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Introduction

Main result

This thesis concerns the existence and the stability of small amplitude quasi-periodic solutions for the

Hamiltonian PDEs
On = —0yu— $e203u — Ze03u — €20, (nu) — £*92(ndyu)
Ou = —0,m — L0, (u?) +£*10,(0,u)?,

which are the equations of motion derived by the following Hamiltonian
L( 2, .2 1 2 2 a2 22 2
H= 5 lu +n°+e fg(azu) +nut | +¢€ B(atu) — (Ogu)n | ) dx. (2)
T

The equations arise from an approximate model derived by the water waves equations of hydrody-
namics, in a regime of small amplitude solutions with long wavelength. This model has been suggested to
us by Walter Craig [26], and we present its derivation in Appendix There is a large literature regarding
such approximate models, for which we refer to [27], [30], [29] and references therein.

Very recently the existence of small amplitude quasi-periodic solutions for the full water waves equa-
tions has been proved by M. Berti and R. Montalto in [19]. The goal of this thesis is to follow the
same approach in order to construct quasi-periodic solutions for the system . Actually many of the
techniques that we shall employ are very general and in principle can be adapted to other models in
hydrodynamics.

We recall that a time quasi-periodic function with values in a phase space §, is a function defined
Vt € R of the form

2(t)=Zwt)eH, TN 30— Z(0) €9, (3)

where the function Z is continuous, TV := (R/27Z)", and the frequency vector w := (wy,...,wy) is
rationally independent, namely w -1 # 0, VI € ZN \ {0}.
For the equations we consider as phase space the space of 27-periodic, real functions with zero

average in the space variable, namely
(n,u) € HY (T, R) x HY (T, R), (4)

iv
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where
i _ 2 2 /12
HE (T, R) = g= Zgjew 295 =9-55 90=0, lgllzzr, r) = Z l951% (5)™"
JEZ J€Z
Note that we are allowed to consider a phase space of functions with zero average since this is invariant

under the evolution of . Moreover, the subspace consisting of functions (7, u) where 7 is even and w is

odd in the spatial variable,
n(@) =n(-z), u(x)=—-u(-z), ()
is also invariant under the evolution of . Therefore for simplicity we shall consider functions in

that satisfy .

We endow the phase space introduced above with the symplectic form
2m
n(x x x x
wl (@) (@ ::/ o (7 () o
0

where (-, -) is the standard R? scalar product and J~1! is the symplectic matrix given by

0o ot
J = S (7)
ot 0
Notice that, given a function g = ZjEZ gjeij‘” such that gy = 0, i.e. g has zero average, then
8719 _ Z lg'eijm
xT . 'L] J ?
JEZ

namely 0, ! is the periodic primitive of the function g. The symplectic form in (@ is explicitly given by

T 1(z 27
w (") (")) = [ 10 (o) + @ u(wms ()] e

w(@) ) \w (@)

The system can be rewritten in the form (see Appendix |A.1))

U] 0 0O,
Oy + JVH(n,u) =0, where J = (8)
U 0, 0
and V denotes the L2-gradient , or equivalently
n n
O =Xp : (9)
u u

Another symmetry of the equations is the reversible structure. Indeed the equations are

reversible with respect to the involution

p: (n’u) = (77’ _u)v (10)
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in the sense that, the Hamiltonian vector field Xy in @ satisfies
Xgop=—-poXpy.
Equivalently, the Hamiltonian H in is even in u, i.e.
Hop=H, H(nu)=H(mn —u). (11)

This reversible property implies that if (n(¢),u(t)) is a solution of (1)), then p(n(—t), u(—t)) is also a

solution. As a consequence it is natural to look for “reversible solutions” of satisfying

(ﬂ(—t)»u(—t)) = p(n(t),u(t)), Le. ﬂ(ff7 _t) = n(xvt)7 u(x, _t> = —u(x,t), VeeT (12)

namely 7 is even in time and w is odd in time.
Since we are looking for small amplitude solutions, the dynamics of the linearized system at (n,u) =
(0,0) plays an important role. At least in a neighborhood of the origin, the Hamiltonian can be seen

as a perturbation of the quadratic Hamiltonian
_ W o €2 o4
L(n,u) = /T <2 + Cll gui + 15ufm> dx . (13)

The corresponding linear system at zero is

Om = —0yu — +e20%u — 2£%00u
Ed 3¢ 0z 15¢ Yz (14)
8tu = —0g7).
The solutions of the linear system (14)), satisfying the conditions () and (12), are
n(z,t) = Z a; cos(wj;t) cos(jz), u(x,t) = Z a;w; sin(w;t) sin(jz) (15)
j>1 j>1
for parameters a; € R, where the linear frequencies of oscillations w; are
2 . 1., . :
w; = wj(e) = E5436 — 55234 +42, j>1. (16)

Notice that w; are real for all j € IN (see Remark [L.2)). Hence all the solutions of the system
are either periodic, quasi-periodic or almost perdiodic in time.

The main result of the thesis is that most of the quasi-periodic solutions of the linear system
can be continued to quasi-periodic solutions of the nonlinear Hamiltonian system for most values of
the parameter ¢ € [e1,€2].

Let us state precisely our main result. We arbitrarily fix a finite subset S C Ny := {1,2, ...} (where
Ny := IN\ {0}), called tangential sites, and we consider the linear solutions of whose Fourier modes
are supported in S, namely

n(t,xz) = Z V/Tjcos(wjt) cos(jx), u(t,x) = Z V/Tjwjsin(wjt) sin(jz), r; > 0. (17)

JES JES
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In Theorem |1| below we prove that for most values of the parameter ¢ € [e1, 2] and for p sufficiently
small there exist quasi-periodic solutions g(z,w™t) = (n, u)(z,w>t) of (1), with frequency vector w™ :=
(w§®)jes, which are p-close to the solutions of . Let N := S| denote the cardinality of S. The
function g(x,0) = (n,u)(z,0) with § € TV belongs to the Sobolev spaces of (27)!*" — periodic real

functions

H? (TN R?) = {g = (n,u) : n,u € H"}
where

HP := HP(T'*N R)

o (18)
=q0= 2 e =g Delhi= D0 el () < oo
(1,j)ezN+1 (1,j)ezN+1
and (I, 5) := max{L, [I], 5]} and || :== max;=1 _n |l;|. For
N+1
prO:{; :|+1€]N (19)

the Sobolev spaces HP(TN*1) ¢ L>°(TN*1) are an algebra with respect to the product of functions. In

the Thesis we shall consider pg fixed.

Theorem 1. Fiz finitely many tangential sites S := {0 < j; < ... < jn, jr € N}. There exists p > po,
po € (0,1) such that for every |r| < pd,r := (rj)jes there exists a Cantor like set G C [e1,€2] with

asymptotically full measure as v — 0, i.e.
li =gg9 —
lim [G] = €2 — 1
such that for all € in G the system has a reversible quasi-periodic solution
g, w™t) = ((z,w1), u(z, w™t))

with Sobolev regularity (n,u)(z,0) € HP(T x TN, R?) where n is even in the spatial variable, and u is

odd, of the form

n(x,w>t) = ZjGS \/ﬁcos(w;?ot) cos(jzx) + o(\/W) (20)
T,w™t) = Zjes \/ﬁsin(w;ot) sin(jz) + o(m)

u

with frequency vector w™ = (w°());es € RY that is Diophantine and satisfies wi®—wj(e) = 0, Vj€ES,

(
J
as v — 0. The terms o(\/|r]) are small in HP(TN x T,R?) . In addition these quasi-periodic solutions

are linearly stable.

Theorem [I] will be deduced by Theorem and Lemma below. In order to prove Theorem
we use a Nash-Moser scheme (see Chapter . The Nash-Moser iterative procedure selects many values
of the parameter € € [e1, 2], giving rise to the quasi-periodic solutions defined for all times. By

a Fubini-type argument it also results that, for most values of € € [g1,¢e2], there exist quasi-periodic
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solutions of for most values of the amplitudes |r| < p2. In order to prove Theorem [1] we will split
the phase space into two different subspaces, a finite dimensional one, which we shall call Hs and its
orthogonal, called Hg (see (L.32)). On the finite dimensional subspace Hs we will describe the dynamics
by introducing the action-angle variables (see Chapter [1f).

The quasi-periodic solutions g(w™t) = (n(w*t), u(w>t)) found in Theorem|[I|are linearly stable. More

precisely this means that there exist symplectic coordinates around each invariant torus,
(qpay?’z) € TN X IRN X Hé_a
see (b.27)), in which the Hamiltonian reads

Wy + (K, 2) e, + 5 Kooy -3+ 3 (Koo(@)z peeyy + Ks,2), (21)

where K>3 collects all the terms of order at least 3 in (y,z). In these coordinates the quasi-periodic

solutions g(w>t) read t — (w™t,0,0), and the corresponding linearized equations are

¢ = Kao(w™t)[y] + KT (w1)[2]
y =0
z = JKOQ(OJOOt)[Z] + JKll(woot)[y] .

The actions y(t) = yo do not evolve in time and the third equation reduces to the linear PDE
z2 = JKoo(w™t)[2] + K11 (w™1)[y]. (22)

The operator Koz (explicitly given in (6.1))) is the restriction to the infinite dimensional subspace Hg of
the linearized system (see ) up to a finite dimensional remainder (see Lemma .

In Chapters we prove the existence of a bounded and invertible “symmetrizer” map W, (see
, (9.102)) such that for all # € TV and under the change of variable

2= Waozeo, 2eo:=(z(1),2z?)

the equation transforms into the diagonal system

£ (W)

2) ’

Dizoe = 1D+ Fool™). Fr6™t) = Woo(w™t) LK lin] = )
foo (W™t)

(23)

where, if we define Zg := Z \ {0} := S* U (S*)¢ with S* := SU (-S) (see (1.31))), the operator D, can

be written as follows
D, 0 ]
D = v Do i=diagjes+){A"}, A7 €R,
0 —D

with Do, a Fourier multiplier operator that can be written in terms of (see (10.43]))

2, 1., 00 | oo s c .00 o0
A7 323\/158434_35232+1+m1 JHr, JET), =%, myr; €R, (24)
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and, for some a > 0,

m® =0(u"), sup [95r5°| =O0(u%), VO < [k| < ko
JE(S*)e

(see (4.8), (4.9) and (4.13))), where ko € IN is a constant fixed once and for all in Chapter [3| (see Remark
[3.6), depending only on the linear frequencies w;(¢) defined in (L6).

The A7 are the Floquet exponents of the quasi-periodic solution. As we shall prove in Chapters [7}{9)

the solutions z., := (zg),zg)) satisfy zg))(—x) =z (). This condition, in the Fourier basis, reads

Zoo,j = (zg) > 2(027 ;). Hence it suffices to solve the first equation in ([23). Furthermore the system

reduces to the infinitely many decoupled scalar equations
1 , 1 1 .
atzgo),j = —z)\‘;ozgo)’j + f((x))’j(woot), Vi € (S%)°.
By variation of constants the solutions are

1 —iA® 1
2 (8) = cjem ™+ gl (1),

00,7

where

1) 00,4,1€ - +ye

(t) := _ S . 2

Qe (1) E ™ TEA%) Vj € (S7) (25)
lezZN J

Since the first order Melnikov conditions (see (4.10)) hold, the denominators of qg) ;(t) in are non
zero, so the functions qgi) j (t) are well defined. By the property of W, in (9.101)), recalling we get

| foo (W) o (1, ) x 7 (T,) < Clyol-
As a consequence, using also the properties of Wo, and W in (9.101)) and (9.102), the Sobolev norm
of the solution of with initial condition 2,,(0) € HP(T,), with pg < p < p, satisfies
200 ()| 27 (0, x 115 (1,) < C ) (|y0] + 1200 (0) || 5 (1) x 5 (1,))

for all ¢ € R, which proves the linear stability of the torus. The above inequality can be translated in the

original coordinates (7, u), which are related to the coordinates z by the change of variables A in (|1.22))
and Z in ([7.15)), as

(5 w) (O o1 (1, ) x mp-1(1,) <5 (00> w0) || F15 (T, ) X FE (T, -

In conclusion, we are able to prove both the existence and the linear stability of the quasi-periodic

solutions of equations .

Historical preface

Since the 50's the so called KAM (Kolmogorov [46]- Arnold [2]- Moser [53], [64]) theory played a key réle

in the knowledge of the dynamical behavior of “non integrable” Hamiltonian systems. The first results
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proved that, in a finite dimensional integrable Hamiltonian system subject to a “small” perturbation,
under some non degeneracy assumptions, the quasi-periodic orbits form an asymptotically full-measure
set of the phase space. The quasi-periodic solutions of the perturbed system are close to the quasi-periodic
solutions of the unperturbed one.

The KAM theory is an important extension of the simpler problem of the existence of periodic
solutions, that dates back to Poincaré in his studies of celestial mechanics [56]. Bifurcation theory on
periodic solutions relies on the implicit function theorem.

On the contrary, in the search of quasi-periodic solutions, a serious non trivial problem arises, which
prevents the use of the implicit function theorem: in the Fourier series expansion of the approximate
solutions appears at the denominators the quantities w-1, | € Z~. For periodic solutions w-l = wl, | € Z
and, if w # 0, the set {wl : | € Z \ {0}} is at a positive distance from zero. On the other hand if

we€ RN, N > 2, is a rationally independent vector, the set
{w-1:1€ZN}

is dense in R, in particular it accumulates to zero. This is the so called “small divisor problem”. Neverthe-
less Kolmogrov proved the existence of quasi-periodic solutions requiring that w satisfies the non-resonance
Diophantine condition

lw- U =AU~ VI#0, ~v€(0,1).

See also [57].
Starting from the 80’s the ideas of dynamical systems started to be extended to PDEs. It is known

that many PDEs on a manifold can be rewritten as an infinite dimensional dynamical system of the form
4= Lu+ f(u) (26)

where u is a function in some Banach space, L is a linear operator and f is a non linear term. The search
of quasi-periodic solutions of , namely functions of the form u := u(wt) as in 7 amounts to solve
the equation for u(6)

w - Ogu = Lu + f(u). (27)

If f(0) = f'(0) = 0, then u = 0 is an equilibrium solution of the system (26)), therefore it is natural to
look for quasi-periodic solutions in a neighborhood of zero.

The first existence results for quasi-perdiodic solutions have been obtained by Kuksin [47] for the
1—d non-linear Schrodinger equation (NLS) with Dirichlet boundary conditions where f is a bounded
nonlinearity and Wayne [64] for the 1—d nonlinear wave equation (NLW), still with Dirichlet boundary
conditions. Their method of proof is a generalization of KAM theory.

As already discussed, because of the small divisor problem equation cannot be solved by the
classical implicit function theorem. Indeed the linearized operator of at the equilibrium u = 0,



INTRODUCTION xi

ie. w-0y — L, can be diagonalized in a Fourier basis (both in space and time) as iw - | — i);, where
lez"N, Aj, J € Z are the eigenvalues of the linear operator L, and iw - [ —iA; accumulate to zero. Note
that the eigenvalues of the linear operator L are considered pure imaginary, as they could correspond to
the interesting case of some resonance phenomena. In order to overcome this problem one can impose

the first Melnikov non-resonance conditions, namely
lw-1—=N| >~ . (28)

The previous results do not apply to spatial periodic boundary conditions. In this setting Craig and
Wayne in [34] (see also [28]) proved the existence of periodic solutions, for the NLW and NLS equations.
In such a case the eigenvalues of the Sturm-Liouville linear operator are (asymptotically) double, and the
non-resonance conditions on the eigenvalues required by the KAM scheme in [47] and [64] are violated.
Using the Lyapunov-Schmidt reduction method Craig and Wayne solved the range equation with a Nash-
Moser iteration which requires less stringent conditions on the eigenvalues than the previous KAM scheme.
Their approach was then generalized by Bourgain in [22] for quasi-periodic solutions, and in [23] and [24]
for PDEs in higher spatial dimension where the multiplicity of the eigenvalues may be unbounded. We
also mention more recent work such as [35], [14], [13], [I7], [59], [58].

Let us now briefly describe the differentiable Nash-Moser scheme and the KAM methods. See for
instance [25], [20], [17], [15], [I6], [2I]. The Nash-Moser scheme is a generalization of the tangent Newton
method, plus a regularization procedure that we shall apply, to search for zeros of a functional operator
of the form

F(u) =w- 0pu — Lu — f(u). (29)
The approximate solutions are defined iteratively by
Upt1 = Un + hns1y  Pnsr = —Su[DF(un)] " F(un),

where S,, is a suitable smoothing operator. The main difficulty is to invert the linearized operator
DF(u,) := L obtained at any step of the iteration and to prove that the inverse satisfies tame estimates
albeit with loss of derivatives, i.e. £7! : HP — HP~7. Actually, according to PDEs applications, the
operator F'in will depend on some suitable parameters and one shall prove the invertibility of £ for
most values of these parameters. We underline that the loss of derivatives of £~ will be compensated
by the smoothing procedure and the super-quadratic convergence of the iteration .

Notice that for the unperturbed operator, w-dy — L, it is easy to prove tame estimates for the inverse,
since it is represented as a diagonal matrix in the Fourier basis, whereas for the linearized operators
w-0p — L — f'(u) at a general approximate solution u such estimates requires hard work. The strategy
that could be used is a KAM reducibility scheme, as we actually shall do.

The inductive n + 1-step of the reducibility KAM scheme, is the following: consider the operator

L,=w-09+D,+R,,
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where D,, is a diagonal operator that in Fourier basis, both in space (described by the indexes j, k)

and time (described by the index 1), reads (D,)%(l) = (D,)%(0) := diagjeziA] and Ry, is a bounded

J J
k

5(1). Then the goal is to look for a transformation ®,, = 1+W,,

perturbation that in Fourier basis is (R,,)
with W, small enough, that diagonalizes the operator L,, by decreasing quadratically the size of the

perturbation. To this end one has to solve the so called “homological equation” given by
w- 0¥, + [Dny \I’n] + HNan = [Rn] ) (30)

with [R,] = cliagjeZ(Rn);(O)7 and Iy, the time Fourier truncation operator. This equation can be

written in a Fourier basis and it reads

In order to solve the homological equation above one has to impose the so called “second order non-

resonance Melnikov conditions”
w-T+A] =g >y )77, Y, 45,k) #(0,5,4) - (31)

If the eigenvalues A7 are double, is violated for (I, 7, k) = (0, j, =7). In this thesis we choose a suitable
phase space such that the eigenvalues of the linear system are simple, and the previous problem does
not appear. Then, if U satisfies we can consider the conjugated operator £, that is

Lo =0, 1L,,
=w- 09+ (Dn + [Ru]) + @, (Iy, Ry + Ru Vs — U [Ry))
=w:- 89 +Dn+1 + 7zn+1 y

where D,,11 := D, + [R,] is a diagonal operator, and R,y := @;1(1'[]%,”7%” + R, — U,[R,]) is the
remainder. It turns out that the remainder R,41 is a bounded operator, whose size is quadratically
smaller than the size of R,,.

The previous scheme requires at any iterative step that the non resonance conditions hold. In
PDEs applications, usually, the eigenvalues \; of the linear operator £ depend on some parameter.
Therefore in order to be satisfied, the conditions impose restrictions on the frequency w and on such
parameters. If the non linearity f of the system is quasi-periodic in time with frequency w, one
could use w itself as parameter in order to verify the non resonance conditions . This prospective has
been used for instance in [4], [37], [13], [14], [I6] or [I7]. In the more difficult case, when the equation
does not contains parameters, one can use the “initial conditions” as the parameters proving that the
frequencies of the expected solution depends on the amplitude. This prospective has been introduced
in [50] and then used in several other papers [10], [9], [11], [12], [45], [48], [49], [58] and [I9]. In [§] all
those problems are studied. In the present thesis the linear frequency A; defined in depends on the
external parameter € that we shall use it in order to verify all the non resonants conditions by using the

degenerate KAM theory as in [7].
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The existence of quasi-periodic solutions for systems with an unbounded perturbation, i.e. the non
linearity contains derivatives, has been proved in more recent years. The main difficulty is that the
previous reducibility KAM scheme does not work. The first existence results for quasi-periodic solutions
of PDEs with unbounded perturbations have been proved by Kuksin [49], see also Kappeler-Poschel [45],
for the Korteweg-de Vries equation (KdV) with periodic boundary conditions. The strategy introduced
by Kuksin was then improved by Liu-Yuan [5I], Zhang-Gao-Yuan [66] for derivative NLS. Subsequently
existence of quasi-periodic solutions for derivative NLW has been proved by Berti-Biasco-Procesi [10]-[11]
where the non linearity contains first order spatial and time derivatives. All these previous results still
refer to semilinear perturbations, i.e. the order of the derivatives in the nonlinearity f in is strictly
lower than the order of the linear differential operator L.

The first results concerning the existence of quasi-periodic solutions for quasi-linear PDEs where
the perturbation and the linear operator have the same order like dju = —Uzzr — f(Usza, Uz, Uz, U)
have been proved by Baldi-Berti-Montalto in [4], [5], [6] for perturbations of Airy, KdV and mKdV
equations. The strategy used by the authors is the following: to look for suitable transformations such
that all the coefficients of the linearized operator at an approximate solutions become constant up to a
bounded remainder. After this procedure one is back to an operator where the KAM reducibility scheme
described above can be applied. This approach was extended in [37] and [36] to prove the existence
of quasi-periodic solutions for quasi-linear perturbation of Schrédinger equation. See also [I8] where
the authors proved that perturbations of the defocusing nonlinear Schrédinger (ANLS) equation on the
circle have an abundance of invariant tori of any size and (finite) dimension which support quasi-periodic
solutions. In [3] the author proved the existence of periodic solutions of fully nonlinear autonomous
equations of Benjamin-Ono type.

In this Thesis the model equations (l) are an approximation of the water waves equations as we
shall present in Appendix [A] The first results concerning the existence of small amplitude time periodic
standing (namely even in space) pure gravity water waves is due to Plotnikov-Toland in [55]. In this
paper the authors proved the result by using a Nash-Moser iteration method. This result has been then
extended in [44], [40], [41], [42] . For other references and an historical survey of the background of this
problem one can also see [31] and [43]. More recently in [I] Alazard-Baldi proved existence of standing
wave periodic solutions for water wave equations with capillarity. This work was been extended by Berti-
Montalto in [I9] proving the existence also of quasi-periodic solutions. This result is the starting point

of the present thesis.
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Ideas of the proof of Theorem

Here we present in detail the strategy of the proof of Theorem [1| that will be deduced by Theorem
and Lemma [L.§ below.
Since we look for small amplitude solutions of (), we rescale the functions (n,u) using a small

amplitude parameter p, i.e. we consider (un, yu). Then the Hamiltonian reads

W2 o e o4 &2 et
H(n,u) = (7 T2 22 —2——2)d, 32
) = [ (= T+ el + Gt — i) da (32)
and the equations become
om = —0yu— 3e203u — Ze03u — pe?d, (nu) — pet02(ndyu) (33)
33
Ou = — wn_u52%8x(u2)+,U'54%81'(87;u)2'

In order to find quasi-periodic solutions of the system (33)) we shall perform a Nash-Moser scheme.
The first approximate solution in the iterative scheme is the solution defined in of the linear system
. Notice that this linear solution is supported on the finitely many Fourier indices S. In Chapter
we divide the phase space into two subspaces, Hs, which is finite dimensional and its orthogonal H§
On Hg we shall introduce action-angle variables (6,1) € TV x RY. After the introduction of these new

coordinates we obtain a new Hamiltonian denoted H,, (6, I, w).

e Functional setting. We look for an embedded invariant torus i : TV — TV x RY x H:, 0
i(0) = (9(0),1(0),w(0)) of the Hamiltonian vector field X, filled by quasi-periodic solutions with
frequency w,, to be found. For that we define the non linear operator F(i,-) = (w-dp — Xg,,)(i(0)).
In order to find a solution of F(i,-) = 0 we implement a Nash-Moser scheme. The key point is to
find an approximate right inverse of the linearized operator d;F(i,-) . As a first step in Chapter
we follow the Berti-Bolle’s approach developed in [I5] (and implemented in [5] and [19]). The idea
is to introduce symplectic coordinates near the approximate torus in which the linearized system
d; F(i,-) becomes approximately decoupled into the action-angle components (defined on Hg) and
into the normal ones (defined on Hi). Actually it is sufficient to invert the linearized operator £

that differ from the one defined on the normal component for a finite dimensional remainder.

e Linerized operator and KAM scheme The goal is to diagonalize up to a bounded remainder,

the operator L given by
w 0 0 —iT'(D a(x,0,D) aq(x,0,D
. e )\ , (@(@.0.0) axw.0.D)
0 w —iT(D) 0 as(z,0,D) a4(x,0,D)

where the first two matrices arise from the linear terms of the equations (33) (after a change of

variables, see Chapter , the linear operator ¢T'(D) is

2 1
iT(D) := j\/1554j4 — 3Pt jEL
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and ag(x,0,D) € OPS™, m € Z, k =1, ..., 4 are pseudo-differential operators, with C*°— symbols
ag(z,6,&) in S™. The last matrix in £ arises from the linearization of the non linear terms in ,
and note that this matrix is of order p. In Chapter 2] we present some useful tools of pseudo-

differential operators theory that we shall use.

We divide this diagonalization procedure in two steps. The goal of the first step is to make the
coefficients of the linearized operator £ diagonal and constant, in (x, ), up to a bounded remainder.
This means that the operator obtained after the conjugation of £ can be written in Fourier basis

as a diagonal operator D plus a bounded remainder R (see Chapters .
In the second step we perform a KAM reducibility scheme on the operator D + R obtained above

(see Chapter E[) We now present in more details the key points in these steps.

1. We expand the linear operator £ as a sum of homogeneous operators of decreasing order plus

a regularizing remainder in OPS~M~1  obtaining

0 0 T (D 0 ba(x, 0
P e NP TN 2000 oo
0 w iT(D) 0 bs(z,0) 0
ci(x,0) co(x,0 M () x,0 all) x,0
ot o), | (e e, »
es(x,0)  cq(x,0) i—o \as (x,0) ay’(z,0

) 037(2.0.D)
1w (k)
oy ' (x,0,D) o4 (x,0,D)
The constant —M denotes the smallest order of the homogeneous terms (see Section , and

it is fixed once and for all in Chapter [9]

0 —iT'(D
2. We consider a change of variables such that the linear operator D) trans-
—iT (D) 0
: : iT(D) 0 .
forms into the diagonal operator , see Section |7.2
0 —iT(D)

3. We consider a transformation, close to the identity, such that after conjugation we get rid of
the second order matrix operator in , see Section Then we make the homogeneous
terms block symmetrized, namely we eliminate the off diagonal entries in these terms up to

;M see Chapter [8| After these conjugations we arrive to an operator of the form
w 0 iT(D) 0

M (k)
a;’(x,0 0
s 3~ (@0

+ ;"
w 0 —iT(D)) 0 a"(,0)) "

o1(x,0,D) o9(x,0,D)
0'3(':6’0’D) 04(9370’D)

(k)

S—M=1and @y, , m = 1,4 are

where o, , m = 1,...,4 are pseudo-differential operators in OP

functions of (x,0) (see Chapter [§).
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4. Finally, in Section [8.2.3] we conjugate the operator in with two transformations in order

to make the coefficients of the first order operator constant. The net result is an operator of

the form
L:=D+R,
where
w 0 iT(D) 0 m 0
D .= <O + + Oy ,
0 w 0 —iT(D) 0 —-m

m € R and R is a bounded remainder of size .

