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José F. Morales

Spinoza Institute, Utrecht, The Netherlands, and

Laboratori Nazionali di Frascati

P.O. Box, 00044 Frascati, Italy

E-mail: morales@lnf.infn.it

Alessandro Tanzini

Laboratoire de Physique Théorique et Hautes Energies
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1. Introduction

This year has seen dramatic improvements in our capabilities to handle multi instanton

calculus. This is because powerful localization methods have been applied to these com-

putations.

The use of supersymmetric field theories to compute topological invariants was advo-

cated in [1] and since then much work has been carried out to clarify the formalism and

its applications. In our opinion, all of this work has not cleared a widespread belief that

considered these methods not very relevant for “physical” cases. This paper is about one of

such cases: the computation via path integral methods of non perturbative contributions

due to instantons for Yang-Mills gauge theories with N = 2, 2∗, 4 supersymmetries (SYM).

The computation of non perturbative effects has been the focus of much recent research.

Very often one studies such effects in the framework of string theory or supergravity and,

as a by product, recovers SYM with a low energy limit. Non perturbative results for SYM

thus provide important checks on these constructions like in the case of the AdS/CFT

correspondence.
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Notwithstanding its importance, the problem of extracting non perturbative results

from path integral computations has been not so intensively studied may be because every

little advance has been at the cost of a lot of effort. A short “historical” excursus will

clarify better what we mean.

To a “primordial” era in which the basic techniques were estabilished [2], aiming at

supersymmetry breaking in gauge theories, it followed a period of stasis which was broken

by the analysis of N = 2 SYM carried out in [3]. To check this analysis, a lot of effort

went in the computation of instanton effects for winding numbers, k, larger than one [4, 5].

Unfortunately these efforts were frustrated by the fact that the ADHM constraints can

be solved in an explicit way only for k = 1, 2. Explicit results could then be obtained

only for the above mentioned values of k. At this point it is worth to mention that in

order to compare with the results obtained for the prepotential in [3] there are two main

directions: the first one employed in [4] relied on the computation of correlators which

can be extracted directly from the effective lagrangian and that exhibit a dependence on

the space-time coordinates. The other, followed in [5], was to compute the correlator

u = 〈Trϕ2〉 where ϕ is the complex scalar field of the N = 2 supersymmetric multiplet

and u is the gauge invariant coordinate which describes the auxiliary Seiberg-Witten curve.

Due to supersymmetric Ward identities, 〈Trϕ2〉 is a pure number times a scale to the power

of the naive dimension of the operator computed. The prepotential is then recovered using

the identities of [6]. The advantage of the second approach, in the light of the developments

that have happened since then, is that the computation of the correlator reduce to that of

the partition function of a suitable matrix model defined on the moduli space of instantons,

whose action is generated by the presence of a vev for the scalar field.

Since those early efforts and the most recent developments, there has been two main

advances: on the one hand a measure for the moduli space of the instantons has been pro-

posed which has led to many interesting results and that allows to write correlators without

explicitly solving the constraints (for a complete review see [7]). On the other hand the

agreement between the results of [4, 5], which were obtained in the semiclassical expan-

sion, and those of [3] which did not have this shortcoming, triggered a subset of the present

authors to recompute the correlators formulating the problem in the light of topological

theories for which the semiclassical expansion is exact. In [8] this program was carried

out: the action, after the imposition of the constraint, was written as the BRST variation

of a suitable expression. The BRST charge thus defined squared to zero after properly

taking into account all the symmetries of the theory (see later for more details). The first

part of this program was completed in [9] in which the measure was shown to be BRST

closed. The multi-instanton action, meausure and the entire correlator of interest can then

be written in a BRST exact form as it was shown in [10] for N = 4 and in [11] for N = 2.

We now come to the last part of our story. Already in [8] the use of localization formulae

was advocated in the study of multi instanton calculus. But at that time it was not clear

to the authors how to deal with the singularities of the instanton moduli space and with

its boundaries. In [8], in fact, a formula was given for the correlators as boundary terms

over the moduli spaces of SU(2) instantons but explicit computations could be carried out

only in the k = 1 case.
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In [10] it appeared the proposal to deform the moduli space by minimally resolving the

singularity using the invariance, under certain deformations, of the original BRST exact

theory. Moreover, in the same paper, it was also suggested that the action had its minima

in certain points that could be interpreted as resolved Hilbert schemes [12].1 These ideas

were then coherently applied in [13] in which the author recomputed the k = 1, 2 cases

showing the full applicability of localization techniques to this problem.

There was a last crucial ingredient which was missing and it was provided in [14]: local-

ization techniques are most powerful when the critical points of the action are isolated. In

order to have such isolated points the BRST transformations of the theory must be further

deformed by a rotation in the space-time which, in turn, induces an action on the moduli

space. This action leaves the ADHM constraints invariant. The cohomology of the BRST

operator is thus the same of that of the undeformed theory and it can be used safely if we

find it to be more convenient. This technique has been used widely in the mathematical lit-

erature. It has also appeared in the physics literature, his most notable applications being

the computation of the D-instanton partion function [15] and the study of the role of mo-

mentum maps for supersymmetric theories [16, 17]. This stream of physics literature might

be traced back to the investigations of the possible use of the Duistermaat-Heckman formula

in the context of supersymmetric gauge theories in the two dimensional case [19]. This will

be a particular case of the most general situation we are going to treat in the next section.

At last we come to the content of this paper: we share with [20, 21], the belief that

the ideal setting for these computations is that of equivariant cohomology (see [22] for a

complete review). In the N = 2 case the formulae found in [22] give the correct result

because in this case the number of fermions and bosons are the same, and the fermions

belongs to the tangent space of the bosonic moduli. There is also a way to avoid treating the

constraints, by modifying some computations in [12]; but in the general case these formulae

have to be modified. This is what we do here, by discussing the results that can be obtained

from a proper supersymmetric formulation of the localization formulae for equivariant forms

along the lines of [9]. Full details on this extension will appear elsewhere [23].

This is the plan of the paper: in the next section we carefully define and explain

the objects which will enter the localization formula in the case of the bosonic theory.

We keep the discussion as elementary as possible giving examples each time we introduce

new objects. In the third and last section we first identify the objects introduced in the

previous section as the building blocks of supersymmetric gauge theories. We then compute

the N = 2, 2∗, 4 cases. For the sake of clarity we have decided to relegate mathematical

considerations and comparisons with previous literature to the appendices.

2. Preliminaries

2.1 The ADHM data

The moduli space of self-dual solutions of U(N) YM-equations in four dimensions is ele-

gantly described by a 4kN -dimensional hypersurface embedded in a 4kN+4k2-dimensional

1Sometimes, in some physics literature, they are called improperly “U(1) instantons”. We prefer the

definition appearing in the mathematical literature.
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ambient space via ADHM constraints. In the case of supersymmetric gauge theories the

ADHM data are supplemented with fermionic moduli associated to zero modes of the

gaugino field. The multi-instanton action is defined by plugging in the SYM lagrangian

the bosonic and fermionic zero modes in terms of ADHM moduli and imposing the ADHM

constraints via lagrangian multipliers.

