≥1 −ξ ω⊗hξ. Taking Lemma (iii) into account, for every ξ we have the inequalities

ξ ≥ R̃(E,hξ)(eα ⊗ sa, eα ⊗ sa) ≥ −ξ .

So we have ‖R(E,hξ)‖ ≤ a1 ξ for some constant a1. In the same way we have ‖K(E,hξ)‖ ≤ a2 ξ

for some constant a2.

Assume that n = dimX > 1. Since c1(E) = 0, we have the representation formula [18,

Chap. IV.4] ∫
X

c2(E) · ωn−2 =
1

8π2 n(n− 1)

∫
X

(‖R(E,hξ)‖2 − ‖K(E,hξ)‖2)ωn

The previous inequalities imply
∫

X
c2(E) · ωn−2 = 0. For every value of n, may apply

Theorem 1 and Proposition 3.4 in [20] to show that E admits an Hermitian metric whose

corresponding Hitchin-Simpson curvature vanishes. �
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Theorem 3.7. A Higgs bundle E is 1-H-nflat if and only if it has a filtration in Higgs

subbundles whose quotients are Hermitian flat Higgs bundles. As a consequence, all Chern

classes of a 1-H-nflat Higgs bundle vanish.

Proof. Assume that E has such a filtration. Then any quotient of the filtration is 1-H-nflat,

and the claim follows from Proposition 3.3(vii).

To prove the converse, let F be a Higgs subsheaf of E of rank p. We have an exact

sequence of Higgs sheaves

0 → det(F) → ∧pE → G → 0,

where G is not necessarily locally-free. Since det(E) is 1-H-nflat we have c1(E) = 0. By

Theorem 3.5 ∧pE is semistable, so that deg(F ) ≤ 0. Let hξ be a family of Hermitian

metrics which makes E a 1-H-nef Higgs bundle, and let hp
ξ be the induced metrics on ∧pE.

After rescaling the dual metrics (hp
ξ)
∗ we obtain a family of metrics which makes ∧pE∗ a

1-H-nef Higgs bundle (cf. Lemma 3.6(iii)). Let U be the open dense subset of X where G

is locally free; then the metrics (hp
ξ)
∗ induce on det(F)−1

|U metrics making it 1-H-nef. These

metrics extend to the whole of X, since they are homothetic by a constant factor to the

duals of the metrics induced on det(F) by the metrics on ∧pE. Thus, det(F)−1 is 1-H-nef. If

deg(F ) = 0 by Lemma 3.6(ii) det(F) is Hermitian flat, so that ∧pE⊗det(F)−1 is 1-H-nflat.

Then by Proposition 3.4 the morphism of Higgs bundles det(F) → ∧pE has no zeroes, so

that G is locally-free.

In view of Lemma 3.6(iv) we may assume that E is not stable. Let us then identify F

with a destabilizing Higgs subsheaf of minimal rank and zero degree. We need F to be

reflexive; we may achieve this by replacing F with its double dual F∗∗. By Lemma 1.20 in

[10], F is locally-free and a Higgs subbundle of E. Now, F∗ is 1-H-nef because it is a Higgs

quotient of E∗, while F is 1-H-nef by Proposition 3.3(vi), so that F is 1-H-nflat. Since

F is stable by construction, by Lemma 3.6(iv) it is Hermitian flat. The existence of the

filtration follows by induction on the rank of E since the quotient E/F is locally-free and

1-H-nflat, hence we may apply to it the inductive hypothesis. �

3.3. Projective curves. The last part of this section is devoted to the case when X is a

smooth projective curve. The first Proposition generalizes results given in [14, 6, 4]. Let

E = (E, φ) be a Higgs bundle on X.

Proposition 3.8. If E is semistable with deg(E) ≥ 0, then it is 1-H-nef.
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Proof. If E is stable it admits an Hermitian-Yang-Mills metric h, so that R̃(E,h) = c h

with c ≥ 0 (note that we essentialy identify R̃(E,hξ) with the mean curvature since we are

on a curve). Then E is 1-H-nef. If E is properly semistable, we may filter it in such a

way that the quotients of the filtration are stable Higgs bundles of nonnegative degree.

By the previous argument, every quotient is 1-H-nef. One then concludes by Proposition

3.3(vii). �

The following result extends to 1-H-nef Higgs bundles of any rank a characterization of

rank 2 ample vector bundles on a smooth projective curve given in [16].