5. In Chapter [9] we perform the KAM reducibility scheme on the linear operator D + R obtained
in the previous step. We follow the strategy introduced in [I9] in which R satisfies tame

estimate. Actually we are able to prove (see Chapter @ that the operators
R? [Ra 87']7 ag]ORa 6530[7—\)'76%} ) 8§E+bR7 3§f+b[Ra a’r]a r= la"'aNa

are DFo-tame (see Definition . For the convergence of the iterative procedure we need these
properties for a suitable b := b(7) fixed, where 7 is the diophantine exponent in . We need
also to prove that the d(, .)—derivatives of the operator R are DFo —tame these informations
are required in order to prove that the eigenvalues of the perturbed system D+7R are C*o-close

to the unperturbed one.

e Nash-Moser scheme. After this diagonalization procedure we are able to prove the required
invertibility of the linearized operator £ and the tame estimates for its inverse. Using this, in
Chapter [10| we implement a differentiable Nash-Moser iterative scheme which gives a zero of the
operator F (i, ), that is a quasi-periodic solution of the equations (33]). This proves Theorem

e Measure estimates. As already discussed, in order to apply both the previous KAM and Nash-
Moser scheme the eigenvalues of the linearized operators, have to satisfy the first and the second
Melnikov non resonance conditions defined in and (31). The linear frequencies w; defined in
depend on the parameter ¢, i.e. w; := w;(e), and, as we shall prove, are C*0 —close to the frequencies
of the perturbed system. Thanks to these informations, and also using the degenerate KAM theory
(introduced by Riissmann [62] in a finite dimensional setting and developed by Bambusi-Berti-
Magistrelli in [7] for the infinite dimensional system) in Lemma we prove that the perturbed

frequencies satisfy the non resonance conditions for many . More precisely we prove that
wule) -1l =y ()77, Ve ZV\ {0}, (36)
and
jwu(e) -1+ Q5(e) 275 ()7, Ve ZY, j e No\ S,
lwule) -1+ Qi(e) = () > 7% — 57117, VL€ ZN, j,j € No\S, (37)

wule) -1+ Q5(e) + () > A2+ 57| (1), i€ ZY, j,j' € No\ S,
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where INg := IN\ {0}. The first line is the first Melnikov condition, the second one and the third one
are the second Melnikov condition. In conclusion, since the non resonance conditions are satisfied

for many parameter it is possible to apply the KAM and the Nash-Moser scheme.



Notations

No:= N\ {0}

Zo =7\ {0}

S:={0<j1 <..<jn jr €N}

®p>Po

o (= (w,e) € RN x [eq, 2]

a <ppm bmeans a < C(p,k, M)b

ko € IN is a fixed constant

v e (Ovl)

N(A,2) = {C € RN x [g1,eq] : dist(A,() < 2}

xviii



Chapter 1

Phase space

We consider the scale of Sobolev spaces of (2m)—periodic real functions in the space variable
HY(T) := HE(T, R) := HJ(T) x H{(T),
where

HP(T) :=HP(T,R) := H”(T,)
:Z{g(x) = g€, =g, gk = _lg;I> () < 00}

JEZ JEZ

and (j) := max{1,|j|} . For w = (w1, w2) € HP(T) we define (with slight abuse of notation)

[wlley == max{|lwi ||z, lwall g} -

1.1 Spatial invariant subspace

In order to prove Theorem 1| we shall perform a KAM iteration on the system , which also rely on a

control of the differences of the eigenvalues of the linearized system (see Chapter @ . If the eigenvalues of

the linear system at pu = 0 are not simple, such control can be hard to achieve. In the phase space HE(T)

defined in (1.1)) this is precisely the case. Indeed if we consider the unperturbed equations of motion ,

i.e. (33) at u =0, that is
On = —0u— 3203 — Ee*diu
0w = —0ym

and we expand (1, u) in Fourier series, namely

n Z 77](»1) cos jx + 77](2) sin jz

U JEN u;-l) coij+u(2) sin jx 7

J

(1.4)
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substituting into (1.4) we get

1 2
r']](-l) cos jx + r']]@) sin jx = (—895 - 55282 — 156482) (ug-l) cos jT + ugz) sin jx)

1 2
=V (+j sin jo — = j3e? sinjx + 1—5843'5 sin jx) +

(
J

1 2
+u 2) (—j cos jx + gjgez cos jox — —etj® coij)

15
(2)

J

sin jo = —8x(n(1) cosjx + 1" sinjx)

J
oW (2) .
=1, 'jsinjx —n;7jcos jx.

(2

u§1) cosjxr + U

Hence we obtain two decoupled systems of harmonic oscillators,

. (1 2 . . . . (2 1 . . .
,,7; ) UE ) ( j :13]362 12554]5) 775 ) ug ) (] %]352 12584]5)
. (2 1) . . (1 2) .

with the same frequencies w; := \/1—2584]'6 —3e2jt+ 52, jeN\ {0}
To overcome these double resonances situation we shall confine the phase space to the invariant

subspace of real functions (1, u) such that n is even in z and u is odd in x, that is

n(x) =n(=z), u(x)=—-u(-) (1.6)
This subspace is invariant under . We recall that also the set
{(n,u) € HY(T,R) x HE(T,R) : /Tnda: = /Tudx = O} (1.7)
is invariant under the evolution of .

Summarizing thanks to (1.7) and (1.6)), we restrict (n,u) to the phase space

b ) (7 » (@)Y [ (=) e
XP = ) € H2(T,R) : o] ,/Tnd =0y, (1.8)

where H? (T, R) is defined in (1.1).

Remark 1.1. The space X} can be represented as a sequence space via Fourier expansion in two different

ways:

e The trigonometric representation

n 1; COS jT
cHP : = > T . (1.9)
u u jE]N\{O} U] sm jx
e The exponential representation
" nje" _ _
c HY . = e N =N—j,Mo = 0,15 =N—j, Uj = —U_j,uj =U_j
u jez \ujet

(1.10)
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Using the trigonometric representation defined above the symplectic form W in @ can be written

2
JEN

1.2 Preliminary symmetrization of the linear part

The Hamiltonian H defined in is the sum of the quadratic Hamiltonian L defined in and the
cubic terms P, multiplied by p, given by

- g2 et
P(n,u) = / (—uQn - —uin) dzx . (1.12)
T\ 2 2
Therefore the Hamiltonian H can be written
H =L+ pP. (1.13)

The corresponding equations of motion , can be written as

n
2 = Xj(n,u) + pXp(n, u) (1.14)
u
where
0 —0,— 1203 — 240 n
X;(n,u) == 3 15 (1.15)
—0y 0 U

2 4
—&20;(nu) — %0, (Npuy + Nu
Xﬁ’(na w) = . (nu) o (Na Uz + NUze) . (1.16)
752%337(162) 4 64%(937(1%)2
We look for a symplectic transformation that “balances” the order of the operators in the linear part
X7, namely we look for a change of variables that transforms the 2 x 2 matrix in (1.15) into a new matrix

whose out-of-diagonal operators are the same.

Under a change of variables of the form

n =Ag
(1.17)
u =A"1p
the linear system (i.e. (L.14) with p = 0) becomes
(2 a5 Lo ~1
@ =—A e 3x+§5 2 +0, | A p
(1.18)

pe = —AN0Aq.

Choosing

J2 1 .
A= 0p(g(j)), where g(j)=\/15€4j4—36212+1, Vj € Z, (1.19)
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the system (1.18]) takes the form

gt = —iT(D)p
(1.20)
pe = —iT(D)q
where .
2 1 2
iT(D) = Op(iT(j,¢)),  T(j,e) =] (15543'4 - 552]'2 + 1) , JETL. (1.21)
Remark 1.2. We have that %54]‘4 — %62]-2 +1>0 forall jeZ, indeed
2
Zetjt — 1?2+ 1= (,/%523’2 - 1) + (%/—1‘/% - %) €252 and (% - %) >0 .
The change of variable ([1.17)), whose matrix is
A O
A= , (1.22)
0 A!
is symplectic, i.e.
AJAT =T, (1.23)

where J is defined in . Hence the symplectic form W defined in @ (i.e. (1.11)) remains the same:

2
w =" "dg; A dp;. (1.24)
JEN

Moreover, under the change of variable A in (1.22)), also the involution p defined in , remain the
same, indeed

A7pA = p. (1.25)

Since A is symplectic the Hamiltonian system (i.e. (1.14)) transforms into the new Hamiltonian
system generated by the Hamiltonian (see also Lemma [A.2)

H:=HoA,
that is explicitly given by (recall that H is the Hamiltonian in ie. (1.13))
H(g,p) = L(g,p) + 1P(q,p) (1.26)

where L := Lo A is the quadratic part

—1 2 2 2 4
Law) = [ <<A D BT g 2y s(Alazpf) e (1.27)
T\ 2 2 6 15
and P = PoAis
g2 et
Pl = [ (G- G000 do. (1.28)
T

The Hamiltonian system , i.e. (1.14)), transforms in the new coordinates into

q
8t = 7JVq,pH(Qap) = X’H(Qap) s
p
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that is explicitly given by

o ()= " TN ) e, (129
p —iT(D) 0 p
where (see Lemma
o (A0 (AQ)(A'p)) — £2A7 10, ((AQ)(A™'pra) + (Age) (A7 'pa))

; . (1.30)
— S0, (A1p)? + SA (A p,)?

Xp(g,p):=¢

We remark the following properties.

Lemma 1.3. Let A := Op(g(5)) with g(j) defined in (1.19). Then A and A=' send real functions in
real functions. In addition A and A~ send even, respectively odd, functions in even, respectively odd,

functions.

Proof. Let f =34 f;€¥®. Then

Af =g e, AT =) g() T e

JEZ JEZ
Let f be a real function, that is, f; = f_j, then
5F = S o e = S gl e = 3 g(j) e = Af,

JEZ JEZ JEZ

where we have used that ¢g(j) = g(j) = g(—j). Clearly we can repeat the same argument also for A~1.
By g(j) = g(—j), follows immediately that the operators A and A~! send the set of even, respectively

odd, functions into itself. Indeed let f be a even function, in the exponential representation this condition

reads f; = f—;. Then, by g(j) = g(—7), we get g(j)f; = g(—j)f—; (similar for the other). O

Lemma 1.4. The operator iT(D) defined in (1.21) sends real functions in real functions. Moreover

iT(D) sends even, respectively odd, functions in odd, respectively even, functions.

Proof. By the explicit definition of ¢T(D) in (1.21)) we have that T'(j,e) = T(j,¢). Let f be a real
function, then

1
Ve =~eur (2 44 14, 2 iz
iT(D)f = Z —1j (1584]4 ——e?2 4 1> foje ¥

- 3
JEZ
2 1 LA

:ZZ] 7€4j4_*52j2+1 fjez]:c

. 15 3

JEZ

=4¢T'(D)f.

By the explicit definition of iT'(D) we also have T'(j,e) = —T(—j,¢), hence if ¢ is a even function and p
is a odd function, we obtain T'(j,¢)q; = —T'(—j,¢)q—; and T'(j,e)p; = T(—j,e)p—;. O

Remark 1.5. By Lemma we have that Aq = 1 is real even and with zero average and A~ 'p = u is

real, odd and with zero average. Therefore under the change of coordinates A the phase space remains

the same, i.e. X} (defined in (1.8))).
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1.3 Action-angle variables

We rewrite the phase space X} defined in (1.8)) as the direct sum of two symplectic subspaces defined as

follows. Fix

S:={j1,-.-,jn} €N\{0}, O0<j1<..<jn, jr€N. (1.31)

Then we decompose

X! =Hg ©H. (1.32)

Remark 1.6. Using the trigonometric representation, defined in (1.9), the subspaces defined above read

Hs =X (¢,p) € X{ : ¢= qu cos(jzx),p = Zﬁj sin(jx)

€S €S
’ ! (1.33)
HE :={ (¢,p) € XE : q= qu cos(jz),p = Z]ﬁj sin(jz)
Jgs Jj¢s
Using the exponential representation, defined in (1.10), we can set —S := {—j1,...,—jn} and the sub-

spaces read

Ho={(@p) €XE q= D e, ¢;=0-, ¢j=a
JESU(-S)

p= Z P’ pj=Dp_j, pj=—P—j
JESU(=S)

Hy =<4 (¢,p) €XE 1 g= > ¢€7" =0, ¢ =q-
JSU(=8)

p= Z pie’t, pj =Py, pj = —P—j
JESU(=S)
Any z = (q,p) € X} can be written as z = zp + 2z, where zp € Hg is the so called “tangential
variable” and 21 € Hi is the so called “normal variable”. Therefore, if (¢, p) € X{, then
g=Y gjcosjr+q-, p=> pjsinjr+p’.
Jes j€es
The symplectic form W defined in (1.24]) can be decomposed as follows
27
W=>"=dqg; Ndp; ® Wl , (1.34)
j€s
where W/, is given in @ Now, in a r-neighborhood of the origin of Hs, we introduce the action-angle
variables using the trigonometric representation of X}, by setting
q= Z \/1j +1rjcosvjcos jx + wr, where wy 1= ¢+ = Z gj cos jx,
JES jest

p= Z\/Ij +r;jsind; sin jx + wo where wsy :=pt = Z pjsin jz,

jes jest+

(1.35)
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and 0 < r; < 1 is a constant such that the variable |I;| < r;, Vj = 1,...,N . In conclusion, let

z:= (q,p) € X{, then the change of variables A : (¢,I,w) + 2 is
j I + rj cos U cos jx w
A, Iw) = AW, 1) +wi= 32 / ) () (1.36)
jes I —l—rj sin?; sin jx Wo
where

, W=
jes V1 +rjsind;sin jz wWo

After the change of variables (1.36]) the symplectic form W defined in (1.34)) becomes

v/ I; +1r;:cosd;cos g
A9, 1) Z\/> J T OB ORI ("] . (1.37)

Whew i= Y dl; Add; & W], (1.38)
jJES

where W/ 1 is the symplectic form defined in @
Note that Wyew = —dZ where Z is the Liouville 1-form

Ew,raw 0, 1,0] ==Y Lid;— = (J'w, ), - (1.39)
JES *

The Hamiltonian system ([1.29) is transformed into the new Hamiltonian system
0 =01H,
I=-0yH, (1.40)
8tw = _vaHM

generated by the Hamiltonian
H,=HoA (1.41)

where H is defined in (1.26)) and A is defined in (1.36]).
After the introduction of the action-angle variables, the involution p defined in ([10)) and - becomes

p: (0, I,w)— (=9,1, pw). (1.42)

This is our new reversible structure, hence

)
—~
|
)
~
I
|
)
—~
)
~—

1(—0) = 1(6), (1.43)

We denote by
Xp, = (0rH,,—09H,,—JV ,Hy,)
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the Hamiltonian vector field in the variables (9, I,w) € TV x RY x HZ, where Hs is defined in (1.32).
Hence the Hamiltonian H,, in (1.41) reads

H, =N + pP, N:LOA:w(g).H%(w,Dw)L%, P=PoA (1.44)

where L is defined in (1.27)), P is defined in (1.28)), A is defined in (1.36)),

de) = (j \/1—2564j4 — %52]'2 + 1>j€S represents the unperturbed tangential frequency vector and ( recall

the definition of A given in ([1.19))

ATA 0
0 A NEe0) + 5202 + 1A o
¢ (1.45)
(Bt - 22+ 1)E 0
0 (Zetjt— 222+ 1)3

1
HS

In what follows since D acts on w € Hé‘ we shall not write the restriction on the operator.



Chapter 2

Functional Analytic Setting

Since we are looking for quasi-periodic solutions, we consider the following Sobolev spaces of (27)—

periodic real functions in space and “time”, namely
HP(T x TV) := HP(T x TV, R) := H?(T x TV) x H?(T x TV), (2.1)

where
HP(T x TV) :=H?(T x TV, R)

= w(x,0) = Z wi e BT =,
JEZIETN
02
WlIp = lwllaz, = > w607 < oo
JEZIETN

and (j,1) := max{1, |5, lI[} -

Remark 2.1. We use the space HP(T x TV ) whose functions have the same regularity both in space and
time, since in Chapter@ we have to consider the composition transformation T4 (see Lemma that

mixes regqularity of time and space.

With slight abuse of notation we define the so called p—norm of a vector w = (w1, ws) € HP(T x TV)

as
[wllp := l[wllag = max{|jwilp, [lwallp} - (2.2)
We shall consider a function w(z,6) € L?(T x TV, C) x L}(T x TV, C) of the space-time also as a 6-
dependent family of functions w(-,6) € L?(T,,C) x L?(T,,C). We shall also write L2 = L?(T x T) =

L?*(T,) = L2. We can expand a function w := (w1, ws) in Fourier series as follows:

U)(I, 9) _ w1 (JJ, 9) _ Z (wl)j (9) pliT Z (wl)j,l eiijﬂ'l.() ' (23)

wo(x,6) jez \(wa2);(0) jezaez~y \(w2)j1
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For notational convenience we will write || - ||, both for functions and for vectors. Moreover we have the

following equivalence of norms:
- llp 2 M- ez + - lozaz

where

lwllFzzz =D D)z = Y1) Z Jwi|?,

l l

and
[l 22 e = Y w7 = i ? ()7
]
l L g

Furthermore, given v(#) € RY we define the following norm
2
lollF = > ful> ). (2.4)
lezy

We recall that the p—norm || - ||, defined in (2.2) satisfies the tame estimate for the product of functions

(see for istance [f]), i.e. for all p > py, for all w,v € HP(T x TY) the following inequality holds

[wvlly < C@)wllplvllpo + Clpo)lIwlpollvlp - (2:5)

Definition 1. Given a function w € L*(T x TV),
w(w,0) = Y wedrtl
JEZ,1eZN
we define the majorant function
Wz, 0) = Y fwyledm T (2.6)
lezN jez

Note that the Sobolev norm || - ||, in (2.2) of w and |w| is the same, i.e. ||w|, = |||w]||,-
In this work we have that the functions also depend on the parameter ¢ := (w, ). For a scalar valued

functions \ : Ag € RV*T! — R which are ko-times differentiable with respect to a parameter
¢ = (w,e) € Ag C RN
we define, for v € (0, 1), the weighted norm

IA|FoY = |)\|’1f87 = Z ~Fl sup |8§)\(C)|. (2.7)
K<k CSh

We shall also consider families of Sobolev functions ¢ +— w(¢) € HP(T x TV) which are ko-times

differentiable with respect to the parameter ¢ (defined above) and we define the weighted Sobolev norm

Wl =Y A sup 9w (O)l, - (2.8)

k|<ko ~ SSho
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In this thesis we will also consider vector valued Sobolev functions ¢ — w(¢) € HP(T x TV) which

are ko-times differentiable with respect to a parameter (. For v € (0,1) the weighted Sobolev norm of

w(¢) € HP(T x TV) is given by

lwko7 = > ¥ sup [9Fw(O)]l, (2.9)
k|<ky ~ SSho

where || - ||, is defined in ([2.2).

Remark 2.2. In Chapters[Q, [§ and in Appendiz[B we shall also consider 2 x 2 matrices of functions

F e i fa

f3 fa

)

with the norm

ko,y . ko,
[ = max | fnllp™-
We also introduce the smoothing operators

(Mgw)(z,0) = > w e T =1 Tk (2.10)
(L)<K

which satisfy the smoothing properties

ko, R R — ko,
Mcwllyyy < Kl [Hgwlpe? < K-lwll5) Vb >0. (2.11)

Now we introduce the class of operators that we shall use later. We shall consider a class of 8-
dependent families of linear operators A : TV — L(L?(T,)), 6 — A(#) acting on L?(T,). We may

consider also an operator A € L2(T x T™) which acts on functions w(z, ) of space-time, as

(Aw)(z,6) == (A(9)a(-,6))(x).

If A maps the space of real valued functions into itself we say that A is a real operator.

We represent a real operator A acting on w = (wy,ws) € L?(T! x TV, R?) as follows

A1 AQ w1
A3 A4 wa

Aw = : (2.12)

and each A,,, m = 1,...,4 acts linearly.
We may identify an operator A € L(L?(T x T¥)) with, respect to the exponential representation, an
infinite matrix (A;:/(l — 1) 7ez1ezv - Consequently given
w(z,0) = Z W (o)eij':c _ Z Wj/J/eij’meil’.()
J e §E€Z, 1 eZN
the action of A on w € L?(T x TV R) is

Au(z,0) = ) AL (B)wy (0)e'" = > AL (L= Uy 3o tit0 (2.13)

4, €Z 3 GEZ e N
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Moreover the operator dgA(6) is identified with the matrix with elements (Il — l')Ag/(l —I') and the
commutator [0, 4] is identified with the matrix with entries i(j — j’)A?(l —1.

We now introduce the following operators that will be used in Chapter [9]
Definition 2. Given a linear operator A as above we define the following operators
1. The majorant operator |A| whose matriz elements are |A§/(l —-1)].
2. The differentiated operator (0p)°A,b € R, whose matriz elements are (I — l')bA;:/(l =1).
3. The smoothed operator I1x A, K € IN whose matriz elements are

} A=y i -V <K,
(Mx A} (1=1) = =0 -t

0 otherwise.

A simple property is given in the following Lemma.

Lemma 2.3. Given linear operators A, B as above, for all w € HP(T x TV) we have

1A+ Blull, <[l[Alw[ll, + [[[Bw][l, (2.14)
I1ABlwlp <[l BIwl[l, - (2.15)
Proof. See Lemma 2.2 in [19] . O

Definition 3. Even-Odd Operator. A linear operator A as in ([2.13) is even, if each A(0), 6 € TV
leaves invariant the space of functions even, respectively odd, in the spatial variable. A linear operator A
as in ([2.13) is odd, if each A(8), 8 € TV sends the space of functions even in the spatial variable into

the space of functions odd in the spatial variable and vice-versa.

A linear operator A as in sends X{ defined in in itself if A;, A4 are even operators and
Ay, As are odd operators.

Since the Fourier coefficients (in the exponential representation) of an even, respectively odd, function
satisfy w_; = w;, respectively w_; = —w;, Vj € Z, we have that a linear operator A is even, respectively
odd, if

v e TV, AJ(6) = AT/ (6), respectively A7 (8) = —AT7 (6). (2.16)

Definition 4. Reversibility. A family of operators A(0) as in is
1. reversible if A(—0)op=—po A(0),Y0 € TV, where the involution p is defined in ,
2. reversibility preserving if A(—0)op=po A(f),Vd e TN.

The conjugation of an even and reversible (respectively odd and reversible) operator with a map ®

which is even and reversibility preserving is even and reversible (respectively odd and reversible).

A family of operator A(f) as in (2.12) is
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1. reversible if and only if the maps 6 — A;(0), A4(f) are odd and 0 — Ay(0), A3(0) are even.

2. reversibility preserving if and only if the maps 6 — A;(0), A4(6) are even and 6 — Ay(0), A3(0)

are odd.

2.1 Pseudo-differential operators

The change of variables A (see and ) is given in terms of Fourier multipliers, which are a
particular case of pseudo-differential operators. In this section we present some known results (see [39],
[60], [19]) about pseudo-differential operators. Since we are working in a periodic setting, we introduce
pseudo-differential operators on the torus. Let a : Z — C be a function. Let (Aja)(j) :=a(j + 1) — a(j)
be the discrete derivative. For 8 € IN we denote by A? = Ajo...0A; the composition of S-discrete

derivatives.

Definition 5. Let a: T x Z — C, a(z,j) be a function which is C* with respect to x. Let m € R. We
shall say that a is a symbol of order m, if for all o, 3 € IN there exists a constant C = Cy g > 0 such
that

0e A a(z, )l < CA+ i)™ P, V(z,j) €T x Z. (2.17)

We denote S™ the class of all symbols of order m.

Definition 6. Given a symbol a € S™ and a function u(z) =3 ;7 @(j)e¥*, we define the operator
a(z, D)u(z) =Y a(x, j)a(j)e””
JEZ

and we say that a(x, D) := Op(a) is the pseudo-differential operator associated to the symbol a.

We introduce another equivalent definition of pseudo-differential symbols of order m, that we shall

use along all the thesis.

Definition 7. A linear operator A is called pseudo-differential of order m if its symbol a(x, j) is the
restriction to R X Z of a function a(x, &) which is C*°-smooth on R x R, 27-periodic in x and satisfies
the following inequality

05 0¢a(w,€)] < Cap(1+1¢)" 7, Va,B €N, (2.18)

we say that a(x, ) is the symbol of the operator A. We denote by OPS™ the set of the pseudo-differential

operators whose symbols are in S™ .

Deﬁnition@is equivalent to the Deﬁnitionm because a discrete symbol a : R x Z — C satisfying (2.17))
can be extended to a C*®°-symbol @ : R x R — C satisfying (2.18)), see [60].

Lemma 2.4. A pseudo-differential operator with symbol a(x, &) is
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1. even, respectively odd, if and only if a(x,§) = a(—x, =§), respectively a(x, &) = —a(—x, —£),
2. real, i.e. it sends the space of real functions into itself, if and only if a(x, &) = a(x, —§).

Proof. Let u(z) = 3,5 0(j)e”" be a even function, i.e. u(j) = @(—j), the action of an even pseudo-
differential operator a(x, D) (see Definition |§[) with symbol a(z,j), on w is given by
a(z, Dyu(z) =Y a(x, j)a(j)e’" .
J
We have that

a(—z, D)u(—z) =Y _ a(—=,j)i(j = a(—a, (=) =3 ale, j)a(j)e”
J

J J

where the last equality holds if and only if a(—z, —j) = a(x, j). The proof for the other cases is similar,

therefore it is omitted. O

We now recall some properties of pseudo-differential operators, see [39] for more details. From now

on we shall consider operators with C'**°-symbols.

Definition 8. Let a € S™, and ap—p, € S™ %, Vk > 0. We call Zkzo am—k the asymptotic expansion

of the symbol a and we write

g) ~ Z amfk(img)v

k>0
if for all M € N we have

- Z i (2,&) € STTML

k<M
We provide a fundamental result concerning composition of pseudo-differential operators.
Theorem 2.5. Composition. Let A := Op(a(x,§)) and B := Op(b(z,£)) be two pseudo-differential
operators with symbols of order respectively m and n with m,n € R. Then the composition operator
Ao B =C is a pseudo-differential operator of order m + n with symbol
c(w,&) =Y alw,&+4)b(j, €)™ = alk — j,& + j)b(j, §)e’™”
JEZ gk
where * denotes the Fourier coefficients of the symbols a(xz,§) and b(x, &) with respect to x. Moreover the

symbol ¢ admits the asymptotic expansion

(.6 ~ 3 T a0 )

B8=0 A
namely, VM > 1
M—1 (—i)?
c(w,€) =Y ~=—0Ca(x,§)db(x,€) + ra(x,8), (2.19)
B=0 A
where ry; € S™T=M | The remainder vy has the explicit formula
— M 1 M 2 jx

jEZ
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In this thesis we consider #-dependent families of pseudo-differential operators. We work with pseudo-
differential operators with symbol a(z, 0, &) that are C*°-smooth also in . We still denote A := A(f) =
Op(a(,-)) = Op(a). Therefore given a symbol a(z,,£) € C=(T x TN x R) we define the action of the
operator A on a function w as follows

Av(z,0) = z a(z, 0, j)w;(0)e " .
JEZ
One can extend the previous results to 6-dependent pseudo-differential operators; for instance the symbol
of the composition operator A o B is
o(@,0,8) = > a(x,0,6+j)b(j,0,)e " = Y~ a(i' =, 11U, &+ b1, €)eT T
JEZ 3.4 €211 €ZN

In this thesis we consider family of pseudo-differential operators which are ko-times differentiable with

respect to a parameter ¢. Note that, if A(¢) = Op(a({,x,0,€)) is a pseudo-differential operator, then

also 8§A is a pseudo-differential operator, that is
OfA=0p(dfa), VkeINNT!

