
Scuola Internazionale Superiore di Studi Avanzati - Trieste

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY

PhD course in Mathematics

Quasi-periodic Solutions
for a PDE model

arising in hydrodynamics

Supervisor

Prof. Massimiliano Berti

Candidate

Alice Ambrosio

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor Philosophiae

Academic year 2015/2016



i



Contents

Introduction iv

1 Phase space 1

1.1 Spatial invariant subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminary symmetrization of the linear part . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Action-angle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Functional Analytic Setting 9

2.1 Pseudo-differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Dk0 - tame and modulo-tame operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Composition operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Degenerate KAM theory 25

4 Nash-Moser theorem and Measure estimates 32

4.1 Nash-Moser theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Measure estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Approximate Inverse 41

5.1 Estimates on the perturbation P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Almost approximate inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Linearized operator in the normal directions 56

7 Symmetrization of the linear part 61

7.1 Asymptotic expansion of the linearized operator . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Symmetrization of the highest order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Symmetrization at lower order 70

8.1 Elimination of the second order operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ii



CONTENTS iii

8.2 Diagonalization of the first-order operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2.1 Symmetrization of the first order . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2.2 Block symmetrization up to smoothing remainders . . . . . . . . . . . . . . . . . . 76

8.2.3 Elimination of the (x, θ) dependence in the first order coefficient . . . . . . . . . . 82

8.2.4 Tame estimates of the remainder RM+5 . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2.5 Structure of the remainder RM+5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9 Partial reduction of Lω 95

9.1 Almost diagonalization and invertibility of Lω . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3 Reducibility step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.4 The iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.5 Almost invertibility of Lω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10 Nash-Moser Iteration 119

10.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Approximate model PDEs of water waves 128

A.1 Transformation laws of Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.2 Craig-Sulem-Zakharov’s Hamiltonian formulation . . . . . . . . . . . . . . . . . . . . . . . 129

A.3 Derivation of system (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B Asymptotic expansions 134

B.1 Inverse of Tk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.2 The remainder R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.3 The remainder R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.4 Smoothing remainders along the block symmetrization . . . . . . . . . . . . . . . . . . . . 149

Bibliography 152



Introduction

Main result

This thesis concerns the existence and the stability of small amplitude quasi-periodic solutions for the

Hamiltonian PDEs ∂tη = −∂xu− 1
3ε

2∂3
xu− 2

15ε
4∂5
xu− ε2∂x(ηu)− ε4∂2

x(η∂xu)

∂tu = −∂xη − ε2 1
2∂x(u2) + ε4 1

2∂x(∂xu)2,

(1)

which are the equations of motion derived by the following Hamiltonian

H =

∫
T

1

2

(
u2 + η2 + ε2

(
−1

3
(∂xu)2 + ηu2

)
+ ε4

(
2

15
(∂2
xu)2 − (∂xu)2η

))
dx . (2)

The equations (1) arise from an approximate model derived by the water waves equations of hydrody-

namics, in a regime of small amplitude solutions with long wavelength. This model has been suggested to

us by Walter Craig [26], and we present its derivation in Appendix A. There is a large literature regarding

such approximate models, for which we refer to [27], [30], [29] and references therein.

Very recently the existence of small amplitude quasi-periodic solutions for the full water waves equa-

tions has been proved by M. Berti and R. Montalto in [19]. The goal of this thesis is to follow the

same approach in order to construct quasi-periodic solutions for the system (1). Actually many of the

techniques that we shall employ are very general and in principle can be adapted to other models in

hydrodynamics.

We recall that a time quasi-periodic function with values in a phase space H, is a function defined

∀t ∈ R of the form

z(t) = Z(ωt) ∈ H , TN 3 θ → Z(θ) ∈ H, (3)

where the function Z is continuous, TN := (R/2πZ)N , and the frequency vector ω := (ω1, ..., ωN ) is

rationally independent, namely ω · l 6= 0, ∀l ∈ ZN \ {0}.

For the equations (1) we consider as phase space the space of 2π-periodic, real functions with zero

average in the space variable, namely

(η, u) ∈ Hp
0 (Tx,R)×Hp

0 (Tx,R) , (4)

iv
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where

Hp
0 (Tx,R) :=

g =
∑
j∈Z

gje
ijx : gj = ḡ−j , g0 = 0 , ‖g‖2Hp0 (Tx,R) =

∑
j∈Z
|gj |2 〈j〉2p

 .

Note that we are allowed to consider a phase space of functions with zero average since this is invariant

under the evolution of (1). Moreover, the subspace consisting of functions (η, u) where η is even and u is

odd in the spatial variable,

η(x) = η(−x) , u(x) = −u(−x) , (5)

is also invariant under the evolution of (1). Therefore for simplicity we shall consider functions in (4)

that satisfy (5).

We endow the phase space introduced above with the symplectic form

W

η(x)

u(x)

 ,

η1(x)

u1(x)

 :=

∫
2π

0

〈
J−1

η(x)

u(x)

 ,

η1(x)

u1(x)

〉dx , (6)

where 〈·, ·〉 is the standard R2 scalar product and J−1 is the symplectic matrix given by

J−1 =

 0 ∂−1
x

∂−1
x 0

 . (7)

Notice that, given a function g =
∑
j∈Z gje

ijx such that g0 = 0, i.e. g has zero average, then

∂−1
x g =

∑
j∈Z

1

ij
gje

ijx ,

namely ∂−1
x is the periodic primitive of the function g. The symplectic form in (6) is explicitly given by

W

η(x)

u(x)

 ,

η1(x)

u1(x)

 :=

∫ 2π

0

[
(∂−1
x η(x))u1(x) + (∂−1

x u(x))η1(x)
]
dx ,

The system (1) can be rewritten in the form (see Appendix A.1)

∂t

η
u

+ J∇H(η, u) = 0 , where J =

 0 ∂x

∂x 0

 (8)

and ∇ denotes the L2-gradient , or equivalently

∂t

η
u

 = XH

η
u

 . (9)

Another symmetry of the equations (1) is the reversible structure. Indeed the equations (1) are

reversible with respect to the involution

ρ : (η, u) 7→ (η,−u), (10)
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in the sense that, the Hamiltonian vector field XH in (9) satisfies

XH ◦ ρ = −ρ ◦XH .

Equivalently, the Hamiltonian H in (2) is even in u, i.e.

H ◦ ρ = H, H(η, u) = H(η,−u). (11)

This reversible property implies that if (η(t), u(t)) is a solution of (1), then ρ(η(−t), u(−t)) is also a

solution. As a consequence it is natural to look for “reversible solutions” of (1) satisfying

(η(−t), u(−t)) = ρ(η(t), u(t)), i.e. η(x,−t) = η(x, t) , u(x,−t) = −u(x, t) , ∀x ∈ T (12)

namely η is even in time and u is odd in time.

Since we are looking for small amplitude solutions, the dynamics of the linearized system at (η, u) =

(0, 0) plays an important role. At least in a neighborhood of the origin, the Hamiltonian (2) can be seen

as a perturbation of the quadratic Hamiltonian

L̃(η, u) =

∫
T

(
u2

2
+
η2

2
− ε2

6
u2
x +

ε4

15
u2
xx

)
dx . (13)

The corresponding linear system at zero is∂tη = −∂xu− 1
3ε

2∂3
xu− 2

15ε
4∂5
xu

∂tu = −∂xη .
(14)

The solutions of the linear system (14), satisfying the conditions (5) and (12), are

η(x, t) =
∑
j≥1

aj cos(ωjt) cos(jx) , u(x, t) =
∑
j≥1

ajωj sin(ωjt) sin(jx) (15)

for parameters aj ∈ R, where the linear frequencies of oscillations ωj are

ωj := ωj(ε) :=

√
2

15
ε4j6 − 1

3
ε2j4 + j2 , j ≥ 1 . (16)

Notice that ωj are real for all j ∈ N (see Remark 1.2). Hence all the solutions (15) of the system (14)

are either periodic, quasi-periodic or almost perdiodic in time.

The main result of the thesis is that most of the quasi-periodic solutions (15) of the linear system (14)

can be continued to quasi-periodic solutions of the nonlinear Hamiltonian system (2) for most values of

the parameter ε ∈ [ε1, ε2].

Let us state precisely our main result. We arbitrarily fix a finite subset S ⊆ N0 := {1, 2, ...} (where

N0 := N \ {0}), called tangential sites, and we consider the linear solutions of (14) whose Fourier modes

are supported in S, namely

η(t, x) =
∑
j∈S

√
rj cos(ωjt) cos(jx) , u(t, x) =

∑
j∈S

√
rjωj sin(ωjt) sin(jx) , rj > 0. (17)
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In Theorem 1 below we prove that for most values of the parameter ε ∈ [ε1, ε2] and for µ sufficiently

small there exist quasi-periodic solutions g(x, ω∞t) = (η, u)(x, ω∞t) of (1), with frequency vector ω∞ :=

(ω∞j )j∈S, which are µ-close to the solutions (17) of (14). Let N := |S| denote the cardinality of S. The

function g(x, θ) = (η, u)(x, θ) with θ ∈ TN belongs to the Sobolev spaces of (2π)1+N− periodic real

functions

Hp(T1+N ,R2) := {g = (η, u) : η, u ∈ Hp}

where

Hp := Hp(T1+N ,R)

:=

g =
∑

(l,j)∈ZN+1

gl,je
i(l·ϕ+jx) : gl,j = g−l,−j , ‖g‖2p :=

∑
(l,j)∈ZN+1

|gl,j |2 〈l, j〉2p <∞

 (18)

and 〈l, j〉 := max{1, |l|, |j|} and |l| := maxi=1,...,N |li|. For

p ≥ p0 :=

[
N + 1

2

]
+ 1 ∈ N (19)

the Sobolev spaces Hp(TN+1) ⊂ L∞(TN+1) are an algebra with respect to the product of functions. In

the Thesis we shall consider p0 fixed.

Theorem 1. Fix finitely many tangential sites S := {0 < j1 < ... < jN , jk ∈ N} . There exists p̄ > p0 ,

µ0 ∈ (0, 1) such that for every |r| ≤ µ2
0 , r := (rj)j∈S there exists a Cantor like set G ⊂ [ε1, ε2] with

asymptotically full measure as r → 0, i.e.

lim
r→0
|G| = ε2 − ε1

such that for all ε in G the system (1) has a reversible quasi-periodic solution

g(x, ω∞t) = (η(x, ω∞t), u(x, ω∞t)) ,

with Sobolev regularity (η, u)(x, θ) ∈ Hp̄(T × TN ,R2) where η is even in the spatial variable, and u is

odd, of the form η(x, ω∞t) =
∑
j∈S
√
rj cos(ω∞j t) cos(jx) + o(

√
|r|)

u(x, ω∞t) =
∑
j∈S
√
rj sin(ω∞j t) sin(jx) + o(

√
|r|)

(20)

with frequency vector ω∞ := (ω∞j (ε))j∈S ∈ RN that is Diophantine and satisfies ω∞j −ωj(ε)→ 0, ∀j ∈ S,

as r → 0. The terms o(
√
|r|) are small in H p̄(TN × T,R2) . In addition these quasi-periodic solutions

are linearly stable.

Theorem 1 will be deduced by Theorem 4.1 and Lemma 4.8 below. In order to prove Theorem 4.1

we use a Nash-Moser scheme (see Chapter 10). The Nash-Moser iterative procedure selects many values

of the parameter ε ∈ [ε1, ε2], giving rise to the quasi-periodic solutions (20) defined for all times. By

a Fubini-type argument it also results that, for most values of ε ∈ [ε1, ε2], there exist quasi-periodic
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solutions of (1) for most values of the amplitudes |r| ≤ µ2
0. In order to prove Theorem 1 we will split

the phase space into two different subspaces, a finite dimensional one, which we shall call HS and its

orthogonal, called H⊥S (see (1.32)). On the finite dimensional subspace HS we will describe the dynamics

by introducing the action-angle variables (see Chapter 1).

The quasi-periodic solutions g(ω∞t) = (η(ω∞t), u(ω∞t)) found in Theorem 1 are linearly stable. More

precisely this means that there exist symplectic coordinates around each invariant torus,

(ψ, y, z) ∈ TN ×RN × H⊥S ,

see (5.27), in which the Hamiltonian reads

ω · y + (K11(ψ)y, z)L2(Tx) +
1

2
K20(ψ)y · y +

1

2
(K02(ψ)z, z)L2(Tx) +K≥3(ψ, y, z) , (21)

where K≥3 collects all the terms of order at least 3 in (y, z). In these coordinates the quasi-periodic

solutions g(ω∞t) read t 7→ (ω∞t, 0, 0), and the corresponding linearized equations are
ψ̇ = K20(ω∞t)[y] +KT

11(ω∞t)[z]

ẏ = 0

ż = JK02(ω∞t)[z] + JK11(ω∞t)[y] .

The actions y(t) = y0 do not evolve in time and the third equation reduces to the linear PDE

ż = JK02(ω∞t)[z] + JK11(ω∞t)[y]. (22)

The operator K02 (explicitly given in (6.1)) is the restriction to the infinite dimensional subspace H⊥S of

the linearized system (1) (see (6.10)) up to a finite dimensional remainder (see Lemma 6.1).

In Chapters 7-9 we prove the existence of a bounded and invertible “symmetrizer” map W∞ (see

(9.101), (9.102)) such that for all θ ∈ TN and under the change of variable

z = W∞z∞ , z∞ := (z(1)
∞ , z(2)

∞ )

the equation (22) transforms into the diagonal system

∂tz∞ = −iD∞z∞ + f∞(ω∞t) , f∞(ω∞t) = W∞(ω∞t)−1JK11(ω∞t)[y0] =

f
(1)
∞ (ω∞t)

f
(2)
∞ (ω∞t)

 , (23)

where, if we define Z0 := Z \ {0} := S± ∪ (S±)c with S± := S ∪ (−S) (see (1.31)), the operator D∞ can

be written as follows

D∞ :=

D∞ 0

0 −D∞

 , D∞ := diagj∈(S±)c{λ∞j } , λ∞j ∈ R ,

with D∞ a Fourier multiplier operator that can be written in terms of (see (10.43))

λ∞j := j

√
2

15
ε4j4 − 1

3
ε2j2 + 1 +m∞1 j + r∞j , j ∈ (S±)c , r∞j = −r∞−j , m1, rj ∈ R , (24)



INTRODUCTION ix

and, for some a > 0,

m∞1 = O(µa) , sup
j∈(S±)c

|∂kε r∞j | = O(µa) , ∀0 < |k| ≤ k0

(see (4.8), (4.9) and (4.13)), where k0 ∈ N is a constant fixed once and for all in Chapter 3 (see Remark

3.6), depending only on the linear frequencies ωj(ε) defined in (16).

The λ∞j are the Floquet exponents of the quasi-periodic solution. As we shall prove in Chapters 7-9

the solutions z∞ := (z
(1)
∞ , z

(2)
∞ ) satisfy z

(1)
∞ (−x) = z

(2)
∞ (x). This condition, in the Fourier basis, reads

z∞,j := (z
(1)
∞,j , z

(1)
∞,−j). Hence it suffices to solve the first equation in (23). Furthermore the system (23)

reduces to the infinitely many decoupled scalar equations

∂tz
(1)
∞,j = −iλ∞j z

(1)
∞,j + f

(1)
∞,j(ω

∞t) , ∀j ∈ (S±)c .

By variation of constants the solutions are

z
(1)
∞,j(t) = cje

−iλ∞j t + q
(1)
∞,j(t) ,

where

q
(1)
∞,j(t) :=

∑
l∈ZN

f
(1)
∞,j,le

iω∞·lt

i(ω∞ · l + λ∞j )
, ∀j ∈ (S±)c . (25)

Since the first order Melnikov conditions (see (4.10)) hold, the denominators of q
(1)
∞,j(t) in (25) are non

zero, so the functions q
(1)
∞,j(t) are well defined. By the property of W∞ in (9.101), recalling (23) we get

‖f∞(ω∞t)‖Hp(Tx)×Hp(Tx) ≤ C|y0|.

As a consequence, using also the properties of W∞ and W−1
∞ in (9.101) and (9.102), the Sobolev norm

of the solution of (23) with initial condition z∞(0) ∈ H p̃(Tx), with p0 ≤ p̃ ≤ p, satisfies

‖z∞(t)‖Hp̃(Tx)×Hp̃(Tx) ≤ C(p)
(
|y0|+ ‖z∞(0)‖Hp̃(Tx)×Hp̃(Tx)

)
,

for all t ∈ R, which proves the linear stability of the torus. The above inequality can be translated in the

original coordinates (η, u), which are related to the coordinates z by the change of variables Λ in (1.22)

and Z in (7.15), as

‖(η, u)(t)‖Hp̃+1(Tx)×Hp̃−1(Tx) ≤p̃ ‖(η0, u0)‖Hp̃(Tx)×Hp̃(Tx).

In conclusion, we are able to prove both the existence and the linear stability of the quasi-periodic

solutions of equations (1).

Historical preface

Since the 50′s the so called KAM (Kolmogorov [46]- Arnold [2]- Moser [53], [54]) theory played a key rôle

in the knowledge of the dynamical behavior of “non integrable” Hamiltonian systems. The first results
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proved that, in a finite dimensional integrable Hamiltonian system subject to a “small” perturbation,

under some non degeneracy assumptions, the quasi-periodic orbits form an asymptotically full-measure

set of the phase space. The quasi-periodic solutions of the perturbed system are close to the quasi-periodic

solutions of the unperturbed one.

The KAM theory is an important extension of the simpler problem of the existence of periodic

solutions, that dates back to Poincaré in his studies of celestial mechanics [56]. Bifurcation theory on

periodic solutions relies on the implicit function theorem.

On the contrary, in the search of quasi-periodic solutions, a serious non trivial problem arises, which

prevents the use of the implicit function theorem: in the Fourier series expansion of the approximate

solutions appears at the denominators the quantities ω ·l , l ∈ ZN . For periodic solutions ω ·l = ωl , l ∈ Z

and, if ω 6= 0, the set {ωl : l ∈ Z \ {0}} is at a positive distance from zero. On the other hand if

ω ∈ RN , N ≥ 2, is a rationally independent vector, the set

{ω · l : l ∈ ZN}

is dense in R, in particular it accumulates to zero. This is the so called “small divisor problem”. Neverthe-

less Kolmogrov proved the existence of quasi-periodic solutions requiring that ω satisfies the non-resonance

Diophantine condition

|ω · l| ≥ γ|l|−τ , ∀l 6= 0 , γ ∈ (0, 1).

See also [57].

Starting from the 80′s the ideas of dynamical systems started to be extended to PDEs. It is known

that many PDEs on a manifold can be rewritten as an infinite dimensional dynamical system of the form

u̇ = Lu+ f(u) (26)

where u is a function in some Banach space, L is a linear operator and f is a non linear term. The search

of quasi-periodic solutions of (26), namely functions of the form u := u(ωt) as in (3), amounts to solve

the equation for u(θ)

ω · ∂θu = Lu+ f(u). (27)

If f(0) = f ′(0) = 0, then u = 0 is an equilibrium solution of the system (26), therefore it is natural to

look for quasi-periodic solutions in a neighborhood of zero.

The first existence results for quasi-perdiodic solutions have been obtained by Kuksin [47] for the

1−d non-linear Schrödinger equation (NLS) with Dirichlet boundary conditions where f is a bounded

nonlinearity and Wayne [64] for the 1−d nonlinear wave equation (NLW), still with Dirichlet boundary

conditions. Their method of proof is a generalization of KAM theory.

As already discussed, because of the small divisor problem equation (27) cannot be solved by the

classical implicit function theorem. Indeed the linearized operator of (27) at the equilibrium u = 0,
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i.e. ω · ∂θ − L, can be diagonalized in a Fourier basis (both in space and time) as iω · l − iλj , where

l ∈ ZN , λj , j ∈ Z are the eigenvalues of the linear operator L, and iω · l− iλj accumulate to zero. Note

that the eigenvalues of the linear operator L are considered pure imaginary, as they could correspond to

the interesting case of some resonance phenomena. In order to overcome this problem one can impose

the first Melnikov non-resonance conditions, namely

|ω · l − λj | > γ 〈l〉−τ . (28)

The previous results do not apply to spatial periodic boundary conditions. In this setting Craig and

Wayne in [34] (see also [28]) proved the existence of periodic solutions, for the NLW and NLS equations.

In such a case the eigenvalues of the Sturm-Liouville linear operator are (asymptotically) double, and the

non-resonance conditions on the eigenvalues required by the KAM scheme in [47] and [64] are violated.

Using the Lyapunov-Schmidt reduction method Craig and Wayne solved the range equation with a Nash-

Moser iteration which requires less stringent conditions on the eigenvalues than the previous KAM scheme.

Their approach was then generalized by Bourgain in [22] for quasi-periodic solutions, and in [23] and [24]

for PDEs in higher spatial dimension where the multiplicity of the eigenvalues may be unbounded. We

also mention more recent work such as [35], [14], [13], [17], [59], [58].

Let us now briefly describe the differentiable Nash-Moser scheme and the KAM methods. See for

instance [25], [20], [17], [15], [16], [21]. The Nash-Moser scheme is a generalization of the tangent Newton

method, plus a regularization procedure that we shall apply, to search for zeros of a functional operator

of the form

F (u) = ω · ∂θu− Lu− f(u). (29)

The approximate solutions are defined iteratively by

un+1 := un + hn+1 , hn+1 := −Sn[DF (un)]−1F (un),

where Sn is a suitable smoothing operator. The main difficulty is to invert the linearized operator

DF (un) := L obtained at any step of the iteration and to prove that the inverse satisfies tame estimates

albeit with loss of derivatives, i.e. L−1 : Hp → Hp−τ . Actually, according to PDEs applications, the

operator F in (29) will depend on some suitable parameters and one shall prove the invertibility of L for

most values of these parameters. We underline that the loss of derivatives of L−1 will be compensated

by the smoothing procedure and the super-quadratic convergence of the iteration .

Notice that for the unperturbed operator, ω ·∂θ−L, it is easy to prove tame estimates for the inverse,

since it is represented as a diagonal matrix in the Fourier basis, whereas for the linearized operators

ω · ∂θ − L − f ′(u) at a general approximate solution u such estimates requires hard work. The strategy

that could be used is a KAM reducibility scheme, as we actually shall do.

The inductive n+ 1-step of the reducibility KAM scheme, is the following: consider the operator

Ln = ω · ∂θ +Dn +Rn ,
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where Dn is a diagonal operator that in Fourier basis, both in space (described by the indexes j, k)

and time (described by the index l), reads (Dn)kj (l) = (Dn)jj(0) := diagj∈Ziλ
n
j and Rn is a bounded

perturbation that in Fourier basis is (Rn)kj (l). Then the goal is to look for a transformation Φn = 1+Ψn,

with Ψn small enough, that diagonalizes the operator Ln, by decreasing quadratically the size of the

perturbation. To this end one has to solve the so called “homological equation” given by

ω · ∂θΨn + [Dn,Ψn] + ΠNnRn = [Rn] , (30)

with [Rn] := diagj∈Z(Rn)jj(0), and ΠNn the time Fourier truncation operator. This equation can be

written in a Fourier basis and it reads

(Ψn)kj (l)(iω · l + iλnj − iλnk ) = (Rn)kj (l) , j 6= k , |l| ≤ Nn.

In order to solve the homological equation above one has to impose the so called “second order non-

resonance Melnikov conditions”

|ω · l + λnj − λnk | ≥ γ 〈l〉
−τ

, ∀(l, j, k) 6= (0, j, j) . (31)

If the eigenvalues λnj are double, (31) is violated for (l, j, k) = (0, j,±j). In this thesis we choose a suitable

phase space such that the eigenvalues of the linear system (14) are simple, and the previous problem does

not appear. Then, if Ψ satisfies (30) we can consider the conjugated operator Ln+1 that is

Ln+1 := Φ−1
n LnΦn

= ω · ∂θ + (Dn + [Rn]) + Φ−1
n (Π⊥NnRn +RnΨn −Ψn[Rn])

= ω · ∂θ +Dn+1 +Rn+1 ,

where Dn+1 := Dn + [Rn] is a diagonal operator, and Rn+1 := Φ−1
n (Π⊥NnRn +RnΨn − Ψn[Rn]) is the

remainder. It turns out that the remainder Rn+1 is a bounded operator, whose size is quadratically

smaller than the size of Rn.

The previous scheme requires at any iterative step that the non resonance conditions (31) hold. In

PDEs applications, usually, the eigenvalues λj of the linear operator L depend on some parameter.

Therefore in order to be satisfied, the conditions (31) impose restrictions on the frequency ω and on such

parameters. If the non linearity f of the system (27) is quasi-periodic in time with frequency ω, one

could use ω itself as parameter in order to verify the non resonance conditions (31). This prospective has

been used for instance in [4], [37], [13], [14], [16] or [17]. In the more difficult case, when the equation

does not contains parameters, one can use the “initial conditions” as the parameters proving that the

frequencies of the expected solution depends on the amplitude. This prospective has been introduced

in [50] and then used in several other papers [10], [9], [11], [12], [45], [48], [49], [58] and [19]. In [8] all

those problems are studied. In the present thesis the linear frequency λj defined in (16) depends on the

external parameter ε that we shall use it in order to verify all the non resonants conditions by using the

degenerate KAM theory as in [7].
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The existence of quasi-periodic solutions for systems with an unbounded perturbation, i.e. the non

linearity contains derivatives, has been proved in more recent years. The main difficulty is that the

previous reducibility KAM scheme does not work. The first existence results for quasi-periodic solutions

of PDEs with unbounded perturbations have been proved by Kuksin [49], see also Kappeler-Pöschel [45],

for the Korteweg-de Vries equation (KdV) with periodic boundary conditions. The strategy introduced

by Kuksin was then improved by Liu-Yuan [51], Zhang-Gao-Yuan [66] for derivative NLS. Subsequently

existence of quasi-periodic solutions for derivative NLW has been proved by Berti-Biasco-Procesi [10]-[11]

where the non linearity contains first order spatial and time derivatives. All these previous results still

refer to semilinear perturbations, i.e. the order of the derivatives in the nonlinearity f in (27) is strictly

lower than the order of the linear differential operator L.

The first results concerning the existence of quasi-periodic solutions for quasi-linear PDEs where

the perturbation and the linear operator have the same order like ∂tu = −uxxx − f(uxxx, uxx, ux, u)

have been proved by Baldi-Berti-Montalto in [4], [5], [6] for perturbations of Airy, KdV and mKdV

equations. The strategy used by the authors is the following: to look for suitable transformations such

that all the coefficients of the linearized operator at an approximate solutions become constant up to a

bounded remainder. After this procedure one is back to an operator where the KAM reducibility scheme

described above can be applied. This approach was extended in [37] and [36] to prove the existence

of quasi-periodic solutions for quasi-linear perturbation of Schrödinger equation. See also [18] where

the authors proved that perturbations of the defocusing nonlinear Schrödinger (dNLS) equation on the

circle have an abundance of invariant tori of any size and (finite) dimension which support quasi-periodic

solutions. In [3] the author proved the existence of periodic solutions of fully nonlinear autonomous

equations of Benjamin-Ono type.

In this Thesis the model equations (1) are an approximation of the water waves equations as we

shall present in Appendix A. The first results concerning the existence of small amplitude time periodic

standing (namely even in space) pure gravity water waves is due to Plotnikov-Toland in [55]. In this

paper the authors proved the result by using a Nash-Moser iteration method. This result has been then

extended in [44], [40], [41], [42] . For other references and an historical survey of the background of this

problem one can also see [31] and [43]. More recently in [1] Alazard-Baldi proved existence of standing

wave periodic solutions for water wave equations with capillarity. This work was been extended by Berti-

Montalto in [19] proving the existence also of quasi-periodic solutions. This result is the starting point

of the present thesis.
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Ideas of the proof of Theorem 1

Here we present in detail the strategy of the proof of Theorem 1, that will be deduced by Theorem 4.1

and Lemma 4.8 below.

Since we look for small amplitude solutions of (1), we rescale the functions (η, u) using a small

amplitude parameter µ, i.e. we consider (µη, µu). Then the Hamiltonian (2) reads

H(η, u) =

∫
T

(u2

2
+
η2

2
− ε2

6
u2
x +

ε4

15
u2
xx + µ

ε2

2
u2η − µε

4

2
u2
xη
)
dx , (32)

and the equations (1) become∂tη = −∂xu− 1
3ε

2∂3
xu− 2

15ε
4∂5
xu− µε2∂x(ηu)− µε4∂2

x(η∂xu)

∂tu = −∂xη − µε2 1
2∂x(u2) + µε4 1

2∂x(∂xu)2.

(33)

In order to find quasi-periodic solutions of the system (33) we shall perform a Nash-Moser scheme.

The first approximate solution in the iterative scheme is the solution defined in (17) of the linear system

(14). Notice that this linear solution is supported on the finitely many Fourier indices S. In Chapter

1 we divide the phase space into two subspaces, HS, which is finite dimensional and its orthogonal H⊥S .

On HS we shall introduce action-angle variables (θ, I) ∈ TN × RN . After the introduction of these new

coordinates we obtain a new Hamiltonian denoted Hµ(θ, I, w).

• Functional setting. We look for an embedded invariant torus i : TN → TN × RN × H⊥S , θ 7→

i(θ) = (ϑ(θ), I(θ), w(θ)) of the Hamiltonian vector field XHµ , filled by quasi-periodic solutions with

frequency ωµ to be found. For that we define the non linear operator F(i, ·) = (ω · ∂θ−XHµ)(i(θ)).

In order to find a solution of F(i, ·) = 0 we implement a Nash-Moser scheme. The key point is to

find an approximate right inverse of the linearized operator diF(i, ·) . As a first step in Chapter 5

we follow the Berti-Bolle’s approach developed in [15] (and implemented in [5] and [19]). The idea

is to introduce symplectic coordinates near the approximate torus in which the linearized system

diF(i, ·) becomes approximately decoupled into the action-angle components (defined on HS) and

into the normal ones (defined on H⊥S ). Actually it is sufficient to invert the linearized operator L

that differ from the one defined on the normal component for a finite dimensional remainder.

• Linerized operator and KAM scheme The goal is to diagonalize up to a bounded remainder,

the operator L given by

L =

ω 0

0 ω

 · ∂θ +

 0 −iT (D)

−iT (D) 0

+

a1(x, θ,D) a2(x, θ,D)

a3(x, θ,D) a4(x, θ,D)


where the first two matrices arise from the linear terms of the equations (33) (after a change of

variables, see Chapter 1), the linear operator iT (D) is

iT (D) := j

√
2

15
ε4j4 − 1

3
ε2j2 + 1 , j ∈ Z
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and ak(x, θ,D) ∈ OPSm , m ∈ Z , k = 1, ..., 4 are pseudo-differential operators, with C∞− symbols

ak(x, θ, ξ) in Sm. The last matrix in L arises from the linearization of the non linear terms in (33),

and note that this matrix is of order µ. In Chapter 2 we present some useful tools of pseudo-

differential operators theory that we shall use.

We divide this diagonalization procedure in two steps. The goal of the first step is to make the

coefficients of the linearized operator L diagonal and constant, in (x, θ), up to a bounded remainder.

This means that the operator obtained after the conjugation of L can be written in Fourier basis

as a diagonal operator D plus a bounded remainder R (see Chapters 7, 8).

In the second step we perform a KAM reducibility scheme on the operator D +R obtained above

(see Chapter 9). We now present in more details the key points in these steps.

1. We expand the linear operator L as a sum of homogeneous operators of decreasing order plus

a regularizing remainder in OPS−M−1, obtaining

L =

ω 0

0 ω

 · ∂θ +

 0 iT (D)

iT (D) 0

+

 0 b2(x, θ)

b3(x, θ) 0

 ∂2
x

+

c1(x, θ) c2(x, θ)

c3(x, θ) c4(x, θ)

 ∂x +

M∑
k=0

a(k)
1 (x, θ) a

(k)
2 (x, θ)

a
(k)
3 (x, θ) a

(k)
4 (x, θ)

 ∂−kx

+

σ(k)
1 (x, θ,D) σ

(k)
2 (x, θ,D)

σ
(k)
3 (x, θ,D) σ

(k)
4 (x, θ,D)

 .

(34)

The constant −M denotes the smallest order of the homogeneous terms (see Section 7.1), and

it is fixed once and for all in Chapter 9.

2. We consider a change of variables such that the linear operator

 0 −iT (D)

−iT (D) 0

 trans-

forms into the diagonal operator

iT (D) 0

0 −iT (D)

, see Section 7.2.

3. We consider a transformation, close to the identity, such that after conjugation we get rid of

the second order matrix operator in (34), see Section 8.1. Then we make the homogeneous

terms block symmetrized, namely we eliminate the off diagonal entries in these terms up to

∂−Mx , see Chapter 8. After these conjugations we arrive to an operator of the formω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+

M∑
k=−1

ã(k)
1 (x, θ) 0

0 ã
(k)
4 (x, θ)

 ∂−kx

+

σ1(x, θ,D) σ2(x, θ,D)

σ3(x, θ,D) σ4(x, θ,D)

 (35)

where σm , m = 1, ..., 4 are pseudo-differential operators in OPS−M−1 and ã
(k)
m , m = 1, 4 are

functions of (x, θ) (see Chapter 8).
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4. Finally, in Section 8.2.3, we conjugate the operator in (35) with two transformations in order

to make the coefficients of the first order operator constant. The net result is an operator of

the form

L := D +R ,

where

D :=

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+

m 0

0 −m

 ∂x ,

m ∈ R and R is a bounded remainder of size µ.

5. In Chapter 9 we perform the KAM reducibility scheme on the linear operator D+R obtained

in the previous step. We follow the strategy introduced in [19] in which R satisfies tame

estimate. Actually we are able to prove (see Chapter 9) that the operators

R , [R, ∂x] , ∂p0

θj
R , ∂p0

θj
[R, ∂x] , ∂p0+b

θr
R , ∂p0+b

θr
[R, ∂x] , r = 1, ..., N ,

are Dk0 -tame (see Definition 10). For the convergence of the iterative procedure we need these

properties for a suitable b := b(τ) fixed, where τ is the diophantine exponent in (31). We need

also to prove that the ∂(ω,ε)−derivatives of the operator R are Dk0−tame these informations

are required in order to prove that the eigenvalues of the perturbed system D+R are Ck0-close

to the unperturbed one.

• Nash-Moser scheme. After this diagonalization procedure we are able to prove the required

invertibility of the linearized operator L and the tame estimates for its inverse. Using this, in

Chapter 10 we implement a differentiable Nash-Moser iterative scheme which gives a zero of the

operator F(i, ·), that is a quasi-periodic solution of the equations (33). This proves Theorem 4.1.

• Measure estimates. As already discussed, in order to apply both the previous KAM and Nash-

Moser scheme the eigenvalues of the linearized operators, have to satisfy the first and the second

Melnikov non resonance conditions defined in (28) and (31). The linear frequencies ωj defined in (16)

depend on the parameter ε, i.e. ωj := ωj(ε), and, as we shall prove, are Ck0−close to the frequencies

of the perturbed system. Thanks to these informations, and also using the degenerate KAM theory

(introduced by Rüssmann [62] in a finite dimensional setting and developed by Bambusi-Berti-

Magistrelli in [7] for the infinite dimensional system) in Lemma 4.8 we prove that the perturbed

frequencies satisfy the non resonance conditions for many ε. More precisely we prove that

|ωµ(ε) · l| ≥ γ 〈l〉−τ , ∀l ∈ ZN \ {0}, (36)

and

|ωµ(ε) · l + Ωj(ε)| ≥ γj3 〈l〉−τ , ∀l ∈ ZN , j ∈ N0 \ S,

|ωµ(ε) · l + Ωj(ε)− Ωj′(ε)| ≥ γ|j3 − j′
3

| 〈l〉−τ , ∀l ∈ ZN , j, j′ ∈ N0 \ S,

|ωµ(ε) · l + Ωj(ε) + Ωj′(ε)| ≥ γ|j3 + j′
3

| 〈l〉−τ , ∀l ∈ ZN , j, j′ ∈ N0 \ S ,

(37)
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where N0 := N\{0}. The first line is the first Melnikov condition, the second one and the third one

are the second Melnikov condition. In conclusion, since the non resonance conditions are satisfied

for many parameter it is possible to apply the KAM and the Nash-Moser scheme.



Notations

• N0 := N \ {0}

• Z0 := Z \ {0}

• S := {0 < j1 < ... < jN jk ∈ N}

• S± := S ∩ (−S) ⊂ Z

• p0 :=
[
N+1

2

]
+ 1

• p > p0

• ζ := (ω, ε) ∈ RN × [ε1, ε2]

• a ≤p,k,M b means a ≤ C(p, k,M)b

• k0 ∈ N is a fixed constant

• γ ∈ (0, 1)

• N (A, z) := {ζ ∈ RN × [ε1, ε2] : dist(A, ζ) ≤ z}

xviii



Chapter 1

Phase space

We consider the scale of Sobolev spaces of (2π)−periodic real functions in the space variable

Hp
x(T) := Hp

x(T,R) := Hp
x(T)×Hp

x(T) , (1.1)

where

Hp
x(T) :=Hp

x(T,R) := Hp(Tx)

:=
{
g(x) =

∑
j∈Z

gje
ijx , gj = g−j : ‖g‖2Hpx :=

∑
j∈Z
|gj |2 〈j〉2p <∞

}
(1.2)

and 〈j〉 := max{1, |j|} . For w = (w1, w2) ∈ Hp
x(T) we define (with slight abuse of notation)

‖w‖Hp
x

:= max{‖w1‖Hpx , ‖w2‖Hpx} . (1.3)

1.1 Spatial invariant subspace

In order to prove Theorem 1 we shall perform a KAM iteration on the system (33), which also rely on a

control of the differences of the eigenvalues of the linearized system (see Chapter 9) . If the eigenvalues of

the linear system at µ = 0 are not simple, such control can be hard to achieve. In the phase space Hp
x(T)

defined in (1.1) this is precisely the case. Indeed if we consider the unperturbed equations of motion (14),

i.e. (33) at µ = 0, that is ∂tη = −∂xu− 1
3ε

2∂3
xu− 2

15ε
4∂5
xu

∂tu = −∂xη
(1.4)

and we expand (η, u) in Fourier series, namelyη
u

 =
∑
j∈N

η(1)
j cos jx+ η

(2)
j sin jx

u
(1)
j cos jx+ u

(2)
j sin jx

 ,

1
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substituting into (1.4) we get

η̇
(1)
j cos jx+ η̇

(2)
j sin jx =

(
−∂x −

1

3
ε2∂3

x −
2

15
ε4∂5

x

)
(u

(1)
j cos jx+ u

(2)
j sin jx)

= u
(1)
j

(
+j sin jx− 1

3
j3ε2 sin jx+

2

15
ε4j5 sin jx

)
+

+ u
(2)
j

(
−j cos jx+

1

3
j3ε2 cos jx− 2

15
ε4j5 cos jx

)
u̇

(1)
j cos jx+ u̇

(2)
j sin jx = −∂x(η

(1)
j cos jx+ η

(2)
j sin jx)

= η
(1)
j j sin jx− η(2)

j j cos jx .

Hence we obtain two decoupled systems of harmonic oscillators,η̇
(1)
j = u

(2)
j

(
−j + 1

3j
3ε2 − 2

15ε
4j5
)

u̇
(2)
j = η

(1)
j j

,

η̇
(2)
j = u

(1)
j

(
j − 1

3j
3ε2 + 2

15ε
4j5
)

u̇
(1)
j = −η(2)

j j ,

(1.5)

with the same frequencies ωj :=
√

2
15ε

4j6 − 1
3ε

2j4 + j2 , j ∈ N \ {0}.

To overcome these double resonances situation we shall confine the phase space to the invariant

subspace of real functions (η, u) such that η is even in x and u is odd in x, that is

η(x) = η(−x), u(x) = −u(−x). (1.6)

This subspace is invariant under (33). We recall that also the set{
(η, u) ∈ Hp

x(T,R)×Hp
x(T,R) :

∫
T

ηdx =

∫
T

udx = 0
}

(1.7)

is invariant under the evolution of (33).

Summarizing thanks to (1.7) and (1.6), we restrict (η, u) to the phase space

Xp
0 :=


η
u

 ∈ Hp
x(T,R) :

η(x)

u(x)

 =

 η(−x)

−u(−x)

 ,

∫
T

ηdx = 0

 , (1.8)

where Hp
x(T,R) is defined in (1.1).

Remark 1.1. The space Xp
0 can be represented as a sequence space via Fourier expansion in two different

ways:

• The trigonometric representation
η
u

 ∈ Hp
x :

η
u

 =
∑

j∈N\{0}

ηj cos jx

uj sin jx

 . (1.9)

• The exponential representation
η
u

 ∈ Hp
x :

η
u

 =
∑
j∈Z

ηjeijx
uje

ijx

 , ηj = η−j , η0 = 0, ηj = η̄−j , uj = −u−j , uj = ū−j

 .

(1.10)
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Using the trigonometric representation defined above the symplectic form W in (6) can be written

W :=
∑
j∈N

2π

j
dηj ∧ duj . (1.11)

1.2 Preliminary symmetrization of the linear part

The Hamiltonian H defined in (32) is the sum of the quadratic Hamiltonian L̃ defined in (13) and the

cubic terms P̃ , multiplied by µ, given by

P̃ (η, u) =

∫
T

(ε2

2
u2η − ε4

2
u2
xη
)
dx . (1.12)

Therefore the Hamiltonian H can be written

H = L̃+ µP̃ . (1.13)

The corresponding equations of motion (33), can be written as

∂t

η
u

 = XL̃(η, u) + µXP̃ (η, u) (1.14)

where

XL̃(η, u) :=

 0 −∂x − 1
3ε

2∂3
x − 2

15ε
4∂5
x

−∂x 0

η
u

 (1.15)

XP̃ (η, u) :=

−ε2∂x(ηu)− ε4∂x(ηxux + ηuxx)

−ε2 1
2∂x(u2) + ε4 1

2∂x(ux)2

 . (1.16)

We look for a symplectic transformation that “balances” the order of the operators in the linear part

XL̃, namely we look for a change of variables that transforms the 2×2 matrix in (1.15) into a new matrix

whose out-of-diagonal operators are the same.

Under a change of variables of the form η = Λq

u = Λ−1p

(1.17)

the linear system (14) (i.e. (1.14) with µ = 0) becomes

qt = −Λ−1

(
2

15
ε4∂5

x +
1

3
ε2∂3

x + ∂x

)
Λ−1p

pt = −Λ∂xΛq .

(1.18)

Choosing

Λ := Op(g(j)), where g(j) =
4

√
2

15
ε4j4 − 1

3
ε2j2 + 1 , ∀j ∈ Z, (1.19)
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the system (1.18) takes the form

qt = −iT (D)p

pt = −iT (D)q
(1.20)

where

iT (D) = Op(iT (j, ε)), T (j, ε) := j

(
2

15
ε4j4 − 1

3
ε2j2 + 1

) 1
2

, j ∈ Z . (1.21)

Remark 1.2. We have that 2
15ε

4j4 − 1
3ε

2j2 + 1 > 0 for all j ∈ Z, indeed

2
15ε

4j4 − 1
3ε

2j2 + 1 =
(√

2
15ε

2j2 − 1
)2

+
(

2
√

2√
15
− 1

3

)
ε2j2 and

(
2
√

2√
15
− 1

3

)
> 0 .

The change of variable (1.17), whose matrix is

Λ =

Λ 0

0 Λ−1

 , (1.22)

is symplectic, i.e.

ΛJΛT = J , (1.23)

where J is defined in (8). Hence the symplectic form W defined in (6) (i.e. (1.11)) remains the same:

W =
∑
j∈N

2π

j
dqj ∧ dpj . (1.24)

Moreover, under the change of variable Λ in (1.22), also the involution ρ defined in (10), remain the

same, indeed

Λ−1ρΛ = ρ. (1.25)

Since Λ is symplectic the Hamiltonian system (33) (i.e. (1.14)) transforms into the new Hamiltonian

system generated by the Hamiltonian (see also Lemma A.2)

H := H ◦Λ,

that is explicitly given by (recall that H is the Hamiltonian in (32) i.e. (1.13))

H(q, p) = L(q, p) + µP(q, p) (1.26)

where L := L̃ ◦Λ is the quadratic part

L(q, p) =

∫
T

(
(Λ−1p)2

2
+

(Λq)2

2
− ε2

6
(Λ−1∂xp)

2 +
ε4

15
(Λ−1∂2

xp)
2

)
dx (1.27)

and P := P̃ ◦Λ is

P(q, p) =

∫
T

(
ε2

2
(Λ−1p)2Λq − ε4

2
(Λ−1∂xp)

2Λq

)
dx . (1.28)

The Hamiltonian system (33), i.e. (1.14), transforms in the new coordinates into

∂t

q
p

 = −J∇q,pH(q, p) = XH(q, p) ,
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that is explicitly given by

∂t

q
p

 =

 0 −iT (D)

−iT (D) 0

q
p

+ µXP(q, p) , (1.29)

where (see Lemma A.1)

XP(q, p) := ε2

−Λ−1∂x
(
(Λq)(Λ−1p)

)
− ε2Λ−1∂x

(
(Λq)(Λ−1pxx) + (Λqx)(Λ−1px)

)
− 1

2Λ∂x(Λ−1p)2 + ε2

2 Λ∂x(Λ−1px)2

 . (1.30)

We remark the following properties.

Lemma 1.3. Let Λ := Op(g(j)) with g(j) defined in (1.19). Then Λ and Λ−1 send real functions in

real functions. In addition Λ and Λ−1 send even, respectively odd, functions in even, respectively odd,

functions.

Proof. Let f =
∑
j∈Z fje

ijx. Then

Λf :=
∑
j∈Z

g(j)fje
ijx , Λ−1f :=

∑
j∈Z

g(j)−1fje
ijx .

Let f be a real function, that is, fj = f̄−j , then

Λf =
∑
j∈Z

g(j)f̄je
−ijx =

∑
j∈Z

g(j)f−je
−ijx =

∑
j∈Z

g(j)fje
ijx = Λf,

where we have used that g(j) = g(j) = g(−j). Clearly we can repeat the same argument also for Λ−1.

By g(j) = g(−j), follows immediately that the operators Λ and Λ−1 send the set of even, respectively

odd, functions into itself. Indeed let f be a even function, in the exponential representation this condition

reads fj = f−j . Then, by g(j) = g(−j), we get g(j)fj = g(−j)f−j (similar for the other).

Lemma 1.4. The operator iT (D) defined in (1.21) sends real functions in real functions. Moreover

iT (D) sends even, respectively odd, functions in odd, respectively even, functions.

Proof. By the explicit definition of iT (D) in (1.21) we have that T (j, ε) = T (j, ε). Let f be a real

function, then

iT (D)f =
∑
j∈Z
−ij

(
2

15
ε4j4 − 1

3
ε2j2 + 1

) 1
2

f−je
−ijx

=
∑
j∈Z

ij

(
2

15
ε4j4 − 1

3
ε2j2 + 1

) 1
2

fje
ijx

= iT (D)f .

By the explicit definition of iT (D) we also have T (j, ε) = −T (−j, ε), hence if q is a even function and p

is a odd function, we obtain T (j, ε)qj = −T (−j, ε)q−j and T (j, ε)pj = T (−j, ε)p−j .

Remark 1.5. By Lemma 1.3 we have that Λq = η is real even and with zero average and Λ−1p = u is

real, odd and with zero average. Therefore under the change of coordinates Λ the phase space remains

the same, i.e. Xp
0 (defined in (1.8)).
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1.3 Action-angle variables

We rewrite the phase space Xp
0 defined in (1.8) as the direct sum of two symplectic subspaces defined as

follows. Fix

S := {j1, . . . , jN} ∈ N \ {0} , 0 < j1 < ... < jN , jk ∈ N . (1.31)

Then we decompose

Xp
0 = HS ⊕ H⊥S . (1.32)

Remark 1.6. Using the trigonometric representation, defined in (1.9), the subspaces defined above read

HS :=

(q, p) ∈ Xp
0 : q =

∑
j∈S

q̃j cos(jx) , p =
∑
j∈S

p̃j sin(jx)


H⊥S :=

(q, p) ∈ Xp
0 : q =

∑
j /∈S

q̃j cos(jx) , p =
∑
j /∈S

p̃j sin(jx)

 .

(1.33)

Using the exponential representation, defined in (1.10), we can set −S := {−j1, . . . ,−jN} and the sub-

spaces read

HS :=

(q, p) ∈ Xp
0 : q =

∑
j∈S∪(−S)

qje
ijx , qj = q̄−j , qj = q−j

p =
∑

j∈S∪(−S)

pje
ijx , pj = p̄−j , pj = −p−j


H⊥S :=

(q, p) ∈ Xp
0 : q =

∑
j /∈S∪(−S)

qje
ijx qj = q̄−j , qj = q−j

p =
∑

j /∈S∪(−S)

pje
ijx , pj = p̄−j , pj = −p−j

 .

Any z = (q, p) ∈ Xp
0 can be written as z = zT + z⊥, where zT ∈ HS is the so called “tangential

variable” and z⊥ ∈ H⊥S is the so called “normal variable”. Therefore, if (q, p) ∈ Xp
0 , then

q =
∑
j∈S

qj cos jx+ q⊥ , p =
∑
j∈S

pj sin jx+ p⊥ .

The symplectic form W defined in (1.24) can be decomposed as follows

W =
∑
j∈S

2π

j
dqj ∧ dpj ⊕W|H⊥S , (1.34)

where W|H⊥S is given in (6). Now, in a r-neighborhood of the origin of HS, we introduce the action-angle

variables using the trigonometric representation of Xp
0 , by setting

q =
∑
j∈S

√
Ij + rj cosϑj cos jx+ w1, where w1 := q⊥ =

∑
j∈S⊥

qj cos jx,

p =
∑
j∈S

√
Ij + rj sinϑj sin jx+ w2 where w2 := p⊥ =

∑
j∈S⊥

pj sin jx,
(1.35)
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and 0 < rj < 1 is a constant such that the variable |Ij | ≤ rj , ∀j = 1, ..., N . In conclusion, let

z := (q, p) ∈ Xp
0 , then the change of variables A : (ϑ, I, w) 7→ z is

A(ϑ, I, w) := A(ϑ, I) + w :=
∑
j∈S

√
j

π

√Ij + rj cosϑj cos jx√
Ij + rj sinϑj sin jx

+

w1

w2

 , (1.36)

where

A(ϑ, I) :=
∑
j∈S

√
j

π

√Ij + rj cosϑj cos jx√
Ij + rj sinϑj sin jx

 , w :=

w1

w2

 . (1.37)

After the change of variables (1.36) the symplectic form W defined in (1.34) becomes

Wnew :=
∑
j∈S

dIj ∧ dϑj ⊕W|H⊥S , (1.38)

where W|H⊥S is the symplectic form defined in (6).

Note that Wnew = −dΞ where Ξ is the Liouville 1-form

Ξ(ϑ,I,w)[ϑ̂, Î, ŵ] := −
∑
j∈S

Ij ϑ̂j −
1

2

(
J−1w, ŵ

)
L2
x
. (1.39)

The Hamiltonian system (1.29) is transformed into the new Hamiltonian system
ϑ̇ = ∂IHµ

İ = −∂ϑHµ

∂tw = −J∇wHµ

(1.40)

generated by the Hamiltonian

Hµ = H ◦ A (1.41)

where H is defined in (1.26) and A is defined in (1.36).

After the introduction of the action-angle variables, the involution ρ defined in (10) and (1.25) becomes

ρ̃ : (ϑ, I, w) 7→ (−ϑ, I, ρw). (1.42)

This is our new reversible structure, hence

Hµ ◦ ρ̃ = Hµ,

where Hµ is defined in (1.41). Then it is natural to look for reversible solutions of (1.40) satisfying

ϑ(−θ) = −ϑ(θ),

I(−θ) = I(θ),

w(−θ) = (ρw)(θ) .

(1.43)

We denote by

XHµ := (∂IHµ,−∂ϑHµ,−J∇wHµ)
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the Hamiltonian vector field in the variables (ϑ, I, w) ∈ TN × RN × H⊥S , where H⊥S is defined in (1.32).

Hence the Hamiltonian Hµ in (1.41) reads

Hµ = N + µP, N = L ◦ A = ~ω(ε) · I +
1

2
(w,Dw)L2

x
, P = P ◦ A (1.44)

where L is defined in (1.27), P is defined in (1.28), A is defined in (1.36),

~ω(ε) =
(
j
√

2
15ε

4j4 − 1
3ε

2j2 + 1
)
j∈S

represents the unperturbed tangential frequency vector and ( recall

the definition of Λ given in (1.19))

D :=

Λ1Λ 0

0 Λ−1( 2
15ε

4∂4
x + 1

3ε
2∂2
x + 1)Λ−1

∣∣∣∣∣∣
H⊥S

=

( 2
15ε

4j4 − 1
3ε

2j2 + 1)
1
2 0

0 ( 2
15ε

4j4 − 1
3ε

2j2 + 1)
1
2

∣∣∣∣∣∣
H⊥S

.

(1.45)

In what follows since D acts on w ∈ H⊥S we shall not write the restriction on the operator.



Chapter 2

Functional Analytic Setting

Since we are looking for quasi-periodic solutions, we consider the following Sobolev spaces of (2π)−

periodic real functions in space and “time”, namely

Hp(T×TN ) := Hp(T×TN ,R) := Hp(T×TN )×Hp(T×TN ) , (2.1)

where

Hp(T×TN ) :=Hp(T×TN ,R)

:=

w(x, θ) =
∑

j∈Z,l∈ZN
wj,le

ijx+il·θ : wl,j = w−l,−j ,

‖w‖2p := ‖w‖Hpθ,x :=
∑

j∈Z,l∈ZN
|wj,l|2 〈j, l〉2p <∞


and 〈j, l〉 := max{1, |j|, |l|} .

Remark 2.1. We use the space Hp(T×TN ) whose functions have the same regularity both in space and

time, since in Chapter 8 we have to consider the composition transformation TM+4 (see Lemma 8.8) that

mixes regularity of time and space.

With slight abuse of notation we define the so called p−norm of a vector w = (w1, w2) ∈ Hp(T×TN )

as

‖w‖p := ‖w‖Hp
θ,x

:= max{‖w1‖p, ‖w2‖p} . (2.2)

We shall consider a function w(x, θ) ∈ L2(T × TN ,C) × L2(T × TN ,C) of the space-time also as a θ-

dependent family of functions w(·, θ) ∈ L2(Tx,C)× L2(Tx,C). We shall also write L2 = L2(T× TN ) =

L2(Tx) = L2
x. We can expand a function w := (w1, w2) in Fourier series as follows:

w(x, θ) =

w1(x, θ)

w2(x, θ)

 =
∑
j∈Z

(w1)j(θ)

(w2)j(θ)

 eijx =
∑

j∈Z,l∈ZN

(w1)j,l

(w2)j,l

 eijx+il·θ . (2.3)

9
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For notational convenience we will write ‖ · ‖p both for functions and for vectors. Moreover we have the

following equivalence of norms:

‖ · ‖p ' ‖ · ‖HpθL2
x

+ ‖ · ‖L2
θH

p
x
,

where

‖w‖2HpθL2
x

:=
∑
l

〈l〉2p‖wl(·)‖2L2
x

=
∑
l

〈l〉2p
∑
j

|wlj |2 ,

and

‖w‖2L2
θH

p
x

:=
∑
l

‖wl(·)‖2Hpx =
∑
l

∑
j

|wlj |2 〈j〉2p .

Furthermore, given v(θ) ∈ RN we define the following norm

‖v‖2Hpθ =
∑
l∈ZN

|vl|2 〈l〉2p . (2.4)

We recall that the p−norm ‖ · ‖p defined in (2.2) satisfies the tame estimate for the product of functions

(see for istance [5]), i.e. for all p ≥ p0, for all w, v ∈ Hp(T×TN ) the following inequality holds

‖wv‖p ≤ C(p)‖w‖p‖v‖p0
+ C(p0)‖w‖p0

‖v‖p . (2.5)

Definition 1. Given a function w ∈ L2(T×TN ) ,

w(x, θ) =
∑

j∈Z,l∈ZN
wl,je

ijx+il·θ

we define the majorant function

|w|(x, θ) =
∑

l∈ZN ,j∈Z

|wl,j |eijx+il·θ . (2.6)

Note that the Sobolev norm ‖ · ‖p in (2.2) of w and |w| is the same, i.e. ‖w‖p = ‖|w|‖p.

In this work we have that the functions also depend on the parameter ζ := (ω, ε). For a scalar valued

functions λ : Λ0 ∈ RN+1 → R which are k0-times differentiable with respect to a parameter

ζ := (ω, ε) ∈ Λ0 ⊂ RN+1 ,

we define, for γ ∈ (0, 1), the weighted norm

|λ|k0,γ := |λ|k0,γ
Λ0

:=
∑
|k|≤k0

γ|k| sup
ζ∈Λ0

|∂kζ λ(ζ)|. (2.7)

We shall also consider families of Sobolev functions ζ 7→ w(ζ) ∈ Hp(T × TN ) which are k0-times

differentiable with respect to the parameter ζ (defined above) and we define the weighted Sobolev norm

‖w‖k0,γ
p :=

∑
|k|≤k0

γ|k| sup
ζ∈Λ0

‖∂kζ w(ζ)‖p . (2.8)
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In this thesis we will also consider vector valued Sobolev functions ζ 7→ w(ζ) ∈ Hp(T × TN ) which

are k0-times differentiable with respect to a parameter ζ. For γ ∈ (0, 1) the weighted Sobolev norm of

w(ζ) ∈ Hp(T×TN ) is given by

‖w‖k0,γ
p :=

∑
|k|≤k0

γ|k| sup
ζ∈Λ0

‖∂kζw(ζ)‖p , (2.9)

where ‖ · ‖p is defined in (2.2).

