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Abstract

This paper is a continuation of hepth/0507224 where open topological B-models describing
D-branes on 2-cycles of local Calabi–Yau geometries with conical singularities were studied. After
a short review, the paper expands in particular on two aspects: the gauge fixing problem in the
reduction to two dimensions and the quantum matrix model solutions.

1 Introduction

Singular Calabi–Yau manifolds represent one of the most interesting developments in string
compactifications. For instance, the presence of a conifold point, [1], in a Calabi-Yau opens new
prospects: in conjunction with fluxes and branes it may allow for warped compactifications, which
in turn may create the conditions for moduli stabilization and for large hierarchies of physical
scales. On the other hand singular Calabi-Yau compactifications with conical singularities seem
to realize favorable conditions for low energy theory models with realistic cosmological features.
A conifold singularity can be smoothed in two different ways, by means of a 2-sphere (resolution)
or a 3–sphere (deformation). This leads, from a physical point of view, to a geometric transition
that establishes a duality relation between theories defined by the two nonsingular geometries
(gauge–gravity or open–closed string duality),[2, 3]. In summary, conifold singularities are at the
crossroads of many interesting recent developments in string theory. It is therefore important
to study theories defined on conifolds, i.e. on singular non compact Calabi-Yau threefolds, as
well–defined and (partially) calculable models to approximate more realistic situations.

In [4], building on previous literature, we started to elaborate on an idea that is receiving
increasing attention: how data describing the geometry of a local Calabi–Yau can be encoded, via
a topological field theory, in a (multi–)matrix model and how they can be efficiently calculated.
The framework we considered was IIB string theory with spacetime filling D5–branes wrapped
around resolving two–dimensional cycles. This geometry defines a 4D gauge theory, [5, 6, 7, 20].
On the other hand one can consider the open topological B model describing strings on the
conifold. The latter has been shown long ago by Witten to be represented by a six-dimensional
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holomorphic Chern–Simons theory, [11]. When reduced to a two-dimensional cycle this theory
can be shown to reduce to a matrix model. In particular, if one wishes to represent a wide class
of deformations of the complex structure satisfying the Calabi–Yau condition, one must resort
to very general multi–matrix models, [9]. In [4] we concentrated on the topological string theory
part of the story, [12, 17, 13, 18, 14, 15], in particular on the formal aspects of the reduction
from the six-dimensional holomorphic Chern–Simons theory to a two–dimensional field theory
and on the analysis of the matrix model potentials originated from the Calabi-Yau complex
structure deformations. Finally we concentrated on the subclass of matrix models represented
by two–matrix models with bilinear coupling (for a very recent development see [16]). In this case
the functional integral can be explicitly calculated with the method of orthogonal polynomials.
Using old results we showed how one can find explicit solutions by solving the quantum equations

of motion and utilizing the recursiveness granted by integrability. All the data turn out to be
encoded in a Riemann surface, which we called quantum Riemann surface in order to distinguish
it from the Riemann surface of the standard saddle point approach.

In this paper we would like to return to some topics that were only partially developed in [4].
In particular, in section 2, after a concise review of the reduction to from CS theory to matrix
models, we explain in detail the gauge fixing problem in this process. Subsequently we return
to the problem of solving two–matrix models with bilinear couplings by means of the orthogonal
polynomials method via the solution of the quantum equation of motion. After a short review of
the method in section 3, our main purpose in section 4 is to clarify the similarities and differences
with other methods, in particular with the semiclassical saddle point method. We discuss at
length the result of [4] that the quantum equations of motion admit in general more vacua than
the saddle point method. We interpret these additional solutions as ‘quantum’ cycles that have
no classical analog. Finally in section 5 we give a simple, explicit example of topological open
string expansion.

2 Reduction to the brane

In this section we summarize the reduction of the topological open string field theory (B model) to
a holomorphic 2-cycle in a local Calabi-Yau threefold [4]. Let us consider a holomorphic C

2−fibre
bundle X → Σ, where Σ is a Riemann surface. The space X is obtained as a deformation of the
complex structure of the total space of a rank-2 vector bundle V on Σ. Given an atlas {Uα} on
Σ, the transition functions for X can be written

z(α) = f(αβ)(z(β))

ωi
(α) = M i

j(αβ)

(
z(β)

) [
ωj

(β) + Ψj
(αβ)

(
z(β), ω(β)

)]
, i, j = 1, 2

where f(αβ) are the transition functions on the base, M i
j(αβ) the transition functions of the vector

bundle V and Ψj
(αβ) are the deformation terms, holomorphic on the intersections (Uα ∩Uβ)×C

2.
The Calabi-Yau condition on the space X, i.e. the existence of a nowhere vanishing holomor-

phic top-form Ω = dz ∧ dw1 ∧ dw2, puts conditions on the vector bundle and on the deformation
terms. The determinant of the vector bundle has to be equal to the canonical line bundle on Σ
and for the transition functions this means detM(αβ) × f ′