As in [19] we define a suitable norm (inspired to the norm in [52]) which, given a symbol b(x, 0, ) € S™,

controls its regularity in (x,6) and the decay in & in the Sobolev norm || - ||,.

Definition 9. Let B := B(() := b((,z,0,D) € OPS™, m € R be a family of pseudo-differential
operators with symbol b(C,xz,0,€) € 8™, which are ko-times differentiable with respect to ¢ € Ag C RN+,
Forv€(0,1), « € N, p > 0, we define the weighted norm
Bk, =Y 4" sup [0fB(Q)lmp.a (2.21)
k<ko €=

where k = (k1,...,kn11) € NVTY with |k| := |k1| + ... + |kns1]| and

Bl = s sup [075(C, -, €l (€)™ (2.22)
= eR

B<ag

Remark 2.6. In what follows we shall always use the norm with o = 0, that is | - |ﬁ3,}10' We
can use this semplification since all the symbols that we have to estimate are classical symbols, namely
admit an asyntotic expansion in homogeneous symbols ( see Chapter@ @ and Appendix@) . We shall
systematically expand the symbols in homogeneous components in all the transformations that we shall

do.

Remark 2.7. In what follows we shall consider matrices of pseudo-differential operators and, with a
slightly abuse of notation, we shall use the norm | - |k°’A’ defined in (2.21) both for pseudo-differential

m,p,0

operators and for matrices. In other words, for B as follows

B, B,
By By

B = , Bi:=0bi(¢z,0,D)c OPS™, i=1,...4,
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we set

ko,y

koyy ._
|B| o m,p,0 *

m,p,0 " zznll,aXA |BZ‘

For completeness, in this Section we decide to present the results for the norm | - |f,§17 o- For each

ko, v, m fixed, the norm (2.21)) is non-decreasing both in p and «, namely

Vp<p Va<do, |- <. ko, ko < | koy 2.23
m « «

D5 m,p’,a? P, m,p,a’
We also have that the norm (2.21)) is non-increasing in m, that is

m<m' = |7 <. ko (2.24)

- m’,p, m,p,a”
Given a function a((, z,6) € C®°—smooth on R x TV which is ko-times differentiable with respect to ¢,

the weighted norm of the corresponding multiplication operator is

Op(a)§2, = llaf|k7, Yo eN, (2.25)

where the weighted Sobolev norm || - |57 is defined in (2.8).

For a Fourier multiplier g(D) with symbol g € §™, we have
|g(D)|m,p,Ol S C(mvavg) ) Vp 2 0. (2'26)

Proposition 2.8. Composition. Let A .= a((,x,0,D) and B :=b((,z,0, D) be two pseudo-differential
operators whose symbols a(C,x,0,&) € S™ and b(¢,x,0,£) € S™, with m,n € R. Then A(() o B(¢) is a

pseudo-differential operator (see (2.19)) with symbol in S™*" satisfying, for all « € N,p > po,
[ABlm i o < COIAL T o BI +Clpo) Al 3.l B (2.27)

m+n,p,a m,p,0 n,po+a+|m|,a n,p+oa+|m|,a”

Moreover, for any integer M > 1, the remainder Ry = Op(rar) (see (2.20)) satisfies

1 k k
|RM|fr(LJ-7|:Yn—M @ S an (C(p)|A‘7r(z]7’ya+M|B|n07’y+2M+a+ m|,x
D M) p o Iml, (2.28)
ko, ko,
+ COIALT aratl B ot s ) -
Proof. A complete proof is in [19] .

O

By (2.25) and (2.26]) and Proposition [2.8] we have that Vm € Z and for all p > pg
ja(z, )0 307 o < Clm, a,p)|lallfY + C(m, a, po)[lallys™ < Ci(m, . p)|lal>7. (2.29)

By (2.19) the commutator between two pseudo-differential operators A := a((,z,6, D) € OPS™ and
B :=b((,x,0,D) € OPS™ is a pseudo-differential operator [A, B] € OPS™"~1,
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Lemma 2.9. Commutators. Let A := a((,z,0,D), B := b((,x,0, D) be pseudo-differential operators
with symbols a(C,x,0,£) € S™, b((,x,0,&) € S, m,n € R. Then the commutator [A, B] := AB— BA €
OPS™t=1 sqtisfies

ko, Ko,y ko ,y
HA’ B”n?Jrn*Lp’a S(j(p)|A‘mo,er2+|n\Jroz,amtl|B n?Po+2+|m\+a,o¢+1 (2 30)
ko, Ko,y ’
+C(p)|A‘n$,p0+2+|n|+o¢,a+l‘B‘n(jp+2+|m\+a-,oé+1 :
Proof. The estimate follows by (2.19)), (2.28) for M = 1, and ([2.23)).
O

We finally state an invertibility Lemma.

Lemma 2.10. Invertibility. Let T := T(¢) and T(¢) = 1 4+ ®(¢) where ®(¢) is a pseudo-differential
operator in OPS®. There erist constants C(po, a, ko), C(p, o, ko) > 1, p > po, such that, if

1
C(p07 a, k0)|q)|10€?ﬁz+a’a < 57 (231)

then, for all ¢, the operator T is invertible, T=' € OPS® and, for all p > pg

— ko, ko,
|T t— 1|0?p7& < C(pvaak0)|¢|0?p1a,a'

Proof. See [19]. O

2.2  D- tame and modulo-tame operators

We consider linear operators A := A((), ko—times differentiable with respect to a parameter { € Ay €
RN*!. Recall the weighted norm || - [k defined in (2.8). We now present some results, given in [19],
that we shall use in Chapter [9]

Definition 10. A family of linear operators A := A(() is D* — o—tame if the following weighted tame
estimate holds: there exists ¢ > 0 such that for all p > po, for all w € HPTo(T x TV),

sup sup 7 [[(9F A)ully < Ma(P0) [¥lp+o + Ma(®)][W]po+o (2.32)
k| <ko CEho

where the functions p — Ma(p) > 0 are non-decreasing in p. We call M4 the tame constant of the
operator A. Note that the constant M a(po) := Ma(ko,o,p0) depends also on ko, o, but since ko,o do

not vary along the thesis we shall omit to write them.

Remark 2.11. In Chapterlg we shall work with Do -tame operators with a finite P < oo, whose tame
constant M 4(p) may depend also on C(P), for istance M4 (p) < C’(P),u||v||';§‘_’|r’;Y , Vpo < p < P. We shall
fix the highest P in the Nash-Moser iteration, see (10.13)).

When the “loss of derivatives” o = 0 we call a DF° — 0—tame operator to be D*o— tame.
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Remark 2.12. By (with k = 0,p = po) we have
Al z(vote, mroy < 2Ma(po) - (2.33)

Let A be a linear operator, that can be identified with the infinite matrix A;l(l —1") where j,j' € Z
and [,1' € ZV, then, V|k| < ko,
. i’ .\ 2p+20 2 20
,yzlk\ Z <l,]>2p |6§A; (Z . l/)|2 < C(k‘o) (MA(P0)2 (l/,j/> P+ +MA(p)2 <l/,j/> po+ ) )
L,j

The class of D* — g—tame operators is closed under composition.

Lemma 2.13. Composition. Let A, B be linear operators D* —tame. Then the composed operator

Ao B:= AB is a DFo—tame operator with tame constant

Map(p) < C(ko) (Ma(po)Mp(p) + Ma(p)Mg(po)) -

Let A, B be respectively D — o 4—tame and D*® — o —tame operators with tame constants respectively
Ma(p) and Mp(p). Then the composed operator A o B is D¥0 — (04 + og)—tame operator with tame

constant

Mup(p) < Clko) (Ma(po)Mp(p+0oa) + Ma(p)Mp(po +04)) - (2.34)

Proof. See [19]. O

The following lemmas are meant to prove that the norm | - |§?p’70 controls the action of a pseudo-

differential operator on HP(T x TY).

Lemma 2.14. Let B = b(¢,z,0,D) be a family of pseudo-differential operators which are ko—times
differentiable with respect to ¢ and with symbol b in S°. If |B|§?I;j6 < 00, then B is Do —tame (see
Deﬁm’tion@) with tame constant Vp > po

Mz (p) < Cp) Bl - (2.35)
Proof. See [19]. O

The action of a D¥ — g—tame operator A(¢) on functions w(¢) € HP(T x TV) that are ko—times

differentiable with respect to ¢ € Ag € RV*! is given by the following Lemma.

Lemma 2.15. Let A := A(C) be a D*0 — o—tame operator. Then ¥p > po and for any family of Sobolev
functions w := w(¢) € HPY(T x TN) which is ko—times differentiable with respect to ¢ the following
tame estimate holds

ko, ko,
[Aw][5 7 <gy Ma(po)llwllpys + Ma(p)lwllpo s -

Proof. See lemma 2.14 in [19]. O
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By Lemma [2.15] (2.25), (2.35) the tame estimate for the product of two functions in weighted Sobolev

norm may be estimated as in the following Lemma:

Lemma 2.16. For all p > pg, for all w,v € HP(T x TN) the following inequalities hold

, ko, ko, ,
vl <ko C@)Iwlp lvlipe™ + Coo) ulle” vl (2.36)
vl ko CR)lIwlip w5 -

In view of the KAM reducibility scheme of Chapter [] we also consider the stronger notion of

D*o —modulo-tame operators, that we need only for operators with loss of derivatives o =0 .

Definition 11. A linear operator A := A(() is D* -modulo-tame if for all k € NN |k| < ko,
the majorant operators |8§A| (see Definition @) satisfy the following weighted tame estimate: for all
P> po,w € HP(T x TV),

Sup A 10E Alall, < M (po) Wl + M ()[4l - (2.37)

where the functions p — M%(p) > 0 are non-decreasing in p. The constant Mi(p) is called the modulo

tame constant of the operator A.

Lemma 2.17. Let A be a D*0— modulo-tame operator, then
Ma(p) < My (p).
Proof. See Lemma 2.15 in [19]. O

The class of D*°-modulo-tame operators is closed under sum and composition, indeed we have the

following Lemma.

Lemma 2.18. Sum and composition. Let A, B be DFo-modulo-tame operators with modulo-tame

constants respectively M%(p) and MﬁB(p). Then A + B is D*-modulo-tame with modulo-tame constant
My 5 (p) < My (p) + Mig(p). (2.38)

The composed operator Ao B := AB is C* -modulo-tame with modulo-tame constant

M (p) < Clko) (M (p) M3y (p0) + M3 (p) M5 (b)) (2.39)

Assume in addition that (95)" A, (99)" B (see Definition @ are D*- modulo-tame with modulo-tame

constant respectively /\/1589> (p) and M%a(g)bA(p), then (99)" (AB) is D* -modulo-tame with modulo-

bA
tame constant satisfsying

(2.40)
+ My DIM (o) + My (o) M (D)) -
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Proof. See Lemma 2.16 in [19]. O

As a consequence of the composition rule (2.39)), if A is D¥-modulo-tame, then, for all n > 1, each

A" is DFo_modulo-tame and
4 4 nelo
M (p) < (20(ko) M (p0)) M (D). (2.41)

Moreover, by (2.40), if ()" A is D¥o-modulo-tame then for all n > 2 each (95)” A™ is D*¥o-modulo-tame
with

M0 9) < UCICO) (M ) (M)
(2.42)

MM (o0) (Mitoo) )

Lemma 2.19. Invertibility. Consider the operator ®(¢) = 1 4 A(¢) where A(C) := A is D* —modulo-

tame with modulo-tame constant MﬁA(p). Assume the smallness condition

AC(b)C (ko) MPy (po) < (2.43)

N —

Then the operator ®(¢) := ® is invertible, B := ®~1 — 1 is a D*—modulo-tame operator with modulo-

tame constant

M (p) < 2M (p) . (2.44)

Moreover (85)" B is D¥o-modulo-tame with tame-constant
My s (P) < 2M7, 1 (9) +8C(B)C (k)M 1 (00) MEy (p).- (2.45)

Proof. Using 1' and 1) the operator norm ||A[|z(zro) < 2M¥, (po) < i
Then @ in invertible and the inverse ®~! = 1 + B where B = Zj(—l)-jAj satisfy the estimate ||
by (2.38), (2.41) and (2.43)). Similarly (2.45)) follows by (2.38)), (2.42) and (2.43)). O

We now present further lemmas that we shall use in Chapter [0

Lemma 2.20. Smoothing. Suppose that <89)bA, b > 0, is Dk - modulo-tame. Then the operator

[y A is D* - modulo-tame with tame constant

M (0) S NTPM, 0, (0), Mi () < M) (2.46)
Proof. See Lemma 2.18 in [19]. O
Lemma 2.21. Let A and B be linear operators satisfying |Al,|B|,| (9s)° A, | (39)° B| € L(HP?). Then

A+ Blllzeoy < Al zcroy + 1Bl 2arvo) (2.47)

IABIllzczeoy < 1Al zczroy | Blll 2 (avo) (2.48)
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11 (96)° (AB)|ll avoy < Il (00)° Alll cazvo) 11 Bl 2 arvoy + I (90)° Bl ccavoy 1Al 2 rvo
TN Alll 2(zrv0y < N 701 (90)" [Alll £(zrv0)

T Alll 2ervoy < ANl 2avoy -
Proof. See [19].
Lemma 2.22. Let ®; := 1+ V;,i = 1,2 satisfy

. i=1,2.

DO =

il vy <
Then &7 =1+ W;, i=1,2 satisfy ||| ¥y — @2|||L(Hp0) < AWy — Wyl £(pvoy and

1(06)° |1 — ||l c(rrvay < C(b)]| (Bp)° W1 — Wall| £(rrvo)

+ o) (14111400 Bl cqarva) + (00" Balllegrmsoy ) N1 = Wl

Proof. See Lemma 2.20 in [19].

2.3 Composition operators

21

(2.49)
(2.50)
(2.51)

(2.52)

The composition operator w(y) — w(y + p(y)) induced by a diffeomorphism of the torus T" is tame.

Lemma 2.23. Let ¢ := q((,-) : R® — R"™ be a family of 2m-periodic functions which is ko-times

differentiable with respect to ¢ € Ay C RNTL, satisfying
< 1 Koy 1
lallcrorr = 5 llallpe™ < 1.
Let g(y) :=y + q(y), y € T™. Then the composition operator
Azw(y) = (wog)(y) = vy +q(y))
satisfies the tame estimates
[Aw]lp, < Clpo)llWllpe: 1AW, < Cpo)llWllpo+1llally + Cp)l[wllp, VP = po+1,
and for any |k| < ko,

1(0F A)wllpy < C(pos k)Y ™[]l 411

[(@FAyall, <y *C(p, k) (IIWHpo+|k|+1HqI|Lk'” + IIWHka\) , Vp>po+1.

The map g is invertible with inverse g~'(z) = x + s(x). Suppose 8?(]((, ) € C(TN*Y) for all |k| < ko.

There exists a constant § := §(po, ko) € (0,1) such that, if Hq|\§;(’)1k0+1 <6, then

ko,
sl < Clp, ko)llsll% %, . VP = po-

(2.53)
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The composition operators A and A~' are D* — o-tame with o = (ko + 1) and tame constants satisfying
for any P > o,

Ma(p) < C(Pko)(1+ ™), Mai(p) < C(Pko)(L+lall,57,),  Vpo<p< P (2.54)
Proof. See Lemma 2.21 in [19]. O

Finally we have the generalized Moser tame estimate for the composition operator.
Lemma 2.24. Composition operator. Let f € C°(R x TV R), and let
w(z,0) — £(w)(z,0) := f(x,0,w(x,0)),

the induced composition operator. If w(¢) € HP(T'*N) is a family of Sobolev functions satisfying
[wllpe” < 1 then, ¥p > po = 442,

[£) 57 < Clp, ko, )L+ [lw]l37).

Tame estimates for the translation operators.
We now prove some results for the composition with a particular change of variable that we shall consider

in Chapter |8 Let ¢ € Ay. We consider
U((,0) :=V: h(x,0) = h(z +1(0),0).

In order to simplify the notation in what follows we shall write 05 instead of 8& , r=1,..., N. Moreover,
since this particular composition operator acts only on the spatial component, we omit the #-component

in the function, namely we write h(x) instead of h(z,#). Note that
(0o W)[h] = (9zh)(x +(0))(De¥(0))- (2.55)
We start with the following Lemma
Lemma 2.25. Let U be the translation given above, that is ¥((,0) := U : h(x) — h(x +¥(6)). Then
DV (0,) " = (02) " eV .
Proof. Let h =3, 4 h;e'® be a function. Then

(0p0) (0z) " h =00 | > %hjeijw
JEZ

1 o
— 0y thﬁmwww)
JEZ J

-y T (0) = IVO)
A

= (02) " (06 W)[1]
where 1y = Oy, O
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Thanks to Lemma we have that 8?357.\11 (0,) " PIFl = (g,) A~ IH 3?857'\11 . Also in what follows
we shall write 85 instead of agr.

Lemma 2.26. Let ko, 50 € N and ¥((,0) := ¥ as before. Assume that

[llyes, < (2.56)

Then for all k € NN, 3 € N with |k| < ko, 8 < Bo and for allpo <p < P
0505w (0 hlly . N0:0805w (0) M hlly <p T (1Al ISYE + I0l,)  (257)
105 0: 9 (] (02) ™" il 1105 020,9[i] (0a) ™2 hlly < Illp O EIIIES T + 1B (2.58)

k|- _
Proof. We prove ||3§30’8\Il (0s) k] ﬁth <p ¥ (Hh||p0||1/1||];3_’g+|k| + ||h||p). Set

o= (0.)" M, (2.59)
then
O flx+9(0)= > ST Cuprnns, (00 F) (@ + 0(0))(05)...(05" ). (2.60)
e N v

We differentiate also for 8?:

RGI+v0) = 3 D Cupr (@1 +0(0) 08 [(0F )05 )
ki+ka=k 1<n<p
Bi+...+Pn=0
B1yeesBn>1

> X Cn,al,...,ﬁn( S Cok b @PT @ 0) (261)

ki+ko=Ek 1<n<p 1<m< k1|
Bit...+Bn=08 a1 +...+am =k
B1yeesBn>1 [a1]sees|am|>1

x (63177/1)...(8‘5”%)) g [(@51@...@;;%)] :

Therefore, according to the previous formula, we need to estimate for any 1 <n < g, 81 + ... + B, = 85,

ki+ ke =k, 1§m§|k1\,a1+...—|—am:k1 the term

@z )+ [ 0. @m0 o (@)@ w)] | (2.62)
First notice that for any p > 0, by
18 1, = oy @) =2, "L g, (2:63)
Using Lemma [2.23] one has
1@+ 1)@+ B < 19l + 107 Flso B 1l + Il (2.64)

Using the interpolation estimates (2.5)), the condition (2.56) and a1 + ... + a, = k1, S1+ ...+ B, = B one
has

1O ¢)...(0¢™ )y <p v~ ™0l 7, (2.65)
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1082 [0 )-- 05 0)] Iy <p 7 105" 905 )i <p vl (2:66)
Then, by —, using that k1 + ko = k, and recalling the interpolation estimate for product the
one has that
B <o v (IRl + 1215575 1Al ) -
As a consequence,by recalling , the first claimed estimate in is proved. The other estimates

follow similarly.
O



Chapter 3

Degenerate KAM theory

In this Chapter we verify that it is possible to develop degenerate KAM theory as in [7] and in [19].

Definition 12. A function f = (fi,...,fn) : [e1,62) — RY is called non degenerate if, Ve =
(c1,...,en) € RNV \ {0} the function f-c = ficy + ... + fven is not identically zero in the whole in-

terval [e1,e5] .
For a smooth function f, differentiating (N — 1)-times the identity f(g)-¢ = 0 we see that
f(e) degenerate == f(e), (9-£)(€), ..., (ON"1f)(¢) are linearly dependent Ve € [e1,e2].

Let us consider

[2 1) ‘
wi(e) = j\ pitet = gi%e* + 1, e N\{0}. (3.1)

We define INg := IN \ {0}. We denote the unperturbed tangential frequency vector by

W e, 6] — RN

(3.2)
e =a(e) = (wi(€)) jes = (Wi (8), wjs (), s win (€))
where S is defined in (1.31). The unperturbed normal frequency vector is defined as
ﬁ :[81,62] — RN
(3.3)

€ 6(5) = (Qj(ﬁ))jemo\s = (wj(g))jelNo\S :

We show that the function € — wj;(¢) is analytic in (—?, oo). Indeed the function wy () is analyitic

in (—d,00). Let €g = 0, then in (—4,d) we have that the function

€2n
wi(e) =Y 92n T (3.4)
n>0
Then if we expand in Taylor series at €9 = 0 also the functions

8277,

wj(e) = jwr(je) =4 Y gszZ"W , Vj € No (3.5)
n>0 ’

25
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we obtain that are analytic in (—g, oo).

Lemma 3.1. The frequency vectors
Ge) € RN, (d(e), Qle)) € RV VE € INg \ S, .
(@(e), (), U(e)) e RNT2, Vj ke No\S, j#k, (d(e),e”) e RN, 0
where S is defined in , are non-degenerate.

Proof. Let us consider d(e), (&(¢g),Q;(e)),j € No\'S, (&(e),Q;(e), (e)), 4,k € No \'S,j # k. By

(3-3) we have that Q;(e) :=wj(e), j € Ng \ S, hence we can rewrite the vector above as follows
d(e), (@(e),w;(e)),j € No\S, (de),w;(e),wr(e)), .k € No\S,j # k.

There exist s Taylor coeflicients ga,, # 0 of the analytic function wy, say gan,, -, gan, With 2n; < ... <
2ns and s = N, N+1, N+2. Suppose, by contradiction, that the function [e1, €3] 3 € — (wj, (€), ..., wj, (€))
with j1,..,Js > 0, j; # jv for all i # i’ is degenerate (according to Definition [12)). Hence there exists
¢ € R®\ {0} such that

cawj, (€) + ...+ cswj () =0, Vee (=d/js,+00), with s=N,N+1,N+2

where the function [e1,e2] 3 € — ciwj, (€) + ... + cswj, (€) is analytic. Hence we differentiate with respect

to € the identity ciwj, (€) + ... + cswj, (¢) = 0 and we find

c1 (D?m)wjl) (€) + ... + cs (Dg”l)sz) (e) =0

¢ (Dé%s)wjl) (&) + ...+ cs (Dézns)sz) (e) =0.

Hence the s x s matrix

(PE™ws ) @) (DEws) @) o (DEer ) (6)
Ale) (D2, ) (&) (D) () o (DE™, ) (6)
£) = :

(Déz"”-wjl)(e) (D?”f’)l%)(f) (Dgnb‘)l“’j\q)(g)

is singular for all € € (—§/js,00) therefore the analytic function
det A(e) =0, Vee (=§/js,00). (3.7)

In particular at € = 0 we have det . A(0) = 0. By (3.5) we can compute such determinant as

2n1+1 2nq+1 -2n1+1 2n1+1
927’7,1.71 g2nljsnl jl ! ]snl
2no+1 One1 2n2+1 2n9+1

92n371 s 92nsJs WA e Js

det A(0) := det = 92n, ---92n, det

2ns+1 2ns+1 2ns+1 2ng+1
92n.Ji o Gon it g e gamet
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This is the generalized Vandermonde determinant, we have 1 < j; < jo < ... < js and the exponents

o = 2n; + 1 are increasing, then

2nq 41 2nq+1 e o
i jamt it js
2no+1 ] 1 e .
i o gEnet Jir .. g

det . ] = det ] i >0
2n+1 2n,+1 ‘g ‘g
J1 A R VIR

see [61]. Since the Taylor coefficients gan,, ..., gan. # 0, we obtain that det . A(0) # 0. This is in contra-
diction with (3.7).
Now we prove that (d(g),e2?) € RV*! is non degenerate.

As before, suppose, by contradiction, that there exists ¢ = (cq,...,cn, 1) € RVT1\ {0} such that
c1wj, (€) + ... + enwj, () +e2 =0, Ve € (—6/jn,+00),

where the function [e1, e2] 2 € = ciwj, (€)+...+cnwjy (€)+€? is analytic. There exist N Taylor coefficients
gon # 0 of the analytic function wi, say gon,, ..., gany With 2n; < ... < 2nx. Hence we differentiate with

respect to € the identity above and we find the (N + 1) x (N + 1)- matrix

(Dg)wh) () (Dg)wh) (e) .. 2

Ble) == (Dgnl)%‘l)(é‘) (D?"l)-wh)(s) 0

(PE"w; ) () (D) () o 0
is singular for all € € (—d/jn,00) and so the analytic function det B(e) = 0 for all € € (—§/jn, 00), hence

in € = 0 we obtain

det B(0) = 2det A(0) =0. (3.8)

By (3.5) we can compute such determinant as

j12n1+1 jiﬁll-i-l j3n1+1
-12'n,g+1 j2n21+1 j2n2+1
det B(0) = 2gan, .-.gan. det _ S_. ° = 2det A(0) .
o +1 gl on,
AT i L M

As before, this is the generalized Vandermonde determinant, therefore is different from zero, in contra-

diction with (3.8]). O
By Lemma [3.1] we can prove Lemmas [3.2] [3-4] and [3.5 below that we shall use in Chapter [4

Lemma 3.2. Let &(¢) as in (3.4). Then 3py > 0,ko € IN such that Ve € [e1, €]

max |0 (@(e) - O] = pol) VL€ ZN\ {0} (3.9)
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Proof. Let us prove it by contradiction, i.e. Vpy > 0 and Vko € IN there exists I € Z~ \ {0} and ¢ € [e1, €3]
such that omax |0k (&(e) - 1)| < poll).

Then VA € IN let py = there exists Iy € ZN \ {0},ex € [e1, 2] such that

1+)\

1
0211?§A|8 S(ex) - In)| < mﬂﬁ

and hence for all k € N, A > k

ak( (ex) - é;)’ < 1% (3.10)

The sequences (1) € [€1,¢€2] and l—* € lRN are bounded, and by compactness there exists a subsequence
A — oo such that ey, — & € [51752] and ( By > CE€ RN\ {0}.
Passing to the limit in we obtain that

1
ok (w(%).éi})% T — |0F (@) -e)| =0, VkeN.