There is a quick way to perform all of these steps at once and it is to use the corre-

sponding D-brane description. The ADHM action for N = 4 can be extracted from the low

energy dynamics of a system of k D(−1) and N D3-branes moving in flat space [28]–[31],

the moduli of the four dimensional supersymmetric theory being the massless excitations of

the open strings stretching between various branes. The complete ADHM lagrangian can,

in fact, also be derived from the computation of disks amplitudes in string theory [26, 27].

This results into a zero-dimensional quantum theory of matrices, some transforming in

the adjoint of U(k) and others in the bifundamental of U(N)×U(k). Less supersymmetric

multi-instanton actions are then found via suitable projections of the original N = 4 theory

(see below for details).

Let us start by describing the N = 4 ADHM data [10, 25]. The position of k D(−1)-
instantons in ten-dimensional space can be described by five complex fields B`, φ with

` = 1, ..4. For latter convenience we have distinguished one of the complex planes and

denoted it by φ. In addition open strings stretching between D(−1)-D3 branes provide

two extra complex moduli I, J in the (k̄, N) and (N̄ , k) bifundamental representations

respectively of U(k) × U(N). The U(N) group, together with the SO(4) × SO(6) Lorentz

group preserved by the D(−1)-D3 system, act as the group of global isometries of the

U(k) zero-dimensional quantum theory living in the D(−1)-worldvolume. Supersymmetry

requires bosonic moduli to be paired with fermionic ones. Bosonic ADHM moduli in

the adjoint of U(k) come together with sixteen fermionic components (χv , η,M`,M̄`),

v = 1, . . . , 7, ` = 1 . . . , 4, coming from the reduction under a subgroup SO(2)× SO(7) [32]

of a single Majorana-Weyl fermion in D = 10 down to zero dimensions. Again the splitting

of the fermionic fields in 7 + 1 real and 4 complex components is a matter of convenience.

On the other hand fermionic excitations of D(−1)-D3 open strings provide two pairs

(µI , µK), (µJ , µL) of complex fields in the (k̄, N) and (N̄ , k) bifundamental representations

respectively.

The last ingredient in the construction of the instanton moduli space is the ADHM

constraints. ADHM constraints can be efficiently implemented by lagrangian multipliers.

For this purpose it is convenient to introduce the auxiliary fields K,L,HR,Hr with r =

1, 2, 3. To the adjoint auxiliary fields HR,Hr we associate respectively one real and three

complex functions

Eadj
R =

[

B`, B
†
`

]

+ II† − J †J − ζ ,

Eadj
1 = [B1, B2] +

[

B†3, B
†
4

]

+ IJ ,

Eadj
2 = [B1, B3]−

[

B†2, B
†
4

]

,

Eadj
3 = [B1, B4] +

[

B†2, B
†
3

]

, (2.1)
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and to the fundamental auxiliary fields (K,L) the two complex functions

E fun
K = B3I −B†4J†

E fun
L† = B4I +B†3J

† . (2.2)

As we will see in the next section, after reduction to N = 2, (2.1) will reduce to the

familiar ADHM constraints. For greater generality we have added a non commutativ-

ity parameter ζ to minimally resolve the small instantons singularities of the moduli

space. In the following we will collect the 3 complex and 1 real adjoint components

in (2.1) in the seven-vector Eadj
v , v = 1, . . . , 7, and denote the associated auxiliary fields as

χv,Hv.

The ADHM data just described can be nicely organized in multiplets of a BRST

current Q [10].2 Q is a BRST current in the sense that it squares to zero up to a U(k)

gauge transformation on the moduli space. We will need a slight modification of this BRST

charge, in which the U(k) group action is combined with an element of a U(1)N−1 ×U(1)3

subgroup in the SU(N)× SO(4)× SO(6) global symmetry group of the D(−1)-D3 system.

This choice is dictated by the requirement that the BRST charge closes up to a group action

with isolated critical points. As firstly appreciated in [14] this allows to reduce integrals in

the ADHM moduli space to a sum over critical points. In the next subsection we will state

our main localization formula for group actions meeting this basic requirement. The reader

interested in a deeper understanding of the discussion in this section and the connection

with previous results in [8, 25] is referred to the appendix B.

We denote the new BRST charge by Qε and parametrize an element in T = U(1)N−1×
U(1)3 by aλ, ε1, ε2,m with λ = 1, . . . , N and

∑

aλ = 0. The U(1)ε1,2 ’s are inside the

SO(4) Lorentz group while U(1)m is chosen in SO(6). The m-deformation breaks the

SO(6) ∼ SU(4) R-symmetry group of N = 4 down to the SU(2) × U(1) R-symmetry

group of N = 2. The N = 4 adjoint vector multiplet decomposes into a vector and an

hypermultiplet of N = 2. Later we will identify the parameter m with the mass of the

hypermultiplet. Keeping this identification in mind we call the deformed N = 4 theory

as N = 2∗. Pure N = 2 SYM theory can instead be defined by a Z2-projection with

Z2 ⊂ U(1)m.

Given all of this, the deformed N = 2∗ multi-instanton action can be written as the

Qε-exact form [10]:

SN=2∗ = QεTr

[

1

4
η
[

φ, φ̄
]

+ ~H · ~χ− i~E · ~χ− 1

2

6
∑

s=1

(

Ψ†s(φ̄+ λs) · Bs +Ψs(φ̄+ λs) · B†s
)

]

(2.3)

with Bs = (I, J †, B`), Ψs = (µI , µ
†
J ,M`), ~χ = (µK , µL† , χv), ~H = (K,L†,Hv) and ~E =

(E fun
K , E fun

L† , Eadj
v ). The convention for the vector product is ~χ · ~H ≡ 1

2χRHR +χ†rHr +χrH
†
r ,

while φ · Bs = [φ,Bs] or φ · Bs = φBs depending or whether Bs is in the U(k) adjoint or

fundamental representation respectively .