(αβ) = 1. For the deformation terms

we have det (1 + ∂Ψ) = 1, where (1 + ∂Ψ)ij = δi
j + ∂jΨ

i. The solution of this condition can be
given in terms of a set of potential functions X(αβ), the geometric potential, which generates the
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deformation via

ǫijw
i
(αβ)dwj

(αβ) = ǫijω
i
(α)dωj

(α) − dX(αβ),

where we define the singular coordinates wi
(αβ) = ωi

(α) + Ψi
(αβ)(z

(β), ω(β)).
The topological open B-model on X can be obtained from open string field theory and reduces

[11] to the holomorphic Chern-Simons (hCS) theory on X for a (0,1)-form connection on a U(N)
bundle E, where N is the number of space-filling B-branes. We will restrict ourselves to the case
in which E is trivial. The action of hCS is

S(A) =
1

gs

∫

X
L, L = Ω ∧ Tr

(
1

2
A ∧ ∂̄A +

1

3
A ∧A ∧A

)
(2.1)

where A ∈ T (0,1)(X). The dynamics of B-branes on a 2-cycle Σ ⊂ X can be described by reducing
the open string field theory from the space X to the B-brane world-volume Σ.

To obtain the reduced action for the linear geometry (Ψi ≡ 0), first we split the form A into
horizontal and vertical components using a reference connection Γ on the vector bundle, then we
impose the independence of the fields on the vertical directions and finally we “integrate along
the fiber” using a bilinear structure K on the bundle. If the connection Γ is the generalized
Chern connection for the bilinear structure, then the result is independent of the particular
(Γ,K) chosen.

Let us define Az̄ = Az̄ −Ak̄Γ
k̄
z̄j̄

w̄j̄ and Aī = Aī, where Γ is a reference connection and impose

that the components (Az̄, Aī) are independent on the coordinates along C
2, obtaining for the

Lagrangian

L =
1

2
Ω ∧ Tr

{
AīDz̄Aj̄ + AīΓ

k̄
z̄j̄Ak̄

}
dwī ∧ dz̄ ∧ dwj̄ (2.2)

where Dz̄ is the covariant derivative w.r.t. the gauge structure.
Now let us consider a bilinear structure K in V , i.e. a local section K ∈ Γ(V ⊗ V̄ ), the

components Kij̄ being an invertible complex matrix at any point. The “integration along the
fiber” is realized contracting the hCS (3,3)-form Lagrangian by the two bi-vector fields k =
1
2ǫijK

il̄Kjk̄ ∂
∂w̄l

∂
∂w̄k and ρ = 1

2ǫij ∂
∂wi

∂
∂wj

Lred = iρ∧kL =
1

2
dzdz̄(det K)ǫīj̄Tr

[
AīDz̄Aj̄ + AīΓ

k̄
z̄j̄Ak̄

]
. (2.3)

Defining the field components ϕi = iV iA ∈ V , where V i = Kij̄ ∂
∂w̄j , one gets

Lred =
1

2
dzdz̄Tr

[
ǫijϕ

iDz̄ϕ
j + (det K)ϕmϕnǫīj̄

(
Kmī∂z̄Knj̄ + KmīKnk̄Γ

k̄
z̄j̄

)]
(2.4)

where Kīj are the components of the inverse bilinear structure, that is KījK
jl̄ = δl̄

ī
. In order

to have a result which is independent of the trivialization, just set the reference connection to
be the generalized Chern connection of the bilinear structure K, that is Γk̄

z̄j̄
= Kj̄l∂z̄K

lk̄. The
action for the reduced theory is given by

Sred =
1

gs

∫

Σ
Lred =

1

2gs

∫

Σ
dzdz̄Tr

[
ǫijϕ

iDz̄ϕ
j
]
.

In the rational case Σ ≃ P
1 with non vanishing deformation terms Ψi, X is a deformation of

a vector bundle V ≃ OP1(n) ⊕OP1(−n − 2) for some n.
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Let us start with the reduction in the Abelian U(1) case. In this case the cubic term in the hCS
Lagrangian is absent and the reduction is almost straightforward. In the singular coordinates
(ϕ1, ϕ2) we obtain that

Lred =
1

2
ǫijϕ

i∂z̄ϕ
jdzdz̄ (2.5)

in both charts of the standard atlas {UN , US} of P
1. The potential term X gives the deformation

of the action due to the deformation of the complex structure. Passing to the non singular
coordinates (φ1, φ2), one obtains

Sred =
1

2 gs

[∫

P1

dzdz̄ǫijφ
i∂z̄φ

j +

∮
dz

2πi
X(z, φ)

]
(2.6)

where
∮

is a contour integral along the equator. Therefore, the reduced theory gives a b–c (β–γ)
system on the two hemispheres with a junction interaction along the equator.