Proposition 3.9. If E has nonnegative degree and all its locally-free Higgs quotients are

1-H-nef, then it is 1-H-nef.

Proof. If E is semistable, by Proposition 3.8 it is 1-H-nef. If E is not semistable, let K be a

destabilizing semistable Higgs subbundle. Since deg(E) ≥ 0, then deg(K) > 0, and again

we have that K is 1-H-nef. Thus E is an extension of 1-H-nef Higgs bundles, and is 1-H-nef

by Proposition 3.3(vii). �

4. The projective case

We give now a definition of numerical flatness for Higgs bundles on smooth projective

varieties and compare it with the definition we have given here in the case of Kähler

manifolds.

4.1. Grassmannians of Higgs quotients. Given a Higgs bundle E = (E, φ), we consider

the Grassmann bundle Grs(E) of s-planes in E, which is a parametrizaton of the rank s

locally-free quotients of E, and we construct closed subschemes Grs(E) ⊂ Grs(E) param-

etrizing rank s locally-free Higgs quotients (see again [5] for details). The scheme Grs(E)

will be called the Grassmannian scheme of Higgs quotients of E.

We denote by ps and ρs respectively the projection over X from Grs(E) and Grs(E). The

restriction of the universal exact sequence on the Grassmann bundle gives the following

exact universal sequence, which defines the universal Higgs quotient Qs,E:

(6) 0 → Sr−s,E → ρ∗s(E) → Qs,E → 0 .
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We consider the numerical classes

(7) λs,E =

[
c1(OPQs,E

(1)− 1

r
π∗s(c1(E))

]
∈ N1(PQs,E)

where πs : PQs,E → X is the natural epimorphism, and

(8) θs,E =
[
c1(Qs,E)− s

r
ρ∗s(c1(E))

]
∈ N1(Grs(E)),

where, for every projective scheme Z, we denote by N1(Z) the vector space of R-divisors

modulo numerical equivalence:

N1(Z) =
Pic(Z)

num. eq.
⊗ R.

We recall from [5] our definition of ampleness and numerical effectiveness for Higgs

bundles on projective varieties.

Definition 4.1. A Higgs bundle E = (E, φ) is a H-ample (resp. H-nef) if it is ample

(resp. numerical effective) in the usual sense. If rk E ≥ 2 we require that:

(i) all bundles Qs,E are H-ample (resp. H-nef);

(ii) the line bundle det(E) is ample (resp. nef).

If both E and E∗ are H-nef, we say that E is H-nflat.

Remark 4.2. (i) One should note that, since the schemes Grs(E) may be highly singular,

our definition of numerical effectiveness for Higgs bundles on projective varieties requires

to consider Higgs bundles on singular spaces. This may be done by using the theory of the

De Rham complex on general schemes [15].

(ii) In Definition 4.1 we require that det(E) is ample, or nef, to avoid the existence of

H-ample or H-nef Higgs bundles with zero or negative degree. Cf. [4] for a discussion of

this point.

(iii) Due to our iterative definition of H-nefness, a Higgs bundle E is H-nef if and only

if a finite number of line bundles Li (each defined on a projective scheme Yi for which a

surjective morphism Yi → X exists) are nef. For instance, if E is a rank 3 Higgs bundle of

X, one is requiring the usual nefness of the following line bundles:

• det(E) on X

• Q1,E on Gr1(E)

• det(Q2,E) on Gr2(E)

• Q1,Q2,E
on Gr1(Q2,E).
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4

Example 4.3. There are examples of Higgs bundles that are H-nflat but not numerically flat

as ordinary bundles. Let E = (E, φ) be a semistable Higgs bundle which is not semistable

as an ordinary bundle, and let F = E⊗ E∗ with its natural Higgs field. Then F enjoys the

stated properties. See [4] for details. 4

We prove now some properties of H-nef Higgs bundles that will be useful in the sequel.

These generalize properties given in [16, 7] for ordinary vector bundles.

Proposition 4.4. Let X be a smooth projective variety.

(i) If f : Y → X is a finite surjective morphism of smooth projective varieties, and

E is a Higgs bundle on X, then E is H-ample (resp. H-nef) if and only if f ∗E is

H-ample (resp. H-nef).

(ii) Every quotient Higgs bundle of a H-nef Higgs bundle E on X is H-nef.