2See [8, 11] for the N = 2 case
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The BRST transformations are given by:

QεI = µI QεµI = φI − Ia
QεJ = µJ QεµJ = −Jφ+ aJ + εJ

QεµK = K QεK = φµK − µKa−mµK

QεµL = L QεL = −µLφ+ aµL + (ε−m)µL ,

QεB` = M` QεM` = [φ,B`] + λ`B`

Qεχv = Hv QεHv = [φ, χv] + λvχv

Qεφ̄ = η Qεη =
[

φ, φ̄
]

Qεφ = 0 , (2.4)

with ε = ε1 + ε2, φ ∈ U(k) and

a = diag
(

eia1 , eia2 , . . . eiaN
)

λs = (λI , λJ† ;λ`) = (0,−ε; ε1, ε2,−m,m− ε)
λv = (λR;λr) = (0; ε, ε1 −m,m− ε2) . (2.5)

The group assigments in the right-hand side of (2.4) are determined by the requirement that

auxiliary fields associated to (2.1) transform covariantly under the U(k)× SU(N)×U(1)3

transformations:

I → gU(k) I g
†
U(N)

J → eiε gU(N) J g
†
U(k)

K → e−im gU(k)K g†U(N)

L → ei(m−ε) gU(N) Lg
†
U(k)

B` → eiλ` gU(k)B` g
†
U(k)

Hv → eiλv gU(k)Hv g
†
U(k)

(2.6)

with λ`, λv given by (2.5) and similar expressions for the fermionic superpartners.

2.2 Equivariant forms and the localization formula

Let M be an n-dimensional manifold acted on by a Lie group G with Lie algebra g. For

every ξ ∈ g we denote by ξ∗ the fundamental vector field associated with ξ, i.e., the vector

field that generates the one-parameter group etξ of transformations of M . Locally one has

ξ∗ = ξα T i
α

∂

∂xi

where the ξα are the components of ξ in some chosen basis of g, and the T i
α are functions

(the generators of the action).

– 6 –
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Let α : g→ Ω(M) a polynomial map from g to the algebra of differential forms on M .

α may be regarded as an element of C[g]⊗Ω(M) with C[g] the algebra of complex-valued

polynomials on g. We define a grading in C[g]⊗Ω(M) by letting, for homogeneous P ∈ C[g]

and β ∈ Ω(M),

deg(P ⊗ β) = 2 deg(P ) + deg(β) . (2.7)

The action of the group G on an element α ∈ C[g]⊗ Ω(M) is defined to be

(g · α)(ξ) = g∗(α(Adg−1ξ)) (2.8)

where g∗ denotes the pullback of forms with respect to the map g:M → M . Elements α

such that g ·α = α are called G-equivariant forms. The equivariant differential D is defined

by letting

(Dα)(ξ) = d(α(ξ)) − iξ∗α(ξ) (2.9)

where iξ∗ is the inner product by the vector field ξ∗.

As an example let us take G = O(2), M = R2 − {0} with the standard action of G,

and

α(ξ) = ξrdθ

(we write the matrices in the Lie algebra so(2) as
( 0 ξ
−ξ 0

)

). Explicit computation shows that

α is equivariant. Since

ξ∗ = 2ξ
∂

∂θ
(2.10)

one has

(Dα)(ξ) = d(α(ξ)) − iξ∗α(ξ) = −ξdr ∧ dθ − ξr2 . (2.11)

In the first term on the r.h.s. of (2.11) the degree of the one-form α(ξ) has been raised

by one unit, while in the second term it has been lowered by one unit. But in this very

term the degree of the polynomial in C[g] has been raised by one and therefore according

to (2.7) the total degree is raised by one unit, as we expect from a derivation.

Acting twice on a G-equivariant form α one finds:

(

D2α
)

(ξ) = (d− iξ∗)2α(ξ) = −(diξ∗ + iξ∗d)α(ξ) = −Lξ∗α(ξ) = 0 (2.12)

since α is equivariant. The space of equivariant differential forms with this differential,

graded with the degree (2.7), is a differential complex; its cohomology is called the G-

equivariant cohomology of M .

We shall denoted by αi(ξ) the homogeneous component of degree i of the differential

form α(ξ). The condition that α is equivariantly closed, Dα = 0, implies that αn(ξ) (with

n = dimM) is exact outside of the set M0 of zeros of ξ∗ [22], suggesting that the integral
∫

M α(ξ) reduces to an integral over M0. This is the content of the localization formula

below.

Let now x0 be a zero of ξ∗. We introduce a map Lx0 : Tx0M → Tx0M defined as

Lx0(v) = [ξ∗, v] = −ξα vi
(

∂T j
α

∂xi

)

x0

∂

∂xj
, (2.13)
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(which makes sense because at the critical points the components of the fundamental vector

field vanish, ξαT i
α(x0) = 0).

In particular cases Lx0 can be interpreted as a Hessian; this is the case of Morse theory.

But a Hessian is defined given a certain reference function to be derived twice. On the

contrary Lx0 is known once we know the group action. The reader should keep this in

mind since this is a fact which will be of great relevance in the next section.

Given all of this, assuming that both M , G are compact, α equivariantly closed, and

that ξ ∈ g is such that the vector field ξ∗ has only isolated zeroes, we can state the

localization theorem3
∫

M
α(ξ) = (−2π)n/2

∑

x0

α0(ξ)(x0)

det
1
2 Lx0

. (2.14)

By α0(ξ) we mean the part of α(ξ) which is a zero-form.

There is a nice supersymmetric formulation of this equation. A complete proof of

this result will be presented in [23], here we just state the result. Let M be a (n, n)-

dimensional supermanifold, defined in such a way that the superfunctions on M are (non-

homogeneous) differential forms. This condition in particular implies a splitting Tx0M =

Tx0M ⊕ Tx0M , and one can introduce a (odd) linear transformation Π:Tx0M → Tx0M

defined by exchanging the two copies of Tx0M . If (xi) is a local coordinate chart on M ,

and (θj) a local basis of differential 1-forms, then (xi, θj) is a local coordinate chart on the

supermanifold M.

The group G acts naturally on M, extending the action on M . For every ξ ∈ g one

has an even supervector field on M,

ξ̂∗ = ξα T i
α

∂

∂xi
+ ξα θj

∂T i
α

∂xj
∂

∂θi
. (2.15)

One can also introduce an odd vector field Q∗ on M, defined as

Q∗ = θi
∂

∂xi
+ ξα T i

α

∂

∂θi
. (2.16)

A simple computation shows that the anticommutator of Q∗ with itself is twice the generator

ξ̂∗:
1

2
{Q∗, Q∗} = ξ̂∗ .

The vector field Q∗ here may be regarded as the infinitesimal generator of the BRST

transformations.

The localization formula can now be stated as follows
∫

M
α(ξ) = (−2π)n2

∑

x0

α0(ξ)(x0)

|Sdet′ Lx0 |
1
2

, (2.17)

where now Lx0 : Tx0M→ Tx0M is given by Lx0 = [Q∗, v], and the operator Sdet′ is defined

as Sdet ◦ Π. With this provision, from now on each time we write the superdeterminant

we intend it to be primed.

3The interested reader can consult [22] for a proof.
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3. Applications to supersymmetric gauge theories

From (2.3) we conclude that the N = 4 multi-instanton action and their descendants upon

mass deformation, N = 2∗, or orbifold projection, N = 2, are equivariantly exact forms.