Hence the analytic function € +— &(¢) - ¢ is identically zero. Since ¢ # 0 this is in contradiction with the

non degeneracy condition (3.6]). O

In the following Lemma we divide the normal frequency in a suitable way and we will use this result

in Lemmas B.4] and

Lemma 3.3. Let Q; as in (3.3)), with j € Ng \' S. We can expand Q; as

2 . 1 5 5\ .
Qj (6) = 1—552j3 +7; (5) where j \/; ]
V I \/1 i+ B \Y 2

2]5 1gd

Then

Iri(e)] < Cljl, and sup |8frj(5)| < C(k)j_l , Vk € Ng.
JENQ\S

Proof. We prove that the decomposition above holds, Vj € IN

2 .2.3 2.2 5 j 1 4 15 4 /5,
2 2.3 15 15¢ 2J T2 e 2 €252 6/
=i +re) =
15 14 4/1— by + 84
2]282 2j464
2 .2,3 _5_1 15 1 2 .2:3 _5_1 15 1
\/ 15¢7J (1 2j252+2j4s4)+ 158°J \/1 2722 T 3 jia
o 5 1 51
1+\/1*§J252 + 3 A
/ 5 1 15 1
\/1_7‘] €2+2]€4 <1+\/1_§j262+7j464)
_5_1 15 1
1+\/1 2g252+ 2 jiet

We now compute the derivative of the remainder r;. Notice that

Ir;| < Cljl,
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and Vk > 1,Ve € [e1, &9]
Okrs() ~ Ok
Hence
[0Fr;(e)] < C(k)
uniformly in j € Ng \ S, for all £ > 1 and € € [e1, £2).
O

Lemma 3.4. Let d(e) as in , and € as in . Then 3pg > 0, and ko € N such that Ve € [e1,€2]

,nax 05 (@(e) - 1+ Q5(e)| = poll) VI eZN,VjeNg\S. (3.11)

Proof. We prove this lemma by contradiction. Suppose that for all pg > 0, ko € IN, there exist [ € ZV,j €
INo \ S and € € [e1, €3] such that

Jmax [05(@(e) -1+ 2,(0)] < poll):

Note that if j3 > C|| then there is no small divisor problem, indeed Ve € [e1, 2] we have () 1+Q; ()| >
Q,(e) — @)l > €342 — CJi| > Ji] if j > Cyll|, for some constant Cy > 0.

Therefore we can restrict our attention to the indices (1,5) € Z" x (INg \ S) such that
7 < Cll. (3.12)

We can suppose that for all A € IN there exist ex € [e1,¢e2],1x € Z",jx € Ny \ S such that

1
k(-
Jnax, |02(@(ex) - I+ Qs ()] < 1 -
Hence
l)\ Q; (E,\) 1
VEeN, A>k, |0F(d(en) 7~ + —2 < : 3.13
>k Jok (e gy + BB e (313
The sequences (e))x € [e1,£2] and é—ib\ew € RY are bounded, and by compactness there exists a
subsequence A, — oo such that
l
€x, — € € [e1,€9], (l/\7‘> — e RN, (3.14)
Ar

We have to consider two different cases, if |I| is bounded or not.
Case 1: |ly,| < ¢, then I, — [ € Z" and have that |j,|> < C|l\] < ¢ (see (3.12)) for all A, hence

gx, — j. We consider the limit with A\, — oo hence we have that

l 1 1
k(= R o — r
% (“(”) SN <zA>Q“(6*))‘ DT =

therefore, if d := }>,

max
0<k<A

—~

OF (@(e) - ¢+ Qj(e)d) =0 VE€N and deR\{0}.



CHAPTER 3. DEGENERATE KAM THEORY 30

Hence the function [e1,e2] 3 € — &(g)-c+8;(e)d is identically zero. Since (€, d) # 0 this is in contradiction
with the non degeneracy condition (3.6]).

Case 2: |ly,| unbounded. By |j]? < ¢(l), if we consider the limit with A — co we have that

% éi) S deR\{0} ey —Ee e e, éi> L Ze RV
By Lemma and we have
R Rt R R ERT NI s SRR
Then, passing to the limit in we obtain
o (@'(5,\) hoy leA(e,\)> ‘ < |OM@EE) 7+ )| =0,
(Ix) () L+ A

Therefore the analytic function ¢ — @J(g) - €+ de? is identically zero, in contradiction with the non
degeneracy condition . O

Lemma 3.5. Let d(e) as in , and Qj/ (), Q;(e) as in . Then 3pg > 0 and ko € IN such that

Ve € [e1, €2,

max laf[w(E)l-‘rQJ(E)—le(E)” 2p0<l>’ V(lvjla.j)#(ovjaj)7 ZEZN7 jvj/EINO\S (315)

0<k<ko
Ogllcag?c ]65[(3(5) I+ Qj(E) + Qj/(&')” > p0<l> , Ve N s 7 j/ € Ny \ S. (316)

SRR
Proof. We prove the lemma for &(e)-1+;(e) =€/ (¢) since the proof of the other is similar. The Lemma is
proved by contradiction. Note that if [j3—5"3| > C(I) the non resonant condition |&(e)-1+Q;(e)—Q;(g)| >

po(l) is satisfied, indeed, Ve € [e1,e2],

—

w(e) - 1+ Q5(e) = Qe (e)] = [9;(e) = Qe ()] = [&(e) ]I

2 54 o
>\ 151" =301 = Cli = 5l = Cll

> OB =0 =il = ), it 52— =),

for some C' > 0, where the second inequality follows by (3.3). Therefore we can restrict to the indices
such that

5 = 71 < ). (3.17)
We can also assume j' # j, otherwise (3.15)) reduces to (3.9). Suppose that for all A € IN there exists
Ix € ZN,jx, j5 € Nog\'S, 44 # jr,ex € [e1,€2] such that for all k € IN,VA > k

(e b ) N
0; <w(5A) <l/\>+ N N )‘<1+)\. (3.18)

Since the sequences (£))xen, (é—b)A N are bounded, there exists A, — oo such that
€

I,

OW)

Ex, > € € [e1,€9], e RY. (3.19)
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We have to consider two cases:
Case 1: (ly,) is bounded. Then (ly,) — [ € ZV, by [j* — j3| < C(l) we can say that also jy,,j} are
bounded, indeed
=32 =G+ =2 G+, Vi

therefore

O PR W (3.20)

Hence, passing to the limit in (3.18)) for A, — oo, by (3.19) and (3.20) we deduce that

VEe N, A >k, af(a(g).cnr Z<>) Qj{lgg)>:0

Therefore the analytic function € — &(e) - €+ 0 'Zl—; is identically zero, in contradiction with the

non degeneracy condition (3.6]).
Case 2: (ly,) is unbounded. We have Q;, — €y =~ /7 Ze3 |73 — 2| and ﬁlj“> 2l g eR
indeed, from Lemma[3.3] Vk € IN

Qj,, (ex,) — Qi1 (en,) 2 g3 =% 1 1
85 » _ T58§E§\7 A Ar + af (’I“j)\r (8)\7.)) — j@? (7”];\’ (5)\,,,))

OW) () (Ix) (Ix,
and Vk > 1
Laf (7ia, (Ex)7x.80,) — Laf (Tj’ (ex.)irEn, ) sup |9k (e)]
<l)\7'> " " o <l)\7'> Ar < e€ler,e2],iEN
C( Ap—>00
0.
B <1Ar>

If k = 0 we have that €253 + j < Ce?j3, therefore this part is controlled by the principal term. Hence

ijr — Qj' - _
8§T>M—>d8552, d;éO

Passing to the limit in (3.18) for A, — oo we deduce that

VkeN  0OF (&5(e) - ¢+ de?) =0.
Hence the analytic function ¢ ~ &(e) -+ de? is identically zero, in contradiction with the non degeneracy
condition ({3.6]). O

Remark 3.6. We take as po the smallest py provided by Lemmas [3-3 . Moreover we take
as ko the largest among the ko provided by Lemmas and it is the so called “index of non-

degeneracy”.



Chapter 4

Nash-Moser theorem and Measure

estimates

In Chapter after the introduction of the action-angle variables we arrived to the Hamiltonian H,, defined

in (1.44)), that admits the reversible structure defined in (1.42)). We look for an embedded invariant torus
i: TN TV xRN xHE, 6 i(0) = (9(0),1(0),w(h)) (4.1)

of the Hamiltonian vector field (0rH,, —0yH,,—JV,H,) defined in (1.40) filled by quasi periodic so-

lutions with Diophantine frequency w € RY which satisfies also the Melnikov non resonance conditions

defined in ([4.10)).

4.1 Nash-Moser theorem

The Hamiltonian H,, in (1.44)) is a perturbation of the Hamiltonian /. The quasi-periodic solutions of
the Hamiltonian system (1.40) will have a shifted frequency which depends on the non linear term P. As

in [19] we embed H,, into the family of Hamiltonians
1
H, =N, + P, Ny =a- T+ 3 (w, Dw) - aeRY, (4.2)

where D is defined in (1.45). The family H, depends on the parameter « and for the value oo = &(e),
defined in (3.2), we have H, = H,,.

Then we look for a zero (i, «) of the non linear operator

Fli,a) = F(iya,w, p) = w - 0gi(0) — X, = w - 0i(0) — (Xnr, + pXp)(i(0)), (4.3)

32
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that is explicitely given by

w - 0p¥(0) — a — uodr P(i(6))
Fliya,w, 1) = w - B (0) + pdy P(i(6)) (4.4)
w - Opw(0) + J(Dw + uV,, P(i()))

for some Diophantine vector w € R™. Thus 6 + i(6) is an embedded torus, invariant for the vector field
generated by the Hamiltonian H,,, filled by quasi-periodic solutions with Diophantine frequency w. Note
that each Hamiltonian in is reversible, that is H, o p = H, where p is the involution defined in
(1.42). Then it is natural to look for reversible solutions of F(i,a) = 0, namely satisfying poi(6) = i(—0),
that is exactly the condition given in .

The Sobolev norm of the periodic component of the embedded torus

V(0) :=1i(0) — (0,0,0) = (©(8),1(8),w(d)), ©OB)=9(6)—0

IVl = 1Ol mg + [l mg + llwllp, (4.5)

where [Jw]|, := HwHHZT = max{|[q|lp, [[pllp} is defined in (2.2) and || - || gz is defined in (2.4).

We look for quasi periodic solutions with frequency w belonging to a §-neighborhood ( independent
of 1)
Q:= {weR" : dist(w,&([e1,£2])) <6, § >0}
of the unperturbed linear frequencies &J(e) for € € [e1, 2] defined in (3.2)).
Let INg := IN\ {0}. Recall that S is defined in (T.31]), the norm | -|**7 is defined in (2.7) and the norm

|| - [|5o-7 is defined in (2.9).

Theorem 4.1. Fiz finitely many tangential sites S C Ny, and let N be the cardinality of S. Let T > 1.
There exist constants po > 0,a9 := ag(N, 7, ko) > 0, and k1 := k1(N, 7, ko) > 0 such that, for ay <

(1+k1)~t and for all v = p®, with 0 < a < ag and p € (0, pg) there exist
e a kg-times differentiable function

Qoo s X [e1,62] = RN, an(w,e) = w4 ru(w,e), with |r,|F7 < Cuy~ k) (4.6)

e a family of embedded tori in, defined for allw € Q and € € [e1, 3] satisfying the reversibility property

and
liso (8) = (6,0,0) |55 < Cuy~(HHF0), (4.7)

0

® a sequence of ko-times differentiable functions A\5° : @ X [e1,e2] = R, j € No \' S, of the form

1

2 1 2
AP (w,e) =j (1554]'4 — 5523'2 + 1> +mP(w,e)j +75°(w,e), (4.8)
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where m3°, r; are real and m3° and r3° satisfy

ImeFY < Cp,  sup |rPf*7 < Cpuy™h, (4.9)
JENO\S

such that for all (w,€) in the Cantor like set

CL ={(w,e) €Qx [er,e0] : jw 1| >~{)"7, VIiezN\{0},
w - L4+ AP (w,e)| > dj[P (077, Ve ZN,VjeNo\S (410)
w1+ AP (w,e) = A¥(w,8)| > 4y]5% = 72", VIezZN, j',j €eNg\S

w L+ AP (W,e) + AP (W, e)| 2 dl° + 521077, vieZY, jjeNg\S},

the function ix(0) = iso(w,e, 1)(0) is a solution of F(iso,eo(w,€),w,e, 1) = 0. As a consequence the

embedded torus 0 — ix(0) is invariant for the Hamiltonian vector field Xy and it is filled by

Qoo (w,e)?

quasi-periodic solutions with frequency w.

Remark 4.2. The kg index appearing in Theorem[].1]is the “index of non-degeneracy” defined in Lemmas
and[3.5 and it depends only on the linear unperturbed frequencies.

Theorem above is proved in Chapter [10j using the results about the linerearized operator presented
in Chapters

4.2 Measure estimates

In this Section we want to deduce Theorem [1I| by Theorem [4.1] Since ag ( in Theorem [4.1)) satisfies
ap < (1+ k1)~ one has |r,|*7 — 0 as yu — 0 ( where | - |07 is defined in (2.7)) and hence for o small

enough the map as (-, &) : @ = o (Q x {€}) is invertible and moreover one has

B =W, e) =w+ru(w,e) & w=ay (8,e) =B +7u(B,¢) (4.11)

with |F/L|k°’7 < C’,u’y*(Hkl) .
Indeed the inverse map 8 — az!(B,e) = B + 7,(B,€) satisfies the identity
B=w +rﬂ(w’5) =>p=0+ fﬂ(ﬁ?‘?) + Tu(/@ + fu(ﬁ,é“),é“) =0= ’FH(IB’(-;) =+ Tu(ﬁ + fu(,@’e’;‘),e’;‘) .
Thanks to the implicit function theorem 7, is C' with respect to (3,¢) and it satisfies the identities

Dpiy(B.e) = — [L+ Duru(B + 7u(B.2), €)™ Duru(B + 7 (B.2), €)

857:#(6’5) = []l + Dwrﬂ(ﬂ + ’FH(Bvs)vE)]_l 8ETM(/6 + 77”(575),5) )

where Dg, D,, denote the Frechet derivatives with respect to 3,w. Arguing by induction on |k| < ko we
obtain that 7, is ko-times differentiable and the estimate (4.11]) follows as in [19].
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Thanks to Theorem [£.1] the existence of an embedded invariant torus filled by quasi periodic solutions
with Diophantine frequency w = a2 !(8,¢) is ensured. Indeed in Theorem we prove the existence of

solutions with frequency w = a2 }(3,¢) for the system for the Hamiltonian
1
Hg=p-1+ §(w,Dw)Li + pP.

Consider the curve of the unperturbed linear frequencies (defined also in (3.2))

[e1,e2] D e d(e) := (j

2 1
ﬁj484 - §j252 + 1) S ]RN
J€Ss

We now prove that for most ¢ € [e1,2], the vector 8 = @(e) € ax(CL) (see Lemma [4.8). Hence for
such values of ¢, by Theorem we have found an embedded invariant torus for the Hamiltonian H,
in , filled by quasi-periodic motions with Diophantine frequency w = a3 !(&(¢),). This implies
Theorem [

In the proof of Theorem [I] we have to prove that there exists a Cantor like set G with asymptotically
full Lebesgue measure, that is exactly the condition: for most ¢ € [e1, €2], the vector 8 = &(g) € ax(CL).

In what follows we prove exactly this (see Lemma [4.8)).

By we get
wu(e) = a;}(aﬁ(e), e) =d(e) +rue), rule)=7u(d(e),¢) (4.12)

where

0Fx,,(e)| < pCy~ AR+ 0 <k < k. (4.13)

We also denote

2 1. o e .
A (e) == A (wule),e) i=j Bj454 - 5]252 +1+m®(e)j +ri°(e), VjeNg\S

(4.14)
= Q;(e) +m®(e)j +1;°(e) Vje Ny \S
where §2;(¢) is defined in (3.3), m{°, r$° are real, and
M () = mP(w(e) ), 1 (E) = 1o (wule), ). (4.15)

By (4.9), (4.15) and (4.12)), using that py~1=%1=%0 < 1 that is satisfied for 4 ”small enough” ( see Lemma

, we get

0Em*(e)] < Cpy ™", sup [95r5°(e)| < Cpy™F M, WO <k < k. (4.16)
JENO\S

We define the Cantor like set G in Theorem [I|as G = G,,, where G, is given by

Gu = {e € [e1,82] 1 d(e) € e (CL)}

= {e € [e1,e2] : (ax) (@B(e),€),¢) €CL} .

(4.17)
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By (4.10]), (4.12)) and (4.14)) the set G, can be written as

Gu ={e € ler,ea] t lwule) - U = v(D7" VI e Z¥\ {0},

wu(e) L+ AP ()| > P[0, VIeZN,VjeNg\S,

wu(€) T+ AP (e) = A ()| = 4913 — j2 ()" VieZN,j,j € No\S,
wu(€) T+ A () + A ()| = 4yl + 5211y ViezN,j,j € No\S}

Now we prove that G,, has asymptotically full measure. We define the so called “resonant sets” as

R :={e € fer,ea] t lwule) - Ul <77}

RY = {e € ler, ) t lwule) - 1+ AP ()] < 4y(1) ™7}
R = {e € fen.ea] : lwp(e) - 1+ A2 () = AP (o) < 45 — 7|17}
R = {e € [er.ea] ¢ wu(e) -1+ XX () + AP (e)] < 5% + 57117

Lemma 4.3. Let uy~* small enough. The resonant sets defined in ([4.18)) satisfy

if RY A0 then |5 <C(D)

if R(Q)

Ly 70 then |57 — 7| < C (1)

if RY,#0 then |7+ % <C).
Proof. If € € Rl(}j), then
AT @] < 431 D77 + w1 < 49517 + C1i]

by (4.14)) and (4.16]) we get

3P

A ()] = 1P = m3e(e)ll5] - 'Sup\s|7“°°(€)\ > [j* = Culj| = Oy ™ > 1oy
0

J
JEN

for 2Cuy=* < % Therefore if % > 4~ then Rl(lj) # (.
Ife e ]?gibu then

A () = AT ()] < 415® = 5P 1D + lwu(e)llU] < 4y15% = 5] + CIl.

As before, by (4.14]) and (4.16]) we get

A (e) = AF ()] = [5° = 5 = Im(e)|lF — 5’| = sup [r5°(e)]
JENO\S

> |5 = % = Culj — j'| — Cpy ™™

3 3
202|.7 2] |

for 2Cpy~* < 2. Therefore if 2 > 4 then Rl@])], # (). The other case follows similarly.

36
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(4.21)



CHAPTER 4. NASH-MOSER THEOREM AND MEASURE ESTIMATES 37
Corollary 4.4. The set Rl(i)]/ defined in (4.18)), is not empty if
LI < CUME L Wi # 5 G, € N\ {0} (4.22)

Proof. The proof follows by the condition given in (4.19)) and by

lj+ 57
S

172 =31 =15 = J'N3* + 3%+ 35"l > 5% + 5% + 5’| >
For estimate the measure of the set G,, we have to prove some Lemmas.

Lemma 4.5. Consider w,(e) defined in (4.12)). There exist ko € IN and py > 0 such that for p small

enough and for all € € [e1, €3],

ax 08 (0, (o) D] = 30(0), W1 € Z¥\ {0}, (4.23)

1 08w (0)01+ ()| 2 gpoll) VI € ZY,j € Wo S, (4.24)

08 (w0 (0): 1+ A°(6) = AF ()] = gooll) L€ 2V, € N\ § (4.25)
08 (w0 (0): 1+ A(E) + AT )] 2 gooll) L€ 2V, € o\ . (4.26)

Proof. We prove (4.25)), the other estimates follow analogously. We can consider

7* =% <), (4.27)

otherwise él(?J, is empty. We can split A\;°(¢) = Q;(e) + A3°(e) — Q;(e), where ;(e) is defined in (3.3).
By Lemma [3.3 we have that

|0F [ (e) = Qe()] | < C(R)5° = 571, VE>0. (4.28)

Then for all 0 < k < ko, by (4.14)) and (4.16]) we have that

108 [(A5° = A)(e) — (5 — )] | < [EmS°(e)]lj — 4’| +2 sup

o \Slafrf"(s)l
0

< Cpy~ kR |5 — 4. (4.29)
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Using the definition of A3° in (4.14), by (4.16)), (4.13), (4.12), (4.29) and (3.15) we get

max |9F [wy(e)- L+ AT (e) = AFF (e)]] = max (9@ (e)-1 + Q) — Qyr (e)] = [0F[m3®)(F — 4")])

k<ko max

= max (|07()- 1| + 105 (57 (6) — 17 (©))])
> max OF@(e)-1 + () — Qs (£)] — Cplly~ o
= Culj = 'y~
> max 0¥ [ ()- 1+ Qi (e) — Qi (€)]| — Cpll]y~ '+ ko
— Culj® = ok
> po (1) — Cplljy = Fike
S Pl
-2

The last equation follows if iy~ 1=k —ko < 2% ) .

We want to prove that G, in (4.17) has asymptotically full Lebesgue measure. In order to do that we
shall prove that the measure of the complementary set goes to zero as  — 0. For this purpose we now

estimate the measure of the resonant sets. We use the following classical Riissmann’s Lemma.

Lemma 4.6. If min max |8§f(5)| > [ > 0 then, for a small enough,
e€le1,e2]0<k<ko

He € [e1,e2] 1 |f(e)] < a}] < ca¥o .
Proof. See Theorem 17.1 in [62]. O

Lemma 4.7. Estimates of the resonant sets. Let T > %ko, and v = p® with 0 < a < min{ap, 1/(1+
ko + k1)} < 1/2. Then the measure of the resonant sets defined in satisfy

B scowm e, (R <cOuPnT) e
By < oGl =0 L R < (1P + 5 m T

Proof. We rewrite (4.18)) as follows

(e)
R} ={e € lerea) s lwu(e) 1A AT @D <0117
(&)
(&)

R ={e € lerea) t [wu(e) - 1+ AP(e) = AF ()" < 49]3® = 7°[() ™"}
R = {e € ler ] : lwule) 1+ AX () + AP (I < dyl5® + 5211~

Note that we are considering the sets defined above, with the restrictions on 7, j’,1 provided in Lemma

3l
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Then by Lemma [£.5 we have that

max [0 (c) - 10) ]| 2 5 Ve € [en,
max|94(wu(e) T+ AFEND T = G Ve € fen,
max |0 (@, (€) -1+ A7) = XPEN I 2 2 Ve € fer el
max[4(w,(e) -1+ A3 () + AF @)D 71| % Ve € [e1, 0] .
By Lemma the conclusion follows. O
Lemma 4.8. Measure Estimates. Letl
vy=p*, with 0<a<min{ao,1/(1+ko+k)} <1/2, 7>ko(N+1). (4.30)

Then the measure of the set G, defined in (4.17)) satisfies |G| > (e2 —e1) — Cu*s as p— 0.
Proof. We estimate the measure of the complementary set
(0 5(1 2 3
B, =GS = [e1,e2]\ G = (UR§ ’) ulURY Jul U &Y, Jul U R,
l 1,j L,3,5" L,3,3"

pO0) p1) B2 pEB)
where R, le le“HRz“

77 Then, using the condition on the indices proved in Lemma [£.3] and in Corollary [£:4] we have

0 1 2 3
1B,| < Z|R< )| +Z|R< NS IR+ DR

, are defined in . The estimates on the resonant sets follows by Lemma

1,3,3" 1,3,5"
O ~(1 2 ~(3
<> IR+ Z R+ Y IRE I+ > IR,
l J<C/3 4,3’ <Cl/? 5,3 <Cl/3
(r = ) (r =
<cy (o) we S (WP )
l J<C/3

D DU CAEEC [V R RN S GRS LRl

3.3’ <Ci|r/2 VISl

<90 3T+ Oyi (TR 0y Yo )T 4 Oy 3o TR

l l l l

Then |G| > (e2 — 1) — C' ko O

Theorem and Lemma prove Theorem [I| with the Cantor-like set G := G,, defined in (4.17)) and
frequency vector w> = w,(¢) defined in (4.12]).
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Actually Theorem is given in terms of the variables (6, I, q,p), Theorem |l|is given in terms of the
variables (1, u). In Chapter [I| we have given the relation between these variables (see (1.17))) and (1.36)),
ie.

n :Z\/7 Aj\/mcosﬁjcoij N Ag
u T

jes A;lw/Ij + 7jsind; sin jx A lp



Chapter 5

Approximate Inverse

5.1 Estimates on the perturbation P

In this Section we show tame estimates for the composition operator induced by the Hamiltonian vector
field Xp, in . Since the functions I; — \/m, 0 — cos® and 0 — sin 6 are analytic for |I;| < r;,
the composition Lemma implies that, for all ©,1 € HP(TN,RN), [16]ly,, ]Iy, < 1, setting 9(6) =
0+ 6(0),

10507 AMBC), TO)I5>Y <p 1+ [[VIIFT Ve, 8 € RN, |a] + 8] <3

where A is given in (1.37), and V(0) = i(6) — (0,0,0) = (0(0),1(0),w(8)).
Let us consider the Hamiltonian vector field Xp = (07 P, —0p P, —JV,, P), where P is defined in (1.44).

Lemma 5.1. Let V() satisfy HV||§3’_:J <1, for some o > 0. Then

. ko,
IXp@)>" <p L+ [1VI53 (5.1)
and for all i == (0,1,%)
N 2 ko, v 1%
i X p (@[> <p illps + 113 [Ellpo+3 (5.2)
RN ko, y nciko, ko, Zirko,

1 X p (@) [z, )15 <p Nall%3 Nellpo s + VIR (lellpezs)® (5.3)

N ko, ko, v (1511ko,
101 Xp (D) 2]l <p illp%3 + VIR lallpo s - (5.4)

Proof. We can write Xp as follows

T T
Xp = ((5{;9;”) VP(A®, I, w), — (Méz’[)) VP(A®0, I, w), H§(—J)VP(A(9,I,w))>

where Hé‘ is the L?-projection on the space Hé- defined in ([1.32)), A is defined in (1.37) and P is defined
in (1.28]). Hence the estimate (5.1)) for Xp follows by direct computation using Lemma and the

estimates (5.2)), (5.3) and (5.4) follow by differentiating X p. O

41
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5.2 Almost approximate inverse

In order to find a solution of F(i, ) = 0, with F defined in (4.3]), we use a Nash-Moser scheme. The key

point is to construct an almost approximate right inverse of the linearized operator
di,a]:(im Oéo)[g, d] =Ww- (99’2 — diXHa (20(9))[%} — (d, 0, O)

where the perturbation does not depend on «, hence d; oF (ip, a0) = d;oF (o). Note that the almost
approximate right inverse is constructed at an approximate torus ig(8) = (¥9(0), Ip(0), wo(0)), at a given
value of ay (see Theorem .

We use the general strategy in [15], that was implemented in [I9]. An invariant torus ig with dio-
phantine flow, that is, [w - 1| > ()7, VI € ZV \ {0}, is isotropic (see [15]), namely i}Z is closed,
where = is the 1-form defined in . If we differentiate = we get the (opposite in sign) symplectic
2-form, that is W,ew, defined in . Hence the pull-back 1-form is closed if and only if the 2-form
—i5Whew = 15d= = dif= = 0.

For an “approximately invariant” torus iy, which the flow is “diophantine” for finitely many { € Z~,
the 1-form i5= is “approximately closed”. In order to be more precisely we have that w is in DC}Y(H7 that
is

DCj = {fweQcRY :jw- >y, V| <K}, (5.5)
where K,, := é%)n.

Then we consider

N
i =S a@dor,  an(0) = — ([000(0)]T16(0)), % (G0, 00(0), Jwo(0) por,,  (5.6)
k=1

and we quantify how small is the pull back of the 2-form

— i Wnew = dig2 = Y A(0)dop Adb;,  Aj(6) = Dp,a;(0) — I, ar(6), (5.7)

1<k<j<N

in terms of the “error function”
Z(&) = (Zl, ZQ, Zg)(@) = f(io, Olo)(e) =W - 89(10(9)) — XHa (10(9), Oéo) . (58)

Remark 5.2. The frequency vector w in (5.8) is only “approximate” Diophantine, that is w € DC}(TL,
where DC), s defined in (5.5)) .