The non–Abelian case is a bit more complicated than the Abelian one because of the tensoring
with the (trivial) gauge bundle. This promotes the vector bundle sections to matrices and
therefore it is not immediate how to unambiguously define the potential function X in the
general case. The easiest way to avoid matrix ordering prescriptions is to restrict to the case
in which X(z, ω) does not depend, say, on ω2. Defining B := ω1Ψ2 + X, one obtains Ψ1 = 0,
Ψ2 = ∂ω1B and the reduced action

S ≡ Sred =
1

gs

[∫

P1

−Tr(φ2Dz̄φ
1)dzdz̄ +

∮
TrB(z, φ1)dz

]
(2.7)

2.1 Gauge fixing

In order to calculate its partition function, let us now discuss the gauge fixing of the theory. The
following discussion is a refinement of the derivation given in [6]. Our starting action is (2.7) and
we follow the standard BRST quantization (see for example [8]).

The BRST invariance in the minimal sector is

sAz̄ = −(Dc)z̄, sφi = [c, φi], sc =
1

2
[c, c]

while we add a further non minimal one to implement the gauge fixing with

sc̄ = b, sb = 0.

The gauge fixed action is obtained by adding to S a gauge fixing term

Sgf = S + sΨ, where Ψ =
1

gs

∫

P 1

Trc̄∂zAz̄

which implements a holomorphic version of the Lorentz gauge. Actually we have

sΨ =
1

gs

∫

P 1

Tr [b∂zAz̄ − ∂z c̄(Dc)z̄ ] .

Our partition function is then the functional integral

ZB =

∫
D

[
φi, Az̄ , c, c̄, b

]
e−Sgf
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The calculation can proceed as follows. Let us first integrate along the gauge connection Az̄

which enters linearly the gauge fixed action and find

ZB =

∫
D

[
φi, c, c̄, b

]
e
− 1

gs
[−

∫
P1 Trφ2∂z̄φ1−∂z c̄∂z̄c+

∮
TrB(z,φ1)]δ

{
∂zb + [∂z c̄, c] + [φ1, φ2]

}

Now we integrate along the field b. By solving the constraint we obtain

ZB =

∫
D

[
φi, c, c̄

]
e−

1

gs
[−

∫
P1 Trφ2∂z̄φ1−∂z c̄∂z̄c+

∮
TrB(z,φ1)] 1

det′∂z

where det′ is the relevant functional determinant with the exclusion of the zero modes. Then we
integrate along the (c, c̄) ghosts and get

ZB =

∫
D

[
φi

]
e
− 1

gs
[−

∫
P1 Trφ2∂z̄φ1+

∮
TrB(z,φ1)] det′∂z∂z̄

det′∂z

Finally, since the geometric potential B does not depend on φ2, we can also integrate along this
variable and obtain

ZB =

∫
D

[
φ1

]
e−

1

gs
[
∮

TrB(z,φ1)]δ(∂z̄φ
1)

det′∂z∂z̄

det′∂z

The delta function constrains the field φ1 to span the ∂z̄-zero modes and once it is solved it
produces a further

(
det′∂z̄

)−1
multiplicative term that cancel the other determinants. Therefore,

all in all we get

ZB =

∫

Ker∂z̄

dφ1e
− 1

gs
[
∮

TrB(z,φ1)].

Lastly we can expand φ1 =
∑n

i=0 Xiξi along the basis ξi(z) ∼ zi of Ker∂z̄ with N × N matrix
coefficients Xi. Finally we find the multi-matrix integral

ZB =

∫ n∏

i=0

dXie
− 1

gs
W(X0,...,Xn) (2.8)

where we defined

W (X0, . . . ,Xn) =

∮
TrB(z,

∑

i

Xiz
i) (2.9)

This is the result of our gauge fixing procedure which covers the details needed to complete
the derivation given in [4] and confirms the conjecture in [9].

3 General properties of two–matrix models.

The second part of this paper is devoted to solving some of the matrix models introduced above,
eq.(2.8), the two–matrix models with bilinear coupling. The sequel is a short review of [4] on
this subject containing some additional remarks and complements. The main point we insist
on is that for these models there is the possibility to solve the quantum problem exactly. That
is, we perform the path integral exactly and determine all the (quantum) solutions. The exact
solvability of these two–matrix model is a well–known fact, but its consequences have not yet
been completely explored. As we will see, not all these solutions have a classical analog and,
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thus, they represent genuine new quantum solutions. To this purpose the method of orthogonal
polynomials turns out to be particularly fit. This method allows one to explicitly perform the
path integration, so that one is left with quantum equations of motion and the flow equations of
an integrable linear systems. The latter in particular uncover the integrable nature of two–matrix
models, which stems from the Toda lattice hierarchy underlying all of them. Our approach for
solving two–matrix models consists in solving the quantum equations of motion and, then, using
the recursiveness intrinsic to integrability (the flow equations), in finding explicit expressions for
the correlators. An alternative method is based on the W constraints on the functional integral.
We do not use it here, but one can find definitions, applications and comparisons with the other
methods in [21, 22]. For general references on matrix models, see the bibliography in [26, 4].