Together with the U(k)×U(N)×U(1)3-invariance this implies that they are equivariantly

closed. We can thus apply the localization techniques explained in the previous section

to compute the multi-instanton partition function for all these theories. The appendix B

collect some background material that can help for a deeper understanding of the results

presented in this section.

3.1 N = 2 supersymmetric theories with gauge group SU(N)

We start discussing the case ofN = 2 gauge theories withNF fundamental hypermultiplets.

Let us first recall the content of the N = 2 ADHM data in the pure N = 2 case NF = 0.

Pure N = 2 SYM theory can be obtained by placing a stack of N fractional D3-branes

at a R4/Z2 singularity. The ADHM instanton moduli space can then be described by

implementing the Z2-projection on the D(−1)-D3 system describing the N = 4 parent

theory [11]. The net effect of such operation is to break the SU(4) R-symmetry group of the

N = 4 theory down to SU(2)Ȧ ×U(1)R, where SU(2)Ȧ is the N = 2 automorphism group

and U(1)R the anomalous R charge. Choosing a Z2 ⊂ U(1)m, the projection corresponds

to set to zero all the fields charged under U(1)m in (2.6)

B3 = B4 = K = L = H2 = H3 = 0 (3.1)

together with their fermionic superpartners. The field content is thus reduced to B ŝ =

(I, J †, Bˆ̀), Ψŝ = (µI , µ
†
J ,Mˆ̀), with ŝ = 1, . . . , 4, ˆ̀ = 1, 2, and ~χ = χv̂ and ~H = Hv̂ with

v̂ = 1, 2, 3.

The N = 2 multi-instanton action is then obtained from (2.3) by simply replacing s, v

with ŝ, v̂

SN=2 = Qε Tr

[

1

4
η
[

φ, φ̄
]

+ ~H · ~χ− i~E · ~χ− 1

2

4
∑

ŝ=1

(

Ψ†ŝ
(

φ̄+ λŝ
)

· Bŝ +Ψŝ

(

φ̄+ λŝ
)

·B†ŝ
)

]

(3.2)

In particular the surviving equations in (2.1) reproduce the familiar ADHM constraints:

ER =
[

B1, B
†
1

]

+
[

B2, B
†
2

]

+ II† − J †J − ζ = 0

EC = [B1, B2] + IJ = 0 . (3.3)

The presence in (3.3) of the non commutativity parameter ζ allows to minimally resolve

the orbifold singularities of the moduli space. The action (3.2) is invariant under

QεI = µI QεµI = φI − Ia
QεJ = µJ QεµJ = −Jφ+ aJ + εJ

QεBˆ̀ = Mˆ̀ QεMˆ̀ = [φ,B ˆ̀] + ε ˆ̀Bˆ̀

Qεχv̂ = Hv̂ QεHv̂ = [φ, χv̂] + λv̂χv̂

Qεφ̄ = η Qεη =
[

φ, φ̄
]

Qεφ = 0 . (3.4)

with ˆ̀= 1, 2 and λv̂ = (λR, λC) = (0, ε).
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We would like now to apply the localization formula (2.17) to compute the partition

function in the multi-instanton moduli space described by the bosonic B = (I, J,B ˆ̀,Hv̂, φ̄)

and fermionic F = (µI , µJ ,Mˆ̀, χv̂, η) variables.

To this end we start by introducing the vector field Q∗ generating the BRST transfor-

mations on the supermanifold and discussing the critical points of its action. From (3.4)

we get

Q∗ = µI
∂

∂I
+ µJ

∂

∂J
+Mˆ̀

∂

∂Bˆ̀
+Hv̂

∂

∂χv̂
+ η

∂

∂φ̄
+ ([φ, χv̂ ] + λv̂χv̂)

∂

∂Hv̂
+

+[φ, φ̄]
∂

∂η
+ (φ− a)I ∂

∂µI
+ (−φ+ a+ ε)J

∂

∂µJ
+ ([φ,B ˆ̀] + ε ˆ̀Bˆ̀)

∂

∂Mˆ̀

= (Q∗)iB
∂

∂Bi
+ (Q∗)iF

∂

∂F i
, (3.5)

The critical points Q∗ = 0 are given by setting to zero the components in (3.5)

(ϕIJ + ε`)B
`
IJ = 0

(ϕI − aλ) IIλ = 0

(−ϕI + aλ + ε) JλI = 0 (3.6)

with Hv̂ and all fermions set to zero. Hv̂ = 0 implements the ADHM constraints (3.3).

Equations (3.6) were solved in [14]. Each critical point is associated to a set of N Young

Tableaux (Y1, . . . YN ) with k =
∑

λ kλ boxes distributed between the Yλ’s. The boxes

in a Yλ diagram are labeled either by the instanton index Iλ = 1, . . . , kλ or by the pair

of integers iλ, jλ denoting the vertical and horizontal position respectively in the Young

diagram. We denote by νiλ , ν
′
jλ

the length of the iλ-th row and jλ-th column respectively.

The solution can then be written as:

ϕIλ = ϕiλjλ = aλ − (jλ − 1)ε1 − (iλ − 1)ε2 (3.7)

and J = B` = I = 0 except for the components B1
(iλjλ+1),(iλjλ), B

2
(iλ+1jλ),(iλjλ), Iλ,(iλ=jλ=1).

These apparent moduli correspond to the zero eigenvalues in the left hand side of (3.6).

They are however eliminated by the ADHM constraints (3.3). This can be seen as follows:

at the critical points

EC = [B1, B2] = 0 (3.8)

is non-trivial only when the box labelled by the pair (iλjλ) has a neighbor both on its left

and its down direction. These equations can then be used to determine, for example the

corresponding components of B2. This leaves ν1λ − 1 undetermined components for B2.

In addition we have kλ − ν1λ non-trivial B1 components and one component for I. All

together this leaves k components which are fixed by the diagonal components of the real

constraint

ER =
[

B1, B
†
1

]

+
[

B2, B
†
2

]

+ II† − ζ = 0 . (3.9)

We conclude that critical points of the U(1)k×U(1)N−1×U(1)2 action are isolated. We are

now ready to apply the localization formula. As in [14] we can use the U(k)-invariance to
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write the Qε-unpaired field φ as φIJ = ϕI−ϕJ in terms of k ϕI phases. The jacobian of this

change of variables brings the so called Vandermonde determinant
∏

I<J ϕ
2
IJ . According

to our localization formula (2.17), we find

Zk =

∫ Dφ
U(k)

DBDFe−S =

∫ k
∏

I=1

dϕI

∏

I<J ϕ
2
IJ

SdetL ≡
∑

x0

1

S det
L̂x0 , (3.10)

having used the fact that the action SN=2 vanishes on the critical points, thus α0(ξ)(x0) =

1. The superdeterminant4 is defined by

SdetL = S det

(

∂(Q∗)iB
∂Fj

∂(Q∗)iB
∂Bj

∂(Q∗)iF
∂Fj

∂(Q∗)iF
∂Bj

)

. (3.11)

Plugging (3.11) in (3.10) one recovers (3.10) in [14] where the integral is computed in the

complex plane with poles at the critical points (3.7). The explicit form of the residue

formula obtained in this way is however difficult to handle. In the following we shall adopt

the approach of [20]5 that generalize to U(N) the analysis performed by Nakajima [12] in

the study of resolved Hilbert schemes. Following [20] we start by computing the character

χ ≡ ∑i(−)F eiλi , where the λi’s are the eigenvalues of Lx0 and (−)F = ±1 according to

the gradation given by (3.5).