Proof. (i) This is standard in the rank one case [16]. In the higher rank case we first

notice that det(f ∗(E)) ' f ∗(det(E)), so that the condition on the determinant is fulfilled.

Moreover, by functoriality the morphism f induces a morphism f̄ : Grs(f
∗E) → Grs(E),

and Qs,f∗E ' f̄ ∗(Qs,E). One concludes by induction.

(ii) Let F = (F, φF ) be a rank s Higgs quotient of E. This corresponds to a section

σ : X → Grs(E) such that F ' σ∗(Qs,E). Since Qs,E is H-nef, F is H-nef as well by the

previous point. �

Miyaoka’s criterion for semistability has been generalized in [6] and [5] to Higgs bundles

on smooth projective varieties of any dimension (the same criterion has been generalized

to principal bundles in [2]). Let ∆(E) be the characteristic class

∆(E) = c2(E)− r − 1

2r
c1(E)2 =

1

2r
c2(E ⊗ E∗) .

This is called the discriminant of the bundle E. The following result was proved in [6] and

[5].

Theorem 4.5. Let E be a Higgs bundle on a smooth polarized projective variety. The

following conditions are equivalent.

(i) All classes λs,E are nef, for 0 < s < r.

(ii) E is semistable and ∆(E) = 0.



16 NUMERICAL PROPERTIES OF HIGGS BUNDLES

(iii) All classes θs,E are nef, for 0 < s < r.

(iv) For any smooth projective curve C in X, the restriction E|C is semistable.

Remark 4.6. Since condition (iv) is independent of the choice of the polarization, we obtain

the interesting observation that a semistable Higgs bundle with vanishing discriminant is

semistable with respect to every polarization. 4

Corollary 4.7. [6] A semistable Higgs bundle E = (E, φ) on an n-dimensional polarized

smooth projective variety (X,H) such that c1(E) ·Hn−1 = ch2(E) ·Hn−2 = 0 is H-nflat.

Theorem 4.5 makes use of Theorem 2 in [21], which will also be further needed in the

present paper. We recall it here in a simplified form which is enough for our purposes.

Theorem 4.8. Let E = (E, φ) be a semistable Higgs bundle on an n-dimensional polarized

smooth projective variety (X,H), and assume c1(E) ·Hn−1 = ch2(E) ·Hn−2 = 0. Then E

admits a filtration whose quotients are stable and have vanishing Chern classes.

4.2. Numerically flat Higgs bundles and stability. Analogously to what we did in

the Kählerian case, we wish to stidu stability properties of H-nef and H-nflat Higgs bundles.

The first result generalizes Corollary 3.6 in [6] and Theorem 1.2 in [14]. The proof does not

differ much from the one given in [14] but we include it here for the reader’s convenience.

Proposition 4.9. Let E = (E, φ) be a Higgs bundle on a smooth projective variety X such

that all classes λs,E are nef.

(i) If the class c1(E) is nef, then all universal quotient bundles Qs,E are nef (so that

E is H-nef).

(ii) If X is a curve and c1(E) is ample, then all universal quotient bundles Qs,E are

ample (so that E is H-ample).

(iii) If c1(E) is positive (i.e., c1(E) · [C] > 0 for all irreducible curves C ⊂ X), then

the class c1(Qs,E) is positive for all s.

Proof. (i). If Qs,E is not nef there is an irreducible curve C ⊂ PQs,E such that c1(OPQs,E
(1))·

[C] < 0. Let f : C ′ → C be the normalization of C, and let p : C ′ → Grs(E) be the induced

map. If L is the pullback of OPQs,E
(1) to C ′, then L is a Higgs quotient of p∗ ◦ ρ∗s(E), and

deg(L) = [f(C ′)] · c1(OPQs,E
(1)) < 0 .
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On the other hand, one has

deg(p∗ ◦ ρ∗s(E)) = [p(C ′)] · c1(ρ∗s(E)) ≥ 0

since c1(E) is nef, so that

(9) µ(L) < µ(p∗ ◦ ρ∗s(E)).

Now, in view of Theorem 4.5, the fact that all classes λs,E are nef implies that E is

semistable, and also that the restriction of E to any smooth projective curve in X is

semistable. Combining this with Lemma 3.3 in [6], one shows that p∗ ◦ρ∗s(E) is semistable.