Let us start with a synthetic review of the approach based on orthogonal polynomials. The
model of two Hermitian N × N matrices M1 and M2 with bilinear coupling is defined by the
partition function

ZN (t, c) =

∫
dM1dM2e

trW , W = V1 + V2 + cM1M2 (3.1)

with potentials

Vα =

pα∑

r=1

t̄α,rM
r
α α = 1, 2. (3.2)

where pα are finite numbers. We denote by Mp1,p2
the corresponding two–matrix model. With

reference to eq.(2.9), this model descends from the geometric potential B defined by

B(z, ω) =
1

z

[
V1(ω) + V2

(ω

z

)]
+

c

2z2
ω2 (3.3)

We are interested in computing correlation functions (CF’s) of the operators

τk = trMk
1 , σk = trMk

2 , ∀k,

For this reason we complete the above model by replacing (3.2) with the more general potentials

Vα =

∞∑

r=1

tα,rM
r
α, α = 1, 2 (3.4)

where tα,r ≡ t̄α,r for r ≤ pα. The CF’s are defined by

< τr1
. . . τrnσs1

. . . σsm >=
∂n+m

∂t1,r1
. . . ∂t1,rn∂t2,s1

. . . ∂t2,sm

lnZN (t, g) (3.5)

where, in the RHS, all the tα,r are set equal to t̄α,r for r ≤ pα and the remaining are set to zero.
From now on we will not distinguish between tα,r and t̄α,r and use throughout only tα,r. We
hope the context will always make clear what we are referring to.

We recall that the ordinary procedure to calculate the partition function consists of three
steps [23],[24],[25]: (i) one integrates out the angular part so that only the integrations over the
eigenvalues are left; (ii) one introduces the orthogonal monic polynomials

ξn(λ1) = λn
1 + lower powers, ηn(λ2) = λn

2 + lower powers, n = 0, 1, 2, . . .
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which satisfy the orthogonality relations

∫
dλ1dλ2ξn(λ1)e

V1(λ1)+V2(λ2)+cλ1λ2ηm(λ2) = hn(t, c)δnm (3.6)

(iii), using the orthogonality relation (3.6) and the properties of the Vandermonde determinants,
one can easily calculate the partition function

ZN (t, c) = const N !
N−1∏

i=0

hi (3.7)

whereby we see that knowing the partition function amounts to knowing the coefficients hn(t, c).
The crucial point is that the information concerning the latter can be encoded in the flow equa-
tions of the Toda lattice hierarchy and the quantum equations of motion. Before coming to this,
let us introduce some convenient notations. In the sequel we will meet infinite matrices Mij with
0 ≤ i, j < ∞. For any such matrix M , we define

M = H−1MH, Hij = hiδij , M̃ij = Mji

We represent such matrices in the lower right quadrant of the (i, j) plane. They all have a band
structure, with nonzero elements belonging to a band of lines parallel to the main descending
diagonal. We will write M ∈ [m,n], if all its non–zero lines are between the m–th and the
n–th ones, setting m = 0 for the main diagonal. We refer to such types of band matrices as
Jacobi matrices. Moreover M+ will denote the upper triangular part of M (including the main
diagonal), while M− = M − M+.

Let us come now to the quantum equations of motion. They are written as

P ◦(1) + V ′
1(Q(1)) + cQ(2) = 0, cQ(1) + V ′

2(Q(2)) + P̃◦(2) = 0, (3.8)

In these equations Q(1), Q(2), P ◦(1), P ◦(2) are infinite Jacobi matrices. They represent the
multiplication by λ1, λ2 and the derivative by the same parameters, respectively, in the basis of
monic polynomials. Eqs.(3.8) can be considered the quantum analog of the classical equations
of motion. The difference with the classical equations of motion of the original matrix model is
that, instead of the N × N matrices M1 and M2, here we have infinite Q(1) and Q(2) matrices
together with the quantum deformation terms given by P ◦(1) and P̃◦(2), respectively. From the
coupling conditions it follows at once that

Q(α) ∈ [−mα, nα], α = 1, 2

where

m1 = p2 − 1, m2 = 1 n1 = 1, n2 = p1 − 1

where pα, α = 1, 2 is the highest order of the potential Vα (see (3.2)).
The flow equations of the Toda lattice hierarchy are

∂

∂tα,k
Q(1) = [Q(1), Qk(α)−], α = 1, 2 (3.9a)

∂

∂tα,k
Q(2) = [Qk(α)+, Q(2)] (3.9b)
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Finally one must use the reconstruction formula for the partition function

∂

∂tα,r
lnZN (t, c) =

N−1∑

i=0

(
Qr(α)

)
ii
, α = 1, 2 (3.10)

It is evident that, by using the equations (3.9a,3.9b) above we can express all the derivatives of
ZN in terms of the elements of the Q matrices. For example

∂2

∂t1,1∂tα,r
lnZN (t, c) =

(
Qr(α)

)
N,N−1

, α = 1, 2 (3.11)

and so on. We recall that the derivatives of F (N, t, c) = lnZN (t, c) at tα,r = t̄α,r are nothing but
the correlation functions of the model.