As we will see the resulting character χ can be reduced via algebraic manipulations

to a sum over 2kN eigenvalues. The determinant is then found by replacing the sum by a

product over the 2kN eigenvalues.

Notice that the extension of the localization formula to the superspace allows to easily

handle the linearized ADHM constraints by introducing the fermionic “ghost” variables

(χR, χC). As we will shortly see, in the computation one can in fact nicely recognize

the cancellations between bosonic and fermionic contributions that mimics the reduction

via ADHM contraints to the 2kN -dimensional moduli space (see appendix C for details).

This is a general feature of the superspace approach, not necessarily linked to space-time

supersymmetry.

Let us introduce the generators T` = eiε` , Taλ = eiaλ for elements in U(1)N−1 ×U(1)2.

In addition we write V = eiϕI with ϕI given by (3.6). The Supertrace of L̂x0 at the critical

point (3.6) can be written (see appendix C for a more detailed explanation) as

χ = V ∗ × V × [T1 + T2 − T1T2 − 1] +W ∗ × V + V ∗ ×W × T1T2 (3.12)

with

V =

N
∑

λ=1

ν1λ
∑

jλ=1

ν′jλ
∑

iλ=1

T−jλ+1
1 T−iλ+1

2 Taλ =

N
∑

λ=1

ν′1λ
∑

iλ=1

νiλ
∑

jλ=1

T−jλ+1
1 T−iλ+1

2 Taλ ,

W =

n
∑

λ=1

Taλ . (3.13)

4Since our ADHM variables are complex, our tangent space is complex too and the determinant to the

inverse of the square root becomes simply the inverse of the determinant in the localization formulae.
5We thank R. Flume and R. Poghossian for detailed explanations of their work.
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The sum in V run over I = 1, . . . , k distributed between the Young tableaux Yλ’s. The

first three terms between brackets in (3.12) come from the U(k) adjoint fields B1, B2, χC
in (3.4). The −1 inside the bracket comes from the Vandermonde determinant. The last

two terms are associated to the I †, J† bifundamentals respectively. After a long but straight

algebra (see [12] for details) one finds [21]:

χ =
N
∑

λ,λ̃

∑

s∈Yj

(

Ta
λλ̃
T
−h(s)
1 T

v(s)+1
2 + Ta

λ̃λ
T

h(s)+1
1 T

−v(s)
2

)

(3.14)

with

h(s) = νiλ − jλ v(s) = ν̃ ′jλ − iλ . (3.15)

Notice that ν̃ ′jλ is defined only for jλ ≤ ν̃1λ . For jλ > ν̃1λ we take ν̃ ′jλ = 0. h(s) (v(s)) is

the number of black (white) circles in figure1.

The sum in (3.14) runs over 2kN eigenvalues, the ν̃ ′1 ν̃ ′2 . . . . . . . . . ν̃ ′6

ν1

ν2

...

...

ν5

ν ′1 ν ′2 . . . ν ′4

ν̃1

ν̃2

...

...

...

...

ν̃7

◦
◦
◦
◦
s • •

Figure 1: Two generic Young di-

agrams denoted by the indices λ, λ̃

in the main text.

complex dimension of the moduli space. Moreover for

generic aλ, ε1, ε2 there are no zero eigenvalues in (3.14),

since for λ = λ̃, the quantities h(s), v(s) are non-nega-

tive. Cancellations of zero eigenvalues in (3.12) can be

traced to the term V ∗ × V × (T1 − 1)(1 − T2). Zero

eigenvalues are associated to the non-zero components of

B1, B2, I which we have discussed above. Roughly the

factor (T1 − 1) takes care of the cancellations connected

to the B1 components (horizontal neighbors) and (1−T2)

does the same for B2 (vertical neighbors) in the sum in

V ∗×V ×(T1−1)(1−T2). As anticipated, this mimics the

reduction via ADHM constraints, since the negative con-

tributions inside the brackets −T1T2−1 can be associated

to the fermionic ADHM constraints implemented by χC, χR and to the U(k) invariance.

Replacing the sum by a product over the eigenvalues we finally find:

Zk =
∑

x0

1

SdetL̂x0

=
∑

{Yλ}

N
∏

λ,λ̃

∏

s∈Yλ

1

E(s)(E(s)− ε) (3.16)

with

E(s) = aλλ̃ − ε1h(s) + ε2(v(s) + 1) . (3.17)

3.2 N = 2 supersymmetric theories with fundamental matter

In the presence of NF fundamental hypermultiplets, the multi-instanton action gets a new

contribution which can be written as [11]

Shyp = −Qε Tr
[

h†fKf +K†fhf
]

, (3.18)
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where (Kf , hf ), f = 1, . . . , NF represent respectively the fermionic collective coordinates for

the matter fields and their bosonic auxiliary variables. They are all matrices transforming

in the (k̄, NF ) representation of the U(k) × U(NF ) group.6 From the brane-engineering

point of view, (Kf , hf ) are the massless excitation modes of open strings stretching between

k D(−1) and NF D7 fractional branes.

The BRST transformations of these fields are given by

QεKf = hf Qεhf = φKf +mfKf ,

QεK†f = h†f Qεh
†
f = −K†fφ−mfK†f , (3.19)

mf being the mass of the f -th flavour. The vector field Q∗ generating the above Qε action

in the supermoduli space is given by

Q∗ = hf
∂

∂Kf
+ (φ+mf )Kf

∂

∂hf
, (3.20)

which has to be added to the vector field (3.5) for the pure N = 2 theory. The critical

points are still given by (3.6), since the new components (3.20) of the vector field are set

to zero simply by imposing hf = 0. From (3.20) it follows that the contribution of each

flavour f to the supertrace is simply

δχ = −Tmf
× V = −

N
∑

λ

∑

s∈Yλ

TaλT
−jλ+1
1 T−iλ+1

2 Tmf
, (3.21)

with Tmf
= eimf an element of the maximal torus U(1)NF ⊂ U(NF ). Taking into account

the contribution of the NF hypermultiplets, (3.16) becomes then

Zk =
∑

{Yλ}

N
∏

λ,λ̃

∏

s∈Yλ

F (s)

E(s)(E(s) − ε) , (3.22)

where we defined

F (s) =

NF
∏

f=1

(ϕ(s) +mf ) , (3.23)

with ϕ(s) = ϕiλjλ given by (3.7).