Ansatz . The map (w,e) — Vo(w,e) = ip(0,w,e) — (6,0,0) is ko-times differentiable with respect to the

parameters (w,e) € RN x [e1, 2], and for some v := v(7, N) > 0,7 € (0,1)

Vollgo7, + lag — wl*o? < Cuy =R (5.9)

where k1 = k1 (N, ko) > 0 is given in Theorem Moreover we assume gy~ 151 small enough.
Actually in Lemma and we have required a stronger condition: py~(I+ki+ko) <1
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Since in the Nash-Moser iteration (see Chapter we shall construct an extension of each approximate
solution that is kg-times differentiable in the whole RN x [e1, €2] we suppose that the torus ig is defined

for all (w,e) € RN x [e1, €2).
Lemma 5.3. Let Z as in (5.8)). Then

ko, ko, ko,
1211527 <p |w = aol™" + [Vollys
_ ko,
<p ™ Vo153
Proof. By (4.4)), the estimate (5.1) on Xp and (5.9 one gets the result. O

In the Nash-Moser iteration in Chapter [I0] we have to introduce the “ultra-violet” cut-off K,,. More-
over we require that w € RY satisfies finitely many non-resonance Diophantine conditions. Hence at
every n-step we require that w is in DC}(H. In addition we will require that the frequency vector w satisfies
also finitely many first and second Melnikov non-resonance condition.

Since we have introduced the ultra-violet cut off it is better to split the coefficients Ay; = Ax;(6) in

ED o

Apg = AL + AT AN =TI Ay, AL =10 Ay (5.10)

where Tl is defined as the orthogonal projection on the finite Fourier modes |(1,j)| < Ky, and I is

defined as I :=1—1Ilg, (see (2.10)).

Lemma 5.4. Assume that w € DC}(H. Then the coefficients A;Z) and A§2)’L defined in (5.10)) satisfy the

following tame estimate

k, ko, ko, ko,
1A 15 <o v U2 b oty ko + 12 o2 VOIS T 1) k) - (5-11)

Moreover for any b > 0 and for any ¢ > 0 such that (@ holds with v > 7(ko + 1) + ko + 1 + ¢ we have

L ko, Ly ko, - ko,
HA(n) Hkof‘/ <p ||V0||p3r;= HA(n) HPSJ:C <po.b KanVOHpngc. (5.12)

Proof. We prove ([5.11))
—Liey (i5Wnew) = Y w - 05 A;jx(0)db A db;

let e = (0,...,1,0..) with 1 in the k-entry then
w - 0gAji = —Liey,(igWhew) €k, €] = —Whew (0o Zex, 0pio(0)e;) — Whew(Opio(0)ex, 0p Ze;) .
If we apply the projection we obtain
w- 09 AL = Tk, Waew(8p Zer, Opio(0)e;) — Waew (oio(0)ex, dpZe;)]

hence, by (5.9) and (2.36)) we have

ko, ko, ko, ko, ko, ko, ko,
o - Bo AL 150 < 1Z 5T IVollgds + 12150y IVollss <p 121537 + 12150 IVollsy? - (5.13)
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Therefore

(n))ko, -1 ko, ko, ko,
1S 150 < v (1215 1y e + 12T VO Tk 11500 )

where we have used ||(w - 99) g, gk <, v 1Hng+T(kO+1)+k (recall that w € DCj ).

For prove (5.12)) we use the smooth properties ((2.11] , , and (5.9)). O

Remark 5.5. The splitting (5.10) is due to the fact that w € DC .

As in [15] and [5] we modify the approximate torus iy to obtain an isotropic torus is which is still

approximately invariant. We denote the laplacian Ay := Zszl 892k.
Lemma 5.6. Isotropic torus. Let y~'u < 1. The torus is(0) = (9o(0), I5(6),wo(0)), with

I5 :=I + [3690(0)] T p(8),

(5.14)
=N, Zag (99, a; — o, ) 1283 Agi(0), j=1,.,N,
k=1
18 isotropic. Moreover Is admits the splitting Is = Ié") + I(g")’L where
I = I+ [0590(8)) "7 p™(6) , (5.15)
N
p;n)(g) = P Zag HK ((%kaj 69 ak . Zag A(n) 5
k=1
I = 1o + 0900 (0)] T p™ L (8) (5.16)
pgn) L(e) -1 Z 89 HK (aek a; — 89 ak -1 Z a A(n) L
k=1
There is 0 := o(N,T,kg) > 1 and ¢ > 0 such that, if (@ holds with o 4+ ¢ < v, then
n n),L
125 = Bolly <, (1257 = Lollpe + 127 [15)
<p Wollp4? (5.17)
15" = ol <p v (121507 Vollpey + 121527 (5.18)
n),L R — s
15" s e <oow K IVollps Tege V0> 0 (5.19)
sl <p 5 + (IVolla il ™) - (5.20)

Moreover the “error” function Zs = F(is, o) of the isotropic torus is (defined analogously to (5.8)) can
be splitted as Zs = Z(n) + Z(n with

1Z5 ||k <, 12115 + |1 Z |k, Vol ko2 (5.21)
1Z§ ko <, IVollfeZ, 128 1807 <pos K P IVO ST esn W0 > 0. (5.22)

Note that we denote by o := (N, 7, ko) possibly (larger) “loss of derivatives” constant.
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Proof. In [15] it is proved that the torus is is isotropics, hence we focus on the inequalities. We have

1(@060) =T (|07 <, 1+ [[Vol[p%7 - Then by

125 = Lol = 11(990(8) =" o™ (O)I1;>7 + (9690 (6)) =T p™ ) (B) 137,

by , 7 , 7 , the estimate follows.

We have Ign) — Iy = [0600(0)]"Tp™(6), hence the estimate follows by (B.11). The estimate
follows by and . The estimate follows by , , and by .

For prove and we consider the following split.

0
Fis,a0) = Flio,a0) + | w- 0g(Is — Ip) | + 1 (Xp(is) — Xp(io))
0
0 1
= Fio,a0) + | w-0p(Is — Iy) | + +u/ O0rXp (tis + (1 —t)ig) - (Is — Io) dt
0
0
_ Zﬁn) + Zén),L
where
0
Z{" = Flio, a0) + | w- (I — Ip)
0
1
+u / 8 Xp (tis + (1 — t)ig) - (fg"> - 10) dt, (5.23)
0
0 1
Z{ " = | w- gpr™ | + / 01X p (tis + (1 — t)ig) - I dt . (5.24)
0
0

Differentiating ([5.15)) we have
w0y (1" = Io) =[0090(0)) "o 00 (6)

— ([0690(0)) ™" (w - Do [0090(0)]") D60 (0)] ") p1™) (6) (5.25)
w - 0Oy [89190(9)] :uag(afP)(io(G)) + 89Z1(9) s (5.26)

where Z; is the first component of the error function. Then for prove (5.21)) we use (5.23), (5.25), (5.26)),
(.18), (B.11), (5.15), (.9), (5.2), (5.13)), (2.36) and Lemma The inequalities ([5.22]) follows by (5.24)),

5
(-12), G179, (-19), (5-16), ([-36) and (5.9). O

In order to find an approximate inverse of the linearized operator d; F (is) we consider the symplectic
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diffeomorphism Gj : (,y,2) — (9,1, w) of the phase space TV x RY x Hs defined by

i ¥ Do(1))
=G |y | = | Is(¥) + [0p90(¥)] "y — (o) (9o (¥))]" (=)= (5.27)
w z wo(Y) + z

where 10y = wo(fy ' (0)). In [I5] is proved that G is symplectic.
In this coordinates, is is the trivial embedded torus (¢, y, w) = (¢,0,0). Under this symplectic change
of variables the Hamiltonian vector field Xy generated by the Hamiltonian H, in (4.2]) changes into

Xk, = (DGs) ' Xy, 0G5, where K, :=H,0Gs. (5.28)

By (1.43) we have that the transformation Gs is reversibility preserving thus K, is reversible, that is
K, o p = K,, where p is defined in ([1.42). We compute the Taylor expansion of the new Hamiltonian
K, at the trivial torus (¢, 0,0), that is

Ko(¥,y,2) = Koo(¥, @) + K10(, @) -y + (Ko1 (¥, @), 2) 21,y + (K11(¥)y, 2) L2 (1,)

1 1
+ §K20(1/1)y Y+ g(Koz(l/))Z, 2)r2cr,) + K>3(¥,y, 2)

(5.29)

where K>3 collects the terms at least cubic in the variables (y, z). The Taylor coefficient Koo (%, o) € R,
Kio(y,a) € RN, Ko1 (¥, ) € He, Kaoo(th, a) € RV*N | Koo (1)) is a linear self-adjoint operator of Hi- and
Ki1(¢) € L(RN,HE), where He is defined in .

By and the Taylor coefficients which depend on « are Koo, K19 and Ko .

The equations of motion associated to the Hamiltonian K, in are (recall and the definition

of J in ie. (L.23))

¥ =Ko, a) + Kyo()y + KL ()2 + 0, K>3, 9, 2)

y = 0pKoo(v, ) = [0y Kio(th, )]y — [0y Kor (1, )]z — Oy (K11 (¥)y, 2) L2(T,)

(5.30)
—30p(Kao(¥)y - y) — 30y (Ko2(¥)2, 2) L2r,) — OpK>3(¥,y, 2)
2 = (=) (Ko, a) + Kn()y + Ko2(¥)z + Vo K>3(¢, 9, 2))
where 9y Ky € RV*N and 9, K1, KT, : HE — RY are defined by the duality relation
(8¢K(¥1[1/3]»Z>L2( 1/} [ ¢K01] Z, V1/AJ € RN,z cHs

and N N
K{i(¢)z = Z K{\z - er) Z z, Kier) oy, ex € RY, VzcHg. (5.31)

k=1 k=1

Note that the coefficients Kqg, K19 and Kp; vanish when Z = 0, in other words these coefficients vanish

on an exact solution.
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We consider K, = H, o G5 (see (5.28)), and we define F(is,a) = Z5 := (Z1,5,Z2,5,2Z3,5) then
differentiating it (see [15], [5]) we get

K1o(1h, ag) =w — [0y90 ()] Z1,6(¥)
By Koo (¥, 0) = — [0y 00 (V)]" (—Za.s — [0y s ()][0y 00 (¥)] ' Z1,5 — [(Dyto) (Yo ()] (—T) Z3.6

—[(By0) (Vo ()" (=) Bypwo () [(Bydo (¥))] " Z1.5)
Ko1 (¢, a0) = — JZ3.5 + JOywo (1) [0y 00 ()] 1 Z1,5() -

(5.32)

)

If we consider the splitting Zs = Z(gn + Zé”)’L, given in Lemma [5.6] setting

n n n n n),L n),L n),L n),L
A (220,240 w20 (A 240 2

we can decompose the coefficients Koo, Ko1, Ko2 in the Taylor expansion ({5.29) as

Oy Koo = 0Ky + 0, KS, K=K + K, Koo= K+ KSP+ (5.33)

where

DK (1, 00) = = 00" (285 — 0L (W)][0uP0 (V)] {7
— (Do) (B0 () (=) 24’3
~[(Du0) Do()]T (=)o (¥) Dy o ()] 217 ) (5.34)

DK (1,00) = = [0 (]” (=255 () = [DuIs (W)Dudo ()] 2175

— [(@ym0) (B (W) (— 1) 287

~[(Du0) Do()]T (=)o (E) Dy ()]~ 203 ) (5.35)

K35 (4, a0) =w — [0y ()] T 21 (v) (5.36)
K{§* (1, 00) = — [090(9)]7 273 (0) (5.37)
K (%, a0) = = JZ§7) + J0ywo($) [0y (v)) 1 2173 (5.38)
K (v, a0) = = JZ5 4 J0ywo($)[0u90(¥)] 217 (5.39)

In the following two Lemmas we first give some estimates on the coefficients that vanish when Z = 0,

then we estimate the variation of these coefficients with respect to «.

Lemma 5.7. There exists o := o(N, 1,ko) > 0 such that if if (5.9) holds with v > o+ ¢, ¢ > 0, then the
splitted coefficients (5.33)) satisfy

185 K53 (-, o) 507 + [0 {5 (-, crg) — w][ o

n ko, ko, ko,
+ 00K (a0 l5o <, 121557 + 121507, 1o 1557 (5.40)

n),L n),L n),L ko,
185 K53 (-, o) 1507 + |0 K57 (-, o) 507 + [0 KSP (- o) [E0 <, (Vo552 (5.41)
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n),L ko, n),L , n),L ko, — ko,
10 K5 (- o) 1507 + 106 K5 (- a0) [0 + 100G (- c0)lloZe Spop KoM IVollpy2yery (5:42)

for all b > 0.

Proof. The estimate (5.40)), (5.41)) and (5.42) follows by the explicit expressions given in (5.34))-(5.39),
by (2-36), (5-17) (5-21) and (5.22) . 0

Lemma 5.8. There exists o := o(N, 1,kg) > 0 such that, if ||V0||’;gﬂg <1, then

180 Koo X7 + (|00 K10 — 1|50 + (|00 Kor |[K07 <, [[Vol|5%2
ko,
| Kaolls <y e (1 V0l13%7)
ko, ko, ko,
I uylE <p i (I3 + Vol Tl )

ko, ko, ko,
VT2 <p e (121553 + Vol llzllgegs)

Proof. As in [15] we have

OaKoo () = I5(¥)
O K10(¢) = [Oyo(y)]
9o Ko1 () = (=J) 0o (Vo (¥))
K20(0) = ul@990(0)] 1 0rr P(i5(6))[9090(0)] "
K11(0) = 1 (81V . P(i5(0))[8600(0)] ™ + (= T)(8a0) (00 ()) (Drr P(i5(6)) [0y 00 (4)] )
Then €36), (1), (511, (31) and (3) imply the lemma, o

If we consider the change of variables

W Dy 90(0) 0 0 b
DGs(0,0,0) | § | == | 9uL:(0) [0,90(0)) 7" (@) 0@ () | | 9 (5.43)
Z 81“1)0(9) 0 1 Z
we have that the induced composition operator satisfies the following Lemma.
Lemma 5.9. For all i = (1,7, 2) we have
IDG5(3,0,0)[i]l[;>7 + [ DG5(9,0,0) " I8 <, [éll5 + Vol llillse ™ (5.44)
ID>Gs(9,0,0)[i1 , oI5 <p lfia [l iallpe ™ + lially> 7 illse ™ + [Vollpaliiallpe ™ liallpe™ - (5.45)
Proof. Use (543), (59), (£36) and (5.17). O

Under the change of variables (5.43]) the linearized operator d; F(is) is transformed into a new
operator obtained by linearizing the equations of motion in (5.30) at (¥,y,z) = (6,0,0), differentiating

also in « at ap and changing 9; ~ w - 9y. Actually the linearized operator d; oF (is) is “approximately”
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transformed into the new one, see (5.82) for the precise expression of the error. The new linearized

operator is given by
w - Dptp — Oy K10(0)[Y)] — DK 10(0)[6] — Ka0(0)) — KT (0)2
N[, 9, 2,6] == | w- 99 — Oy Koo (0)[1}] — DyOaKoo(0)[a] + [0 K10(0)) T3 + [0 Kor ()] T | - (5.46)

In order to construct an “almost-approximate” inverse of (|5.46) we need to solve
N[h] =g, where h=(hy,h2,h3) and g=(91,92,93)- (5.47)

We start by considering the third equation in the system defined in (5.47)), that is, £,2 = g3 —

J3¢K01(9)[7,/1] — JKH(H)g — JaaK01(0)[él] where
Ly =1z (w- g + JKo2(0)) [gs - (5.48)

We need that £, is “almost invertible” up to a scales K, := Ké?’/ 2" that we shall use for the non-linear
Nash-Moser iteration in Chapter Hence we have to require that the operator L, is “almost” invertible,

therefore we need following assumption:

e Almost-invertibility assumption. There exists a subset Ay C Q X [e1,€2], such that for all

(w,€) € Ag the operator L, in (5.48) can be decomposed as
L,=L,+R,+R} (5.49)

where L, is invertible and R,,, R} satisfy the estimate (9.97)), (9.98) and (9.99). More precisely
for every g € HPo(T'*N) N HE and such that g(—0) = —pg(0) (see (1.43))) there exists a solution
h:=Lglg € HP(T'*N) NHs, with h(—0) = ph(0) of the linear equation L,h = g which satisfies

for all pg < p < P the tame estimate
_ — ko, - ko, ko, — ko, ko,
1Lzl <e v (gl + mr gl de [V e+ Vol 121553 ])

_ ko, ko, ko,
<p oyt (191837 + ol T IV )

for some o := o (7, N, ko) > 0 and v(b) defined in (9.25]).

(5.50)

Remark 5.10. This inversion assumption must be verified at each n step of the Nash-Moser nonlinear
iteration, as we shall do thanks to Theorem[9.18, Note that in Chapter[§ and[9 we almost diagonalize

L., up to remainders of size O(uN2"1) where the scales N,, are given by
N, =K, ie Ny:=K, (5.51)

with r > 1 large enough, it satisfies . This process allows us to verify the inverse assumption.
Moreover the set of the good parameters Ly is contained in DC}Y(W X [e1,€2], where DC}Y(W is defined in
, Actually the parameters (w,e) € Ay have to satisfy the first and the second Melnikov non-resonance
conditions ((9.94)).



CHAPTER 5. APPROXIMATE INVERSE 50

If we consider the operator defined in ((5.46) we have that 0y K10, Oy Koo, Oy Koo (0) and 0y Ko1(0) vanish
at an exact solution (see Lemma, and also the small remainders R,, and R} are equal to zero on an

exact solution, hence it is natural to look for an almost inverse of the operator
w - Ogth — DK 10(0)[6] — Kao(0)§ — KT, (0)2
D¢, 3, 2, 4] := w - Ogi) + 0y Koo (0)[6] : (5.52)
Loz + J0o Ko (0)[a] + JK11(0)9
where L, = w-9p — (—J) Kp2(0). In addition since we require only finitely many non resonance condition,

ie |w-l <y 1), || £ K, we also decompose w - 0y as:
w-0p =DM +DME, DI =1k, w- 9pllg, +1x D+ =1k w-Gpllg —Ix  (5.53)
and we also split the operator D in (5.52) as

DY

D=D,+Di,  where D[, 32,4 := | DMLy |, (5.54)
0

DV — 90 K10(0)[6] — Kao(0)g — KT (0)2

Dn[th, 9, 2, 4] := DG + 800 Koo (0)[4] . (5.55)

L2 4 J0oKo1(0)[&] + JK11(0)9

By the smoothing properties (2.11)) the operator Dfun)’J' in (5.53)) satisfies
n ko, - ko, n), s ko,
ISRl ™ < Ky Pl lyyrs Y0 >0, DS RIS < Al (5.56)

Lemma 5.11. Assume that w € DC}{H, defined in (5.5). Then, for all g € HP(T x T™) with zero average,

the linear equation D&n)h = g has the unique solution h = (D&"))_lg with zero average, which satisfies

n -1 — 3
(D) gk <py v UgliyT . 7=7+ko(r+1). (5.57)

w p+T10

We are looking for an exact inverse of D,, defined in (5.55). Therefore we have to solve the system
D[, 9, 2,6 = | go | (5.58)

where (g1, g2, g3) satisfy the reversibility property (see the Almost-invertibility assumption before and

the definition of p given in (1.42)) i.e. (1.43))
91(=0) = 91(0),  g2(=0) = —g2(0), gs(—=0) = —(pgs)(0). (5.59)
We consider the second equation in (5.58]), that is

D+ 8900 Koo(0)[a] = g2 . (5.60)
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By reversibility, we have that the 6 average of the right hand side of the equation above vanishes, that is

09Koo(0)dd =0 and g2(0)do = 0. (5.61)
TN TN

By and Lemma we have that the solution of is well defined and it is given by
g = (D) (=0y0aKoo(0)[4] + g2) - (5.62)
Under the assumption (5.50)) we can solve the equation
2= L, ((=))0aKn (0)[&] + (=) K11(0)F + g3) - (5.63)
We now substitute and in the first equation in and we found that
DY =0 K10(60)[] + Kao(6) ((DS) ™ (=04 0a K00 (60)[] + 92))
+ K50 (L5 [(=0)0a K01 (0)[a] + (=) K11 (0)(DS7) ™ (~0ya Koo(0)[a] + 92)) + 95 )
= (8aK10(9) — Ka0(0)(DSY) ™ 0y 0a Koo (0) + K11 (0)L " (=)0 Ko1 (6)
— KGOS (=) K11 (8)(DU) ™ (g0 Koo(0) ) 0]
+ (Ko (0)(DL) ™ + KL (OLS (~) K (9)(DS)) ) g
+ K (0)L " g5 + 1
=M (0)[&] + M2(0)g2 + M5(0)g3 + g1 , (5.64)

where

My (0) := 0aK10(0) — K20(0)(DIV) 1000 Koo (0) + K1 ()L (—J)DaKo1 (0)

— KL(OLZ (=) K11(0)(D) 1000 Koo (6) (5.65)
My(6) := Kao(0)(DSY) ™! + KT, (0)Lg, ' (—J) K11(6) (DY) (5.66)
Ms(0) := KL (0)L,". (5.67)

Therefore, in order to solve (5.64) we have to choose & such that the right hand side of (5.64]) has zero
average, that is

[ OO)ia] + Ma(0)g2 + M (0)gs + g2)ao = 0.
T
By (5.9), (5.57) and Lemma we have that the f-averaged matrix
(My) = 1+ O(pry~t0HkDY (5.68)

Therefore, for py =151 is small enough, (M;) is invertible and (M1)™" = 1 + O(puy~2+5)). Thus we
can define

&= — (M1) " ({g1) + (Maga) + (Msgs)) - (5.69)
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Then, with this choice of &, by Lemma the equation (5.64) has the solution

b= (DY) (M1(0)[] + M2 (0)g2 + Ms(0)gs + g1) - (5.70)

In conclusion (3,9, 2, &), with  given in (5.62), 2 in (5.63)), & in (5.69) and 1& in (5.70) is a solution of
(G.53).

Lemma 5.12. Assume with v = o + v(b) and (5.50). Then, for all (w,e) € Ao, Vg := (91,92, 93)
satisfying (5.59), the system (5.58) has solution D;'g = (1&@,2,0}) where (&,Q,é,d) are defined in
(5.70), (5.62),(5.63) and (5.69), which satisfies (1.43) and for any po <p < P
Dt ko, vy « -1 ko,y -1 ko,y Y, ko,y -1 V ko,y F(i ko,y
D7, gllp>" <p v~ (lgllpye + 1y gl o DVollS 00w + 77 Vol 1 F (o, c0)ll575]

_ ko, ko, ko,
<p v (gl + lolle 2 Vol o b>)

Proof. By the explicit definition of Ms and M3 in and -, and by ([5.50 7 , and

Lemma we have

(5.71)

ko, ko, ko,
[Magllpe™” + [Mzgllpe™” < Cllgllpeio -

By the explicit definition of o in (5.69)) and by (5.68)), we arrive to

ja]*7 < Cllgllpy™ -
The explicit definition of § in ) and (5.57)) imply
N - ko, ko, ko,
1705 <p v~ lallps + Vol a4 lallpeis) -

For estimate Z we use (5.50]), hence Z satisfies (5.71]). Finally by the explicit definition of v, given in
(5.70)) ,and by (5.66]), (5.67)), (5.50), (5.57) and Lemmawe have that v satisfies (5.71)) . O

Now we are ready to give the expression of the almost approximate right inverse. The operator
To := To(io) := (DGs)(6,0,0) o D o (DG5)(,0,0) (5.72)
is an approximate right inverse for d; F (i9) (as we shall prove in Lemma [5.13]) where

é&(w,ya Z,Oé) = (Gé(waya Z),O[)

is the identity on the a-component.

We denote the norm [|(s, y, 2, a) 57 := max{]|(s, y, 2)[|57, |af*7}, where [|(, y, 2)|| is defined

in (4.5) and | - |7 is defined in (2.7).

Theorem 5.13. Almost-approximate inverse. Assume that the inversion assumptions (5.49))-(5.50)
hold. Then there exists & := (1, N, ko) > 0 such that, if (5.9) holds with v = & + v(b), then for all
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(w,€) € N, for all g := (g1,92,93) satisfying (5.59), the operator T defined in (5.72)) satisfies, for all
po<p<P
_ ko, —1y 1 tko, ko,
ITogllke™ <p v~ (U912 4oy + 9 gl 2o VO T )
— ko, : ko,
S 12 AN [P S | T (5.73)
ko, ko, ko,

<p oy (Mgl + ol e IVoly 2 g ) -

Moreover Tq is an approzimate inverse of d; o F (io), namely we may decompose d; o F (i) o To — 1 as
follows

di o F(ig) 0 To — 1 = P(ig) + Py, (i0) + Py (io) (5.74)

where the operators P, P, , Pt satisfy, for allpg <p < P

_ . ko, ko,
IPgllie <p v~ (IFGo, a0)llje 25 lallpsy +

+ gl [ o, a0) 1537 + 1 Gos o) 5075 VoIl 2 4oy |) (5.75)
1Poglibe <p wr 2N2 (lglEs2 + gl 7 IVl e ) (5.76)
IPEgllke <p 2 (lolisd + Il o Vol ) (5.77)
IPEallbs™ <po v Ko (924 + gl e VoIS wy) + ¥ > 0. (5.78)

Proof. The bound (/5.73)) follows by (5.72)), (5.71]) and by (5.43). By (4.4)), since X does not depend on
I, and i; differs by ig only on the I component, see (5.14)), we have

di.aFis) = diaF(io) = j (d: X p(is)[i] = diX p(io) i)

1
= u/ 81diXp(90,IO =+ 8([5 — IQ),’U)Q)[L; — Io,H[]]dS
0

(5.79)
= 50
= 5(()“) + g(()n),J_ B
where II : (i, &) — ¢ and (recall (5.16) and (5.15))
1
gl = u/ 0rd; Xp (00, Io + s(I5 — Io), wo)[I{™ — Io, TI[-]]ds (5.80)
0
1 ! L
Mt = N/ 01d; X p (0o, Io + s(Is — Io), wo) 1§ — Io,T1[]]ds . (5.81)
0

Let us define (¢,y,2) =: v, hence v is the symplectic coordinates induced by Gs in (5.27). Then
(recall the definition of K, in (5.28) and the corresponding equations of motion given in ([5.30))) the non
linear operator F in (4.3]) reads

F(G5(v(0)), ) = DGs(v(0))(w - Bpv(0) — Xk, (v(6), @)
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Differentiating the equation above at the trivial torus (6,0,0) = G5 ' (is)(0) := vs(0) and a = g we get

diyaf"(i(s) :DGJ('U(;)(UJ . 39 — dwaXK& (’1)5, a))DG’g(’Ug)il—i-
+ DG (vs) | DGs(vs) ™ Flis, o) DG (v5) " []
=DGs(vs)(w - o — dp.oXr, (v5,00))DGs(vs) " + &1,

where, recalling the splitting F(i5,ap) = Zs = Z(gn) + Z(gn)’L we have
&1 = DGy(vs) [DG5(U5)_1]7(i5, ao)][DG(;(v(;)_l[i]} =My glmt
with
£ .= D2y (vs) [Daé(vg)—lz(g”), Daé(vé)—ln[.]]
Mt = DG (v5) [Dcé(ué)—lz(g"“, DG5(U§)—1H[.]} .