To end this section, we collect a few formulas we will need later on. First, we will be using
the following parametrization of the Jacobi matrices

Q(1) = I+ +
∑

i

m1∑

l=0

al(i)Ei,i−l, Q̃(2) = I+ +
∑

i

m2∑

l=0

bl(i)Ei,i−l (3.12)

where I+ =
∑

i=0 Ei,i+1 and (Ei,j)k,l = δi,kδj,l. One can immediately see that

(
Q+(1)

)
ij
= δj,i+1 + a0(i)δi,j ,

(
Q−(2)

)
ij

= R(i)δj,i−1 (3.13)

where R(i + 1) ≡ hi+1/hi. As a consequence of this parametrization, eq.(3.11) gives in particular
the two important relations

∂2

∂t21,1

F (N, t, c) = a1(N),
∂2

∂t1,1∂t2,1
F (N, t, c) = R(N) (3.14)

To complete this summary, we should mention the W–constraints method. The latter are
constraints on the partition function which take the form of a nice algebraic structure, see [21, 22]
for instance. They are obtained by putting together quantum equations of motion and flow
equations. W–constraints (which are also called loop equations or Schwinger–Dyson equations)
can be used to solve matrix models, but such a procedure is less efficient than the one used here.

Finally we must recall that the CF’s we compute are genus expanded. The genus expansion
is strictly connected with the homogeneity properties of the CF’s. The contribution pertinent
to any genus is a homogeneous function of the couplings (and N) with respect to appropriate
degrees assigned to all the involved quantities, see [4]. In particular we expect the partition
function to have, in the large N limit, the expansion

F =

∞∑

g=0

N2−2gFg (3.15)

where g is the genus. Such expectation, based on a path integral analysis, remains true in our
setup due to the fact that the homogeneity properties carry over to the Toda lattice hierarchy.
In (3.15) Fg is interpreted as the result of summing the open string partition function at fixed g
over all boundaries. Therefore it is a closed string quantity and the correlators obtained from it
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are closed string correlators, i.e. correlators of the geometrically dual closed strings relative to
the deformed geometry. From matrix models it is however possible to obtain also genuine open
string quantities. To this end we must change expansion. We introduce the string coupling gs

and rescale all couplings in W , so as to extract an overall factor 1/gs out of them. Now the open
string expansion is postulated to be

F =

∞∑

h=0

g2g−2+h
s NhFg,h (3.16)

Fg,h refers to the contribution from a world–sheet of genus g with h boundaries.

4 Solving two–matrix models

Our procedure to solve two–matrix models consists in solving the quantum equations of motion.
This allows us to determine the ‘lattice fields’ ai(n), bi(n) and R(n). Once these are known we
can compute all the correlation functions starting from (3.10) by repeated use of eqs.(3.9a,3.9b),
which form the flows of the Toda lattice hierarchy. As for the free energy F (t,N, c) itself, see
for instance ([21]). In the following we describe some explicit examples of this method. In
reality we will concentrate on solving the equations of motion, since the calculus of correlators
is of algorithmic nature and, therefore, not particularly interesting; in any case, it has already
been illustrated in a number of examples, [22, 21, 4]. The equations of motion are definitely
more interesting, because some aspects of them have not been stressed enough or ignored in the
existing literature. Therefore our purpose is to use some (simple) examples first of all in order to
exemplify our method and compare it with others, in particular with the saddle point method;
second, in order to single out the novelties with respect to the existing literature. Our exposition
will be very close to [4], but with more examples and more details. For other approaches to
matrix models see, for instance, [26] and references therein.

4.1 The Gaussian model

.
The bi-Gaussian model M2,2 was fully solved in [22]. It is a very simple model, but we

further simplify it by considering the decoupling limit c → 0 and keeping only half of couplings,
say tk = t1,k. This operation makes sense and leads to the Gaussian one–matrix model M2.
It allows us to make an explicit comparison of our method and the traditional one based on
eigenvalue density and resolvent.

The quantum equations of motion of the simplified model are, see [22],

t1 + 2t2a0(n) = 0, n + 2t2a1(n) = 0 (4.1)

We can set t1 = 0, because the linear term in the potential can always be gotten rid of with a
matrix redefinition. Therefore we have a0 = 0 and a1 = −n/(2t2) = gsn/N . In the last equality
we have introduced the string coupling gs = −N/(2t2), thus making contact with the notation
of [13] where 1/gs is factored out in front of the potential in the path integral. Since the latter
reference contains a compact review of the Gaussian one–matrix model with the saddle point
method, we refer to it for a comparison. In the large N limit, n/N becomes the continuous
variable x, and so, in this limit, a1(x) = gsx. Now we can easily compute all the correlators. For
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a comparison with [13] we need the one–point functions in genus 0. Following [21] and section
5.5 of [22], we can compute