3.3 N = 2∗ supersymmetric theories with gauge group SU(N)

Our techniques in the previous subsections can be straightforwardly extended to theN = 2∗

case. As we mentioned before, one can identify the parameter m in U(1)m with the mass

of the N = 2 hypermultiplet. Notice that this identification was already implicit in our

N = 2 analysis above since the fields projected out in the reduction N = 4 → N = 2 are

precisely those charged under U(1)m.

6We explicit the flavour index f for convenience.
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The action of the BRST operatore, Q∗, is now given by:

Q∗ = µI
∂

∂I
+ µJ

∂

∂J
+K

∂

∂µK
+ L

∂

∂µL
+M`

∂

∂B`
+Hv

∂

∂χv
+ η

∂

∂φ̄
+ (φ− a)I ∂

∂µI
+

+(−φ+ a+ ε)J
∂

∂µJ
+ (φ− a−m)µK

∂

∂K
+ (−φ+ a+ ε−m)µL

∂

∂L
+

+([φ,B`] + λ`B`)
∂

∂M`
+ ([φ, χv ] + λvχv)

∂

∂Hv
+ [φ, φ̄]

∂

∂η
. (3.24)

The critical points are again given by (3.7) since for genericm the condition Q∗ = 0 requires

B3 = B4 = Hv = 0. Reading from (3.24) the spectrum of eigenvalues we find:

χ =
(

1− T−1
m

)

[V ∗ × V × (T1 + T2 − T1T2 − 1) +W ∗ × V + V ∗ ×W × T1T2] (3.25)

Remarkably the contributions of massive fields match that of the N = 2 in (3.12) but with

eigenvalues shifted by −m. The final result can then be written as7

Zk =

∫ k
∏

I=1

dϕI

∏

I<J ϕ
2
IJ

SdetL =
∑

x0

1

SdetL̂x0

=
∑

{Yλ}

N
∏

λ,λ̃=1

∏

s∈Yλ

(E(s)−m)(E(s) − ε+m)

E(s)(E(s) − ε) .

(3.26)

Notice that now the superdeterminant reduce to a product over 2kN bosonic and 2kN

fermionic factors. Moreover, as in the N = 2 case, the superdeterminant is non-trivial due

to the cancellation of zero eigenvalues between bosons and fermions.

3.3.1 Some explicit examples: k = 1, 2

Here, for the sake of completeness, we explicitly evaluate formula (3.26) for k = 1, 2,

recovering the results in [14, 21]. It is useful to introduce the following definitions:

f(x) =
(x−m)(x+m− ε)

x(x− ε) g(x) =
1

x(x− ε)
Tα(x) =

∏

α̃6=α

f(aαα̃ + x) Sα(x) =
∏

α̃ 6=α

g(aαα̃ + x) . (3.27)

In terms of these definitions we can rewrite:

Zk =
∑

{Yλ}

N
∏

λ,λ̃=1

∏

s∈Yλ

f(E(s)) . (3.28)

Let us start by considering the k = 1 case: Yα = ¤, Yβ 6=α = {∅}. From the above

definitions we have v(s) = h(s) = 0 for λ̃ = α while v(s) = −1, h(s) = 0 for λ̃ 6= α.

Summing up over diagrams of this kind one finds

Z1 =
∑

α

f(ε2)Tα(0) (3.29)

For k = 2 we have three diagrams:

7Once again, if we would plug (3.11) in (3.26) one would recover (3.25) in [14].
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I) Yα = ¤, Yβ = ¤, Yγ 6=α,β = {∅}:

ZI
2 =

1

2

∑

α6=β

f(ε2)
2f(aαβ + ε2)f(aβα + ε2)

Tα(0)Tβ(0)

f(aαβ)f(aβα)
(3.30)

The contribution Tα(0)/f(aαβ) comes from the product in (3.26) with λ = α, λ̃ 6= α, β

for which h(s) = 0, v(s) = −1. The term λ, λ̃ = α, β, i.e. h(s) = v(s) = 0 gives f(ε2)

or f(aαβ + ε2) in the case of λ = λ̃ = α and λ = α, λ̃ = β respectively. Similar

contributions come from terms with α↔ β exchanged.

II) Yα = ¤¤, Yα̃6=α = {∅}:

ZII =
∑

α

f(ε2)f(ε2 − ε1)Tα(0)Tα(−ε1) . (3.31)

Now f(ε2)f(ε2 − ε1) comes from the terms in (3.26) with λ = λ̃ = α i.e. v(s) =

0, h(s) = 0, 1, while the product over λ̃ 6= λ = α, v(s) = −1, h(s) = 0, 1 brings the

Tα contributions.

Finally the third diagram is the transposition of the one above and its contribution

can be read from (3.31) by exchanging ε1 ↔ ε2. Setting ε1 = −ε2 = ~ and using the

identification [18, 14]:

Z(a, ε1, ε2) =
∑

k

Zkq
k = exp

(F inst

ε1ε2

)

. (3.32)

one recovers the results in [33]:

F1 = − lim
~→0

~2Z1 = m2
∑

α

Tα

F2 = − lim
~→0

~2

(

Z2 −
1

2
Z2

1

)

=
∑

α

(

1

4
m4TαT

′′

α −
3

2
m2T 2

α

)

+

+m4
∑

α6=β

TαTβ

(

1

a2
αβ

− 1

2(aαβ −m)2
− 1

2(aαβ +m)2

)

(3.33)

with Tα = Tα(0). The N = 2 analog of formulae (3.29), (3.31) can be simply obtained

by replacing f(x), Tα(x) by g(x), Sα(x) respectively given by (3.27). For SU(2), formulae

obtained in this way match those of [20].

3.4 N = 4 supersymmetric theories with gauge group SU(N)

This case can be easily deduced from (3.26) by taking the limit m → 0. This limit gives

L̂x0 = 1, thus applying (2.14) we get

Zk =

∫

M
eS

N=4

=
∑

{k}

1 (3.34)

– 15 –



J
H
E
P
0
5
(
2
0
0
3
)
0
5
4

with {k} the partitions of k. That is the partition function of N = 4 is the sum over

all critical points of the vector field and it gives the Euler characteristic of the moduli

space [22]. This correponds to the N-colored number of partitions of an integer k. Going

now to the generating function we see that

Z =
∑

k≥0

Zkq
k =

∑

k≥0

qk
∑

{kλ}

1 =

∞
∏

n=1

1

(1− qn)N . (3.35)

Defining

F =
∑

k>0

qkFk = lnZ = N
∑

n>0

ln(1− qn) = N
∑

k>0

qk
∑

d|k

1

d
, (3.36)

one finds 8 Fk = N
∑

d|k 1/d. This result was already announced in [10] and motivated

in [35] on the basis of a reasoning coming from string theory: in [26] the effective action of a

single D3 brane of the IIB theory at order α′4 was computed. The coupling is given by the

modular invariant function h(τ, τ̄ ) = ln |τ2η(τ)4|. By computing the generating functional

of the instanton induced contributions to the scattering amplitude on the D3 brane and

comparing with the results of [26], the value of Fk is found. Here the result is recovered

by a direct evaluation of the instanton contributions.