By the decomposition (5.54), (5.55), (5.49), and by Lemma we obtain

(w - B — dv.o Xk, (5, 000))[0, 6] = (]D)n +DE+ R 4+ R 4R, + Ri) [9, 4]
where R(Zn) and R(Zn)’L are defined (by splitting R) as follows

~0y K15 (0, 00) )]

RV, 9,2,4] == | —0,, K™ (0 N 19 K™ (0. a7 - 18, K™ (0. an)IT5
z Y2 W Koo (0, a0)[Y0] + [0y Ko (0, 0)]" § + [0y Koy (0, a0)]" 2

+J 0K (0, 00) V)]

—9, K (8, a0)[¥)]
T

~

Ry 1,5, 2,6) = | =0y KD (0, 0[] + [0 K (0, a0)) T + [0 K6, a0)] 2

IO KS (0, a0) )]

and
0 0
Ru[¢,9,.2,6]:=| 0o |, RE[.9,2.8:=] o0
R, [%] R [Z]

Hence by (5.79), (5.82)), (5.83) and (5.86|) we can write

d@a]:(i(s) ZDG(;(’Ug)(w -0y — dv’oé)([(C¥ (’057 Ot()))Dé(s(U(;)_l + &

= DGj(vs) oDy, 0 DGs(vs) ™t + EM + &, + EF
where

g = gén) + gl(n) + DGts(U(;)R(Zn)Dé(;(U(;)_l, E, = DG(;(Uls)RwDé(;(’U[s)_l,

gt = Mt 4 Mt 1 DGs(vs) |RE + Dt + RYI| DGs(vs) 1.

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)
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By the definition of Tq in (5.72)), and by (5.88)), since D,, o D;;! = 1 (see Lemma |5.12)), we get
di7af(i0) OTQ — ]]. - P+Pw +,Pj

P:=EMoTy, P,:=E,0Ty, Pr:=EoT,.
Hence thanks to Lemma [5.1] by (2.36), (5.9). (5.17), (5.18), (5.21)), (5.44) and (5.45) we obtain

54 Ko, 1% 1Ko, Koyy 1131ko, Ko,y |131ko, ko,
€T, Al < 121132 lillpe Yo + 1215 7o lillpya + 1 Z1lo 7o lillpe 7o I Vollpya

. ko,y 115 11ko, . ko, ko, . ko, ko, ko,
= [|F (o, 20)llp¥ s lillpy Yo + 1 (o, c0)llgg o l2ll,50 + 1F (o, @) llpg o lillpo Ho Vol 5o

(5.91)

where we have used Z := F(ig, ). The estimate (5.75) follows by (5.73)), (5.91) and (5.9). The estimates
(5.76), (5.77) and (5.78) follow by (9.97), (9.98), (0.99), (5.73), (5.44),(5.17), (5.19), (5.22), (5.41)), (5.9)
and ((5.56)). O




Chapter 6

Linearized operator in the normal

directions

In order to write and explicit expression of the linearized operator £, in (5.48]), we have to compute
%(Kog (¥)z,2) 21,y with z € H&, that is the quadratic term in z of (H, o Gs)(1,0, 2) defined in ([5.29).

Lemma 6.1. The operator Koa(1)) is
Koo(¢) = N5 0,V H(A(i5(1))) + pR(¥) (6.1)
where v = (q,p) and H is the Hamiltonian defined in evaluated at the torus
Alis (1)) = Ao (), L5 (1), wo(¥)) = A(Do(v), Is(¢)) 4 wo(¥) (6.2)

where A is defined in and A is defined in (1.37). The operator Koa(v)) is reversibility preserving.

The remainder R(v) has the finite dimensional form

R[] = (hg;(¥)pon,y X5 Vh EH (6.3)

N
Jj=1

for functions g;,x; € HSL which satisfy the tame estimates: for some o := o(1,N) > 0,Vp > po,

. ko,
gz 1527 + sl < 14 1 Vsllpya

ik ik ko ko, |15 ko,
19sg5 Ll + 0axs Ll < Nillp¥ar + Vsllpeallelle 7o -

56
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Proof. We consider G defined in (5.27)) and A defined in (1.36)), then

Jo(9))
Ao Gs(,y,2) = A Ii(v) + [0p90 ()] Ty — [(Deto) (Po ()] ()2 | =
wo(Y) + 2

I5(1) + 0400 (V)] ™y — [(9po) (Po(¥))] (= T)2) + (wo(¥) + 2)
(\/Tj + fg(z/)) + ([0p 00 ()]~ y); = ([(Bg o) (Vo (V)] (=T)2)j cos(o); Coij)

where

Ly(¢) = [0p00(0)] 7T, L2(¥) = —~[(9ewo) (Do ()] (=)

Let H, = N, + P, as in (4.2)), then the operator Koz is given by
Koz () = 0:V.Ko(1,0,0) = 0.V, (Hy 0 Gs)(¢,0,0) = D |H§- +u0; V(P o Gs)(1,0,0) (6.5)

where D is defined in (1.45]). If we consider the perturbed part of the Hamiltonian H,, ( defined in (4.2))

composed with the change of variable Gy, we get

(P oGs)(¥,y,2) = P (60(v), Is(¥)) + L1()y — La(vh) 2, wo(¢) + 2) - (6.6)

We now differentiate with respect to z, and we obtain

Vz (P o G&)W, Y, Z) = LQ(w)TaIP(G5(’(/)7 Y, Z)) + VwP(Gts(wa Y, Z)) . (67)
Therefore
9.V (P o G5)(1,0,0) =0, Vi P(i5(¥)) + La()" 011 P(i5(¥)) L2(¥) + La(v)" 0, 0r P(is(v))
+ 01V P(is(¢)) L2 (1)
(6.8)
=0wVuwP(is(¥)) + R1(¢) + Ra(v) + Rs(¥)
:8wva(i6(¢)) ( )

where R(¢) := R1(¢)) + R2(¥0) + R3(¢) and
Ry(¢) := La(¥)" 011 P(is (1)) Lo (),

Ry() == La()" 0u,0rP(is(v)),
R3() := 01V P(is (1)) L2(¢) .
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Note that each R;,i = 1,2,3 has the finite dimensional form ([6.3)) because it is the composition of at
least one operator with finite rank R”". Indeed if we write Lo(3)) : Hf — R" as follows

N
h Lo(y
j=1

)L2(T ) [ej]v Vh e Hé_

then
N
Ri(y)[h] = Z (hy L2 () le5]) 1o, (L2 ()T 011 P(is () [e5].

Similarly we can write Ry and R3 as

Ry(¢)[n] =

M-

(h, 001 P(is (1)) [ej])Lz(Tz) Ly (dJ)T[ej]

j=1

Rs3(y)[h] =

M-

(h Lo () [e5]) 1o ., (@udr Plis())) [ey)

j=1

Therefore (| . ) follows by Lemman By ., . (T.44)), (1.36)), (T.27) and (1.28)) we get
Koa(¢) =D [ +pll5 0,V P(A(i5(¥))) + pR(1)
=15 0, Vo H(A(is(¥))) + pR(Y)
which proves . O

In conclusion, by Lemma the linear operator £,, defined in (5.48)) has the form

L, =T (L+puR)E where L£=Q-9+ JO,V,H(A(is)(6)). (6.9)

It is obtained linearizing the system (1.29)) at the torus A(is(f)) defined in (6.2)), changing 9 ~» w - 9y,
and denoting 2 the 2 x 2-matrix given by

Hence the linearized operator L is

(w 0) ( 0 z’T(D))
L= -Op +
0 w iT(D) 0

[0 (A ) axAl((Aq)agAl))

+ e
0 0
(6.10)
s [ OeAT (AT pe) 00 ) “H(Age)0aAT)
+ ue
0 _a A((A pz)azA_ )

, [0AH(AIp)A) DAL ((Ag)AY)
0 D A((A1p)A-Y) )
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where ¢T'(D) is defined in and v := (p,q) := (p(z,0),q(z,0)) = A(is(6)) are functions in = and 6.
By , , and we have that the function ¢ is even in z, while the function p is odd
in x (see (1.6))). Moreover the function ¢ is even in 6, while the function p is odd in 6 (see ) The
operators L,, and L are real, reversible and send X} defined in in itself.

In the next two Chapters we reduce the linear operator £ in to constant coefficients up to a
bounded remainder. The finite dimensional remainder R transforms under conjugation into an operator
of the same form (see Lemma and therefore it will be dealt only once at the end of Chapter [9]

From now on we will assume that for some v :=v(7, N) >0, v € (0,1)
ko, ko,
Wollpsz, <1 B0 vy, <2. (6.11)

Note that this condition will be satisfied by the approximate solutions at every step of the Nash-Moser
iteration. Actually v := v(b) + o1 where v(b) is defined in and oy is defined in ([10.3), is fixed in
the Nash-Moser iteration of Chapter

In order to estimate the variation of the eigenvalues with respect to the approximate invariant torus,
we have to estimate the derivatives with respect to the torus ¢() in a low norm || - ||,,. Note that for all

the Sobolev indices p; such that
pr+o<pyo+v, forsome o:=0o(r,N)>0, (6.12)

we have

Wollko, <1 B jyy|kon <1,

p1to — pito —
The constants v and o represent losses of derivatives at any step of the reduction procedure in Chapters
7 @ It (possibly) will increase along the finitely many steps of such a procedure. We shall fix the
largest loss of derivatives o := o(b) in Chapter [9]

Note that the Sobolev index p; is introduced since in the reducibility scheme (see Chapter E[) the
remainder Qg satisfy the estimates (9.23). In Lemma we consider Qg = Q defined in Proposition
and so we want that holds with p; = po. For this reason we estimate (in Chapters m and in
Appendix [B)) the derivatives 9; of functions, operators, pseudo-differential operators, in the intermediate

norm || - ||p,, where p; satisfies (6.12]).

As a consequence of the Moser composition Lemma the Sobolev norm of the function v =

(¢,p)(x,0) = A(is(0)) (see (6.2))) satisfies
[l < Cp) (L+ Doll) s ¥p = po. (6.13)
Similarly for p; + 0 < pg +v
102 llpy <py 1llillp, -

Note that in Chapters |§| and |10| we have to estimate the finite difference ||v(i1) — v(i2)||p, in terms of

the difference ||i1 — i2||p, +o- In order to do that we consider the derivatives 9;. It is sufficient to estimate
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only this low norm since it gives enough informations required in order to control the variation of the
eigenvalues of £ with respect to the torus.

By the extension procedure of Chapter [10| we have that Vy := Vy(w,e) is defined for all (w,e) €
RN x [e1,&2]. Moreover all the functions appearing in £ defined in are C° —functions both in z
and 6 as the approximate torus v = A(i5(0)). This enables us to use directly pseudo-differential operators

theory presented in Chapter



Chapter 7

Symmetrization of the linear part

In order to prove the inversion assumptions , we now perform a reduction of the linear
operator L, in , in decreasing symbols. In Section we provide the asymptotic expansion of £
in homogeneous symbols up to order —M plus a suitable bounded remainder with symbol in S=M—1,
The constant M will be fixed in Chapter [0 and it depends only on the “absolute constants” ko, po,b see
. In Section we block diagonalize the highest order of the linear part of L.

7.1 Asymptotic expansion of the linearized operator

The linearized operator given in (6.10)) is the composition of some pseudo-differential operators. We recall
Definition [7] for pseudodifferential opeators with a C'*°—symbol, and Theorem that we shall use in
the following Lemma in order to write the composition of pseudo-differential operators as a homogeneous

terms plus a suitable remainder.

Lemma 7.1. Let A := Op (( 2 gt 18252 + 1) 1/4) be the pseudo-differential operator introduced in
-. Let a(z,0) € HP(T x TV). Then VM € N we have the following asymptotic expansion,

—1/2
O, A (a(x, 0)02A71) = — (125) ), + ZC(” iV (2,0)0;" + Op(o1(2,6,6))

A" (alz,0)0,\) = a(z, 0)0% + Zc,f)af (2,0)07% + Op(o2(x,0,6)),
k=0

A" (a(x,0)0, A" Zcf’)ak_ (z,0)0;% + Op(os(x,6,¢)),

A" (alz,0)A) = alz,0), + ch‘*)a;‘* (z,0)07% + Op(oa(z,0,¢)), (7.1)
0. A" (a(z ZCS)% (z,0)0," + Op(os(x,6,¢)),

61
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OpNa(z,0)0,A™") = a(x,0)0? + 20,a(x,0)0, —|—ch ak (J: 0)0;% + Op(og(x,0,€)),
k=0

duAa(z,0)A~Y) = a(z,0)0, +Zc(7> ) (2,0)0,* + Op(o+(x,6,¢))

where cgj) eR fori=1,...,7, and k < M, are some real constant coefficients,

k+1
Zd 8 a(z,0), i=1,2,4, d; € R, possibly equal to zero for somej, k < M,

d,(;)(:v,@) = Zdjﬁia(:zz,ﬁ), i=3,5, dj € R, possibly equal to zero for somej, k < M,
§=0
k+3
6) (z,0) Zd HMa(x,0) , dj € R, possibly equal to zero for somej, k < M,

k+2
7) (z,0) Zdjama z,0), d; € R, possibly equal to zero for somej, k < M,

and ¥i(x,0, D) := Op(oi(x,0,¢)), i = 1,..., 7 is the remainder belonging to OPS=™=1 for alli=1,...,7.
Furthermore

ko, ko, -
il 55 10 S Clo M)llallpiR s =17 (7.2)

Proof. As previously discussed, since we are working with pseudo-differential operators, a good strategy is
to consider their asymptotic expansion. Therefore, instead of A? for d € Z we can consider its asymptotic

expansion (recall Definition

/4 /4 /4
2 i 1oy 2 o 5 15
il _ - 1 - (= 1o 5 4 =2
(156 §o3ee s 5) =l 9:2¢2 T oagh

d/4 d d 4
(35)" el {1 — e+ rer o+ (k) (*25552 T 25145£4>
if M +d is even,

MAE1+d
d/4 4 2
(125) 5d|£|d {1 - 8552622 + 822?4 + ...+ (M 4d 1) ( 25252 2514554) ] UMJrl(g)

M+d

i ] +onm+1(§)

(7.3)

if M +d is odd,

where o1 (€) € S™M-L
Note that, only for notational reasons, in what follows we are not writing the 6-component of the
above operators and functions, since the pseudo-differential operators A and A~! defined in (1.19) act

only on the spatial component.

Remark 7.2. Let A := Op(a(x,§)) and B := Op(b(x,&)) be two pseudo-differential operators and let
n € N. Then Ao B :=C is a pseudo-differential operator (see Theorem and it admits the following
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asymptotic erpansion

C =0p(a(z,&) o b(x,&))

AL

k>0

—0p (Z cy <a§a<x,s>><a£b<x,s>>> £3(8).

k=0

(e,b,¢) :={(-1,2,-1), (-1,1,1), (-1,1,-1), (-1,0,1), (-1,0,-1), (1,1,-1), (1,0,—1)}. (7.5)

op n _Z)kz(lf)b (2 454 252 " 1> it+i-k (8ka(x)) kAL g25
k+#0, odd it 15 3 s—1
n (—Z) $t+5—k kit 5
+0p e (e - g0 +1) @) [ e ) | 43
k+#0, even s=1
§+i
oy <a(x) <f564§4 - %252 + 1) (i@(””) (7.6)

Nk
+Op < ( k;) i(if)bC(k,5)|f|c+e_4k [1 + 1 (k‘,E)f_Q + CZ(k75)§_4
h !

k+k+1
+ ot O €M oprpa (6,2 } (252)>

+Op ( 2 (_Til)ki<i£>bc<k,e>\s|0“*4’““ [1+ Ci(k, €)% + Cak, )¢

k even

k+35
+..+ Oy, (K, 0)€ Mi 4 opp (@, € ] (Z 528))

where Mj, is such that =M, +b+c+e—4k+2 > —M — 1, and n is such that 4n := M —b—c — e,
this choose of n ensures that we are considering all the terms of order bigger than —M. Actually in what
follows, we will consider n := [&] +1 > (M — b — c —€)/4. Note that e + ¢ = —2,0, so we can consider

gete4k instead of |¢|ete—4k |
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Therefore if n is even (if n is odd we obtain a similar operator, but we have to consider as last term

the opportune one) we obtain

Dx A (a(x)0PA) = a(x)dcter ™t 4+ a(x)o; M
+ag(2) (95Tt 4 ottt =) (1 4 V0% + L+ Do)
+%7I(x)(8;+e+b—1 +8gcc+e+b—3+8§+e+b—5)(1_|_652)8I—2+...+C%)6;M2)+...+
_i_(a;a(x))(8§+e+b—4n+1+2n+n+ +a;+e+b—4n+1+2)(1 +an)8;2 4+ +c§\'~;)8;M")
+Xn(z, D),

where c,(:) in the equation above are some real constants derived by (7.3]). Also note that e+b+¢ <1

(see ([7.5))). Collecting all the terms of the same order with respect to the derivative in 2 we can prove
)

Now we prove (7.2). Let us consider 9,A¢ o a(z)92A¢ with (e,b,c) as in (7.5)), hence e + b+ ¢ < 1,
then, by (2.26]), (2.25) and (2.28) one has that the pseudo-differential operators 3;, i = 1, ..., 7 satisfy

25 renpio < COOASLT, 2la(@)O8AEST L oithen

+ C(p0) |0 A]1%7 oo la(@) BN e
< DDA alal@) |65 2t 140l OS5 oot 140
+ C(p)|aer|]f$z,po,n|a($) g?l;’[)y+2n+1+e70|82Ac|’l:3-72p+2n+1+e,0 (7.7)
T+ OD)OA T o ala(@) 5 o1 e 0T it '
< C(pn,e,b,0)all s Yonprse + Cloosm)llalpsTar1se
< C(p.n,e,b,0)]allty 341 4e
< Clp, M)|all %345 -

where we have used ¢ <1 and 2n < M + 1. O

We now want to apply Lemma to the linear operator £ defined in (6.10]). For this reason instead
of a we shall consider, opportunely, Aq, Ag,, A~'p, A='p,, A 'p,,. With this definition of a the

following estimate holds

lally < [lvllp3- (7.8)
Then the operator £ in (6.10) reads
0 0 (D A 1p, 0
L= O+ TN e [P o2
w iT(D) 0 0 —(Alp,)
(7.9)
A7Lp) + e2(A  pay —(&)"V2(A Ry R
e (A™'p) + &3 (A" paa) (75)7/*(Aq) PN R

0 (Ailp) — 2¢2 (Ailpmc) Rg R4
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We define
5 Ry Ry B .- (m) —k (s)
R:=|_ _ |, where R, := chAk (,0)0, " + 3 (x,0,D), for m=1,...,4. (7.10)
R3 R4 k=0
The operators R,,, m = 1,...,4 are the sum of the homogeneous terms A,(;")a;k for k =0,..., M and
(™) (2,0, D) which is a pseudo-differential operator, whose symbol (™) belong to S~ -1

In addition if we define

ckAg)(m,Q) ckAg)(a:,H)

A;ﬁ;k =
ckA,(CB) (z,0) ckAgl) (2,0)

" (7.11)

x

we obtain by Lemma (2.27) and (2.29)), recall also Remark that, for all 0 <k < M

—kho, o,
|ALD, 120 < COARILY

) (7.12)
< C(p)||v||p$;€y+5 )
where we have used that the functions a defined in Lemma [7.1] satisfy (7.8).
Furthermore, by (7.2)) and ([7.8)) we get
m) ko, ko,
‘Z( )‘_O]\]_l,p,o S C(p7M)||V||po+gn+5 (7 13)

ko,
S C(p, M)”VHpO—&-X/[—i-G )

where n is given in Lemma and we use 2n < M + 1. In addition, by (7.10) and (2.36]), the following

estimates hold

||61Ak[2]||P1 Spl H2||P1+5+k , k=0,.,M (714)

1050|0910 <pr ll2llpr+ar+ -

Remark 7.3. Note that in the definition of R (see (7.10) ) we are summing in k, with k =0,...,M. It

has no relation with the index of non-degeneracy kg.

7.2 Symmetrization of the highest order

In this Section we look for a transformation that makes the highest order of £ defined in (7.9 diagonal.

We consider the change of variables given in matrix form by

Lo 1 (1 S L[t 15)
vzt 1)’ v2\1 —1) '

Hence the linear system defined in ([7.9]), becomes

Z7LZ =Ly =Q- 99+ T(D) +BY (2,002 + CV(z,0)d, + R (7.16)
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where
w 0
Q= , (7.17)
0 w
/T(D 0
) = (TP : (7.18)
—iT(D)
0 et (A 1p,
BWY =y (A7"p) , (7.19)
(A 1p,) 0
o) _ e ~ LA Mpa)e? - LB (Ag) + (A~p) (A pua)? + Y (Ag) (7.30)
$(A " pen)e? — ¥ (Ag) —3 (A prr)e? + Y22 (Ag) + (A~'p)
R R
R=pul| = 7, (7.21)
Rs Ry

where R1 = %(R1 + RQ + Rg + R4), R2 = %(Rl - RQ + Rg - R4), R3 = %(Rl + RQ — ]‘:L’3 — ]‘:L’4) and
1

From (7.10) the remainder R can be written, with an abuse of notation, as

L (A@0 A2@0) L (0p(@1@0.0) Op(oa(a,0,¢) 2)
= \A@o) A @o)) T \Op(0a(.0,6)) Oploa(2.6.9)) |

It is clear that Op(o,,(x,0,€)) := B (x,0, D), m = 1,...4 are a linear combination of the remainder terms

defined in , while A,(j”)(x,e) are linear conbination of the coefficient functions defined in .

Moreover this new remainder satisfies the same estimates of the previous one, so , for all k =0, ..., M, by

(7.12), and Remark we get

A5 < CO)IVIETs (7.23)
and if we define
Y= %1 X
DIFEED IV}
by and Remark we obtain
2557 10 < Co M)Wl T (7.24)

Moreover, by (7.14) we have

||81Ak[l]||p1 Spl ||i||p1+5+k , k=0,..M

' ) (7.25)
|0:Xe]|-arpy.0 <py l2llprtarre -
Lemma 7.4. Let E be as follows
E = ! frg€ HV(T x TV, R) : f(—x,0) = g(x,0), / g(x)dx = / flz)dr =0 . (7.26)
g T T

Then the linear operator Ly in leaves E invariant.
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Proof. After the rotation (7.15)) the invariant (for £ in (7.9)) subspace X defined in (I.8)) reads
E:=z"'X}
f N
= f,9,€ HY(T x T, R): f(-2,0) = g(x,0), | g(x)dr = | f(x)dz =0
q T T

Indeed given (Ag, A='p) € X! we have

1 (1 1 Ag \ 1 [Ag+Ap) (S

V2 1 1 A 1p V2 Ag—A"1p - g

Since Agq is real and even in x, while A~'p is real and odd in the spatial variable we have that f,g are
real and f(—z) = g(z). Moreover both Aq and A~'p have zero average in the spatial varibale, hence f

and g have zero average in the spatial variable. O

In Chapter [8] we will conjugate the operator Ly with other operators of the following form

0 x,0 x,60 0
T=1+ el 0)) T=1+ o1, 6)

w3(z,0) 0 0 w4(z,0)
We want that every T leaves the space E invariant. For this reason in the following Lemma we give the

general rules that a transformation has to satisfy in order to leave the space E invariant.

Lemma 7.5. Let k€ Z. Let E be

with
(—1)*ei(—z,0) = eq(z,0), (—=1)Feqx(—xz,0) = es(z,0). (7.27)

Then E leaves E invariant.

Proof. Let (f,g) € E, then for every k € Z

95 (g(x,0)) = 05 (f(—,0)) = (=1)* (95 f)(~,6). (7.28)
Hence, for every k € Z given E, by the formula above (7.27) we have that E : E — F. O

In Chapter [0] we shall use the matrix representation of operators. For this reason we present the

following Lemma, that gives the conditions that the operators have to satisfy for sending F in itself.

B; Bs ) .
Lemma 7.6. Let B = . Then B : E — FE if and only if
Bs By

(B1)} = (B) T}, (B2), = (B2)"%, (Bs)i,=(Bs)_1, (B = (B4}

4 , _ 4 (7.29)
(B1)!, + (B2)_3. = (B3)}. + (Ba),” -
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Proof. Let w:= (f,g) € E. Then

Buw — Bi B\ (f) _ [Bif+Bag) _ (B1)},f; + (B2)lg; ik
Bs B, g Bsf + Bag seez \(B3)i.fj + (Ba)ig;
We have that Bw is real if By f, Bog, Bsf, Bag are real. Let us consider B, f, where f is a real function,
then
@fje—ﬂm _ (Bil)ifije—ikx _ mfjeikx_
Hence if

(B1)2 = (B
then Bj f is real. Similar for the others. Now we want to find the conditions such that (B f+ Bag)(—z) =

(Bsf + Bag)(z). Using the matrix rapresentation of the operators we have

(Bif + Bag)(—z) = Z((Bl)ifj + (Bo)lg)eike

7,k
=D (B 4 Sy + (Ba) g5)e™
7.k

= (Bs)Lf; + (Ba)ig;
ok
= (B3f + Bag)x.
Since
Z(Bl)j,kfj + 2(32)11@%‘ = Z((Bl)];k +(B2)"1) i
and

D_Ba)ifi + D _(Bajigi = 3 (Ba)i+ (Bu)fs
we arrive to

(B1)! | + (By) "] = (Bs)l + (Ba)" .

The involution p, defined in , which is represented by the matrix
10
0 -1
after the transformation Z defined in , becomes

p:

pi=2"1pz =

Therefore (as in Definition [4)) we have that a linear operator

B(g) — By (0) B:(0)
(6) == (7.30)
Bs(0) Ba(0)

is
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e is reversible if B(—0) o p=—poB(6),
e is reversibility preserving if B(—60) o p = 5o B(6).
Hence an operator B as in is reversible if
Bi(~6) = —By(6), and By(—0) = —Bs(6),
and it is reversibility preserving if
Bi(—0) = B4(¢), and Ba(—0) = Bs(0).

In Chapter [9] we shall use these conditions in the Fourier exponential base. Hence an operator B as

in (|7.30)) is reversible if
(BO(=D) = =(Bai(1), and  (B2)i(~1) = =(Bs)i()) Vi, k € Z, 1 € 27, (7.31)
and it is reversibility preserving if
(B (=) = (B)i (), and  (Ba)i(~1) = (Ba)i() VikeZ, ez (7.32)

The linear operator Ly defined in ([7.16) is reversible with respect to p.
In the next Chapter we shall conjugate the operator £y with operators T} that are reversibility

preserving in the sense presented above.



Chapter 8

Symmetrization at lower order

In this Chapter we conjugate £y defined in (7.16]) to a block diagonal constant coeflicients up to a bounded

remainder. We start by
Lo=Q-8+T(D)+BY(z,0)0? +CV(z,000, +R, (8.1)

where T(D) is defined in , Q in , B in , C(M s defined in and R can be

decomposed as in (7.22)); then the next three steps are the following: in the first step we eliminate the
off-diagonal coefficients up to order zero; In the second step (Section [8.2.2)) we study the remainder, that
can be written in a block diagonal form up to order —M plus a pseudo-differential regularizing operator;

Finally we make constant the first order coefficient.