< τ2k+1 >= 0

< τ2k >=

∫ x

0
L2k

(0)(y) dy =

∫ x

0

(
2k
k

)
gk
s

yk+1

k + 1
dy (4.2)

where L = ζ + a1(x)ζ−1 is the genus 0 continuous version of Q(1), and the label (0) denotes the
coefficient of ζ0. In [13] the resolvent is defined as

ω =
1

N

∞∑

k=0

τk

pk+1
(4.3)

Therefore in the genus 0 case we have∗

ω0 = gs

∞∑

k=0

< τk >0

pk+1
= gs

∞∑

k=0

(2k)!

k!(k + 1)!
g2k
s

x2k+1

pk+1

=
1

u

(
1 −

√
1 − u2

)
=

1

2t

(
p −

√
p2 − 4t

)
(4.4)

which is the result of [13] for the resolvent, provided we set t = xgs and u = 2t
p . From this we

can reconstruct the eigenvalue density

ρ(λ) =
1

2πt

√
4t − λ2

In the saddle point method this leads to introducing an auxiliary hyperelliptic Riemann surface

y2 = p2 − 4t (4.5)

where all data of the model are encoded.
As we see from this elementary example, starting from our formulas above we can reconstruct

all the formulas of the saddle point method. In this case there is no difference between the two
methods.

4.2 The cubic model

The full M3,2 model has been discussed at length in [22] and, in particular, in [4]. Here we would
like to consider its decoupling limit c = 0 and single out the cubic potential part, which amounts
to considering the cubic one–matrix model M3. In the genus 0 limit this model is described by
the discrete algebraic equations

a3
0 +

t2
t3

a2
0 +

2

9

(
t2
t3

)2

a0 −
n

3t3
= 0 (4.6)

a1 = −1

2
a2

0 −
1

3

t2
t3

a0 (4.7)

∗In the continuous limit the couplings get renormalized, tk → t̃k = tk/N and, due to the expansion (3.15), we define
< τk >0=

∂F0

∂t̃k

.
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where, for simplicity and without loss of generality, we have set t1 = 0. One can extract from
these equations a0 and a1 and calculate all the correlators with the algorithm described in the
previous section. Here we are not interested in this, but rather in analyzing eq.(4.6) and its
solutions.

In the large N limit we shift to x = n
N and, in order to make contact with section 4 of [23]

for a comparison, we simplify a bit further our notation setting t2 = −N
2 and t3 = −Ng, where

g is the cubic coupling constant there. Moreover we denote z = 3ga0. Then eq.(4.6) becomes

18g2x + z(1 + z)(1 + 2z) = 0 (4.8)

This can be solved exactly for z and gives the three solutions

z1 = −1

2
+

1

2I(x)
+

I(x)

6
(4.9)

z2 = −1

2
+

1 + i
√

3

4I(x)
+

1 − i
√

3I(x)

12
(4.10)

z3 = −1

2
+

1 − i
√

3

4I(x)
+

1 + i
√

3I(x)

12
(4.11)

where

I(x) = 31/3
(
−324g2x +

√
3
√

−1 + 34992g4x2
)1/3

(4.12)

From these we can extract three solutions for a0 and, consequently, for a1. For small x the three
solutions can be expanded as follows

z1 = −18g2x − 972g4x2 − 93312g6x3 − 11022480g8x4 + O(x5) (4.13)

z2 = −1 − 18g2x + 972g4x2 − 93312g6x3 + 11022480g8x4 + O(x5) (4.14)

z3 = −1

2
+ 36g2x + 186624g6x3 + O(x5). (4.15)

The best way to analyze these solutions is to notice that they represent a plane curve in
the complex z, x plane. It is a genus 0 Riemann surface with punctures at x = 0 and x = ∞,
made of three sheets joined through cuts running from z = −1/(

√
3108g2) to z = 1/(108

√
3g2).

The solutions (4.13,4.14,4.15) correspond to the values z takes near x = 0, away from the cuts.
In order to pass from one solution to another we have to cross the cuts. We call the Riemann
surface so constructed the quantum Riemann surface associated to the model†. This Riemann
surface picture is the clue to understanding the solutions with multiple brane configurations, as
was explained in [4].

Let us analyze the meaning of these three solutions. To this end it is useful to make a
comparison with [23]: we see that the first solution corresponds to the unique solution found
there, which corresponds to the minimum of the classical potential (see below). In fact the
correspondence with [23] can be made more precise: one can easily verify that eqs.(46) there are
nothing but eqs.(4.6,4.7), provided we make the identifications: a + b = a0 and (b − a)2 = 4a1

and the rescalings a0 → √
xa0, a1 → xa1 and g → g/

√
x. In [23] the interval (2a, 2b) represents

a cut in the eigenvalue λ plane. Also in [23], as in the previous subsection, we have therefore an

†In the example of the previous subsection the quantum Riemann surface was just one point.
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auxiliary Riemann surface. The latter is not to be confused with the quantum Riemann surface
defined above, although the two are related.