The fact that the result of (3.35) is a function with particular properties under modular

transformations is a very satisfying feature. Multi-instanton calculus exactly reproduces

the important features of mathematical objects which have been studied with very different

techniques.
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A. The momentup map and the Duistermaat-Heckman formula

Assume that M is symplectic, with symplectic form ω, that G acts on M by symplecto-

morphisms (i.e., g∗ω = ω for all g ∈ G), and that this action admits a momentum map

µ:M → g∗. Let α = µ + ω. Here deg(α) = 2, since ω is a two-form and µ is a linear

functional on g, see (2.7). Now,

(g · α)(ξ) = g∗(µ(adg−1ξ)) + g∗ω = µ(ξ) + ω = α(ξ) (A.1)

8A similar computation for the moduli space of instantons of winding number k = 1/2 on a Eguchi-

Hanson manifold was carried out in [34]
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since g acts as a symplectomorphism and µ is a momentum map. By definition, ω is closed

and µ is a function, so that

(Dα)(ξ) = (dα(ξ) − iξ∗α(ξ)) = (d(µ+ ω)− iξ∗(µ+ ω)) = dµ(ξ)− iξ∗ω = 0 . (A.2)

It then follows that α = µ + ω is an equivariantly closed form and the conditions of the

localization formula are met. Plugging in (2.14) we get the Duistermaat-Heckman formula

∫

X
eµ+ω =

∫

X

ωn/2

(n/2)!
eµ = (−2π)n/2

∑

x0

α0(ξ)(x0)

det
1
2 Lx0

. (A.3)

since α0(ξ) = eµ.

Let now specify to our case whereG = U(k)×U(1)N−1×T 2. The condition of vanishing

potential allows to take the Cartan part of the U(N) algebra in G. Given the symplectic

form

ω = dB1 ∧ dB†1 + dB2 ∧ dB†2 + dI ∧ dI† − dJ † ∧ dJ = dx ∧ dx† (A.4)

and the component of the vector field

(Q∗)i = (φI − Ia,−Jφ+ aJ + εJ, [φ,B1] + ε1B1, [φ,B2] + ε2B2) (A.5)

we compute dµ = iQ∗ω = (Q∗)i(dx†)i from which

µ = ([φ,B1] + ε1B1)B
†
1 + ([φ,B2] + ε2B2)B

†
2 + (φI − Ia)I† + J†(−Jφ+ aJ + εJ) . (A.6)

How come that localization formulae with “actions” µ and SN=2 give the same results?

The answer lies in Lx0 . To determine its eigenvalues the only information we need is to

know the components of the vector field Q∗. There is no reference to any action. All the

information is encoded in the BRST transformations.

B. Multi-instanton actions: an overview

Here we collect some background material. Following [25] we decompose the quantum

numbers of the D(−1)-D3 system in terms of the reduced euclidean Lorentz group SO(6)×
SO(4). The ten dimensional spinor and gauge connection are taken as

ψ =

√

π

2

(

0

1

)

⊗
(MA

β

0

)

+

√

π

2

(

1

0

)

⊗
(

0

λ̄A
β̇

)

,

AM = (χa, a
′
n) ,

while the low energy limit of the strings stretched between the k Dp andN D(p+4)-branes is

given by the fields (wα̇, µ
A; w̄α̇, µ̄A). We have denoted by a = 1, . . . , 6 the indices of SO(6),

by A = 1, . . . , 4 those of SU(4) ∼= SO(6) and by α, α̇ = 1, 2 those of SO(4) ∼= SU(2)×SU(2).

The ADHM action of such system is given by [25]

Sk,N =
1

g2
0

SG + SK + SD (B.1)
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with

SG = trk

(

−[χa, χb]
2 +

√
2iπλα̇A

[

χ†AB, λ̄
α̇
B

]

−DcDc
)

SK = −trk
(

[χa, an]
2 − χaw̄

α̇wα̇χa +
√
2iπM′ αA

[

χABM′ B
α

]

− 2
√
2iπχAB µ̄

AµB
)

SD = trk
(

iπ
(

−
[

aαα̇,M′ αA
]

+ µ̄Awα̇ + w̄α̇µ
A
)

λ̄α̇A +Dc (w̄τ cw − iη̄cmn[am, an])
)

(B.2)

To go to an action with a lower number of supersymmetries it is sufficient to repeat the

above construction in the case of fractional branes. A fractional brane lives at orbifold

singularities and its low energy field theory must be invariant under the action of the

discrete group by which we mod the original space-time. The set of invariant fields is clearly

smaller than the original one and the final theory has thus less supersymmetries [11]. To

be consistent with the notation adopted for the ADHM variables in the second section, we

now set9

wα̇ =

(

I†

J

)

,

B1 = −a′0 + ia′3 B2 = −a′2 + ia′1 , (B.3)

B3 =
1√
2
(−χ1 + iχ4) B4 =

1√
2
(−χ2 + iχ5) . (B.4)

φ =
1√
2
(−χ3 + iχ6) φ̄ =

1√
2
(−χ3 − iχ6) . (B.5)

Let’s discuss the N = 2∗ case: the fields in (B.4), together with the fermionic compo-

nents given by A = 3, 4 and some new auxiliary fields (K,L,H2,H3) give rise to the massive

hypermultiplets with bosonic components (K,L,B3, B4,H2,H3) and fermionic components

(µ3, µ4, λ̄α̇3,4,M′ 3,4
α ) . By renaming µ3,4 → µK,L,M′ 3,4

α → χ2,3 and λ̄α̇3,4 →M3,4 we finally

get the fields entering the action (2.3) and transforming as (2.4) with a = ε = 0. Notice that

upon the rescalings (I, J †, B1, B2)→ g
1/2
0 (I, J †, B1, B2) and (B3, B4, φ)→ g

−1/2
0 (B3, B4, φ)

and integration on the auxiliary fields (~χ, ~H), the action (2.3) reproduces (B.1), integrated

with respect to (λ̄α̇A, D
c).