Remark 2.2. In Chapters 7, 8 and in Appendix B we shall also consider 2× 2 matrices of functions

F :=

f1 f2

f3 f4

 ,

with the norm

‖F‖k0,γ
p := max

m=1,...,4
‖fm‖k0,γ

p .

We also introduce the smoothing operators

(ΠKw)(x, θ) :=
∑

|(l,j)|≤K

wl,je
ijx+il·θ, Π⊥K = 1−ΠK (2.10)

which satisfy the smoothing properties

‖ΠKw‖k0,γ
p+b ≤ K

b‖w‖k0,γ
p , ‖Π⊥Kw‖k0,γ

p ≤ K−b‖w‖k0,γ
p+b ∀p, b ≥ 0 . (2.11)

Now we introduce the class of operators that we shall use later. We shall consider a class of θ-

dependent families of linear operators A : TN 7→ L(L2(Tx)) , θ 7→ A(θ) acting on L2(Tx). We may

consider also an operator A ∈ L2(T×TN ) which acts on functions w(x, θ) of space-time, as

(Aw)(x, θ) := (A(θ)w(·, θ))(x) .

If A maps the space of real valued functions into itself we say that A is a real operator.

We represent a real operator A acting on w = (w1, w2) ∈ L2(T1 ×TN ,R2) as follows

Aw =

A1 A2

A3 A4

w1

w2

 , (2.12)

and each Am, m = 1, ..., 4 acts linearly.

We may identify an operator A ∈ L(L2(T×TN )) with, respect to the exponential representation, an

infinite matrix (Aj
′

j (l − l′))j,j′∈Z,l,l′∈ZN . Consequently given

w(x, θ) =
∑
j′∈Z

wj′(θ)e
ij′x =

∑
j′∈Z,l′∈ZN

wj′,l′e
ij′x+il′·θ

the action of A on w ∈ L2(T×TN ,R) is

Aw(x, θ) =
∑
j,j′∈Z

Aj
′

j (θ)wj′(θ)e
ijx =

∑
j′,j∈Z,l′,l∈ZN

Aj
′

j (l − l′)wj′,l′eijx+il·θ . (2.13)
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Moreover the operator ∂θA(θ) is identified with the matrix with elements i(l − l′)Aj
′

j (l − l′) and the

commutator [∂x, A] is identified with the matrix with entries i(j − j′)Aj
′

j (l − l′).

We now introduce the following operators that will be used in Chapter 9.

Definition 2. Given a linear operator A as above we define the following operators

1. The majorant operator |A| whose matrix elements are |Aj
′

j (l − l′)| .

2. The differentiated operator 〈∂θ〉bA, b ∈ R, whose matrix elements are 〈l − l′〉bAj
′

j (l − l′) .

3. The smoothed operator ΠKA,K ∈ N whose matrix elements are

(ΠKA)j
′

j (l − l′) =

 Aj
′

j (l − l′) if |l − l′| ≤ K ,

0 otherwise .

A simple property is given in the following Lemma.

Lemma 2.3. Given linear operators A,B as above, for all w ∈ Hp(T×TN ) we have

‖|A+B|w‖p ≤‖|A||w|‖p + ‖|B||w|‖p, (2.14)

‖|AB|w‖p ≤‖|A||B||w|‖p . (2.15)

Proof. See Lemma 2.2 in [19] .

Definition 3. Even-Odd Operator. A linear operator A as in (2.13) is even, if each A(θ) , θ ∈ TN

leaves invariant the space of functions even, respectively odd, in the spatial variable. A linear operator A

as in (2.13) is odd, if each A(θ) , θ ∈ TN sends the space of functions even in the spatial variable into

the space of functions odd in the spatial variable and vice-versa.

A linear operator A as in (2.12) sends Xp
0 defined in (1.8) in itself if A1 , A4 are even operators and

A2 , A3 are odd operators.

Since the Fourier coefficients (in the exponential representation) of an even, respectively odd, function

satisfy w−j = wj , respectively w−j = −wj , ∀j ∈ Z, we have that a linear operator A is even, respectively

odd, if

∀θ ∈ TN , Aj
′

j (θ) = A−j
′

−j (θ), respectively Aj
′

j (θ) = −A−j
′

−j (θ) . (2.16)

Definition 4. Reversibility. A family of operators A(θ) as in (2.12) is

1. reversible if A(−θ) ◦ ρ = −ρ ◦A(θ),∀θ ∈ TN , where the involution ρ is defined in (10),

2. reversibility preserving if A(−θ) ◦ ρ = ρ ◦A(θ), ∀θ ∈ TN .

The conjugation of an even and reversible (respectively odd and reversible) operator with a map Φ

which is even and reversibility preserving is even and reversible (respectively odd and reversible).

A family of operator A(θ) as in (2.12) is



CHAPTER 2. FUNCTIONAL ANALYTIC SETTING 13

1. reversible if and only if the maps θ 7→ A1(θ), A4(θ) are odd and θ 7→ A2(θ), A3(θ) are even.

2. reversibility preserving if and only if the maps θ 7→ A1(θ), A4(θ) are even and θ 7→ A2(θ), A3(θ)

are odd.

2.1 Pseudo-differential operators

The change of variables Λ (see (1.22) and (1.19)) is given in terms of Fourier multipliers, which are a

particular case of pseudo-differential operators. In this section we present some known results (see [39],

[60], [19]) about pseudo-differential operators. Since we are working in a periodic setting, we introduce

pseudo-differential operators on the torus. Let a : Z→ C be a function. Let (∆ja)(j) := a(j + 1)− a(j)

be the discrete derivative. For β ∈ N we denote by ∆β
j := ∆j ◦ ... ◦ ∆j the composition of β-discrete

derivatives.

Definition 5. Let a : T× Z→ C, a(x, j) be a function which is C∞ with respect to x. Let m ∈ R. We

shall say that a is a symbol of order m, if for all α, β ∈ N there exists a constant C = Cα,β > 0 such

that

|∂αx∆β
j a(x, j)| ≤ C(1 + |j|)m−β , ∀(x, j) ∈ T×Z . (2.17)

We denote Sm the class of all symbols of order m.

Definition 6. Given a symbol a ∈ Sm and a function u(x) =
∑
j∈Z û(j)eijx, we define the operator

a(x,D)u(x) =
∑
j∈Z

a(x, j)û(j)eijx

and we say that a(x,D) := Op(a) is the pseudo-differential operator associated to the symbol a.

We introduce another equivalent definition of pseudo-differential symbols of order m, that we shall

use along all the thesis.

Definition 7. A linear operator A is called pseudo-differential of order m if its symbol a(x, j) is the

restriction to R × Z of a function a(x, ξ) which is C∞-smooth on R ×R, 2π-periodic in x and satisfies

the following inequality

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−β , ∀α, β ∈ N , (2.18)

we say that a(x, ξ) is the symbol of the operator A. We denote by OPSm the set of the pseudo-differential

operators whose symbols are in Sm .

Definition 6 is equivalent to the Definition 7 because a discrete symbol a : R×Z→ C satisfying (2.17)

can be extended to a C∞-symbol ã : R×R→ C satisfying (2.18), see [60].

Lemma 2.4. A pseudo-differential operator with symbol a(x, ξ) is
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1. even, respectively odd, if and only if a(x, ξ) = a(−x,−ξ), respectively a(x, ξ) = −a(−x,−ξ),

2. real, i.e. it sends the space of real functions into itself, if and only if a(x, ξ) = a(x,−ξ).

Proof. Let u(x) =
∑
j∈Z û(j)eijx be a even function, i.e. û(j) = û(−j), the action of an even pseudo-

differential operator a(x,D) (see Definition 6) with symbol a(x, j), on u is given by

a(x,D)u(x) =
∑
j

a(x, j)û(j)eijx .

We have that

a(−x,D)u(−x) =
∑
j

a(−x, j)û(j)e−ijx =
∑
j

a(−x,−j)û(−j)eijx =
∑
j

a(x, j)û(j)eijx

where the last equality holds if and only if a(−x,−j) = a(x, j). The proof for the other cases is similar,

therefore it is omitted.

We now recall some properties of pseudo-differential operators, see [39] for more details. From now

on we shall consider operators with C∞-symbols.

Definition 8. Let a ∈ Sm, and am−k ∈ Sm−k,∀k ≥ 0. We call
∑
k≥0 am−k the asymptotic expansion

of the symbol a and we write

a(x, ξ) ∼
∑
k≥0

am−k(x, ξ),

if for all M ∈ N we have

a(x, ξ)−
∑
k≤M

am−k(x, ξ) ∈ Sm−M−1 .

We provide a fundamental result concerning composition of pseudo-differential operators.

Theorem 2.5. Composition. Let A := Op(a(x, ξ)) and B := Op(b(x, ξ)) be two pseudo-differential

operators with symbols of order respectively m and n with m,n ∈ R. Then the composition operator

A ◦B = C is a pseudo-differential operator of order m+ n with symbol

c(x, ξ) =
∑
j∈Z

a(x, ξ + j)b̂(j, ξ)eijx =
∑
j,k

â(k − j, ξ + j)b̂(j, ξ)eikx

where ·̂ denotes the Fourier coefficients of the symbols a(x, ξ) and b(x, ξ) with respect to x. Moreover the

symbol c admits the asymptotic expansion

c(x, ξ) ∼
∑
β≥0

(−i)β

β!
∂βξ a(x, ξ)∂βx b(x, ξ) ,

namely, ∀M ≥ 1

c(x, ξ) =

M−1∑
β=0

(−i)β

β!
∂βξ a(x, ξ)∂βx b(x, ξ) + rM (x, ξ) , (2.19)

where rM ∈ Sm+n−M . The remainder rM has the explicit formula

rM (x, ξ) :=
1

(M − 1)!iM

∫ 1

0

(1− τ)M−1
∑
j∈Z

(∂Mξ a)(x, ξ + jτ)∂̂Mx b(x, ξ)e
ijxdτ . (2.20)
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In this thesis we consider θ-dependent families of pseudo-differential operators. We work with pseudo-

differential operators with symbol a(x, θ, ξ) that are C∞-smooth also in θ. We still denote A := A(θ) =

Op(a(θ, ·)) = Op(a). Therefore given a symbol a(x, θ, ξ) ∈ C∞(T×TN ×R) we define the action of the

operator A on a function w as follows

Aw(x, θ) =
∑
j∈Z

a(x, θ, j)wj(θ)e
ijx .

One can extend the previous results to θ-dependent pseudo-differential operators; for instance the symbol

of the composition operator A ◦B is

c(x, θ, ξ) =
∑
j∈Z

a(x, θ, ξ + j)b̂(j, θ, ξ)eijx =
∑

j,j′∈Z,l,l′∈ZN
â(j′ − j, l − l′, ξ + j)b̂(j, l′, ξ)eij

′x+il·θ .

In this thesis we consider family of pseudo-differential operators which are k0-times differentiable with

respect to a parameter ζ. Note that, if A(ζ) = Op(a(ζ, x, θ, ξ)) is a pseudo-differential operator, then

also ∂kζA is a pseudo-differential operator, that is

∂kζA = Op(∂kζ a) , ∀k ∈ NN+1 .

As in [19] we define a suitable norm (inspired to the norm in [52]) which, given a symbol b(x, θ, ξ) ∈ Sm,

controls its regularity in (x, θ) and the decay in ξ in the Sobolev norm ‖ · ‖p.

Definition 9. Let B := B(ζ) := b(ζ, x, θ,D) ∈ OPSm , m ∈ R be a family of pseudo-differential

operators with symbol b(ζ, x, θ, ξ) ∈ Sm, which are k0-times differentiable with respect to ζ ∈ Λ0 ⊂ RN+1.

For γ ∈ (0, 1), α ∈ N, p ≥ 0, we define the weighted norm

|B|k0,γ
m,p,α :=

∑
k≤k0

γ|k| sup
ζ∈Λ0

|∂kζB(ζ)|m,p,α , (2.21)

where k = (k1, ..., kN+1) ∈ NN+1 with |k| := |k1|+ ...+ |kN+1| and

|B|m,p,α := max
0≤β≤α

sup
ξ∈R
‖∂βξ b(ζ, ·, ·, ξ)‖p 〈ξ〉

−m+β
. (2.22)

Remark 2.6. In what follows we shall always use the norm (2.21) with α = 0, that is | · |k0,γ
m,p,0. We

can use this semplification since all the symbols that we have to estimate are classical symbols, namely

admit an asyntotic expansion in homogeneous symbols ( see Chapter 7, 8 and Appendix B ) . We shall

systematically expand the symbols in homogeneous components in all the transformations that we shall

do.

Remark 2.7. In what follows we shall consider matrices of pseudo-differential operators and, with a

slightly abuse of notation, we shall use the norm | · |k0,γ
m,p,0 defined in (2.21) both for pseudo-differential

operators and for matrices. In other words, for B as follows

B :=

B1 B2

B3 B4

 , Bi := bi(ζ, x, θ,D) ∈ OPSm , i = 1, ..., 4 ,
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we set

|B|k0,γ
m,p,0 := max

i=1,...,4
|Bi|k0,γ

m,p,0 .

For completeness, in this Section we decide to present the results for the norm | · |k0,γ
m,p,α. For each

k0, γ,m fixed, the norm (2.21) is non-decreasing both in p and α, namely

∀p ≤ p′, ∀α ≤ α′, | · |k0,γ
m,p,α ≤ | · |

k0,γ
m,p′,α , | · |k0,γ

m,p,α ≤ | · |
k0,γ
m,p,α′ . (2.23)

We also have that the norm (2.21) is non-increasing in m, that is

m ≤ m′ ⇒ | · |k0,γ
m′,p,α ≤ | · |

k0,γ
m,p,α. (2.24)

Given a function a(ζ, x, θ) ∈ C∞−smooth on R× TN which is k0-times differentiable with respect to ζ,

the weighted norm of the corresponding multiplication operator is

|Op(a)|k0,γ
0,p,α = ‖a‖k0,γ

p , ∀α ∈ N , (2.25)

where the weighted Sobolev norm ‖ · ‖k0,γ
p is defined in (2.8).

For a Fourier multiplier g(D) with symbol g ∈ Sm, we have

|g(D)|m,p,α ≤ C(m,α, g) , ∀p ≥ 0 . (2.26)

Proposition 2.8. Composition. Let A := a(ζ, x, θ,D) and B := b(ζ, x, θ,D) be two pseudo-differential

operators whose symbols a(ζ, x, θ, ξ) ∈ Sm and b(ζ, x, θ, ξ) ∈ Sn, with m,n ∈ R. Then A(ζ) ◦ B(ζ) is a

pseudo-differential operator (see (2.19)) with symbol in Sm+n satisfying, for all α ∈ N, p ≥ p0,

|AB|k0,γ
m+n,p,α ≤ C(p)|A|k0,γ

m,p,α|B|
k0,γ
n,p0+α+|m|,α + C(p0)|A|k0,γ

m,p0,α|B|
k0,γ
n,p+α+|m|,α . (2.27)

Moreover, for any integer M ≥ 1, the remainder RM = Op(rM ) (see (2.20)) satisfies

|RM |k0,γ
m+n−M,p,α ≤

1

M !

(
C(p)|A|k0,γ

m,p,α+M |B|
k0,γ
n,p0+2M+α+|m|,α

+ C(p0)|A|k0,γ
m,p0,α+M |B|

k0,γ
n,p+2M+α+|m|,α

)
.

(2.28)

Proof. A complete proof is in [19] .

By (2.25) and (2.26) and Proposition 2.8 we have that ∀m ∈ Z and for all p ≥ p0

|a(x, θ)∂mx |k0,γ
m,p,α ≤ C(m,α, p)‖a‖k0,γ

p + C(m,α, p0)‖a‖k0,γ
p0
≤ C1(m,α, p)‖a‖k0,γ

p . (2.29)

By (2.19) the commutator between two pseudo-differential operators A := a(ζ, x, θ,D) ∈ OPSm and

B := b(ζ, x, θ,D) ∈ OPSn is a pseudo-differential operator [A,B] ∈ OPSm+n−1.



CHAPTER 2. FUNCTIONAL ANALYTIC SETTING 17

Lemma 2.9. Commutators. Let A := a(ζ, x, θ,D), B := b(ζ, x, θ,D) be pseudo-differential operators

with symbols a(ζ, x, θ, ξ) ∈ Sm, b(ζ, x, θ, ξ) ∈ Sn, m, n ∈ R. Then the commutator [A,B] := AB −BA ∈

OPSm+n−1 satisfies

|[A,B]|k0,γ
m+n−1,p,α ≤C(p)|A|k0,γ

m,p+2+|n|+α,α+1|B|
k0,γ
n,p0+2+|m|+α,α+1

+C(p)|A|k0,γ
m,p0+2+|n|+α,α+1|B|

k0,γ
n,p+2+|m|+α,α+1 .

(2.30)

Proof. The estimate follows by (2.19), (2.28) for M = 1, and (2.23).

We finally state an invertibility Lemma.

Lemma 2.10. Invertibility. Let T := T (ζ) and T (ζ) = 1 + Φ(ζ) where Φ(ζ) is a pseudo-differential

operator in OPS0. There exist constants C(p0, α, k0), C(p, α, k0) ≥ 1, p ≥ p0, such that, if

C(p0, α, k0)|Φ|k0,γ
0,p0+α,α ≤

1

2
, (2.31)

then, for all ζ, the operator T is invertible, T−1 ∈ OPS0 and, for all p ≥ p0

|T−1 − 1|k0,γ
0,p,α ≤ C(p, α, k0)|Φ|k0,γ

0,p+α,α.

Proof. See [19].

2.2 Dk0- tame and modulo-tame operators

We consider linear operators A := A(ζ), k0−times differentiable with respect to a parameter ζ ∈ Λ0 ∈

RN+1. Recall the weighted norm ‖ · ‖k0,γ
p defined in (2.8). We now present some results, given in [19],

that we shall use in Chapter 9.

Definition 10. A family of linear operators A := A(ζ) is Dk0 − σ−tame if the following weighted tame

estimate holds: there exists σ ≥ 0 such that for all p ≥ p0, for all w ∈ Hp+σ(T×TN ),

sup
|k|≤k0

sup
ζ∈Λ0

γ|k|‖(∂kζA)w‖p ≤MA(p0)‖w‖p+σ +MA(p)‖w‖p0+σ (2.32)

where the functions p 7→ MA(p) ≥ 0 are non-decreasing in p. We call MA the tame constant of the

operator A. Note that the constant MA(p0) := MA(k0, σ, p0) depends also on k0, σ, but since k0, σ do

not vary along the thesis we shall omit to write them.

Remark 2.11. In Chapter 9 we shall work with Dk0-tame operators with a finite P < ∞, whose tame

constant MA(p) may depend also on C(P ), for istance MA(p) ≤ C(P )µ‖v‖k0,γ
p+ν , ∀p0 ≤ p ≤ P . We shall

fix the highest P in the Nash-Moser iteration, see (10.13).

When the “loss of derivatives” σ = 0 we call a Dk0 − 0−tame operator to be Dk0− tame.
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Remark 2.12. By (2.32) (with k = 0, p = p0) we have

‖A‖L(Hp0+σ,Hp0 ) ≤ 2MA(p0) . (2.33)

Let A be a linear operator, that can be identified with the infinite matrix Aj
′

j (l − l′) where j, j′ ∈ Z

and l, l′ ∈ ZN , then, ∀|k| ≤ k0,

γ2|k|
∑
l,j

〈l, j〉2p |∂kζA
j′

j (l − l′)|2 ≤ C(k0)
(
MA(p0)2 〈l′, j′〉2p+2σ

+MA(p)2 〈l′, j′〉2p0+2σ
)
.

The class of Dk0 − σ−tame operators is closed under composition.

Lemma 2.13. Composition. Let A,B be linear operators Dk0−tame. Then the composed operator

A ◦B := AB is a Dk0−tame operator with tame constant

MAB(p) ≤ C(k0) (MA(p0)MB(p) +MA(p)MB(p0)) .

Let A,B be respectively Dk0 − σA−tame and Dk0 − σB−tame operators with tame constants respectively

MA(p) and MB(p). Then the composed operator A ◦ B is Dk0 − (σA + σB)−tame operator with tame

constant

MAB(p) ≤ C(k0) (MA(p0)MB(p+ σA) +MA(p)MB(p0 + σA)) . (2.34)

Proof. See [19].

The following lemmas are meant to prove that the norm | · |k0,γ
0,p,0 controls the action of a pseudo-

differential operator on Hp(T×TN ).

Lemma 2.14. Let B = b(ζ, x, θ,D) be a family of pseudo-differential operators which are k0−times

differentiable with respect to ζ and with symbol b in S0. If |B|k0,γ
0,p,0 < ∞, then B is Dk0−tame (see

Definition 10) with tame constant ∀p ≥ p0

MB(p) ≤ C(p)|B|k0,γ
0,p,0 . (2.35)

Proof. See [19].

The action of a Dk0 − σ−tame operator A(ζ) on functions w(ζ) ∈ Hp(T × TN ) that are k0−times

differentiable with respect to ζ ∈ Λ0 ⊂ RN+1 is given by the following Lemma.

Lemma 2.15. Let A := A(ζ) be a Dk0 − σ−tame operator. Then ∀p ≥ p0 and for any family of Sobolev

functions w := w(ζ) ∈ Hp+σ(T × TN ) which is k0−times differentiable with respect to ζ the following

tame estimate holds

‖Aw‖k0,γ
p ≤k0

MA(p0)‖w‖k0,γ
p+σ +MA(p)‖w‖k0,γ

p0+σ .

Proof. See lemma 2.14 in [19].
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By Lemma 2.15, (2.25), (2.35) the tame estimate for the product of two functions in weighted Sobolev

norm may be estimated as in the following Lemma:

Lemma 2.16. For all p ≥ p0, for all w, v ∈ Hp(T×TN ) the following inequalities hold

‖wv‖k0,γ
p ≤k0

C(p)‖w‖k0,γ
p ‖v‖k0,γ

p0
+ C(p0)‖w‖k0,γ

p0
‖v‖k0,γ

p , (2.36)

‖wv‖k0,γ
p ≤k0 C(p)‖w‖k0,γ

p ‖v‖k0,γ
p .

In view of the KAM reducibility scheme of Chapter 9 we also consider the stronger notion of

Dk0−modulo-tame operators, that we need only for operators with loss of derivatives σ = 0 .

Definition 11. A linear operator A := A(ζ) is Dk0-modulo-tame if for all k ∈ NN+1, |k| ≤ k0,

the majorant operators |∂kζA| (see Definition 2) satisfy the following weighted tame estimate: for all

p ≥ p0, w ∈ Hp+σ(T×TN ),

sup
|k|≤k0

γ|k|‖|∂kζA|w‖p ≤M
]
A(p0)‖w‖p +M]

A(p)‖w‖p0 , (2.37)

where the functions p 7→ M]
A(p) ≥ 0 are non-decreasing in p. The constant M]

A(p) is called the modulo

tame constant of the operator A.

Lemma 2.17. Let A be a Dk0− modulo-tame operator, then

MA(p) ≤M]
A(p) .

Proof. See Lemma 2.15 in [19].

The class of Dk0-modulo-tame operators is closed under sum and composition, indeed we have the

following Lemma.

Lemma 2.18. Sum and composition. Let A,B be Dk0-modulo-tame operators with modulo-tame

constants respectively M]
A(p) and M]

B(p). Then A+B is Dk0-modulo-tame with modulo-tame constant

M]
A+B(p) ≤M]

A(p) +M]
B(p) . (2.38)

The composed operator A ◦B := AB is Ck0-modulo-tame with modulo-tame constant

M]
AB(p) ≤ C(k0)

(
M]

A(p)M]
B(p0) +M]

B(p)M]
A(p0)

)
. (2.39)

Assume in addition that 〈∂θ〉bA, 〈∂θ〉bB (see Definition 2) are Dk0- modulo-tame with modulo-tame

constant respectively M]

〈∂θ〉bA
(p) and M]

〈∂θ〉bA
(p), then 〈∂θ〉b (AB) is Dk0 -modulo-tame with modulo-

tame constant satisfsying

M]

〈∂θ〉b(AB)
(p) ≤ C(b)C(k0)

(
M]

〈∂θ〉bA
(p)M]

B(p0) +M]

〈∂θ〉bA
(p0)M]

B(p)

+ M]

〈∂θ〉bB
(p)M]

A(p0) +M]

〈∂θ〉bB
(p0)M]

A(p)
)
.

(2.40)
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Proof. See Lemma 2.16 in [19].

As a consequence of the composition rule (2.39), if A is Dk0-modulo-tame, then, for all n ≥ 1, each

An is Dk0 -modulo-tame and

M]
An(p) ≤

(
2C(k0)M]

A(p0)
)n−1

M]
A(p) . (2.41)

Moreover, by (2.40), if 〈∂θ〉bA is Dk0 -modulo-tame then for all n ≥ 2 each 〈∂θ〉bAn is Dk0-modulo-tame

with

M]

〈∂θ〉bAn
(p) ≤ (4C(k0)C(b))

n−1

(
M]

〈∂θ〉bAn
(p)
(
M]

A(p0)
)n−1

+ M]
A(p)M]

〈∂θ〉bAn
(p0)

(
M]

A(p0)
)n−2

)
.

(2.42)

Lemma 2.19. Invertibility. Consider the operator Φ(ζ) = 1+A(ζ) where A(ζ) := A is Dk0−modulo-

tame with modulo-tame constant M]
A(p). Assume the smallness condition

4C(b)C(k0)M]
A(p0) ≤ 1

2
. (2.43)

Then the operator Φ(ζ) := Φ is invertible, B := Φ−1 − 1 is a Dk0−modulo-tame operator with modulo-

tame constant

M]
B(p) ≤ 2M]

A(p) . (2.44)

Moreover 〈∂θ〉bB is Dk0-modulo-tame with tame-constant

M]

〈∂θ〉bB
(p) ≤ 2M]

〈∂θ〉bA
(p) + 8C(b)C(k0)M]

〈∂θ〉bB
(p0)M]

A(p) . (2.45)

Proof. Using (2.33) and (2.43) the operator norm ‖A‖L(Hp0 ) ≤ 2M]
A(p0) ≤ 1

2 .

Then Φ in invertible and the inverse Φ−1 = 1+B where B =
∑
j(−1)jAj satisfy the estimate (2.44)

by (2.38), (2.41) and (2.43). Similarly (2.45) follows by (2.38), (2.42) and (2.43).

We now present further lemmas that we shall use in Chapter 9.

Lemma 2.20. Smoothing. Suppose that 〈∂θ〉bA , b ≥ 0 , is Dk0- modulo-tame. Then the operator

Π⊥NA is Dk0- modulo-tame with tame constant

M]

Π⊥NA
(p) ≤ N−bM]

〈∂θ〉bA
(p) , M]

Π⊥NA
(p) ≤M]

A(p) . (2.46)

Proof. See Lemma 2.18 in [19].

Lemma 2.21. Let A and B be linear operators satisfying |A|, |B|, | 〈∂θ〉bA|, | 〈∂θ〉bB| ∈ L(Hp0). Then

‖|A+B|‖L(Hp0 ) ≤ ‖|A|‖L(Hp0 ) + ‖|B|‖L(Hp0 ) (2.47)

‖|AB|‖L(Hp0 ) ≤ ‖|A|‖L(Hp0 )‖|B|‖L(Hp0 ) (2.48)
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‖| 〈∂θ〉b (AB)|‖L(Hp0 ) ≤ ‖| 〈∂θ〉
b
A|‖L(Hp0 )‖|B|‖L(Hp0 ) + ‖| 〈∂θ〉bB|‖L(Hp0 )‖|A|‖L(Hp0 ) (2.49)

‖|Π⊥NA|‖L(Hp0 ) ≤ N−b‖ 〈∂θ〉
b |A|‖L(Hp0 ) (2.50)

‖|Π⊥NA|‖L(Hp0 ) ≤ ‖|A|‖L(Hp0 ) . (2.51)

Proof. See [19].

Lemma 2.22. Let Φi := 1 + Ψi, i = 1, 2 satisfy

‖|Ψi|‖L(Hp0 ) ≤
1

2
, i = 1, 2 . (2.52)

Then Φ−1
i = 1 + Ψ̂i , i = 1, 2 satisfy ‖|Ψ̂1 − Ψ̂2|‖L(Hp0 ) ≤ 4‖|Ψ1 −Ψ2|‖L(Hp0 ) and

‖ 〈∂θ〉b |Ψ̂1 − Ψ̂2|‖L(Hp0 ) ≤ C(b)‖ 〈∂θ〉b |Ψ1 −Ψ2|‖L(Hp0 )

+ C(b)
(

1 + ‖| 〈∂θ〉b Ψ̂1|‖L(Hp0 ) + 〈∂θ〉b Ψ̂2|‖L(Hp0 )

)
‖|Ψ1 −Ψ2|‖L(Hp0 ) .

Proof. See Lemma 2.20 in [19].

2.3 Composition operators

The composition operator w(y) 7→ w(y + p(y)) induced by a diffeomorphism of the torus Tn is tame.

Lemma 2.23. Let q := q(ζ, ·) : Rn → Rn be a family of 2π-periodic functions which is k0-times

differentiable with respect to ζ ∈ Λ0 ⊂ RN+1, satisfying

‖q‖Cp0+1 ≤ 1

2
, ‖q‖k0,γ

p0
≤ 1 .

Let g(y) := y + q(y), y ∈ Tn. Then the composition operator

A : w(y)→ (w ◦ g)(y) = w(y + q(y))

satisfies the tame estimates

‖Aw‖p0
≤ C(p0)‖w‖p0

, ‖Aw‖p ≤ C(p0)‖w‖p0+1‖q‖p + C(p)‖w‖p, ∀p ≥ p0 + 1 ,

and for any |k| ≤ k0,

‖(∂kζA)w‖p0
≤ C(p0, k)γ−|k|‖w‖p0+|k|

‖(∂kζA)w‖p ≤ γ−|k|C(p, k)
(
‖w‖p0+|k|+1‖q‖|k|,γp + ‖w‖p+|k|

)
, ∀p ≥ p0 + 1 .

The map g is invertible with inverse g−1(x) = x+ s(x). Suppose ∂kζ q(ζ, ·) ∈ C∞(TN+1) for all |k| ≤ k0.

There exists a constant δ := δ(p0, k0) ∈ (0, 1) such that, if ‖q‖k0,γ
2p0+k0+1 ≤ δ, then

‖s‖k0,γ
p ≤ C(p, k0)‖s‖k0,γ

p+k0
, ∀p ≥ p0 . (2.53)
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The composition operators A and A−1 are Dk0 − σ-tame with σ = (k0 + 1) and tame constants satisfying

for any P > p0,

MA(p) ≤ C(P, k0)(1 + ‖q‖k0,γ
p ) , MA−1(p) ≤ C(P, k0)(1 + ‖q‖k0,γ

p+k0
) , ∀p0 ≤ p ≤ P. (2.54)

Proof. See Lemma 2.21 in [19].

Finally we have the generalized Moser tame estimate for the composition operator.

Lemma 2.24. Composition operator. Let f ∈ C∞(R×TN ,R), and let

w(x, θ) 7→ f(w)(x, θ) := f(x, θ, w(x, θ)) ,

the induced composition operator. If w(ζ) ∈ Hp(T1+N ) is a family of Sobolev functions satisfying

‖w‖k0,γ
p0
≤ 1 then, ∀p > p0 := d+1

2 ,

‖f(w)‖k0,γ
p ≤ C(p, k0, f)(1 + ‖w‖k0,γ

p ).

Tame estimates for the translation operators.

We now prove some results for the composition with a particular change of variable that we shall consider

in Chapter 8. Let ζ ∈ Λ0. We consider

Ψ(ζ, θ) := Ψ : h(x, θ)→ h(x+ ψ(θ), θ).

In order to simplify the notation in what follows we shall write ∂βθ instead of ∂βθr , r = 1, ..., N . Moreover,

since this particular composition operator acts only on the spatial component, we omit the θ-component

in the function, namely we write h(x) instead of h(x, θ). Note that

(∂θΨ)[h] = (∂xh)(x+ ψ(θ))(∂θψ(θ)). (2.55)

We start with the following Lemma

Lemma 2.25. Let Ψ be the translation given above, that is Ψ(ζ, θ) := Ψ : h(x)→ h(x+ ψ(θ)). Then

∂θΨ 〈∂x〉−1
= 〈∂x〉−1

∂θΨ .

Proof. Let h =
∑
j∈Z hje

ijx be a function. Then

(∂θΨ) 〈∂x〉−1
h = ∂θΨ

∑
j∈Z

1

〈j〉
hje

ijx


= ∂θ

∑
j∈Z

1

〈j〉
hje

ijx+ijψ(θ)


=
∑
j∈Z

ij

〈j〉
ψθ(θ)hje

ijx+ijψ(θ)

= 〈∂x〉−1
(∂θΨ)[h]

where ψθ = ∂θψ,



CHAPTER 2. FUNCTIONAL ANALYTIC SETTING 23

Thanks to Lemma 2.25 we have that ∂kζ ∂
β
θr

Ψ 〈∂x〉−β−|k| = 〈∂x〉−β−|k| ∂kζ ∂
β
θr

Ψ . Also in what follows

we shall write ∂βθ instead of ∂βθr .

Lemma 2.26. Let k0, β0 ∈ N and Ψ(ζ, θ) := Ψ as before. Assume that

‖ψ‖k0,γ
p0+β0

≤ 1 . (2.56)

Then for all k ∈ NN , β ∈ N with |k| ≤ k0, β ≤ β0 and for all p0 ≤ p ≤ P

‖∂kζ ∂
β
θ Ψ 〈∂x〉−|k|−β h‖p , ‖∂x∂kζ ∂

β
θ Ψ 〈∂x〉−|k|−β−1

h‖p ≤P γ−|k|
(
‖h‖p0

‖ψ‖k0,γ
p+β + ‖h‖p

)
(2.57)

‖∂βθ ∂iΨ[̂i] 〈∂x〉−β−1
h‖p , ‖∂βθ ∂x∂iΨ[̂i] 〈∂x〉−β−2

h‖p ≤P ‖h‖p0
‖∂iψ[̂i]‖k0,γ

p+β + ‖h‖p (2.58)

Proof. We prove ‖∂kζ ∂
β
θ Ψ 〈∂x〉−|k|−β h‖p ≤P γ−|k|

(
‖h‖p0‖ψ‖

k0,γ
p+β+|k| + ‖h‖p

)
. Set

f := 〈∂x〉−|k|−β h, (2.59)

then

∂βθ f(x+ ψ(θ)) =
∑

1≤n≤β

∑
β1+...+βn=β
β1,...,βn≥1

Cn,β1,...,βn(∂nxf)(x+ ψ(θ))(∂β1

θ ψ)...(∂βnθ ψ) . (2.60)

We differentiate also for ∂kζ :

∂kζ ∂
β
θ f(x+ ψ(θ)) =

∑
k1+k2=k

∑
1≤n≤β

β1+...+βn=β
β1,...,βn≥1

Cn,β1,...,βn

(
∂k1

ζ (∂nxf)(x+ ψ(θ))
)
∂k2

ζ

[
(∂β1

θ ψ)...(∂βnθ ψ)
]

=
∑

k1+k2=k

∑
1≤n≤β

β1+...+βn=β
β1,...,βn≥1

Cn,β1,...,βn

( ∑
1≤m≤|k1|

a1+...+am=k1

|a1|,...,|am|≥1

Cm,k1,...,km(∂m+n
x f)(x+ ψ(θ))

× (∂a1

ζ ψ)...(∂amζ ψ)

)
∂k2

ζ

[
(∂β1

θ ψ)...(∂βnθ ψ)
]
.

(2.61)

Therefore, according to the previous formula, we need to estimate for any 1 ≤ n ≤ β, β1 + ...+ βn = β,

k1 + k2 = k, 1 ≤ m ≤ |k1|, a1 + ...+ am = k1 the term∥∥∥(∂m+n
x f)(x+ ψ(θ))

[
(∂a1

ζ ψ)...(∂amζ ψ)
]
∂k2

ζ

[
(∂β1

θ ψ)...(∂βnθ ψ)
] ∥∥∥

p
. (2.62)

First notice that for any p ≥ 0, by (2.59)

‖∂m+n
x f‖p = ‖∂m+n

x 〈∂x〉−|k|−βh‖p
m+n≤β+|k|
≤ ‖h‖p . (2.63)

Using Lemma 2.23, one has

‖(∂m+n
x f)(x+ ψ(θ))‖p ≤p ‖∂m+n

x f‖p + ‖ψ‖p‖∂m+n
x f‖p0

(2.63)

≤p ‖h‖p + ‖ψ‖p‖h‖p0
. (2.64)

Using the interpolation estimates (2.5), the condition (2.56) and a1 + ...+ am = k1, β1 + ...+ βn = β one

has

‖(∂a1

ζ ψ)...(∂amζ ψ)‖p ≤p γ−|k1|‖ψ‖k0,γ
p , (2.65)
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‖∂k2

ζ

[
(∂β1

θ ψ)...(∂βnθ ψ)
]
‖p ≤p γ−|k2|‖(∂β1

θ ψ)...(∂βnθ ψ)‖k0,γ
p ≤p γ−|k2|‖ψ‖k0,γ

p+|β| (2.66)

Then, by (2.64)-(2.66), using that k1 + k2 = k, and recalling the interpolation estimate for product the

(2.36) one has that

(2.62) ≤p γ−|k|
(
‖h‖p + ‖ψ‖k0,γ

p+|β|‖h‖p0

)
.

As a consequence,by recalling (2.61), the first claimed estimate in (2.57) is proved. The other estimates

follow similarly.



Chapter 3

Degenerate KAM theory

In this Chapter we verify that it is possible to develop degenerate KAM theory as in [7] and in [19] .

Definition 12. A function f := (f1, ..., fN ) : [ε1, ε2] → RN is called non degenerate if, ∀c :=

(c1, ..., cN ) ∈ RN \ {0} the function f · c = f1c1 + ... + fNcN is not identically zero in the whole in-

terval [ε1, ε2] .

For a smooth function f , differentiating (N − 1)-times the identity f(ε)· c = 0 we see that

f(ε) degenerate =⇒ f(ε), (∂εf)(ε), ..., (∂N−1
ε f)(ε) are linearly dependent ∀ε ∈ [ε1, ε2] .

Let us consider

ωj(ε) = j

√
2

15
j4ε4 − 1

3
j2ε2 + 1, j ∈ N \ {0} . (3.1)

We define N0 := N \ {0}. We denote the unperturbed tangential frequency vector by

~ω : [ε1, ε2] −→ RN

ε 7→~ω(ε) := (ωj(ε))j∈S = (ωj1(ε), ωj2(ε), ..., ωjN (ε)) ,
(3.2)

where S is defined in (1.31). The unperturbed normal frequency vector is defined as

~Ω :[ε1, ε2] −→ RN

ε 7→ ~Ω(ε) := (Ωj(ε))j∈N0\S := (ωj(ε))j∈N0\S .
(3.3)

We show that the function ε → ωj(ε) is analytic in
(
− δj ,∞

)
. Indeed the function ω1(ε) is analyitic

in (−δ,∞). Let ε0 = 0, then in (−δ, δ) we have that the function

ω1(ε) =
∑
n≥0

g2n
ε2n

(2n)!
, (3.4)

Then if we expand in Taylor series at ε0 = 0 also the functions

ωj(ε) = jω1(jε) = j
∑
n≥0

g2nj
2n ε2n

(2n)!
, ∀j ∈ N0 (3.5)

25
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we obtain that are analytic in
(
− δj ,∞

)
.

Lemma 3.1. The frequency vectors

~ω(ε) ∈ RN , (~ω(ε),Ωk(ε)) ∈ RN+1, ∀k ∈ N0 \ S,

(~ω(ε),Ωj(ε),Ωk(ε)) ∈ RN+2, ∀j, k ∈ N0 \ S , j 6= k , (~ω(ε), ε2) ∈ RN+1,
(3.6)

where S is defined in (1.31), are non-degenerate.

Proof. Let us consider ~ω(ε) , (~ω(ε),Ωj(ε)) , j ∈ N0 \ S , (~ω(ε),Ωj(ε),Ωk(ε)) , j, k ∈ N0 \ S, j 6= k . By

(3.3) we have that Ωj(ε) := ωj(ε) , j ∈ N0 \ S, hence we can rewrite the vector above as follows

~ω(ε) , (~ω(ε), ωj(ε)) , j ∈ N0 \ S , (~ω(ε), ωj(ε), ωk(ε)) , j, k ∈ N0 \ S, j 6= k.

There exist s Taylor coefficients g2n 6= 0 of the analytic function ω1, say g2n1
, ..., g2ns with 2n1 < ... <

2ns and s = N, N+1, N+2. Suppose, by contradiction, that the function [ε1, ε2] 3 ε 7→ (ωj1(ε), ..., ωjs(ε))

with j1, .., js ≥ 0 , ji 6= ji′ for all i 6= i′ is degenerate (according to Definition 12). Hence there exists

c ∈ Rs \ {0} such that

c1ωj1(ε) + ...+ csωjs(ε) = 0, ∀ε ∈ (−δ/js,+∞), with s = N,N + 1, N + 2

where the function [ε1, ε2] 3 ε→ c1ωj1(ε) + ...+ csωjs(ε) is analytic. Hence we differentiate with respect

to ε the identity c1ωj1(ε) + ...+ csωjs(ε) = 0 and we find
c1

(
D

(2n1)
ε ωj1

)
(ε) + ...+ cs

(
D

(2n1)
ε ωjs

)
(ε) = 0

...

c1

(
D

(2ns)
ε ωj1

)
(ε) + ...+ cs

(
D

(2ns)
ε ωjs

)
(ε) = 0 .

Hence the s× s matrix

A(ε) :=



(
D

(2n1)
ε ωj1

)
(ε)

(
D

(2n1)
ε ωj2

)
(ε) ...

(
D

(2n1)
ε ωjs

)
(ε)(

D
(2n2)
ε ωj1

)
(ε)

(
D

(2n2)
ε ωj2

)
(ε) ...

(
D

(2n2)
ε ωjs

)
(ε)

...
...

. . .
...(

D
(2ns)
ε ωj1

)
(ε)

(
D

(2ns)
ε ωj2

)
(ε) ...

(
D

(2ns)
ε ωjs

)
(ε)


is singular for all ε ∈ (−δ/js,∞) therefore the analytic function

detA(ε) = 0, ∀ε ∈ (−δ/js,∞). (3.7)

In particular at ε = 0 we have detA(0) = 0. By (3.5) we can compute such determinant as

detA(0) := det


g2n1

j2n1+1
1 ... g2n1

j2n1+1
s

g2n2
j2n2+1
1 ... g2n2

j2n2+1
s

...
. . .

...

g2nsj
2ns+1
1 ... g2nsj

2ns+1
s

 = g2n1 ...g2ns det


j2n1+1
1 ... j2n1+1

s

j2n2+1
1 ... j2n2+1

s

...
. . .

...

j2ns+1
1 ... j2ns+1

s

 .
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This is the generalized Vandermonde determinant, we have 1 ≤ j1 < j2 < ... < js and the exponents

αj := 2nj + 1 are increasing, then

det


j2n1+1
1 ... j2n1+1

s

j2n2+1
1 ... j2n2+1

s

...
. . .

...

j2ns+1
1 ... j2ns+1

s

 = det


jα1
1 ... jα1

s

jα2
1 ... jα2

s

...
. . .

...

jαs1 ... jαss

 > 0

see [61]. Since the Taylor coefficients g2n1
, ..., g2ns 6= 0, we obtain that detA(0) 6= 0. This is in contra-

diction with (3.7).

Now we prove that (~ω(ε), ε2) ∈ RN+1 is non degenerate.

As before, suppose, by contradiction, that there exists c = (c1, ..., cN , 1) ∈ RN+1 \ {0} such that

c1ωj1(ε) + ...+ cNωjs(ε) + ε2 = 0, ∀ε ∈ (−δ/jN ,+∞),

where the function [ε1, ε2] 3 ε→ c1ωj1(ε)+...+cNωjN (ε)+ε2 is analytic. There exist N Taylor coefficients

g2n 6= 0 of the analytic function ω1, say g2n1
, ..., g2nN with 2n1 < ... < 2nN . Hence we differentiate with

respect to ε the identity above and we find the (N + 1)× (N + 1)- matrix

B(ε) :=



(
D

(2)
ε ωj1

)
(ε)

(
D

(2)
ε ωj2

)
(ε) ... 2(

D
(2n1)
ε ωj1

)
(ε)

(
D

(2n1)
ε ωj2

)
(ε) ... 0

...
...

. . .
...(

D
(2nN )
ε ωj1

)
(ε)

(
D

(2nN )
ε ωj2

)
(ε) ... 0


is singular for all ε ∈ (−δ/jN ,∞) and so the analytic function detB(ε) = 0 for all ε ∈ (−δ/jN ,∞), hence

in ε = 0 we obtain

detB(0) = 2 detA(0) = 0 . (3.8)

By (3.5) we can compute such determinant as

detB(0) = 2g2n1 ...g2ns det


j2n1+1
1 ... j2n1+1

s−1 j2n1+1
s

j2n2+1
1 ... j2n2+1

s−1 j2n2+1
s

...
. . .

...

j2ns+1
1 ... j2ns+1

s−1 j2ns+1
s

 = 2 detA(0) .

As before, this is the generalized Vandermonde determinant, therefore is different from zero, in contra-

diction with (3.8).

By Lemma 3.1 we can prove Lemmas 3.2, 3.4 and 3.5 below that we shall use in Chapter 4.

Lemma 3.2. Let ~ω(ε) as in (3.2). Then ∃ρ0 > 0, k0 ∈ N such that ∀ε ∈ [ε1, ε2]

max
k≤k0

∣∣∂kε (~ω(ε) · l)
∣∣ ≥ ρ0〈l〉 ∀l ∈ ZN \ {0} . (3.9)
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Proof. Let us prove it by contradiction, i.e. ∀ρ0 > 0 and ∀k0 ∈ N there exists l ∈ ZN \{0} and ε ∈ [ε1, ε2]

such that max
0≤k≤k0

|∂kε (~ω(ε) · l)| < ρ0〈l〉.

Then ∀λ ∈ N let ρ0 = 1
1+λ there exists lλ ∈ ZN \ {0}, ελ ∈ [ε1, ε2] such that

max
0≤k≤λ

∣∣∂kε (~ω(ελ) · lλ)
∣∣ < 1

1 + λ
〈lλ〉

and hence for all k ∈ N, λ ≥ k ∣∣∣∣∂kε (~ω(ελ) · lλ
〈lλ〉

)∣∣∣∣ < 1

1 + λ
. (3.10)

The sequences (ελ)λ ∈ [ε1, ε2] and lλ
〈lλ〉 ∈ R

N are bounded, and by compactness there exists a subsequence

λr →∞ such that ελr → ε̄ ∈ [ε1, ε2] and
lλr
〈lλr 〉

→ c̄ ∈ RN \ {0}.

Passing to the limit in (3.10) we obtain that∣∣∣∣∂kε (~ω(ελr ) ·
lλr
〈lλr 〉

)∣∣∣∣ < 1

1 + λr
→
∣∣∂kε (~ω(ε̄) · c̄)

∣∣ = 0 , ∀k ∈ N .

Hence the analytic function ε 7→ ~ω(ε) · c̄ is identically zero. Since c̄ 6= 0 this is in contradiction with the

non degeneracy condition (3.6).

In the following Lemma we divide the normal frequency in a suitable way and we will use this result

in Lemmas 3.4 and 3.5.

Lemma 3.3. Let Ωj as in (3.3), with j ∈ N0 \ S. We can expand Ωj as

Ωj(ε) =

√
2

15
ε2j3 + rj(ε) where rj(ε) =

1

1 +
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

(√
15

2

1

ε2j2
−
√

5

6

)
j.

Then

|rj(ε)| ≤ C|j| , and sup
j∈N0\S

|∂kε rj(ε)| ≤ C(k)j−1 , ∀k ∈ N0.

Proof. We prove that the decomposition above holds, ∀j ∈ N0√
2

15
ε2j3 + rj(ε) =

√
2
15ε

2j3 +
√

2
15ε

2j3
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4 +
√

15
2

j
ε2j2 −

√
5
6j

1 +
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

=

√
2
15ε

2j3
(

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

)
+
√

2
15ε

2j3
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

1 +
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

=

√
2
15ε

2j3
√

1− 5
2

1
j2ε2 + 15

2
1

j4ε4

(
1 +

√
1− 5

2
1

j2ε2 + 15
2

1
j4ε4

)
1 +

√
1− 5

2
1

j2ε2 + 15
2

1
j4ε4

= ωj(ε).

We now compute the derivative of the remainder rj . Notice that

|rj | ≤ C|j|,
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and ∀k ≥ 1,∀ε ∈ [ε1, ε2]

∂kε rj(ε) ∼ C(k)j−1.

Hence

|∂kε rj(ε)| ≤ C(k)

uniformly in j ∈ N0 \ S, for all k ≥ 1 and ε ∈ [ε1, ε2].

Lemma 3.4. Let ~ω(ε) as in (3.2), and Ωj as in (3.3). Then ∃ρ0 > 0, and k0 ∈ N such that ∀ε ∈ [ε1, ε2]

max
0≤k≤k0

∣∣∂kε (~ω(ε) · l + Ωj(ε))
∣∣ ≥ ρ0〈l〉 ∀l ∈ ZN ,∀j ∈ N0 \ S . (3.11)

Proof. We prove this lemma by contradiction. Suppose that for all ρ0 > 0, k0 ∈ N, there exist l ∈ ZN , j ∈

N0 \ S and ε ∈ [ε1, ε2] such that

max
0≤k≤k0

∣∣∂kε (~ω(ε) · l + Ωj(ε))
∣∣ < ρ0〈l〉.

Note that if j3 > C|l| then there is no small divisor problem, indeed ∀ε ∈ [ε1, ε2] we have |~ω(ε)·l+Ωj(ε)| ≥

Ωj(ε)− |~ω(ε)||l| ≥ ε2
1j

3 − C|l| ≥ |l| if j3 ≥ C0|l|, for some constant C0 > 0.

Therefore we can restrict our attention to the indices (l, j) ∈ ZN × (N0 \ S) such that

j3 ≤ C0|l|. (3.12)

We can suppose that for all λ ∈ N there exist ελ ∈ [ε1, ε2], lλ ∈ ZN , jλ ∈ N0 \ S such that

max
0≤k≤λ

∣∣∂kε (~ω(ελ) · lλ + Ωjλ(ελ))
∣∣ < 1

1 + λ
〈lλ〉 .

Hence

∀k ∈ N, λ ≥ k ,
∣∣∣∣∂kε (~ω(ελ) · lλ

〈lλ〉
+

Ωjλ(ελ)

〈lλ〉

)∣∣∣∣ < 1

1 + λ
. (3.13)

The sequences (ελ)λ ∈ [ε1, ε2] and lλ
〈lλ〉λ∈N

∈ RN are bounded, and by compactness there exists a

subsequence λr →∞ such that

ελr → ε̄ ∈ [ε1, ε2] ,
lλr
〈lλr 〉

→ ~c ∈ RN . (3.14)

We have to consider two different cases, if |lλ| is bounded or not.

Case 1 : |lλr | < c, then lλr → l̄ ∈ ZN and have that |jλ|3 ≤ C|lλ| ≤ c (see (3.12)) for all λ, hence

jλr → j̄. We consider the limit with λr →∞ hence we have that

max
0≤k≤λ

∣∣∣∣∂kε (~ω(ελ) · lλ
〈lλ〉

+
1

〈lλ〉
Ωjλ(ελ)

)∣∣∣∣ < 1

1 + λ
→ max

0≤k≤λ

∣∣∣∣∂kε (~ω(ε̄) · l̄
〈l̄〉

+
1

〈l̄〉
Ωj̄(ε̄)

)∣∣∣∣ = 0

therefore, if d := 1
〈l̄〉 ,

∂kε (~ω(ε) · ~c+ Ωj(ε)d) = 0 ∀k ∈ N and d ∈ R \ {0} .
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Hence the function [ε1, ε2] 3 ε→ ~ω(ε)·~c+Ωj(ε)d is identically zero. Since (~c, d) 6= 0 this is in contradiction

with the non degeneracy condition (3.6).

Case 2 : |lλr | unbounded. By |j|3 ≤ c〈l〉, if we consider the limit with λ→∞ we have that√
2

15

j3
λr

〈lλr 〉
→ d̄ ∈ R \ {0} ελr → ε̄ ∈ [ε1, ε2],

lλr
〈lλr 〉

→ ~c ∈ RN .

By Lemma 3.3 and (3.12) we have

Ωλr (ελr )

〈lλr 〉
=

√
2

15
ε2
λr

j3
λr

〈lλr 〉
+
rjλr (ελr )

〈lλr 〉
→ d̄ε̄2, ∂kε

Ωλr (ελr )

〈lλr 〉
→ d̄∂kε ε̄

2, ∀ k ≥ 0 .

Then, passing to the limit in (3.13) we obtain∣∣∣∣∂kε (~ω(ελ) · lλ
〈lλ〉

+
1

〈lλ〉
Ωjλ(ελ)

)∣∣∣∣ < 1

1 + λ
→
∣∣∂kε (~ω(ε̄) · ~c+ d̄ε̄2)

∣∣ = 0 .

Therefore the analytic function ε → ~ω(ε) · ~c + d̄ε2 is identically zero, in contradiction with the non

degeneracy condition (3.6).

Lemma 3.5. Let ~ω(ε) as in (3.2), and Ωj′(ε),Ωj(ε) as in (3.3). Then ∃ρ0 > 0 and k0 ∈ N such that

∀ε ∈ [ε1, ε2],

max
0≤k≤k0

∣∣∂kε [~ω(ε) · l + Ωj(ε)− Ωj′(ε)]
∣∣ ≥ ρ0〈l〉 , ∀(l, j′, j) 6= (0, j, j), l ∈ ZN , j, j′ ∈ N0 \ S (3.15)

max
0≤k≤k0

∣∣∂kε [~ω(ε) · l + Ωj(ε) + Ωj′(ε)]
∣∣ ≥ ρ0〈l〉 , ∀l ∈ ZN , j, j′ ∈ N0 \ S . (3.16)

Proof. We prove the lemma for ~ω(ε)·l+Ωj(ε)−Ωj′(ε) since the proof of the other is similar. The Lemma is

proved by contradiction. Note that if |j3−j′3| ≥ C〈l〉 the non resonant condition |~ω(ε)·l+Ωj(ε)−Ωj′(ε)| ≥

ρ0〈l〉 is satisfied, indeed, ∀ε ∈ [ε1, ε2],

| ~ω(ε) · l + Ωj(ε)− Ωj′(ε)| ≥ |Ωj(ε)− Ωj′(ε)| − |~ω(ε)||l|

≥
√

2

15
ε2|j3 − j′3| − C|j − j′| − C|l|

≥ C1ε
2|j3 − j′3| − C1|l| ≥ 〈l〉 , if |j3 − j′3| ≥ C̃〈l〉 ,

for some C̃ > 0, where the second inequality follows by (3.3). Therefore we can restrict to the indices

such that

|j3 − j′3| < C〈l〉. (3.17)

We can also assume j′ 6= j, otherwise (3.15) reduces to (3.9). Suppose that for all λ ∈ N there exists

lλ ∈ ZN , jλ, j′λ ∈ N0 \ S, j′λ 6= jλ, ελ ∈ [ε1, ε2] such that for all k ∈ N,∀λ ≥ k∣∣∣∣∂kε (~ω(ελ) · lλ
〈lλ〉

+
Ωjλ(ελ)

〈lλ〉
−

Ωj′λ(ελ)

〈lλ〉

)∣∣∣∣ < 1

1 + λ
. (3.18)

Since the sequences (ελ)λ∈N,
(
lλ
〈lλ〉

)
λ∈N

are bounded, there exists λr →∞ such that

ελr 7→ ε̄ ∈ [ε1, ε2],
lλr
〈lλr 〉

7→ ~c ∈ RN . (3.19)
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We have to consider two cases:

Case 1 : (lλr ) is bounded. Then (lλr )→ l̄ ∈ ZN , by |j3 − j′3| < C〈l〉 we can say that also jλr , j
′
λr

are

bounded, indeed

|j3 − j′3| ≥ |j − j′|(j + j′) ≥ (j + j′) , ∀j 6= j′

therefore

jλr → j̄ , j′λr → j̄′. (3.20)

Hence, passing to the limit in (3.18) for λr →∞, by (3.19) and (3.20) we deduce that

∀k ∈ N , λ ≥ k , ∂kε

(
~ω(ε̄) · ~c+

Ωj̄(ε̄)

〈l̄〉
−

Ωj̄′(ε̄)

〈l̄〉

)
= 0 .

Therefore the analytic function ε 7→ ~ω(ε) · ~c+
Ωj̄(ε)

〈l̄〉 −
Ω
j̄′ (ε)

〈l̄〉 is identically zero, in contradiction with the

non degeneracy condition (3.6).

Case 2 : (lλr ) is unbounded. We have Ωjλr − Ωj′λr
'
√

2
15ε

2
λr
|j3
λr
− j′3λr | and

√
2
15 |j

3
λr
−j′3λr |

〈lλr 〉
→ d̄ ∈ R

indeed, from Lemma 3.3, ∀k ∈ N

∂kε
Ωjλr (ελr )− Ωj′λr

(ελr )

〈lλr 〉
=

√
2

15
∂kε ε

2
λr

j3
λr
− j′3λr
〈lλr 〉

+
1

〈lλr 〉
∂kε
(
rjλr (ελr )

)
− 1

〈lλr 〉
∂kε

(
rj′λr

(ελr )
)

and ∀k ≥ 1∣∣∣∣ 1

〈lλr 〉
∂kε
(
rjλr (ελr )jλrελr

)
− 1

〈lλr 〉
∂kε

(
rj′λr

(ελr )iλrελr

)∣∣∣∣ ≤ C

〈lλr 〉
sup

ε∈[ε1,ε2],j∈N

∣∣∂kε rj(ε)∣∣
≤ C(k)

〈lλr 〉
λr→∞−−−−→ 0 .