But then eq. (9) is a contradiction.

(ii). This proof is a slight variation of the previous one, due to the fact that Nakai’s

criterion for ampleness requires to check positive intersections with subvarieties of all di-

mensions. Let C be a smooth projective curve and f : C → X a morphism which is of

degree larger than r = rkE. Given a point p ∈ C let F be the class of the fibre of P(f ∗Qs,E)

over p. The Higgs bundle E′ = f ∗E ⊗ OC(−p) is semistable by the same argument as in

the previous proof. Moreover, deg(E′) > 0, so that E′ is H-nef by the previous point. If L

is the pullback to C of the bundle OPQs,E
(1), then L(−F ) is nef since it is the hyperplane

bundle in PQs,E′ . If V is any subvariety of P(f ∗Qs,E) of dimension k, then c1(L)k · [V ] > 0,

so that L is ample. Thus the pullback of E to C is H-ample, and hence E is H-ample as

well by Proposition 4.4.

Claim (iii) is proved as claim (ii). �

Corollary 4.10. Given a Higgs bundle E = (E, φ), if all classes λs,E are nef, and c1(E)

is numerically equivalent to zero, then E is H-nflat.

Proposition 4.11. Let E = (E, φ) be a Higgs bundle on a smooth polarized projective

variety X, such that all universal quotients Qs,E and Qs,E∗ are nef. Then E is semistable.

If deg(E) 6= 0, then E is stable.

Proof. Under the isomorphism Grr−s(E
∗) ' Grs(E) the bundle Sr−s,E is identified with

Q∗
r−s,E∗ . Therefore all the universal quotient bundles Qs,E and the bundles S∗r−s,E on Grs(E)

are nef. Since

c1(Sr−s,E) = −θs,E +
r − s

r
p∗s(c1(E))
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we have, after restricting to GrsE,

(10) c1(S
∗
r−s,E) = θs,E +

s− r

r
ρs

∗(c1(E)) .

By [7, Prop. 1.2 (11)] this class is nef.

Let us assume at first that X is a curve, and let us suppose that deg(E) ≥ 0. By a

slight generalization of [10, Prop. 1.8(i)] or [13, Prop. 2.2], the class p∗s(c1(E)) is positive,

and as Grs(E) is a closed subscheme of Grs(E), the class ρ∗s(c1(E)) is positive as well. But

since c1(S
∗
r−s,E) is nef this implies that all classes θs,E are nef and so from Proposition 4.5

it follows that E is semistable.

If deg(E) ≤ 0, the same argument shows that E∗ is semistable, and then E is semistable

as well.

We now show that if deg(E) 6= 0 then E is stable. Assume for instance that deg(E) > 0.

Proposition 4.9 proves that in this case c1(Qs,E) > 0 for all s. Without loss of generality we

may assume that Grs(E) has a section σ : X → Grs(E). Then the bundle Qσ = σ∗(Qs,E)

is an ample Higgs quotient of E. So one has the exact sequence

0 → K → E → Qσ → 0

and −c1(K) = c1(Qσ ⊗ det−1E) = σ∗(c1(S
∗
r−s,E)) is nef as well. Thus c1(K) ≤ 0 and

µ(K) < µ(E). Hence E is stable. If deg(E) < 0 by applying the same argument to the

dual of E we obtain that E∗ is stable, and hence E is stable again.

These results are then extended to an arbitrary dimension of X by the usual induction

argument, considering a smooth divisor in the linear system |mH| for m big enough. �

Corollary 4.12. An H-nflat Higgs bundle is semistable.

Proof. It is enough to check that if E is H-nef and c1(E) ≡ 0, then all universal quotient

bundles Qs,E are nef. Indeed, in this case the classes θs,E = [c1(Qs,E)] are nef, so that the

classes λs,E are nef by Theorem 4.5. But λs,E = [c1(OPQs,E
(1))], so that Qs,E is nef. �

Remark 4.13. Proposition 4.11 raises the question of the existence of stable H-nflat Higgs

bundles. An example is provided by a Higgs bundle E such that E = L1 ⊕ L2 with

φ(L1) ⊂ L2 ⊗ Ω1
X , φ(L2) = 0, if we choose deg(L1) = 1 and deg(L2) = −1, and assume

that the genus of the curve X at least 2. Then E is stable and H-nflat. For details see [4].