Let us now discuss the correspondence between our three solutions and the classical extrema
of the potential. The classical potential for the continuous eigenvalue function λ(x) (which is
λn/

√
N in the large N limit), is Vcl = 1

2λ2 + gλ3. It has extrema at λ = 0 and λ = −1/3g. To
find the classical limit in our quantum approach instead, we rescale tk, k = 2, 3 as: tk → tk/~,
and take ~ → 0. This amounts to dropping the last term in eq.(4.6). The extrema are three,
z = 0,−1,−1/2, which corresponds to a0 = 0,−1/3g,−1/6g, not two as in the classical case.
z = 0 corresponds to the minimum of the potential, z = −1 corresponds to the maximum, while
z = −1/2 to the flex. The latter solution does not have a classical analog.

Discussion. Before taking seriously this new quantum solution, we have to check whether
our method of solving the quantum problem has any flaw. Our method consists in solving the
quantum equations of motion (3.8). One might wonder whether there are other independent
conditions beside (3.8) that one must impose on the solutions. Eqs.(3.8) are obtained from
the identity

∫
dλ1dλ2

∂

∂λ1

(
ξn(λ1)e

V1(λ1)+V2(λ2)+cλ1λ2ηm(λ2)
)

= 0 (4.16)

and a similar equation for the derivative with respect to λ2. Of course one has also

∫
dλ1dλ2

∂

∂λ1

(
λk

1ξn(λ1)e
V1(λ1)+V2(λ2)+cλ1λ2ηm(λ2)

)
= 0 (4.17)

for any k. The question is whether these equations imply additional constraints on the solutions
of the quantum equations of motion. However one can easily see that eq.(4.17) can be written
as

Q(1)k (P ◦(1) + V ′
1(Q(1)) + cQ(2)) = 0 (4.18)

Therefore a solution to eqs.(3.8) is automatically a solution to (4.18). Thus these additional
equations (as well as all those that can be obtained by inserting, instead of λk

1 , generic mono-
mials of λ1 and λ2 in (4.17)), cannot further constrain the solutions to (3.8). By the way,
the W–constraints are obtained precisely by taking the trace of all the expressions like (4.18)
and expressing them in terms of derivative of lnZ. Therefore the three quantum solutions we
have found above are also solutions to the W–constraints (or loop equations). Finally, if we
consider higher order derivatives with respect to λ1 in (4.16) instead of the first order one, it
is easy to see that we do not get any additional constraints either.

This result is somewhat puzzling, but we should remember that the saddle point method is
semiclassical: one cannot exclude that the quantum problem admits solution without classical
analog. This is precisely what happens in the present case. One can phrase it also by saying
that, in general, the large N limit and the ~ → 0 limit do not commute.

The next question is: what is the meaning of the third solution, z = −1/2? Let us recall
what the other two solutions at z = 0 and z = −1 mean. On the basis of the discussion in
section 2, we know that they represent two Riemann spheres located at the minimum and the
maximum of the potential. They replace the continuous family of P1 which characterizes the
conifold geometry before the deformation W is introduced. This is the interpretation on the
basis of classical geometry. What we learn now is that solving the quantum problem we obtain
a third solution, which we can interpret as a quantum P

1, located at the flex of the potential.
This is a pure quantum geometry effect.
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Before we end this section we would like to make a few remarks. First we notice that the
classical extrema are characterized by the fact that a1 = 0, while the pure quantum solution
corresponds to a non-vanishing a1. Moreover, after setting a1 = 0 we get for a0 an equation
that coincides with the classical eigenvalue equation. From this simple example we learn three
important pieces of informations.

• The number of solutions of the quantum problem (i.e. the number of solutions to eq.(4.8))
is in general larger than the number of the extrema of the classical potential.

• The field a0 can be regarded as the quantum version of the classical eigenvalue function.

• The classical extrema are obtained by neglecting the n term in eq.(4.6) and setting a1 = 0.

These conclusion are valid in general, except for the fact that, the condition a1 = 0 in the last
remark must be replaced by the fields a1, a2, ..., b1, b2, ..., being set to zero in the general case.

4.3 The M3,3 model

We study the model in the case t1 = s1 = 0 and limit ourselves to writing down the genus 0
quantum equations of motion:

3t3ca
2
0 + 2t2ca0 − 36s3t3b0R + c2b0 − 12s2t3R = 0

3s3cb
2
0 + 2s2cb0 − 36s3t3a0R − 12s3t2R + a0c

2 = 0

nc + Rc2 − 18s3t3R
2 − 36s3t3a0b0R − 12s2t3a0R − 12t2s3b0R − 4s2t2R = 0 (4.19)

a1 = −6s3

c
b0R − 2s2

c
R, a2 = −3s3

c
R2

b1 = −6t3
c

a0R − 2t2
c

R, b2 = −3t3
c

R2

From the previous section we see that we are indeed interested in finding all the solutions that
have an analytic expansion in x = n/N around x = 0. In order to compute all possible solutions
of this type, that is the quantum vacua, we therefore drop the first term in the lhs of (4.19) and
solve the resulting system. The third equation, in particular, admits the solution R = 0.