If k = 0 we have that ε2j3 + j < Cε2j3, therefore this part is controlled by the principal term. Hence

∂kε
Ωjλr − Ωj′λr
〈lλr 〉

→ d̄∂kε ε̄
2, d̄ 6= 0.

Passing to the limit in (3.18) for λr →∞ we deduce that

∀k ∈ N ∂kε
(
~ω(ε̄) · ~c+ d̄ε̄2

)
= 0.

Hence the analytic function ε 7→ ~ω(ε) ·~c+ d̄ε2 is identically zero, in contradiction with the non degeneracy

condition (3.6).

Remark 3.6. We take as ρ0 the smallest ρ0 provided by Lemmas 3.2, 3.4, 3.5 . Moreover we take

as k0 the largest among the k0 provided by Lemmas 3.2, 3.4, 3.5 and it is the so called “index of non-

degeneracy”.



Chapter 4

Nash-Moser theorem and Measure

estimates

In Chapter 1, after the introduction of the action-angle variables we arrived to the Hamiltonian Hµ defined

in (1.44), that admits the reversible structure defined in (1.42). We look for an embedded invariant torus

i : TN → TN ×RN × H⊥S , θ 7→ i(θ) = (ϑ(θ), I(θ), w(θ)) (4.1)

of the Hamiltonian vector field (∂IHµ,−∂ϑHµ,−J∇wHµ) defined in (1.40) filled by quasi periodic so-

lutions with Diophantine frequency ω ∈ RN which satisfies also the Melnikov non resonance conditions

defined in (4.10).

4.1 Nash-Moser theorem

The Hamiltonian Hµ in (1.44) is a perturbation of the Hamiltonian N . The quasi-periodic solutions of

the Hamiltonian system (1.40) will have a shifted frequency which depends on the non linear term P . As

in [19] we embed Hµ into the family of Hamiltonians

Hα = Nα + µP, Nα = α· I +
1

2
(w,Dw)L2

x
α ∈ RN , (4.2)

where D is defined in (1.45). The family Hα depends on the parameter α and for the value α = ~ω(ε),

defined in (3.2), we have Hα = Hµ.

Then we look for a zero (i, α) of the non linear operator

F(i, α) = F(i, α, ω, µ) = ω · ∂θi(θ)−XHα = ω · ∂θi(θ)− (XNα + µXP )(i(θ)), (4.3)

32
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that is explicitely given by

F(i, α, ω, µ) =


ω · ∂θϑ(θ)− α− µ∂IP (i(θ))

ω · ∂θI(θ) + µ∂θP (i(θ))

ω · ∂θw(θ) + J(Dw + µ∇wP (i(θ)))

 (4.4)

for some Diophantine vector ω ∈ RN . Thus θ 7→ i(θ) is an embedded torus, invariant for the vector field

generated by the Hamiltonian Hµ, filled by quasi-periodic solutions with Diophantine frequency ω. Note

that each Hamiltonian in (4.2) is reversible, that is Hα ◦ ρ̃ = Hα where ρ̃ is the involution defined in

(1.42). Then it is natural to look for reversible solutions of F(i, α) = 0, namely satisfying ρ̃◦i(θ) = i(−θ),

that is exactly the condition given in (1.43).

The Sobolev norm of the periodic component of the embedded torus

V(θ) := i(θ)− (θ, 0, 0) = (Θ(θ), I(θ), w(θ)) , Θ(θ) = ϑ(θ)− θ

is

‖V‖p := ‖Θ‖Hpθ + ‖I‖Hpθ + ‖w‖p , (4.5)

where ‖w‖p := ‖w‖Hp
θ,x

= max{‖q‖p, ‖p‖p} is defined in (2.2) and ‖ · ‖Hpθ is defined in (2.4).

We look for quasi periodic solutions with frequency ω belonging to a δ-neighborhood ( independent

of µ)

Ω :=
{
ω ∈ RN : dist(ω, ~ω([ε1, ε2])) ≤ δ, δ > 0

}
of the unperturbed linear frequencies ~ω(ε) for ε ∈ [ε1, ε2] defined in (3.2).

Let N0 := N\{0}. Recall that S is defined in (1.31), the norm | · |k0,γ is defined in (2.7) and the norm

‖ · ‖k0,γ
p is defined in (2.9).

Theorem 4.1. Fix finitely many tangential sites S ⊂ N0, and let N be the cardinality of S. Let τ ≥ 1.

There exist constants µ0 > 0, a0 := a0(N, τ, k0) > 0, and k1 := k1(N, τ, k0) > 0 such that, for a0 <

(1 + k1)−1 and for all γ = µa, with 0 < a < a0 and µ ∈ (0, µ0) there exist

• a k0-times differentiable function

α∞ : Ω× [ε1, ε2]→ RN , α∞(ω, ε) = ω + rµ(ω, ε), with |rµ|k0,γ ≤ Cµγ−(1+k1) , (4.6)

• a family of embedded tori i∞ defined for all ω ∈ Ω and ε ∈ [ε1, ε2] satisfying the reversibility property

(1.43) and

‖i∞(θ)− (θ, 0, 0)‖k0,γ
p0
≤ Cµγ−(1+k1) , (4.7)

• a sequence of k0-times differentiable functions λ∞j : Ω× [ε1, ε2]→ R, j ∈ N0 \ S, of the form

λ∞j (ω, ε) = j

(
2

15
ε4j4 − 1

3
ε2j2 + 1

) 1
2

+m∞1 (ω, ε)j + r∞j (ω, ε) , (4.8)
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where m∞1 , rj are real and m∞1 and r∞j satisfy

|m∞1 |k0,γ ≤ Cµ , sup
j∈N0\S

|r∞j |k0,γ ≤ Cµγ−k1 , (4.9)

such that for all (ω, ε) in the Cantor like set

Cγ∞ = {(ω, ε) ∈ Ω× [ε1, ε2] : |ω · l| ≥ γ〈l〉−τ , ∀l ∈ ZN \ {0},

|ω · l + λ∞j (ω, ε)| ≥ 4γ|j|3〈l〉−τ , ∀l ∈ ZN ,∀j ∈ N0 \ S

|ω · l + λ∞j (ω, ε)− λ∞j′ (ω, ε)| ≥ 4γ|j3 − j′3|〈l〉−τ , ∀l ∈ ZN , j′, j ∈ N0 \ S

|ω · l + λ∞j (ω, ε) + λ∞j′ (ω, ε)| ≥ 4γ|j3 + j′3|〈l〉−τ , ∀l ∈ ZN , j′, j ∈ N0 \ S} ,

(4.10)

the function i∞(θ) = i∞(ω, ε, µ)(θ) is a solution of F(i∞, α∞(ω, ε), ω, ε, µ) = 0. As a consequence the

embedded torus θ 7→ i∞(θ) is invariant for the Hamiltonian vector field XHα∞(ω,ε)
, and it is filled by

quasi-periodic solutions with frequency ω.

Remark 4.2. The k0 index appearing in Theorem 4.1 is the “index of non-degeneracy” defined in Lemmas

3.2, 3.4, and 3.5 and it depends only on the linear unperturbed frequencies.

Theorem 4.1 above is proved in Chapter 10 using the results about the linerearized operator presented

in Chapters 5-9.

4.2 Measure estimates

In this Section we want to deduce Theorem 1 by Theorem 4.1. Since a0 ( in Theorem 4.1) satisfies

a0 < (1 + k1)−1 one has |rµ|k0,γ → 0 as µ→ 0 ( where | · |k0,γ is defined in (2.7)) and hence for µ0 small

enough the map α∞(·, ε) : Ω→ α∞(Ω× {ε}) is invertible and moreover one has

β = α∞(ω, ε) = ω + rµ(ω, ε)⇔ ω = α−1
∞ (β, ε) = β + r̃µ(β, ε)

with |r̃µ|k0,γ ≤ Cµγ−(1+k1) .
(4.11)

Indeed the inverse map β 7→ α−1
∞ (β, ε) = β + r̃µ(β, ε) satisfies the identity

β = ω + rµ(ω, ε)⇒ β = β + r̃µ(β, ε) + rµ(β + r̃µ(β, ε), ε)⇒ 0 = r̃µ(β, ε) + rµ(β + r̃µ(β, ε), ε) .

Thanks to the implicit function theorem r̃µ is C1 with respect to (β, ε) and it satisfies the identities

Dβ r̃µ(β, ε) = − [1 +Dωrµ(β + r̃µ(β, ε), ε)]
−1
Dωrµ(β + r̃µ(β, ε), ε)

∂εr̃µ(β, ε) = − [1 +Dωrµ(β + r̃µ(β, ε), ε)]
−1
∂εrµ(β + r̃µ(β, ε), ε) ,

where Dβ , Dω denote the Frechet derivatives with respect to β, ω. Arguing by induction on |k| ≤ k0 we

obtain that r̃µ is k0-times differentiable and the estimate (4.11) follows as in [19].
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Thanks to Theorem 4.1 the existence of an embedded invariant torus filled by quasi periodic solutions

with Diophantine frequency ω = α−1
∞ (β, ε) is ensured. Indeed in Theorem 4.1 we prove the existence of

solutions with frequency ω = α−1
∞ (β, ε) for the system for the Hamiltonian

Hβ = β · I +
1

2
(w,Dw)L2

x
+ µP.

Consider the curve of the unperturbed linear frequencies (defined also in (3.2))

[ε1, ε2] 3 ε 7→ ~ω(ε) :=

(
j

√
2

15
j4ε4 − 1

3
j2ε2 + 1

)
j∈S

∈ RN .

We now prove that for most ε ∈ [ε1, ε2], the vector β = ~ω(ε) ∈ α∞(Cγ∞) (see Lemma 4.8). Hence for

such values of ε, by Theorem 4.1, we have found an embedded invariant torus for the Hamiltonian Hµ

in (1.44), filled by quasi-periodic motions with Diophantine frequency ω = α−1
∞ (~ω(ε), ε). This implies

Theorem 1.

In the proof of Theorem 1 we have to prove that there exists a Cantor like set G with asymptotically

full Lebesgue measure, that is exactly the condition: for most ε ∈ [ε1, ε2], the vector β = ~ω(ε) ∈ α∞(Cγ∞).

In what follows we prove exactly this (see Lemma 4.8).

By (4.11) we get

ωµ(ε) = α−1
∞ (~ω(ε), ε) = ~ω(ε) + rµ(ε), rµ(ε) = r̃µ(~ω(ε), ε) (4.12)

where

|∂kε rµ(ε)| ≤ µCγ−(1+k1+k), 0 ≤ k ≤ k0 . (4.13)

We also denote

λ∞j (ε) := λ∞j (ωµ(ε), ε) := j

√
2

15
j4ε4 − 1

3
j2ε2 + 1 +m∞1 (ε)j + r∞j (ε), ∀j ∈ N0 \ S

= Ωj(ε) +m∞1 (ε)j + r∞j (ε) ∀j ∈ N0 \ S
(4.14)

where Ωj(ε) is defined in (3.3), m∞1 , r∞j are real, and

m∞1 (ε) := m∞1 (ωµ(ε), ε) , r∞j (ε) := r∞j (ωµ(ε), ε) . (4.15)

By (4.9), (4.15) and (4.12), using that µγ−1−k1−k0 ≤ 1 that is satisfied for µ ”small enough” ( see Lemma

4.8), we get

|∂kεm∞1 (ε)| ≤ Cµγ−k, sup
j∈N0\S

|∂kε r∞j (ε)| ≤ Cµγ−k−k1 , ∀0 ≤ k ≤ k0 . (4.16)

We define the Cantor like set G in Theorem 1 as G = Gµ, where Gµ is given by

Gµ := {ε ∈ [ε1, ε2] : ~ω(ε) ∈ α∞(Cγ∞)}

:=
{
ε ∈ [ε1, ε2] :

(
α−1
∞ (~ω(ε), ε), ε

)
∈ Cγ∞

}
.

(4.17)
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By (4.10), (4.12) and (4.14) the set Gµ can be written as

Gµ ={ε ∈ [ε1, ε2] : |ωµ(ε) · l| ≥ γ〈l〉−τ ∀l ∈ ZN \ {0},

|ωµ(ε) · l + λ∞j (ε)| ≥ 4γ|j3|〈l〉−τ , ∀l ∈ ZN ,∀j ∈ N0 \ S ,

|ωµ(ε) · l + λ∞j (ε)− λ∞j′ (ε)| ≥ 4γ|j3 − j′3|〈l〉−τ ∀l ∈ ZN , j′, j ∈ N0 \ S ,

|ωµ(ε) · l + λ∞j (ε) + λ∞j′ (ε)| ≥ 4γ|j3 + j′3|〈l〉−τ ∀l ∈ ZN , j′, j ∈ N0 \ S}.

Now we prove that Gµ has asymptotically full measure. We define the so called “resonant sets” as

R̃
(0)
l := {ε ∈ [ε1, ε2] : |ωµ(ε) · l| < γ〈l〉−τ}

R̃
(1)
l,j := {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε)| < 4γ〈l〉−τ}

R̃
(2)
l,j,j′ := {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε)− λ∞j′ (ε)| < 4γ|j3 − j′3|〈l〉−τ}

R̃
(3)
l,j,j′ := {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε) + λ∞j′ (ε)| < 4γ|j3 + j′3|〈l〉−τ} .

(4.18)

Lemma 4.3. Let µγ−k1 small enough. The resonant sets defined in (4.18) satisfy

if R̃
(1)
l,j 6=∅ then |j|3 ≤ C 〈l〉

if R̃
(2)
l,j,j′ 6=∅ then |j3 − j′3| ≤ C 〈l〉

if R̃
(3)
l,j,j′ 6=∅ then |j3 + j′3| ≤ C 〈l〉 .

(4.19)

Proof. If ε ∈ R̃(1)
l,j , then

|λ∞j (ε)| ≤ 4γ|j|3 〈l〉−τ + |ωµ(ε)||l| ≤ 4γ|j|3 + C|l| (4.20)

by (4.14) and (4.16) we get

|λ∞j (ε)| ≥ |j|3 − |m∞1 (ε)||j| − sup
j∈N0\S

|r∞j (ε)| ≥ |j|3 − Cµ|j| − Cµγ−k1 ≥ C1
|j|3

2

for 2Cµγ−k1 ≤ C1

2 . Therefore if C1

4 ≥ 4γ then R̃
(1)
l,j 6= ∅.

If ε ∈ R̃(2)
l,j,j′ , then

|λ∞j (ε)− λ∞j′ (ε)| ≤ 4γ|j3 − j′3| 〈l〉−τ + |ωµ(ε)||l| ≤ 4γ|j3 − j′3|+ C|l| . (4.21)

As before, by (4.14) and (4.16) we get

|λ∞j (ε)− λ∞j′ (ε)| ≥ |j3 − j′3| − |m∞1 (ε)||j − j′| − sup
j∈N0\S

|r∞j (ε)|

≥ |j3 − j′3| − Cµ|j − j′| − Cµγ−k1

≥ C2
|j3 − j′3|

2

for 2Cµγ−k1 ≤ C2

2 . Therefore if C2

4 ≥ 4γ then R̃
(2)
l,j,j′ 6= ∅. The other case follows similarly.
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Corollary 4.4. The set R̃
(2)
l,j,j′ defined in (4.18), is not empty if

|j|, |j′| ≤ C|l|1/2 , ∀j 6= j′ , j, j′ ∈ N \ {0} . (4.22)

Proof. The proof follows by the condition given in (4.19) and by

|j3 − j′3| = |j − j′||j2 + j′2 + jj′| ≥ |j2 + j′2 + jj′| ≥ |j + j′|2

2
.

For estimate the measure of the set Gµ we have to prove some Lemmas.

Lemma 4.5. Consider ωµ(ε) defined in (4.12). There exist k0 ∈ N and ρ0 > 0 such that for µ small

enough and for all ε ∈ [ε1, ε2],

max
k≤k0

|∂kε (ωµ(ε)· l)| ≥ 1

2
ρ0〈l〉, ∀l ∈ ZN \ {0} , (4.23)

max
k≤k0

|∂kε (ωµ(ε)· l + λ∞j (ε)| ≥ 1

2
ρ0〈l〉 ∀l ∈ ZN , j ∈ N0 \ S , (4.24)

max
k≤k0

|∂kε (ωµ(ε)· l + λ∞j (ε)− λ∞j′ (ε))| ≥
1

2
ρ0〈l〉 ∀l ∈ ZN j, j′ ∈ N0 \ S (4.25)

max
k≤k0

|∂kε (ωµ(ε)· l + λ∞j (ε) + λ∞j′ (ε))| ≥
1

2
ρ0〈l〉 ∀l ∈ ZN j, j′ ∈ N0 \ S . (4.26)

Proof. We prove (4.25), the other estimates follow analogously. We can consider

|j3 − j′3| ≤ C 〈l〉 , (4.27)

otherwise R̃
(2)
l,j,j′ is empty. We can split λ∞j (ε) = Ωj(ε) + λ∞j (ε)− Ωj(ε), where Ωj(ε) is defined in (3.3).

By Lemma 3.3 we have that

|∂kε [Ωj(ε)− Ωj′(ε)] | ≤ C(k)|j3 − j′3| , ∀k ≥ 0 . (4.28)

Then for all 0 ≤ k ≤ k0, by (4.14) and (4.16) we have that

|∂kε
[
(λ∞j − λ∞j′ )(ε)− (Ωj − Ωj′)

]
| ≤ |∂kεm∞1 (ε)||j − j′|+ 2 sup

j∈N0\S
|∂kε r∞j (ε)|

≤ Cµγ−(k+k1)|j − j′| . (4.29)
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Using the definition of λ∞j in (4.14), by (4.16), (4.13), (4.12), (4.29) and (3.15) we get

max
k≤k0

|∂kε [ωµ(ε)· l + λ∞j (ε)− λ∞j′ (ε)]| ≥ max
k≤k0

(
∂kε [~ω(ε)· l + Ωj(ε)− Ωj′(ε)| − |∂kε [m∞1 ](j − j′)|

)
−max
k≤k0

(
|∂kε r̃µ(ε)· l|+ |∂kε (r∞j (ε)− r∞j′ (ε))|

)
≥ max
k≤k0

|∂kε [~ω(ε)· l + Ωj(ε)− Ωj′(ε)| − Cµ|l|γ−1−k1−k0

− Cµ|j − j′|γ−k1−k0

≥ max
k≤k0

|∂kε [~ω(ε)· l + Ωj(ε)− Ωj′(ε)| − Cµ|l|γ−1−k1−k0

− Cµ|j3 − j′3|γ−k1−k0

≥ ρ0 〈l〉 − Cµ|l|γ−1−k1−k0

≥ ρ0 〈l〉
2

.

The last equation follows if µγ−1−k1−k0 ≤ ρ0

2C .

We want to prove that Gµ in (4.17) has asymptotically full Lebesgue measure. In order to do that we

shall prove that the measure of the complementary set goes to zero as µ → 0. For this purpose we now

estimate the measure of the resonant sets. We use the following classical Rüssmann’s Lemma.

Lemma 4.6. If min
ε∈[ε1,ε2]

max
0≤k≤k0

∣∣∂kε f(ε)
∣∣ ≥ β > 0 then, for α small enough,

|{ε ∈ [ε1, ε2] : |f(ε)| < α}| ≤ cα
1
k0 .

Proof. See Theorem 17.1 in [62].

Lemma 4.7. Estimates of the resonant sets. Let τ > 4
3k0, and γ = µa with 0 < a < min{a0, 1/(1 +

k0 + k1)} < 1/2. Then the measure of the resonant sets defined in (4.18) satisfy∣∣∣R̃(0)
l

∣∣∣ ≤ C (γ〈l〉−τ−1
) 1
k0 ,

∣∣∣R̃(1)
l,j

∣∣∣ ≤ C (γ|j|3〈l〉−τ−1
) 1
k0∣∣∣R̃(2)

l,j,j′

∣∣∣ ≤ C (γ|j3 − j′3|〈l〉−τ−1
) 1
k0 ,

∣∣∣R̃(3)
l,j,j′

∣∣∣ ≤ C (γ|j3 + j′3|〈l〉−τ−1
) 1
k0 .

Proof. We rewrite (4.18) as follows

R̃
(0)
l = {ε ∈ [ε1, ε2] : |ωµ(ε) · l|〈l〉−1 < γ〈l〉−τ−1}

R̃
(1)
l,j = {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε)|〈l〉−1 < 4γ|j3|〈l〉−τ−1}

R̃
(2)
l,j,j′ = {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε)− λ∞j′ (ε)|〈l〉−1 < 4γ|j3 − j′3|〈l〉−τ−1}

R̃
(3)
l,j,j′ = {ε ∈ [ε1, ε2] : |ωµ(ε) · l + λ∞j (ε) + λ∞j′ (ε)|〈l〉−1 < 4γ|j3 + j′3|〈l〉−τ−1} .

Note that we are considering the sets defined above, with the restrictions on j, j′, l provided in Lemma

4.3.
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Then by Lemma 4.5 we have that

max
k≤k0

|∂kε [ωµ(ε) · l〈l〉−1]| ≥ ρ0

2
∀ε ∈ [ε1, ε2]

max
k≤k0

|∂kε [(ωµ(ε) · l + λ∞j (ε))〈l〉−1]| ≥ ρ0

2
∀ε ∈ [ε1, ε2]

max
k≤k0

|∂kε [(ωµ(ε) · l + λ∞j (ε)− λ∞j′ (ε))〈l〉−1]| ≥ ρ0

2
∀ε ∈ [ε1, ε2]

max
k≤k0

|∂kε [(ωµ(ε) · l + λ∞j (ε) + λ∞j′ (ε))〈l〉−1]| ≥ ρ0

2
∀ε ∈ [ε1, ε2] .

By Lemma 4.6 the conclusion follows.

Lemma 4.8. Measure Estimates. Let

γ = µa , with 0 < a < min{a0, 1/(1 + k0 + k1)} < 1/2 , τ ≥ k0(N + 1). (4.30)

Then the measure of the set Gµ defined in (4.17) satisfies |Gµ| ≥ (ε2 − ε1)− Cµ
a
k0 as µ→ 0.

Proof. We estimate the measure of the complementary set

Bµ = GCµ = [ε1, ε2] \ Gµ =

(⋃
l

R̃
(0)
l

)
∪

⋃
l,j

R̃
(1)
l,j

 ∪
⋃
l,j,j′

R̃
(2)
l,j,j′

 ∪
⋃
l,j,j′

R̃
(3)
l,j,j′


where R̃

(0)
l , R̃

(1)
l,j , R̃

(2)
l,j,j′ , R̃

(3)
l,j,j′ are defined in (4.18). The estimates on the resonant sets follows by Lemma

4.7. Then, using the condition on the indices proved in Lemma 4.3 and in Corollary 4.4, we have

|Bµ| ≤
∑
l

|R̃(0)
l |+

∑
l,j

|R̃(1)
l,j |+

∑
l,j,j′

|R̃(2)
l,j,j′ |+

∑
l,j,j′

|R̃(3)
l,j,j′ |

≤
∑
l

|R̃(0)
l |+

∑
j≤C|l|1/3

|R̃(1)
l,j |+

∑
j,j′≤C|l|1/2

|R̃(2)
l,j,j′ |+

∑
j,j′≤C|l|1/3

|R̃(3)
l,j,j′ |

≤ C
∑
l

(
γ 〈l〉−(τ+1)

) 1
k0

+ C
∑

j≤C|l|1/3

(
γ|j|3 〈l〉−(τ+1)

) 1
k0

+ C
∑

j,j′≤C|l|1/2

(
γ|j3 − j′3| 〈l〉−(τ+1)

) 1
k0

+ C
∑

j,j′≤C|l|1/3

(
γ|j3 + j′3| 〈l〉−(τ+1)

) 1
k0

≤ γ
1
k0

∑
l

〈l〉−
τ+1
k0 + Cγ

1
k0

∑
l

〈l〉−
τ
k0

+ 1
3 + Cγ

1
k0

∑
l

〈l〉−
τ
k0

+1 + Cγ
1
k0

∑
l

〈l〉−
τ
k0

+ 2
3

≤ Cγ
1
k0

∑
l

〈l〉1−
τ
k0

≤ C ′µ
a
k0 .

Then |Gµ| ≥ (ε2 − ε1)− C ′µ
a
k0 .

Theorem 4.1 and Lemma 4.8 prove Theorem 1 with the Cantor-like set G := Gµ defined in (4.17) and

frequency vector ω∞ = ωµ(ε) defined in (4.12).



CHAPTER 4. NASH-MOSER THEOREM AND MEASURE ESTIMATES 40

Actually Theorem 4.1 is given in terms of the variables (θ, I, q, p), Theorem 1 is given in terms of the

variables (η, u). In Chapter 1 we have given the relation between these variables (see (1.17)) and (1.36),

i.e. η
u

 =
∑
j∈S

√
j

π

 Λj
√
Ij + rj cosϑj cos jx

Λ−1
j

√
Ij + rj sinϑj sin jx

+

 Λq

Λ−1p

 .



Chapter 5

Approximate Inverse

5.1 Estimates on the perturbation P

In this Section we show tame estimates for the composition operator induced by the Hamiltonian vector

field XP , in (4.3). Since the functions Ij 7→
√
Ij + rj , θ 7→ cos θ and θ 7→ sin θ are analytic for |Ij | ≤ rj ,

the composition Lemma 2.24 implies that, for all Θ, I ∈ Hp(TN ,RN ), ‖Θ‖p0
, ‖I‖p0

≤ 1, setting ϑ(θ) =

θ + Θ(θ),

‖∂αθ ∂
β
I A(θ(·), I(·))‖k0,γ

p ≤p 1 + ‖V‖k0,γ
p ∀α, β ∈ RN , |α|+ |β| ≤ 3

where A is given in (1.37), and V(θ) = i(θ)− (θ, 0, 0) = (Θ(θ), I(θ), w(θ)).

Let us consider the Hamiltonian vector field XP = (∂IP,−∂θP,−J∇wP ), where P is defined in (1.44).

Lemma 5.1. Let V(θ) satisfy ‖V‖k0,γ
p0+σ ≤ 1, for some σ > 0. Then

‖XP (i)‖k0,γ
p ≤p 1 + ‖V‖k0,γ

p+2 (5.1)

and for all î := (θ̂, Î , ŵ)

‖diXP (i)[̂i]‖k0,γ
p ≤p ‖̂i‖p+3 + ‖V‖k0,γ

s+3 ‖̂i‖p0+3 (5.2)

‖d2
iXP (i)[̂i, î]‖k0,γ

p ≤p ‖̂i‖k0,γ
p+3 ‖̂i‖

k0,γ
p0+3 + ‖V‖k0,γ

p+4 (‖̂i‖k0,γ
p0+3)2 (5.3)

‖∂IdiXP (i)[̂i]‖k0,γ
p ≤p ‖̂i‖k0,γ

p+3 + ‖V‖k0,γ
p+4 ‖̂i‖

k0,γ
p0+3 . (5.4)

Proof. We can write XP as follows

XP =

((
∂A(θ, I)

∂I

)T
∇P(A(θ, I, w) , −

(
∂A(θ, I)

∂θ

)T
∇P(A(θ, I, w) , Π⊥S (−J)∇P(A(θ, I, w))

)

where Π⊥S is the L2-projection on the space H⊥S defined in (1.32), A is defined in (1.37) and P is defined

in (1.28). Hence the estimate (5.1) for XP follows by direct computation using Lemma 2.16, and the

estimates (5.2), (5.3) and (5.4) follow by differentiating XP .

41
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5.2 Almost approximate inverse

In order to find a solution of F(i, α) = 0, with F defined in (4.3), we use a Nash-Moser scheme. The key

point is to construct an almost approximate right inverse of the linearized operator

di,αF(i0, α0)[̂i, α̂] = ω · ∂θ î− diXHα(i0(θ))[̂i]− (α̂, 0, 0)

where the perturbation does not depend on α, hence di,αF(i0, α0) = di,αF(i0). Note that the almost

approximate right inverse is constructed at an approximate torus i0(θ) = (ϑ0(θ), I0(θ), w0(θ)), at a given

value of α0 (see Theorem 5.13).

We use the general strategy in [15], that was implemented in [19]. An invariant torus i0 with dio-

phantine flow, that is, |ω · l| ≥ γ〈l〉−τ , ∀l ∈ ZN \ {0} , is isotropic (see [15]), namely i?0Ξ is closed,

where Ξ is the 1-form defined in (1.39). If we differentiate Ξ we get the (opposite in sign) symplectic

2-form, that is Wnew, defined in (1.38). Hence the pull-back 1-form is closed if and only if the 2-form

−i?0Wnew = i?0dΞ = di?0Ξ = 0.

For an “approximately invariant” torus i0, which the flow is “diophantine” for finitely many l ∈ ZN ,

the 1-form i?0Ξ is “approximately closed”. In order to be more precisely we have that ω is in DC
γ
Kn

, that

is

DC
γ
Kn

:= {ω ∈ Ω ⊂ RN : |ω · l| ≥ γ 〈l〉−τ , ∀|l| ≤ Kn} , (5.5)

where Kn := K
( 3

2 )n

0 .

Then we consider

i?0Ξ =

N∑
k=1

ak(θ)dϕk, ak(θ) := −
(
[∂θϑ0(θ)]T I0(θ)

)
k
− 1

2
(∂θkw0(θ), Jw0(θ))L2(Tx) (5.6)

and we quantify how small is the pull back of the 2-form

− i?0Wnew = di?0Ξ =
∑

1≤k<j≤N

Ajk(θ)dθk ∧ dθj , Ajk(θ) := ∂θkaj(θ)− ∂θjak(θ) , (5.7)

in terms of the “error function”

Z(θ) := (Z1, Z2, Z3)(θ) := F(i0, α0)(θ) = ω · ∂θ(i0(θ))−XHα(i0(θ), α0) . (5.8)

Remark 5.2. The frequency vector ω in (5.8) is only “approximate” Diophantine, that is ω ∈ DC
γ
Kn

,

where DC
γ
kn

is defined in (5.5) .

Ansatz . The map (ω, ε) 7→ V0(ω, ε) = i0(θ, ω, ε) − (θ, 0, 0) is k0-times differentiable with respect to the

parameters (ω, ε) ∈ RN × [ε1, ε2], and for some ν := ν(τ,N) > 0, γ ∈ (0, 1)

‖V0‖k0,γ
p0+ν + |α0 − ω|k0,γ ≤ Cµγ−(1+k1) , (5.9)

where k1 = k1(N, k0) > 0 is given in Theorem 4.1. Moreover we assume µγ−(1+k1) small enough.

Actually in Lemma 4.7 and 4.8 we have required a stronger condition: µγ−(1+k1+k0) < 1 .
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Since in the Nash-Moser iteration (see Chapter 10) we shall construct an extension of each approximate

solution that is k0-times differentiable in the whole RN × [ε1, ε2] we suppose that the torus i0 is defined

for all (ω, ε) ∈ RN × [ε1, ε2].

Lemma 5.3. Let Z as in (5.8).Then

‖Z‖k0,γ
p ≤p |ω − α0|k0,γ + ‖V0‖k0,γ

p+3

≤p µγ−(1+k1) + ‖V0‖k0,γ
p+3 .

Proof. By (4.4), the estimate (5.1) on XP and (5.9) one gets the result.

In the Nash-Moser iteration in Chapter 10 we have to introduce the “ultra-violet” cut-off Kn. More-

over we require that ω ∈ RN satisfies finitely many non-resonance Diophantine conditions. Hence at

every n-step we require that ω is in DC
γ
Kn

. In addition we will require that the frequency vector ω satisfies

also finitely many first and second Melnikov non-resonance condition.

Since we have introduced the ultra-violet cut off it is better to split the coefficients Akj = Akj(θ) in

(5.7) as

Akj = A
(n)
kj +A

(n),⊥
kj , A

(n)
kj := ΠKnAkj , A

(n),⊥
kj := Π⊥KnAkj (5.10)

where ΠKn is defined as the orthogonal projection on the finite Fourier modes |(l, j)| ≤ Kn, and Π⊥Kn is

defined as Π⊥Kn := 1−ΠKn (see (2.10)).

Lemma 5.4. Assume that ω ∈ DC
γ
Kn

. Then the coefficients A
(n)
jk and A

(n),⊥
jk defined in (5.10) satisfy the

following tame estimate

‖A(n)
kj ‖

k0,γ
p ≤p γ−1(‖Z‖k0,γ

p+1+τ(k0+1)+k0
+ ‖Z‖k0,γ

p0+1‖V0‖k0,γ
p+1+τ(k0+1)+k0

) . (5.11)

Moreover for any b > 0 and for any c > 0 such that (5.9) holds with ν ≥ τ(k0 + 1) + k0 + 1 + c we have

‖A(n),⊥
kj ‖k0,γ

p ≤p ‖V0‖k0,γ
p+2 , ‖A(n),⊥

kj ‖k0,γ
p0+c ≤p0,b K

−b
n ‖V0‖k0,γ

p0+b+c . (5.12)

Proof. We prove (5.11)

−Lieω(i∗0Wnew) =
∑

ω · ∂θAjk(θ)dθk ∧ dθj

let ek = (0, ..., 1, 0..) with 1 in the k-entry then

ω · ∂θAjk = −Lieω(i∗0Wnew)[ek, ej ] = −Wnew(∂θZek, ∂θi0(θ)ej)−Wnew(∂θi0(θ)ek, ∂θZej) .

If we apply the projection we obtain

ω · ∂θA(n)
jk = −ΠKn [Wnew(∂θZek, ∂θi0(θ)ej)−Wnew(∂θi0(θ)ek, ∂θZej)] ,

hence, by (5.9) and (2.36) we have

‖ω · ∂θA(n)
kj ‖

k0,γ
p ≤p ‖Z‖k0,γ

p+1‖V0‖k0,γ
p0+1 + ‖Z‖k0,γ

p0+1‖V0‖k0,γ
p+1 ≤p ‖Z‖

k0,γ
p+1 + ‖Z‖k0,γ

p0+1‖V0‖k0,γ
p+1 . (5.13)
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Therefore

‖A(n)
kj ‖

k0,γ
p ≤p γ−1

(
‖Z‖k0,γ

p+τ(k0+1)+k0
+ ‖Z‖k0,γ

p0+1‖V0‖k0,γ
p+τ(k0+1)+k0

)
where we have used ‖(ω · ∂θ)−1ΠKng‖k0,γ

p ≤p γ−1‖g‖k0,γ
p+τ(k0+1)+k0

(recall that ω ∈ DC
γ
Kn

).

For prove (5.12) we use the smooth properties (2.11), (2.36), and (5.9).

Remark 5.5. The splitting (5.10) is due to the fact that ω ∈ DC
γ
Kn

.

As in [15] and [5] we modify the approximate torus i0 to obtain an isotropic torus iδ which is still

approximately invariant. We denote the laplacian ∆θ :=
∑N
k=1 ∂

2
θk

.

Lemma 5.6. Isotropic torus. Let γ−1µ < 1. The torus iδ(θ) = (ϑ0(θ), Iδ(θ), w0(θ)), with

Iδ :=I0 + [∂θϑ0(θ)]−T ρ(θ),

ρj :=4−1
θ

N∑
k=1

∂θj
(
∂θkaj − ∂θjak

)
= 4−1

θ

N∑
k=1

∂θjAkj(θ) , j = 1, ..., N ,
(5.14)

is isotropic. Moreover Iδ admits the splitting Iδ = I
(n)
δ + I

(n),⊥
δ where

I
(n)
δ := I0 + [∂θϑ0(θ)]−T ρ(n)(θ) , (5.15)

ρ
(n)
j (θ) := 4−1

θ

N∑
k=1

∂θjΠKn

(
∂θkaj − ∂θjak

)
(θ) = 4−1

θ

N∑
k=1

∂θjA
(n)
kj (θ) ,

I
(n),⊥
δ := I0 + [∂θϑ0(θ)]−T ρ(n),⊥(θ) , (5.16)

ρ
(n),⊥
j (θ) := 4−1

θ

N∑
k=1

∂θjΠ
⊥
Kn

(
∂θkaj − ∂θjak

)
(θ) = 4−1

θ

N∑
k=1

∂θjA
(n),⊥
kj (θ) .

There is σ := σ(N, τ, k0) > 1 and c ≥ 0 such that, if (5.9) holds with σ + c ≤ ν, then

‖Iδ − I0‖k0,γ
p ≤p

(
‖I(n)
δ − I0‖k0,γ

p + ‖I(n),⊥
δ ‖k0,γ

p

)
≤p ‖V0‖k0,γ

p+1 (5.17)

‖I(n)
δ − I0‖k0,γ

p ≤p γ−1
(
‖Z‖k0,γ

p0+σ‖V0‖k0,γ
p+σ + ‖Z‖k0,γ

p+σ

)
(5.18)

‖I(n),⊥
δ ‖k0,γ

p0+c ≤p0,b K
−b
n ‖V0‖k0,γ

p0+c+b+σ ∀b > 0 (5.19)

‖∂iiδ [̂i]‖k0,γ
p ≤p ‖̂i‖k0,γ

p +
(
‖V0‖k0,γ

p+σ ‖̂i‖
k0,γ
p0

)
. (5.20)

Moreover the “error” function Zδ = F(iδ, α0) of the isotropic torus iδ (defined analogously to (5.8)) can

be splitted as Zδ = Z
(n)
δ + Z

(n),⊥
δ with

‖Z(n)
δ ‖

k0,γ
p ≤p ‖Z‖k0,γ

p+σ + ‖Z‖k0,γ
p0+σ‖V0‖k0,γ

p+σ (5.21)

‖Z(n),⊥
δ ‖k0,γ

p ≤p ‖V0‖k0,γ
p+σ, ‖Z(n),⊥

δ ‖k0,γ
p0+c ≤p0,b K

−b
n ‖V0‖k0,γ

p0+σ+c+b ∀b > 0 . (5.22)

Note that we denote by σ := σ(N, τ, k0) possibly (larger) “loss of derivatives” constant.
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Proof. In [15] it is proved that the torus iδ is isotropics, hence we focus on the inequalities. We have

‖(∂θθ0)−T ‖k0,γ
p ≤p 1 + ‖V0‖k0,γ

p+1 . Then by

‖Iδ − I0‖k0,γ
p = ‖(∂θϑ0(θ))−T ρ(n)(θ)‖k0,γ

p + ‖(∂θϑ0(θ))−T ρ(n,⊥)(θ)‖k0,γ
p ,

by (5.14), (5.6), (5.7), (2.36), (5.9), the estimate (5.17) follows.

We have I
(n)
δ − I0 = [∂θϑ0(θ)]−T ρ(n)(θ), hence the estimate (5.18) follows by (5.11). The estimate

(5.19) follows by (5.16) and (5.12). The estimate (5.20) follows by (5.6), (5.7), (5.9) and by (5.14).

For prove (5.21) and (5.22) we consider the following split.

F(iδ, α0) = F(i0, α0) +


0

ω · ∂θ(Iδ − I0)

0

+ µ (XP (iδ)−XP (i0))

= F(i0, α0) +


0

ω · ∂θ(Iδ − I0)

0

+ +µ

∫ 1

0

∂IXP (tiδ + (1− t)i0) · (Iδ − I0) dt

= Z
(n)
δ + Z

(n),⊥
δ

where

Z
(n)
δ := F(i0, α0) +


0

ω · ∂θ(I(n)
δ − I0)

0


+ µ

∫ 1

0

∂IXP (tiδ + (1− t)i0) ·
(
I

(n)
δ − I0

)
dt , (5.23)

Z
(n),⊥
δ :=


0

ω · ∂θI(n),⊥
δ

0

+ µ

∫ 1

0

∂IXP (tiδ + (1− t)i0) · I(n),⊥
δ dt . (5.24)

Differentiating (5.15) we have

ω · ∂θ
(
I

(n)
δ − I0

)
=[∂θϑ0(θ)]−Tω · ∂θρ(n)(θ)

−
(
[∂θϑ0(θ)]−T (ω · ∂θ[∂θϑ0(θ)]T )[∂θϑ0(θ)]−T

)
ρ(n)(θ) (5.25)

ω · ∂θ[∂θϑ0(θ)] =µ∂θ(∂IP )(i0(θ)) + ∂θZ1(θ) , (5.26)

where Z1 is the first component of the error function. Then for prove (5.21) we use (5.23), (5.25), (5.26),

(5.18), (5.11), (5.15), (5.9), (5.2), (5.13), (2.36) and Lemma 5.3. The inequalities (5.22) follows by (5.24),

(5.12), (5.17), (5.19), (5.16), (2.36) (5.2) and (5.9).

In order to find an approximate inverse of the linearized operator di,αF(iδ) we consider the symplectic
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diffeomorphism Gδ : (ψ, y, z)→ (ϑ, I, w) of the phase space TN ×RN × H⊥S defined by
ϑ

I

w

 := Gδ


ψ

y

z

 :=


ϑ0(ψ)

Iδ(ψ) + [∂ψϑ0(ψ)]−T y − [(∂θw̃0)(ϑ0(ψ))]T (−J)z

w0(ψ) + z

 (5.27)

where w̃0 = w0(θ−1
0 (θ)). In [15] is proved that Gδ is symplectic.

In this coordinates, iδ is the trivial embedded torus (ψ, y, w) = (ψ, 0, 0). Under this symplectic change

of variables the Hamiltonian vector field XHα generated by the Hamiltonian Hα in (4.2) changes into

XKα = (DGδ)
−1XHα ◦Gδ, where Kα := Hα ◦Gδ . (5.28)

By (1.43) we have that the transformation Gδ is reversibility preserving thus Kα is reversible, that is

Kα ◦ ρ̃ = Kα, where ρ̃ is defined in (1.42). We compute the Taylor expansion of the new Hamiltonian

Kα at the trivial torus (ψ, 0, 0), that is

Kα(ψ, y, z) = K00(ψ, α) +K10(ψ, α) · y + (K01(ψ, α), z)L2(Tx) + (K11(ψ)y, z)L2(Tx)

+
1

2
K20(ψ)y · y +

1

2
(K02(ψ)z, z)L2(Tx) +K≥3(ψ, y, z)

(5.29)

where K≥3 collects the terms at least cubic in the variables (y, z). The Taylor coefficient K00(ψ, α) ∈ R,

K10(ψ, α) ∈ RN , K01(ψ, α) ∈ H⊥S , K20(ψ, α) ∈ RN×N , K02(ψ) is a linear self-adjoint operator of H⊥S and

K11(ψ) ∈ L(RN , H⊥S ), where H⊥S is defined in (1.32) .

By (5.27) and (4.2) the Taylor coefficients which depend on α are K00,K10 and K01 .

The equations of motion associated to the HamiltonianKα in (5.29) are (recall (1.38) and the definition

of J in (8) i.e. (1.23))

ψ̇ = K10(ψ, α) +K20(ψ)y +KT
11(ψ)z + ∂yK≥3(ψ, y, z)

ẏ = ∂ψK00(ψ, α)− [∂ψK10(ψ, α)]T y − [∂ψK01(ψ, α)]T z − ∂ψ(K11(ψ)y, z)L2(Tx)

− 1
2∂ψ(K20(ψ)y · y)− 1

2∂ψ(K02(ψ)z, z)L2(Tx) − ∂ψK≥3(ψ, y, z)

ż = (−J)(K01(ψ, α) +K11(ψ)y +K02(ψ)z +∇zK≥3(ψ, y, z)) ,

(5.30)

where ∂ψK
T
10 ∈ RN×N and ∂ψK

T
01,K

T
11 : H⊥S → RN are defined by the duality relation(

∂ψK
T
01[ψ̂], z

)
L2(Tx)

= ψ̂· [∂ψK01]T z, ∀ψ̂ ∈ RN , z ∈ H⊥S

and

KT
11(ψ)z =

N∑
k=1

(
KT

11z · ek
)
ek =

N∑
k=1

(z,K11ek)L2(Tx) ek ∈ R
N , ∀z ∈ H⊥S . (5.31)

Note that the coefficients K00,K10 and K01 vanish when Z = 0, in other words these coefficients vanish

on an exact solution.
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We consider Kα = Hα ◦ Gδ (see (5.28)), and we define F(iδ, α) = Zδ := (Z1,δ, Z2,δ, Z3,δ) then

differentiating it (see [15], [5]) we get

K10(ψ, α0) =ω − [∂ψϑ0(ψ)]TZ1,δ(ψ)

∂ψK00(ψ, α0) =− [∂ψϑ0(ψ)]T
(
−Z2,δ − [∂ψIδ(ψ)][∂ψϑ0(ψ)]−1Z1,δ − [(∂ψw̃0)(ϑ0(ψ))]T (−J)Z3,δ

−[(∂ψw̃0)(ϑ0(ψ))]T (−J)∂ψw0(ψ)[(∂ψϑ0(ψ))]−1Z1,δ

)
K01(ψ, α0) =− JZ3,δ + J∂ψw0(ψ)[∂ψϑ0(ψ)]−1Z1,δ(ψ) .

(5.32)

If we consider the splitting Zδ = Z
(n)
δ + Z

(n),⊥
δ , given in Lemma 5.6, setting

Z
(n)
δ := (Z

(n)
1,δ , Z

(n)
2,δ , Z

(n)
3,δ ) and Z

(n),⊥
δ := (Z

(n),⊥
1,δ , Z

(n),⊥
2,δ , Z

(n),⊥
3,δ )

we can decompose the coefficients K00,K01,K02 in the Taylor expansion (5.29) as

∂ψK00 = ∂ψK
(n)
00 + ∂ψK

(n),⊥
00 , K10 = K

(n)
10 +K

(n),⊥
10 , K01 = K

(n)
01 +K

(n),⊥
01 (5.33)

where

∂ψK
(n)
00 (ψ, α0) =− [∂ψϑ0(ψ)]T

(
−Z(n)

2,δ − [∂ψIδ(ψ)][∂ψϑ0(ψ)]−1Z
(n)
1,δ

− [(∂ψw̃0)(θ0(ψ))]T (−J)Z
(n)
3,δ

−[(∂ψw̃0)(ϑ0(ψ))]T (−J)∂ψw0(ψ)[(∂ψϑ0(ψ))]−1Z
(n)
1,δ

)
(5.34)

∂ψK
(n),⊥
00 (ψ, α0) =− [∂ψϑ0(ψ)]T

(
−Z(n),⊥

2,δ (ψ)− [∂ψIδ(ψ)][∂ψϑ0(ψ)]−1Z
(n),⊥
1,δ

− [(∂ψw̃0)(θ0(ψ))]T (−J)Z
(n),⊥
3,δ

−[(∂ψw̃0)(ϑ0(ψ))]T (−J)∂ψw0(ψ)[(∂ψϑ0(ψ))]−1Z
(n),⊥
1,δ

)
(5.35)

K
(n)
10 (ψ, α0) =ω − [∂ψϑ0(ψ)]TZ

(n)
1,δ (ψ) (5.36)

K
(n),⊥
10 (ψ, α0) =− [∂ψϑ0(ψ)]TZ

(n),⊥
1,δ (ψ) (5.37)

K
(n)
01 (ψ, α0) =− JZ(n)

3,δ + J∂ψw0(ψ)[∂ψϑ0(ψ)]−1Z
(n)
1,δ (5.38)

K
(n),⊥
01 (ψ, α0) =− JZ(n),⊥

3,δ + J∂ψw0(ψ)[∂ψϑ0(ψ)]−1Z
(n),⊥
1,δ . (5.39)

In the following two Lemmas we first give some estimates on the coefficients that vanish when Z = 0,

then we estimate the variation of these coefficients with respect to α.

Lemma 5.7. There exists σ := σ(N, τ, k0) > 0 such that if if (5.9) holds with ν ≥ σ+ c, c > 0, then the

splitted coefficients (5.33) satisfy

‖∂ψK(n)
00 (·, α0)‖k0,γ

p + ‖∂ψK(n)
10 (·, α0)− ω‖k0,γ

p

+ ‖∂ψK(n)
01 (·, α0)‖k0,γ

p ≤p ‖Z‖k0,γ
p+σ + ‖Z‖k0,γ

p0+σ‖V0‖k0,γ
p+σ (5.40)

‖∂ψK(n),⊥
00 (·, α0)‖k0,γ

p + ‖∂ψK(n),⊥
10 (·, α0)‖k0,γ

p + ‖∂ψK(n),⊥
01 (·, α0)‖k0,γ

p ≤p ‖V0‖k0,γ
p+σ (5.41)
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‖∂ψK(n),⊥
00 (·, α0)‖k0,γ

p0+c + ‖∂ψK(n),⊥
10 (·, α0)‖k0,γ

p0+c + ‖∂ψK(n),⊥
01 (·, α0)‖k0,γ

p0+c ≤p0,b K
−b
n ‖V0‖k0,γ

p+σ+c+b (5.42)

for all b > 0.

Proof. The estimate (5.40), (5.41) and (5.42) follows by the explicit expressions given in (5.34)-(5.39),

by (2.36), (5.17) (5.21) and (5.22) .

Lemma 5.8. There exists σ := σ(N, τ, k0) > 0 such that, if ‖V0‖k0,γ
p0+σ ≤ 1, then

‖∂αK00‖k0,γ
p + ‖∂αK10 − 1‖k0,γ

p + ‖∂αK01‖k0,γ
p ≤p ‖V0‖k0,γ

p+σ

‖K20‖k0,γ
p ≤p µ

(
1 + ‖V0‖k0,γ

p+σ

)
‖K11y‖k0,γ

p ≤p µ
(
‖y‖k0,γ

p+2 + ‖V0‖k0,γ
p+σ‖y‖

k0,γ
p0+2

)
‖KT

11z‖k0,γ
p ≤p µ

(
‖z‖k0,γ

p+2 + ‖V0‖k0,γ
p+σ‖z‖

k0,γ
p0+2

)
.

Proof. As in [15] we have

∂αK00(ψ) = Iδ(ψ)

∂αK10(ψ) = [∂ψϑ0(ψ)]−1

∂αK01(ψ) = (−J)∂θw̃0(ϑ0(ψ))

K20(θ) = µ[∂θϑ0(θ)]−1∂IIP (iδ(θ))[∂θϑ0(θ)]−T

K11(θ) = µ
(
∂I∇wP (iδ(θ))[∂θϑ0(θ)]−T + (−J)(∂θw̃0)(ϑ0(θ))(∂IIP (iδ(θ))[∂ψϑ0(ψ)]−T

)
Then (2.36), (5.1), (5.11), (5.31) and (5.3) imply the lemma.

If we consider the change of variables

DGδ(ϑ, 0, 0)


ψ̂

ŷ

ẑ

 :=


∂ψϑ0(θ) 0 0

∂ψIδ(θ) [∂ψϑ0(θ)]−T −[(∂ψw̃0)(ϑ0(θ))]T (−J)

∂ψw0(θ) 0 1



ψ̂

ŷ

ẑ

 (5.43)

we have that the induced composition operator satisfies the following Lemma.

Lemma 5.9. For all î = (ψ̂, ŷ, ẑ) we have

‖DGδ(ϑ, 0, 0)[̂i]‖k0,γ
p + ‖DGδ(ϑ, 0, 0)−1 [̂i]‖k0,γ

s ≤p ‖̂i‖k0,γ
p + ‖V0‖k0,γ

p+σ ‖̂i‖
k0,γ
p0

(5.44)

‖D2Gδ(ϑ, 0, 0)[̂i1 , î2]‖k0,γ
p ≤p ‖̂i1‖k0,γ

p ‖̂i2‖k0,γ
p0

+ ‖̂i2‖k0,γ
p ‖̂i1‖k0,γ

p0
+ ‖V0‖k0,γ

p+σ ‖̂i1‖
k0,γ
p0
‖̂i2‖k0,γ

p0
. (5.45)

Proof. Use (5.43), (5.9), (2.36) and (5.17).

Under the change of variables (5.43) the linearized operator di,αF(iδ) is transformed into a new

operator obtained by linearizing the equations of motion in (5.30) at (ψ, y, z) = (θ, 0, 0), differentiating

also in α at α0 and changing ∂t  ω · ∂θ. Actually the linearized operator di,αF(iδ) is “approximately”
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transformed into the new one, see (5.82) for the precise expression of the error. The new linearized

operator is given by

N[ψ̂, ŷ, ẑ, α̂] :=


ω · ∂θψ̂ − ∂ψK10(θ)[ψ̂]− ∂αK10(θ)[α̂]−K20(θ)ŷ −KT

11(θ)ẑ

ω · ∂θŷ − ∂ψψK00(θ)[ψ̂]− ∂ψ∂αK00(θ)[α̂] + [∂ψK10(θ)]T ŷ + [∂ψK01(θ)]T ẑ

ω · ∂θ ẑ + J∂ψK01(θ)[ψ̂] + J∂αK01(θ)[α̂] + JK11(θ)ŷ + JK02(θ)ẑ

 . (5.46)

In order to construct an “almost-approximate” inverse of (5.46) we need to solve

N[h] = g , where h = (h1, h2, h3) and g = (g1, g2, g3). (5.47)

We start by considering the third equation in the system defined in (5.47), that is, Lω ẑ = g3 −

J∂ψK01(θ)[ψ̂]− JK11(θ)ŷ − J∂αK01(θ)[α̂] where

Lω := Π⊥S (ω · ∂θ + JK02(θ)) |H⊥S . (5.48)

We need that Lω is “almost invertible” up to a scales Kn := K
(3/2)n

0 that we shall use for the non-linear

Nash-Moser iteration in Chapter 10. Hence we have to require that the operator Lω is “almost” invertible,

therefore we need following assumption:

• Almost-invertibility assumption. There exists a subset Λ0 ⊂ Ω × [ε1, ε2], such that for all

(ω, ε) ∈ Λ0 the operator Lω in (5.48) can be decomposed as

Lω = Lω + Rω + R⊥ω (5.49)

where Lω is invertible and Rω,R
⊥
ω satisfy the estimate (9.97), (9.98) and (9.99). More precisely

for every g ∈ Hp+σ(T1+N ) ∩ H⊥S and such that g(−θ) = −ρg(θ) (see (1.43)) there exists a solution

h := L−1
ω g ∈ Hp(T1+N ) ∩ H⊥S , with h(−θ) = ρh(θ) of the linear equation Lωh = g which satisfies

for all p0 ≤ p ≤ P the tame estimate

‖L−1
ω g‖k0,γ

p ≤P γ−1
(
‖g‖k0,γ

p+σ + µγ−1‖g‖k0,γ
p0+σ

[
‖V0‖k0,γ

p+σ+ν(b) + γ−1‖V0‖k0,γ
p0+σ‖Z‖

k0,γ
p+3

])
≤P γ−1

(
‖g‖k0,γ

p+σ + ‖g‖k0,γ
p0+σ‖V0‖k0,γ

p+σ+ν(b)

) (5.50)

for some σ := σ(τ,N, k0) ≥ 0 and ν(b) defined in (9.25).

Remark 5.10. This inversion assumption must be verified at each n step of the Nash-Moser nonlinear

iteration, as we shall do thanks to Theorem 9.18. Note that in Chapter 8 and 9 we almost diagonalize

Lω up to remainders of size O(µNa−1
n−1) where the scales Nn are given by

Nn := Kr
n , i,e. N0 := Kr

0 , (5.51)

with r > 1 large enough, it satisfies (10.6). This process allows us to verify the inverse assumption.