4
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Proposition 4.11 admits as a simple consequence the characterization of H-nflat Higgs

bundles in terms of filtrations.

Theorem 4.14. A Higgs bundle E on X is H-nflat if and only if it admits a filtration

whose quotients are flat stable Higgs bundles.

Proof. If E is H-nflat by Corollary 4.12 it is semistable. Since all Chern classes of E vanish,

by Theorem 4.8 E has a filtration whose quotients are stable and have vanishing Chern

classes. We may assume that E is an extension

(11) 0 → F → E → G → 0

of stable Higgs bundles with vanishing Chern classes, otherwise one simply iterates the

following argument. Let us consider the bundle F = (F, φF ); the same will apply to G. By

results given in [21], the bundle F admits a Hermitian-Yang-Mills metric. Let Θ be the

curvature of the associated Chern connection. Since c1(F ) = c2(F ) = 0, we have

0 =

∫
X

tr(Θ ∧Θ) ·Hn−2 = γ1‖Θ‖2 − γ2‖ΛΘi‖2 = γ1‖Θ‖2

for some positive constants γ1, γ2, so that the Chern connection of F is flat, i.e., F is flat.

Conversely, let assume that E has a filtration as in the statement. Then E is semistable

with vanishing Chern classes, and by Corollary 4.7 it is numerically flat. �

4.3. Comparison between the projective and Kählerian cases. We study in this

section the relation between the notions of 1-H-nefness and H-nefness on complex projective

manifolds. One sees that 1-H-nefness impies H-nefness, and that the two notions are

equivalent on curves. We do not know whether they are equivalent in any dimension.

Proposition 4.15. A 1-H-nef Higgs bundle E = (E, φ) is H-nef.

Proof. We proceed by induction on the rank r of E. If r = 1 there is nothing to prove. If

r > 1, for every s = 1, . . . , r − 1 let us consider the universal sequence (6) on the Higgs

Grassmannian Grs(E). Since the Higgs Grassmannian is in general singular, we consider

a resolution of singularities βs : Bs(E) → Grs(E), and pullback the universal sequence to

Bs(E):

0 → β∗sSr−s,E → γ∗sE → β∗sQs,E → 0,
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where γs = ρs ◦ βs. Since E is 1-H-nef, the pullback γ∗s (E) is 1-H-nef as well, and its Higgs

quotient β∗sQs,E is 1-H-nef, hence H-nef by the inductive hypothesis.

We need to show that Qs,E is H-nef; in view of Remark 4.2, by base change this reduces to

proving the following fact: if fi : Zi → Yi are surjective morphisms of projective schemes,

and Li are line bundles on Yi such that the pullbacks f ∗i Li are nef, then the line bundles

Li are nef. This follows from [13, Prop. 2.3]. �

Proposition 4.16. A Higgs bundle E = (E, φ) over a smooth projective curve X is 1-H-nef

if and only if it is H-nef.

Proof. We have just proved the necessary condition. We prove the sufficiency again by

induction on the rank r of E. If r = 1 there is nothing to prove. If r > 1, note that since E

is H-nef, then deg(E) ≥ 0, and all its quotients Q are H-nef. By the inductive hypothesis,

all Q are 1-H-nef; one concludes by Proposition 3.9. �

This strongly simplifies the proof of Theorem 3.3.1 of [8], which gives the same result in

the case of ordinary bundles.

By using the fact that H-nefness may be checked on embedded curves, and the fact that

on curves 1-H-nefness and H-nefness coincide, we may prove some additional properties of

H-nef Higgs bundles.

Lemma 4.17. A Higgs bundle E = (E, φ) over a smooth projective variety X is H-nef if

and only if E|C = (E|C , φ|C) is H-nef for all irreducible curves C in X.

Proof. By Remark 4.2 the Higgs bundle E is H-nef if and only if a finite number of line

bundles Li (each defined on a projective scheme Yi for which a surjective morphism Yi → X

exists) are nef. The claim then follows. �

Proposition 4.18. An extension of H-nef Higgs bundles is H-nef.

Proof. In view of Lemma 4.17 we may assume that X is a curve. The result then follows

from Propositions (vii) and 4.16. �

In the same way, by using Lemma 4.17 one can prove that the tensor, exterior and

symmetric products of H-nef Higgs bundles are H-nef. Moreover we have:
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Proposition 4.19. Let E be a Higgs bundle. If Sm(E) is H-nef for some m, then E is

H-nef.