R = 0 (4.20)

3t3a
2
0 + 2t2a0 + cb0 = 0 (4.21)

3s3b
2
0 + 2s2b0 + ca0 = 0 (4.22)

which give rise to four (in general) distinct solutions. The alternative R 6= 0 leads to

9

2
c
s3t3
s2

a2
0 + 3(

s3t2
s2

c + 8s2t3)a0 + 108 s3t3a0b0 + 54
s362t2

s2
b2
0 + 162

s2
3t3
s2

a0b
2
0

= 3
s3

s2
(c2 − 16s2t2) + c2 − 4s2t2, (4.23)

9

2
c
s3t3
t2

b2
0 + 3(

t3s2

t2
c + 8s3t2)a0 + 108 s3t3a0b0 + 54

s2t
2
3

t2
a2

0 + 162
s3t

2
3

t2
a2

0b0

= 3
t3
t2

(c2 − 16s2t2) + c2 − 4s2t2, (4.24)

This leads to an algebraic equation of order 10 for a0, for instance. Therefore, generically, we
have 10 (possibly complex) solutions for a0, each of which gives rise to two different values for
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b0. Altogether we are going to find 24 different quantum vacua. Once again it is interesting
to compare these solutions with the classical ones. To this end in the above equations we set
a2 = b2 = a1 = b1 = 0 as well as R = 0, from which we get eqs.(4.21,4.22).

From the first we can get b0 = −1
c (3t3a

2
0 + 2t2a0), whence we get either a0 = 0 or the cubic

equation

27s3t
2
3a

3
0 + 36t2s3t3a

2
0 + (12s3t

2
2 − 6cs2t3)a0 + c(c2 − 4s2t2) = 0

Therefore in general we have four classical extrema. In ref.[4] it is shown how to find an explicit
series expansion in x about each of these solutions.

Before we end this section it is interesting to discuss the geometric meaning of the first three
equations in (4.19). We can think of the third equation as a definition of the complex x = n/N
plane. The two remaining ones are quadratic equations in a0, b0, R. Introducing homogeneous
coordinates they can be seen to represent two hypersurfaces in P

3. The intersection is a genus 1
Riemann surface.

4.4 The Mp1,p2
model

In the general case the matrix rank for Q(1) and Q(2) was given above and the quantum EoMs
become of course very complicated. It is however simple to write down the equations that identify
the extrema with classical analog. They are

V ′
1(a0) + cb0 = 0, V ′

2(b0) + ca0 = 0 (4.25)

while all the other fields are set to zero. We have in general (p1 − 1)(p2 − 1) solutions of this
type in perfect correspondence with the classical analysis. The simplest solution is a0 = b0 = 0.
Other solutions may be hard or even impossible to determine explicitly. Anyhow, once one such
solution is known it is possible to find explicit expressions for the fields around it in terms of
x = n/N . The quantum Riemann surface corresponding to this model has the same general
structure as the one discussed at the end of the previous subsection. It is an intersection curve
of two hypersurfaces in P

3. Its genus can be calculated with standard methods in intersection
theory. For instance, the quantum Riemann surface for the M4,3 model is in general genus 2.

5 Topological open string expansions

As we have pointed out in section 3 the matrix formalism allows us to compute both closed and
open string amplitudes. In this final section we would like to show how to obtain the latter. To
avoid clogging the text with cumbersome formulas we work in the M2,2 model. The most explicit
formulas for the latter can be found in [22]. We adapt the results to the present situation by
rescaling all the coupling, such as tk → tk/gs, etc. For instance the exact one point function is

< τr >=

r∑

2l=0

l∑

k=0

r!2−k

(r − 2l)!k!(l − k)!

(
N

l − k + 1

)
gl
sA

lBr−2l (5.1)

where

A =
2s2

c2 − 4s2t2
, B =

2s2t1 − cs1

c2 − 4s2t2
(5.2)
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Now, for large N it makes sense to expand the binomial coefficient in (5.1) in powers of N :

(
N

s + 1

)
=

s∑

p=0

βs−p(s)

(s + 1)!
(−1)p+s Np (5.3)

where

βk(s) =
∑

1≤s1<s2...<sk≤s

s1s2 . . . sk, 1 ≤ k ≤ s, β0(s) = 1, βk(s) = 0 otherwise

As a consequence we get

< τr >=

r∑

2l=0

l∑

k=0

l−k+1∑

p=0

r! 2−k (−1)p+l−k+1

(r − 2l)!k!(l − k)!(l − k + 1)!
βl−k−p+1(l − k)Al Br−2l gl

s Np (5.4)

Setting p = h and l = 2g − 2 + h, we can easily extract the contribution to the correlator from
world–sheets of genus g with h boundaries. This of course requires l − p to be even. But in
(5.4) we have also contributions with odd l − p. We do not have an interpretation for these
additional contributions. They may be perhaps related to the possibility of describing the effect
of punctures.
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