Moreover the set of the good parameters Λ0 is contained in DC
γ
Kn
× [ε1, ε2], where DC

γ
Kn

is defined in

(5.5). Actually the parameters (ω, ε) ∈ Λ0 have to satisfy the first and the second Melnikov non-resonance

conditions (9.94).
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If we consider the operator defined in (5.46) we have that ∂ψK10, ∂ψψK00, ∂ψK00(θ) and ∂ψK01(θ) vanish

at an exact solution (see Lemma 5.7), and also the small remainders Rω and R⊥ω are equal to zero on an

exact solution, hence it is natural to look for an almost inverse of the operator

D[ψ̂, ŷ, ẑ, α̂] :=


ω · ∂θψ̂ − ∂αK10(θ)[α̂]−K20(θ)ŷ −KT

11(θ)ẑ

ω · ∂θŷ + ∂ψ∂αK00(θ)[α̂]

Lω ẑ + J∂αK01(θ)[α̂] + JK11(θ)ŷ

 , (5.52)

where Lω = ω ·∂θ−(−J)K02(θ). In addition since we require only finitely many non resonance condition,

i.e. |ω · l| ≤ γ−1 〈l〉τ , |l| ≤ Kn we also decompose ω · ∂θ as:

ω · ∂θ = D(n)
ω +D(n),⊥

ω , D(n)
ω := ΠKnω · ∂θΠKn + Π⊥Kn D(n),⊥

ω := Π⊥Knω · ∂θΠ
⊥
Kn −Π⊥Kn (5.53)

and we also split the operator D in (5.52) as

D = Dn + D⊥n , where D⊥n [ψ̂, ŷ, ẑ, α̂] :=


D(n),⊥
ω ψ̂

D(n),⊥
ω ŷ

0

 , (5.54)

Dn[ψ̂, ŷ, ẑ, α̂] :=


D(n)
ω ψ̂ − ∂αK10(θ)[α̂]−K20(θ)ŷ −KT

11(θ)ẑ

D(n)
ω ŷ + ∂ψ∂αK00(θ)[α̂]

Lω ẑ + J∂αK01(θ)[α̂] + JK11(θ)ŷ

 . (5.55)

By the smoothing properties (2.11) the operator D(n),⊥
ω in (5.53) satisfies

‖D(n),⊥
ω h‖k0,γ

p0
≤ K−bn ‖h‖

k0,γ
p0+b+1, ∀b > 0, ‖D(n),⊥

ω h‖k0,γ
p ≤ ‖h‖k0,γ

p+1 . (5.56)

Lemma 5.11. Assume that ω ∈ DC
γ
Kn

, defined in (5.5). Then, for all g ∈ Hp(T×TN ) with zero average,

the linear equation D(n)
ω h = g has the unique solution h =

(
D(n)
ω

)−1
g with zero average, which satisfies

‖
(
D(n)
ω

)−1
g‖k0,γ
p ≤k0 γ

−1‖g‖k0,γ
p+τ1 , τ1 = τ + k0(τ + 1) . (5.57)

We are looking for an exact inverse of Dn defined in (5.55). Therefore we have to solve the system

Dn[ψ̂, ŷ, ẑ, α̂] =


g1

g2

g3

 , (5.58)

where (g1, g2, g3) satisfy the reversibility property (see the Almost-invertibility assumption before and

the definition of ρ̃ given in (1.42) i.e. (1.43))

g1(−θ) = g1(θ), g2(−θ) = −g2(θ), g3(−θ) = −(ρg3)(θ) . (5.59)

We consider the second equation in (5.58), that is

D(n)
ω ŷ + ∂θ∂αK00(θ)[α̂] = g2 . (5.60)
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By reversibility, we have that the θ average of the right hand side of the equation above vanishes, that is∫
TN

∂θK00(θ)dθ = 0 and

∫
TN

g2(θ)dθ = 0 . (5.61)

By (5.61) and Lemma 5.11 we have that the solution of (5.60) is well defined and it is given by

ŷ := (D(n)
ω )−1(−∂ψ∂αK00(θ)[α̂] + g2) . (5.62)

Under the assumption (5.50) we can solve the equation

ẑ := L−1
ω ((−J)∂αK01(θ)[α̂] + (−J)K11(θ)ŷ + g3) . (5.63)

We now substitute (5.62) and (5.63) in the first equation in (5.58) and we found that

D(n)
ω ψ̂ =∂αK10(θ)[α̂] +K20(θ)

(
(D(n)

ω )−1(−∂ψ∂αK00(θ)[α̂] + g2)
)

+KT
11(θ)

(
L−1
ω

[
(−J)∂αK01(θ)[α̂] + (−J)K11(θ)(D(n)

ω )−1(−∂ψ∂αK00(θ)[α̂] + g2)) + g3

])
=
(
∂αK10(θ)−K20(θ)(D(n)

ω )−1∂ψ∂αK00(θ) +KT
11(θ)L−1

ω (−J)∂αK01(θ)

−KT
11(θ)L−1

ω (−J)K11(θ)(D(n)
ω )−1(∂ψ∂αK00(θ)

)
[α̂]

+
(
K20(θ)(D(n)

ω )−1 +KT
11(θ)L−1

ω (−J)K11(θ)(D(n)
ω )−1

)
g2

+KT
11(θ)L−1g3 + g1

=M1(θ)[α̂] +M2(θ)g2 +M3(θ)g3 + g1 , (5.64)

where

M1(θ) := ∂αK10(θ)−K20(θ)(D(n)
ω )−1∂ψ∂αK00(θ) +KT

11(θ)L−1
ω (−J)∂αK01(θ)

−KT
11(θ)L−1

ω (−J)K11(θ)(D(n)
ω )−1∂ψ∂αK00(θ) (5.65)

M2(θ) := K20(θ)(D(n)
ω )−1 +KT

11(θ)L−1
ω (−J)K11(θ)(D(n)

ω )−1 (5.66)

M3(θ) := KT
11(θ)L−1

ω . (5.67)

Therefore, in order to solve (5.64) we have to choose α̂ such that the right hand side of (5.64) has zero

average, that is ∫
TN

(M1(θ)[α̂] +M2(θ)g2 +M3(θ)g3 + g1)dθ = 0 .

By (5.9), (5.57) and Lemma 5.8 we have that the θ-averaged matrix

〈M1〉 = 1 +O(µγ−1(1+k1)) . (5.68)

Therefore, for µγ−1(1+k1) is small enough, 〈M1〉 is invertible and 〈M1〉−1
= 1+O(µγ−1(1+k1)). Thus we

can define

α̂ := −〈M1〉−1
(〈g1〉+ 〈M2g2〉+ 〈M3g3〉) . (5.69)
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Then, with this choice of α̂, by Lemma 5.11 the equation (5.64) has the solution

ψ̂ := (D(n)
ω )−1 (M1(θ)[α̂] +M2(θ)g2 +M3(θ)g3 + g1) . (5.70)

In conclusion (ψ̂, ŷ, ẑ, α̂), with ŷ given in (5.62), ẑ in (5.63), α̂ in (5.69) and ψ̂ in (5.70) is a solution of

(5.58).

Lemma 5.12. Assume (5.9) with ν = σ + ν(b) and (5.50). Then, for all (ω, ε) ∈ Λ0, ∀g := (g1, g2, g3)

satisfying (5.59), the system (5.58) has solution D−1
n g := (ψ̂, ŷ, ẑ, α̂) where (ψ̂, ŷ, ẑ, α̂) are defined in

(5.70), (5.62),(5.63) and (5.69), which satisfies (1.43) and for any p0 ≤ p ≤ P

‖D−1
n g‖k0,γ

p ≤P γ−1
(
‖g‖k0,γ

p+σ + µγ−1‖g‖k0,γ
p0+σ[‖V0‖k0,γ

p+σ+ν(b) + γ−1‖V0‖k0,γ
p0+σ‖F(i0, α0)‖k0,γ

p+σ]
)

≤P γ−1
(
‖g‖k0,γ

p+σ + ‖g‖k0,γ
p0+σ‖V0‖k0,γ

p+σ+ν(b)

)
.

(5.71)

Proof. By the explicit definition of M2 and M3 in (5.66) and (5.67), and by (5.50), (5.9), (5.57) and

Lemma 5.8 we have

‖M2g‖k0,γ
p0

+ ‖M3g‖k0,γ
p0
≤ C‖g‖k0,γ

p0+σ .

By the explicit definition of α in (5.69) and by (5.68), we arrive to

|α̂|k0,γ ≤ C‖g‖k0,γ
p0

.

The explicit definition of ŷ in (5.62) and (5.57) imply

‖ŷ‖k0,γ
p ≤p γ−1(‖g‖k0,γ

p+σ + ‖V0‖k0,γ
p+σ+ν(b)‖g‖

k0,γ
p0+σ) .

For estimate ẑ we use (5.50), hence ẑ satisfies (5.71). Finally by the explicit definition of ψ̂, given in

(5.70),and by (5.66), (5.67), (5.50), (5.57) and Lemma 5.8 we have that ψ̂ satisfies (5.71) .

Now we are ready to give the expression of the almost approximate right inverse. The operator

T0 := T0(i0) := (DG̃δ)(θ, 0, 0) ◦ D−1
n ◦ (DGδ)(θ, 0, 0)−1 (5.72)

is an approximate right inverse for di,αF(i0) (as we shall prove in Lemma 5.13) where

G̃δ(ψ, y, z, α) = (Gδ(ψ, y, z), α)

is the identity on the α-component.

We denote the norm ‖(ψ, y, z, α)‖k0,γ
p := max{‖(ψ, y, z)‖k0,γ

p , |α|k0,γ}, where ‖(ψ, y, z)‖k0,γ
p is defined

in (4.5) and | · |k0,γ is defined in (2.7).

Theorem 5.13. Almost-approximate inverse. Assume that the inversion assumptions (5.49)-(5.50)

hold. Then there exists σ̄ := σ̄(τ,N, k0) > 0 such that, if (5.9) holds with ν = σ̄ + ν(b), then for all
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(ω, ε) ∈ Λ0, for all g := (g1, g2, g3) satisfying (5.59), the operator T0 defined in (5.72) satisfies, for all

p0 ≤ p ≤ P

‖T0g‖k0,γ
p ≤P γ−1

(
‖g‖k0,γ

p+σ̄+ν(b) + µγ−1‖g‖k0,γ
p0+σ̄[‖V0‖k0,γ

p+σ̄+ν(b)

+ γ−1‖V0‖k0,γ
p0+σ̄+ν(b)‖F(i0, α0)‖k0,γ

p+σ̄+ν(b)]
)

≤P γ−1
(
‖g‖k0,γ

p+σ̄ + ‖g‖k0,γ
p0+σ̄‖V0‖k0,γ

p+σ̄+ν(b)

)
.

(5.73)

Moreover T0 is an approximate inverse of di,αF(i0), namely we may decompose di,αF(i0) ◦ T0 − 1 as

follows

di,αF(i0) ◦T0 − 1 = P(i0) + Pω(i0) + P⊥ω (i0) (5.74)

where the operators P , Pω , P⊥ω satisfy, for all p0 ≤ p ≤ P

‖Pg‖k0,γ
p ≤P γ−1

(
‖F(i0, α0)‖k0,γ

p0+σ̄‖g‖
k0,γ
p+σ̄ +

+ ‖g‖k0,γ
p0+σ̄

[
‖F(i0, α0)‖k0,γ

p+σ̄ + ‖F(i0, α0)‖k0,γ
p0+σ̄‖V0‖k0,γ

p+σ̄+ν(b)

])
(5.75)

‖Pωg‖k0,γ
p ≤P µγ−2N−an−1

(
‖g‖k0,γ

p+σ̄ + ‖g‖k0,γ
p0+σ̄‖V0‖k0,γ

p+σ̄+ν(b)

)
(5.76)

‖P⊥ω g‖k0,γ
p ≤P γ−1

(
‖g‖k0,γ

p+σ̄ + ‖g‖k0,γ
p0+σ̄‖V0‖k0,γ

p+σ̄+ν(b)

)
(5.77)

‖P⊥ω g‖
k0,γ
p0
≤P,b γ−1K−bn

(
‖g‖k0,γ

p+σ̄+b + ‖g‖k0,γ
p0+σ̄‖V0‖k0,γ

p+σ̄+ν(b)

)
, ∀b > 0 . (5.78)

Proof. The bound (5.73) follows by (5.72), (5.71) and by (5.43). By (4.4), since XN does not depend on

I, and iδ differs by i0 only on the I component, see (5.14), we have

di,αF(iδ)− di,αF(i0) = µ
(
diXP (iδ)[̂i]− diXP (i0)[̂i]

)
= µ

∫ 1

0

∂IdiXP (θ0, I0 + s(Iδ − I0), w0)[Iδ − I0,Π[·]]ds

:= E0

:= E(n)
0 + E(n),⊥

0 ,

(5.79)

where Π : (̂i, α̂) 7→ î and (recall (5.16) and (5.15))

E(n)
0 := µ

∫ 1

0

∂IdiXP (θ0, I0 + s(Iδ − I0), w0)[I
(n)
δ − I0,Π[·]]ds (5.80)

E(n),⊥
0 := µ

∫ 1

0

∂IdiXP (θ0, I0 + s(Iδ − I0), w0)[I
(n),⊥
δ − I0,Π[·]]ds . (5.81)

Let us define (ψ, y, z) =: v, hence v is the symplectic coordinates induced by Gδ in (5.27). Then

(recall the definition of Kα in (5.28) and the corresponding equations of motion given in (5.30)) the non

linear operator F in (4.3) reads

F(Gδ(v(θ)), α) = DGδ(v(θ))(ω · ∂θv(θ)−XKα(v(θ), α)) .
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Differentiating the equation above at the trivial torus (θ, 0, 0) = G−1
δ (iδ)(θ) := vδ(θ) and α = α0 we get

di,αF(iδ) =DGδ(vδ)(ω · ∂θ − dv,αXKα(vδ, α))DG̃δ(vδ)
−1+

+D2Gδ(vδ)
[
DGδ(vδ)

−1F(iδ, α0)][DGδ(vδ)
−1 [̂i]

]
=DGδ(vδ)(ω · ∂θ − dv,αXKα(vδ, α0))DG̃δ(vδ)

−1 + E1 , (5.82)

where, recalling the splitting F(iδ, α0) = Zδ = Z
(n)
δ + Z

(n),⊥
δ we have

E1 := D2Gδ(vδ)
[
DGδ(vδ)

−1F(iδ, α0)][DGδ(vδ)
−1 [̂i]

]
= E(n)

1 + E(n),⊥
1 (5.83)

with

E(n)
1 := D2Gδ(vδ)

[
DGδ(vδ)

−1Z
(n)
δ , DGδ(vδ)

−1Π[·]
]

(5.84)

E(n),⊥
1 := D2Gδ(vδ)

[
DGδ(vδ)

−1Z
(n),⊥
δ , DGδ(vδ)

−1Π[·]
]
. (5.85)

By the decomposition (5.54), (5.55), (5.49), and by Lemma 5.7, we obtain

(ω · ∂θ − dv,αXKα(vδ, α0))[v̂, α̂] =
(
Dn + D⊥n +R

(n)
Z +R

(n),⊥
Z + Rω + R⊥ω

)
[v̂, α̂] (5.86)

where R
(n)
Z and R

(n),⊥
Z are defined (by splitting R) as follows

R
(n)
Z [ψ̂, ŷ, ẑ, α̂] :=


−∂ψK(n)

10 (θ, α0)[ψ̂]

−∂ψψK(n)
00 (θ, α0)[ψ̂] + [∂ψK

(n)
10 (θ, α0)]T ŷ + [∂ψK

(n)
01 (θ, α0)]T ẑ

+J∂ψK
(n)
01 (θ, α0)[ψ̂]



R
(n),⊥
Z [ψ̂, ŷ, ẑ, α̂] :=


−∂ψK(n),⊥

10 (θ, α0)[ψ̂]

−∂ψψK(n),⊥
00 (θ, α0)[ψ̂] + [∂ψK

(n),⊥
10 (θ, α0)]T ŷ + [∂ψK

(n),⊥
01 (θ, α0)]T ẑ

+J∂ψK
(n),⊥
01 (θ, α0)[ψ̂]


and

Rω[ψ̂, ŷ, ẑ, α̂] :=


0

0

Rω[ẑ]

 , R⊥ω [ψ̂, ŷ, ẑ, α̂] :=


0

0

R⊥ω [ẑ]

 . (5.87)

Hence by (5.79), (5.82), (5.83) and (5.86) we can write

di,αF(iδ) =DGδ(vδ)(ω · ∂θ − dv,αXKα(vδ, α0))DG̃δ(vδ)
−1 + E1

= DGδ(vδ) ◦ Dn ◦DG̃δ(vδ)−1 + E(n) + Eω + E⊥ω (5.88)

where

E(n) := E(n)
0 + E(n)

1 +DGδ(vδ)R
(n)
Z DG̃δ(vδ)

−1, Eω := DGδ(vδ)RωDG̃δ(vδ)−1, (5.89)

E(n),⊥ := E(n)⊥
0 + E(n)⊥

1 +DGδ(vδ)
[
R⊥ω + D⊥n +R

(n)⊥
Z

]
DG̃δ(vδ)

−1. (5.90)
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By the definition of T0 in (5.72), and by (5.88), since Dn ◦ D−1
n = 1 (see Lemma 5.12), we get

di,αF(i0) ◦T0 − 1 = P + Pω + P⊥ω

P := E(n) ◦T0, Pω := Eω ◦T0, P⊥ω := E⊥ω ◦T0 .

Hence thanks to Lemma 5.1, by (2.36), (5.9), (5.17), (5.18), (5.21), (5.44) and (5.45) we obtain

‖E(n) [̂i, α̂]‖k0,γ
p ≤ ‖Z‖k0,γ

p+σ ‖̂i‖
k0,γ
p0+σ + ‖Z‖k0,γ

p0+σ ‖̂i‖
k0,γ
p+σ + ‖Z‖k0,γ

p0+σ ‖̂i‖
k0,γ
p0+σ‖V0‖k0,γ

p+σ

= ‖F(i0, α0)‖k0,γ
p+σ ‖̂i‖

k0,γ
p0+σ + ‖F(i0, α0)‖k0,γ

p0+σ ‖̂i‖
k0,γ
p+σ + ‖F(i0, α0)‖k0,γ

p0+σ ‖̂i‖
k0,γ
p0+σ‖V0‖k0,γ

p+σ

(5.91)

where we have used Z := F(i0, α0). The estimate (5.75) follows by (5.73), (5.91) and (5.9). The estimates

(5.76), (5.77) and (5.78) follow by (9.97), (9.98), (9.99), (5.73), (5.44),(5.17), (5.19), (5.22), (5.41), (5.9)

and (5.56).



Chapter 6

Linearized operator in the normal

directions

In order to write and explicit expression of the linearized operator Lω in (5.48), we have to compute

1
2 (K02(ψ)z, z)L2(Tx) with z ∈ H⊥S , that is the quadratic term in z of (Hα ◦Gδ)(ψ, 0, z) defined in (5.29).

Lemma 6.1. The operator K02(ψ) is

K02(ψ) = Π⊥S ∂v∇vH(A(iδ(ψ))) + µR(ψ) (6.1)

where v = (q, p) and H is the Hamiltonian defined in (1.26) evaluated at the torus

A(iδ(ψ)) = A(ϑ0(ψ), Iδ(ψ), w0(ψ)) = A(ϑ0(ψ), Iδ(ψ)) + w0(ψ) (6.2)

where A is defined in (1.36) and A is defined in (1.37). The operator K02(ψ) is reversibility preserving.

The remainder R(ψ) has the finite dimensional form

R(ψ)[h] =

N∑
j=1

(h, gj(ψ))L2(Tx) χj , ∀h ∈ H⊥S (6.3)

for functions gj , χj ∈ H⊥S which satisfy the tame estimates: for some σ := σ(τ,N) > 0,∀p ≥ p0,

‖gj‖k0,γ
p + ‖χj‖k0,γ

p ≤ 1 + ‖Vδ‖k0,γ
p+σ

‖∂igj [̂i]‖k0,γ
p + ‖∂iχj [̂i]‖k0,γ

p ≤ ‖̂i‖k0,γ
p+σ + ‖Vδ‖k0,γ

p+σ ‖̂i‖
k0,γ
p0+σ .

(6.4)

56



CHAPTER 6. LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS 57

Proof. We consider Gδ defined in (5.27) and A defined in (1.36), then

A ◦Gδ(ψ, y, z) = A


ϑ0(ψ)

Iδ(ψ) + [∂ψϑ0(ψ)]−T y − [(∂θw̃0)(ϑ0(ψ))]T (−J)z

w0(ψ) + z

 =

= A(ϑ0(ψ), Iδ(ψ) + [∂ψϑ0(ψ)]−T y − [(∂θw̃0)(ϑ0(ψ))]T (−J)z) + (w0(ψ) + z)

=
∑
j∈S

√
j

π

√rj + Ijδ (ψ) + ([∂ψϑ0(ψ)]−T y)j − ([(∂θw̃0)(ϑ0(ψ))]T (−J)z)j cos(ϑ0)j cos jx√
rj + Ijδ (ψ) + ([∂ψϑ0(ψ)]−T y)j − ([(∂θw̃0)(ϑ0(ψ))]T (−J)z)j sin(ϑ0)j sin jx


+ w0(ψ) + z

=
∑
j∈S

√
j

π

√rj + Ijδ (ψ) + (L1(ψ)y)j + (L2(ψ)z)j cos(ϑ0)j cos jx√
rj + Ijδ (ψ) + (L1(ψ)y)j + (L2(ψ)z)j sin(ϑ0)j sin jx

+ w0(ψ) + z ,

where

L1(ψ) := [∂ψϑ0(ψ)]−T , L2(ψ) := −[(∂θw̃0)(ϑ0(ψ))]T (−J) .

Let Hα = Nα + µP , as in (4.2), then the operator K02 is given by

K02(ψ) = ∂z∇zKα(ψ, 0, 0) = ∂z∇z(Hα ◦Gδ)(ψ, 0, 0) = D |H⊥S +µ∂z∇z(P ◦Gδ)(ψ, 0, 0) (6.5)

where D is defined in (1.45). If we consider the perturbed part of the Hamiltonian Hα ( defined in (4.2))

composed with the change of variable Gδ, we get

(P ◦Gδ)(ψ, y, z) = P (θ0(ψ), Iδ(ψ) + L1(ψ)y − L2(ψ)z, w0(ψ) + z) . (6.6)

We now differentiate (6.6) with respect to z, and we obtain

∇z(P ◦Gδ)(ψ, y, z) = L2(ψ)T∂IP (Gδ(ψ, y, z)) +∇wP (Gδ(ψ, y, z)) . (6.7)

Therefore

∂z∇z(P ◦Gδ)(ψ, 0, 0) =∂w∇wP (iδ(ψ)) + L2(ψ)T∂IIP (iδ(ψ))L2(ψ) + L2(ψ)T∂w∂IP (iδ(ψ))

+ ∂I∇wP (iδ(ψ))L2(ψ)

=∂w∇wP (iδ(ψ)) +R1(ψ) +R2(ψ) +R3(ψ)

=∂w∇wP (iδ(ψ)) +R(ψ)

(6.8)

where R(ψ) := R1(ψ) +R2(ψ) +R3(ψ) and

R1(ψ) := L2(ψ)T∂IIP (iδ(ψ))L2(ψ),

R2(ψ) := L2(ψ)T∂w∂IP (iδ(ψ)),

R3(ψ) := ∂I∇wP (iδ(ψ))L2(ψ) .



CHAPTER 6. LINEARIZED OPERATOR IN THE NORMAL DIRECTIONS 58

Note that each Ri , i = 1, 2, 3 has the finite dimensional form (6.3) because it is the composition of at

least one operator with finite rank RN . Indeed if we write L2(ψ) : H⊥S → RN as follows

L2(ψ)[h] =

N∑
j=1

(
h, L2(ψ)T [ej ]

)
L2(Tx)

[ej ], ∀h ∈ H⊥S

then

R1(ψ)[h] =

N∑
j=1

(
h, L2(ψ)T [ej ]

)
L2(Tx)

(
L2(ψ)T∂IIP (iδ(ψ))

)
[ej ] .

Similarly we can write R2 and R3 as

R2(ψ)[h] =

N∑
j=1

(h, ∂w∂IP (iδ(ψ))[ej ])L2(Tx) L2(ψ)T [ej ]

R3(ψ)[h] =

N∑
j=1

(
h, L2(ψ)T [ej ]

)
L2(Tx)

(∂w∂IP (iδ(ψ))) [ej ] .

Therefore (6.4) follows by Lemma 5.1. By (6.5), (6.7), (1.44), (1.36), (1.27) and (1.28) we get

K02(ψ) =D |H⊥S +µΠ⊥S ∂v∇vP (A(iδ(ψ))) + µR(ψ)

=Π⊥S ∂v∇vH(A(iδ(ψ))) + µR(ψ)

which proves (6.1).

In conclusion, by Lemma 6.1 the linear operator Lω defined in (5.48) has the form

Lω = Π⊥S (L+ µR)Π⊥S where L = Ω · ∂θ + J∂v∇vH(A(iδ)(θ)) . (6.9)

It is obtained linearizing the system (1.29) at the torus A(iδ(θ)) defined in (6.2), changing ∂t  ω · ∂θ,

and denoting Ω the 2× 2-matrix given by

Ω :=

ω 0

0 ω

 .

Hence the linearized operator L is

L :=

ω 0

0 ω

 · ∂θ +

 0 iT (D)

iT (D) 0


+ µε4

∂xΛ−1((Λ−1pxx)Λ) ∂xΛ−1((Λq)∂2
xΛ−1)

0 0


+ µε4

∂xΛ−1((Λ−1px)∂xΛ) ∂xΛ−1((Λqx)∂xΛ−1)

0 −∂xΛ((Λ−1px)∂xΛ−1)


+ µε2

∂xΛ−1((Λ−1p)Λ) ∂xΛ−1((Λq)Λ−1)

0 ∂xΛ((Λ−1p)Λ−1)

 ,

(6.10)
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where iT (D) is defined in (1.21) and v := (p, q) := (p(x, θ), q(x, θ)) = A(iδ(θ)) are functions in x and θ.

By (1.17), (6.2), (1.36) and (1.43) we have that the function q is even in x, while the function p is odd

in x (see (1.6)). Moreover the function q is even in θ, while the function p is odd in θ (see (12)). The

operators Lω and L are real, reversible and send Xp
0 defined in (1.8) in itself.

In the next two Chapters we reduce the linear operator L in (6.10) to constant coefficients up to a

bounded remainder. The finite dimensional remainder R transforms under conjugation into an operator

of the same form (see Lemma 9.2) and therefore it will be dealt only once at the end of Chapter 9.

From now on we will assume that for some ν := ν(τ,N) > 0 , γ ∈ (0, 1)

‖V0‖k0,γ
p0+ν ≤ 1

5.17⇒ ‖Vδ‖k0,γ
p0+ν ≤ 2 . (6.11)

Note that this condition will be satisfied by the approximate solutions at every step of the Nash-Moser

iteration. Actually ν := ν(b) + σ1 where ν(b) is defined in (9.25) and σ1 is defined in (10.3), is fixed in

the Nash-Moser iteration of Chapter 10.

In order to estimate the variation of the eigenvalues with respect to the approximate invariant torus,

we have to estimate the derivatives with respect to the torus i(θ) in a low norm ‖ · ‖p1 . Note that for all

the Sobolev indices p1 such that

p1 + σ ≤ p0 + ν , for some σ := σ(τ,N) > 0 , (6.12)

we have

‖V0‖k0,γ
p1+σ ≤ 1

5.17⇒ ‖Vδ‖k0,γ
p1+σ ≤ 1 .

The constants ν and σ represent losses of derivatives at any step of the reduction procedure in Chapters

(8), (9). It (possibly) will increase along the finitely many steps of such a procedure. We shall fix the

largest loss of derivatives σ := σ(b) in Chapter 9.

Note that the Sobolev index p1 is introduced since in the reducibility scheme (see Chapter 9) the

remainder Q0 satisfy the estimates (9.23). In Lemma 9.5 we consider Q0 = Q defined in Proposition 9.3

and so we want that (9.14) holds with p1 = p0. For this reason we estimate (in Chapters 7, 8 and in

Appendix B) the derivatives ∂i of functions, operators, pseudo-differential operators, in the intermediate

norm ‖ · ‖p1
, where p1 satisfies (6.12).

As a consequence of the Moser composition Lemma 2.24 the Sobolev norm of the function v =

(q, p)(x, θ) = A(iδ(θ)) (see (6.2)) satisfies

‖v‖k0,γ
p ≤ C(p)

(
1 + ‖V0‖k0,γ

p

)
, ∀p ≥ p0. (6.13)

Similarly for p1 + σ ≤ p0 + ν

‖∂iv[̂i]‖p1 ≤p1 µ‖̂i‖p1 .

Note that in Chapters 9 and 10 we have to estimate the finite difference ‖v(i1)− v(i2)‖p1 in terms of

the difference ‖i1− i2‖p1+σ. In order to do that we consider the derivatives ∂i. It is sufficient to estimate
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only this low norm since it gives enough informations required in order to control the variation of the

eigenvalues of L with respect to the torus.

By the extension procedure of Chapter 10 we have that V0 := V0(ω, ε) is defined for all (ω, ε) ∈

RN × [ε1, ε2]. Moreover all the functions appearing in L defined in (6.10) are C∞−functions both in x

and θ as the approximate torus v = A(iδ(θ)). This enables us to use directly pseudo-differential operators

theory presented in Chapter 2.



Chapter 7

Symmetrization of the linear part

In order to prove the inversion assumptions (5.49), (5.50) we now perform a reduction of the linear

operator L, in (6.10), in decreasing symbols. In Section 7.1, we provide the asymptotic expansion of L

in homogeneous symbols up to order −M plus a suitable bounded remainder with symbol in S−M−1.

The constant M will be fixed in Chapter 9 and it depends only on the “absolute constants” k0, p0, b see

(9.24). In Section 7.2 we block diagonalize the highest order of the linear part of L.

7.1 Asymptotic expansion of the linearized operator

The linearized operator given in (6.10) is the composition of some pseudo-differential operators. We recall

Definition 7 for pseudodifferential opeators with a C∞−symbol, and Theorem 2.5, that we shall use in

the following Lemma in order to write the composition of pseudo-differential operators as a homogeneous

terms plus a suitable remainder.

Lemma 7.1. Let Λ := Op
((

2
15ε

4ξ4 − 1
3ε

2ξ2 + 1
)1/4)

be the pseudo-differential operator introduced in

(1.19). Let a(x, θ) ∈ Hp(T×TN ). Then ∀M ∈ N we have the following asymptotic expansion,

∂xΛ−1(a(x, θ)∂2
xΛ−1) = −

(
2

15

)−1/2

ε−2a(x, θ)∂x +

M∑
k=0

c
(1)
k ã

(1)
k (x, θ)∂−kx +Op(σ1(x, θ, ξ)) ,

∂xΛ−1(a(x, θ)∂xΛ) = a(x, θ)∂2
x +

M∑
k=0

c
(2)
k ã

(2)
k (x, θ)∂−kx +Op(σ2(x, θ, ξ)) ,

∂xΛ−1(a(x, θ)∂xΛ−1) =

M∑
k=0

c
(3)
k ã

(3)
k (x, θ)∂−kx +Op(σ3(x, θ, ξ)) ,

∂xΛ−1(a(x, θ)Λ) = a(x, θ)∂x +

M∑
k=0

c
(4)
k ã

(4)
k (x, θ)∂−kx +Op(σ4(x, θ, ξ)) , (7.1)

∂xΛ−1(a(x, θ)Λ−1) =

M∑
k=0

c
(5)
k ã

(5)
k (x, θ)∂−kx +Op(σ5(x, θ, ξ)) ,

61
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∂xΛ(a(x, θ)∂xΛ−1) = a(x, θ)∂2
x + 2∂xa(x, θ)∂x +

M∑
k=0

c
(6)
k ã

(6)
k (x, θ)∂−kx +Op(σ6(x, θ, ξ)) ,

∂xΛ(a(x, θ)Λ−1) = a(x, θ)∂x +

M∑
k=0

c
(7)
k ã

(7)
k (x, θ)∂−kx +Op(σ7(x, θ, ξ)) ,

where c
(i)
k ∈ R for i = 1, ..., 7, and k ≤M , are some real constant coefficients,

ã
(i)
k (x, θ) =

k+1∑
j=0

dj∂
j
xa(x, θ) , i = 1, 2, 4 , dj ∈ R , possibly equal to zero for some j, k ≤M ,

ã
(i)
k (x, θ) =

k∑
j=0

dj∂
j
xa(x, θ) , i = 3, 5 , dj ∈ R , possibly equal to zero for some j, k ≤M ,

ã
(6)
k (x, θ) =

k+3∑
j=0

dj∂
j
xa(x, θ) , dj ∈ R , possibly equal to zero for some j, k ≤M ,

ã
(7)
k (x, θ) =

k+2∑
j=0

dj∂
j
xa(x, θ) , dj ∈ R , possibly equal to zero for some j, k ≤M ,

and Σi(x, θ,D) := Op(σi(x, θ, ξ)), i = 1, ..., 7 is the remainder belonging to OPS−M−1 for all i = 1, ..., 7.

Furthermore

|Σi|k0,γ
−M−1,p,0 ≤ C(p,M)‖a‖k0,γ

p+M+3, i = 1, ..., 7 . (7.2)

Proof. As previously discussed, since we are working with pseudo-differential operators, a good strategy is

to consider their asymptotic expansion. Therefore, instead of Λd for d ∈ Z we can consider its asymptotic

expansion (recall Definition 8)(
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

)d/4
=

(
2

15

)d/4
εd|ξ|d

(
1− 5

2ε2ξ2
+

15

2ε4ξ4

)d/4

=



(
2
15

)d/4
εd|ξ|d

[
1− 5d

8ε2ξ2 + 15d
8ε4ξ4 + ...+

( d
4

M+d
2

) (
− 5

2ε2ξ2 + 15
2ε4ξ4

)M+d
2

]
+ σM+1(ξ)

if M + d is even ,(
2
15

)d/4
εd|ξ|d

[
1− 5d

8ε2ξ2 + 15d
8ε4ξ4 + ...+

( d
4

M+d+1
2

) (
− 5

2ε2ξ2 + 15
2ε4ξ4

)M+1+d
2

]
+ σM+1(ξ)

if M + d is odd,

(7.3)

where σM+1(ξ) ∈ S−M−1.

Note that, only for notational reasons, in what follows we are not writing the θ-component of the

above operators and functions, since the pseudo-differential operators Λ and Λ−1 defined in (1.19) act

only on the spatial component.

Remark 7.2. Let A := Op(a(x, ξ)) and B := Op(b(x, ξ)) be two pseudo-differential operators and let

n ∈ N. Then A ◦B := C is a pseudo-differential operator (see Theorem 2.5) and it admits the following



CHAPTER 7. SYMMETRIZATION OF THE LINEAR PART 63

asymptotic expansion

C =Op(a(x, ξ) ◦ b(x, ξ))

=Op

∑
k≥0

(−i)k

k!
(∂kξ a(x, ξ))(∂kxb(x, ξ))


=Op

(
n∑
k=0

(−i)k

k!
(∂kξ a(x, ξ))(∂kxb(x, ξ))

)
+ Σ(x, ξ) .

(7.4)

Let

(e, b, c) := {(−1, 2,−1), (−1, 1, 1), (−1, 1,−1), (−1, 0, 1), (−1, 0,−1), (1, 1,−1), (1, 0,−1)} . (7.5)

Then

∂xΛe(a(x)∂bxΛc) =

Op

(
n∑
k=0

(−i)k

k!
i(iξ)b

[
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

]c/4(
∂kξ

[
ξ

[
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

]e/4])
(∂kxa(x))

)

+Σ(x, ξ)

=a(x)Op

((
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

) c
4 + e

4

(iξ)(b+1)

)

+Op

 n∑
k 6=0, odd

(−i)k

k!
i(iξ)b

(
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

) c
4 + e

4−k

(∂kxa(x))

k+ k+1
2∑

s=1

ξ2s


+Op

 n∑
k 6=0, even

(−i)k

k!
ξi(iξ)b

(
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

) c
4 + e

4−k

(∂kxa(x))

k+ k
2∑

s=1

ξ2s

+ Σ(x, ξ)

(7.3)
= Op

(
a(x)

(
2

15
ε4ξ4 − 1

3
ε2ξ2 + 1

) c
4 + e

4

(iξ)(b+1)

)
(7.6)

+Op

(
n∑

k odd

(−i)k

k!
i(iξ)bC(k, ε)|ξ|c+e−4k

[
1 + C1(k, ε)ξ−2 + C2(k, ε)ξ−4

+ ...+ CM̃k
ξ−M̃k + σM+1(ξ, x)

]
∂kxa(x)

k+ k+1
2∑

s=1

ξ2s


+Op

(
n∑

k even

(−i)k

k!
i(iξ)bC(k, ε)|ξ|c+e−4k+1

[
1 + C1(k, ε)ξ−2 + C2(k, ε)ξ−4

+...+ CM̃k
(k, ε)ξ−M̃k + σM+1(x, ξ)

]
(∂kxa(x))

k+ k
2∑

s=1

ξ2s

 ,

where M̃k is such that −M̃k + b + c + e − 4k + 2 ≥ −M − 1, and n is such that 4n := M − b − c − e,

this choose of n ensures that we are considering all the terms of order bigger than −M . Actually in what

follows, we will consider n := [M2 ] + 1 > (M − b− c− e)/4. Note that e+ c = −2, 0, so we can consider

ξe+c−4k instead of |ξ|e+c−4k .
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Therefore if n is even (if n is odd we obtain a similar operator, but we have to consider as last term

the opportune one) we obtain

∂xΛe(a(x)∂bxΛc) = a(x)∂c+e+b+1
x + ...+ a(x)∂−Mx

+ax(x)(∂c+e+bx + ∂c+e+b−2
x )(1 + c

(1)
2 ∂−2

x + ...+ c
(1)

M̃
∂−M̃1
x )

+ax,x(x)(∂c+e+b−1
x + ∂c+e+b−3

x + ∂c+e+b−5
x )(1 + c

(2)
2 ∂−2

x + ...+ c
(2)

M̃
∂−M̃2
x ) + ...+

+(∂nxa(x))(∂c+e+b−4n+1+2n+n
x + ...+ ∂c+e+b−4n+1+2

x )(1 + c
(n)
2 ∂−2

x + ...+ c
(n)

M̃
∂−M̃n
x )

+ΣM (x,D) ,

where c
(i)
k in the equation above are some real constants derived by (7.3). Also note that e + b + c ≤ 1

(see (7.5)). Collecting all the terms of the same order with respect to the derivative in x we can prove

(7.1).

Now we prove (7.2). Let us consider ∂xΛe ◦ a(x)∂bxΛc with (e, b, c) as in (7.5), hence e + b + c ≤ 1,

then, by (2.26), (2.25) and (2.28) one has that the pseudo-differential operators Σi, i = 1, ..., 7 satisfy

|Σi|k0,γ
1+e+b+c−n,p,0 ≤ C(p)|∂xΛe|k0,γ

1+e,p,n|a(x)∂bxΛc|k0,γ
c+b,p0+2n+1+e,0

+ C(p0)|∂xΛe|k0,γ
1+e,p0,n

|a(x)∂bxΛc|k0,γ
c+b,p+2n+1+e,0

≤ C(p)|∂xΛe|k0,γ
1+e,p,n|a(x)|k0,γ

0,p0+2n+1+e,0|∂bxΛc|k0,γ
c+b,p0+2n+1+e,0

+ C(p)|∂xΛe|k0,γ
1+e,p0,n

|a(x)|k0,γ
0,p0+2n+1+e,0|∂bxΛc|k0,γ

b+c,p+2n+1+e,0

+ C(p)|∂xΛe|k0,γ
1+e,p0,n

|a(x)|k0,γ
0,p+2n+1+e,0|∂bxΛc|k0,γ

b+c,p0+2n+1+e,0

≤ C(p, n, e, b, c)‖a‖k0,γ
p0+2n+1+e + C(p0, n)‖a‖k0,γ

p+2n+1+e

≤ C(p, n, e, b, c)‖a‖k0,γ
p+2n+1+e

≤ C(p,M)‖a‖k0,γ
p+M+3 .

(7.7)

where we have used e ≤ 1 and 2n ≤M + 1.

We now want to apply Lemma 7.1 to the linear operator L defined in (6.10). For this reason instead

of a we shall consider, opportunely, Λq , Λqx , Λ−1p , Λ−1px , Λ−1pxx . With this definition of a the

following estimate holds

‖a‖k0,γ
p ≤ ‖v‖k0,γ

p+2 . (7.8)

Then the operator L in (6.10) reads

L =

ω 0

0 ω

 · ∂θ +

 0 iT (D)

iT (D) 0

+ µε4

(Λ−1px) 0

0 −(Λ−1px)

 ∂2
x

+ µε2

(Λ−1p) + ε2(Λ−1pxx) −( 2
15 )−1/2(Λq)

0 (Λ−1p)− 2ε2(Λ−1pxx)

 ∂x + µ

R̃1 R̃2

R̃3 R̃4

 .

(7.9)
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We define

R̃ :=

R̃1 R̃2

R̃3 R̃4

 , where R̃m :=

M∑
k=0

ckA
(m)
k (x, θ)∂−kx + Σ(s)(x, θ,D) , for m = 1, ..., 4 . (7.10)

The operators R̃m , m = 1, ..., 4 are the sum of the homogeneous terms A
(m)
k ∂−kx for k = 0, ...,M and

Σ(m)(x, θ,D) which is a pseudo-differential operator, whose symbol σ(m) belong to S−M−1.

In addition if we define

Ak∂
−k
x :=

ckA(1)
k (x, θ) ckA

(2)
k (x, θ)

ckA
(3)
k (x, θ) ckA

(4)
k (x, θ)

 ∂−kx (7.11)

we obtain by Lemma 7.1, (2.27) and (2.29), recall also Remark 2.7, that, for all 0 ≤ k ≤M

|Ak∂
−k
x |

k0,γ
−k,p,0 ≤ C(p)‖Ak‖k0,γ

p

≤ C(p)‖v‖k0,γ
p+k+5 ,

(7.12)

where we have used that the functions a defined in Lemma 7.1 satisfy (7.8).

Furthermore, by (7.2) and (7.8) we get

|Σ(m)|k0,γ
−M−1,p,0 ≤ C(p,M)‖v‖k0,γ

p+2n+5

≤ C(p,M)‖v‖k0,γ
p+M+6 ,

(7.13)

where n is given in Lemma 7.1, and we use 2n ≤M + 1. In addition, by (7.10) and (2.36), the following

estimates hold

‖∂iAk [̂i]‖p1
≤p1
‖̂i‖p1+5+k , k = 0, ...,M

|∂iΣ[̂i]|−M,p1,0 ≤p1
‖̂i‖p1+M+6 .

(7.14)

Remark 7.3. Note that in the definition of R̃ (see (7.10)) we are summing in k, with k = 0, ...,M . It

has no relation with the index of non-degeneracy k0.

7.2 Symmetrization of the highest order

In this Section we look for a transformation that makes the highest order of L defined in (7.9) diagonal.

We consider the change of variables given in matrix form by

Z =
1√
2

1 1

1 −1

 , Z−1 =
1√
2

1 1

1 −1

 . (7.15)

Hence the linear system defined in (7.9), becomes

Z−1LZ := L0 = Ω · ∂θ + T(D) + B(1)(x, θ)∂2
x + C(1)(x, θ)∂x + R (7.16)
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where

Ω =

ω 0

0 ω

 , (7.17)

T(D) =

iT (D) 0

0 −iT (D)

 , (7.18)

B(1) = µ

 0 ε4(Λ−1px)

ε4(Λ−1px) 0

 , (7.19)

C(1) = µε2

− 1
2 (Λ−1pxx)ε2 −

√
15

2
√

2
(Λq) + (Λ−1p) 3

2 (Λ−1pxx)ε2 +
√

15
2
√

2
(Λq)

3
2 (Λ−1pxx)ε2 −

√
15

2
√

2
(Λq) − 1

2 (Λ−1pxx)ε2 +
√

15
2
√

2
(Λq) + (Λ−1p)

 , (7.20)

R = µ

R1 R2

R3 R4

 , (7.21)

where R1 = 1
2 (R̃1 + R̃2 + R̃3 + R̃4), R2 = 1

2 (R̃1 − R̃2 + R̃3 − R̃4), R3 = 1
2 (R̃1 + R̃2 − R̃3 − R̃4) and

R4 = 1
2 (R̃1 − R̃2 − R̃3 + R̃4) and R̃m , m = 1, ..., 4 are defined in (7.10).

From (7.10) the remainder R can be written, with an abuse of notation, as

M∑
k=0

µ

A(1)
k (x, θ) A

(2)
k (x, θ)

A
(3)
k (x, θ) A

(4)
k (x, θ)

 ∂−kx + µ

Op(σ1(x, θ, ξ)) Op(σ2(x, θ, ξ))

Op(σ3(x, θ, ξ)) Op(σ4(x, θ, ξ))

 . (7.22)

It is clear that Op(σm(x, θ, ξ)) := Σm(x, θ,D) , m = 1, ...4 are a linear combination of the remainder terms

defined in (7.10), while A
(m)
k (x, θ) are linear conbination of the coefficient functions defined in (7.10).

Moreover this new remainder satisfies the same estimates of the previous one, so , for all k = 0, ...,M , by

(7.12), and Remark 2.2 we get

‖Ak‖k0,γ
p ≤ C(p)‖v‖k0,γ

p+k+5 , (7.23)

and if we define

Σ :=

Σ1 Σ2

Σ3 Σ4


by (7.13) and Remark 2.7 we obtain

|Σ|k0,γ
−M−1,p,0 ≤ C(p,M)‖v‖k0,γ

p+M+6 . (7.24)

Moreover, by (7.14) we have

‖∂iAk [̂i]‖p1
≤p1
‖̂i‖p1+5+k , k = 0, ...,M

|∂iΣ[̂i]|−M,p1,0 ≤p1 ‖̂i‖p1+M+6 .
(7.25)

Lemma 7.4. Let E be as follows

E :=


f
g

 f, g ∈ Hp(T×TN ,R) : f(−x, θ) = g(x, θ) ,

∫
T

g(x)dx =

∫
T

f(x)dx = 0

 . (7.26)

Then the linear operator L0 in (7.16) leaves E invariant.
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Proof. After the rotation (7.15) the invariant (for L in (7.9)) subspace Xp
0 defined in (1.8) reads

E :=Z−1Xp
0

=


f
g

 f, g,∈ Hp(T×TN ,R) : f(−x, θ) = g(x, θ) ,

∫
T

g(x)dx =

∫
T

f(x)dx = 0

 .

Indeed given (Λq,Λ−1p) ∈ Xp
0 we have

1√
2

1 1

1 −1

 Λq

Λ−1p

 =
1√
2

Λq + Λ−1p

Λq − Λ−1p

 =

f
g

 .

Since Λq is real and even in x, while Λ−1p is real and odd in the spatial variable we have that f, g are

real and f(−x) = g(x). Moreover both Λq and Λ−1p have zero average in the spatial varibale, hence f

and g have zero average in the spatial variable.

In Chapter 8 we will conjugate the operator L0 with other operators of the following form

T = 1 +

 0 ϕ2(x, θ)

ϕ3(x, θ) 0

 or T = 1 +

ϕ1(x, θ) 0

0 ϕ4(x, θ)

 .

We want that every T leaves the space E invariant. For this reason in the following Lemma we give the

general rules that a transformation has to satisfy in order to leave the space E invariant.

Lemma 7.5. Let k ∈ Z. Let E be

E :=

e1(x, θ) e2(x, θ)

e3(x, θ) e4(x, θ)

 ∂kx

with

(−1)ke1(−x, θ) = e4(x, θ) , (−1)ke2(−x, θ) = e3(x, θ) . (7.27)

Then E leaves E invariant.

Proof. Let (f, g) ∈ E, then for every k ∈ Z

∂kx(g(x, θ)) = ∂kx(f(−x, θ)) = (−1)k(∂kxf)(−x, θ) . (7.28)

Hence, for every k ∈ Z given E, by the formula above (7.27) we have that E : E → E.

In Chapter 9 we shall use the matrix representation of operators. For this reason we present the

following Lemma, that gives the conditions that the operators have to satisfy for sending E in itself.

Lemma 7.6. Let B =

B1 B2

B3 B4

. Then B : E → E if and only if

(B1)jk = (B1)−j−k , (B2)jk = (B2)−j−k , (B3)jk = (B3)−j−k , (B4)jk = (B4)−j−k

(B1)j−k + (B2)−j−k = (B3)jk + (B4)−jk .
(7.29)
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Proof. Let w := (f, g) ∈ E. Then

Bw =

B1 B2

B3 B4

f
g

 =

B1f +B2g

B3f +B4g

 =
∑
j,k∈Z

(B1)jkfj + (B2)jkgj

(B3)jkfj + (B4)jkgj

 eikx.

We have that Bw is real if B1f, B2g, B3f, B4g are real. Let us consider B1f , where f is a real function,

then

(B1)jkf̄je
−ikx = (B1)jkf−je

−ikx = (B1)−j−kfje
ikx.

Hence if

(B1)−j−k = (B1)jk

then B1f is real. Similar for the others. Now we want to find the conditions such that (B1f+B2g)(−x) =

(B3f +B4g)(x). Using the matrix rapresentation of the operators we have

(B1f +B2g)(−x) =
∑
j,k

(
(B1)jkfj + (B2)jkgj

)
e−ikx

=
∑
j,k

(
(B1)j−kfj + (B2)j−kgj

)
eikx

=
∑
j,k

(B3)jkfj + (B4)jkgj

= (B3f +B4g)x .

Since ∑
j

(B1)j−kfj +
∑
j

(B2)j−kgj =
∑
j

((B1)j−k + (B2)−j−k)fj

and ∑
j

(B3)jkfj +
∑
j

(B4)jkgj =
∑
j

((B3)jk + (B4)−jk )fj

we arrive to

(B1)j−k + (B2)−j−k = (B3)jk + (B4)−jk .

The involution ρ, defined in (10), which is represented by the matrix

ρ =

1 0

0 −1


after the transformation Z defined in (7.15), becomes

ρ̂ := Z−1ρZ =

0 1

1 0

 .

Therefore (as in Definition 4) we have that a linear operator

B(θ) :=

B1(θ) B2(θ)

B3(θ) B4(θ)

 (7.30)

is
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• is reversible if B(−θ) ◦ ρ̂ = −ρ̂ ◦B(θ) ,

• is reversibility preserving if B(−θ) ◦ ρ̂ = ρ̂ ◦B(θ).

Hence an operator B as in (7.30) is reversible if

B1(−θ) = −B4(θ) , and B2(−θ) = −B3(θ) ,

and it is reversibility preserving if

B1(−θ) = B4(θ) , and B2(−θ) = B3(θ) .

In Chapter 9 we shall use these conditions in the Fourier exponential base. Hence an operator B as

in (7.30) is reversible if

(B1)jk(−l) = −(B4)jk(l) , and (B2)jk(−l) = −(B3)jk(l) ∀j, k ∈ Z, l ∈ ZN , (7.31)

and it is reversibility preserving if

(B1)jk(−l) = (B4)jk(l) , and (B2)jk(−l) = (B3)jk(l) ∀j, k ∈ Z, l ∈ ZN . (7.32)

The linear operator L0 defined in (7.16) is reversible with respect to ρ̃.

In the next Chapter we shall conjugate the operator L0 with operators Tj that are reversibility

preserving in the sense presented above.



Chapter 8

Symmetrization at lower order

In this Chapter we conjugate L0 defined in (7.16) to a block diagonal constant coefficients up to a bounded

remainder. We start by

L0 = Ω · ∂θ + T(D) + B(1)(x, θ)∂2
x + C(1)(x, θ)∂x + R , (8.1)

where T(D) is defined in (7.18), Ω in (7.17), B(1) in (7.19) , C(1) is defined in (7.20) and R can be

decomposed as in (7.22); then the next three steps are the following: in the first step we eliminate the

off-diagonal coefficients up to order zero; In the second step (Section 8.2.2) we study the remainder, that

can be written in a block diagonal form up to order −M plus a pseudo-differential regularizing operator;

Finally we make constant the first order coefficient.

8.1 Elimination of the second order operator

We want to eliminate the coefficient of the second order derivatives in (8.1).

Lemma 8.1. There exists a real, reversibility preserving operator acting in E of the form

T1 = 1 + µ

 0 ϕ
(1)
2 (x, θ)

ϕ
(1)
3 (x, θ) 0

 ∂−1
x = 1 + Φ1(x, θ)∂−1

x (8.2)

such that

L1 := (T1)−1L0T1 = Ω · ∂θ + T(D) + C(2)(x, θ)∂x + R1 , (8.3)

where

C(2) = µ

−√15
2
√

2
µε8(Λ−1px)2 − 1

2 (Λ−1pxx)ε4 3
2 (Λ−1pxx)ε4 + ε2

√
15

2
√

2
(Λq)

3
2 (Λ−1pxx)ε4 − ε2

√
15

2
√

2
(Λq)

√
15

2
√

2
µε8(Λ−1px)2 − 1

2 (Λ−1pxx)ε4


+ µ

−ε2
√

15
2
√

2
(Λq) + ε2(Λ−1p) − 3

2
√

15
ε4(Λ−1pxx)

− 3
2
√

15
ε4(Λ−1pxx) +ε2

√
15

2
√

2
(Λq) + ε2(Λ−1p)

 ,

(8.4)

70
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and R1 is the matrix of symbols in S0 defined in (8.17) that satisfy the estimates in Lemma 8.2. Moreover,

‖C(2)‖k0,γ
p ≤ µC(p)‖v‖k0,γ

p+2 . (8.5)

The linear operator L1 is real, reversible and acts in E.

Proof. Note that with Φ1(x, θ) small enough (see (6.11)), the operator T1 is invertible thanks to Neumann

series, and ∂−1
x · ∂x = ∂x · ∂−1

x = π0 where π0 is the L2-projector on the subspace of functions with zero

average in the spatial variable; Furthermore ∂x · π0 = π0 · ∂x = ∂x, ∂−1
x · ∂xxx = ∂xx and ∂−1

x · ∂xx = ∂x.

Then

LT1 − T1(Ω · ∂θ + T(D)) = [T(D),Φ1∂
−1
x ] + B(1)(x, θ)∂2

x + C(1)(x, θ)∂x + B(1)Φ1∂x + R̃1 . (8.6)

We denote (·)x , (·)xx := ∂x(·) , ∂xx(·); moreover we define

R̃1 := (ω ·∂θΦ1)∂−1
x +C(1)(Φ1π0)+C(1)(Φ1)x∂

−1
x +R+RΦ∂−1

x +B(1)(Φ1)xx∂
−1
x +2B(1)(Φ1)xπ0 , (8.7)

that is the remainder that contains all the terms of order less or equal to zero in the space derivatives,

and R is given in (7.21), B(1) is given in (7.19) and C(1) is given in (7.20).

We have to calculate

[T(D),Φ1(x, θ)∂−1
x ] =

=µ

 0 iT (D)(ϕ
(1)
2 (x, θ)∂−1

x ) + ϕ
(1)
2 (x, θ)∂−1

x iT (D)

−iT (D)(ϕ
(1)
3 (x, θ)∂−1

x )− ϕ(1)
3 (x, θ)∂−1

x iT (D) 0

 .

For computing this commutator we use the asymptotic expansion of the operator iT (D) defined in (1.21):

iT (D) : = Op

(
iξ

√
2

15
ε2ξ2

(
1− 15

2

1

3ε2ξ2
+

15

2

1

ε4ξ4

)1/2
)

= Op

(√
2

15
ε2iξ3

q∑
k=0

(
1/2

k

)(
−15

2

1

3ε2ξ2
+

15

2

1

ε4ξ4

)k
+ r(ξ)

)

= −
√

2

15
ε2∂3

x −
√

5

2
√

6
∂x +

M−1∑
k=1

ck∂
−k
x +Op(r(ξ)) ,

(8.8)

where ck ∈ R are some constant, possibly equal to zero, Op(r(ξ)) is in OPS−M and q = M
2 if M is even

or q = M+1
2 if M is odd. Hence

[T(D),Φ1∂
−1
x ] = µε2

 0 − 2
√

2√
15
ϕ

(1)
2 (x, θ)∂2

x

2
√

2√
15
ϕ

(1)
3 (x, θ)∂2

x 0


+ µε2

 0 − 3
√

2√
15

(ϕ
(1)
2 )x∂x

3
√

2√
15

(ϕ
(1)
3 )x∂x 0

+

 0 U2

U3 0

π0 +

 0 W2

W3 0

 ∂−1
x

+

 0 P2

P3 0


:= µε2

 0 − 2
√

2√
15
ϕ

(1)
2 (x, θ)∂2

x

2
√

2√
15
ϕ

(1)
3 (x, θ)∂2

x 0

+ D(1)∂x + Uπ0 + W∂−1
x + P ,

(8.9)
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where

U := µ

 0 U2

U3 0

 and

U2 := −
√

5
6ϕ

(1)
2 − 3

√
2
15ε

2(ϕ
(1)
2 )xx ,

U3 :=
√

5
6ϕ

(1)
3 + 3

√
2
15ε

2(ϕ
(1)
3 )xx ,

(8.10)

while

W := µ

 0 W2

W3 0

 and

W2 := −
√

2
15ε

2(ϕ
(1)
2 )xxx − 1

2

√
5
6 (ϕ

(1)
2 )x ,

W3 :=
√

2
15ε

2(ϕ
(1)
3 )xxx + 1

2

√
5
6 (ϕ

(1)
3 )x ,

(8.11)

and

D(1) := µε2

 0 − 3
√

2√
15

(ϕ
(1)
2 )x

3
√

2√
15

(ϕ
(1)
3 )x 0

 . (8.12)

Finally P :=

 0 P2

P3 0

 and P2, respectively P3, are given by

P2 := µ

(
M−1∑
k=1

ck∂
−k
x +Op(r(ξ))

)
◦ ϕ(1)

2 (x, θ)∂−1
x + µ

(
ϕ

(1)
2 (x, θ)∂−1

x

)
◦

(
Op(r(ξ)) +

M−1∑
k=1

ck∂
−k
x

)

P3 := µ

(
−
M−1∑
k=1

ck∂
−k
x −Op(r(ξ))

)
◦ ϕ(1)

3 (x, θ)∂−1
x − µ

(
ϕ

(1)
3 (x, θ)∂−1

x

)
◦

(
M−1∑
k=1

ck∂
−k
x +Op(r(ξ))

)
.

(8.13)

We look for a transformation T1 such that

B(1)(x, θ) + µε2 2
√

2√
15

 0 −ϕ(1)
2 (x, θ)

ϕ
(1)
3 (x, θ) 0

 = 0 , (8.14)

whose solution is, recalling (7.19),

ϕ
(1)
2 (x, θ) :=

(
2
√

2√
15

)−1

ε2(Λ−1px)(x, θ) ,

ϕ
(1)
3 (x, θ) := −

(
2
√

2√
15

)−1

ε2(Λ−1px)(x, θ) ,

(8.15)

then by (8.6), (8.9) and (8.15) we obtain

L1 : = T−1
1 L0T1

= ω · ∂θ + T(D) + T−1
1

(
C(1)∂x + B(1)Φ1∂x + D(1)∂x

)
+ T−1

1

(
Uπ0 + W∂−1

x + P + R̃1

)
= ω · ∂ϕ + T(D) + C(2)∂x + R1 ,

(8.16)

where we define

C(2) := C(1) + B(1)Φ1 + D(1) ,

and

R1 := T−1
1 (Uπ0 + W∂−1

x + P + R̃1) + (T−1
1 − 1)C(2)∂x (8.17)
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where P is defined in (8.13), R̃1 is defined in (8.7), U is defined in (8.10) and W is defined in (8.11). We

also have that D(1) in (8.12), using (8.15), reads

D(1) =

 0 − 3
2µε

4Λ−1pxx

− 3
2µε

4Λ−1pxx 0

 .

The inequality (8.5) follows by (2.36) and the definition of C(2) in (8.4) (recall also Remark 2.2).