We now specialize the above discussion to the case of fractional branes. After the

Z2 projection the multi-instanton action can be read from (B.2) with fermionic indices

A,B now restricted to Ȧ, Ḃ = 1, 2 (in the fundamental of the automorphism group) which

corresponds to set the entire massive hypermultiplet to zero see (3.1). The action thus

obtained can be seen as the implementation à la BRST of the ADHM constraints, which

we ”twist” by identifying Ȧ with α̇. The constraints are now given by (3.3). To them we

associate the doublet of auxiliary fields (λ̄Aα̇ , D
c) in (B.2) which we rename (χ = χR, χC;H =

HR,HC) and the doublet (φ̄, η). Given all this, after introducing a v.e.v. for the scalar

field we get the action of N = 2 SYM [11]

SN=2 = QTr

{

[

µI

(

I†φ̄− āI†
)

+ µJ

(

φ̄J† − J †ā
)

+Mˆ̀

[

φ̄, B†ˆ̀

]]

+ h.c. +

+χRER + χCEC +
1

g2
0

(

η
[

φ, φ̄
]

+ χ ·H
)

}

, (B.6)

invariant under the BRST transformations (3.4) with ε` = 0.

9We choose σnαα̇ = (−1, iτ c).
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We are now ready to discuss the properties of (B.6). For the sake of clarity let us, for

the moment, disregard the auxiliary fields implementing the constraints by setting HR,HC
and their fermionic partners to zero. Moreover notice that the transformations (3.4) have

been improperly called BRST, since they do not square to zero. The complete BRST

operator on the ADHM space has been constructed in [8] and reads

sI = µI − CI sµI = φI − Ia− CµI

sJ = µJ + JC sµJ = −Jφ+ aJ + µJC ,

sB1 = M1 − [C,B1] sM1 = [φ,B1]− [C,M1]

sB2 = M2 − [C,B2] sM2 = [φ,B2]− [C,M2] ,

sφ = −[Cφ] sC = (φ− a)− [C,C] (B.7)

where C is a U(k) connection acting on the fields as

C · (I, J,B1, B2) = (CI,−JC, [C,B1], [C,B2]) . (B.8)

The Q operator correspond to the covariant derivative on the ADHM moduli space Q =

s+ C· . In terms of the BRST operator s, the action (B.6) can be written as

SN=2 = sTr(µI āI
† + J†āµJ + h.c.) = s α = Qα . (B.9)

According to the grading (2.7), α is a 3-form and since it is U(k)×U(N) equivariant (see

(4.39) in [8]) the actions of s and Q on it give the same result. By substituting the fermions

with their expressions (B.7), α becomes a bosonic form on the moduli space of instantons

as suggested in [8] and since s2 = 0, the BRST operator can be interpreted as a bona fide

derivative. In [20] it is suggested that, since the action of s and Q on α are the same, it

can be more convenient to interpret Q as the equivariant derivative D introduced earlier

in (2.9) and drop the connection C. This does not mean to drop C altogether but only

when it acts on the form α. In [8] it is, in fact, shown that the presence of C is crucial to

recover the correct measure on the instanton moduli space.

It is immediate to see that, due to BRST invariance, α is equivariantly closed and

that the infinitesimal action of the bosonic vector field ξ∗ can be read from the action of

Q2 (2.12) which is the Lie derivative. The localization theorems could now be applied.

The bosonic part of the action (the part of the action which is a zero form with respect to

differentials of the ADHM variables) is given by iξ∗α which is positive semi-definite. Then

its zeroes are the critical points which could also be obtained by computing the Q2 on the

bosonic variables

Q2I = φI − Ia
Q2J = −Jφ+ aJ

Q2Bl = [φ,Bl] . (B.10)

These are exactly the critical points found in [13]. As in that paper these critical points

are rather critical surfaces and the application of the localization theorem is rather cum-

bersome. The useful suggestion now comes from [16, 15, 14]: we can introduce a further
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symmetry in the problem which, without changing the cohomology, can “reduce” the crit-

ical surfaces to isolated critical points. It acts on the coordinate of spacetime as two

independent rotations in the x1, x2 and x3, x4 planes. The group element describing such

rotations is T 2 = (t1, t2) with ti = exp iεi, i = 1, 2 acting on the complex coordinates as

(z1, z2) → (t1z1, t2z2). There is clearly a wide margin of arbitrarity in the choice of the

parametrization of the T 2, since we can always arbitrarily rescale the complex coordinates.

The only condition is to leave (3.3) invariant. Our action and BRST transformation must

be changed accordingly to accomodate for the new symmetry. The resulting action and

BRST transformations are described in the main body of the paper.

C. Higher rank Hilbert-Chow morphisms

In this section we will comment on Proposition 5.8 in [12] which gives the character,

TZ(C2)[n], at the fixed points, Z, of the tangent space to the Hilbert scheme (C2)[n] of n

points on C2. With a little generalization, from this formula one can extract the eigenvalues

of Sdet in (3.16), (3.26). Here we will try to “translate” the setting of [12] in the language

we have used for this paper.

From the definition of the map Lx0 it should become clear why we are after the char-

acter (or eigenvalues) of the tangent space.

Now consider the problem, given a self-dual field strength Fµν and a vector potential

Aµ of investigating the infinitesimal variations δAµ preserving the self-duality of Fµν . Then

(d2δA)µν = Πµν
αβ(DαδAβ −DβδAα) = 0. (C.1)

Dα is the gauge covariant derivative and Πµν
αβ the projector on the anti-self-dual part of

a tensor. Among the solutions of (C.1), there are those arising from infinitesimal gauge

transformations, ε, of the gauge field. They are of the form

(d1ε)µ = Dµε . (C.2)

Two solutions of (C.1) are gauge equivalent if they differ by a field of the form (C.2). The

problem of finding the number of gauge inequivalent solutions to (C.1) is more conveniently

treated by representing the tangent space TZ(C2)[n] as the quotient Ker d2/ Im d1 associated

to the complex

Hom(V, V )
d1−→

Hom(V,Q⊗ V )

⊕
Hom(W,V )

⊕
Hom(V,

∧2Q⊗W )

d2−→ Hom(V, V )⊗
∧

2Q (C.3)

introduced to prove Proposition 5.8 in [12]. In (C.3) the symmetry with respect to the

action of the two torus T 2 = (t1, t2) has been taken into account by introducing the

doublet Q.
∧

2Q = t1t2 = exp {iε} is the totally antisymmetric combination which that

– 20 –



J
H
E
P
0
5
(
2
0
0
3
)
0
5
4

is the determinant. The correspondence between this notation and that of the rest of the

paper is

Bl : Hom(V,Q⊗ V )

I† : Hom(W,V )

J† : Hom
(

V,
∧

2Q⊗W
)

χR : Hom(V, V )

χC : Hom(V, V )⊗
∧

2Q .

(C.4)

Then

TZ = Hom(V,Q⊗ V ) + Hom(W,V ) + Hom
(

V,
∧

2Q⊗W
)

−

−Hom(V, V )−Hom(V, V )⊗
∧

2Q = V ∗ ⊗ V ⊗
(

Q−
∧

2Q⊗W − 1
)

+

+W ∗ ⊗ V + V ∗ ⊗W ⊗
∧

2Q . (C.5)

At the critical point the tangent space can be decomposed in terms of the quantum numbers

of T 2 ×U(1)n−1 giving (3.13).
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