8.1 Elimination of the second order operator

We want to eliminate the coefficient of the second order derivatives in (8.1)).

Lemma 8.1. There exists a real, reversibility preserving operator acting in E of the form

.0
T =1+4p R P B R (8.2)
oS (2,0) 0
such that
Ly :=(T1) " LoTy = Q-9 + T(D) + C?(x,0)0, + Ry, (8.3)
where
c®— —Yane® (A7 pe)? = F(A M pan)et F(AT pan)et + €212 (Ag)
ST pae)et — 22 (Ae)  YIEpeS (AT ) — H(AT pa)e? s
_2V15 1 1 '
iy \[(AQ) +e*(A7'p) Q\ﬁ e (A paa)

=3 (A pas) +5 (Aq)+6 (A~ 1p)

[ )
ﬁ
928

70
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and Ry is the matriz of symbols in SO defined in (8.17) that satisfy the estimates in Lemma. Moreover,
ICP 5 < wC ) Ivllys3 (8:5)

The linear operator Ly is real, reversible and acts in E.
Proof. Note that with ®;(x,#) small enough (see (6.11])), the operator T} is invertible thanks to Neumann
series, and 9! - 9, = 0, - 9,1 = my where my is the L?-projector on the subspace of functions with zero
average in the spatial variable; Furthermore 0, - g = mo - 0y = 0p, 05 ' Opze = Opx and 0,1 - Opp = 0.
Then
LT, —T1(Q-9p + T(D)) = [T(D), ®,0; '] + B (2,0)0? + CV(z,0)8, + BY D19, + Ry.  (8.6)
We denote (+)g, (+)zz := O0x(+), Ogs(+); moreover we define
R = (w-0p®1)0; '+ CV(®170) + CV(21),0, ' + R+RD, ' + BN (91),,0; ' + 2B (D1),m0, (8.7)

that is the remainder that contains all the terms of order less or equal to zero in the space derivatives,
and R is given in (7:21), B is given in and C is given in (7.20).
We have to calculate
[T(D),®:(z,0)9; '] =
0 iT(D) (3" (,0)0:1) + @5 (2,0)0; HT(D)
~iT(D) (5 (2,0)0;") — 5 (2,0)0; 4T (D) 0
For computing this commutator we use the asymptotic expansion of the operator iT'(D) defined in :

o /e -t £
—0p <\/> g’ Z (f) (-2t 12554154>k - r(&)) (53)

293 f -
SN - o, > ezt + 0000,

where ¢, € R are some constant, possibly equal to zero, Op(r(¢)) is in OPS™ and q = % if M is even

or q= % if M is odd. Hence

0 ~ 22, (2, 0)8?
T @0 = |, ) Aisee (0000
Y15 P3 (z,0)02 0
_3v2, (1)
¥ e (()) = (03 )e0s N 0 U ot 0 W -
df( 1 T
©3 )20z 0 Us 0 Ws 0
VISt (8.9)
(0 P
P; 0
0 22 00 (2,0)02
= pe? 2v2 (1 (2 9)92 e 0 +DWo, + Un + W3, ' + P,
fSOS Z, T 0
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where
1) (1)
U::“(O U2) and SR ATE SR
U3 O :\/5@3 +3 1—25(52(90:(),1))”7
while
0 W- Wy = _\/ (4,0( ))Mm - (‘p(l))w
W :=pu : and ? (1)2 [(1)
W3 0 W%:::M zzz+’ V/i
and
3v2 (1)
b 0 YR
1
52 (o), 0

0 P
Finally P := ( 2) and P,, respectively Ps, are given by
P; 0

M-—1
P, ;:M<cha;k+0p(r<§>>>w2 (2,0)0;" +p (8 @, 007 ) o <0p<r<€>>+

k=1

72

(8.10)

(8.11)

(8.12)

M-1 M—1
Py = p <— 3 oyt - 0p<r<£>>> o (w00, — (o4 (@,000;") o (Z cx0; " +Op(r(§))> .

k=1 k=1

We look for a transformation 77 such that

(1)
B, o)+ p2 22 [ O e (“’))

= 0,
V15 \ oM (2, 0) 0

whose solution is, recalling (7.19)),

-1
o (x,0) = <M> (A p,)(2,6),

90:(’)1)(5570) = <2\/§> EQ(A_lpi)(m79)>

E

&l

15

then by - and (8.15)) we obtain

ﬁl L= TflﬁoTl

(8.14)

(8.15)

=w-0p+T(D)+ Ty (C(l)az +BWa,9, + D(Uam) + 171 (UWO +Wo, '+ P+ f{1> (8.16)

=w-0, +T(D)+C?d, + Ry,

where we define

c®.=c® +BMe, + DV |

and

Ry =Ty "(Ung + WO, ' + P+ Ry) + (T7 ' —1)C?9,

(8.17)
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where P is defined in (8.13)), Ry is defined in (8.7)), U is defined in (8.10) and W is defined in (8.11]). We
also have that D™ in (8.12)), using (8.15), reads

D(l) _ 0 _%M€4A_1pww
—3 et N gy 0

The inequality (8:5) follows by (2.36) and the definition of C® in (84) (recall also Remark [2.2).
Moreover let T as in (8.2), then, by (2.25) and (2.2)) (see also Remark we have

ko, —1,ko, , ko,
IT1lotyo + 1T o0 < Co) (L + pll@1507) < Clp) (L + pllvl37)- (8.18)
In addition, by the explicit definition of cpél) and @él) given in (8.15)), using that Ag is even in 6 while

A~1pis odd in  we have that the transformation T} defined in (8.2)) is reversibility preserving (see (7.32)),

hence £ in is reversible (see [7.31]).

Moreover by the explicit definition of @(21) and gogl) given in we have that T3 is real (i.e. sends
real values functions into real valued functions) and —apgl)(—x, 0) = cpgl)(m, ) (see Lemma , hence
T, : E — E. This implies that the operator £ sends FE into itself.

Finally, since T} is reversibility preserving, and Ly is reversible, the operator £; is reversible. O

Lemma 8.2. The operator Ry defined in (8.17)) admits an asymptotic expansion

M (1 ()
Rlzpz Ak) Ak 7k+# ERl,l ER172
k=0 A;(CS) A;(f) YRi,3 XR, 4

M
=nY ALD;F + uSk,
k=0

where 82 denotes one of the operator belonging to {amo + b1, a,b € {0,1}}.
Moreover, for allm=1,..,4, k=0,...M and o := o(1,N, ko) > 0 we have

ko,
AT |07 < lw]|o

pt+k+5+0
ko, ko,
|ER17m|(OM:1,p,o < ||v||p0+gM+6+a (8.19)
m) o
||(9¢Ak [illlps <py Nlillps+5+k+o
10 Ry m i)l -Mp1.0 <py Nillpy 4304640 -
Proof. This lemma follows by Lemmas : O

8.2 Diagonalization of the first-order operator

Now we want to make constant the first order coefficient, for that we have to compute three steps. First
of all we eliminate the out of diagonal terms in C® defined in (8.4). Then we block symmetrize the
remainder up to order —M (see Section [8.2.2)). Finally with a change of the space variable and the

composition with an operator close to the identity we are able to make the first order coefficient constant

(see Section [8.2.3)).
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8.2.1 Symmetrization of the first order

Lemma 8.3. There exists a real reversibility preserving operator, acting in E, of the form

2
x,60
TQ:]l—i-,U/ (2) ¥ ( ) 3;2
o5 (x,0) 0 (8.20)
=1+ (I)Q(‘ra 0)890_2 )
such that, given Ly defined in (8.3), we have
Lo =Ty LTy = Q-8+ T(D) +C®(z,0)d, + Ry (8.21)
where
1(_ 2 /15 20A—1,) _ A(A—1L
., L (=25 (M) + 262 (A1) — e (A pa) ) 0
0 L (+22 /2 (Ag) +2:2(A1p) — (A ps))
— Y RnES (A p,)? 0
T VI5,, 8(A—1, )2
0 oo he” (A pa)
1
L c:()) )0
0 c§4)
(8.22)
and Ry is in OPS°, and satisfy the estimates in Lemma[8.4 In addition
ICP 5 < wC @) Ivllyss (8.23)

The linear operator Ly is real, reversible and acts in E.

Proof. We conjugate £ in (8.3]) with the operator Tz. As before for ®5 small enough (see (6.11)), 7% is
invertible. Then

L1Ty — Ty(w - 9p + T(D)) = [T(D), 820, % + C?8, + Ry, (8.24)

where

RQ =Ry1T5 + C(Q)(¢2)$6;2 + (OJ . 89@2)8;2 + C(Q)‘I)Qaw_l R (825)

R is defined in (8.17) and C? is defined in (8.4). By (8.8) we have the following asymptotic expansion:

M-—-2
iT(D) = — 12—552824— 3 007"+ 0p(r(€) (8.26)
k=-—1

Actually we are considering this expansion instead of (8.8)) because 9, 09;% = 9,200, = ;! € OPS™1,

therefore we can consider only the highest order.

0 iT(D) o 92072 + 0072 04iT(D)

[T(D), ®s(x,0)0;2] =p
—iT(D) o 93?07 — 072 0 iT(D) 0
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e 0 2 @oo (o B )
220 (,0) 0 P o)
where we define P as
0o B
P 0

and Pi(Q) € OPSY for i = 1,2 is given by

k=—1

M—2 M—2
PP =y ( 3 et 0p<r<§>>> o (#870:2) + 1 (¢0;2) 0 ( > edit + Op(r(f)))

k=—1
3v2 3v2 _ V2 _
- (‘Pg))xﬂo - (9052))3:90895 1_ (@éQ))mcxaw 2
V15 V15 V15

M-2 M—2
PP = —p ( S ot o+ 0p<r<§>>> o (#870:2) = (¢§0;2) 0 ( > adyt + op(r@)))
k=-—1

(8.29)

k=-1

3v2 3v2 o, V2 _
(2))3?7T0 + \/E(QOS )a:xax ! + \/ﬁ(@éz))xxwax 2 .

We look for a transformation 75 such that

(8.30)

V2, (2)
c® . e 0 QW@Q (2,0)0,
%@? (x,0)0, 0

Therefore, recalling the definition of C®) in (8.4)), we define ®, as
2f V15 3, 3
9 = + A xxr) 27 Ail xTT 70 )
S @.0) <M<> P07 p) = o p>><x>
2v2 ¢ V15 3 5, 3 _
\/—13 3 (x,@) = 2\f( q) + 52(A Ye) — 2\/EEQ(A Yee) | (2,0).

Hence by (8.27)) (8.31) and (8.4) we have

C? 4+ [T(D), ®,0;% = C®9, + P,

= diagonal matrix.

(8.31)

where C®) is the diagonal matrix defined in (8.22). Then, by (8.24)

L:Q L= T{lﬁlTQ =

= Q-0 +T(D)+ 15" ((3(3)6,76 i Rz) (8.32)

= Q-9+ T(D) +C®(z,0)d, + R,

where
(8.33)

Ry =T, ! (P2 + Rz) + (T, - 1)C®a,

and Ry is defined in (8.25).
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The inequality (8.23) follows by (2.36) and the explicit definition of C®) given in (8.22). By the
explicit definition of T3 in (8.20) and (8.31) (recall Remark we have

ko, —1,ko, ko,
Taloh + (o) " HoSo < Cp)(L+ pllvl;%3) . (8.34)

Moreover, by the explicit definition of T5 in and (8.31), since Ag is even in 6 while A='p is odd in 6,
we have that the transformation 7% is reversibility preserving. Since £, is reversible (see Lemma, we
have that Lo in is reversible. In addition 75 : E — E and it is real, indeed <p;2)(—x, 0) = apg)(% 0),
see Lemma [7.5] Hence L3 : E — E and it is real. O

Lemma 8.4. The operator Ry defined in (8.33)) admits the asymptotic expansion

M 04(1) 04(2)
A A z =
Ro=pn) ( '3)(3> ( '5)(4) IR
—o \ (4 A b b
k=0 ( k) ( k) R2,3 R34 (8.35)
M
S AL 4,
k=0
where 89 denotes one of the operators belonging to {amo + ¥, a,b € {0,1}}.
Moreover, for allm=1,..,4, k=0,..,M and o := o(r, N, ko) > 0 we have
m ko,
AR ™57 <p I3 540 s K =0,1
m ko,
ICAD ™ <p VIS 3hsss00 2S k<M
ko, ko,
|ZR2,m|_0]\Z_17p70 Sp Hv||p3—ZM+6+O' (8 36)
Hal(Ag)(m) [%]le <p ||z||171+5+k+0 , k=01
10:(AD ™ [y <pr 1Vprt2rssso, 2<k<M
|aizR2,m[i]|*M’p110 Spl ||7?||P1+4M+6+0'
Proof. This lemma follows by Lemmas and . O

8.2.2 Block symmetrization up to smoothing remainders

The change of variable that we will do in the next Section (i.e. Thsy4 defined in ) acts differently
on the out of diagonal entries of a matrix (see Lemma . For this reason we also have to take care
of the remainder. The idea is to use the same procedure introduced in the previous Sections. Hence we
conjugate the operator Lo in with M transformations close to the identity, invertible, such that
the matrices of the coefficients up to order M (fixed), can be written in a block diagonal form, i.e. the

out of diagonal entries are equal to zero.

Let £y as in ([8:21)), and C®) as in (8.22).
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Lemma 8.5. There exist M real, reversibility preserving operators T;, j =3,...,M + 3 acting on E of
the form

T;=1+u 9,7 =1+ 00,7, (8.37)

such that

-1 —1
£M+3 = TJWJ,-S 0...0 T3 £2T3 0...0 TM+3

has the form

w 0 iT(D) 0 SV (2, 0) 0
Ltz = - O0p + + 1 @ O +Rarys, (8.38)
0 w 0 —iT(D) 0 ey (x,0)
where
(AR (x 0) 0 ¥ (z,0,D) ¥o(z,0,D)
Ry = Z Iz o | 2
(A7) (2, 0) Z3(2,60,D)  T4(x,6,D)

(8.39)

M
=py (AHPF + s,
k=0
with 82 that denotes one of the operator belonging to {amy + b1, a,b € {0,1}} and

ARYD (20 0
(akp — A0 Y
0 (AH@(z,0)

and
El(gjvaaD) EQ(IagaD)

23(x797D) E4(.’E,0,D)
where Sy, m = 1,....4 is a pseudo-differential operator in OPS™M =1 In addition (A¥)P and ¥ satisfy

the estimate in Lemma @ The operator Lyys is real, reversible and acts in E.

Proof. By Lemma [8.4] we can write the linear operator (8.21)), as

w 0 iT(D) 0 SV (x,0) 0
£2 = . 89 + +p (4) 8$+
0 w 0 —iT (D) 0 ey’ (z,0)
(AD) W (z,0) (AP (,0) (A8 D (x,0) (AP (2,0))

H 0Y(3) 0Y(4) 0+t 0 \(3) 0 \(4) 9 Y
(Ap)*)(w,0)  (Ag)™H(z,0) (A3) (2, 0)  (A3)P (2, 0) (8.40)
232’1($,0,D) ZR272(.’JS79,D)

23273(1‘,971)) ZR274(37,9,D)

=Q-9 +T(D) +CP9, + puA + pA0 " + ... + pAS ;M + pXp, .

We prove the lemma by induction. After k — 1 transformations we obtain a new linear operator, that can

be written in a block diagonal form up to order —k + 1. The matrices of the coefficients change at every
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step, so we call them A?‘l where the index j represents the homogeneous degree, and k — 1 represents
the step of the block symmetrization.

At the first step we symmetrize A9, and we call it (A9)P. After the block symmetrization of the zero
order coefficient the other matrix coefficients change. For this reason we decide to call the new coefficients
Al with j = 1,..., M. At the second step we symmetrize A} and we call it (A1), while for the other
coeflicients we use A , with 7 = 2,..., M. At the k step we arrive to a operator that can be written in
a block diagonal form up to order —k + 1 (see Appendix for more details). The coefficients that are
written in a block diagonal form do not change during the block symmetrization of the other coefficients.

In other words the block diagonal matrix coefficients remain the same during the iterative procedure. Let

—1 -1
£k+2 = Tk+2 o...0 T3 ,CQTg o...0 Tk+2

; (1)
w 0 iT'(D 0 cy ' (x,6 0
_ o (T (e
0 w —iT(D) 0 ey (z,0)
k—1
(AW (z,0) 0 A AN D (z,0) (AP (2,0
o | aT,JJrﬂ(k)[( ) (ADH( )a;k
= (A) W (z,0) (A7) P (,0)  (ADD(z,0) (8.41)
ot (Aﬁ/[ @ 70 (A]JC\/[)Q( ) a,]u+ ERkJrz,l(x)eaD) ERk+2,2(xa9aD)
(Aﬁ/l) ( 79) (A§C\4 @ ( ) ) 2Rk+2,3(x797D) ZRk+2,4(x?03D)
k—1
=Q-0y + T(D) +CO9, +u (ADPO + pAyo "
=0

+ o+ pAr M 4+ S, L,

Now we want to eliminate the out of diagonal terms of the Aj matrix. Hence we have to conjugate the

operator Lj_1 with T4+3. We have that

k—1 M
Liy2Tips =009+ T(D)+ CHo, + 1> (AP0 +p Y AL + pSr, ,Ters
s=0 s=k

+ plw - 09) Pir30, "+ T(D) 0 @130, + CPO, 0 iy F 0

k—1 M
—|—/.LZ As Da o®dpy 38 k= 3+MZA§6;SO(I)k+38;k_3
s=0 s=k
and
k-1
Trrs (Q 99+ T(D) +C®9, + uZ(Az)D(?;S) =0-9)+T(D)+C®9,
s=0

k—1
+ 1Y (ADPO;" + Ppy30, "2 0 Q- O + Ppy30, ¥ P 0 T(D) + B y309,* 7% 0 €0,
s=0

k—1

+ p®py30, 2o Z(Ai)Daz_s )
s=0
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79
where, as usual, 9 denotes one of the operator belonging to {amy + b1, a,b € {0,1}}. Hence
Liys: =Ty s LrroThss
=Q-0+T(D)+CH0, + u(ADP + ... + w(AF PO F + T L (wOpPrys)
+ T (ﬂA’w;’“ + o+ pAL M 4 [T(D), Bry30, 7]+ [CP0, ¢k+38;‘“‘3]) 6.2)
k+1 ] , .
Tt | D AP Bipsd
§=0
+ Tl (AR Rry30, %) + o+ nAL (0, Y iy 30, 7%) + 18R, LT )
We develop the commutator [T(D), @3] as in the previous case. Using (8.26) we have
5 M—k—3
; - 293 5~
iT(D) := —1/1—55 2+ j;l ;0,7 + Op(r(€)),
then
[T(D), @130, "] :=
0 iT(D) o i o-k=3 4 L8 9—k=3 o i1 (D)
1
—iT(D) o {3 k=3 — SFH3) g—k=3 o y7(D) 0
2v2  (k+3) —k
/ng 2\/5 (k+3) _k + k> ( N )
=py O (,0)0; 0
0o p®
where Py L 2 and Pz(k)7 respectively P?Ek), are given by
PP o
PO | Y2 2y ks BV o k) ook BV2 o ks ookt
2 \/ﬁ 2 zTTY \/ﬁ 2 ¥ \/E 2 ¥z
M—k—3 A M—k—3 A
D0 @0 0pr(©) | 0@y TV 4 VO o [T 0,7 + Op(r(€))
Jj=-1 j=—1
M
9 .
=u| Y a? (@007 + Op(r(z,0,€))
Jj=k+1
V2 k 3v2 k 3v2 k
P(k) — £2 (k+3) zza:a_k_3 + &2 (k+3) ma—k—Q + £2 (k+3) Ia—k—l
M—k—3 _ M—k—3 _
D0 @0 0pr(©) | oV 4 VO o | ST 0,7 + Op(r())
j=——1 j=—1
M _
=u| Y aP 00,7 +0p(r(,0,)) | |
j=k+1
(8.44)
where a§-2) respectively agg) are some functions depending on the derivative of gpék+3), respectively cpékJrB).
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Hence, if
2v/2 2V/2
JEeer b =0, ST 4 (h@ =0, (8.45)
we have
(Ap)™
[T(D), ®4130; %] + pALO " = 9, " +PW.
0 (ApHW

At every step we can define with Ry, the sum of the pseudo-differential operators in OPS~%~1, hence Ry

is given by

Ry, =T}, ((waefbkw)a;k*s +pAf L7+ L pAR O M + P+ [CP0, ‘I’k+33;k73])
k+1 A ‘
+ T MZ {(A;)Dax_] ; ‘I’k+33;k_3]
=0 (8.46)
+ Ty (A0 F @30, 773) + o+ pAL (07 M ©4450,772) + 1ZR, 1, Thrs)
M .
=p Y A0 4 uSh,
Jj=k+1
where g, ,, € OPS™™~1. Note that, with an abuse of notation, we are now (and only here) calling Ry
the sum of the homogeneous terms of order less than —& plus the pseudo-differential operator Xz, ,, €
OPS—M-1,
Therefore, by (8.42)), (8.43) and (8.45)), we arrive to

—1
Liys =Ty 3Lx+2Tk+s

w 0 iT(D) 0 SV (2, 0) 0

~0p + + 1 @
0 w 0 —iT(D) 0 cs’ (z,0)

s
()
DD
j=0

D(x,0) 0 R
Jy(4) Ou7 + Rec,

0 (45) (x, 0)

where Ry, is defined in (8.46) and it contains all the remainder terms in OPS~*~1 and 8% denotes one
of the operator belonging to {amy + b1, a,b € {0,1}} . We point out that by Lemmas and

Ry can be written as follows

M k(1 ky(2 (1) (2)
Rk — (Aj)( ) (Aj)( ) o p ERk+3 ERHS
) Z & (3) (4)
Jj=k (Ak)(s) (Ak)(4) ERk+3 ZRk+3 '

Hence, iterating the procedure above, by Lemmas and after M step we arrive to Lys43
defined in (|8.38]).

By the explicit definition of
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given in (8.45)), that is

0 2\f€2 (Ak)@

[0 =
k+3 (Ak)(Q) 0

2\f52
we have that the transformation T} 3 defined in , with j = k+ 3, is reversibility preserving. Indeed,

by the reversible structure of Lo we have that (A’lj)(z)(—ﬁ) = —(AR)3)(9).

By the iterative procedure we can prove that all the T}, k = 3, ..., M + 3 are reversibility preserving.
Hence L4135 is reversible.

Now we prove, by induction on k that all the T} in with k = 3,..., M + 3 map F into itself. Let
L—1 as in , and L;_1 : F — E. In particular

AR (AR (2)
(AR (4p)
ARG (AR (@)
(AR (Ag)

—k

x

Aro k=
maps F in itself. This means that (—1)*(AR)M(—x,0) = (AF)D(2,0) and (—1)*(AF)P)(~z,0) =
(AR)®)(z,0), see Lemma We now consider Tj43 as in (8.37)), using (8.45) we have that

2v2 0 (4@
T 1+ g2
e (\/ﬁ> ollape o

and then by the hypothesis on the Ay coefficient, we have that

k3, (8.47)

(134D (—z,0) = —AP (2,6).

Finally, by the explicit definition of Tyy3 in (8.47) we have that the transformation is real, therefore

L3 is real. O

Lemma 8.6. Let Ly13 as in (8.38)). Then

ko,
||(“A‘]]<:€)D||k;07’Y Sp ||VHp?‘,-Z2+5+o' ) k = 07 7M
|E|ko,7 < ”kao,”f .
1,p,0 <p p+(M+1)M+3M+6+ (8.48)
10:(AR) P [lllpy < Nlillpy 424510, k=0, M
|8i2m|—M,p,0 <p: H||%||p+(M+1)M+3M+6+U-
Proof. Tt follows by Lemma [B.13] O

Lemma 8.7. LetT;, j =3,...M + 3 as in (8.37)). Let p1 € R, such that ||v|lpo+p, < 1 where py :=
M? + 5+ 0. Then for every j =3, ..., M + 3,
195]1pe" < Clo, fullvlipsp, » Vi =3, M +3, (8.49)
IT3155% < Cw,9) (1+ v, (8.50)

IT5 0 ... 0 Taryali7 < Clp, M) (1 + u||v||§ﬂ_’gl) . (8.51)
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Proof. The first inequality follows by Lemmas [B.12] Actually, if T := 1 + ®3,,;0,773 we have
that

ko, . ko, .
|T3+j‘0?p?(/) < C(p7.]>(1 + MHV||p?|-_72+5+O-) y J = 07 ceey M.
Therefore, for all 7 =0,..., M we have

ko, . ko, ko, ko,
IT3516%% < Co )+ plvE s ss ) < Co MY+ pllvllE e s0) = O, MY+ w297,

The second inequality (8.50|) follows by the definition of T} and (8.49). We now prove (8.51)) by induction.
By (8.50) and Lemma 2.8 we have

o, Koy 1 ko, ko, o,
IT3T4lo50 < C@)IT3l05.01Talose.0 + CPo)|Tsl050 0l Talop 0

< C(p, M) (1+ plivilisg, ) (14 wllvilgsZs, )
< Cp, M) (1+ pllvley, ) -
where the initial and the last constant are different. Suppose that is true for T3 0Ty 0 ...0 Tj_1,
then, using Lemma 2.8 we get
[Ty 0...0Tho 0 Thl§% < C(p, k)| T5T5 0 .0 The 1|68 Thls% o + Cpo, &) T3 Ts 0 ..o Taalg%) ol Thl6% b
< Cp.k) (1+plvlifey, ) (1+plvls,)
< C(p,k) (1+ wlvllfsy, ) -

Note that the lemma follows without complication just because we are considering a finite number of

compositions, where we shall define M in Section independent from the Sobolev index p. O

8.2.3 Elimination of the (z,0) dependence in the first order coefficient

In this section we shall make the first order coefficient constant up to a reminder supported on the high
Fourier frequencies. Indeed we are working with frequencies w € DC’}(W where DC}Y(H is defined in . For
this reason we can not invert w-[ for all [ € Z", but we can invert it only for finitely many /. Fortunately
we can neglect the first order coefficient supported on high Fourier frequencies and we will study it in
Chapter [J]

In order to be more precisely consider L;13 in . We define

N w 0 iT(D) 0 Ao
Lpr4s = Op + + g, @ Op + R]y]+3 , (8.52)
0 w 0 —iT'(D) 0 ¢y
that is Las4+3 in where we have negleted
(1)
c 0
Iy C® =15 [ ° Dy . (8.53)
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Lemma 8.8. Let (h,k) € E. There exist two real, reversibility preserving transformations acting in E,

Tarry4 of the form

h(z,0 h(z +v1(0), 0 U, h(z, 0
Tapas P00 o (P00} [ 6) (8.54)
k(z,0) k(z +12(0),0) Uok(z,0)
with
P1(0) = —12(0) (8.55)
and Thr45 of the form
(M+5)
_ ® y, 0 0 _
Trys =1+ @Pni5(y,0)0, g™ ®9) (M45) 9, ! (8.56)
0 ei(y,0)

such that, given Ly s defined in (8.52) we have

Loasys =T sTatvalorssTorvaTares = w - 99 + T(D) + Mk, 9, + Rasgs (8.57)
where
ml,Kn 0
Mg, = , Mg, =-M4fK,, W §K,N0ir, €R (8.58)
0 mrx,

and Rprys is a bounded remainder (see Section for the estimates). The operator Lysis is real,

reversible and acts in E. In addition we have that Tyr1y4 and Tyrys are tame, and Vf € E

_ ko, ~1|jy [|Fo ko,
ITar a5 + 1 Tarra fllpe” < CPYIF Iy + my ™ VIR 3o llpg o)

(8.59)
_ ; ko, ko,
1T s Fllpe Y + 1 Tares £I152" < CE)AFNEY + pll Fllps " Ivl5%3)-

Proof. The proof is divided in two steps. The goal of the first step is to apply the change of variables
Thr4+4 because we want to remove the spatial average by the coefficient in front of d,. The change of

variables T4 is induced by the diffeomorphism
r+1i(0)=y & v=y—;(0) i=12.
Note that Ths44 is invertible and the inverse is given by

_ —1
T, v(y,0) . v(y —=91(0),0) ) _ [ Y v(y.9) . Vo.w) € E.

w(y,@) w(y - 1/12(9)79) qj;lw(yae)

We have the following conjugation rules

v w - Opth1 (0 0
TM{F4(Q'80)TJW+4:Q.89+ 0 1( ) ay

0 w - Og1ha(0)

and

U, =0, U0,V =0, Ty T(D)Tys=T(D).
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Hence

. 1 s
Larya =Ty g LorsThra

w 0 iT(D) 0
= . 89 +
0 w 0  —iT(D) (8.60)
w - )1 (6) 0 . cél) 0 -
+ | Tarpalli, p (1) (y,0)| Oy + Rarqa,
0 w - Ogh2(6) 0 c

where £/, 3 is defined in (8.52) and
Rarva = TifpuRoraTaria (8.61)

with Rpsy3 is defined in (8.39)).We look for v;, i = 1,2 such that

w - Dgtp1 () 0 e A Yo
+HKTLIU’ ! ’ 1 (4) (y70) = HKn;u’ * (4) (y79)
0 w - Opth2(0) 0 Py Cy 0 ¢ (8.62)
=g CW |

where cél) and cé4) are defined in (8.22)), and cfll), 0514) satisfy the equations:

1 1
i HKncfll)(y, 0)dy =m k, and = / HKncffl) (y,0)dy =my g, , Vo € TV, (8.63)
271' T ’ 27T T ’

for some m; g, , ms k, € R independent of . The equations in (8.62) are explicitly given by

n 7

w - 01 (0) + ull, SV (y — ¢1(6),0) = pllg, S (y,0) w1
w - Ogtal + Mg, §V (y — 12(6),0) = ull, ) (y,0).