Moreover let T1 as in (8.2), then, by (2.25) and (2.2) (see also Remark 2.2) we have

|T1|k0,γ
0,p,0 + |T−1

1 |
k0,γ
0,p,0 ≤ C(p)(1 + µ‖Φ1‖k0,γ

p ) ≤ C(p)(1 + µ‖v‖k0,γ
p+1 ) . (8.18)

In addition, by the explicit definition of ϕ
(1)
2 and ϕ

(1)
3 given in (8.15), using that Λq is even in θ while

Λ−1p is odd in θ we have that the transformation T1 defined in (8.2) is reversibility preserving (see (7.32)),

hence L1 in (8.3) is reversible (see 7.31).

Moreover by the explicit definition of ϕ
(1)
2 and ϕ

(1)
3 given in (8.15) we have that T1 is real (i.e. sends

real values functions into real valued functions) and −ϕ(1)
2 (−x, θ) = ϕ

(1)
3 (x, θ) (see Lemma 7.5), hence

T1 : E → E. This implies that the operator L1 sends E into itself.

Finally, since T1 is reversibility preserving, and L0 is reversible, the operator L1 is reversible.

Lemma 8.2. The operator R1 defined in (8.17) admits an asymptotic expansion

R1 = µ

M∑
k=0

A(1)
k A

(2)
k

A
(3)
k A

(4)
k

 ∂−kx + µ

ΣR1,1 ΣR1,2

ΣR1,3 ΣR1,4


= µ

M∑
k=0

Ak∂
−k
x + µΣR1

,

where ∂0
x denotes one of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}}.

Moreover, for all m = 1, ..., 4 , k = 0, ...,M and σ := σ(τ,N, k0) > 0 we have

‖A(m)
k ‖k0,γ

p ≤ ‖v‖k0,γ
p+k+5+σ

|ΣR1,m|
k0,γ
−M−1,p,0 ≤ ‖v‖

k0,γ
p+3M+6+σ

‖∂iA(m)
k [̂i]‖p1

≤p1
‖̂i‖p1+5+k+σ

|∂iΣR1,m [̂i]|−M,p1,0 ≤p1 ‖̂i‖p1+3M+6+σ .

(8.19)

Proof. This lemma follows by Lemmas B.8, B.9 .

8.2 Diagonalization of the first-order operator

Now we want to make constant the first order coefficient, for that we have to compute three steps. First

of all we eliminate the out of diagonal terms in C(2) defined in (8.4). Then we block symmetrize the

remainder up to order −M (see Section 8.2.2). Finally with a change of the space variable and the

composition with an operator close to the identity we are able to make the first order coefficient constant

(see Section 8.2.3).
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8.2.1 Symmetrization of the first order

Lemma 8.3. There exists a real reversibility preserving operator, acting in E, of the form

T2 = 1 + µ

 0 ϕ
(2)
2 (x, θ)

ϕ
(2)
3 (x, θ) 0

 ∂−2
x

= 1 + Φ2(x, θ)∂−2
x ,

(8.20)

such that, given L1 defined in (8.3), we have

L2 := T−1
2 L1T2 = Ω · ∂θ + T(D) + C(3)(x, θ)∂x + R2 (8.21)

where

C(3) =µ

 1
2

(
−ε2

√
15
2 (Λq) + 2ε2(Λ−1p)− ε4(Λ−1pxx)

)
0

0 1
2

(
+ε2

√
15
2 (Λq) + 2ε2(Λ−1p)− ε4(Λ−1pxx)

)


+µ

−√15
2
√

2
µε8(Λ−1px)2 0

0 +
√

15
2
√

2
µε8(Λ−1px)2


:=µ

c(1)
3 0

0 c
(4)
3


(8.22)

and R2 is in OPS0, and satisfy the estimates in Lemma 8.4. In addition

‖C(3)‖k0,γ
p ≤ µC(p)‖v‖k0,γ

p+2 . (8.23)

The linear operator L1 is real, reversible and acts in E.

Proof. We conjugate L1 in (8.3) with the operator T2. As before for Φ2 small enough (see (6.11)), T2 is

invertible. Then

L1T2 − T2(ω · ∂θ + T(D)) = [T(D),Φ2∂
−2
x ] + C(2)∂x + R̃2 , (8.24)

where

R̃2 := R1T2 + C(2)(Φ2)x∂
−2
x + (ω · ∂θΦ2)∂−2

x + C(2)Φ2∂
−1
x , (8.25)

R1 is defined in (8.17) and C(2) is defined in (8.4). By (8.8) we have the following asymptotic expansion:

iT (D) := −
√

2

15
ε2∂3

x +

M−2∑
k=−1

ck∂
−k
x +Op(r(ξ)) . (8.26)

Actually we are considering this expansion instead of (8.8) because ∂x ◦∂−2
x = ∂−2

x ◦∂x = ∂−1
x ∈ OPS−1,

therefore we can consider only the highest order.

[T(D),Φ2(x, θ)∂−2
x ] =µ

 0 iT (D) ◦ ϕ(2)
2 ∂−2

x + ϕ
(2)
2 ∂−2

x ◦ iT (D)

−iT (D) ◦ ϕ(2)
3 ∂−2

x − ϕ
(2)
3 ∂−2

x ◦ iT (D) 0


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=µε2

 0 − 2
√

2√
15
ϕ

(2)
2 (x, θ)∂x

2
√

2√
15
ϕ

(2)
3 (x, θ)∂x 0

+

 0 P
(2)
2

P
(2)
3 0

 , (8.27)

where we define P2 as

P2 :=

 0 P
(2)
2

P
(2)
3 0

 (8.28)

and P
(2)
i ∈ OPS0 for i = 1, 2 is given by

P
(2)
2 := µ

(
M−2∑
k=−1

ck∂
−k
x +Op(r(ξ))

)
◦
(
ϕ

(2)
2 ∂−2

x

)
+ µ

(
ϕ

(2)
2 ∂−2

x

)
◦

(
M−2∑
k=−1

ck∂
−k
x +Op(r(ξ))

)

− 3
√

2√
15

(ϕ
(2)
2 )xπ0 −

3
√

2√
15

(ϕ
(2)
2 )xx∂

−1
x −

√
2√
15

(ϕ
(2)
2 )xxx∂

−2
x (8.29)

P
(2)
3 := −µ

(
M−2∑
k=−1

ck∂
−k
x +Op(r(ξ))

)
◦
(
ϕ

(2)
3 ∂−2

x

)
− µ

(
ϕ

(2)
3 ∂−2

x

)
◦

(
M−2∑
k=−1

ck∂
−k
x +Op(r(ξ))

)

+
3
√

2√
15

(ϕ
(2)
3 )xπ0 +

3
√

2√
15

(ϕ
(2)
3 )xx∂

−1
x +

√
2√
15

(ϕ
(2)
3 )xxx∂

−2
x . (8.30)

We look for a transformation T2 such that

C(2) + µε2

 0 − 2
√

2√
15
ϕ

(2)
2 (x, θ)∂x

2
√

2√
15
ϕ

(2)
3 (x, θ)∂x 0

 = diagonal matrix .

Therefore, recalling the definition of C(2) in (8.4), we define Φ2 as

2
√

2√
15
ϕ

(2)
2 (x, θ) :=

(√
15

2
√

2
(Λq) +

3

2
ε2(Λ−1pxx)− ε2 3

2
√

15
(Λ−1pxx)

)
(x, θ) ,

2
√

2√
15
ϕ

(2)
3 (x, θ) := −

(
−
√

15

2
√

2
(Λq) +

3

2
ε2(Λ−1pxx)− 3

2
√

15
ε2(Λ−1pxx)

)
(x, θ) .

(8.31)

Hence by (8.27) (8.31) and (8.4) we have

C(2) + [T(D),Φ2∂
−2
x ] = C(3)∂x + P2

where C(3) is the diagonal matrix defined in (8.22). Then, by (8.24)

L2 : = T−1
2 L1T2 =

= Ω · ∂θ + T(D) + T−1
2

(
C(3)∂x + P2 + R̃2

)
= Ω · ∂θ + T(D) + C(3)(x, θ)∂x + R2 ,

(8.32)

where

R2 := T−1
2

(
P2 + R̃2

)
+ (T−1

2 − 1)C(3)∂x , (8.33)

and R̃2 is defined in (8.25).
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The inequality (8.23) follows by (2.36) and the explicit definition of C(3) given in (8.22). By the

explicit definition of T2 in (8.20) and (8.31) (recall Remark 2.2) we have

|T2|k0,γ
0,p,0 + |(T2)−1|k0,γ

0,p,0 ≤ C(p)(1 + µ‖v‖k0,γ
p+2 ) . (8.34)

Moreover, by the explicit definition of T2 in (8.20) and (8.31), since Λq is even in θ while Λ−1p is odd in θ,

we have that the transformation T2 is reversibility preserving. Since L1 is reversible (see Lemma 8.1), we

have that L2 in (8.21) is reversible. In addition T2 : E → E and it is real, indeed ϕ
(2)
2 (−x, θ) = ϕ

(2)
3 (x, θ),

see Lemma 7.5. Hence L2 : E → E and it is real.

Lemma 8.4. The operator R2 defined in (8.33) admits the asymptotic expansion

R2 = µ

M∑
k=0

(A0
k)(1) (A0

k)(2)

(A0
k)(3) (A0

k)(4)

 ∂−kx + µ

ΣR2,1 ΣR2,2

ΣR2,3 ΣR2,4


=

M∑
k=0

µA0
k∂
−k
x + µΣR2 ,

(8.35)

where ∂0
x denotes one of the operators belonging to {aπ0 + b1 , a, b ∈ {0, 1}}.

Moreover, for all m = 1, ..., 4 , k = 0, ...,M and σ := σ(τ,N, k0) > 0 we have

‖(A0
k)(m)‖k0,γ

p ≤p ‖v‖k0,γ
p+k+5+σ , k = 0, 1

‖(A0
k)(m)‖k0,γ

p ≤p ‖v‖k0,γ
p+2k+5+σ , 2 ≤ k ≤M

|ΣR2,m|
k0,γ
−M−1,p,0 ≤p ‖v‖

k0,γ
p+4M+6+σ

‖∂i(A0
k)(m) [̂i]‖p1

≤p1
‖̂i‖p1+5+k+σ , k = 0, 1

‖∂i(A0
k)(m) [̂i]‖p1 ≤p1 ‖v‖p1+2k+5+σ , 2 ≤ k ≤M

|∂iΣR2,m [̂i]|−M,p1,0 ≤p1
‖̂i‖p1+4M+6+σ .

(8.36)

Proof. This lemma follows by Lemmas B.11 and B.10 .

8.2.2 Block symmetrization up to smoothing remainders

The change of variable that we will do in the next Section (i.e. TM+4 defined in (8.54)) acts differently

on the out of diagonal entries of a matrix (see Lemma 8.13). For this reason we also have to take care

of the remainder. The idea is to use the same procedure introduced in the previous Sections. Hence we

conjugate the operator L2 in (8.21) with M transformations close to the identity, invertible, such that

the matrices of the coefficients up to order M (fixed), can be written in a block diagonal form, i.e. the

out of diagonal entries are equal to zero.

Let L2 as in (8.21), and C(3) as in (8.22).
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Lemma 8.5. There exist M real, reversibility preserving operators Tj , j = 3, ...,M + 3 acting on E of

the form

Tj = 1 + µ

 0 ϕ
(j)
2 (x, θ)

ϕ
(j)
3 (x, θ) 0

 ∂−jx := 1 + Φj∂
−j
x , (8.37)

such that

LM+3 := T−1
M+3 ◦ ... ◦ T

−1
3 L2T3 ◦ ... ◦ TM+3

has the form

LM+3 =

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+ µ

c(1)
3 (x, θ) 0

0 c
(4)
3 (x, θ)

 ∂x + RM+3 , (8.38)

where

RM+3 :=

M∑
k=0

µ

(Akk)(1)(x, θ) 0

0 (Akk)(4)(x, θ)

 ∂−kx + µ

Σ1(x, θ,D) Σ2(x, θ,D)

Σ3(x, θ,D) Σ4(x, θ,D)


:= µ

M∑
k=0

(Ak
k)D∂−kx + µΣ ,

(8.39)

with ∂0
x that denotes one of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}} and

(Ak
k)D :=

(Akk)(1)(x, θ) 0

0 (Akk)(4)(x, θ)

 , k = 0, ...,M

and

Σ :=

Σ1(x, θ,D) Σ2(x, θ,D)

Σ3(x, θ,D) Σ4(x, θ,D)


where Σm, m = 1, ..., 4 is a pseudo-differential operator in OPS−M−1. In addition (Ak

k)D and Σ satisfy

the estimate in Lemma 8.6. The operator LM+3 is real, reversible and acts in E.

Proof. By Lemma 8.4 we can write the linear operator (8.21), as

L2 =

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+ µ

c(1)
3 (x, θ) 0

0 c
(4)
3 (x, θ)

 ∂x+

+ µ

(A0
0)(1)(x, θ) (A0

0)(2)(x, θ)

(A0
0)(3)(x, θ) (A0

0)(4)(x, θ)

 ∂0
x + ...+ µ

(A0
M )(1)(x, θ) (A0

M )(2)(x, θ)

(A0
M )(3)(x, θ) (A0

M )(4)(x, θ)

 ∂−Mx

+ µ

ΣR2,1(x, θ,D) ΣR2,2(x, θ,D)

ΣR2,3(x, θ,D) ΣR2,4(x, θ,D)


:= Ω · ∂θ + T(D) + C(3)∂x + µA0

0∂
0
x + µA0

1∂
−1
x + ...+ µA0

M∂
−M
x + µΣR2

.

(8.40)

We prove the lemma by induction. After k−1 transformations we obtain a new linear operator, that can

be written in a block diagonal form up to order −k + 1. The matrices of the coefficients change at every
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step, so we call them Ak−1
j where the index j represents the homogeneous degree, and k − 1 represents

the step of the block symmetrization.

At the first step we symmetrize A0
0, and we call it (A0

0)D. After the block symmetrization of the zero

order coefficient the other matrix coefficients change. For this reason we decide to call the new coefficients

A1
j with j = 1, ...,M . At the second step we symmetrize A1

1 and we call it (A1
1)D, while for the other

coefficients we use A2
j , with j = 2, ...,M . At the k step we arrive to a operator that can be written in

a block diagonal form up to order −k + 1 (see Appendix B.4 for more details). The coefficients that are

written in a block diagonal form do not change during the block symmetrization of the other coefficients.

In other words the block diagonal matrix coefficients remain the same during the iterative procedure. Let

Lk+2 := T−1
k+2 ◦ ... ◦ T

−1
3 L2T3 ◦ ... ◦ Tk+2

=

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+ µ

c(1)
3 (x, θ) 0

0 c
(4)
3 (x, θ)

 ∂x

+ +

k−1∑
j=0

µ

(Ajj)
(1)(x, θ) 0

0 (Ajj)
(4)(x, θ)

 ∂−jx + µ

(Akk)(1)(x, θ) (Akk)(2)(x, θ)

(Akk)(3)(x, θ) (Akk)(4)(x, θ)

 ∂−kx

+ ...+ µ

(AkM )(1)(x, θ) (AkM )(2)(x, θ)

(AkM )(3)(x, θ) (AkM )(4)(x, θ)

 ∂−Mx + µ

ΣRk+2,1(x, θ,D) ΣRk+2,2(x, θ,D)

ΣRk+2,3(x, θ,D) ΣRk+2,4(x, θ,D)


:= Ω · ∂θ + T(D) + C(3)∂x + µ

k−1∑
j=0

(Aj
j)
D∂−jx + µAk

k∂
−k
x

+ ...+ µAk
M∂
−M
x + µΣRk+2

.

(8.41)

Now we want to eliminate the out of diagonal terms of the Ak matrix. Hence we have to conjugate the

operator Lk−1 with Tk+3. We have that

Lk+2Tk+3 = Ω · ∂θ + T(D) + C(3)∂x + µ

k−1∑
s=0

(As
s)
D∂−sx + µ

M∑
s=k

Ak
s∂
−s
x + µΣRk+2

Tk+3

+ µ(ω · ∂θ)Φk+3∂
−k−3
x + T(D) ◦ Φk+3∂

−k−3
x + C(3)∂x ◦ Φk+3∂

−k−3
x

+ µ

k−1∑
s=0

(As
s)
D∂−sx ◦ Φk+3∂

−k−3
x + µ

M∑
s=k

Ak
s∂
−s
x ◦ Φk+3∂

−k−3
x

and

Tk+3

(
Ω · ∂θ + T(D) + C(3)∂x + µ

k−1∑
s=0

(As
s)
D∂−sx

)
= Ω · ∂θ + T(D) + C(3)∂x

+ µ

k−1∑
s=0

(As
s)
D∂−sx + Φk+3∂

−k−3
x ◦ Ω · ∂θ + Φk+3∂

−k−3
x ◦T(D) + Φk+3∂

−k−3
x ◦C(3)∂x

+ µΦk+3∂
−k−3
x ◦

k−1∑
s=0

(As
s)
D∂−sx ,
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where, as usual, ∂0
x denotes one of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}} . Hence

Lk+3 : = T−1
k+3Lk+2Tk+3

= Ω · ∂θ + T(D) + C(3)∂x + µ(A0
0)D∂0

x + ...+ µ(Ak−1
k−1)D∂−k+1

x + T−1
k+3(ω∂θΦk+3)

+ T−1
k+3

(
µAk

k∂
−k
x + ...+ µAk

M∂
−M
x + [T(D),Φk+3∂

−k−3
x ] + [C(3)∂x , Φk+3∂

−k−3
x ]

)
+ T−1

k+3

k+1∑
j=0

[
µ(Aj

j)
D∂−jx , Φk+3∂

−k−3
x

]
+ T−1

k+3

(
µAk

k(∂−kx Φk+3∂
−k−3
x ) + ...+ µAk

M (∂−Mx Φk+3∂
−k−3
x ) + µΣRk+2

T−1
k+3

)
,

(8.42)

We develop the commutator [T(D),Φk+3] as in the previous case. Using (8.26) we have

iT (D) := −
√

2

15
ε2∂3

x +

M−k−3∑
j=−1

cj∂
−j
x +Op(r(ξ)) ,

then

[T(D),Φk+3∂
−k−3
x ] :=

µ

 0 iT (D) ◦ ϕ(k+3)
2 ∂−k−3

x + ϕ
(k+3)
2 ∂−k−3

x ◦ iT (D)

−iT (D) ◦ ϕ(k+3)
3 ∂−k−3

x − ϕ(k+3)
3 ∂−k−3

x ◦ iT (D) 0


= µε2

 0 − 2
√

2√
15
ϕ

(k+3)
2 (x, θ)∂−kx

2
√

2√
15
ϕ

(k+3)
3 (x, θ)∂−kx 0

+ Pk , (8.43)

where Pk :=

 0 P
(k)
2

P
(k)
3 0

 and P
(k)
2 , respectively P

(k)
3 , are given by

P
(k)
2 := µ

[
−
√

2√
15
ε2(ϕ

(k+3)
2 )xxx∂

−k−3
x − 3

√
2√

15
ε2(ϕ

(k+3)
2 )xx∂

−k−2
x − 3

√
2√

15
ε2(ϕ

(k+3)
2 )x∂

−k−1
x

+

M−k−3∑
j=−1

cj∂
−j
x +Op(r(ξ))

 ◦ ϕ(k+3)
2 ∂−k−3

x + ϕ
(k+3)
2 ∂−k−3

x ◦

M−k−3∑
j=−1

cj∂
−j
x +Op(r(ξ))


:= µ

 M∑
j=k+1

a
(2)
j (x, θ)∂−jx +Op(r(x, θ, ξ))


P

(k)
3 := µ

[ √
2√
15
ε2(ϕ

(k+3)
3 )xxx∂

−k−3
x +

3
√

2√
15
ε2(ϕ

(k+3)
3 )xx∂

−k−2
x +

3
√

2√
15
ε2(ϕ

(k+3)
3 )x∂

−k−1
x

+

M−k−3∑
j=−1

cj∂
−j
x +Op(r(ξ))

 ◦ ϕ(k+3)
3 ∂−k−3

x + ϕ
(k+3)
3 ∂−k−3

x ◦

M−k−3∑
j=−1

cj∂
−j
x +Op(r(ξ))


:= µ

 M∑
j=k+1

a
(3)
j (x, θ)∂−jx +Op(r(x, θ, ξ))

 ,

(8.44)

where a
(2)
j respectively a

(3)
j are some functions depending on the derivative of ϕ

(k+3)
2 , respectively ϕ

(k+3)
3 .
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Hence, if
2
√

2√
15
ε2ϕ

(k+3)
2 − (Akk)(2) = 0 ,

2
√

2√
15
ε2ϕ

(k+3)
3 + (Akk)(3) = 0 , (8.45)

we have

[T(D),Φk+3∂
−k−3
x ] + µAk

k∂
−k
x = µ

(Akk)(1) 0

0 (Akk)(4)

 ∂−kx + P(k).

At every step we can define with R̃k the sum of the pseudo-differential operators in OPS−k−1, hence R̃k

is given by

R̃k =T−1
k+3

(
(ω∂θΦk+3)∂−k−3

x + µAk
k+1∂

−k−1
x + ...+ µAk

M∂
−M
x + Pk + [C(2)∂x , Φk+3∂

−k−3
x ]

)
+ T−1

k+3

µ k+1∑
j=0

[
(Aj

j)
D∂−jx , Φk+3∂

−k−3
x

]
+ T−1

k+3

(
µAk

k(∂−kx Φk+3∂
−k−3
x ) + ...+ µAk

M (∂−Mx Φk+3∂
−k−3
x ) + µΣRk+2

Tk+3

)
:= µ

M∑
j=k+1

Ak+1
j+1∂

−j−1
x + µΣRk+3

,

(8.46)

where ΣRk+3
∈ OPS−M−1. Note that, with an abuse of notation, we are now (and only here) calling R̃k

the sum of the homogeneous terms of order less than −k plus the pseudo-differential operator ΣRk+3
∈

OPS−M−1.

Therefore, by (8.42) , (8.43) and (8.45), we arrive to

Lk+3 := T−1
k+3Lk+2Tk+3

=

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)

+ µ

c(1)
3 (x, θ) 0

0 c
(4)
3 (x, θ)

 ∂x

+ µ

k∑
j=0

(Ajj)
(1)(x, θ) 0

0 (Ajj)
(4)(x, θ)

 ∂−jx + R̃k ,

where R̃k is defined in (8.46) and it contains all the remainder terms in OPS−k−1, and ∂0
x denotes one

of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}} . We point out that by Lemmas B.1, B.3 and B.4,

R̃k can be written as follows

R̃k := µ

M∑
j=k

(Akj )(1) (Akj )(2)

(Akj )(3) (Akj )(4)

 ∂−jx + µ

Σ
(1)
Rk+3

Σ
(2)
Rk+3

Σ
(3)
Rk+3

Σ
(4)
Rk+3

.


Hence, iterating the procedure above, by Lemmas B.1, B.3 and B.4, after M step we arrive to LM+3

defined in (8.38).

By the explicit definition of

Φk+3 = µ

 0 ϕ
(k+3)
2

ϕ
(k+3)
3 0


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given in (8.45), that is

Φk+3 =

 0
√

15
2
√

2ε2
(Akk)(2)

−
√

15
2
√

2ε2
(Akk)(2) 0


we have that the transformation Tk+3 defined in (8.37), with j = k+3, is reversibility preserving. Indeed,

by the reversible structure of Lk+2 we have that (Akk)(2)(−θ) = −(Akk)(3)(θ).

By the iterative procedure we can prove that all the Tk , k = 3, ...,M + 3 are reversibility preserving.

Hence LM+3 is reversible.

Now we prove, by induction on k that all the Tk in (8.37) with k = 3, ...,M + 3 map E into itself. Let

Lk−1 as in (8.41), and Lk−1 : E → E. In particular

Ak
k∂
−k
x :=

(Akk)(1) (Akk)(2)

(Akk)(3) (Akk)(4)

 ∂−kx ,

maps E in itself. This means that (−1)k(Akk)(1)(−x, θ) = (Akk)(4)(x, θ) and (−1)k(Akk)(2)(−x, θ) =

(Akk)(3)(x, θ), see Lemma 7.5. We now consider Tk+3 as in (8.37), using (8.45) we have that

Tk+3 = 1 +

(
2
√

2√
15

)−1

µε−2

 0 (Akk)(2)

−(Akk)(3) 0

 ∂−k−3
x , (8.47)

and then by the hypothesis on the Ak coefficient, we have that

(−1)k+3A
(2)
k (−x, θ) = −A(3)

k (x, θ) .

Finally, by the explicit definition of Tk+3 in (8.47) we have that the transformation is real, therefore

LM+3 is real.

Lemma 8.6. Let LM+3 as in (8.38). Then

‖(Ak
k)D‖k0,γ

p ≤p ‖v‖k0,γ
p+k2+5+σ , k = 0, ...,M

|Σ|k0,γ
−M−1,p,0 ≤p ‖v‖

k0,γ
p+(M+1)M+3M+6+σ

‖∂i(Ak
k)D [̂i]‖p1

≤ ‖̂i‖p1+k2+5+σ , k = 0, ...,M

|∂iΣ[̂i]|−M,p,0 ≤p1
µ‖̂i‖p+(M+1)M+3M+6+σ .

(8.48)

Proof. It follows by Lemma B.13.

Lemma 8.7. Let Tj , j = 3, ...,M + 3 as in (8.37). Let p1 ∈ R, such that ‖v‖p0+p1
≤ 1 where p1 :=

M2 + 5 + σ. Then for every j = 3, ...,M + 3,

‖Φj‖k0,γ
p0
≤ C(p, j)µ‖v‖k0,γ

p+p1
, ∀j = 3, ...,M + 3 , (8.49)

|Tj |k0,γ
0,p,0 ≤ C(p, j)

(
1 + µ‖v‖k0,γ

p+p1

)
(8.50)

|T3 ◦ ... ◦ TM+3|k0,γ
0,p,0 ≤ C(p,M)

(
1 + µ‖v‖k0,γ

p+p1

)
. (8.51)
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Proof. The first inequality follows by Lemmas B.12, B.13. Actually, if T3+j := 1 + Φ3+j∂
−j−3
x we have

that

|T3+j |k0,γ
0,p,0 ≤ C(p, j)(1 + µ‖v‖k0,γ

p+j2+5+σ) , j = 0, ...,M.

Therefore, for all j = 0, ...,M we have

|T3+j |k0,γ
0,p,0 ≤ C(p, j)(1 + µ‖v‖k0,γ

p+j2+5+σ) ≤ C(p,M)(1 + µ‖v‖k0,γ
p+M2+5+σ) = C(p,M)(1 + µ‖v‖k0,γ

p+p1
).

The second inequality (8.50) follows by the definition of Tj and (8.49). We now prove (8.51) by induction.

By (8.50) and Lemma 2.8 we have

|T3T4|k0,γ
0,p,0 ≤ C(p)|T3|k0,γ

0,p,0|T4|k0,γ
0,p0,0

+ C(p0)|T3|k0,γ
0,p0,0

|T4|k0,γ
0,p,0

≤ C(p,M)
(

1 + µ‖v‖k0,γ
p+p1

)(
1 + µ‖v‖k0,γ

p0+p1

)
≤ C(p,M)

(
1 + µ‖v‖k0,γ

p+p1

)
,

where the initial and the last constant are different. Suppose that (8.51) is true for T3 ◦ T4 ◦ ... ◦ Tk−1,

then, using Lemma 2.8 we get

|T3 ◦ ... ◦ Tk−1 ◦ Tk|k0,γ
0,p,0 ≤ C(p, k)|T3T3 ◦ ... ◦ Tk−1|k0,γ

0,p,0|Tk|
k0,γ
0,p0,0

+ C(p0, k)|T3T3 ◦ ... ◦ Tk−1|k0,γ
0,p0,0

|Tk|k0,γ
0,p,0

≤ C(p, k)
(

1 + µ‖v‖k0,γ
p+p1

)(
1 + µ‖v‖k0,γ

p0+p1

)
≤ C(p, k)

(
1 + µ‖v‖k0,γ

p+p1

)
.

Note that the lemma follows without complication just because we are considering a finite number of

compositions, where we shall define M in Section 8.2.4, independent from the Sobolev index p.

8.2.3 Elimination of the (x, θ) dependence in the first order coefficient

In this section we shall make the first order coefficient constant up to a reminder supported on the high

Fourier frequencies. Indeed we are working with frequencies ω ∈ DC
γ
Kn

where DCγKn is defined in (5.5). For

this reason we can not invert ω · l for all l ∈ ZN , but we can invert it only for finitely many l. Fortunately

we can neglect the first order coefficient supported on high Fourier frequencies and we will study it in

Chapter 9.

In order to be more precisely consider LM+3 in (8.38). We define

L̃M+3 :=

ω 0

0 ω

 ∂θ +

iT (D) 0

0 −iT (D)

+ ΠKn

c(1)
3 0

0 c
(4)
3

 ∂x + RM+3 , (8.52)

that is LM+3 in where we have negleted

Π⊥KnC(3) := Π⊥Kn

c(1)
3 0

0 c
(4)
3

 ∂x . (8.53)
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Lemma 8.8. Let (h, k) ∈ E. There exist two real, reversibility preserving transformations acting in E,

TM+4 of the form

TM+4 :

h(x, θ)

k(x, θ)

→
h(x+ ψ1(θ), θ)

k(x+ ψ2(θ), θ)

 =

Ψ1h(x, θ)

Ψ2k(x, θ)

 (8.54)

with

ψ1(θ) = −ψ2(θ) (8.55)

and TM+5 of the form

TM+5 = 1 + ΦM+5(y, θ)∂−1
y = 1 + µ

ϕ(M+5)
1 (y, θ) 0

0 ϕ
(M+5)
4 (y, θ)

 ∂−1
y (8.56)

such that, given L̃M+3 defined in (8.52) we have

L̃M+5 := T−1
M+5T

−1
M+4L̃M+3TM+4TM+5 = ω · ∂θ + T(D) + MKn∂x + RM+5 (8.57)

where

MKn =

m1,Kn 0

0 m4,Kn

 , m1,Kn = −m4,Kn , m1,Kn , m4,Kn ∈ R (8.58)

and RM+5 is a bounded remainder (see Section 8.2.4 for the estimates). The operator L̃M+5 is real,

reversible and acts in E. In addition we have that TM+4 and TM+5 are tame, and ∀f ∈ E

‖T−1
M+4f‖

k0,γ
p + ‖TM+4f‖k0,γ

p ≤ C(P )(‖f‖k0,γ
p+σ + µγ−1‖v‖k0,γ

p+2+σ‖f‖
k0,γ
p0+σ)

‖T−1
M+5f‖

k0,γ
p + ‖TM+5f‖k0,γ

p ≤ C(p)(‖f‖k0,γ
p + µ‖f‖k0,γ

p0
‖v‖k0,γ

p+2 ).
(8.59)

Proof. The proof is divided in two steps. The goal of the first step is to apply the change of variables

TM+4 because we want to remove the spatial average by the coefficient in front of ∂y. The change of

variables TM+4 is induced by the diffeomorphism

x+ ψi(θ) = y ⇔ x = y − ψi(θ) i = 1, 2 .

Note that TM+4 is invertible and the inverse is given by

T−1
M+4 :

v(y, θ)

w(y, θ)

→
v(y − ψ1(θ), θ)

w(y − ψ2(θ), θ)

 =

Ψ−1
1 v(y, θ)

Ψ−1
2 w(y, θ)

 , ∀(v, w) ∈ E .

We have the following conjugation rules

T−1
M+4(Ω · ∂θ)TM+4 = Ω · ∂θ +

ω · ∂θψ1(θ) 0

0 ω · ∂θψ2(θ)

 ∂y

and

Ψ−1
1 ∂xΨ1 = ∂y Ψ−1

2 ∂xΨ2 = ∂y T−1
M+4T(D)TM+4 = T(D) .
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Hence

L̃M+4 := T−1
M+4L̃M+3TM+4

=

ω 0

0 ω

 · ∂θ +

iT (D) 0

0 −iT (D)


+

ω · ∂θψ1(θ) 0

0 ω · ∂θψ2(θ)

+

T−1
M+4ΠKnµ

c(1)
3 0

0 c
(4)
3

 (y, θ)

 ∂y + R̃M+4 ,

(8.60)

where L̃M+3 is defined in (8.52) and

R̃M+4 = T−1
M+4RM+3TM+4 , (8.61)

with RM+3 is defined in (8.39).We look for ψi, i = 1, 2 such thatω · ∂θψ1(θ) 0

0 ω · ∂θψ2(θ)

+ ΠKnµ

ψ−1
1 c

(1)
3 0

0 ψ−1
2 c

(4)
3

 (y, θ) = ΠKnµ

c(1)
4 0

0 c
(4)
4

 (y, θ)

:= ΠKnC(4) ,

(8.62)

where c
(1)
3 and c

(4)
3 are defined in (8.22), and c

(1)
4 , c

(4)
4 satisfy the equations:

µ
1

2π

∫
T

ΠKnc
(1)
4 (y, θ)dy = m1,Kn and µ

1

2π

∫
T

ΠKnc
(4)
4 (y, θ)dy = m4,Kn , ∀θ ∈ TN , (8.63)

for some m1,Kn , m4,Kn ∈ R independent of θ. The equations in (8.62) are explicitly given by ω · ∂θψ1(θ) + µΠKnc
(1)
3 (y − ψ1(θ), θ) = µΠKnc

(1)
4 (y, θ)

ω · ∂θψ2θ + µΠKnc
(4)
3 (y − ψ2(θ), θ) = µΠKnc

(4)
4 (y, θ) .

(8.64)

Taking the spatial average of (8.64), the request (8.63) implies ω · ∂θψ1(θ) + µ 1
2π

∫
T ΠKnc

(1)
3 (x, θ)dx = m1,Kn

ω · ∂θψ2θ − µ 1
2π

∫
T ΠKnc

(4)
3 (x, θ)dx = m4,Kn .

Since we are looking for periodic solutions ψ1(θ), ψ2(θ), taking the average with respect to θ, using that

ω ∈ DC
γ
Kn

(defined in (5.5)) we get
1

(2π)N+1µ
∫
TN+1 ΠKnc

(1)
3 (x, θ)dxdθ = m1,Kn

−µ 1
(2π)N+1

∫
TN+1 ΠKnc

(4)
3 (x, θ)dxdθ = m4,Kn .

(8.65)

With this choice of m1,Kn and m4,Kn the equationsω · ∂θψ1(θ) = m1,Kn − µ 1
2π

∫
T ΠKnc

(1)
3 (x, θ)dx = µΠKnc

(1)
5 (θ)

ω · ∂θψ2(θ) = m4,Kn + µ 1
2π

∫
T ΠKnc

(4)
3 (x, θ)dx = µΠKnc

(4)
5 (θ)
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are solved by

ψ1(θ) = µ(ω · ∂θ)−1ΠKnc
(5)
1 (θ), ψ2(θ) = µ(ω · ∂θ)−1ΠKnc

(5)
4 (θ) . (8.66)

Since Λq is even in the spatial variable, while Λ−1p is odd, by the explicit definition of ΠKnc
(1)
3 and

ΠKnc
(4)
3 in (8.22), one arrive to (8.58), with m1,Kn = −m4,Kn . This also implies

ΠKnc
(1)
5 = −ΠKnc

(4)
5 ,

therefore one get (8.55).

Then we have that L̃M+4 in (8.60) reads

L̃M+4 := T−1
M+4L̃M+3TM+4 = Ω · ∂θ + T(D) + ΠKnC(4)(y, θ)∂y + R̃M+4 (8.67)

where ΠKnC(4) is defined in (8.62) and R̃M+4 is defined in (8.61).

Now we want to make constant the coefficient in front of ∂y. We conjugate the operator L̃M+4 in

(8.67) with a transformation TM+5 of the form (8.56). Then we have

L̃M+4TM+5 − TM+5(Ω · ∂θ + T(D) + MKn∂y) = [T(D),ΦM+5(y, θ)∂−1
y ]

+ (ΠKnC(4)(y, θ)−MKn)∂y + R̃M+5

(8.68)

where

R̃M+5 = R̃M+4 + R̃M+4ΦM+5∂
−1
y + (ω · ∂θΦM+5)∂−1

y + ΠKnC(4)ΦM+5π0

+ ΠKnC(4)(ΦM+5)y∂
−1
y −MKnΦM+5π0.

(8.69)

Using the asymptotic expansion of iT (D) defined in (8.8) we have

[T(D),ΦM+5∂
−1
y ]

= µ

i(T (D)ϕ
(M+5)
1 ∂−1

y − ϕ
(M+5)
1 ∂−1

y T (D)) 0

0 i(−T (D)ϕ
(M+5)
4 ∂−1

y + ϕ
(M+5)
4 ∂−1

y T (D))


= µ

−3
√

2√
15
ε2(ϕ1)

(M+5)
y ∂x 0

0 +3
√

2√
15
ε2ε2(ϕ4)

(M+5)
y ∂x

+ PM+5,

where

PM+5 :=

P (M+5)
1 0

0 P
(M+5)
4

 (8.70)

and

P
(M+5)
1 = −3µ

√
2

15
ε2(ϕ

(M+5)
1 )yyπ0 − µ

(√
2

15
ε2(ϕ

(M+5)
1 )yyy +

√
5

24
(ϕ

(M+5)
1 )y

)
∂−1
y

+ µ

M−1∑
j=0

cj∂
−j
y +Op(r(ξ)), (ϕ

(M+5)
1 )∂−1

y


P

(M+5)
4 = 3µ

√
2

15
ε2(ϕ

(M+5)
4 )yyπ0 + µ

(√
2

15
ε2(ϕ

(M+5)
4 )yyy +

√
5

24
(ϕ

(4)
4 )y

)
∂−1
y

+ µ

M−1∑
j=0

cj∂
−j
y +Op(r(ξ)), (ϕ

(M+5)
4 )∂−1

y

 .

(8.71)
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We define the functions

ϕ
(M+5)
1 (y, θ) =

√
15

3
√

2
ε−2∂−1

y [−m1,Kn + µΠKnc
(1)
4 (y, θ)]

ϕ
(M+5)
4 (y, θ) =

√
15

3
√

2
ε−2∂−1

y [m4,Kn − µΠKnc
(4)
4 (y, θ)] ,

(8.72)

that, thanks to (8.63), are periodic and well defined. Then, by (8.68) and (8.72)

L̃M+5 : = T−1
M+5L̃M+4TM+5 =

= Ω · ∂θ + T(D) + MKn∂y + RM+5

(8.73)

where

RM+5 := T−1
M+5R̃M+5 + T−1

M+5PM+5, (8.74)

and R̃M+5 is defined in (8.69). The tame estimate for TM+4 and TM+5 in (8.59) follows by (2.36), (8.72)

and (8.66) In addition, using the explicit definition of TM+4 and TM+5 in (8.66) and (8.72), using (8.55)

and Λq(θ) = Λq(−θ) , Λ−1p(θ) = −Λ−1p(−θ) we have that TM+4 and TM+5 are reversibility preserving

(see (7.32)). Moreover both TM+4, defined in (8.54), and TM+5, defined in (8.56), are real operators. By

Lemma 7.5 the operator TM+5 maps E in E. We now prove that also the operator TM+4 maps E in E.

Let (h, k) ∈ E, then

TM+4

h
k

 (x, θ) =

h(x+ ψ1(θ), θ)

k(x+ ψ2(θ), θ)


acts in E if and only if h(−(x−ψ1(θ)), θ) = k(x+ψ2(θ), θ). By (8.55) the claim is proved. Finally, since

the composition of the real reversible operator LM+3 acting on E (see Lemma 8.5) with the real and

reversible preserving operators TM+4 and TM+5 acting on E, is real, reversible and acts on E, we have

that L̃M+5 : E → E is real and reversible.

We can rewrite L̃M+5 defined in (8.57) as follows

L̃M+5 := Ω · ∂θ + T(D) + M∂x + RM+5 + R⊥MKn
, (8.75)

where

R⊥MKn
= (−M + MKn)∂x (8.76)

is a remainder supported only on the high Fourier frequencies and

M =

m1 0

0 m4

 , (8.77)

with m1,m4 given by

µ
1

(2π)N+1

∫
TN+1

c
(1)
3 (x, θ)dxdθ = m1

−µ 1

(2π)N+1

∫
TN+1

c
(4)
3 (x, θ)dxdθ = m4 .

(8.78)
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By the explicit definiton of c
(1)
3 and c

(4)
3 in (8.22) we have that m1 = −m4, hence M in (8.77) reads

M =

m1 0

0 −m1

 . (8.79)

In conclusion we have the following Lemma.

Lemma 8.9. Let LM+3 be the operator defined in (8.38), and let TM+4 and TM+5 be the transformations

(8.54) and (8.56) given in Lemma 8.8. Then

L̂M+5 := T−1
M+5T

−1
M+4LM+3TM+4TM+5

= LM+5 + C⊥ + R⊥MKn
,

(8.80)

where

LM+5 := Ω · ∂θ + T(D) + M∂x + RM+5, (8.81)

and T(D) is defined in (7.18), M is defined in (8.79), RM+5 is defined in (8.74). The remainders C⊥

defined in (8.83) and R⊥MKn
defined in (8.76) satisfy the tame estimates in (9.8).

Proof. We write LM+3 defined in (8.38) as

LM+3 = L̃M+3 + Π⊥KnC(3)∂x

where L̃M+3 is defined in (8.52) and Π⊥KnC(3) is defined in (8.53). We conjugate LM+3 with TM+4 defined

in (8.54) and we get

LM+4 := T−1
M+4LM+3TM+4 = L̃M+4 + T−1

M+4Π⊥KnC(3)∂xTM+4 .

Now we conjugate LM+4 with TM+5 defined in (8.56) and we obtain

L̂M+5 := T−1
M+5LM+4TM+5

= L̃M+5 + T−1
M+5T

−1
M+4Π⊥KnC(3)∂xTM+4TM+5

= Ω · ∂θ + MKn∂y + RM+5 + T−1
M+5T

−1
M+4Π⊥KnC(3)∂xTM+4TM+5

(8.75)
= Ω · ∂θ + M∂y + RM+5 + T−1

M+5T
−1
M+4Π⊥KnC(3)∂xTM+4TM+5 + (MKn −M)∂y .

(8.82)

Finally we define

C⊥ := T−1
M+5T

−1
M+4Π⊥KnC(3)∂xTM+4TM+5 (8.83)

hence, by (8.83), (8.75) and (8.76), L̂M+5 in (8.82) reads

L̂M+5 := L̃M+5 + C⊥

= LM+5 + C⊥ + R⊥MKn

= Ω · ∂θ + T(D) + M∂x + RM+5 + C⊥ + R⊥MKn
,

(8.84)

where

LM+5 := Ω · ∂θ + T(D) + M∂x + RM+5. (8.85)
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Lemma 8.10. Let MKn as in (8.58). The following estimates hold

|m1,Kn |k0,γ ≤ Cµ (8.86)

|∂im1,Kn [̂i]| ≤ Cµ‖̂i‖σ (8.87)

|m1 − m1,Kn |k0,γ ≤ CµK−bn , ∀b > 0. (8.88)

|m1|k0,γ ≤ Cµ (8.89)

|∂im1 [̂i]| ≤ Cµ‖̂i‖σ . (8.90)

Proof. The estimates (8.86) and (8.87) follows by the explicit definiton of m1,Kn and m2,Kn in (8.63). The

estimate (8.88) follows by (8.63), and the smoothing property (2.11). The estimates (8.89) and (8.90)

follows by (8.78), (8.22).

8.2.4 Tame estimates of the remainder RM+5

The goal of this Section is to prove that the operators ∂βθrRM+5 , ∂βθr [∂x,RM+5] for r = 1, ..., N , β ∈

N , β ≤ β0 are Dk0−tame (see Definition 10).

We want to prove the following Lemma.

Lemma 8.11. Let RM+5 be the operator defined in (8.74). Then the operators ∂βθrRM+5 , ∂
β
θr

[∂x,RM+5]

are Dk0-tame for r = 1, ..., N , β ∈ N , β ≤ β0 , β0 +k0 +1 ≤M , with tame constants for all p0 ≤ p ≤ P

M∂βθrRM+5
(p) , M∂βθr [∂x,RM+5](p) ≤P,Mµ‖v‖

k0,γ
p+(M+1)M+3M+6+σ+β . (8.91)

Moreover if the constant ν in (6.11) satisfies p1 + (M + 1)M + 3M + 6 + β + σ ≤ p0 + ν then

‖∂βθr∂iRM+5 [̂i]‖L(Hp1 ) , ‖∂βθr [∂iRM+5 [̂i], ∂x]‖L(Hp1 ) ≤P,M µ‖̂i‖p1+(M+1)M+3M+6+β+σ . (8.92)

The rest of this Section is devoted to the proof of the Lemma above. We recall the definition of the

remainder RM+5 given in (8.74), that is RM+5 = T−1
M+5R̃M+5 + T−1

M+5PM+5 where R̃M+5 is defined in

(8.69) and PM+5 is defined in (8.70). Using the explicit expression of R̃M+5 the remainder RM+5 can

be written as follows

RM+5 = T−1
M+5R̃M+5 + T−1

M+5PM+5

= W1 + T−1
M+5R̃M+4TM+5,

where

W1 := T−1
M+5

(
(ω · ∂θΦM+5)∂−1

y + C(4)ΦM+5π0 + C(4)(ΦM+5)y∂
−1
y −MKnΦM+5π0 + PM+5

)
, (8.93)

and ΦM+5 is given in (8.56) (see also (8.66)), C(4) in (8.62), MKn in (8.58) and PM+5 in (8.70).

In the next Lemma we shall prove that ∂βθrW1 , r = 1, ..., N , β ∈ N is a Dk0−tame operator. Then

in Lemmas 8.14 and 8.15 we will focus on T−1
M+5R̃M+4TM+5.
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Lemma 8.12. Let W1 be the operator defined in (8.93). Then ∂βθrW1 , ∂
β
θr

[W1, ∂x] for r = 1, ..., N , β ∈

N , β ≤ β0 are Dk0−tame with tame constants, for all p ≥ p0

M∂βθrW1
(p) ,M[∂βθrW1,∂x](p) ≤ µ‖v‖p+3+M+σ+β . (8.94)

Moreover if the constant ν in (6.11) satisfies p1 + 3 +M + σ + β ≤ p0 + ν, then

‖∂βθr∂iW1 [̂i]‖L(Hp1 ) , ‖∂βθr [∂iW1 [̂i], ∂x]‖L(Hp1 ) ≤ µ‖̂i‖p1+3+M+σ+β . (8.95)

Proof. We claim that the transformation TM+5 defined in (8.56), and the operators

(ω ·∂θΦM+5)∂−1
y , C(4)ΦM+5π0 , C(4)(ΦM+5)y∂

−1
y , MKnΦM+5π0 are Dk0 -tame operators since they are

pseudo-differential operators. We prove it for T−1
M+5C

(4)ΦM+5π0 since for the other terms it is similar.

We consider first the operator T−1
M+5. By (2.29) we have

|T−1
M+5|

k0,γ
0,p,0 = |1 + µΦM+5∂

−1
y |

k0γ
0,p,0 ≤ C(p)(1 + µ‖v‖p+2+σ).

By Lemma 2.8

|T−1
M+5C

(4)ΦM+5π0|k0,γ
0,p,0 ≤ C(p)|T−1

M+5|
k0,γ
0,p,0|C(4)ΦM+5π0|k0,γ

0,p0,0
+ C(p0)|T−1

M+5|
k0,γ
0,p0,0

|C(4)ΦM+5π0|k0,γ
0,p,0

≤ C(p)C(p0)|T−1
M+5|

k0,γ
0,p,0|C(4)|k0,γ

0,p0,0
|ΦM+5π0|k0,γ

0,p0,0

+ C(p0)C(P )|T−1
M+5|

k0,γ
0,p0,0

|C(4)|k0,γ
0,p,0|ΦM+5π0|k0,γ

0,p0,0

+ C(p0)C(P )|T−1
M+5|

k0,γ
0,p0,0

|C(4)|k0,γ
0,p0,0

|ΦM+5π0|k0,γ
0,p,0 .

Then, by Lemma 2.14, the tame estimate for these operators follows. By Lemmas 2.8 and 2.14 and

by (2.29) the pseudo-differential operator PM+5 defined in (8.70), see also (8.71), is Dk0-tame. Indeed

consider for instance Op(r(ξ)) ◦ ϕM+5
1 ∂−1

y , then by the explicit definition of ϕ
(M+5)
1 in (8.72) by (2.26)

and (2.29) we have

|µOp(r(ξ)) ◦ ϕM+5
1 ∂−1

y |
k0,γ
−M−1,p,0 ≤ C(p)µ|Op(r(ξ))|k0,γ

0,p,0|ϕ
(M+5)
1 ∂−1

y |
k0,γ
0,p0+M+1,0

+ µC(p0)|Op(r(ξ))|k0,γ
0,p0,0

|ϕ(M+5)
1 ∂−1

y |
k0,γ
0,p+M+1,0

≤p µ‖v‖p+M+3+σ .

We have to estimate

∂βθr (T
−1
M+5C

(4)ΦM+5π0) =
∑

β1+β2+β3=β

(∂β1

θr
T−1
M+5)(∂β2

θr
C(4))(∂β3

θr
ΦM+5π0) .

By Lemma 2.8 we have

|∂β1

θr
T−1
M+5|

k0,γ
0,p,0 ≤ C(β1, p)|T−1

M+5|
k0,γ
0,p+β1,0

|∂β2

θr
C(4)|k0,γ

0,p,0 ≤ C(β2, p)|C(4)|k0,γ
0,p+β2,0

|∂β3

θr
ΦM+5π0|k0,γ

0,p,0 ≤ C(β3, p)|ΦM+5|k0,γ
0,p+β3,0

.

Hence by Lemma 2.14, (2.26) and (2.29) the estimates (8.94) follow. The proof of (8.95) follows analo-

gously.
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Now we focus on T−1
M+5R̃M+4TM+5, where R̃M+4 is defined in (8.61). Since the operators TM+5

and T−1
M+5 are Dk0−tame (see Lemma above), and since the compositions of Dk0−tame operators is

Dk0−tame (see Lemma 2.13), instead of studying T−1
M+5R̃M+4TM+5 it is sufficient to prove that the

operators ∂bθrR̃M+4 and [∂bθrR̃M+4, ∂x] are Dk0−tame.

The operator R̃M+4 is explicitly given by R̃M+4 = T−1
M+4RM+3TM+4 where RM+3 is defined in (8.39).

First of all note that the conjugation of RM+3 with the transformation TM+4 defined in (8.54) can

not be represented as a pseudo-differential operator on the out of diagonal elements. Indeed

R̃M+4 =

M∑
k=0

Ψ−1
1 ◦A

(1)
k (x, θ)∂−kx ◦Ψ1 0

0 Ψ−1
2 ◦A

(4)
k (x, θ)∂−kx ◦Ψ2


+

Ψ−1
1 ◦ Σ1 ◦Ψ1 Ψ−1

1 ◦ Σ2 ◦Ψ2

Ψ−1
2 ◦ Σ3 ◦Ψ1 Ψ−1

2 ◦ Σ4 ◦Ψ2

 ,

(8.96)

and, as we shall prove in the following Lemma, the diagonal elements still remain pseudo-differential

operators after the conjugation with TM+4, but the out of diagonal elements lose this structure.

In order to simplify the notation, since Ψ2(θ) = Ψ−1
1 (θ) , ∀θ ∈ TN , see (8.54) and (8.55), we shall

write Ψ instead of Ψ1 and Ψ−1 instead of Ψ2, correspondingly for ψ1 , ψ2.

Lemma 8.13. Let A = Op(a(x, θ, j)) be a family of pseudo-differential operators. Let (Ψh)(x, θ) =

h(x+ ψ(θ), θ) whose inverse is given by (Ψ−1h)(x, θ) = h(x− ψ(θ), θ). Then

Ψ−1 ◦A ◦Ψ = Op(ã(x, θ, j)) (8.97)

Ψ−1 ◦A ◦Ψ−1 = Op(ã(x, θ, j))ψ−2 , (8.98)

where Op(ã(x, θ, j)) = Op(a(x− ψ(θ), θ, j)).

Proof. We prove (8.97) Let h =
∑
j hj(θ)e

ijx, then Ψh =
∑
j hj(θ)e

iψ(θ)jeijx. So

Op(a(x, θ, j))[Ψh] =
∑
j∈Z

a(x, θ, j)hj(θ)e
iψ(θ)jeijx .

Hence the final operator is

Ψ−1Op(a(x, θ, j))[Ψh] =
∑
j∈Z

a(x− ψ(θ), θ, j)hj(θ)e
iψ(θ)jeijxe−iψ(θ)j

=
∑
j∈Z

a(x− ψ(θ), θ, j)hj(θ)e
ijx

=
∑
j∈Z

ã(x, θ, j)hj(θ)e
ijx

= Op(ã(x, θ, j))h .

Now we prove (8.98). We have that Ψ−1h =
∑
j hj(θ)e

−iψ(θ)jeijx. So

Op(a(x, θ, j))[Ψ−1h] =
∑
j

a(x, θ, j)hj(θ)e
−iψ(θ)jeijx .
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Hence

Ψ−1Op(a(x, θ, j))[Ψ−1h] =
∑
j∈Z

a(x− ψ(θ), θ, j)hj(θ)e
−iψ(θ)jeijxe−iψ(θ)j

=
∑
j∈Z

a(x− ψ(θ), θ, j)hj(θ)e
ijxe−2iψ(θ)j

=
∑
j∈Z

ã(x, θ, j)hj(θ)e
−2iψ(θ)jeijx

= Op(ã(x, θ, j))ψ−2h .

Therefore Ψ−1Op(a(x, θ, j))Ψ−1 is not a pseudo-differential operator.

We recall that in order to simplify the notation, since Ψ2(θ) = Ψ−1
1 (θ) , ∀θ ∈ TN , see (8.54) and

(8.55), we shall write Ψ instead of Ψ1 and Ψ−1 instead of Ψ2, correspondingly for ψ1 , ψ2. Thanks to the

Lemma above we can prove the following Lemma on the diagonal entries of the operator R̃M+4.

Lemma 8.14. For k = 0, ...,M , m = 1, 4 r = 1, ..., N , β ∈ N , |β| ≤ β0 , and the operators

∂βθrΨ
−1A

(m)
k ∂−kx Ψ , ∂βθrΨ

−1ΣmΨ , ∂βθr [Ψ
−1A

(m)
k ∂−kx Ψ , ∂x] , ∂βθr [Ψ

−1ΣmΨ , ∂x] , are Dk0-tame with tame

constants satisfying for all p0 ≤ p ≤ P

M∂βθr (Ψ−1ΣmΨ)(p) ,M∂βθr [Ψ−1ΣmΨ , ∂x](p) ≤P,M µ‖v‖k0,γ
p+σ+(M+1)M+3M+6+β . (8.99)

Moreover is the constant ν in (6.11) satisfies p1 + (M + 1)M + 3M + 6 + β + σ ≤ p0 + ν, then

‖∂βθr∂i(Ψ
−1ΣmΨ)[̂i]‖L(Hp1 ) , ‖∂βθr [∂i(Ψ

−1ΣmΨ)[̂i], ∂x]‖L(Hp1 ) ≤P,M µ‖̂i‖p1+(M+1)M+3M+6+β+σ .

(8.100)

Proof. By Lemma 8.13 we have that for m = 1, 4 and k = 0, ...,M the operators Ψ−1Amk (x, θ)∂−kx Ψ =

Amk (x + ψ(θ), θ)∂−kx , remain pseudo-differential operators, similar for Ψ−1ΣmΨ. Then, by (2.29) and

Lemma 2.23

|Amk (x+ ψ(θ), θ)∂−kx |
k0,γ
0,p,0 ≤p ‖Amk (x+ ψ(θ), θ)‖k0,γ

p ≤P ‖Amk ‖k0γ
p ‖ψ‖

k0,γ
p0

+ ‖ψ‖k0,γ
p ‖A‖k0γ

p0

by the estimates (8.48) the Lemma follows.

Now it remains to prove that for β ∈ N the operators ∂βθr (Ψ
−1 ◦ Σ2 ◦ Ψ−1) , ∂βθr (Ψ ◦ Σ3 ◦ Ψ) and

∂βθr [Ψ
−1 ◦ Σ2 ◦Ψ−1 , ∂x] , ∂βθr [Ψ ◦ Σ3 ◦Ψ , ∂x] are Dk0 -tame operators.

It is clear that we can study only one case, e.g. Ψ ◦ Σ3 ◦ Ψ instead of study both Ψ ◦ Σ3 ◦ Ψ and

Ψ−1 ◦ Σ2 ◦ Ψ−1, since ‖Ψh‖p = ‖Ψ−1h‖p for every h, similarly for the other operators above. For this

reason, and also for simplify the notation, in what follows we shall write and study ΨΣΨ.