Proof. Since a rank s Higgs quotient of E yields a Higgs quotient of Sm(E) of rank

N(m,s) =

(
m+ s− 1

s− 1

)
,

one has a morphism g : Grs(E) → GrN(m,s)
(Sm(E)) such that g∗(QN(m,s),S

m(E)) ' Sm(Qs,E).

Since Sm(E) is H-nef, the symmetric product Sm(Qs,E) is H-nef. The claim follows by

induction on the rank of E. �

4.4. More semistability criteria. Some semistabilty criteria in addition to those listed

in Theorem 4.5 may be given in terms of the notion of H-nefness. One of these has

the advantage that is expressed in terms of a bundle on the base manifold. Another is

stated in terms of the Higgs bundles Ts,E = S∗r−s,E ⊗ Qs,E on the Higgs Grassmannians

Grs(E). For an ordinary vector bundle E, the bundle Ts,E is the vertical tangent bundle

to ps : Grs(E) → X.

Theorem 4.20. Let E = (E, φ) be a rank r Higgs bundle on a complex projective manifold

X. The following three conditions are equivalent:

(i) the Higgs bundle F = Sr(E)⊗ (det E)−1 is H-nflat;

(ii) E is semistable and ∆(E) = c2(E)− r−1
2r
c1(E)2 = 0;

(iii) the Higgs bundles Ts,E are all H-nef.

Proof. We first prove that (i) implies (ii). Since det(F) is trivial, the dual Higgs bundle F∗

is H-nef as well, i.e., F is H-nflat, hence semistable by Theorem 3.1 of [4]. Then, the Higgs

bundle F⊗ F∗ ' Sr(E)⊗ Sr(E∗) is semistable. This implies that E is semistable.

One also has that Sr(E)⊗Sr(E∗) is H-nflat so that its Chern classes vanish by Theorem

4.14. But since

c2(S
r(E)⊗ Sr(E∗)) = 4r(rkSr(E))2∆(E)

we conclude.

(ii) implies (i): we have that F is semistable and

c1(F ) = 0, c2(F ) = 2r(rkSr(E))2∆(E) = 0.



22 NUMERICAL PROPERTIES OF HIGGS BUNDLES

By Theorem 4.8, F has a filtration whose quotients are stable Higgs bundles with vanishing

Chern classes. Proceeding as in the proof of Lemma 3.6(iv), these quotients are shown to

be Hermitian flat, hence they are H-nflat. Then F is H-nflat as well.

We prove now that (i) implies (iii). If F is H-nef, then the Q-Higgs bundle E⊗(det(E))−1/r

is H-nef by Proposition 4.19, so that the Higgs bundle E∗ ⊗ (det(E))1/r is H-nef (since

c1(E⊗ (det(E))−1/r) = 0), and Qs,E⊗ ρ∗s(det(E))−1/r is H-nef as well, since it is a universal

quotient of E⊗ (det(E))−1/r. From the exact sequence

0 → Qs,E ⊗Q∗
s,E → ρ∗s(E

∗)⊗Qs,E → Ts,E → 0,

one obtains the claim.

Finally, we prove that (iii) implies (ii). Note that the class θs,E defined in equation

(8) equals [c1(Ts,E)], so that if Ts,E is H-nef, the class θs,E is nef. This holds true for

every s = 1, . . . , r − 1. It was proved in [6] that this is equivalent to condition (ii) in the

statement. �

Example 4.21. We give an example of an H-nef Higgs bundle which is not nef as an ordin-

ary bundle. Let X be a projective surface of general type that saturates Miyaoka-Yau’s

inequality, i.e., 3c2(X) = c1(X)2 (surfaces of general type satisfying this condition are ex-

actly those that are uniformized by the unit ball in C2 [20]). The Higgs bundle E whose

underlying vector bundle is E = Ω1
X ⊕ OX with the Higgs morphism φ(ω, f) = (0, ω) is

semistable and satisfies ∆(E) = 0, so that the Higgs bundle F = S3(E) ⊗ (det E)−1 is

1-H-nef. On the other hand, the underlying vector bundle F = S3(Ω1
X ⊕ OX) ⊗K∗

X con-

tains K∗
X as a direct summand and therefore is not nef (note that we exclude that KX is

numerically flat). 4
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