Lemma 8.15. For all β ∈ N , |β| ≤ β0 , |k| ≤ k0 with β0 + k0 + 1 ≤ M the operators ∂βθr (ΨΣΨ) and

∂βθr [ΨΣΨ, ∂x] for all r = 1, ..., N are Dk0-tame with tame constants satisfying for all p0 ≤ p ≤ P

M∂βθr (ΨΣΨ)(p) , M∂βθr [ΨΣΨ,∂x](p) ≤P µ‖v‖
k0,γ
p+(M+1)M+3M+6+β+σ . (8.101)
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Moreover is the constant ν in (6.11) satisfies p1 + (M + 1)M + 3M + 6 + β + σ ≤ p0 + ν, then

‖∂βθr∂i(ΨΣΨ)[̂i]‖L(Hp1 ) , ‖∂βθr [∂i(ΨΣΨ)[̂i], ∂x]‖L(Hp1 ) ≤P µ‖̂i‖p1+(M+1)M+3M+6+β+σ . (8.102)

Proof. We prove that ∂βθr (ΨΣΨ) is Dk0 -tame. We have that

∂kζ

(
∂βθrΨΣΨ

)
=

∑
β1+β2+β3=β

∑
k1+k2+k3=k

C(β1, β2, β3, k1, k2, k3)
(
∂β1

θr
∂k1

ζ Ψ
)(

∂β2

θr
∂k2

ζ Σ
)

×
(
∂β3

θr
∂k3

ζ Ψ
)

=
∑

β1+β2+β3=β

∑
k1+k2+k3=k

C(β1, β2, β3, k1, k2, k3)
(
∂β1

θr
∂k1

ζ Ψ 〈∂x〉−β1−|k1|
)

×
(
〈∂x〉β1+|k1| ∂β2

θr
∂k2

ζ Σ 〈∂x〉β3+|k3|
)(
〈∂x〉−β3−|k3| ∂β3

θr
∂k3

ζ Ψ
)

where β1, β2, β3 ∈ N and k1, k2, k3 ∈ N1+N . Let |k| ≤ k0 and M ≥ β + k0 + 1. Then we claim that

| 〈∂x〉|k1|+β1 ∂k2

ζ ∂
β2

θr
Σ 〈∂x〉|k3|+β3 |−M−1+|k1|+β1+|k3|+β3,p,0 ≤p γ

−|k2|‖v‖k0,γ
p+β+k0+(M+1)M+3M+6

|[〈∂x〉|k1|+β1 ∂k2

ζ ∂
β2

θr
Σ 〈∂x〉|k3|+β3 , ∂x]|−M−1+|k1|+β1+|k3|+β3,p,0 ≤p γ

−|k2|‖v‖k0,γ
p+β+k0+(M+1)M+3M+6 .

Indeed by (2.25), (2.26) and Lemma 2.8 we have

| 〈∂x〉|k1|+β1 ∂k2

ζ ∂
β2

θr
Σ 〈∂x〉|k3|+β3 |−M−1+|k1|+β1+|k3|+β3,p,0 ≤

≤ C(p, k,M, β)
(
| 〈∂x〉|k1|+β1 ||k1|+β1,p,0|∂

k2

ζ ∂
β2

θr
Σ 〈∂x〉|k3|+β3 |−M−1+|k3|+β3,p0+|k1|+β1,0

+| 〈∂x〉|k1|+β1 ||k1|+β1,p0,0|∂
k2

ζ ∂
β2

θr
Σ 〈∂x〉|k3|+β3 |−M−1+|k3|+β3,p+|k1|+β1,0

)
≤ C(p, k,M, β)

(
|∂k2

ζ ∂
β2

θr
Σ|−M−1,p0+|k1|+β1,0| 〈∂x〉

|k3|+β3 ||k3|+β3,p+|k1|+β1+M+1,0

+|∂k2

ζ ∂
β2

θr
Σ|−M−1,p+|k1|+β1,0| 〈∂x〉

|k3|+β3 ||k3|+β3,p0+|k1|+β1+M+1,0

)
≤ C(p, k,M, β)|∂k2

ζ ∂
β2

θr
Σ|−M−1,p+|k1|+β1,0

≤ C(p, k,M, β)γ−|k2||Σ|k0,γ
−M−1,p+|k1|+β1+β2+σ,0

≤ C(p, k0,M, β)γ−|k2|‖v‖k0,γ
p+k0+β1+β2+(M+1)M+3M+6+σ

≤ C(p, k0,M, β)γ−|k2|‖v‖k0,γ
p+k0+β+(M+1)M+3M+6+σ .

By Lemmas 2.26 and 2.25 we have that

M∂βθrΨ〈∂x〉−β (p) , M∂βθr [Ψ〈∂x〉−β ,∂x](p) ≤ µ‖v‖
k0,γ
p+σ+β+2.

Similarly for 〈∂x〉−β−|k| ∂βθrΨ . Then the tame estimates for the operators 〈∂x〉−β3−|k3| ∂β3

θr
∂k3

ζ Ψ and

∂β1

θr
∂k1

ζ Ψ 〈∂x〉−β1−|k1| in (8.101) and (8.102) holds.

Thanks to this Lemma the proof of Lemma 8.11 is completed. Indeed by Lemmas 8.12, 8.14 and 8.15

we can prove the Lemma presented at the beginning of the Section.
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8.2.5 Structure of the remainder RM+5

In this Section we write the remainder RM+5 in a block diagonal form.

Lemma 8.16. Every operator B :=

B1 B2

B3 B4

 : E → E, where E is defined in (7.26), can be written

in a block diagonal form i.e.

B̃1 0

0 B̃4

 .

Proof. Let S : u(x)→ u(−x), and let (f, g) ∈ E, thenB1 B2

B3 B4

f
g

 =

B1f +B2g

B3f +B4g

 =

B1 +B2S 0

0 B3S +B4

f
g

 .

Lemma 8.17. Let B be a real operator acting on E as in Lemma 8.16. Then the Fourier coefficients

(in the exponential basis) of the operators B1, B2, B3, B4 satisfy the following equalities

(B1)j−k + (B2)−j−k =(B3)jk + (B4)−jk

(B1)−j−k + (B2)j−k = (B1)jk + (B2)−jk , (B4)−j−k + (B3)j−k = (B4)jk + (B3)−jk .
(8.103)

Proof. By Lemma (8.16) we haveB1 +B2S 0

0 B3S +B4

f
g

 =
∑
j,k∈Z

(B1)jk + (B2)−jk 0

0 (B3)−jk + (B4)jk

fj
gj

 eikx .

Since B : E → E we have that (B1f + B2Sf)(−x) = (B3Sg + B4g)(x), in Fourier basis this condition

correspond to the first in (8.103). The second two conditions in (8.103) ensure that the operator B maps

real valued functions into real valued functions.

Remark 8.18. By (8.103) we have that a block diagonal form operator

A :=

A1 0

0 A4

 ,

is real and sends E in itself if for all j, k ∈ Z,

(A1)−j−k = (A4)jk , (Am)jk = (Am)−j−k , m = 1, 4 , (8.104)

Now we shall write the remainder

RM+5 :=

R1 R2

R3 R4

 (8.105)

defined in (8.74) in a block diagonal form. Moreover we also shall give some important properties on the

coefficients that we shall use in Chapter 9. We recall that RM+5 is a real, reversible operator that acts

in E defined in (7.26) (see Lemma 8.8).
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Lemma 8.19. Let RM+5 as in (8.105). Then it can be written as

Q :=

Q1 0

0 Q4

 . (8.106)

where

Q1 := R1 +R2S , Q4 := R4 +R3S , and S : u(x)→ u(−x) . (8.107)

In addition, Q : E → E and is real, therefore its coefficients, written in the Fourier exponential basis,

satisfy

(Q4)jk = (Q1)−j−k , (Q1)jk = (Q1)−j−k, , (Q4)jk = (Q4)−j−k. (8.108)

Moreover since Q is reversible the following equality holds

(Q1)jk(−l) = −(Q4)jk(l). (8.109)

Proof. By Lemma 8.103 we can write RM+5 as a block diagonal form operator. The equalities 8.108

follow by the equality (8.103) for a block diagonal form operator (see (8.104)). Since RM+5 is reversible

(see (7.31)) we have that also the operator Q is reversible, that is Q1(−θ) = −Q4(θ), in the Fourier

exponential representation this condition reads (8.109).

The remainder Q satisfies the same tame estimate of the remainder RM+5 as we prove in the following

Lemma.

Lemma 8.20. Let Q be the operator defined in Lemma 8.19. Then for j = 1, ..., N , β ∈ N , |β| ≤

β0 , |k| ≤ k0 , β0 + k0 + 1 ≤M the following estimates hold

M∂βθrQ(p) , M∂βθr [∂x,Q](p) ≤Pµ‖v‖
k0,γ
p+(M+1)M+3M+6+σ+β . (8.110)

Moreover is the constant ν in (6.11) satisfies p1 + (M + 1)M + 3M + 6 + β + σ ≤ p0 + ν then

‖∂βθr∂iQ[̂i]‖L(Hp1 ) , ‖∂βθr [∂iQ[̂i], ∂x]‖L(Hp1 ) ≤P µ‖̂i‖p1+(M+1)M+3M+6+β+σ . (8.111)

Proof. This Lemma follows by Lemma 8.11, by (8.107) and by ‖u‖k0,γ
p = ‖Su‖k0,γ

p .

In conclusion the operator L̂M+5 defined in (8.84) reads

L̂M+5 = LM+5 + C⊥ + R⊥MKn

= Ω · ∂θ + T(D) + M∂x + Q + C⊥ + R⊥MKn

where C⊥ is defined in (8.83), R⊥MKn
is defined in (8.76), the operator LM+5 = Ω ·∂θ +T(D) +M∂x+Q

with T(D) defined in (7.18), M defined in (8.77) and Q is given in the Lemma 8.19 and satisfies the

estimates in Lemma 8.20.



Chapter 9

Partial reduction of Lω

By the study in Chapters 7 and 8 the operator L in (6.10) is conjugated to the operator L̂M+5 defined

in (8.84)

L̂M+5 =W−1LW . (9.1)

Therefore, by (8.81), the operator L defined in (6.10) is semi-conjugated to the real operator LM+5, up

to operators which are supported only on high Fourier frequencies, that is

LM+5 =W−1LW −C⊥ −R⊥MKn
,

W = ZT1T2T3 ◦ ... ◦ TM+3TM+4TM+5 ,
(9.2)

where C⊥ and R⊥MKn
are defined in (8.83) and (8.76). The map W−1 sends the subspace E defined in

(7.26) into itself, moreover it is real and reversibility preserving. We denote by ΠS the L2-orthogonal

projection on S (defined in (1.31)) and Π⊥S := 1−ΠS.

Lemma 9.1. For µγ−1 small enough, the operator

W⊥ = Π⊥SWΠ⊥S

is invertible and for all p0 ≤ p ≤ P it satisfies the tame estimate

‖W⊥h‖k0,γ
p + ‖(W⊥)−1h‖k0,γ

p ≤P,M ‖h‖k0,γ
p+σ + ‖V0‖k0,γ

p+5+M2+σ‖h‖
k0,γ
p0+σ . (9.3)

Moreover if ν in (6.11) satisfies p1 + 5 +M2 + σ ≤ p0 + ν, then

‖∂iW±1 [̂i]h‖p1 , ‖∂i(W⊥)±1 [̂i]h‖p1 ≤P,M ‖̂i‖p1+5+M2+σ‖h‖p0+σ (9.4)

Proof. By Lemmas 2.13, 2.14, 2.15 and 8.7 and by (6.11) we have that the operator W is invertible and

satisfies

‖(W)±1h‖k0,γ
p+σ ≤P ‖h‖k0,γ

p + ‖V0‖k0,γ
p+5+M2+σ‖h‖

k0,γ
p0+σ.

95
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By the definition of Π⊥S , in order to prove that W⊥ is invertible, it is sufficient to prove that ΠSWΠS

is invertible. This follows by a perturbative argument, for µγ−1 small enough, using that ΠS is a finite

dimensional projector.

The operator Lω defined in (5.48) or in (6.9) is semi-conjugate to

(W⊥)−1LωW⊥ = Π⊥S LM+5Π⊥S +RF −Π⊥S R⊥Π⊥S −Π⊥S R⊥MKn
Π⊥S

where

RF := (W⊥)−1Π⊥S µRW⊥ (9.5)

and R is the finite dimensional remainder defined in (6.1).

Lemma 9.2. The operator RF has the finite dimensional form (6.3)-(6.4).

Proof. We have that R has the form (6.3), hence we have to prove that, given R : h → (h, g)L2(Tx)χ,

the operator (W⊥)−1RW has the form (6.3) as well. We will use the following property: given a scalar

function a : TN → C and χ = χ(θ, ·) ∈ H⊥S , we have

(W⊥)±1[a(θ)χ] = a(θ)(W⊥)±1[χ] .

Indeed Π⊥S a(θ) = a(θ)Π⊥S and for operator of the following form 1+ϕk∂
−k
x we have that (1+ϕk∂

−k
x )a(θ) =

a(θ) + ϕka(θ)∂−kx = a(θ)(1 + ϕk∂
−k
x ).

For any h(θ, ·) ∈ H⊥S we have

(W⊥)−1RW⊥[h] :=(W⊥)−1
[(
W⊥[h], g

)
L2(Tx)

]
χ

=
[(
W⊥[h], g

)
L2(Tx)

]
(W⊥)−1[χ]

=
(
h, (W⊥)−1g

)
L2(Tx)

(W⊥)−1[χ]

= (h, g?)L2(Tx) [χ?] ,

where , g? := (W⊥)−1g and χ? := (W⊥)−1[χ]. Therefore (W⊥)−1RW⊥[h] has exactly the form (6.3).

In conclusion we write Lω, defined in (5.48) (i.e. (6.9)), as follows:

Lω = (W⊥)LM+6(W⊥)−1 + G⊥ (9.6)

where

LM+6 := LM+5 +RF and G⊥ := −W⊥(C⊥ + R⊥MKn
)(W⊥)−1. (9.7)

The operator G⊥ satisfies, for all p0 ≤ p ≤ P and σ := σ(τ,N, k0) > 0

‖G⊥h‖k0,γ
p0
≤P µK−bn

(
‖h‖k0,γ

p0+σ+b + ‖V0‖k0,γ
p0+M2+5+σ+b‖h‖

k0,γ
p0+σ

)
,∀b > 0

‖G⊥h‖k0,γ
p ≤P µ

(
‖h‖k0,γ

p+σ + ‖V0‖k0,γ
p+2‖h‖

k0,γ
p0+M2+5+σ

)
.

(9.8)

The estimates (9.8) follows by (8.83), (8.76), (8.23), (9.3), (2.36) and (6.13).
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Proposition 9.3. Assume (6.11). For all (ω, ε) ∈ DC
γ
Kn
× [ε1, ε2] (see (5.5)) the operator Lω defined

in (6.9) is semiconjugated to the real, reversible operator LM+6 : E → E up to the remainder G⊥ which

satisfy (9.8). The operator

LM+6 = Π⊥S (Ω · ∂θ + T(D) + M∂x + Q)Π⊥S (9.9)

where T(D) is defined in (7.18), the diagonal constant coefficient M with entries m1 := m1(ω, ε), (see

(8.79)) is defined for all (ω, ε) ∈ RN × [ε1, ε2], and satisfy

|m1|k0,γ ≤ Cµ , |∂im1 [̂i]| ≤ Cµ‖̂i‖σ. (9.10)

The remainder (defined in Lemma 8.19)

Q :=

Q1 0

0 Q4

 (9.11)

satisfy the following tame properties: ∀β ∈ N, β + k0 + 1 ≤ M the operators ∂βθrQm , ∂
β
θr

[Qm, ∂x], for

m = 1, 4 and r = 1, ..., N are Dk0-tame and their tame constant satisfy, for all p0 ≤ p ≤ P ,

max
m=1,4

(
M∂βθrQm

(p) , M∂βθr [Qm,∂x](p)
)
≤M,P µγ

−1
(

1 + ‖V0‖k0,γ
p+(M+1)M+3M+6+σ+β

)
, (9.12)

for some σ := σ(τ,N, k0) > 0.

Moreover if the constant ν in (6.11) satisfies

p1 + (M + 1)M + 3M + 6 + σ +M − k0 + 1 ≤ p0 + ν , (9.13)

then, for all β ∈ N , β + k0 + 1 ≤M we have

‖∂βθr∂iQm [̂i]‖L(Hp1 ) , ‖∂βθr [∂iQm [̂i], ∂x]‖L(Hp1 ) ≤M,P µγ
−1‖̂i‖p1+(M+1)M+3M+6+σ+β . (9.14)

Proof. We have that the approximate solution (q, p) is defined for all (ω, ε) ∈ RN × [ε1, ε2] at each step

of the Nash-Moser iteration in Chapter 10, as it is proved in the extension Lemma 10.5. For this reason

m1 in (8.78), and hence M in (8.79), is defined for all the parameters (ω, ε) ∈ RN × [ε1, ε2]. By Section

8.2.4 and Lemma 8.20 we have that the estimate (9.14) and (9.12) holds for Q. We have to prove that

the estimates are satisfied for RF defined in (9.5). We have that ∀h ∈ E ∩ H⊥S

RF [h] := (W⊥)−1RW⊥[h] = (h, g?)L2(Tx) [χ?] ,

where g? := (W⊥)−1g ∈ E ∩ H⊥S and χ? := (W⊥)−1[χ] ∈ E ∩ H⊥S . Hence by (9.4) we have for p0 ≤ p ≤ P

‖χ?‖k0,γ
p , ‖g?‖k0,γ

p ≤P,M µγ−1(1 + ‖V0‖p+M2+5+σ)

‖∂iχ? [̂i]‖p1
, ‖∂ig? [̂i]‖p ≤P,M µγ−1(1 + ‖̂i‖p1+M2+5+σ) .

(9.15)
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Therefore, using

∂βθr∂
k
ζRFh =

∑
β1+β2=β

k1+k2=k

C(β1, β2, k1, k2)
(
∂β1

θr
∂k1

ζ χ?(h, ∂
β2

θj
∂k2

ζ g)L2
x

+ ∂β1

θr
∂k1

ζ χ?(h, ∂
β2

θr
∂k2

ζ g)L2
x

)

∂βθr∂
k
ζ [RF , ∂x]h =

∑
β1+β2=β

k1+k2=k

C(β1, β2, k1, k2)
(
∂β1

θr
∂k1

ζ χ?(h, ∂
β2

θj
∂k2

ζ (∂xg))L2
x

+ ∂β1

θr
∂k1

ζ (∂xχ?)(h, ∂
β2

θr
∂k2

ζ g)L2
x

)

we have that the estimates (9.12) follow. For ∂i∂
β
θr
RF [̂i] and ∂βθr [∂iRF [̂i], ∂x] we have similar expressions.

9.1 Almost diagonalization and invertibility of Lω

The goal of this section is to diagonalize the operator LM+6. We neglect the remainder G⊥ supported

on the high fourier modes, which will contribute to the remainder in (9.98) and (9.99). We shall apply

an iterative reducibility scheme. Let L0 be an operator acting on E ∩ H⊥S , where E is defined in (7.26)

and H⊥S is defined in (1.32). The operator can be written as

L0 = L0(i) := Ω · ∂θ1⊥ + iD0 + Q0, 1
⊥ := 1ΠS⊥ :=

1 0

0 1

ΠS⊥ . (9.16)

Note that L0 is defined for all (ω, ε) ∈ DC
γ
Kn
× [ε1, ε2], where DC

γ
Kn

is defined in (5.5). Let Z0 := Z \ {0}

and S± := S ∪ (−S) where S is defined in (1.31). The diagonal part (with respect to the exponential

representation) is given by

D0 =

D0 0

0 −D0

 , D0 = diagj∈Z0\S±λ
(0)
j λ

(0)
j = j

√
2

15
j4ε4 +

1

3
j2ε2 + 1 +m1j (9.17)

where m1 = m1(ω, ε) ∈ R is defined for all (ω, ε) ∈ RN × [ε1, ε2]. The remainder

Q0 : E ∩ H⊥S → E ∩ H⊥S Q0 =

Q1 0

0 Q4

 , (9.18)

is real and reversible. The operators Q1 , Q4 satisfy (8.108) and (8.109). Moreover the operator Q0

satisfies the following tame estimates:

• Smallness assumptions on Q0. The operators

Qm , [Qm, ∂x] , ∂p0

θr
Qm , ∂

p0

θr
[Qm, ∂x], r = 1, ..., N , m = 1, 4

are Dk0-tame with tame constants defined for all p0 ≤ p ≤ P ,

M0(p) = max
m=1,4,r=1,...,N

{
MQm(p),M[Qm,∂x](p),M∂

p0
θr
Qm

(p)M∂
p0
θr

[Qm,∂x](p)
}
. (9.19)

In addition the operators

∂p0+b
θr

Qm , ∂
p0+b
θr

[Qm, ∂x], r = 1, ...N m = 1, 4
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are Dk0-tame with tame constant defined for all p0 ≤ p ≤ P ,

M0(p, b) = max
m=1,4,r=1,...,N

{
M

∂
p0+b

θr
Qm

(p) ,M
∂
p0+b

θr
[Qm,∂x]

(p)
}
, (9.20)

where b ∈ N satisfies

b := [a] + 2 ∈ N , a := 3τ1 , τ1 := τ(1 + k0) + k0 . (9.21)

We assume that the tame constant satisfy

M0(p0, b) := max{M0(p0),M0(p0, b)} ≤ C(P )γ−1µ (9.22)

and that there is σ(b) > 0 , (σ(b) = ν(b) +σ) such that, for all r = 1, ..., N , β ∈ N , β ≤ b+ p0 we have

max
m=1,4

{‖∂βθr∂iQm [̂i]‖L(Hp0 ), ‖∂βθr [∂iQm [̂i], ∂x]‖L(Hp0 )} ≤ C(P )γ−1µ‖̂i‖p0+σ(b) . (9.23)

Remark 9.4. The conditions b > a + 2
3 and a > 3τ1 arise for the convergence of the iterative scheme

(9.78), (9.79) in Lemma 9.16. We take an integer b := [a]+2 ∈ N so that ∂p0+b
θm

are differential operators

(since p0 ∈ N). Note also that a ≥ 3
2k0(τ + 2) + 1 (as τ ≥ 1) which is used in the extension procedure in

(S2)ν (see (9.43)). Moreover a > 3
2 [τ + k0(τ + 2)] which is used in Lemma 10.7.

We have to choose M ≥ b + p0 + k0 + 1 and for definiteness we fix

M = b + p0 + k0 + 1. (9.24)

We also define

c(b) := (M + 1)M + 3M + 6

:= (b + p0 + k0 + 2)(b + p0 + k0 + 1) + 3(b + p0 + k0 + 1) + 6 ,

ν(b) := c(b) + b

(9.25)

where M is the regularization order that we require on the off-diagonal terms of the remainder, and

c(b), ν(b) represent the loss of derivatives on the coefficient and from the next Lemma and so on we shall

use those constant. The operator L0 := LM+6, where LM+6 is defined in (9.9) satisfies the previous

assumptions.

Lemma 9.5. Tame estimate for Q. Assume (6.11) . Then the operator Q := Q0 defined in (9.11)

satisfies , for all p0 ≤ p ≤ P the tame estimates (9.19) and (9.20) with

M0(p) ≤P µγ−1
(
1 + ‖V0‖p+p0+c(b)+σ

)
M0(p, b) ≤P µγ−1

(
1 + ‖V0‖p+ν(b)+σ

)
(9.26)

and (9.22) holds. Moreover for all r = 1, ..., N and β ∈ N, β ≤ b + p0 the operators

∂βθr∂iQm [̂i] , ∂βθr [∂iQm [̂i], ∂x] , m = 1, 4

satisfy the bounds (9.23) with σ(b) = ν(b) + σ.
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Proof. For prove (9.26) we use (9.12) and (9.25). If ν := ν(b)+σ the condition (9.13) holds (with p1 = p0)

and so the bounds (9.23) holds by (9.14) with ν := ν(b) + σ.

By this lemma follows that for all p0 ≤ p ≤ P

M0(p, b) = max{M0(p),M0(p, b)} ≤ C(P )µγ−1
(

1 + ‖V0‖k0,γ
p+ν(b)+σ

)
. (9.27)

Let

N−1 := 1, Nν := N
( 3

2 )ν

0 , ∀ν ≥ 1, (9.28)

this is the scale that we will use when we shall perform the almost reducibility of L0. Given a set A we

define N (A, δ) ∈ RN × [ε1, ε2] as

N (A, δ) :=
{
ζ ∈ RN × [ε1, ε2] : dist(A, ζ) ≤ δ

}
. (9.29)

Let Z0 := Z \ {0} and S± := S ∪ (−S) where S is defined in (1.31). Now we can enunciate the almost

reducibility theorem, that is

Theorem 9.6. Almost Reducibility. There exists τ0 = τ0(τ,N) > 0 such that, for all P > p0 there is

N0 := N0(P, b) ∈ N such that, if

Nτ0
0 M0(p0, b)γ−1 ≤ 1 (9.30)

then, for all n ∈ N, ν = 0, ..., n:

(S1)ν There exists a real, reversible operator

Lν = Ω · ∂θ + iDν + Qν where Dν =

Dν 0

0 −Dν

 Dν = diagj∈Z0\S±λ
ν
j (9.31)

which acts on E, defined in (7.26) for (ω, ε) ∈ DC
γ
Kn
× [ε1, ε2] (where DC

γ
Kn

is defined in (5.5)) for

ν = 0, and for all (ω, ε) in

N (Λγν , γN
−τ−2
ν−1 ) ⊂ Λγ/2ν ∀ν ≥ 1 (9.32)

where λνj are k0-times differentiable functions of the form

λνj (ω, ε) = λj(ω, ε)
0 + rνj (ω, ε) λj(ω, ε)

0 = j

(
2

15
ε4j4 − 1

3
ε2j2 + 1

)1/2

+m1j , (9.33)

satifying

λνj = −λν−j i.e rνj = −rν−j and |rνj |k0,γ ≤ C(P )µγ−1 ∀j ∈ Z \ S± . (9.34)

The sets Λγν , are defined by Λ
γ
0 := Ω× [ε1, ε2], and for all ν ≥ 1

Λγν := Λγν(i) :=
{
ζ = (ω, ε) ∈ Λ

γ
ν−1 ∩

(
[DCγKn ∩ DC

γ
Nν−1

]× [ε1, ε2]
)

:

|ω · l + λν−1
j − λν−1

j′ | ≥ γ|j
3 − j′3| 〈l〉−τ ,∀|l| ≤ Nν−1, j, j

′ ∈ Z \ S±
}
.

(9.35)
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The remainder Qν given by

Qν :=

(Qν1) 0

0 (Qν4)

 (9.36)

satisfy (8.108), (8.109) and it is Dk0-modulo-tame, more precisely the operators Qν1 , Q
ν
4 and

〈∂θ〉b (Qν1), 〈∂θ〉b (Qν4), are Dk0-modulo-tame with modulo-tame constants respectively

M]
ν(p) := max

m=1,4
M]

Qνm
(p) , M]

ν(p, b) := max
m=1,4

M]

〈∂θ〉bQνm
(p, b) , (9.37)

satisfying for all p0 ≤ p ≤ P

M]
ν(p) ≤M0(p, b)N−aν−1 M]

ν(p, b) ≤M0(p, b)Nν−1 . (9.38)

Moreover, for ν ≥ 1 there exists a real, reversibility preserving map (see (7.32)), from E to E (see

(7.26))

Φν−1 = 1
⊥ + Ψν−1 where Ψν−1 =

ψν−1
1 0

0 ψν−1
4

 , (9.39)

such that

Lν := Φ−1
ν−1Lν−1Φν−1 , (9.40)

the operators ψν−1
m and 〈∂θ〉b ψν−1

m , m = 1, 4 are Dk0-modulo tame with modulo tame constants

satisfying, for all p0 ≤ p ≤ P

M]

ψν−1
m

(p) ≤ C(k0)

γ
Nτ1
ν−1N

−a
ν−2M0(p, b)

M]

〈∂θ〉bψν−1
m

(p) ≤ C(k0)

γ
Nτ1
ν−1Nν−2M0(p, b)

(9.41)

where τ1 := τ(k0 + 1) + k0 , a := 3τ1 (see (9.21)).

(S2)ν For all j ∈ Z \ S± there exists a k0−times differentiable extension λ̃νj : Ω × [ε1, ε2] → R such that

λ̃νj = λνj on Λγν and

λ̃νj (ω, ε) = λ0
j (ω, ε)+ r̃νj (ω, ε) ∈ R, r̃νj = −r̃ν−j , |r̃νj |k0,γ ≤P µγ−1N

k0(τ+2)
0 , ∀j ∈ Z\S± (9.42)

and for all ν ≥ 1

|λ̃νj − λ̃ν−1
j |k0,γ ≤ C(k0)N

k0(τ+2)
ν−1 M]

ν−1(p0) ≤ C(k0, P )γ−1µN
k0(2+τ)
ν−1 N−aν−2 . (9.43)

(S3)ν Let i1(ω, ε), i2(ω, ε) such that Q0(i1) and Q0(i2) satisfy (9.22). Assume that also (9.23) holds.

Then for all ν = 0, ...n and for all (ω, ε) ∈ Λγ1
ν (i1) ∪ Λγ2

ν (i2) with γ1, γ2 ∈ [γ/2, 2γ] there exists

σ := σ(τ, ν, k0) > 0 such that, for m = 1, 4

‖|Qνm(i1)−Qνm(i2)|‖L(Hp0 ) ≤P,b γ−1µN−aν−1‖i1 − i2‖p0+ν(b)+σ

‖| 〈∂θ〉b (Qνm(i1)−Qνm(i2))|‖L(Hp0 ) ≤P,b µγ−1Nν−1‖i1 − i2‖p0+ν(b)+σ .
(9.44)
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Moreover, for all ν = 1, ..., n and for all j ∈ Z \ S±

|(rνj (i1)− rνj (i2))− (rν−1
j (i1)− rν−1

j (i2))| ≤ C‖|Qν(i1)−Qν(i2)|‖L(Hp0 )

|rνj (i1)− rνj (i2)| ≤P γ−1µ‖i1 − i2‖p0+ν(b)+σ

(9.45)

where ν(b) is defined in (9.25), and we recall that ‖Qνh‖p := maxm=1,4 ‖Qνmh‖p.

(S4)ν Let i1, i2 be like in (S3)ν and 0 < ρ < γ/2. Then

µγ−1C(P )Nτ
n−1‖i1 − i2‖p0+ν(b)+σ ≤ ρ ⇒ Λγν(i1) ⊆ Λγ−ρν (i2) . (9.46)

Remark 9.7. Note that (9.45) are sufficient to prove (S4)ν about the inclusion of the Cantor sets

Λγν(i1) , Λγ−ρν (i2) corresponding to two nearby approximate solutions. These bounds follow by (9.44),

which is in terms of the Sobolev index p0 and not in terms of the derivatives with respect to (ω, ε).

Remark 9.8. In order to prove (9.37) for ν = 0 we shall use (|l1|+ ...+ |lN |)β ≤ Cβ(|l1|β + ...+ |lN |β)

for this reason in Section 8.2.4 we have studied ∂βθr , r = 1, ..., N instead of 〈∂θ〉β.

Remark 9.9. Note that we have to look for Dk0−modulo-tame operators (see (9.37)) because the second

estimate in Lemma 2.20 does not hold for Dk0−tame operators.

It is important to note that in Theorem 9.6 we require only the bound (9.30) for M]
0(p0, b) in low

norm. But it is also proved that both M]
ν(p) and M]

ν(p, b) for all ν ≥ 0 do not diverge too much (see

(9.38)).

In addition Theorem 9.6 implies that there exist a transformation Un such that the conjugation of

L0 with Un is a diagonal operator (up to a small remainder) as we shall prove in the Theorem below.

Theorem 9.10. KAM almost-reducibility. Assume (6.11) with ν ≥ ν(b). Let τ0 as in Theorem 9.6,

For all P > p0 there exists N0 = N0(P, b) > 0, δ0 = δ0(P ) > 0 such that, if the smallness condition:

Nτ0
0 µγ−2 ≤ δ0 (9.47)

holds, then for all n ∈ N, for all ζ = (ω, ε) in

Λ
γ
n+1 := Λ

γ
n+1(i) =

n+1⋂
ν=0

Λγν (9.48)

where Λ
γ
n+1 is defined in (9.35), the operator

Un := Φ0 ◦ ... ◦Φn (9.49)

is well defined and

Ln := U−1
n L0Un = Ω · ∂θ1⊥ + iDn + Qn (9.50)
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where Dn is defined in (9.31) and Qn in (9.36) (with ν = n). The operators Qn1 , Q
n
4 are Dk0− modulo-

tame with modulo-tame constants

M]
Qnm

(p) ≤P µγ−1N−an−1(1 + ‖V0‖k0,γ
p+ν(b)+σ) ∀p0 ≤ p ≤ P, m = 1, 4 . (9.51)

Moreover the operators U±n − 1⊥ are Dk0− modulo-tame with modulo-tame constants

M]

U±n−1⊥
(p) ≤P µγ−2Nτ1

0 (1 + ‖V0‖k0,γ
p+ν(b)+σ) ∀p0 ≤ p ≤ P (9.52)

where τ1 := τ(k0 + 1) + k0. In addition the operators Un, U−1
n : E → E are real and reversibility

preserving (see (7.32)). The operator Ln : E → E is real and reversible (see (7.31)).

Proof. We consider

Un+1 = Un ◦Φn+1 = Un ◦
(
1
⊥ + Ψn+1

)
.

Hence, by (9.41)

M]
Un+1

(p) ≤M]
Un

(p)
(

1 +M]
Φn+1

(p0)
)

+M]
Un

(p0)
(

1 +M]
Φn+1

(p)
)

≤k0
M]

Un
(p)
(
1 + γ−1Nτ1

n+1N
−a
n M0(p0, b)

)
+M]

Un
(p0)

(
1 + γ−1Nτ1

n+1N
−a
n M0(p, b)

) (9.53)

and by (9.41), (9.22) and (9.47) we have

M]
Un+1

(p0) ≤k0
M]

Un
(p0)

(
1 + γ−1Nτ1

n+1N
−a
n M0(p0, b)

)
≤k0 M

]
Un−1

(p0)
(
1 + γ−1Nτ1

n N
−a
n−1M0(p, b)

) (
1 + γ−1Nτ1

n+1N
−a
n M0(p, b)

)
≤k0
M]

U0
(p0)Πn

ν=0

(
1 + γ−1Nτ1

ν+1N
−a
ν M0(p0, b)

)
≤k0
M]

U0
(p0)Πn

ν=0 (1 + αn(p0))

(9.54)

where αn(p0) = γ−1Nτ1
ν+1N

−a
ν M0(p0, b). By Πν≥0(1+αν) ≤ exp

(
C(P )γ−1M0(p0, b)

)
≤ 2, (9.41), (9.22)

and (9.47) we have

M]
Un+1

(p0) ≤M]
U0

(p0)Πν≥0 (1 + αν)

≤M]
U0

(p0) exp
(
C(p)γ−1M0(p0, b)

)
≤M]

U0
(p0) exp

(
C(p)γ−2µ

)
≤ 2.

(9.55)

Iterating (9.53), using (9.55) and Πν (1 + αν(p0)) ≤ 2 we get

M]
Un+1

(p) ≤k0
M]

Un
(p)
(
1 + γ−1Nτ1

n+1N
−a
n M0(p0, b)

)
+M]

Un
(p0)

(
1 + γ−1Nτ1

n+1N
−a
n M0(p, b)

)
≤k0

∑
ν≥0

αν(p) +M]
U0

(p)

≤ C(k0)
(
1 +Nτ1

0 M0(p, b)γ−1
)

(9.56)

since U0 = Φ0 = 1
⊥ + Ψ0 and MU0

(p) ≤ 1 + C(k0)Nτ1
0 M0(p, b)γ−1 by (9.41). Finally

Un − 1⊥ = (Un −Φ0) +
(
Φ0 − 1⊥

)
=

n−1∑
ν=0

(Uν+1 −Uν) + Ψ0 =

n−1∑
ν=0

UνΨν+1 + Ψ0 .
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Hence (9.52) for Un − 1⊥ follows by Lemma 2.18, (9.55), (9.56), (9.47), (9.27), (6.11). The estimate for

U−1
n − 1⊥ follows by Lemma 2.19.

9.2 Initialization

Proof of (S1)0. For ν = 0 we have that that (9.16), (9.17) and (9.18), are satisfied and imply (9.31),

(9.32), (9.33) (9.34) and (9.35) with r0
j (ω, ε) = 0. Now we have to prove that (9.38) for ν = 0 holds.

Therefore we have to prove the following lemma:

Lemma 9.11. Proof of (9.38) when ν = 0, i.e.

M]
0(p) ≤p0,bM0(p, b), M]

0(p, b) ≤p0,bM0(p, b) .

Proof. In what follows we shall write Q instead of Q1 and Q4.

The matrix element of the commutator [Q, ∂x] are i(j′− j)Qj
′

j (l− l′), of ∂bθrQ are ib(lr− l′r)bQ
j′

j (l− l′)

and of ∂bθr [Q, ∂x] are ib+1(lr − l′r)b(j′ − j)Q
j′

j (l − l′). Hence

γ2|k|
∑
j,l

〈l, j〉2p |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, j′〉2p + M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, j′〉2p + M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2p0 |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, j′〉2p + M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2p0 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, p〉2p + M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2(p0+b) |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, j′〉2p + M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2(p0+b) 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2 ≤C M2
0(p0) 〈l′, j′〉2p + M2

0(p) 〈l′, j′〉2p0 .

Using the inequality

〈l − l′〉2a 〈j′ − j〉2 ≤ 1 + |j′ − j|2 + max
r=1,...,N

|lr − l′r|2a + |j − j′|2 max
r=1,...,N

|lr − l′r|2a (9.57)

we obtain, for p1 = p0, p = p0 + b, by (9.57) and (9.22),

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2p0 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2 ≤bM2
0(p0) 〈l′, j′〉2p +M2

0(p) 〈l′, j′〉2p0

γ2|k|
∑
j,l

〈l, j〉2p 〈l − l′〉2(p0+b) | 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2 ≤bM2
0(p0) 〈l′, j′〉2p +M2

0(p) 〈l′, j′〉2p0 .

Let us prove that if Q, [∂x, Q] : Hp → Hp then |Q| : Hp → Hp is a Dk0−tame, by (9.57) and the
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Cauchy-Schwartz inequality, for all |k| ≤ k0 we get

‖|∂kζQ|h‖2p ≤
∑
l,j

〈l, j〉2p
∑
l′,j′

|∂kζQ
j′

j (l − l′)||hl′,j′ |

2

≤
∑
l,j

〈l, j〉2p
∑
l′,j′

〈j − j′〉 |∂kζQ
j′

j (l − l′)||hl′,j′ |
1

〈j − j′〉

2

≤ C
∑
l,j

〈l, j〉2p
∑
l′,j′

〈j − j′〉2 |∂kζQ
j′

j (l − l′)|2|hl′,j′ |2

≤ C
∑
l′,j′

|hl′,j′ |2
∑
l,j

〈l, j〉2p 〈j − j′〉2 |∂kζQ
j′

j (l − l′)|2

≤ Cγ−2|k|
∑
l′,j′

|hl′,j′ |2
(
M2

0(p) 〈l′, j′〉2p0 +M2
0(p0) 〈l′, j′〉2p

)
≤ Cγ−2|k| (M2

0(p)‖h‖2p0
+M2

0(p0)‖h‖2p
)
.

We now prove that ∀|k| ≤ k0 also | 〈∂θ〉bQ| : Hp → Hp is Dk0-tame. By (9.57) and the Cauchy-Schwartz

inequality we have

‖| 〈∂θ〉b ∂kζQ|h‖2p ≤
∑
l,j

〈l, j〉2p
∑
l′,j′

| 〈l − l′〉b ∂kζQ
j′

j (l − l′)||hl′,j′ |

2

=
∑
l,j

〈l, j〉2p
∑
l′,j′

| 〈l − l′〉b+p0 〈j′ − j〉 |∂kζQ
j′

j (l − l′)||hl′,j′ |
1

〈l − l′〉p0 〈j′ − j〉

2

≤ C
∑
l,j

〈l, j〉2p
∑
l′,j′

| 〈l − l′〉2(b+p0) 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2|hl′,j′ |2

= C
∑
l′,j′

|hl′,j′ |2
∑
l,j

| 〈l, j〉2p 〈l − l′〉2(b+p0) 〈j′ − j〉2 |∂kζQ
j′

j (l − l′)|2

≤ Cγ−2|k|
∑
l′,j′

|hl′,j′ |2
(
M2

0(p0, b) 〈l′, j′〉2p +M2
0(p, b) 〈l′, j′〉2p0

)
≤ Cγ−2|k| (M2

0(p0, b)‖h‖2p +M2
0(p, b)‖h‖2p0

)
. (9.58)

Therefore the Lemma is proved.

Proof of (S2)0. The function m1(ω, ε) is k0-times differentiable on Ω× [ε1, ε2] because it depends on

the torus iδ(ω, ε) that is k0-times differentiable with respect to (ω, ε) on all Ω× [ε1, ε2].

Proof of (S3)0. This condition follows by the Lemma below.

Lemma 9.12.

‖|∆12Qm|h‖2p0
≤ C(P )γ−2µ2‖i1 − i2‖2p0+ν(b)+σ‖h‖

2
p0
, m = 1, 4 (9.59)

‖| 〈∂θ〉b ∆12Qm|h‖2p0
≤ C(P, b)γ−2µ2‖i1 − i2‖2p0+ν(b)+σ‖h‖

2
p0
, m = 1, 4 (9.60)

where ∆12Qm := Qm(i1)−Qm(i2) .
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Proof. We prove (9.60). Also in this case we shall write Q instead of Q1 and Q4. By the mean value

teorem and the estimate (9.23) we have

‖∆12Q‖L(Hp0 ), ‖[∆12Q, ∂x]‖L(Hp0 ), ‖∂p0+b
θr

∆12Q‖L(Hp0 ),

‖∂p0+b
θr

[∆12Q, ∂x]‖L(Hp0 ) ≤ C(p, b)γ−1µ‖i1 − i2‖p0+ν(b)+σ , ∀r = 1, ..., N .

Hence, for all l′ ∈ ZN , j′ ∈ Z \ S± we have∑
l,j

〈l, j〉2p0 〈j − j′〉2 〈l − l′〉2(p0+b) |(∆12Q)j
′

j (l − l′)|2 ≤ C(P, b)µ2γ−2‖i1 − i2‖2p0+ν(b)+σ 〈l
′, j′〉2p0

which arguing as in (9.58), proves (9.60). The proof of (9.59) is similar.

Proof of (S4)0. It follows by definition, indeed Ω = Ω
γ
0(i1) and Ω = Ω

γ−ρ
0 (i2).

9.3 Reducibility step

The goal of this section is to describe the generic inductive step. We show how to define, Lν+1 ,Ψν+1

and Φν+1 from Lν . We conjugate Lν = Ω · ∂θ + Dν + Qν by a transformation close to the identity, of

the form

Φν = 1
⊥ + Ψν , Ψν =

ψ(ν)
1 0

0 ψ
(ν)
4

 , (9.61)

see (9.39), where (ψ
(ν)
1 )j

′

j (l) = (ψ
(ν)
4 )−j

′

−j (l) , (ψ
(ν)
1 )j

′

j (l) = (ψ
(ν)
1 )−j

′

−j (−l) , ∀j, j′ ∈ Z and l ∈ ZN (see

(8.104)).

We have

LνΦν −Φν(Ω · ∂θ + Dν + [Qν ]) = ω · ∂θΨν + [Dν ,Ψν ] + Qν + QνΨν −Ψν [Qν ]− [Qν ]. (9.62)

We want to solve the homological equation

ω · ∂θΨν + [Dν ,Ψν ] + ΠNQν − [Qν ] = 0, (9.63)

where, ∀j ∈ Z

[Qν ] :=

[Q
(ν)
1 ] 0

0 [Q
(ν)
4 ]

 =

=

diagj(Q
(ν)
1 )jj(0) 0

0 diagj(Q
(ν)
4 )jj(0)

 (9.64)

(see Lemma 8.16) The equation (9.63) is equivalent to the two scalar homological equations

ω · ∂θψ(ν)
1 + i[D(ν), ψ

(ν)
1 ] + ΠNQ

(ν)
1 = [Q

(ν)
1 ],

ω · ∂θψ(ν)
4 − i[D(ν), ψ

(ν)
4 ] + ΠNQ

(ν)
4 = [Q

(ν)
4 ] .
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The solutions of this equations are

(ψ(ν)
m )j

′

j (l) :=

−
(Q(ν)

m )j
′
j (l)

i(ω·l+σm(λj−λj′ ))
∀(l, j, j′) 6= (0, j, j), |l| ≤ N, j′, j ∈ Z0 \ S±

0 otherwise

(9.65)

where m = 1, 4, σ1 := 1 and σ4 := −1; Z0 := Z \ {0} and S± := S ∪ (−S) with S defined in (1.31). Note

that if (ω, ε) ∈ Λ
γ
ν+1, using (9.34) we have that ω · l + λj − λj′ is different from zero, therefore the maps

ψm , m = 1, 4 are well defined.

Hence, by (9.62) we have

Lν+1 := Φ−1
ν LνΦν

= Ω · ∂θ + Dν + [Qν ] + Φ−1
ν

(
Π⊥NQν + QνΨν −Ψν [Qν ]

)
= Ω · ∂θ + Dν+1 + Qν+1 ,

(9.66)

where Dν+1 = Dν + [Qν ] and Qν+1 = Φ−1
ν

(
Π⊥NQν + QνΨν −Ψν [Qν ]

)
.

To simplify the notation we drop the index ν.

Lemma 9.13. Homological equation. For all (ω, ε) ∈ Λ
γ/2
ν+1 there exists a unique solution Ψ =ψ1 0

0 ψ4

 of the homological equation (9.63). The map ψm, with m = 1, 4 satisfies

M]
ψm

(p) ≤k0 N
τ1γ−1M]

Q(p)

M]

〈∂θ〉bψm
(p) ≤k0

Nτ1γ−1−|k|M]
Q(p, b) ,

(9.67)

where τ1 is defined in (9.21). Given i1, i2, denote

∆12ψm = ψm(i2)− ψm(i1) , m = 1, 4 .

If γ
2 ≤ γ1 , γ2 ≤ 2γ, then, for all (ω, ε) ∈ Λ

γ1

ν+1(i1) ∩ Λγ2

ν+1(i2), m = 1, 4,

‖|∆12ψm|‖L(Hp0 ) ≤ CN2τγ−1
(
‖|Qm(i2)|‖L(Hp0 )‖i1 − i2‖2p0+ν(b)+σ + ‖|∆12Qm||‖L(Hp0 )

)
‖| 〈∂θ〉b ∆12ψm|‖L(Hp0 ) ≤ CN2τγ−1

(
‖| 〈∂θ〉bQm(i2)|‖L(Hp0 )‖i1 − i2‖2p+ν(b)+σ

+ ‖| 〈∂θ〉b ∆12Qm|‖L(Hp0 )

)
.

(9.68)

Moreover Ψ : E → E is real and reversibility preserving (see (7.32)).

Proof. In what follows we shall omit m = 1, 4. Let (ω, ε) ∈ Λ
γ/2
ν+1 defined in (9.35) with ν + 1 instead of

ν. The inequalities (9.67) follows from the definition of ψ in (9.65), indeed for all (l, j, j′) ∈ ZN × (Z \

S±)× (Z \ S±) with |l| ≤ N , (l, j, j′) 6= (0, j, j) we have

|ψj
′

j (l)| ≤ CNτγ−1|Qj
′

j (l)| .
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Moreover differentiating (9.65) with respect to ζ = (ω, ε), we get

∂kζψ
j′

j (l) =
∑

k1+k2=k

C(k1, k2)

[
∂k1

ζ

1

(ω · l + λj − λj′)

]
∂k2

ζ Q
j′

j (l)

and, by (9.33), (9.34), (9.35),

sup
|k1|≤k0

|∂k1

ζ

1

(ω· l + λj − λj′)
| ≤ C(k0) 〈l〉τ(k0+1)+k0 γ−1−|k1|

hence, for all 0 < |k| ≤ k0

|∂kζψ
j′

j (l)| ≤ C 〈l〉τ(k0+1)+k0 γ−1−|k|
∑
|k1|≤|k|

|∂k2

ζ Q
j′

j (l)|. (9.69)

We have that for all 0 ≤ |k| ≤ k0, using (9.69), (9.37), (2.37), ‖h‖p = ‖|h|‖p and (9.25)

‖| 〈∂θ〉b ∂kζψ|h‖2p ≤
∑
j,l

〈l, j〉2p
 ∑
|l−l′|≤N,j′

| 〈l − l′〉b ∂kζψ
j′

j (l − l′)||hl′,j′ |

2

≤ C(k0)N2τ1γ−2(1+|k|)
∑
|k2|≤|k|

γ2|k2|
∑
l,j

〈l, j〉2p
∑
l′,j′

| 〈l − l′〉b ∂k2

ζ Q
j′

j (l − l′)||hl′,j′ |

2

= C(k0)N2τ1γ−2(1+|k|)
∑
|k2|≤|k|

γ2|k2|‖| 〈∂θ〉b ∂k2

ζ Q||hl′,j′ |‖
2
p

≤ C(k0)N2τ1γ−2(1+|k|) (M](p, b)2‖|h|‖2p0
+M](p0, b)2‖|h|‖2p

)
≤ C(k0)N2τ1γ−2(1+|k|) (M](p, b)2‖h‖2p0

+M](p0, b)2‖h‖2p
)
.

(9.70)

Similary one gets

‖∂kζψh‖2p ≤
∑
l,j

〈l, j〉2p
∑
l′,j′

|∂kζ (ψj
′

j (l − l′)hl′,j′ |

2

≤k0
N2τ1γ−2(1+k0)

(
M](p)2‖h‖2p0

+M](p0)2‖h‖2p
)
.

We now prove (9.68), by (9.65), for all (ω, ε) ∈ Λ
γ1

ν+1(i1) ∩ Λγ2

ν+1(i2) we have

∆12ψ
j′

j (l) := ψj
′

j (l)(i1)− ψj
′

j (l)(i2) =
Qj
′

j (l)(i1)−Qj
′

j (l)(i2)

δljj′(λ1)
−Qj

′

j (l)(i2)
δljj′(i1)− δljj′(i2)

δljj′(i1)δljj′(i2)

where δljj′ = i(ω · l − λj + λj′). Hence we have to estimate δljj′(i1)− δljj′(i2). From (9.42) and (9.45),

we get

|δljj′(i1)− δljj′(i2)| = |∆12(λj − λj′)|

= |(λj − λj′)(i1 − i2)|

≤ C|m1(i1)−m1(i2)||j − j′|+ |rj(i1)− rj(i2)|+ |rj′(i1)− rj′(i2)|

≤ µγ−1C|j − j′|‖i1 − i2‖2p0+ν(b)+σ ,
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therefore, using |δljj′ | ≥ γ 〈l〉−τ |j3 − j′3|, where γ−1
1 , γ−1

2 ≤ γ−1 , µγ−1 small enough, we have

|δljj′(i1)− δljj′(i2)|
|δljj′(i1)||δljj′(i2)|

≤ C
l2τµ|j − j′|‖i1 − i2‖2p0+ν(b)+σ

γ2|j3 − j′3|2

≤ C
l2τµ|j − j′|‖i1 − i2‖2p0+ν(b)+σ

γ2|j − j′|2|j2 + j′2 + jj′|2

≤ C
l2τµ‖i1 − i2‖2p0+ν(b)+σ

γ2|j2 + j′2 + jj′|2

≤ CN2τµγ−2‖i1 − i2‖2p0+ν(b)+σ .

Hence

|ψj
′

j (l)(i1)− ψj
′

j (l)(i2)| ≤C
|Qj

′

j (l)(i1)−Qj
′

j (l)(i2)|
|δljj′(λ1)|

+ |Qj
′

j (l)(i2)| |δljj
′(i1)− δljj′(i2)|

|δljj′(i1)||δljj′(i2)|
.

Therefore

|∆12ψ
j′

j (l)| ≤ |∆12Q
j′

j (l)|γ−1 〈l〉τ + |Qj
′

j (l)(i2)|N2τµγ−2C‖i1 − i2‖2p0+ν(b)+σ

≤ N2τCγ−1
(
|∆12Q

j′

j (l)|+ µγ−1|Qj
′

j (i2)|‖i1 − i2‖2p0+ν(b)+σ

)
,

then, with γ−1µ small enough

|∆12ψ
j′

j (l)| ≤ CN2τγ−1
(
|Qj

′

j (l)(i2)|‖i1 − i2‖2p0+ν(b)+σ + |∆12Q
j′

j (l)|
)

and the other estimate follows as in (9.70). In addition we have that Q is real and leaves E invariant,

(see (8.108)), hence also Ψ : E → E and it is real, hence Ψ satisfy (8.104). Indeed

−(ψ1)j
′

j =
(Q1)j

′

j

i(ω · l + λj − λj′)

=
(Q4)−j

′

−j

i(ω · l + λj − λj′)

= (ψ4)−j
′

−j ,

moreover

−(ψ1)j
′

j (l) =
(Q1)j

′

j (l)

−i(ω · l + λj − λj′)

=
(Q1)−j

′

−j (−l)
i(ω · (−l)− λj + λj′)

= (ψ1)−j
′

−j (−l),

similarly for ψ4. Finally, by (8.109) we have (Q1)j
′

j (−l) = −(Q4)j
′

j (l), hence by the definition of ψ in

(9.65) we have that

(ψ1)j
′

j (−l) = (ψ4)j
′

j (l)

and so Ψ is reversibility preserving (see (7.32)).
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By (9.66) we prove that at the step ν + 1 (9.40) and (9.31) are satisfied. By the explicit definition

of (9.66) we have that the operator Lν+1 has the same form of Lν with Qν+1 instead of Qν . Note that

the new remainder Qν+1 is the sum of quadratic function of Φν and Qν . Now we want to prove that the

new normal form Dν+1 is diagonal.

Lemma 9.14. New diagonal part. The new normal form is

iDν+1 = iDν + [Qν ] = i

Dν+1 0

0 −Dν+1

 , Dν+1 = diagj∈Z\S±λ
ν+1
j (ω, ε), λν+1

j = λνj + rνj ∈ R

with rνj = −rν−j , λ
ν+1
j = −λν+1

−j , ∀j ∈ Z \ S±, and

|λν+1
j (ω, ε)− λνj (ω, ε)|k0,γ = |rν+1

j (ω)− rνj (ω)|k0,γ ≤ CM](p0) . (9.71)

Moreover given i1(ω, ε) , i2(ω, ε) then, for all (ω, ε) ∈ Λγ1
ν (i1) ∩ Λγ2

ν (i2) we have

|∆12rj(ω, ε)| ≤ C‖|∆12Q|‖L(Hp0 ) . (9.72)

Proof. For simplicity in the first part of the proof we will drop the index ν. We have,

[Q] =

[Q1] 0

0 [Q4]

 ,

is defined in (9.64). Due to Q is real and acts in E, defined in (7.26) , the operator Q satisfy (8.108).

Since Q is reversible (see (8.109)) we also have (Q1)jj(0) = −(Q4)−j−j(0). Hence if we define (Qm)jj(0) :=

αmj + irmj , with m = 1, 4 we get

(Q1)jj(0) = α1
j + ir1

j

= α4
−j + ir4

−j

= α4
j − ir4

j

= −α1
j + ir1

j

where the first equality follows by the (Q1)−j−j(0) = (Q4)jj(0), for the second we used the reality condition,

that in Fourier is (Q1)−j−j(0) = (Q1)jj(0) and for the third we use the reversible condition (Q1)jj(0) =

−(Q4)jj(0). Therefore we obtain that α1
j = 0 and

(Q1)jj(0) = ir1
j ∈ iR,

similarly for (Q4)jj(0). Moreover we also obtain that r1
j = −r1

−j = −r4
j . Hence

r1
j , r

1
−j = r4

j ∈ R .

The statement follows with r1
j = rj .
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By the definition of M](p0) given in (9.37), and by Definition 11 we have that

‖|∂kζQνm|h‖p0
≤ 2γ−|k|M](p0)‖h‖p0

for m = 1, 4.

which implies that

|∂kζ (Qνm)jj(0)| ≤ Cγ−|k|M](p0) , m = 1, 4

hence

|λ(j)
ν+1 − λ(j)

ν |k0,γ = |rν+1
j (ω, ε)− rνj (ω, ε)|k0,γ ≤ C max

m=1,4

(
|(Qνm)jj(0)|k0,γ

)
≤ Cγ−|k|M](p0) .

In a similar way we obtain

|∆12(Qνm)jj(0)| ≤ C max
m=1,4

‖|∆12Q
ν
m‖|L(Hp0 ) .

By this we obtain (9.72).

9.4 The iteration

Now we prove iteratively that (S1)ν , (S2)ν , (S3)ν , (S4)ν in Theorem 9.6 are satisfied for every ν ≥ 0.

To this end we suppose that the Theorem is true for (S1)ν , (S2)ν , (S3)ν , (S4)ν , and we shall prove it

for (S1)ν+1 , (S2)ν+1 , (S3)ν+1 , (S4)ν+1.

Proof of (S1)ν+1. Since the eigenvalues λνj are defined on N (Λγν , γN
−τ−2
ν−1 ), (see 9.32), the set Λγν+1 in

(9.35) is well defined. Moreover λνj are well defined also on the set N (Λγν+1, γN
−τ−2
ν−1 ) ⊆ N (Λγν , γN

−τ−2
ν−1 )

because Λ
γ
ν+1 ⊆ Λγν . Let us prove N (Λγν+1, γN

−τ−2
ν ) ⊂ Λ

γ/2
ν+1, that is (9.32) at the step ν + 1. Let

ζ0 = (ω0, ε0) ∈ Λ
γ
ν+1 and (ω, ε), with |ζ − ζ0| ≤ γN−τ−2

ν . Then for all |l| ≤ Nν and for all j 6= k we have,

by (9.34), with µγ−2 ≤ 1,

|ω · l + λνj (ζ)− λνj′(ζ)| = |ω · l + ω0 · l − ω0 · l + λνj (ζ0)− λνj (ζ0) + λνj (ζ)− λνj′(ζ) + λνj′(ζ0)− λνj′(ζ0)|

≥ |ω0 · l + λνj (ζ0)− λνj′(ζ0)| − |l||ω − ω0| − |(λνj − λνj′)(ζ)− (λνj − λνj′)(ζ0)|

≥ |ω0 · l + λνj (ω0)− λνj′(ω0)| − |ζ − ζ0|
(
|l|+ µC|j3 − j′3|

)
≥ γ|j3 − j′3| 〈l〉−τ − γN−τ−1

ν − µC|j3 − j′3|γN−τ−2
ν

≥ |j3 − j′3|γ
2
〈l〉−τ

with N0 > 4C large enough. Hence ζ = (ω, ε) ∈ Λ
γ/2
ν+1 , defined in (9.35) with ν  ν + 1 and γ  γ/2.

By (9.32) at the step ν + 1 and by Lemma 9.13, for all (ω, ε) ∈ N (Λγν+1, γN
−τ−2
ν ) the solution Ψν of the

homological equation (9.63), defined componedwised in (9.65), is well defined, and by (9.67) and (9.38)

satisfy for all 0 ≤ |k| ≤ k0 the estimate (9.41) at ν + 1, that is, at ν + 1 with k = 0, p = p0 that

M]
ψνi

(p0) ≤ CNτ(k0+1)+k0
ν N−aν−1M0(p, b) , i = 1, 4 . (9.73)
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We have Φν = 1
⊥+Ψν is invertible, indeed by (9.21), (9.30) the smallness condition (2.43) in Lemma

2.19 is satisfied for N0 := N0(p, b) large enough. Hence we define Φ−1
ν as

Φ−1
ν := 1

⊥ + Ψ̂ν = 1
⊥ +

ψ̂ν1 0

0 ψ̂ν4

 (9.74)

in addition, by Lemma 2.19, we have that ψ̂νm , m = 1, 4 are Dk0-modulo tame with the same constants

of ψνm , m = 1, 4, therefore ( we drop the index 1 and 4 ) we obtain

Mψ̂ν (p) ≤ C(k0)γ−1N−aν−1N
τ(k0+1)+k0
ν M0(p, b)

M〈∂θ〉bψ̂ν (p) ≤ C(k0, b)γ−1Nν−1N
τ(k0+1)+k0
ν M0(p, b) .

(9.75)

Note that this is (9.41) for ν + 1. Moreover since Ψν : E → E and is reversibility preserving (see (7.32)),

also Ψ̂ν : E → E and is reversibility preserving.

By Lemma 9.14 the operator Dν+1 is diagonal and its eigenvalues λν+1
j : N (Λγν+1, γN

−τ−2
ν ) → R

satisfy (9.34) at ν + 1. Now we shall estimate the remainder, Qν+1 defined in (9.66), that is

Qν+1 = Φ−1
ν Hν , Hν = Π⊥NνQν + QνΨν −Ψν [Qν ] ,

so

Qν+1 = Φ−1
ν+1

(
Π⊥NνQν + QνΨν −Ψν [Qν ]

)
. (9.76)

By (9.74), (9.36) and (9.61) we have

Qν+1 =

Qν+1
1 0

0 Qν+1
4

 . (9.77)

Since (Qν+1
1 )jk = (Qν+1

4 )−j−k we shall write Qν+1 instead of Qν+1
m , m = 1, 4.

Lemma 9.15. Nash-Moser Iterative scheme. The operator Qν+1, respectively 〈∂θ〉b Qν+1, is Dk0-

modulo-tame with modulo tame constant satisfying, respectively

M]
ν+1(p) ≤k0 N

−b
ν M]

ν(p, b) +Nτ1
ν γ
−1M]

ν(p)M]
ν(p0) (9.78)

M]
ν+1(p, b) ≤k0,bM]

ν(p, b) +Nτ1
ν γ
−1M]

ν(p, b)M]
ν(p0) +Nτ1

ν γ
−1M]

ν(p0, b)M]
ν(p) . (9.79)

Proof. By Lemmas 2.20, 2.18, and by (9.67), (9.75) we can estimate each term in (9.76). We will write

Qν+1 and ψν instead of Qν+1
1 , Qν+1

4 , ψν1 , ψ
ν
4 .

‖Qν+1h‖p ≤k0
N−bν M

]

〈∂θ〉bQν
(p0)‖h‖p +N−bν M

]

〈∂θ〉bQν
(p)‖h‖p0

+M]
Qν (p)‖ψ̄νh‖p0

+M]
Qν (p0)‖ψ̄νh‖p +Nτ1γ−1M]

Qν (p)‖[Qν ]h‖p0
+Nτ1γ−1M]

Qν (p0)‖[Qν ]h‖p

+Nτ1γ−1M]
Qν (p)‖Π⊥NνQ

νh‖p0
+Nτ1γ−1M]

Qν (p0)‖Π⊥NνQ
νh‖p

+Nτ1γ−1M]
Qν (p)‖Qνψνh‖p0 +Nτ1γ−1M]

Qν (p0)‖Qνψνh‖p

≤k0
N−bν M

]

〈∂θ〉bQν
(p0)‖h‖p +Nτ1

ν γ
−1M]

ν(p)M]
ν(p0)‖h‖p

+N−bν M
]

〈∂θ〉bQν
(p)‖h‖p0

+Nτ1
ν γ
−1M]

ν(p)M]
ν(p)‖h‖p0

.



CHAPTER 9. PARTIAL REDUCTION OF Lω 113

The proof of (9.79) follows by Lemmas 2.18, 2.20 and by (9.67), (9.75), (9.38).

Thanks to the estimate (9.78) and (9.79) and using (9.21) we can prove that (9.38) holds at the step

ν + 1.

Lemma 9.16.

M]
ν+1(p) ≤ N−aν M0(p, b), M]

ν+1(p, b) ≤M0(p, b)Nν .

Proof. We prove by induction. By (9.78), (9.30), (9.21) and (9.38), for N0 := N0(P, b) > 0 large enough,

we get

M]
ν+1(p) ≤k0

N−bν M]
ν(p, b) +Nτ1

ν γ
−1M]

ν(p)M]
ν(p0)

≤k0
N−bν Nν−2M0(p, b) +Nτ1

ν γ
−1N−aν−1M0(p, b)N−aν−1M0(p0, b)

≤k0

[
N−bν Nν−2 +Nτ1

ν γ
−1N−2a

ν−1M0(p0, b)
]
M0(p, b)

≤k0
N−aν M

]
0(p, b) .

This is true for a, b as in (9.21). Similarly by (9.79), (9.38), (9.21) and (9.30), with N0 := N0(P, b) > 0

large enough, we get

M]
ν+1(p, b) ≤k0,bM]

ν(p, b) +Nτ1
ν γ
−1M]

ν(p, b)M]
ν(p0) +Nτ1

ν γ
−1M]

ν(p0, b)M]
ν(p)

≤k0,b Nν−1M0(p, b) + 2Nτ1
ν γ
−1M0(p, b)Nν−1N

−a
ν−1M0(p0, b)

≤M0(p, b)Nν .

Since Φν : E → E is reversibility preserving we have that Qν+1 : E → E is reversible (see (7.32)).

Proof of (S2)ν+1. We have to construct a smooth extension λ̃ν+1
j on Ω× [ε1, ε2]. Thanks to the induc-

tive hyphotesis, we have that there exists an extension λ̃νj : Ω × [ε1, ε2], that is Ck0-times differentiable,

moreover λνj = λ̃νj on Λγν and λ̃νj = 0 outside N (Λγν , γN
−τ−2
ν+1 ), where Λγν is defined in (9.35). Note that all

the sets Λγν are defined by only finitely many non-resonance conditions, that is

Λγν =
⋂

|l|≤Nν−1

|j|,|j′|≤CN1/2
ν−1

{
ζ = (ω, ε) ∈ Λ

γ
ν−1 ∩

(
[DCγKn ∩ DC

γ
Nν−1

]× [ε1, ε2]
)

:

|ω · l + λν−1
j − λν−1

j′ | ≥ γ|j
3 − j′3| 〈l〉−τ ,∀|l| ≤ Nν−1, j, j

′ ∈ Z \ S±
}
.

Actually, if |j2 + j′2| ≥ CNν−1 , j 6= j′, for all (ω, ε) ∈ Λ
γ
ν−1 then the functions

|ω · l + λν−1
j − λν−1

j′ | ≥ |λ
ν−1
j − λν−1

j′ | − |ω||l|

≥ |j3 − j′3| − C|l|

≥ C|j2 + j′2| − CNν−1

≥ 1

2
.
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We have that λν+1
j = λνj + rνj , defined on N (Λγν+1, γN

−τ−2
ν ) hence the idea is to extend just the function

rνj . For this reason we consider χν : R1+N → R, let χν ∈ C∞ be a cut off function, where

0 ≤ χν ≤ 1 , χν(ζ) = 1 , ∀ζ ∈ Λ
γ
ν+1 , supp(χν) ⊆ N (Λγν+1, γN

−τ−2
ν ) ,

|∂kζχν(ζ)| ≤ C(k)
(
Nτ+2
ν γ−1

)|k|
, ∀k ∈ NN , ⇒ |χν(ζ)|k0,γ ≤ C(k0)N (τ+2)k0

ν , ∀k .

Hence, we define

r̃νj :=χνr
ν
j ,

λ̃ν+1
j :=λ̃νj + r̃νj .

(9.80)

By (9.80), Lemma 9.14 and (9.38), (9.27) we have the following estimate

|λ̃ν+1
j − λ̃νj |k0,γ ≤ |χν |k0,γ |rνj |k0,γ

≤ C(k0)N (τ+2)k0
ν M]

ν(p0)

≤ µγ−1C(k0, P, b)N (τ+2)k0
ν N−aν−1 ,

this is (9.43) at ν + 1.

Proof of (S3)ν+1. Let Qνm(is), ψ
ν−1
m (is) with m = 1, 4 and s = 1, 2 be the operators constructed at

the ν-step, defined on Λγ1
ν (i1) ∩ Λγ2

ν (i2).

Qνm(im), ψν−1
m (is) satisfy (9.38) and (9.41). Since (Q1)jk = (Q4)−j−k we can drop the 1, 4-index.

We now want to estimate the operator ∆12Qν+1. By Lemma 9.63 we have constructed the operators

ψνm , m = 1, 4 defined for all ω ∈ Λ
γ1

ν+1(i1) ∩ Λ
γ2

ν+1(i2). From now on we shall drop the index m. We

estimate the operator ∆12ψ
ν , by (9.68), (2.33), (9.38) and (9.44) we have

‖|∆12ψ
ν |‖L(Hp0 ) ≤b N

2τ
ν γ−1

(
‖|Q(i2)|‖L(Hp0 )‖i1 − i2‖p0+ν(b)+σ + ‖|∆12Q|‖L(Hp0 )

)
≤b N

2τ
ν γ−1

(
‖|Q0|‖L(Hp0 )N

−a
ν−1‖i1 − i2‖p0+ν(b)+σ + ‖|∆12Q|‖L(Hp0 )

)
≤P,b N2τ

ν γ−1
(
‖|Q0|‖L(Hp0 )N

−a
ν−1‖i1 − i2‖p0+ν(b)+σ + µN−αν−1‖i1 − i2‖p0+ν(b)+σ

)
≤ C(P, b)N2τ

ν γ−2µN−aν−1‖i1 − i2‖p0+ν(b)+σ (9.81)

we also have,by (9.68), (2.33), (9.38), (9.27) and (9.44)

‖| 〈∂θ〉b ∆12ψ
ν |‖L(Hp0 ) ≤b N

2τ
ν γ−1

(
‖| 〈∂θ〉bQ(i2)|‖L(Hp0 )‖i1 − i2‖p0+ν(b)+σ + ‖| 〈∂θ〉b ∆12Q|‖L(Hp0 )

)
≤P,b N2τ

ν γ−1
(
Nν−1‖|Q0|‖L(Hp0 )‖i1 − i2‖p0+ν(b)+σ +Nν−1‖|Q0|‖L(Hp0 )

)
≤P,b N2τ

ν γ−2Nν−1µ‖i1 − i2‖p0+ν(b)+σ . (9.82)

By (9.73), for γ−2ν small enough, the smallness condition (2.52) is verified. Therefore if we define Φ̂−1
ν

as in (9.74), by (9.81), (9.82), (9.75) (2.33) and Lemma 2.22, we get (by dropping the 1, 4 index).

‖|∆12ψ̂
ν |‖L(Hp0 ) ≤P,b N2τ

ν γ−2N−aν−1µ‖i1 − i2‖p0+ν(b)+σ

‖| 〈∂θ〉b ∆12ψ̂
ν |‖L(Hp0 ) ≤P,b N2τ

ν γ−2Nν−1µ‖i1 − i2‖p0+ν(b)+σ .
(9.83)
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Now we estimate ∆12Q
ν+1 whereQν+1 = (1+ψν)−1

(
Π⊥NνQ

ν +Qνψν − ψν [Qν ]
)

because (1+ψν)−1ψ[Qν ]

satisfies the estimate we have to study the norm of ∆12(Q?)ν where (Q?)ν = (1+ψν)−1
(
Π⊥NνQ

ν +Qνψν
)
.

We have that

∆12(Q?)ν =∆12ψ̂
ν
(
Π⊥NνQ

ν(i1) +Qν(i1)ψν(i1)
)

+ (1 + ψ̂ν(i2))
(
Π⊥Nν∆12Q

ν + ∆12Q
ν(i1)ψν(i1) + ∆12Q

ν(i1)ψν(i2)
)

then, by Lemma 2.21, (9.83), (2.33), (9.75) (9.68) and (9.67), taking γ−2µ small enough, the following

inequality holds

‖|∆12(Q?)ν |‖L(Hp0 ) ≤ ‖|∆12ψ̂
ν |‖L(Hp0 )

(
‖|Π⊥NνQ

ν(i1)|‖L(Hp0 ) + ‖|Qν(i1)|‖L(Hp0 )‖|ψν(i1)|‖L(Hp0 )

)
+

+ ‖|(1 + ψ̂ν)|‖L(Hp0 )

(
‖|Π⊥Nν∆12Q

ν |‖L(Hp0 ) + ‖|∆12Q
ν |‖L(Hp0 )‖|ψν |‖L(Hp0 )+

+ ‖|∆12Q
ν |‖L(Hp0 )‖|ψν(i2)|‖L(Hp0 )

)
≤b ‖|∆12ψ̂

ν |‖L(Hp0 )

(
N−bν ‖| 〈∂θ〉

b
Qν |‖L(Hp0 ) + ‖|Qν |‖L(Hp0 )‖|ψν(i1)|‖L(Hp0 )

)
+

+ ‖|(1 + ψ̂ν)|‖L(Hp0 )

(
N−bν ‖| 〈∂θ〉

b
∆12Q

ν |‖L(Hp0 )+

+ ‖|∆12Q
ν |‖L(Hp0 )‖|ψν |‖L(Hp0 ) + ‖|∆12Q

ν |‖L(Hp0 )‖|ψν(i2)|‖L(Hp0 )

)
≤b CN

2τ
ν γ−1µN−aν−1‖i1 − i2‖p0+ν(b)+σ

(
N−bν ‖| 〈∂θ〉

b
Qν |‖L(Hp0 )+

+ N2τ
ν Na

ν−1γ
−1‖|Qν |‖L(Hp0 )‖|Q0|‖L(Hp0 )

)
+

+N−bν ‖| 〈∂θ〉
b

∆12Q
ν |‖L(Hp0 ) +N2τ

ν Na
ν−1γ

−1‖|∆12Q
ν |‖L(Hp0 )‖|Q0|‖L(Hp0 )

≤b

(
N−bν M]

ν(p0, b) +Nτ+(k0+1)τ
ν γ−1M]

ν(p0)2
)
‖i1 − i2‖p0+ν(b)+σ+

+N−bν ‖| 〈∂θ〉
b

∆12Q
ν |‖L(Hp0 ) +Nτ+(k0+1)τ

ν γ−1M]
ν(p0)‖|∆12Q

ν |‖L(Hp0 )

(9.84)

and, using (9.83), (9.68), since (9.38) and (9.30) imply N
τ+(k0+1)τ
ν γ−1M]

ν(p0) ≤ 1 we obtain

‖| 〈∂θ〉b ∆12(Q?)ν |‖L(Hp0 ) ≤P,b
(
γ−1µNν−1 +M]

ν(p0, b)
)
‖i1 − i2‖p0+ν(b)+σ+

+ ‖| 〈∂θ〉b ∆12Q
ν |‖L(Hp0 ) +Nτ+(k0+1)τ

ν γ−1‖|∆12Q
ν |‖L(Hp0 )M]

ν(p0, b) .

(9.85)

The other terms in (9.76) can be estimated in the same way, therefore ∆12Q
ν+1 satisfies (9.84) and (9.85).

We now have to prove (9.44) at the step ν + 1. By (9.84), (9.38), (9.22), (9.44) and (9.21), if γ−2µ ≤ 1

and N0(P, b) > 0, we get

‖|∆12Q
ν+1|‖L(Hp0 ) ≤P,b ‖i1 − i2‖p0+ν(b)+σ

(
N−bν Nν−1γ

−1µ+N−2a
ν−1N

2τ
ν γ−1Nτ(k0+1)+k0

ν (γ−1µ)2
)

≤P,b µγ−1N−aν ‖i1 − i2‖p0+ν(b)+σ .

Similary, by (9.85), (9.38), (9.22) and (9.44) we get

‖| 〈∂θ〉b ∆12Q
ν+1|‖L(Hp0 ) ≤P,b γ−1µNν‖i1 − i2‖p0+ν(b)+σ
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by µγ−2 ≤ 1, (9.21) and taking N0 := N(P, b) > 0 large. Hence we have proved (9.44) at the step ν + 1.

The first inequality in (9.72) follows from Lemma 9.14, the second follows by a telescopic argument using

the first inequality in (9.72) and (9.44).

Proof of (S4)ν+1. We have to prove that, if µγ−1C(P )Nτ
n−1‖i1 − i2‖p0+ν(b)+σ ≤ ρ, then

ζ ∈ Λγν(i1) ⇒ ζ ∈ Λγ−ρν (i2) .

Let ζ ∈ Λγν(i1). By (9.35) and (S4)ν we have that Λγν+1(i1) ⊆ Λγν(i1) ⊆ Λγ−ρν (i2). Therefore ζ ∈ Λγ−ρν (i2) ⊂

Λγν(i2). Using (S1)ν , we have that the eigenvalues λνj (ζ, i2) are well defined. Thanks to ζ ∈ Λγν(i1)∩Λγ/2ν (i2)

we got (9.45), then by (9.33) (9.45), and |∂im1(i)[̂i]| ≤ µC‖̂i‖σ

|(λνj − λνj′)(ζ, i2)− (λνj − λνj′)(ζ, i1)| ≤ |(λ0
j − λ0

j′)(ζ, i2)− (λ0
j − λ0

j′)(ζ, i1)|

+ 2 sup
j
|rνj (ζ, i2)− rνj (ζ, i1)|

≤ µγ−1C(P )|j3 − j′3|‖i2 − i1‖p0+ν(b)+σ . (9.86)

Using the definition of Λγν+1(i1) in (9.35) with ν + 1 instead of ν, (9.86) we can conclude, for all |l| ≤ Nν
that

|ω · l + λνj (i2)− λνj′(i1)| ≥ |ω · l + λνj (i1)− λνj′(ii)| − |(λνj − λνj′)(i2)− (λνj − λνj′)(i1)|

≥ γ|j3 − j′3| 〈l〉−τ − Cµγ−1|j3 − j′3|‖i1 − i2‖p0+ν(b)+σ

≥ (γ − ρ)|j3 − j′3| 〈l〉−τ

provided C(P )µγ−1Nτ
ν ‖i1 − i2‖p0+ν(b)+σ ≤ ρ. Hence ζ ∈ Λ

γ−ρ
ν+1(i2), and this proves (9.46) at the step

ν + 1.

9.5 Almost invertibility of Lω

Let L0 = LM+6, where LM+6 is defined in (9.9). Then by (9.6) and Theorem 9.10 we obtain

Lω = WnLnW−1
n + G⊥ Wn =W⊥Un (9.87)

where Ln is the operator defined in (9.50) and G⊥ is defined in (9.7) and satisfy the estimate (9.8). Then

(9.3), (9.52), (9.25), imply that for all p0 ≤ p ≤ P ,

‖W±1h‖k0,γ
p ≤P ‖h‖k0,γ

p+σ + ‖V0‖k0,γ
p+ν(b)+σ‖h‖

k0,γ
p0+σ (9.88)

for some σ := σ(τ,N, k0) > 0. Since we want to use a Nash-Moser scheme we have to construct at each

step an approximate inverse, that allows us to define the successive approximate solution of the Nash-

Moser iteration. For construct the approximate inverse we have to verify that the inversion assumption

given in (5.49) and (5.50) are satisfied. For this reason we decompose the linear operator Ln in (9.50) as

Ln = D<
n + Q⊥n + Qn (9.89)
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where

D<
n := ΠKn(Ω · ∂θ1⊥ + iDn)ΠKn + Π⊥Kn , Q⊥n = Π⊥Kn(Ω · ∂θ1⊥ + iDn)Π⊥Kn −Π⊥Kn (9.90)

the diagonal operator Dn is defined in (9.31) (with ν = n), and the constant Kn is given in (5.51).

Lemma 9.17. First order Melinikov non-resonance conditions. For all ζ = (ω, ε) in

Λ
γ,I
n+1 := Λ

γ,I
n+1(i) :=

{
ζ ∈ Λ

γ
n+1 : |ω · l + λnj | ≥ 2

γj3

〈l〉τ
, ∀|l| ≤ Kn , j ∈ Z \ S±

}
(9.91)

the operator D<
n in (9.90) is invertible and

‖(D<
n )−1g‖k0,γ

s ≤ γ−1‖g‖k0,γ
s+τ(k0+1)+k0

. (9.92)

Proof. The estimate (9.92) follows by |∂k(ω,ε)(ω · l + λnj )−1| ≤ 〈l〉τ(|k|+1)+|k|
γ−(|k|+1) for all |k| ≤ k0.

The smoothing properties defined in (2.11)imply that the operator Q⊥n defined in (9.90) satisfies, for

all b > 0

‖Q⊥n h‖
k0,γ
p0
≤ K−bn ‖h‖

k0,γ
p0+b+3 ‖Q⊥n h‖k0,γ

p ≤ ‖h‖k0,γ
p+3 . (9.93)

Thanks to the decompositions (9.87) , (9.89), Theorem 9.10, Proposition 9.3 and (9.92), (9.93), (9.88)

we can prove that Lω is almost invertible, indeed we have the following theorem:

Theorem 9.18. Almost invertibility of Lω. Assume (5.9), and that for all P > p0 the smallness

condition (9.47) holds. Let a, b as in (9.21). Then for all

(ω, ε) ∈ Λγ
n+1 := Λγ

n+1(i) := Λ
γ
n+1 ∩ Λ

γ,I
n+1 (9.94)

(see (9.48), (9.91)) the operator Lω defined in (5.48) can be decomposed as

Lω = Lω + Qω + Q⊥ω , Ln = WnD<
nW−1

n , Qω := WnQnW
−1
n Q⊥ω = WnQ⊥nW−1 + G⊥ (9.95)

where Qn is defined in (9.36) (with n instead of ν), Q⊥n is defined in (9.90), and G⊥ is defined in (9.7).

Moreover Lω is invertible and for some σ := σ(N, τ, k0) ≥ 0, and for all p0 ≤ p ≤ P , g ∈ Hp+σ we have

‖L−1
ω g‖k0,γ

p ≤P γ−1
(
‖g‖k0,γ

p+σ + ‖V0‖k0,γ
p+ν(b)+σ‖g‖

k0,γ
p0+σ

)
(9.96)

where ν(b) is defined in (9.25), and

‖Qωh‖k0,γ
p ≤P γ−1µN−an−1

(
‖h‖k0,γ

p+σ + ‖V0‖k0,γ
p+ν(b)+σ‖h‖

k0,γ
p0+σ

)
(9.97)

‖Q⊥ωh‖
k0,γ
p0
≤P K−b

(
‖h‖k0,γ

p+σ+b + ‖V0‖k0,γ
p+ν(b)+σ+b‖h‖

k0,γ
p0+σ

)
∀b > 0 (9.98)

‖Q⊥ωh‖k0,γ
p ≤P

(
‖h‖k0,γ

p+σ + ‖V0‖k0,γ
p+ν(b)+σ‖h‖

k0,γ
p0+σ

)
. (9.99)

Proof. Use the decomposition (9.87), (9.89) and Theorem 9.10, and the estimates (9.92), (9.93) and

(9.88).
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We finally define the operator W∞(θ), as follows

W∞ =W⊥U∞ , where U∞ := lim
n→∞

Un , (9.100)

where W is defined in (9.2) and Un in (9.49). It completely diagonalizes the operator Lω defined in

(5.48).

By the arguments of as in Chapter 7 and 8 one can prove that the operator W∞(θ) satisfies the

following tame estimates

W∞(θ) : (Hp(Tx,C)×Hp(Tx,C)) ∩ H⊥S → (Hp(Tx,C)×Hp(Tx,C)) ∩ H⊥S (9.101)

W−1
∞ (θ) : (Hp(Tx,C)×Hp(Tx,C)) ∩ H⊥S → (Hp(Tx,C)×Hp(Tx,C)) ∩ H⊥S . (9.102)



Chapter 10

Nash-Moser Iteration

We define the finite-dimensional subspaces of trigonometric polynomials

En = {V(θ) = (Θ, I, w)(θ), Θ = ΠnΘ , I = ΠnI , w = Πnw}

where Πn is the projector

Πn := ΠKn : w(θ, x) :=
∑

l∈ZN ,j∈Z0\S±
wlje

il·θ+ijx 7→ Πnw(θ, x) :=
∑

|(l,j)|≤Kn

wlje
il·θ+ijx (10.1)

with Kn = K
(3/2)n

0 ( see (5.51) and (5.5)). With an abuse of notation we shall denote

Πnq(θ) :=
∑
|l|≤Kn

qle
il·θ.

In addition we define

Π⊥n := 1−Πn .

We recall the smoothing properties (2.11) for V ∈ Hp that are

‖ΠnV‖k0,γ
p+b ≤ K

b
n‖V‖k0,γ

p , ‖Π⊥nV‖k0,γ
p ≤ K−bn ‖V‖

k0,γ
p+b ∀b, p ≥ 0 (10.2)

where ‖ · ‖k0,γ
p is defined in (2.9) . In view of the Nash-Moser Theorem 10.2 we introduce some constants

σ1 := max{σ̄, σ, 4} (10.3)

a1 := max{3(2σ1 + 6) + 1,
3

2
[rk0(τ + 2) + rτ + ν(b) + 2σ1] + 1} , a2 :=

2

3
a1 − rk0(τ + 2)− ν(b)− 2σ1

(10.4)

b1 :=ν(b) + 3σ1 + 3 + a1 +
2

3
ν1 , ν1 := 3(ν(b) + 2σ1) + 1 (10.5)

where σ̄ := σ̄(τ,N, k0) > 0 is defined in Theorem 5.13, σ := σ(τ,N, k0) > 0 is the constant which appears

in Theorem 9.10, 4 is the largest loss of regularity in the estimate of the Hamiltonian vector field XP in

119



CHAPTER 10. NASH-MOSER ITERATION 120

Lemma 5.1, ν(b) is defined in (9.25), the constant b := [a] + 2 ∈ N is defined in (9.21) and the exponent

r in (5.51) satisfies

ra >
1

2
a1 +

3

2
σ1 . (10.6)

By Remark 9.4 the constant a ≥ 3
2k0(τ + 2) + 1. Hence, by the definition of a1 in (10.4), there exists

r := r(τ,N, k0) such that (10.6) holds. Indeed we can fix

r := max

{
9σ1 + 19

3k0(τ + 2) + 2
,

3
2 (ν(b) + rk0(τ + 2) + rτ) + 6σ1 + 1

3k0(τ + 2) + 2

}
. (10.7)

Remark 10.1. The constant a1 is the exponent in (10.12). The constant a2 is the exponent in (10.10).

The constant ν1 is the exponent in (P3)n. The conditions a1 > 3(2σ1 +6) , b1 > ν(b)+3σ1 +3+a1 + 2
3ν1

and ra > 3
2 (σ1 + 1

3a1) arise for the convergence of the iterative scheme (10.35), (10.36) in Lemma 10.4.

In addition we require that a1 ≥ 3
2 [rk0(τ + 2) + ν(b) + 2σ1] + 3

2rτ + 1 so that a2 > rτ , actually in Lemma

10.6 we need a2 ≥ rτ + 2
3 .

Theorem 10.2 (Nash-Moser). There exist δ0, C? > 0, such that, if

Kτ2
0 µγ−2 ≤ δ0 , τ2 := max(rτ0, 2σ1 +a1 + 6) , K0 := γ−1 , γ := µa, 0 ≤ a ≤ 1

3 + τ2
, (10.8)

where τ0 := τ0(τ,N) is defined in Theorem 9.6 . Then, for all n ≥ 0:

• (P1)n There exists a k0-times differentiable function

W̃n : RN × [ε1, ε2] → En−1 ×RN , ζ = (ω, ε) 7→ W̃n(ζ) := (Ṽn, α̃n − ω),

for n ≥ 1 and W̃0 = 0, satisfying

‖W̃n‖k0,γ
p0+ν(b)+σ1

≤ C?Krk0(τ+2)
0 γ−1µ . (10.9)

Let Ũn = U0 + W̃n where U0 := (θ, 0, 0, ω). The difference H̃n = Ũn − Ũn−1, for n ≥ 1 satisfies

‖H̃1‖k0,γ
p0+ν(b)+σ1

≤ C?µγ−1K
rk0(τ+2)
0 , ‖H̃n‖k0,γ

p0+ν(b)+σ1
≤ C?µγ−1K−a2

n−1, ∀n > 1 . (10.10)

• (P2)n Setting ĩn := (θ, 0, 0) + Ṽn we define

G0 := Ω× [ε1, ε2], Gn+1 = Gn
⋂

Λγ
n+1(̃i), n ≥ 0 (10.11)

where Λγ
n+1(̃i) is defined in (9.94). Then for all ζ in N (Gn, γK−r(τ+2)

n−1 ) setting γ−1 = γ and

K−1 = 1 we have

‖F(Ũn)‖k0,γ
p0
≤ C?µK−a1n−1 (10.12)

• (P3)n

‖W̃n‖k0,γ
p ≤ C?µγ−1Kν1

n−1 , ∀ω ∈ N (Gn, γK−r(τ+2)
n−1 ) .
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We prove this theorem by iteration. We have that (P1)0, (P2)0, (P3)0 follow by ‖F(U0)‖k0,γ
p = O(µ)

and taking C? large enough. Let us assume that (P1)n, (P2)n, (P3)n hold for some n ≥ 0, we prove

(P1)n+1, (P2)n+1, (P3)n+1. We shall define the successive approximation Ũn+1 by the Nash-Moser scheme.

Note that in order to define Ũn+1 we need to prove the almost-approximate invertibility of the linear

operator

Ln := Ln(ζ) := di,αF(in(ζ)) .

Theorem 5.13 allows us to prove that Ln is almost-approximate invertible, so we have to verify that the

inverse assumptions (5.49) and (5.50) (of Theorem 5.13) are satisfied. For this reason we have to use

Theorem 9.18, with i = in. By (10.8), with µ small enough, we have that the the smallness condition

(9.47) holds. Hence we can apply Theorem 9.18, therefore we can prove that (5.49) and (5.50) are satisfied

for all

ζ ∈ N
(
Λγ
n+1(̃in, 2γK

−r(τ+2)
n )

)
,

where Λγ
n+1 is defined in (9.94). Indeed by (9.32) and recalling the definition of Λγ,In+1(̃in) in (9.91) with

ĩn instead of i, that gives

N
(

Λγ,In+1(̃in), 2γK−r(τ+2)
n

)
⊆ Λ

γ/2,I
n+1 (̃in)

we have

N
(
Λγ
n+1(̃in), 2γK−r(τ+2)

n

)
⊆ Λ

γ/2
n+1(̃in) , ∀n ≥ 0 .

Now we can apply Theorem 5.13 to the linear operator Ln(ζ) with Λ0 = N (Λγ
n+1(̃in), 2γK

r(τ+2)
n ) and

P := p0 + b1 , where b1 is defined in (10.5), (10.13)

and P is the larger scale used in the Nash-Moser theorem. Finally we have the existence of an almost-

approximate inverse Tn := Tn(ζ, ĩn(ζ)) which satisfies

‖Tng‖k0,γ
p ≤p0+b1 γ

−1
(
‖g‖k0,γ

p+σ1
+ ‖g‖k0,γ

p0+σ1
‖Ṽn‖k0,γ

p+σ1+ν(b)

)
, ∀p0 ≤ p ≤ p0 + b1 (10.14)

‖Tng‖k0,γ
p0
≤p0+b1 γ

−1‖g‖k0,γ
p0+σ1

. (10.15)

For all

ζ ∈ N (Gn+1, 2γK
−r(τ+2)
n ) ⊂ N (Gn+1, γK

−r(τ+2)
n−1 ) , n ≥ 0 (10.16)

we can define the successive approximation as follows

Un+1 := Ũn +Hn+1 , Hn+1 := (V̂n+1, α̂n+1) := −ΠnTnΠnF(Ũn) ∈ En ×RN (10.17)

where Πn is defined by (see (10.1))

Πn(V, α) := (ΠnV, α) , Π⊥n (V, α) := (Π⊥nV, 0) , ∀(V, α) . (10.18)



CHAPTER 10. NASH-MOSER ITERATION 122

At this point we have to prove that the iterative scheme defined in (10.17) is rapidly converging. By

definition we have that Ln = di,αF (̃in), then we can write

F(Un+1) = F(Ũn) + LnHn+1 +Q(Ũn, Hn+1) (10.19)

where

Q(Ũn, Hn+1) := F(Ũn +Hn+1)−F(Ũn)− LnHn+1 . (10.20)

By the definition of Hn+1 in (10.17) and using the definition of Πn given in (10.18) we have

F(Un+1) = F(Ũn)− LnΠnTnΠnF (Ũn) +Q(Ũn, Hn+1)

= F (Ũn)− LnTnΠnF (Ũn) + LnΠ⊥nTnΠnF (Ũn) +Q(Ũn, Hn+1)

= F (Ũn)−ΠnLnTnΠnF (Ũn) + (LnΠ⊥n −Π⊥nLn)TnΠnF (Ũn) +Q(Ũn, Hn+1)

= Π⊥nF(Ũn) +Rn + Sn +Qn(Ũn, Hn+1) (10.21)

where

Rn := (LnΠ⊥n −Π⊥nLn)TnΠnF(Ũn), Sn := −Πn(LnTn − 1)ΠnF(Ũn) . (10.22)

Thanks to (5.2), (4.4), (10.3), (10.9) we have ∀ζ ∈ Ω× [ε1, ε2], p ≥ p0

‖F(Ũn)‖k0,γ
p ≤p ‖F(U0)‖k0,γ

p + ‖F(Ũn)−F(U0)‖k0,γ
p ≤p µ+ ‖W̃‖k0,γ

p+σ1
, (10.23)

and, by (10.9) and (10.8)

γ−1‖F(Ũn)‖k0,γ
p0
≤ 1 . (10.24)

In order to prove that the scheme is rapidly convergent we have to prove that F(Un+1) and Wn+1 :=

W̃n +Hn+1 decrease fastly, for this reason (recalling Definition (10.19), and (10.17)) we start by proving

some estimate for Hn+1,Q(Ũn, Hn+1), Sn and Rn.

• Estimates of Hn+1. By (10.17), (2.11), (10.14), (10.15) and (10.9) we have

‖Hn+1‖k0,γ
p0+b1

≤ ‖ΠnTnΠnF(Ũn)‖k0,γ
p

≤p0+b1 γ
−1Kσ1

n

(
‖F(Ũn)‖k0,γ

p0+b1
+Kν(b)+2σ1

n ‖Ṽn‖k0,γ
p0+b1

‖F(Ũn)‖k0,γ
p0

)
≤p0+b1 γ

−1K2σ1+ν(b)
n (µ+ ‖W̃‖k0,γ

p0+b1
) ,

(10.25)

where the last estimate follows by (10.23). Using (10.17), (2.11), (10.14), (10.15) and (10.9) and

(10.24), we get

‖Hn+1‖k0,γ
p0
≤ ‖ΠnTnΠnF(Ũn)‖k0,γ

p0+σ1
≤p0+b1 γ

−1Kσ1
n ‖F(Ũn)‖k0,γ

p0
. (10.26)

• Estimate of Q(Ũn, Hn+1). Using (10.20), (4.4), (5.2), (10.9) and (2.11) we obtain the quadratic

estimate, ∀H ∈ En ×RN

‖Q(Ũn, H)‖k0,γ
p0
≤p0

µK6
n(‖V̂‖k0,γ

p0
)2 , V̂ ∈ En . (10.27)
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Then the term Q(Ũn, Hn+1) defined in (10.20) satisfies, by (10.26), (10.27) and µγ−1 ≤ 1

‖Q(Ũn, Hn+1)‖k0,γ
p0
≤p0

γ−1K2σ1+6
n

(
‖F(Ũn)‖k0,γ

p0+b1

)2

. (10.28)

• Estimate of Sn. According to (5.74), we revrite the term Sn in 10.22 as

Sn = −Πn(LnTn − 1)ΠnF(Ũn) = −S(1)
n − Sn,ω − S⊥n,ω

where

S(1)
n = ΠnP (̃in)ΠnF(Ũn), Sn,ω = ΠnPω (̃in)ΠnF(Ũn), S⊥n,ω = ΠnP⊥ω (̃in)ΠnF(Ũn) .

Using (10.2), (10.9), (10.8) and (10.24) we have

‖F(Ũn)‖k0,γ
p0+σ1

≤ ‖ΠnF(Ũn)‖k0,γ
p0+σ1

+ ‖Π⊥nF(Ũn)‖k0,γ
p0+σ1

≤ Kσ1
n

(
‖F(Ũn)‖k0,γ

p0
+K−b1n ‖‖F(Ũn)‖k0,γ

p

)
.

(10.29)

Hence by (10.29), using the bounds (5.75), (5.76), (5.77) , (5.78), and by (10.23), (10.2) we obtain

‖S(1)
n ‖

k0,γ
p0
≤p0+b1 γ

−1K2σ1
n

(
‖F(Ũn)‖k0,γ

p0
+K−b1n ‖F(Ũn)‖k0,γ

p

)
‖F(Ũn)‖k0,γ

p0

≤p0+b1 γ
−1K2σ1

n

[
‖F(Ũn)‖k0,γ

p0
+Kσ1−b1

n (µ+ ‖W̃n‖k0,γ
p )

]
‖F(Ũn)‖k0,γ

p0
(10.30)

‖Sn,ω‖p0
≤p0+b1 µγ

−2N−an−1K
σ1
n ‖F(Ũn)‖k0,γ

p0
(10.31)

‖S⊥n,ω‖
k0,γ
p0
≤p0+b1 γ

−1K2σ1+ν(b)−b1
n

(
‖F(Ũn)‖k0,γ

p + µ‖Ṽn‖k0,γ
p

)
≤p0+b1 γ

−1K3σ1+ν(b)−b1
n

(
µ+ ‖W̃n‖k0,γ

p

)
. (10.32)

• Estimate of Rn For H := (V̂, α̂) we have

(
LnΠ⊥n −Π⊥nLn

)
H = µ[diXP (̃in),Π⊥n ]V̂ = µ[Πn, diXP (̃in)]V̂ H ∈ En ×RN

where XP is the Hamiltonian vector field of the perturbation P defined in (1.44) (see (4.4)). Hence

from (5.1) and (10.2), recalling the definition of σ1 in (10.3) we obtain

‖
(
LnΠ⊥n −Π⊥nLn

)
H‖k0,γ

p0
≤p0+b1 µK

−b1+σ1+3
n

(
‖V̂‖k0,γ

p + ‖Ṽn‖k0,γ
p ‖V̂‖k0,γ

p0+3

)
. (10.33)

Hence, Rn defined in (10.22), using (10.33),(10.14), (10.2), (10.8), (10.9), and (10.24) we have

‖Rn‖k0,γ
p0
≤ ‖(LnΠ⊥n −Π⊥nLn)(TnΠnF(Ũn))‖k0,γ

p0

≤p0+b1 µK
−b1+σ1+3
n (‖TnΠnF(Ũn)‖k0,γ

p0
+ ‖Vn‖k0,γ

p0
‖TnΠnF(Ũn)‖k0,γ

p0+3)

≤p0+b1 K
−b1+2σ1+3+ν(b)
n (µγ−1‖F(Ũn)‖k0,γ

p0+b1
+ µ‖Ṽn‖k0,γ

p0
)

≤p0+b1 K
−b1+3σ1+3+ν(b)
n (µ+ ‖W̃n‖k0,γ

p0+b1
)

(10.34)

where the last inequation follows by (10.23).
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Using the estimates above we can estimate F(Un+1) as proved in the following Lemma.

Lemma 10.3. For all ζ ∈ N (Gn+1, 2γK
−r(τ+2)
n ) we have, setting ν2 := ν(b) + 3σ1 + 3

‖F(Un+1)‖k0,γ
p0
≤p0+b1

1

γ
Kν2−b1

(
µ+ ‖W̃n‖k0,γ

p0+b1

)
+ 2

K2σ1+6
n

γ
(‖F(Ũn)‖k0,γ

p0
)2

+K−ran−1K
σ1
n

µ

γ2
‖F(Ũn)‖k0,γ

p0
(10.35)

‖W1‖k0,γ
p0+b1

≤p0+b1 γ
−1µ, ‖Wn+1‖k0,γ

p0+b1
≤p0+b1 K

ν(b)+2σ1
n γ−1(µ+ ‖W̃n‖k0,γ

p0+b1
), n ≥ 1 . (10.36)

Proof. The estimate (10.35) on F(Un+1) follows by (10.21), (10.30), (10.31), (10.32), (10.34), (10.8),

(10.9). By (10.17) and (10.14) we have

‖W1‖k0,γ
p0+b1

= ‖H1‖k0,γ
p0+b1

≤p0+b1 γ
−1‖F(U0)‖k0,γ

p+σ1
≤p0+b1 µγ

−1 .

Finally the stimate (10.36) follows by Wn+1 := W̃n +Hn+1 and (10.25).

Lemma 10.4. For all ζ ∈ N (Gn+1, 2γK
−r(τ+2)
n ) we have

‖F(Un+1)‖k0,γ
p0
≤ C?µK−a1

n , ‖Wn+1‖k0,γ
p0+b1

≤ C?µγ−1Kν1
n (10.37)

‖H1‖k0,γ
p0+ν(b)+σ1

≤ Cµγ−1 , ‖Hn+1‖k0,γ
p0+ν(b)+σ1

≤p0 µγ
−1Kν(b)+2σ1

n K−a1
n−1 , n ≥ 1 . (10.38)

Proof. Note that, by (10.16), if ζ ∈ N (Gn+1, 2γK
−r(τ+2)
n ) then ζ ∈ N (Gn+1, γK

−r(τ+2)
n−1 ). Hence (10.12)

and (P3)n hold. The first inequality in (10.37) follows by (10.35), (P2)n , (P3)n , γ
−1 = K0 ≤

Kn , µγ
−2 ≤ c small, and by (10.4), (10.5), (10.6), (10.7). For n = 0 we use also (10.8).

The second inequality in (10.37) follows by (10.36), (P3)n, (10.5), K0 large enough.

Since H1 = W1 the first inequality in (10.38) follows by (10.36). For n ≥ 1, the estimate (10.38)

follows by (10.26), (10.12) and (10.2) .

Lemma 10.5. Extension. There is a Ck0-smooth function H̃n+1 defined on the whole RN × [ε1, ε2]

such that

H̃n+1 = Hn+1, ∀ζ ∈ N (Gn+1, γK
−r(τ+2)
n ) , (10.39)

and (10.10) holds also at the step n+ 1.

Proof. Since the function Hn+1 is defined for all ζ ∈ N (Gn+1, γK
−r(τ+2)
n ) and it is the extension of H̃n+1

a good strategy is to consider the cut-off functions. Hence let ψn+1 be a C∞ cut-off functions satisfying

0 ≤ ψn+1 ≤ 1, ψn+1(ζ) = 1, ∀ζ ∈ N (Gn+1, γK
−r(τ+2)
n ) ,

supp(ψn+1) ⊆ N (Gn+1, 2γK
−r(τ+2)
n ) ,

|∂kζψn+1(ζ)| ≤ C(k)
(
γ−1Kr(τ+2)

n

)|k|
, ∀k ∈ NN+1 .
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Then we define

H̃n+1(ζ) :=

ψn+1(ζ)Hn+1(ζ) ∀ζ ∈ N (Gn+1, 2γK
−r(τ+2)
n )

0 ∀ζ 6∈ N (Gn+1, 2γK
−r(τ+2)
n ) .

So (10.39) holds and we have the estimate

‖H̃n+1‖k0,γ
p0+ν(b)+σ1

≤p0
Kr(τ+2)k0
n ‖Hn+1‖k0,γ

p0+ν(b)+σ1
.

The first inequality in (10.10) for n = 0 follows by (10.38), while for n ≥ 1, and also at the step n + 1,

we deduce the estimate (10.10) by the definition of a2 in (10.4) and by (10.38).

We now define

W̃n+1 := W̃n + H̃n+1 , Ũn+1 := Ũn + H̃n+1 = U0 + W̃n + H̃n+1 := U0 + W̃n+1

which are defined for all ζ ∈ RN × [ε1, ε2] and satisfy

W̃n+1 := Wn+1 , Ũn+1 := Un+1 , ∀ζ ∈ N (Gn+1, γK
−r(τ+2)
n ).

Therefore (P2)n+1, (P3)n+1 are proved by Lemma 10.4. In addition by (10.10), which has been proved

up to the step n+ 1 in Lemma 10.5, we have

‖W̃n+1‖k0,γ
p0+ν(b)+σ1

≤
n+1∑
k=1

‖H̃k‖k0,γ
p0+ν(b)+σ1

≤ C?Kpk0(τ+2)
0 µγ−1

and thus (10.9) holds also at the step n+ 1. So the proof of Theorem 10.2 is completed.

10.1 Proof of Theorem 4.1

We now have to prove that the scheme in Theorem 10.2 converges when n → ∞. Let γ = µa with

a ∈ (0, a0) and a0 := 1/(2 + τ2). Note that the smallness condition defined in (10.8) is satisfied for

0 < µ < µ0 small enough and also Theorem 10.2 holds. Thanks to (10.10) we have that the sequence of

functions Ũn := (̃in, α̃n) is a Cauchy sequence in ‖ ·‖k0,γ
p0

, (see (2.9)) hence we can define its limit function

as follows

U∞ := (i∞, α∞) = (θ, 0, 0, ω) +W∞ , W∞ : Ω× [ε1, ε2]→ Hp0

θ ×H
p0

θ ×H
p0

x,θ ×R
N , W∞ := lim

n→∞
W̃n .

Then, using (10.9) and (10.10) we obtain that

‖U∞ − U0‖k0,γ
p0+ν(b)+σ1

≤ C?µγ−1K
pk0(τ+2)
0 , ‖U∞ − Ũn‖k0,γ

p0+ν(b)+σ1
≤ Cµγ−1K−a2

n ∀n ≥ 1 . (10.40)

In addition by Theorem 10.2, recalling the Definitions (9.94), (9.48) and (9.91), we deduce that

F(ζ, U∞(ζ)) = 0 for all ζ belonging to

⋂
n≥0

Gn = Λ ∩
⋂
n≥1

Λγ
n(̃in−1) = Λ ∩

⋂
n≥1

Λγn(̃in−1)

⋂⋂
n≥1

Λγ,In (̃in−1)

 , (10.41)
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where Λ := Ω × [ε1, ε2]. Therefore, by (10.40), for n = 0 and since K0 = γ−1 (see (10.8)) we deduce the

estimates (4.6) and (4.7) with k1 := rk0(τ + 2).

We now have to provide the caractherization of Cγ∞ in (4.10), in order to do that we firstly consider

the following set

G∞ := Λ ∩

⋂
n≥1

Λ2γ
n (i∞)

⋂⋂
n≥1

Λ2γ,I
n (i∞)

 . (10.42)

Lemma 10.6. Let G∞ as in (10.42) and Gn as in (10.11). Then

G∞ ⊆
⋂
n≥0

Gn .

Proof. By (10.40) and (10.8) we have

µγ−1C(p)Nτ
0 ‖i∞ − i0‖

k0,γ
p0+ν(b)+σ1

≤ µ2γ−2C(p)C?K
rτ
0 K

rk0(τ+2)
0 ≤ γ

µγ−1C(p)Nτ
n−1‖i∞ − ĩn−1‖k0,γ

p0+ν(b)+σ1
≤ µ2γ−2C(p)CKrτ

n−1K
−a2
n ≤ γ , ∀n ≥ 2

where τ2 is defined in (10.8) and by (10.4) and that a2 ≥ rτ + 2/3 (defined in (10.4)) we have that

τ2 > a1 > 3(rk0(τ + 2) + rτ)/2. Therefore Theorem 9.6 implies

Λ2γ
n (i∞) ⊂ Λγn(̃in−1) , ∀n ≥ 1,

where Λγn is defined in (9.48). Using the definition of Λγ,In in (9.91) and similar arguments we have

Λ2γ,I
n (i∞) ⊂ Λγ,In (̃in−1) , ∀n ≥ 1.

So the lemma is proved.

We now can define the final eigenvalues as follows

λ∞j := j

(
2

15
j4ε4 − 1

3
j2ε2 + 1

)
+m∞1 j + r∞j , j ∈ N \ S , j 6= 0 , (10.43)

where

m∞1 := m1(i∞) , r∞j := lim
n→0

r̃nj (i∞) , ∀j ∈ N \ S , j 6= 0 (10.44)

where m1 is defined in (8.78) and r̃nj are defined in (9.42). Note that by (9.43) the sequence (r̃nj (i∞))n∈N

is a Cauchy sequence in | · |k0,γ defined in (2.7). As a consequence its limit function r∞j (ω, ε) is well

defined, it is k0-times differentiable and satisfies

|r∞j − r̃nj (i∞)|k0,γ ≤ Cµγ−1Nk0(τ+2)
n N−an−1 , n ≥ 0 . (10.45)

Note that, since r̃0
j (i∞) = 0 and K0 = γ−1, one has

|r∞j |k0,γ ≤ Cµγ−1K
rk0(τ+2)+1
0

and (4.9) holds with k1 = rk0(τ + 2) + 1.

We are now ready to consider the set Cγ∞ defined in (4.10).
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Lemma 10.7. Let Cγ∞ be the set defined in (4.10) and G∞ be the set defined in (10.42). Then

Cγ∞ ⊆ G∞ .

Proof. Thanks to (10.42) we have only to prove that Cγ∞ ⊆ Λ2γ
n (i∞) , ∀n ∈ N. We prove it by induction.

For n = 0 the inclusion is verified because Λ
2γ
0 (i∞) = Ω × [ε1, ε2] = Λ. Assume that Cγ∞ ⊆ Λ2γ

n (i∞) We

shall prove that Cγ∞ ⊆ Λ
2γ
n+1(i∞). By Theorem 9.6 we have that λ̃nj (i∞)(ζ) = λnj (i∞)(ζ) , ∀ζ ∈ Λ2γ

n (i∞).

Hence ∀ζ ∈ Cγ∞ ⊆ Λ2γ
n (i∞) , by (9.33), (10.43) and (10.45) we obtain

|(λnj − λnj′)(i∞)− (λ∞j − λ∞j′ )| ≤ Cµγ−1Nk0(τ+2)
n N−an−1 ,

and therefore, using (4.10) with j 6= j′ we have

|ω · l + λnj (i∞)− λnj′(i∞)| ≥ |ω · l + λ∞j − λ∞j′ | − |(λnj − λnj′)(i∞)− (λ∞j − λ∞j′ )|

≥ |ω · l + λ∞j − λ∞j′ | − Cµγ−1Nk0(τ+2)
n N−an−1

≥ 4γ|j3 − j′
3

| 〈l〉−τ − Cµγ−1Nk0(τ+2)
n N−an−1|j3 − j′

3

|

≥ 2γ|j3 − j′
3

| 〈l〉−τ , ∀|l| ≤ Nn ,

provided µγ−2 ≤ CN
−k0(τ+2)
n Na

n−1 , ∀n ≥ 0, which holds true by (9.21) and (10.8). Hence we have

proved that Cγ∞ ⊆ Λ
2γ
n+1(i∞). One can prove similarly that Cγ∞ ⊆ Λ2γ,I

n (i∞) , ∀n ∈ N which proves the

lemma.

By Lemmas 10.6 and 10.7 we have the following result

Lemma 10.8. Let Cγ∞ as in (4.10) and Gn as in (10.11). Then

Cγ∞ ⊆
⋂
n≥0

Gn .



Appendix A

Approximate model PDEs of water

waves

A.1 Transformation laws of Hamiltonian systems

We now recall some well known properties (that can be found e.g. in [38]) of Hamiltonian systems. Let

Y be a Hilbert space with scalar product 〈·, ·〉, W be a non degenerate symplectic two-form and H be an

Hamiltonian. Then the associated Hamiltonian vector field XH is defined by

W (XH(v), ·) = −dH(v)(·) . (A.1)

If W(a, b) =
〈
J−1a, b

〉
, where J−1 is a non degenerate and anti-symmetric linear operator, then the

condition (A.1) is equivalent to

〈
J−1XH(v), ·

〉
= −〈∇vH(v), ·〉 ,

that is J−1XH(v) = −∇vH(v), and

XH(v) = −J∇vH(v). (A.2)

Therefore the associated Hamiltonian system can be written as

vt + J∇vH(v) = 0 .

In the next Lemma we discuss how a vector field transforms under a linear change of variables.

Lemma A.1. Let X(v) be a vector field. Consider a linear change of variables w = Φv. Then the

differential equation vt = X(v) transforms in

wt = Φ ◦X ◦ Φ−1w.

128
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If the vector field X(v) is Hamiltonian we have the following Lemma.

Lemma A.2. Let −J∇vH(v) be an Hamiltonian vector field, whose Hamiltonian is H. Under the linear

change of variables w = Φv, the differential equation vt = −J∇vH(v) transforms

wt = −J1∇wK(w) , where J1 := ΦJΦT ,

and K is the Hamiltonian given by

K(w) = H(Φ−1w) .

A.2 Craig-Sulem-Zakharov’s Hamiltonian formulation

In this Section we present the computations that W. Craig gave to us (in a private communication [26]),

in order to arrive at the system (1).

This system is derived from the Hamiltonian formulation of the water waves equations introduced by

Zakharov in [65] and Craig-Sulem in [33]. Let us precisely describe this system. We consider the evolution

of a perfect, incompressible, irrotational fluid under the action of gravity which occupies the free boundary

region

Sη := {(x, y) ∈ R×R : −h ≤ y ≤ η(x)} .

We refer to the classical book of Stoker [63]. The unknowns of the problems are the free surface y = η(x),

and the velocity potential Φ : Sη → R, i.e. the irrotational velocity field ∇Φ. The gravity water-waves

problem can be written as follows

∂tΦ + 1
2 |∇Φ|2 + gη = 0 , at y = η(x) , Bernoulli condition

4Φ = 0 in Sη , incompressibility

∂yΦ = 0 at y = −h , impermeability

∂tη = ∂yΦ− ∂xη · ∂xΦ at y = η(x) , kinematic condition ,

(A.3)

where g > 0 is the acceleration of gravity. In addition we consider periodic boundary conditions:

η(x+ 2π) = η(x) , Φ(x+ 2π, y) = Φ(x, y) , ∀x ∈ R . (A.4)

It was observed by Zakharov in [65] that the system (A.3), is an infinite dimensional Hamiltonian system

in the variables η (the profile of the fluid) and ξ(x) := Φ(x, η(x)), that is the value of the velocity potential

Φ restricted to the free boundary. The first observation is that η(x) and ξ(x) uniquely determine the

velocity potential Φ in the whole fluid domain Sη, solving the elliptic problem
4Φ = 0 in Sη

∂yΦ = 0 at y = −h

Φ = ξ at y = −η(x) ,

(A.5)
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with the periodicity conditions (A.4).

In [65] and [32] it is proved that the system (A.3) can be written in the variables (η, ξ) as the following

Hamiltonian system

∂t

η
ξ

 = −J

δηH
δξH

 , J =

0 −1

1 0

 , (A.6)

where δξ , δη denote the L2
x gradient, the Hamiltonian H is

H(η, ξ) =
1

2

∫
T

(
ξ ·G(η)ξ + gη2

)
dx (A.7)

and

G(η) := (∂yΦ)(x, η(x))− (∂xΦ)(x, η(x)) · ∂xη(x)

is the so called the Dirichlet-Neumann operator. The first term in the Hamiltonian (A.7) represents the

kinetic energy of the fluid, and the second term the potential energy.

A.3 Derivation of system (1)

We now present the derivation of system (1) from the Hamiltonian system (A.6).

In [32] it has been proved that the Dirichlet-Neumann operator admits the following Taylor expansion

G(η)ξ = D tanh(hD)ξ + (DηD −G(0)ηG(0))ξ+

+
1

2
(G(0)η2D2 +D2η2G(0) − 2G(0)ηG(0)ηG(0))ξ +R(3)

where D := −i∂x, G(0)(D) := D tanh(hD) and R(3) collects all the terms of order at least four in the

variables η and ξ. Using this expansion the Hamiltonian (A.7) reads

H(η, ξ) =
1

2

∫
T

[
ξ ·
(
D tanh(hD)ξ + (DηD −G(0)ηG(0))ξ +

+
1

2
(G(0)η2D2 +D2η2G(0) − 2G(0)ηG(0)ηG(0))ξ

)
+R(3) + gη2

]
dx

=
1

2

∫
T

[
ξ ·D tanh(hD)ξ + ξ · (DηD −G(0)ηG(0))ξ +

+
1

2
ξ ·G(0)η2D2ξ +

1

2
ξ ·D2η2G(0)ξ − ξ ·G(0)ηG(0)ηG(0)ξ +R(3) + gη2

]
dx .

(A.8)

We now introduce the long wave and the small amplitude regime scaling taking

η = ε2η′, ξ = εξ′, εx = X, Dx = εDX . (A.9)

After this rescaling the Fourier multiplier tanh(hDX) reads

tanh(εhDX) = εhDX − ε3h
3

3
D3
X + ε5 2h5

15
D5
X +O(ε7) . (A.10)
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The transformation (A.9) changes the matrix J in (A.6) only for a scalar factor. Denoting by A the

matrix that represents the change of variables (A.9)

A :=

ε−2 0

0 ε−1


then (see Lemma A.2)

J1 := AJAT = ε−3J.

Introducing the transformation (A.9) into the Hamiltonian (A.8), thanks to (A.10) and Lemma A.2, we

get

H =
1

2

∫
T

(
ε3ξ′DX tanh(hεDX)ξ′ + ε4η

′2g + ε6ξ′DXη
′DXξ

′

− ε6ξ′DX tanh(hεDX)η′DX tanh(hεDX)ξ′

+O(ε9)

)
dX

ε

=
1

2

∫
T

[
ε3ξ′DX

(
εhDX − ε3h

3

3
D3
X + ε5 2h5

15
D5
X

)
ξ′ + ε6ξ′DXη

′DXξ
′

− ε6ξ′DX

(
εhDX − ε3h

3

3
D3
X + ε5 2h5

15
D5
X

)
η′DX

(
εhDX

− ε3h
3

3
D3
X + ε5 2h5

15
D5
X

)
ξ′ + ε4η

′2g +O(ε9)

]
dX

ε

=
1

2

∫
T

[
ε3
(
hξ′D2

Xξ
′ + η′2g

)
− ε5

(h3

3
ξ′D4

Xξ
′ − ξ′DX

(
η′DXξ

′))
− ε7

(
h2ξ′D2

X

(
η′D2

Xξ
′)− 2h5

15
ξ′D6

Xξ
′
)

+O(ε9)

]
dX.

From now on we drop the primes in our notation and we shall omit both O(ε9) and R(3) terms. Then,
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by D2
X = −∂2

X , D
4
X = ∂4

X , D
6
X = −∂6

X we rewrite the above Hamiltonian as follows

2H = ε3

∫
T

[
−h∂X

(
(∂Xξ)ξ

)
+ h(∂Xξ)

2 + gη2
]
dX+

+ ε5

∫
T

[
h3

3

(
−∂X(ξ(∂3

Xξ))− (∂2
Xξ)

2 + ∂X((∂Xξ)(∂
2
Xξ))

)
− ∂X(ξη(∂Xξ)) + η(∂Xξ)

2

]
dX

+ ε7

∫
T

[
2h5

15

(
−∂X(ξ(∂5

Xξ)) + ∂X((∂Xξ)(∂
4
Xξ))− ∂X((∂2

Xξ)(∂
3
Xξ)) + (∂3

Xξ)
2
)

+ h2

(
−∂X

(
ξ∂X(η(∂2

Xξ))
)

+ ∂X
(
(∂Xξ)η(∂2

Xξ)
)
− (∂2

Xξ)
2η

)]
dX

= ε3

∫
T

h(∂Xξ)
2 + gη2dX + ε5

∫
T

(
−h

3

3
(∂2
Xξ)

2 + η(∂Xξ)
2

)
dX+

+ ε7

∫
T

(
2h5

15
(∂3
Xξ)

2 − h2(∂2
Xξ)

2η

)
dX .

(A.11)

We now introduce the surface elevation-velocity coordinates (η, ξ) 7→ (η, u := ∂Xξ). If we call B the

matrix that represents this change of variable, that is

B :=

1 0

0 ∂X


then (see Lemma A.2)

J2 := BJ1B
T = ε−3

 0 ∂X

∂X 0

 . (A.12)

After the change of variable B the Hamiltonian in (A.11) reads (see Lemma A.2)

2H = ε3

∫
T

(
hu2 + gη2

)
dX + ε5

∫
T

(
−h

3

3
(∂Xu)2 + ηu2

)
dX+

+ ε7

∫
T

(
2h5

15
(∂2
Xu)2 − h2(∂Xu)2η

)
dX .

(A.13)

The Hamiltonian equations corresponding to this Hamiltonian are

∂t

η
u

 = −J2

δηH
δuH


where J2 in defined in (A.12), i.e.

∂tη = −ε−3∂XδuH(η, u)

∂tu = −ε−3∂XδηH(η, u) .

The Hamiltonian equations defied above are explicitly given by

∂tη = −∂X
(
hu+ ε2

(
h3

3
∂2
Xu+ ηu

)
+ ε4

(
2h5

15
∂4
Xu+ h2∂X(η∂Xu)

))
∂tu = −∂X

(
gη +

ε2

2
u2 − ε4h

2

2
(∂Xu)2

)
.

(A.14)
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For simplicity we assume h, g = 1. Moreover we can also assume, instead of the Hamiltonian in (A.13)

the Hamiltonian divided by a factor ε−3, and we can redefine

J2 := J :=

 0 ∂x

∂x 0

 .

With these assumptions the Hamiltonian (A.13) (divided by ε3 ) become the Hamiltonian (2), whose

the corresponding equations of motion (1) are equal to (A.14) (with h, g = 1).



Appendix B

Asymptotic expansions

In this Section we will prove that each remainder, obtained along the descent method in Chapter 8 has

always the same structure (7.22), in homogeneous components up to smoothing operator in S−M−1.

Moreover we provide some explicit estimates on the coefficients and the symbols in this expansion.

For that we use systematically the asymptotic expansion for the composition operators (see (2.19)) in

homogeneous symbols and the estimates given in Proposition 2.8 (with α = 0). This method is slightly

different by [19]. We decide to use this strategy because the homogeneous structure allows us to eliminate

the out of diagonal terms up to order −M by means some easy transformations. We underline that the

order −M , at which we arrest the expansion, is a fixed constant provided by the KAM iteration in

Chapter 9, see (9.24).

In what follows we shall use the norm ‖ · ‖k0,γ
p , defined in (2.8), for functions and for 2× 2 matrices of

functions (see Remarks 2.2), similarly we shall use the norm | · |k0,γ
m,p,0, defined in (2.21), both for operators

and for 2× 2 matrices of operators (see Remarks 2.7).

B.1 Inverse of Tk

In this Section we invert operators Tk = 1+Φk∂
−k
x , k = 1, ...,M+3, where Φk := Φk(x, θ) are functions.

By the composition formula in (2.19) we obtain

Φ∂−kx Φ∂−kx = Φ

p∑
β=0

C(β)(∂βxΦ)(∂−2k−β
x ) + r (B.1)

where −2k − p = −M , C(β) is a constant and r ∈ OPS−M−1. Hence iterating this formula we have

arrive to

(Φ∂−kx )δ = Φ

p1∑
β1=0

p2∑
β2=0

...

pδ−1∑
βδ−1=0

C(β1, ..., βδ−1)∂βδ−1
x (Φ∂βδ−2

x (...∂β2
x Φ(∂β1

x Φ)...))∂−δk−β1−β2−...−βδ−1
x + r

134
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=

M−kδ∑
j=0

C(j)Φ̃j+kδ∂
−kδ−j
x + rδ , (B.2)

for some suitable constant C(j) and where rδ ∈ OPS−M−1 is the sum of r and all the pseudo-differential

operators in OPS−M−1 generated by the composition.

Actually we are interested in Tk = 1 + Φk∂
−k
x where Φk for k = 1, ...,M + 3 is an out of diagonal

matrix, small enough, that is

Φk := µ

 0 ϕ
(k)
2

ϕ
(k)
3 0

 (B.3)

see (8.2), (8.20) and (8.37). Moreover we shall require that the functions Φk satisfy

‖Φk‖k0,γ
p0+χ(M)+σ ≤ 1, (B.4)

where χ(M) is a constant depending on M and σ := σ(τ,N, k0).

Lemma B.1. Let Tk = 1 + Φk∂
−k
x . Then

(Φk∂
−k
x )δ =

M−kδ∑
j=0

C(j)(Φ̃k)j+kδ∂
−kδ−j
x + νk,δ ,

for some suitable functions Φ̃k and constants C(j). The operator νk,δ ∈ OPS−M−1.

Moreover for j = 0, ...,M − kδ,

‖(Φ̃k)j+kδ‖k0,γ
p ≤ C(p)‖Φk‖k0,γ

p+j , |νk,δ|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φk‖k0,γ

p+(δ−1)k+2M−4k . (B.5)

Proof. We prove (B.5) by induction on k and δ. Let k = 1, δ = 2 then using (B.2) we have

Φ1∂
−1
x Φ1∂

−1
x =

M−2∑
s=0

C(s)(Φ̃1)s+2∂
−s−2
x + ν2 (B.6)

where the functions (Φ̃1)s+2 are defined as follows

(Φ̃1)s+2 := Φ1∂
s
xΦ1 . (B.7)

Therefore, by the definition above and (2.36) immediately follows that

‖(Φ̃1)s+2‖k0,γ
p ≤ C(p)‖Φ1‖k0,γ

p+s . (B.8)

For the pseudo-differential operator ν1,2, by (2.25), (2.26) and (2.28) we have

|ν1,2|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φ1‖k0,γ

p+1+2M−4 . (B.9)

Now we suppose that it is true for k = 1 and δ = m, that is (see (B.2))

(Φ1∂
−1
x )m :=

M−m∑
k=0

C(k)(Φ̂1)k+m∂
−m−k
x + ν1,m , (B.10)
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where Φ̂1 are some suitable functions. Then

‖(Φ̂1)k+m‖k0,γ
p ≤ C(p)‖(Φ1)‖k0,γ

p+k . (B.11)

The pseudo-differential operator ν1,m is defined as follows

ν1,m := ν̃1,m + Φ1∂
−1
x ν1,m−1 , (B.12)

hence by (2.28), we have

|ν1,m|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φ1‖k0,γ

p+2M+m−1−4 . (B.13)

Remark B.2. Note that the formula (B.10) follows by iteration, indeed

(Φ1∂
−1
x )m = Φ1∂

−1
x ◦ (Φ1∂

−1
x )m−1

= Φ1∂
−1
x ◦

(
M−m+1∑
k=0

C(k)(
ˆ̂
Φ1)k+m−1∂

−m+1−k
x + ν1,m−1

)

= Φ1∂
−1
x

(
M−m+1∑
k=0

C(k)(
ˆ̂
Φ1)k+m−1∂

−m+1−k
x

)
+ Φ1∂

−1
x ν1,m−1

=

M−m∑
k=0

C(k)(Φ̂1)k+m∂
−m−k
x + ν̃1,m + Φ1∂

−1
x ν1,m−1 ,

where we define ν1,m := ν̃1,m + Φ1∂
−1
x ν1,m−1.

Now we prove the formula for k = 1 and δ = m+ 1. By (B.2) we have

Φ1∂
−1
x (Φ1∂

−1
x )m = Φ1∂

−1
x

(
M−m−1∑
k=0

C(k)(Φ̂1)k+m∂
−m−k
x + ν1,m

)

= Φ1

M−m−1−j∑
k=0

M−m−1−k∑
j=0

C(k, j)∂jx(Φ̂1)k+m∂
−m−k−1−j
x + ν̃m+1 + Φ1∂

−1
x ν1,m

=

M−m−1∑
s=0

C(s)(Φ̌1)s+m+1∂
−m−s−1
x + ν1,m+1 ,

where ν1,m+1 collects all the terms in OPS−M−1, and the functions Φ̌1 are defined

(Φ̌1)s+m+1 :=

s∑
j=0

Φ1∂
j
x(Φ̂1)m+s−j .

Hence, by (2.36), (B.11), (B.12) and (B.13) we have the following estimates

‖(Φ̌1)s+m+1‖k0,γ
p ≤C(p)

(
‖(Φ̂1)m+s‖k0,γ

p + ‖(Φ̂1)m+s−1‖k0,γ
p+1 + ...+ ‖(Φ̂1)m‖k0,γ

p+s

)
≤C(p)‖Φ1‖k0,γ

p+s , s = 0, ...,M −m− 1 ,

|ν1,m+1|k0,γ
−M−1,p,0 ≤C(p,M)‖Φ1‖k0,γ

p+2M+m−4 .
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The Lemma is obviously true for k = s + 1 and δ = 1. It is also true for k = s + 1 , δ = 2, indeed, by

(B.2) we have

Φs+1∂
−s−1
x Φs+1∂

−s−1
x =

M−2s−2∑
j=0

CjΦ̂2s+2+j∂
−2s−2−j
x + ν(s+1,2)

where the functions Φ̂s+1 are defined as follows

(Φ̂s+1)2s+2+j := Φs+1∂
j
xΦs+1

hence by (2.36), (2.27), (2.28), (2.29) we have

‖(Φ̂s+1)2s+2+j‖k0,γ
p ≤ C(p)‖Φs+1‖k0,γ

p+j

|ν(s+1,2)|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φs+1‖k0,γ

p+s+2M−4s−4 .

Suppose that the lemma is true for k = s+ 1 and δ = m, that is

(Φs+1∂
−s−1
x )m =

M−ms−m∑
k=0

C(k)(Φ̄s+1)k+m+ms∂
−ms−m−k
x + νs+1,m (B.14)

for some suitable Φ̄s+1, with

‖(Φ̄s+1)k+m+ms‖k0,γ
p ≤ C(p)‖Φs+1‖k0,γ

p+k , k = 0, ...,M −ms−m,

|νs+1,m|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φs+1‖k0,γ

p+(m−1)(s+1)+2M−4−4s .
(B.15)

By (B.14), (2.19) and (B.2) with k = s+ 1 and δ = m+ 1, we have

Φs+1∂
−s−1
x (Φs+1∂

−s−1
x )m = Φs+1∂

−s−1
x

M−ms−m∑
k=0

C(k)(Φ̄s+1)k+sm+m∂
−sm−m−k
x + Φs+1∂

−s−1
x νs+1,m

= Φs+1

M−(m+1)(s+1)−j∑
k=0

M−(m+1)(s+1)−k∑
j=0

C(k)∂jx(Φ̄s+1)k+sm+m

× ∂−(m+1)(s+1)−k−j
x + ν̃s+1,m+1 + Φs+1∂

−s−1
x νs+1,m

=

M−(m+1)(s+1)∑
j=0

C(j)(Φ̌s+1)(s+1)(m+1)+j∂
−(m+1)(s+1)−j
x + νs+1,m+1

where the functions Φ̌s+1 are defined as follows

(Φ̌s+1)(s+1)(m+1)+j :=

j∑
k=0

Φs+1∂
k
x(Φ̄s+1)(s+1)m+j−k ,

and the pseudo-differential operator νs+1,m+1 collects all the terms in OPS−M−1, that is

νs+1,m+1 := ν̃s+1,m+1 + Φs+1∂
−s−1
x νs+1,m .

Hence, by the explicit definition of (Φ̌s+1)(s+1)(m+1)+j , νs+1,m+1 given above, by (B.15), (2.29) and

(2.36), (2.27), (2.28) we have

‖(Φ̌s+1)(s+1)(m+1)+j‖k0,γ
p ≤C(p)

(
‖(Φ̄s+1)m(1+s)+j‖k0,γ

p + ...+ ‖(Φ̄s+1)m(s+1)‖k0,γ
p+j

)
≤C(p)‖Φs+1‖k0,γ

p+j , j = 0, ...,M − (m+ 1)(s+ 1)

|νs+1,m+1|k0,γ
−M−1,p,0 ≤C(p,M)‖Φs+1‖k0,γ

p+m(s+1)+2M−4s−4 .
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So the Lemma is proved.

Thanks to this Lemma we can prove that, if an operator admits the asymptotic expansion in homo-

geneous components up to order −M , then, under some suitable assumption, by the Neumann series also

the inverse operator admits the asymptotic expansion up to the same order.

Lemma B.3. Let Tk = 1+ Φk∂
−k
x , with Φk as in (B.3) for k = 1, ...M + 3. Let Φk satisfies (2.31) (with

α = 0). Then T−1
k can be expanded as follows

T−1
k = 1 + Φk∂

−k
x +

M−2k∑
j=0

C(j)(Φ̂k)j+2k∂
−j−2k
x + νk ,

for some suitable functions Φ̂k and constants C(j). The operator νk ∈ OPS−M−1. Moreover we have

that

‖(Φ̂k)j+2k‖k0,γ
p ≤ C(p)‖Φk‖k0,γ

p+j , |νk|k0,γ
−M−1,p,0 ≤ C(p,M)‖Φk‖k0,γ

p+(n−1)k+2M−4k , (B.16)

where n =
[
M
k

]
≥ 2.

Proof. By the Neumann series and Lemma B.1 we have

T−1
k = 1 +

∑
δ≥1

(−1)δ(Φk∂
−k
x )δ

= 1 + Φk∂
−k
x + (Φk∂

−k
x )2 + ...+ (Φk∂

−k
x )n + r

= 1 + Φk∂
−k
x +

M−2k∑
j=0

C ′′(j)(Φ̃k)j+2k∂
−2k−j
x + νk,2

+ ...

+

M−kn∑
j=0

C ′(j)(Φ̃k)j+nk∂
−kn−j
x

+ νk,n + r ,

(B.17)

where n =
[
M
k

]
, C ′(j), C ′′(j) are some constants, νk,δ for δ = 1, ...,M − 2k is the pseudo-differential

operator in OPS−M−1 given in Lemma B.1 and r is the remainder of the convergent series. Then, we

redefine the homogeneous terms as follows

M−2k∑
j=0

C ′′(j)(Φ̃k)j+2k∂
−2k−j
x + ...+

M−kn∑
j=0

C ′(j)(Φ̃k)j+nk∂
−kn−j
x :=

M−2k∑
j=0

C(j)Φ̂j+2k∂
−j−2k
x .

We define the new pseudo-differential operator of order −M−1 as the sum of the other pseudo-differential

operators, that is

νk,2 + ...+ νk,n + r := νk.
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By Lemma 2.10 and (2.27) the remainder r can be estimate by induction. Let s = M − 2k, then

|(Φk∂−kx )s+1|k0,γ
−k(s+1),p0,0

=|(Φk∂−kx )s ◦ (Φk∂
−k
x )|k0,γ

−k(s+1),p0,0

≤2C(p0, k0)|(Φk∂−kx )s|k0,γ
0,p0,0

|Φk∂−kx |
k0,γ
−k,p0,0

≤C(p0, k0)s
(
|Φk∂−kx |

k0,γ
0,p0,0

)s+1

(2.31)

≤ 1

2s
‖Φ‖k0,γ

p0

≤ 1

2s
.

(B.18)

Moreover by (2.27) and (2.29) we also have

|(Φk∂−kx )s+1|k0,γ
−k(s+1),p,0 = |(Φk∂−kx )s ◦ (Φk∂

−k
x )|k0,γ

−k(s+1),p,0

≤ C(p)|(Φk∂−kx )s|k0,γ
0,p,0|Φk∂−kx |

k0,γ
−k,p0,0

+ C(p0)|(Φk∂−kx )s|k0,γ
0,p0,0

|Φk∂−kx |
k0,γ
−k,p,0

≤ (s+ 1)C(p, k0)
(
C(p0, k0)‖Φk‖k0,γ

p0

)s
‖Φk‖k0,γ

p .

(B.19)

Then (recall that s = M − 2k) by (B.19) and (2.31)

|
∑
s>0

(Φk∂
−k
x )s+1|k0,γ

0,p,0 ≤
∑
s>0

|(Φk∂−kx )s+1|k0,γ
0,p,0

≤

(∑
s>0

(s+ 1)
(
C(p0, k0)‖Φk‖k0,γ

p0

)s)
C(p, k0)‖Φk‖k0,γ

p

≤ C ′(p, k0)‖Φk‖k0,γ
p .

(B.20)

Therefore we can decompose the inverse operator as the sum of a homogeneous terms plus a bounded

regularizing remainder. The estimates (B.16) follow by Lemma B.1.

Now we want to prove that the composition of two operator that can be written as the sum of

homogeneous terms plus a bounded regularizing remainder has the same structure. Note that given two

operator B =
∑M
j=0 Bj∂

−k
x +νB and A =

∑M
k=0 Ak∂

−k
x +νA such that ‖A‖k0,γ

p0+χ(M)+σ, ‖B‖
k0,γ
p0+χ(M)+σ ≤ 1

then the composition operator it is given by

B ◦A =

 M∑
j=0

Bj∂
−k
x + νB

( M∑
k=0

Ak∂
−k
x + νA

)

=

 M∑
j=0

Bj∂
−k
x + νB

 ◦( M∑
k=0

Ak∂
−k
x

)
+ νAB

where

νAB :=

 M∑
j=0

Bj∂
−k
x

 ◦ νA + νB ◦ νA .
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Then, by (2.27) we have immediately that νAB is a pseudo-differential operator in OPS−M−1 and

|νAB |k0,γ
−M−1,p,0 ≤

M∑
j=0

C(p, j)‖Bj‖k0,γ
p |νA|k0,γ

−M−1,p0+j,0 +

M∑
j=0

C(p0, j)|νA|k0,γ
−M−1,p+j,0

+ C(p)|νB |k0,γ
−M−1,p,0|νA|

k0,γ
−M−1,p0,0

+ C(p0)|νB |k0,γ
−M−1,p0,0

|νA|k0,γ
−M−1,p,0 .

Therefore we now want to prove the following Lemma.

Lemma B.4. Let A∂−mx , m = 0, ...,M and Tk = 1 + Φk∂
−k
x , k = 1, ...,M + 3 such that

‖A‖k0,γ
p0+χ(M)+σ,≤ 1, where χ(M) is a constant and σ := σ(τ,N, k0). Then the following asymptotic

expansion holds

T−1
k A∂−mx = A∂−mx +

M−k∑
s=0

C(s)Ãk+s∂
−k−s
x + σA , (B.21)

for some suitable functions Ãk+s and constants C(s).The operator σA ∈ OPS−M−1.

Moreover we have

‖Ãk+s‖k0,γ
p ≤ C(p)

(
‖Φk‖k0,γ

p+s + ‖A‖k0,γ
p+s

)
, ∀k + s ≥ m,

|σA|k0,γ
−M−1,p,0 ≤ C(p,M)

(
‖A‖k0,γ

p+3M−k−2m+1 + ‖Φk‖k0,γ
p+(n−1)k+2M−4k

)
,

(B.22)

where n =
[
M
k

]
≥ 2 (see (B.17)).

Proof. We shall write C(·) for the constants. The proof follows by Lemmas B.3 and B.1, indeed

T−1
k A∂−mx = A∂−mx + Φk∂

−k
x A∂−mx +

M−2k−m∑
j=0

C(j)Φ̂j+2k∂
−j−2k
x A∂−mx + νkA∂

−m
x

= A∂−mx +

M−k−m∑
s=0

C(s)Ãm+k+s∂
−m−k−s
x + σA ,

where Ãm+k+s is a suitable matrix whose entries are some suitable functions. After reordering the terms

of the series, using (2.19) one arrive to the expansion defined in the Lemma. The first estimate follows by

Lemma B.3. Now we prove the second inequality in (B.22). Let ν2,A be the remainder of Φk∂
−k
x A∂−mx ,

then, by (2.28), (2.25) and (2.26)

|ν2,A|k0,γ
−M−1,p,0 ≤ C(p,M)‖A‖k0,γ

p+2M−k−2m .

Let νj,A be the remainder of Φ̂j+2k∂
−j−2k
x A∂−mx , for j = 0, ...,M − 2k −m, then by (2.28), (2.25) and

(2.26)

|νj,A|k0,γ
−M−1,p,0 ≤ C(p,M)‖A‖k0,γ

p+2M+j−2k−2m ≤ C(p,M)‖A‖k0,γ
p+3M−4k−3m , ∀j = 0, ...,M − 2k −m.

Using (2.27) , (2.25) and (2.26) we can estimate νkA∂
−m
x as follows:

|νkA∂−mx |k0,γ
−M−1−m,p,0 ≤ C(p,M)

(
‖Φk‖k0,γ

p+(n−1)k+2M−4k + ‖A‖k0,γ
p+M+1

)
.
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Finally we define σA := ν2,A +νj,A +νkA∂
−m
x . Then, by (2.27) and (2.29), the following estimate follows

|σA|k0,γ
−M−1,p,0 ≤C(p,M)

(
‖A‖k0,γ

p+2M−k−2m + ‖A‖k0,γ
p+3M−4k−3m + ‖Φk‖k0,γ

p+(n−1)k+2M−4k + ‖A‖k0,γ
p+M+1

)
≤C(p,M)

(
‖A‖k0,γ

p+3M−k−2m+1 + ‖Φk‖k0,γ
p+(n−1)k+2M−4k

)
.

This complete the proof of the Lemma.

Lemma B.5. Let R =
∑M
k=0 Ak∂

−k
x + ΣR, and Ts = (1 + Φs∂

−s
x ) , s = 0, ...,M + 3, such that

‖Ak‖p0+χ(M)+σ,≤ 1, where χ(M) is a constant and σ := σ(τ,N, k0). Then the following asymptotic

expansion holds

RTs =

M∑
k=0

C(k)Ãk∂
−k
x + Σ ,

for some suitable functions Ãk and constants C(k). The operator Σ ∈ OPS−M−1.

Moreover

‖Ãk‖k0,γ
p ≤ C(p)

(
‖Ak‖k0,γ

p + ‖Φs‖k0,γ
p+k

)
, |Σ|k0,γ

−M−1,p,0 ≤ C(p,M)
(
|ΣR|k0,γ

−M−1,p,0 + ‖Φs‖k0,γ
p+2M+1

)
.

Proof. By Lemma B.3, we have

RTs :=

M∑
k=0

Ak∂
−k
x +

M−s−m∑
k=0

Ak

(
M−s−k∑
m=0

C(m)(∂mx Φ)∂−s−k−mx + σk

)
+ ΣRTs

=

M∑
k=0

Ak∂
−k
x +

M−s−m∑
k=0

C(k)Âk+s∂
−s−k
x + σk,A + ΣRTs

where the functions Âs+k are defined as follows

Âs+k :=

s∑
j=0

C(j)∂jxΦ .

Then the estimate on the coefficient follows immediately, for the estimate on Σ we have to use (2.28)

(2.27), (2.25) and (2.26).

|σk,A|k0,γ
−M−1,p,0 ≤ C(p,M)

(
‖A‖k0,γ

p + ‖Φs‖k0,γ
p+2M−2s−k

)
≤ C(p,M)

(
‖A‖k0,γ

p + ‖Φs‖k0,γ
p+2M−2s

)
, ∀k = 0, ...,M − s−m.

|ΣRTs|k0,γ
−M−1,p,0 ≤ C(p,M)

(
|ΣR|k0,γ

−M−1,p,0 + ‖Φs‖k0,γ
p+M+1

)
.

Then the Lemma is proved.

B.2 The remainder R1

We can apply the general tools proved in Section B.1, to the operators defined in Chapter 7 and 8. In

this Section we prove that the operator R1 in (8.17) admits an asymptotic expansion and the estimates

given in Lemma 8.2.

As before we shall write C(·) for the constants. Moreover we shall assume that ‖v‖p0+χ(M)+σ ≤ 1,

for some constant χ(M) and for σ := σ(τ,N, k0).
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Lemma B.6. Let R̃1 defined in (8.7), Uπ0 in (8.10), W∂−1
x in (8.11), P in (8.13) and T1 in (8.2).

Then we have an asymptotic expansion of the form

R̃1 + Uπ0 + W∂−1
x + P =

M∑
j=0

µ

F (1)
j (x, θ) F

(2)
j (x, θ)

F
(3)
j (x, θ) F

(4)
j (x, θ)

 ∂−jx + µ

β1(x, θ,D) β2(x, θ,D)

β3(x, θ,D) β4(x, θ,D)

 (B.23)

where ∂0
x denotes one of the operators belonging to {aπ0 + b1 , a, b ∈ {0, 1}}. Fmj , m = 1, ..., 4 and

j = 1, ...,M are some suitable functions and βk ∈ OPS−M−1 for k = 1, ..., 4.

Moreover for all j = 0, ...,M and for all k = 1, ..., 4 we have

‖F (k)
j ‖

k0,γ
p ≤p,j ‖v‖k0,γ

p+j+5+σ (B.24)

|βk|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+2M+6+σ (B.25)

‖∂iF (k)
j [̂i]‖p1 ≤p1,j ‖̂i‖p1+j+5+σ (B.26)

|∂iβk [̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+2M+6+σ . (B.27)

Proof. Now we prove that we can decompose R̃1 +Uπ0 +W∂−1
x +P as in (B.23). First of all we consider

the remainder R̃1 defined in (8.7). It is clear that it can be written as

R̃1 = V0π0 + V1∂
−1
x + RT1 , V0 = C(1)Φ1 + 2B(1)(Φ)x ,

V1 = (ω · ∂θΦ1) + C(1)(Φ1)x + B(1)(Φ)xx .
(B.28)

Therefore we have the following estimate (recall that, by (8.2) and (8.15), we have ‖Φ1‖k0,γ
p ≤ ‖v‖k0,γ

p+1 )

‖V0‖k0,γ
p ≤p ‖v‖k0,γ

p+2 (B.29)

‖V1‖k0,γ
p ≤p ‖v‖k0,γ

p+3+σ . (B.30)

The linear operator L in (6.10) can be written in homogeneous component plus a regularizing remainder

(see (7.9) in Chapter 7). The remainder R can be written as in (7.22), therefore

RT1 =

M∑
j=0

µ

A(1)
j (x, θ) A

(2)
j (x, θ)

A
(3)
j (x, θ) A

(4)
j (x, θ)

 ∂−jx + µ

Op(σ1(x, θ, ξ)) Op(σ2(x, θ, ξ))

Op(σ3(x, θ, ξ)) Op(σ4(x, θ, ξ))

T1

+ µ

M∑
j=0

A(1)
j (x, θ) A

(2)
j (x, θ)

A
(3)
j (x, θ) A

(4)
j (x, θ)

 ∂−jx ◦ Φ1∂
−1
x

: =

M∑
j=0

µAj∂
−j
x + µΣT1 +

M∑
j=0

µAj∂
−j
x ◦ Φ1∂

−1
x ,

(B.31)

where Aj is the matrix that represents the j-th coefficient, and Σ is in OPS−M−1 and represents the

matrix whose entries are σi , i = 1, ..., 4. Note that we can estimate the first term as in (7.23). We now
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consider only the third term, that is

M−1∑
j=0

Aj∂
−j
x ◦ Φ1∂

−1
x =

M−1−k∑
j=0

Aj

(
M−j−1∑
k=0

C(k)(∂kxΦ1)∂−k−j−1
x + ν̃Ãs

)

=

M−1∑
s=0

C(s)Ãs+1∂
−s−1
x +

M∑
j=0

Aj ν̃Ãs

=

M−1∑
s=0

C(s)Ãs+1∂
−s−1
x + νÃ .

(B.32)

where

νÃ :=

M∑
j=0

Aj ν̃Ãs
=

M∑
j=0

A(1)
j (x, θ) A

(2)
j (x, θ)

A
(3)
j (x, θ) A

(4)
j (x, θ)

 ν̃Ãs
,

and

Ãs+1 :=

Ã(1)
s+1(x, θ) Ã

(2)
s+1(x, θ)

Ã
(3)
s+1(x, θ) Ã

(4)
s+1(x, θ)


with

M−1∑
s=0

Ã(1)
s+1(x, θ) Ã

(2)
s+1(x, θ)

Ã
(3)
s+1(x, θ) Ã

(4)
s+1(x, θ)

 ∂−s−1
x = µ

M−1−k∑
j=0

M−j−1∑
k=0

C(j, k)

A(2)
j ∂kxϕ

(1)
3 A

(1)
j ∂kxϕ

(1)
2

A
(4)
j ∂kxϕ

(1)
3 A

(3)
j ∂kxϕ

(1)
2

 ∂−k−j−1
x .

Note that

µ

M−1∑
j=0

M−j−1∑
k=0

C(j, k)A
(·)
j ∂

k
xϕ

(1)
(·) =

M−1∑
s=0

Ã
(·)
s+1 with Ã

(·)
s+1 = µ

s∑
k=0

C ′(k)A
(·)
k (∂s−kx ϕ

(1)
(·) ) . (B.33)

Then, using (2.36), (2.28) , (2.25) and (2.26) and (7.23), by the explicit definition of Ãs+1 given in (B.33),

we obtain that

‖Ãs+1‖k0,γ
p ≤p,s µ‖v‖k0,γ

p+s+5+σ , ∀s = 0, ...,M − 1 (B.34)

|ν̃Ãs
|k0,γ
−M−1,p,0 ≤p,M ‖Φ1‖k0,γ

p+j+2M−2j−2 , j = 0, ...,M − 1

≤p,M ‖Φ1‖k0,γ
p+2M−j−2 , j = 0, ...,M − 1

≤p,M µ‖v‖k0,γ
p+2M−1+σ

|νÃ|
k0,γ
−M−1,p,0 ≤p,M

M∑
j=0

(
µ|Aj |k0,γ

0,p,0|ν̃Ãs
|k0,γ
−M−1,p0,0

+ µ|Aj |k0,γ
0,p0,0

|ν̃Ãs
|k0,γ
−M−1,p,0

)
(B.35)

≤p,M µ‖v‖k0,γ
p+2M−1+σ . (B.36)

By (B.28), (B.31) and (B.32) we can rewrite R̃1 as

R̃1 :=

M∑
j=0

µ

Y (1)
j (x, θ) Y

(2)
j (x, θ)

Y
(3)
j (x, θ) Y

(4)
j (x, θ)

 ∂−jx + µ

Op(ν1(x, θ, ξ)) Op(ν2(x, θ, ξ))

Op(ν3(x, θ, ξ)) Op(ν4(x, θ, ξ))


:=

M∑
j=0

µYj∂
−j
x + µνY

(B.37)
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where we define,

νY :=ΣT1 + νÃ

Yj :=

Y (1)
j (x, θ) Y

(2)
j (x, θ)

Y
(3)
j (x, θ) Y

(4)
j (x, θ)

 ,

Y0 :=V0π0 + CA0 ,

Y1 :=V1 + CA1 + C ′µÃ1 ,

Ys :=µC ′(s)Ãs + C(s)As , for s = 2, ...,M .

By (2.28), (7.13), (B.36) , (2.25) and (2.26) we have i = 1, ..., 4

|νi|k0,γ
−M−1,p,0 ≤ |σi|

k0,γ
−M−1,p,0 + µ|σi ◦ Φ1∂

−1
x |

k0,γ
−M−1,p,0 + µ|νÃ|

k0,γ
−M−1,p,0

≤p,M ‖v‖k0,γ
p+M+6 + µ‖v‖k0,γ

p+2M−1 + µ‖v‖k0,γ
p+2M−1+σ

≤p,M ‖v‖k0,γ
p+2M+6+σ . (B.38)

Moreover, by (7.12) and (B.34) we have that, for evey j = 0, ...,M

‖Yj‖k0,γ
p ≤p,j ‖v‖k0,γ

p+j+5+σ . (B.39)

We have to study the commutator (8.9), we start by P defined in (8.13). Let i = 2, 3, then

Pi =

(
M−1∑
k=1

ck∂
−k
x

)
◦ ϕ(1)

i ∂−1
x +Op(r(ξ)) ◦ ϕ(1)

i ∂−1
x + ϕ

(1)
i ∂−1

x ◦Op(r(ξ))

+ ϕ
(1)
i ∂−1

x ◦

(
M−1∑
k=1

ck∂
−k
x

)
.

(B.40)

We study the first term(
M−1∑
k=1

ck∂
−k
x

)
◦ ϕ(1)

i ∂−1
x =

M−1−β∑
k=1

ck

M−k−1∑
β=0

(∂βxϕ
(1)
i )∂−1−β−k

x + σ
(k)
i (ξ, x,D)


=

M−2∑
s=0

csϕ̃
(1)
i,s+2∂

−2−s
x + σ

(k)
i (ξ, x,D)

(B.41)

where i = 2, 3 and ϕ̃
(1)
i,s+2 :=

∑s
k=0 ck∂

k
xϕ

(1)
i , with ck ∈ R. We recall that ck are the real constants

generated by the asympotic expansion of Λ (see (7.3)) . Using (2.28), , (2.25) and (2.26) for i = 2, 3 and

by (8.15), we have

|σ(k)
i |

k0,γ
−M−1,p,0 ≤p,M ‖ϕ

(1)
i ‖

k0,γ
p+2M−k−2 ≤p,M ‖v‖

k0,γ
p+2M−k−1

and

‖ϕ̃(1)
i,s+2‖

k0,γ
p ≤p,s ‖ϕ(1)

i ‖
k0,γ
p+s s = 0, ...,M − 2 . (B.42)

Hence for all k = 0, ...,M − 1 ,i = 2, 3 we have

|σ(k)
i (ξ, x, θ)|k0,γ

−M−1,p,0 ≤p,M ‖ϕ
(1)
i ‖

k0,γ
p+2M−2 ≤p,M ‖v‖

k0,γ
p+2M−1 . (B.43)
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Note that the last term in (B.40) can be written as ϕ
(1)
i

∑M−2
k=0 ck+2∂

−k−2
x , hence we do not lose derivatives

on the coefficients. The other two terms in (B.40) are in OPS−M−1, then, by (2.28) , (2.25) and (2.26),

we can estimate they

|Op(r(ξ)) ◦ ϕ(1)
i ∂−1

x |
k0,γ
−M−2,p,0 ≤p,M ‖ϕ

(1)
i ‖

k0,γ
p+M+1 ≤p,M ‖v‖

k0,γ
p+M+2

|ϕ(1)
i ∂−1

x ◦Op(r(ξ))|
k0,γ
−M−2,p,0 ≤p,M ‖ϕ

(1)
i ‖

k0,γ
p ≤p,M ‖v‖k0,γ

p+1 .
(B.44)

We now consider U, and W defined in (8.10) and (8.11). By the explicit definition we have that U,

and W satisfy

‖U‖k0,γ
p ≤p µ‖v‖k0,γ

p+3 , ‖W‖k0,γ
p ≤p µ‖v‖k0,γ

p+4 . (B.45)

In addition, using (B.41) we can define

E :=W∂−1
x + Uπ0 + P

=

M∑
j=0

µ

 0 X
(2)
j (x, θ)

X
(3)
j (x, θ) 0

 ∂−jx + µ

 0 Op(ν̃2(x, θ, ξ))

Op(ν̃3(x, θ, ξ)) 0


:=

M∑
j=0

µXj∂
−j
x + µνX ,

(B.46)

where

X0 := U0 , ∂0
x := π0

X1 := W

Xj :=

 0 cj(ϕ̃
(1)
2 )j + c̃j(ϕ

(1)
2 )j

−cj(ϕ̃(1)
3 )j − c̃j(ϕ(1)

3 )j 0

 , ∀j = 2, ...M − 1

Op(ν̃i) = σ
(k)
i +Op(r(ξ)) ◦ ϕ(1)

i ∂−1
x + ϕ

(1)
i ∂−1

x ◦Op(r(ξ)) , i = 2, 3

then, by (B.45), for i = 2, 3 we have

‖X(i)
0 ‖k0,γ

p ≤p ‖v‖k0,γ
p+3 , ‖X(i)

1 ‖k0,γ
p ≤p ‖v‖k0,γ

p+4

and for j = 2, ...M by (B.42) we have

‖X(i)
j ‖

k0,γ
p ≤p,j ‖v‖k0,γ

p+j−1 , |ν̃i|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+2M+1 . (B.47)

Finally by (B.37) and (B.46) we define

R̃1 + E :=

M∑
j=0

µ

F (1)
j (x, θ) F

(2)
j (x, θ)

F
(3)
j (x, θ) F

(4)
j (x, θ)

 ∂−jx + µ

Op(β1(x, θ, ξ)) Op(β2(x, θ, ξ))

Op(β3(x, θ, ξ)) Op(β4(x, θ, ξ))


:=

M∑
j=0

µFj∂
−j
x + µβ ,

(B.48)

where Fj = Yj + Xj for all j = 0, ...,M , and β = νY + νX :=

Op(β1(x, θ, ξ)) Op(β2(x, θ, ξ))

Op(β3(x, θ, ξ)) Op(β4(x, θ, ξ))

 ∈
OPS−M−1. By (B.47), (B.45), (B.47), (B.39) we can prove (B.24).
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In order to prove (B.25) we have to use (B.44), (B.43) (B.47) and (B.38). The estimates (B.26) and

(B.27) follows by the definition of Fj and β in (B.48) (recall also the estimates (7.25) ).

Thanks to Lemma B.3 we can write the inverse of the operator T1 as follows

Lemma B.7. The inverse of the operator T1 defined in (8.2) admits the following asymptotic expansion

T−1
1 = 1 + Φ1∂

−1
x +

M−2∑
k=0

C(k)(Φ̃1)k+2∂
−k−2
x + ν1 , (B.49)

where

(Φ̃1)k+2 =

(Φ̃1)
(1)
k+2 (Φ̃1)

(2)
k+2

(Φ̃1)
(3)
k+2 (Φ̃1)

(4)
k+2

 ν1 =

ν(1)
1 ν

(2)
1

ν
(3)
1 ν

(4)
1


are some suitable matrices and pseudo-differential operators in OPS−M−1.

Moreover, for k = 0, ..,M − 2 and for all i = 1, ..., 4 we have the following estimates

‖(Φ̃i)k+2‖k0,γ
p ≤p,k µ‖v‖k0,γ

p+k+1+σ (B.50)

|ν1|k0,γ
−M−1,p,0 ≤p,M µ‖v‖k0,γ

p+3M−6+σ . (B.51)

Proof. By Lemma B.3 and the explicit definition of Φ1 in (8.2) and (8.15) the Lemma follows.

Lemma B.8. Let T1 in (8.2), and consider its decomposition defined in (B.49). Let E be the operator

defined in (B.46) and R̃1 defined in (B.37), so that E+R̃1 can be written as in (B.48). Then the following

asymptotic expansion holds

T−1
1 (E + R̃1) =

M∑
j=0

µ

H(1)
j (x, θ) H

(2)
j (x, θ)

H
(3)
j (x, θ) H

(4)
j (x, θ)

 ∂−jx + µ

δ1(x, θ,D) δ2(x, θ,D)

δ3(x, θ,D) δ4(x, θ,D)


:=

M∑
j=0

µHj∂
−j
x + µδ ,

(B.52)

for some suitable functions Hj and δ ∈ OPS−M−1.

Moreover for s = 1, ..., 4 and ∀j = 0, ...,M

‖H(s)
j ‖

k0,γ
p ≤p,j ‖v‖k0,γ

p+j+5+σ (B.53)

|δ1|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+3M+6+σ (B.54)

‖∂iH(s)
j [̂i]‖p1 ≤p1,j ‖̂i‖p1+j+5+σ (B.55)

|∂iδs [̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+3M+6+σ . (B.56)

Proof. By (B.49), (B.48) and Lemma B.4 we can write

T−1
1 (E + R̃1) =

(
1 + Φ1∂

−1
x +

M−2∑
k=0

C(k)(Φ̃1)k+2∂
−k−2
x + ν1

)µ M∑
j=0

C(j)Fj∂
−j
x

+ µT−1
1 β

=

M∑
j=0

C(j)µFj∂
−j
x +

M−1∑
j=0

C(j)µF̃j+1∂
−j−1
x +

M−2−j∑
k=0

M−2−k∑
j=0

µC(j)F̂k+2+j∂
−k−2−j
x

+ µσj,F + µT−1
1 β,
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where

F̃j+1 = Φ1

j∑
s=0

C(s)∂sxFj−s , F̂k+2+j = (Φ̃1)j+2

j∑
m=0

C(m)∂mx Fk−m

and σj,F collects all the terms in OPS−M−1 generated by the composition (see Theorem 2.5 ).

We define δ := σj,F + T−1
1 β . By riorganizing the series above we arrive to (B.52). Hence, by Lemma

B.4 and (B.24) we have

‖F̃j+1‖k0,γ
p , ‖F̂k+2+j‖k0,γ

p ≤p,j µ‖v‖k0,γ
p+j+5+σ ,

that, also by (B.24) proved (B.53). The estimate B.54 follows by (B.25) and Lemma B.4. The estimates

(B.55) and (B.56) follows by Lemma B.6.

Lemma B.9. Let T1 be th operator in (8.2) and let C(2) the matrix of functions defined in (8.4). Then

the following asymptotic expansion holds:

(T−1
1 − 1)C(2)∂1

x = µ2
M∑
j=0

F̌ (1)
j F̌

(2)
j

F̌
(3)
j F̌

(4)
j

 ∂−jx + µ2

β̃1 β̃2

β̃3 β̃4

 ,

for some suitable functions and pseudo-differential operators in OPS−M−1. Moreover, for all j = 0, ...,M

and s = 1, ..., 4

‖F̌ (s)
j ‖

k0,γ
p ≤p,j ‖v‖k0,γ

p+j+1+σ (B.57)

|β̃s|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+2M−2+σ (B.58)

‖∂iF̌ (s)
j [̂i]‖p ≤p,j ‖̂i‖p+j+1+σ (B.59)

|∂iβ̃s [̂i]|−M,p,0 ≤p,M ‖̂i‖p+2M−2+σ . (B.60)

Proof. By Lemma B.7, we have

(T−1
1 − 1)C(2)∂1

x = Φ1∂
−1
x C(2)∂x +

M−1∑
j=0

C(j)Φ̃j+2∂
−j−2
x C(2)∂−j−1+s

x + β̃

=

M∑
k=0

C(k)F́k∂
−k
x +

M−1∑
j=0

C(j)F̄j+1∂
−j−1
x β̃

where

F́k = Φ1∂
k
xC(2) , F̄j+1 = Φ̃j+2

k∑
s=0

C(s)∂sxC
(2) ,

and β̃ collects all the terms in OPS−M−1 generated by the composition (see Theorem 2.5 ). Therefore

we can define

F̌0 = F́0 , F̌k = F́k + F̄k−1 , ∀k > 0.

The estimate follows by (2.27), (2.28) and (8.4)
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In conclusion, by Lemmas B.8 and B.9 we can expand the remainder R1 in (8.17) as follows

R1 := µ

M∑
k=0

A(1)
k A

(2)
k

A
(3)
k A

(4)
k

 ∂−kx + µ

ΣR1,1 ΣR1,2

ΣR1,3 ΣR1,4

 (B.61)

where ∂0
x that denotes one of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}},A(1)

k A
(2)
k

A
(3)
k A

(4)
k

 :=

F̌ (1)
k F̌

(2)
k

F̌
(3)
k F̌

(4)
k

+

H(1)
k H

(2)
k

H
(3)
k H

(4)
k

 , k = 0, ...,M

and ΣR1,1 ΣR1,2

ΣR1,3 ΣR1,4

 :=

β̃1 β̃2

β̃3 β̃4

+

δ1(x, θ,D) δ2(x, θ,D)

δ3(x, θ,D) δ4(x, θ,D)

 ∈ OPS−M−1.

Moreover the estimates in Lemma 8.2 holds.

B.3 The remainder R2

We now want to prove the expansion and the estimates given in Lemma 8.4 for the remainder R2.

For all the section we shall assume that ‖v‖k0,γ
p0+χ(M)+σ ≤ 1, where χ(M) ∈ R is a constant and

σ := σ(τ,N, k0).

Lemma B.10. Let T−1
2 be the inverse of the operator T2 defined in (8.20). Let R̃2 in (8.25) and P2 in

(8.28) (see also (8.29) and (8.31)).Then the following asymptotic expansion holds:

T−1
2 (R̃2 + P2) =

M∑
j=0

µ

H(1)
k H

(2)
k

H
(3)
k H

(4)
k

 ∂−kx + µ

δ1(x, θ,D) δ2(x, θ,D)

δ3(x, θ,D) δ4(x, θ,D)


:=

M∑
k=1

µHk∂
−k
x + µδ ,

for some suitable functions and pseudo-differential operators in OPS−M−1. Moreover, for all s = 1, ..., 4

and for all k = 1, ...,M

‖H(s)
k ‖

k0,γ
p ≤p,k ‖v‖k0,γ

p+2k+5+σ , k = 0, ...,M (B.62)

|δ|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+4M+6+σ (B.63)

‖∂iH(s)
k [̂i]‖p1

≤p1,k ‖̂i‖p1+2k+5+σ , k = 0, ...,M (B.64)

|∂iδ[̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+4M+6+σ . (B.65)

Proof. The proof is similar to the one in the previous Section and it is omitted. It follows by Lemmas

B.3 and B.4.

Lemma B.11. Let T2 in (8.20), and C(3) in (8.22). Then the following asymptotic expansion holds

(T−1
2 − 1)C(3)∂x = µ2

M∑
j=0

F̃ (1)
j F̃

(2)
j

F̃
(3)
j F̃

(4)
j

 ∂−jx + µ2

β̃1 β̃2

β̃3 β̃4

 = µ2
M∑
j=0

Fj∂
−j
x + µ2β ,
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for some suitable functions and pseudo-differential operators in OPS−M−1. Moreover, for s = 1, ..., 4

and for j = 0, ...,M

‖F (s)
j ‖

k0,γ
p ≤p,j ‖v‖k0,γ

p+j+2+σ

|β̃|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+M+1+σ

‖∂iF (s)
j [̂i]‖p1 ≤p,j ‖̂i‖

k0,γ
p1+j+2+σ

|∂iβ̃ [̂i]|−M−1,p1,0 ≤p,M ‖̂i‖
k0,γ
p1+M+1+σ .

Proof. The proof follows by Lemma B.5, and by the explicit definition of C(3) and Φ3 given in (8.22) and

(8.31) .

In conclusion by Lemmas B.11 and B.10 the remainder R2 in (8.33) as the following asymptotic

expansion

R2 := µ

M∑
k=0

(A0
k)(1) (A0

k)(2)

(A0
k)(3) (A0

k)(4)

 ∂−kx + µ

ΣR2,1 ΣR2,2

ΣR2,3 ΣR2,4

 (B.66)

where ∂0
x that denotes one of the operator belonging to {aπ0 + b1 , a, b ∈ {0, 1}} and(A0

j )
(1) (A0

j )
(2)

(A0
j )

(3) (A0
j )

(4)

 :=

F̃ (1)
j F̃

(2)
j

F̃
(3)
j F̃

(4)
j

+

H(1)
j H

(2)
j

H
(3)
j H

(4)
j

 , j = 0, ...,M

ΣR2,1 ΣR2,2

ΣR2,3 ΣR2,4

 :=

β̃1 β̃2

β̃3 β̃4

+

δ1(x, θ,D) δ2(x, θ,D)

δ3(x, θ,D) δ4(x, θ,D)

 .

(B.67)

Moreover the estimates in Lemma 8.4 holds.

B.4 Smoothing remainders along the block symmetrization

We now want to study the loss of derivatives that we have on the coefficients obtained in Section 8.2.2

during the block symmetrization. In order to give an explicit estimate of the coefficients we want to iterate

Lemmas 8.2 and 8.4. The coefficients of the remainder at the n−th step (of the block symmetrization),

depend on the coefficients of the (n− 1)-th step. Hence for convenience we provide different numeration

of the coefficients, e.g. we define A0
k the matrix coefficient of the homogeneous terms ∂−kx at the “step

0”, for k = 0, ...,M (see also R2 in (8.35) or above).

By Section B.1 we have that every time that we are considering the remainder, we are allowed to

write it as the sum of homogeneous terms plus a pseudo-differential operator in OPS−M−1. In addition,

∂0
x shell denote one of the operators belonging to {aπ0 + b1 , a, b ∈ {0, 1}}.

We assume that ‖v‖k0,γ
p0+χ(M)+σ ≤ 1 where χ(M) ∈ R is a constant and σ := σ(τ,N, k0).
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We start with L2 defined in (8.21), where the remainder R2 is written as in Lemma (8.4). Therefore

the operator L2 is given by,

L2 = Ω · ∂θ + T(D) + C(3)∂x + µ

M∑
j=0

A0
j∂
−j
x + µΣR2

. (B.68)

We consider the first transformation given in Lemma 8.5, that is T3 = 1 + Φ3∂
−3
x . By Lemmas B.5

and B.4, the conjugation of L2 with T3 can be written as an homogeneous part plus a remainder in

OPS−M−1.

Moreover for every matrix A =

A(1) A(2)

A(3) A(4)

 we define

(A)D :=

A(1) 0

0 A(4)

 .

Lemma B.12. Let L2 and T3 as above, with

ϕ
(2)
3 =

2
√

2√
15
ε−2(A0

0)(2) , ϕ
(3)
3 = −2

√
2√

15
ε−2(A0

0)(3).

Then

L3 := T−1
3 L2T3 := Ω · ∂θ + T(D) + C(3)∂x + µ(A0

0)D + µ

M−1∑
j=0

A
(1)
j+1∂

−j−1
x + µΣR3

. (B.69)

Moreover

‖Φ3‖k0,γ
p ≤p µ‖A0

0‖k0,γ
p ≤p µ‖v‖k0,γ

p+5+σ , ‖(A0
0)D‖k0,γ

p ≤p ‖v‖k0,γ
p+5+σ (B.70)

‖A1
1‖k0,γ
p ≤p ‖A0

1‖k0,γ
p ≤p ‖v‖k0,γ

p+6+σ , ‖A1
2‖k0,γ
p ≤p ‖A0

2‖k0,γ
p ≤p ‖v‖k0,γ

p+9+σ ,

‖∂iA1
1 [̂i]‖p1 ≤p1 ‖̂i‖p1+6+σ , ‖∂iA1

2 [̂i]‖p1 ≤p1 ‖̂i‖p1+9+σ (B.71)

‖A1
j‖k0,γ
p ≤p,j ‖v‖k0,γ

p+3j+5+σ , ‖∂iA1
j [̂i]‖p1

≤p1,j ‖v‖p1+3j+5+σ j = 3, ...,M (B.72)

|σ3|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+5M+6+σ , |∂iσ3 [̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+5M+6+σ . (B.73)

Proof. The estimates (B.70) follow immediately by (8.36), with k = 0. Moreover, by the explicit definition

of the remainder R̃k in (8.46) (that is the collection of all the homogeneous terms and symbols of order

higher then −k), with k = 0, and by (8.44) we have that

A1
1 = A0

1 + c1(Φ3)x , A1
2 = A0

2 + c2(Φ3)xx , c1, c2 ∈ R . (B.74)

Therefore the estimate (B.71) follows by (8.36) and (B.74).

Note that A1
j , j = 3, ...,M are linear combination of the derivatives of C(3),A0

j , j = 0, ...,M , (see

(8.46)), hence, iterating (8.19) and (8.36) we can prove the estimate (B.72) and (B.73).
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We now argue inductively. Suppose that after k transformations we have

Lk+2 :=T−1
k+2Lk+1Tk+2

:=Ω · ∂θ + T(D) + C(3)∂x + µ(A0
0)D + µ(A1

1)D∂−1
x + µ(A2

2)D∂−2
x

+...+ µ(Ak−1
k−1)D∂−k−1

x + µ

M−k∑
j=0

(Ak
j+k)∂−k−jx + µΣRk+2

.

(B.75)

In addition suppose that the following estimates hold:

‖(As
s)
D‖k0,γ

p ≤p,s ‖v‖k0,γ
p+s2+5+σ , ‖∂i(As

s)
D [̂i]‖p1

≤p1,s ‖̂i‖p1+s2+5+σ , 0 ≤ s ≤ k − 1

‖Ak
k‖k0,γ
p ≤p,k ‖Ak−1

k ‖k0,γ
p ≤p,k ‖v‖k0,γ

p+k2+5+σ , ‖∂iAk
k [̂i]‖p1

≤p1,k ‖̂i‖p1+k2+5+σ

‖Ak
j ‖k0,γ
p ≤p,j ‖v‖k0,γ

p+(k+1)j+5+σ , ‖∂iAk
j [̂i]‖p1

≤p1,j ‖̂i‖p1+(k+1)j+5+σ , j = k + 1, ...,M

|ΣRk+2
|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+(k+1)M+3M+6+σ , |∂iΣRk+2

[̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+(k+1)M+3M+6+σ .

(B.76)

Now we want to prove that the same estimate holds for Lk+3.

Lemma B.13. Let Lk+2 in (B.75), and Tk+3 = 1 + Φk+3∂
−k−3
x , as in (8.37) with

ϕ
(2)
k+3 =

2
√

2√
15
ε−2(Akk)(2) , ϕ

(3)
k+3 = −2

√
2√

15
ε−2(Akk)(3) .

Then

Lk+3 :=T−1
k+3Lk+2Tk+2

=Ω · ∂θ + T(D) + C(3)∂x + µ(A0
0)D + µ(A1

1)D∂−1
x + µ(A2

2)D∂−2
x + ...+ µ(Ak−1

k−1)D∂−k−1
x

+µ(Ak
k)D∂−kx + µ

M−k−1∑
j=0

Ak+1
j+k+1∂

−k−j−1
x + µΣRk+3

.

(B.77)

Moreover the following estimates hold

‖Φk+3‖k0,γ
p ≤p µ‖v‖k0,γ

p+k2+5+σ

‖Ak+1
k+1‖

k0,γ
p ≤p,k ‖Ak

k+1‖k0,γ
p ≤p,k ‖v‖k0,γ

p+(k+1)k+4+σ ,

‖∂iAk+1
k+1 [̂i]‖p1 ≤p1,k ‖̂i‖p1+(k+1)k+4+σ

‖Ak
j ‖k0,γ
p ≤p,j ‖v‖k0,γ

p+(k+2)j+4+σ ,

‖∂iAk
j [̂i]‖p1

≤p1,j ‖̂i‖p1+(k+2)j+4+σ , j = k + 2, ...,M

|ΣRk+3
|k0,γ
−M−1,p,0 ≤p,M ‖v‖

k0,γ
p+(k+2)M+3M+4+σ ,

|∂iΣRk+3
[̂i]|−M,p1,0 ≤p1,M ‖̂i‖p1+(k+2)M+3M+4+σ .

(B.78)

Proof. The Lemma follows by Lemmas B.1, B.4, B.5 and by (B.76).
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