Taking the spatial average of (8.64)), the request (8.63) implies
w - By (0) + ps [y T, o (2, 0)dw = m .,
w - Oghal — ui Jr HKnc:(;L) (z,0)dr =my k., -

Since we are looking for periodic solutions 1 (0), ¥2(6), taking the average with respect to 8, using that

w € DCy  (defined in (5.5)) we get

i fona ke, c8 (@, 0)dadd = my i, -
7#(277)%4—1 fTN+1 HKnC;(;l) (x,0)dxdd =my g, .

With this choice of m; g, and m4 g, the equations

w-Opy1(0) =mik, — N% Jr HKncél)(x,e)dx = MHKnCél)(g)

w- 89w2 (9) = m4’K"L + ’ui f'[[‘ HK'!LCL(;L) (I7 H)dl' = MHK" Cgl) (9)
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are solved by
¥1(0) = plw - 99) i, o7 (8),  42(0) = plw - 09) T, 7 (6)- (8.66)
Since Agq is even in the spatial variable, while A='p is odd, by the explicit definition of HKncgl) and

HKHC?) in 1) one arrive to (8.58), with my x, = —my x,,. This also implies

therefore one get (8.55]).
Then we have that £/, 4 in (8.60) reads

£M+4 = T];[1+4£~M+3TM+4 =009+ T(D) + HK,LCM) (y, 9)8_,, + RM+4 (867)

where I C™ is defined in (8.62) and R/ 4 is defined in (8.61)).

Now we want to make constant the coefficient in front of d,. We conjugate the operator L M4 in

(8.67) with a transformation Thsy5 of the form (8.56). Then we have
ErrsaTarss — Tarss(- 0 + (D) + M, 0y) = [T(D), Barss (3. 6); ) (3.65)
+ (HKnC(4) (y’ 0) - MKn)ay + RM+5

where
Raris = Rypa + f{M+4‘bM+5ay_1 +(w- 59<I>M+5)3y_1 + g, CH Py 4570 (8.69)
+ HKHC(4)(<I)M+5)y3y_1 — Mg, ®arq5m0. .
Using the asymptotic expansion of ¢7'(D) defined in we have
[T(D),®n450, ']
(DM Vot — M9 1T (D)) 0
0 i(=TD)e" 0y + o Vo T (D))
—32:2(p0) M0, 0

- +Parys,
e“e*(ipa)

M+5
0,

o

+

w
EE

where

Puis:=| (8.70)

and
(M+5) 2 o, (M+5) 2 5, (M+5) 5 (M+5) 1
Py = =3y pe(er  yymo =i | A\ e (01 D [yl )y | 9y

M-1

| Y a7+ 0p(r(), (0 )0,

Jj=0

M 2 M+5 2 M > ! y
P4( +5) _ 3”\/;52(905; + ))yyﬂo +u <\/;52(904(1 +5))yyy + \/;(%(1 )>y> 9, '

M-1

| Y 0,7+ 0p(r(€)), (050,

Jj=0

(8.71)
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We define the functions

15
(MED) (. 0) = Ls-za-l[—ml,m + T, P (y, 0)]

. a2 (8.72)
M (y,0) = ;)/\1;25_25;1[%& — g, ¢V (y,9)],
that, thanks to , are periodic and well defined. Then, by and
Lasys =Tyt sLarsaTares = (8.73)
=Q-0p +T(D)+ Mg, 0y + Rurys
where
Ruris =Ty sRavgs + T sPasss, (8.74)

and Ry, 5 is defined in (8-69). The tame estimate for Ths44 and Thr4s in follows by (2.36)),
and In addition, using the explicit definition of Th;44 and Tysy5 in and , using
and Aq() = Ag(—0), A~1p(0) = —A~1p(—0) we have that Thsy4 and Tyry5 are reversibility preserving
(see ) Moreover both T4, defined in , and Tysy5, defined in , are real operators. By
Lemma @ the operator Ths45 maps E in E. We now prove that also the operator Ths44 maps E in E.
Let (h,k) € E, then

h(x +41(0),0)

k(z +12(0), 0)

acts in F if and only if h(—(z —1(0)),0) = k(z +12(0),0). By the claim is proved. Finally, since

TM+4 (Z‘,H) =
k

the composition of the real reversible operator Ly;45 acting on E (see Lemma [8.5) with the real and
reversible preserving operators Ths4+4 and Thy5 acting on E| is real, reversible and acts on F, we have

that £~M+5 : F — F is real and reversible. O]
We can rewrite £/45 defined in (18.57) as follows
Laris :=Q- 0+ T(D) + M, + Ryys + Rir, (8.75)
where
Riy, = (-M+ Mk, )0, (8.76)
is a remainder supported only on the high Fourier frequencies and

miq 0
M = 7 (8.77)
0 ma

with m1, my4 given by

cél)(:zz, 0)dxdf = my
(8.78)
c§4)(a:, 0)dxdf = my .

N+1
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By the explicit definiton of cél) and cgl) in (8.22) we have that m; = —my, hence M in (8.77) reads

mi 0
M = . (8.79)
0 —ma
In conclusion we have the following Lemma.

Lemma 8.9. Let L1 3 be the operator defined in (8.38)), and let Thr1+4 and Taris be the transformations
(8.54) and (8.56) given in Lemma(8.8 Then

Larys = Tog s Toy aLrrrsTarsaThigs (5.50)
= Luys+CH + Ry,
where

,CM+5 =0 69 + T(D) + M@x + RM+5, (881)

and T(D) is defined in (7.18)), M is defined in (8.79), Rarys is defined in (8.74). The remainders C+
defined in (8.83) and Rj/[K defined in (8.76) satisfy the tame estimates in (9.8).

Proof. We write Ls43 defined in (8.38) as
Larts = Largs + % CHo,

where £~M+3 is defined in (8.52)) and HJIgnC(?’) is defined in (8.53]). We conjugate Lps+3 with T4 defined
in (8.54) and we get

£M+4 = T];[1+4,CM+3TM+4 = EM+4 + TA}14H%‘<HC(3)({9$TM+4 .
Now we conjugate L4 with Thrys defined in (8.56) and we obtain

. S
Las =Ty sLrvraThrys

= Laris + TofosTarhalle, €0, TaraThr s

=009 + Mgk, 0y + Rarys + TA}1+5TA}1+4HIJ€WC(B)a:cTM+4TM+5 55
Q- 9 + M, + Rasas + Tifo s T Tk CB0, Ty Toses + (M, — M), .
Finally we define
C =T/ T, €0, ToyaTar s (8.83)
hence, by , and , ﬁMJrg, in reads
ﬁM+5 = £M+5 +Ct
= Lyvys+C + Ry, (8.84)
= Q-9+ T(D)+ M0, + Ruys +C + Ry,
where
Lygs =009+ T(D)+Md, + Ryys. (8.85)
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Lemma 8.10. Let Mg, as in (8.58). The following estimates hold

Imy g, |07 < C (8.86)
|0k, [i]] < Culillo (8.87)

Imy —my g, [Fo7 < CuK,®, Vb > 0. (8.88)
|mq [Fo7 < Cp (8.89)
D [i]] < Cpalli]o - (8.90)

Proof. The estimates (8.86) and (8.87) follows by the explicit definiton of m; g, and mg g, in (8.63). The
estimate (8.88) follows by (8.63]), and the smoothing property (2.11). The estimates (8.89) and (8.90))
follows by (575), E22). 0

8.2.4 Tame estimates of the remainder R,/ 5

The goal of this Section is to prove that the operators 85TRM+5, 8& [0z, Rprys) forr =1,..,N, B €
IN, B < By are D*o—tame (see Definition .

We want to prove the following Lemma.

Lemma 8.11. Let Ryps45 be the operator defined in (8.74). Then the operators agTRM+5 , 8(5 [0z, Rar+s)
are D*o-tame forr=1,...N, B€IN, B< By, Bo+ko+1 < M, with tame constants for all pg < p < P

ko,
Mag*TRMJrg,(p) ) Ma;jr [0 Rz 5] (p) SPvMM”v||p3—?M+1)M+3M+6+U+ﬁ' (8.91)
Moreover if the constant v in (6.11)) satisfies p1 + (M +1)M +3M +6+ f+ 0 < po + v then
195 OiRarss[illl camy > 105 [0iRar+slil, 8l cermy <par illillps+(M1)ar4+300 464540 - (8.92)

The rest of this Section is devoted to the proof of the Lemma above. We recall the definition of the
remainder R,y 5 given in 7 that is Rys45 = TJQEFS]?{MM + Tﬂ}iSPMJrg, where flM+5 is defined in
and Pjsy5 is defined in . Using the explicit expression of RM+5 the remainder Ry 45 can
be written as follows

Ruyys = T]&ig,RM‘FE’ + TZ\QIJFSPM%
=W, + TI\}}F5RM+4TM+5,

where
Wi = T]\711|-5 ((w . (99(1?’]\/[4_5)6;1 + C(4)(I>M+57T0 + C(4)((I>M+5)y8y_1 — Mg, Prrismo + PM+5> , (8.93)

and @y 5 is given in (8.56) (see also (8.66)), C¥ in ([8.62), Mg, in (8.58) and P45 in (8.70).

In the next Lemma we shall prove that aﬁTW1 ,r=1,..,N, B €N isaDF —tame operator. Then
in Lemmas and we will focus on TA}1+5I~{M+4TM+5.
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Lemma 8.12. Let W be the operator defined in (8.93). Then 8, W1, 0 [W1,0;] forr =1,..,N, B €

IN, 8 < By are D*o—tame with tame constants, for all p > po
Magrwl (p) aM[agTwhaz](p) < /~L||V||P+3+M+U+B'

Moreover if the constant v in (6.11)) satisfies p1 +3+ M + o0+ 8 < po+ v, then

105 O Wil ccrony s 105 [0:W i), Bal crrmny < pllillps 3011045 -

Proof. We claim that the transformation Th;15 defined in (8.56[), and the operators

(8.94)

(8.95)

(W 09Prr45)0, 1, CH sy, CH(Porys5)y 0,1, Mk, ®asqsmo are DFo-tame operators since they are

pseudo-differential operators. We prove it for T, +5C( )® )/, 570 since for the other terms it is similar.

We consider first the operator T];[1+5. By (2.29) we have
-1 ko, —1k
‘TM{F5|OOP70 = 1+ 1®rr459, 1|0?;j,0 < Cp)(L+ pllvllprato)-

By Lemma [2.§]

ko,y ko, ko,

—1 4 0,7
Ty 5 C )@M+57r0\0’p0

C(
~1 ko, ) (ko ko,
C(p)C (PO)\TMis O?p}) c |O?pz,O|CI)M+57TO|O?pZ,O

_ ko, ko, ko,
po)C (P )‘TM+5|00p3,0|C(4)|0?p:6|(1)M+57T0|00p30

1 ko, ko, ,
po)C(P )‘TM+5|OOPZ,O|C(4)|0?p30|(I)M+57TO‘OO’Y

c(
c(

k - ko,
p)|TM£r5|0 p,o|C(4)‘I’M+57TO|0,pO,0 + C(PO)|TM15|0,p0,0|C(4)(I>M+57T0 O?p?(/)

Then, by Lemma the tame estimate for these operators follows. By Lemmas [2.§ and [2.14] and

by (2.29) the pseudo-differential operator Py y5 defined in (8.70), see also (8.71)), is D¥°-tame. Indeed
consider for instance Op(r(&)) o ¢M+58_1 then by the explicit definition of <p§M+5) in (8.72)) by ([2.26)

and ([2.29) we have
1ko, ko, M+5) 51/ ko,
|nOp(r(§)) o SOM+56 |—OJ\;IY—1,p,O < C(p)p|Op(r(§)) 0?p70|90( y 1|0?pZ+M+1,0
ko, (M+5) 4—1 ko,
+ 1C(po)|OP(r(EI65m ol et 05 55 s 1.0
<p bllvllp+rr43+0 -
We have to estimate

0y (Tof sCHOnrysmo) = D (95T 5) (052 CH)(052 ®arysmo) -
B1+P2+B3=p

By Lemma 2.8 we have

ko, ko,
|aﬁ1 M+5|00p’YO < C(ﬁla >| M+5|Oop1ﬂ1,0

ko, "o,
1952 CO 527 < C (B2, p)|CP1§%7 4, 0

ko, ko,
1052 @ pr45m0l6% 7% < C (B3, P) | ®as+5l6% T a0

Hence by Lemma [2.14] (2.26]) and (2.29) the estimates (8.94) follow. The proof of (8.95) follows analo-

gously.

O



CHAPTER 8. SYMMETRIZATION AT LOWER ORDER 90

Now we focus on TA}1+51-:{M+4TM+5, where RM+4 is defined in . Since the operators Thsy5
and TMﬁrS are Do —tame (see Lemma above), and since the compositions of Do —tame operators is
DFo _tame (see Lemma , instead of studying TA}{~_5I~{M+4T M+5 it is sufficient to prove that the
operators 83TRM+4 and [83TRM+4, 0] are D*o —tame.

The operator RM+4 is explicitly given by RM+4 = TJ\}{F 1Rar+3T 0 +4 where Rpy43 is defined in .

First of all note that the conjugation of Rjs13 with the transformation Ths44 defined in can

not be represented as a pseudo-differential operator on the out of diagonal elements. Indeed

o 3o [ A w0 0w 0
M+4 —
k=0 0 \I/gl o Agl) (QC, 6)({9:;k oWy

(8.96)
\111_10210\111 \111_10220\1’2

\112_10230\1/1 \112_10240\112
and, as we shall prove in the following Lemma, the diagonal elements still remain pseudo-differential
operators after the conjugation with 744, but the out of diagonal elements lose this structure.
In order to simplify the notation, since Wy(f) = U 1(0), VO € TV, see and , we shall
write ¥ instead of ¥; and ¥~ instead of Ws, correspondingly for v , 1.

Lemma 8.13. Let A = Op(a(x,0,j)) be a family of pseudo-differential operators. Let (¥h)(x,0) =
h(z +(0),0) whose inverse is given by ($~1h)(x,0) = h(z —1(0),0). Then

U loAoW = Op(a(z,6,7)) (8.97)

Wl o Ao Wt = Op(a(r, 0, )Y 2, (8.98)

where Op(a(z,0,7)) = Op(a(z —1(0),6,7)).
Proof. We prove Let h = Y2, hy(0)e'7®, then Wh = 3, hy(0)ei*@ieii=. So
Op(a(z,0,7))[Ph] = Z a(x, 0, j)h;(0)e i ciiv
JEZ
Hence the final operator is

U Opla(x, 0, 5))[Wh] =Y alx —(6),0, )k, (0)e @ 7m0

JEZ

=Y alw —$(0),0,5)h;(0)e" "
JEZ

= a(x,0,§)h;(0)e”
JEZ

= Op(a(z,0,5))h .

Now we prove (8.98). We have that ¥~'h = > hj(0)e~ W ieiiz S

Op(a(z,0,5)[¥"h] =Y " a(x,0, j)h;(0)e " PIeir .

J
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Hence
U Op(a(z, 0, 5))[Th] = Z a(x —(0),0,5)h;(0)e~ O iz =i (0)]
jez
= a(z —1(0),0,j)h;(0)e 2O
jez
= d(x,0,5)h;(0)e >V D
JEZ
= Op(a(,0, ) 2h.
Therefore ¥~1Op(a(z,6,7))¥ ! is not a pseudo-differential operator. O

We recall that in order to simplify the notation, since Wo(f) = U;'(0), VO € TV, see (8.54) and
(8.55)), we shall write ¥ instead of ¥; and U~ instead of W5, correspondingly for 1; , 1. Thanks to the

Lemma above we can prove the following Lemma on the diagonal entries of the operator Ry 4.

Lemma 8.14. Fork=0,. M, m=1,4r=1,...N, BN, |B8] < Bo, and the operators
Oy WA, 8 UIR,, U, ) (W ATV, 8,], 9 [0S, T, 0], are DRo-tame with tame

constants satisfying for all po < p < P

ko,
Magr(\yflzmq/)(p) vMagr [\Irlz:m\p,az](p) <pP.M /”L||V||p0+cz+(]VI+1)M+3M+6+ﬁ : (8.99)

Moreover is the constant v in (6.11)) satisfies py + (M +1)M +3M +6 + 8+ 0 < po + v, then
195 0: (2 S O) i)l arony > 105 10:(¥ S ®)[a], Oulll arony <pons llillp a1y M43M 16450 -
(8.100)

Proof. By Lemma we have that for m = 1,4 and k = 0, ..., M the operators U1 A7 (z,0)0,*¥ =
A (z + 9(0),0)0; %, remain pseudo-differential operators, similar for W=13,,¥. Then, by (2:29) and
Lemma [2.23]

AT (2 + 9(0),0)0; (657 <p [IAT (@ +(0), )57 <p A1 1¢llpe™ + (41157 | Allgs”
by the estimates (8.48)) the Lemma follows. O

Now it remains to prove that for 5 € IN the operators agr(\I/*1 050Ul (%ﬁr(\ll 0 X350 W) and
851 (T-1oYoW~t 9,], 85 [ oX30W, d,] are D*o-tame operators.

It is clear that we can study only one case, e.g. W o Y30 W instead of study both ¥ o ¥3 0 ¥ and
U1 oy 0W™t since |[Whl|, = |[¥~1h|, for every h, similarly for the other operators above. For this

reason, and also for simplify the notation, in what follows we shall write and study VX W.

Lemma 8.15. For all 8 € N, |8] < o, |k| < ko with By + ko + 1 < M the operators agr(\I/E\Il) and
85; [(UXW,0,] for allr = 1,..., N are D¥o-tame with tame constants satisfying for all po <p < P

ko,
Mafr(\pzxp)(p)’ Mafjr[\pm/,am](p) <P 'LL||V||pO+EYM+1)M+3M+6+ﬁ+a' (8.101)
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Moreover is the constant v in (6.11)) satisfies pr + (M +1)M +3M +6 + 8+ 0 < po + v, then

105, 0 (WS [i]||2rrony > 1105, [0:(WEW)[i], Da]ll crrony <P illillpy 4 (ar+1) 014300 464840 (8.102)

Proof. We prove that 857‘(\112\1!) is D*o_tame. We have that

aéc (696T\IJE\I/) = Z Z C(ﬂl? 627 637 kla k27 k?)) (ag:agl \I/) ((%ﬂfagg E)
B1+P2+B3=F ki+kz+ks=k
x (050 w)
= Z Z C(B1, B2, B3, k1, ka2, k3) (35:551\11 <8x)_51_|k1|)

Bi1+B2+PB3=8B ki+tko+ks=k

1+k1 2 aka 5+|ks —B3—|ks 3 ok
« (<am>ﬁ + |805T ag » <am>ﬁ + |> (<8z> B3| |a§r 8?3\I/>
where 31, B2, 83 € N and ky, ko, k3 € NtV Let |k| < ko and M > B+ ko + 1. Then we claim that

ki|+B1 qk k3|45 —|k ko,

| (02) P 082 025 (0) 1% |1 11 s 0 <p 7 vl B ko (A4 1) 2030146
ki|+pB1 qk k3|+p5 —|k ko,
1[(02) "2 08295253 (0) 1755 0|t 1t iy om0 o YRl ]150

p+B+ko+(M+1) M+3M~+6 *
Indeed by (2.25)), (2.26)) and Lemma [2.8| we have
kil+81 ak ks |+

[(0a)* 1P 0205 2 (@)™ |yt 40,00 <

k1l+ k k3|+
< C(p,k, M, ) (I (@) 801082 02 2 (D)™ P |y B ot s [ 41,0

kil+ k ksl +

+| <6I>| e |\k1|+51,|¢'070|a§285r22<a€v>| e |—M—1+|k3|+53,p+\k1\+61,0)

< C(pa kv M7 B) <|8§28067?Z|7M71,P0+|k?1|+51a0

<8z>‘k3|+63 ||k3\+53,p+\k1|+ﬁ1+M+1,0

O 02 2| pr—1,p- s |41 0] () kel 0o |\k3|+63)po+\k1|+/31+M+1,0)

< C(p,k, M, B)|0F? 052 S| - ar—1,p+ ks 4610
(p, k, M, B)V"kz'|Z|’i"1§]_1,p+\k1|+51+52+a,o
(
(

P, ko, M, )y~ 2! ||v || Fo-

<
<C
=C p+ko+B1+B2+(M+1)M+3M+6+0
<C

—|k ko,
b, k07M7ﬁ)’y | 2|||V||pizo+ﬁ+(M+1)M+3M+6+o"

By Lemmas and we have that

ko,
Magrq;(az)—ﬁ (p), Magr [q;(agc)—ﬁ’az](p) < /~L||V||p3-3+[3+2'

Similarly for <8m>7ﬂf|k| Ggr\ll. Then the tame estimates for the operators (8_%)7{337““3' 65?3?3\11 and
95 0F W (9,) "7~ ™! in (8101) and (8:102) holds. O

Thanks to this Lemma the proof of Lemma [8.11]is completed. Indeed by Lemmas [8.12} [8.14] and [8.15

we can prove the Lemma presented at the beginning of the Section.
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8.2.5 Structure of the remainder R, ;

In this Section we write the remainder R 5 in a block diagonal form.

By Bs . . .
Lemma 8.16. Every operator B := : E — E, where E is defined in (7.26]), can be written
Bs By
. . . By 0
i a block diagonal form i.e. -
0 By

Proof. Let S : u(x) — u(—x), and let (f,g) € E, then
By B\ (f\ (Bif+Bag) [Bi+B2S 0 f
Bs By q Bsf + Bsg 0 B3S + By q
O

Lemma 8.17. Let B be a real operator acting on E as in Lemma [8.16, Then the Fourier coefficients

(in the exponential basis) of the operators By, Ba, Bs, By satisfy the following equalities
(B1)y + (B2) 54 =(Bs)i, + (Ba)y
(B1) "%+ (B2) = (B1)l+ (Ba)y” . (Ba)Th+ (Bs)! = (Ba)i + (Ba);” .

Proof. By Lemma (8.16)) we have

(8.103)

By + B2S 0 f _ Z (Bl)i + (B2)I:j 0 fj eikx
0 BsS+Bi) \g) jicz 0 (B3)y” + (Ba)l, ) \gj

Since B : E — FE we have that (Byf + B2Sf)(—z) = (B3Sg + Bsg)(x), in Fourier basis this condition
correspond to the first in (8.103)). The second two conditions in (8.103|) ensure that the operator B maps

real valued functions into real valued functions. O

Remark 8.18. By (8.103) we have that a block diagonal form operator

A 0
A =
0 Ay
s real and sends E in itself if for all j, k € Z,,
(A)7 = (Ay, (A = (Am) T, m=1,4, (8.104)
Now we shall write the remainder
Ry Ry
Rpas = (8.105)
Rs Ry

defined in (8.74)) in a block diagonal form. Moreover we also shall give some important properties on the

coefficients that we shall use in Chapter [9] We recall that Ras45 is a real, reversible operator that acts

in E defined in (7.26) (see Lemma [8.8).
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Lemma 8.19. Let Ry45 as in (8.105)). Then it can be written as

0
Q= @ . (8.106)
0 Q4
where
Q1:=R1+ R3S, Qq:=Ry+ R3S, and S :u(x)—= u(—x). (8.107)

In addition, Q : E — E and is real, therefore its coefficients, written in the Fourier exponential basis,

satisfy

Q)= (@)%, QL= (Qui=(Qu)I]. (8.108)
Moreover since Q is reversible the following equality holds
(QU(=1) = =(Qu)L(D)- (8.109)

Proof. By Lemma we can write Rjps45 as a block diagonal form operator. The equalities [8.108
follow by the equality for a block diagonal form operator (see (8.104))). Since Rp/y5 is reversible
(see (7.31)) we have that also the operator Q is reversible, that is Q1(—0) = —Q4(6), in the Fourier
exponential representation this condition reads (8.109)). O

The remainder Q satisfies the same tame estimate of the remainder R ;15 as we prove in the following

Lemma.

Lemma 8.20. Let Q be the operator defined in Lemma , Then for j = 1,...N, B € N, |8 <
Bo, k| < ko, Bo+ko+1< M the following estimates hold

o,
Maz o(P)s Moz 10,.q)(P) <PLIVIY v syarsanssorors - (8.110)

Moreover is the constant v in (6.11) satisfies py + (M +1)M +3M 4+ 6+ 8+ 0 < po + v then

105 0:Qilll rreny » 105 10:QE], Oall crrony <p 1ellillpy+(ar1)rr+30 46450 - (8.111)
Proof. This Lemma, follows by Lemma [8.11} by (8.107) and by [Ju|[ko" = ||Su]|k-, O

In conclusion the operator £/45 defined in (8.84) reads
Larys = Lauys +CT + Ry,
= Q-9+ T(D)+ Mo, +Q+C" + Ry,
where C+ is defined in (8.83)), RJJ\_/IK is defined in (8.76)), the operator Ly45 = Q-9+ T(D)+ M0, +Q

with T(D) defined in (7.18)), M defined in (8.77) and Q is given in the Lemma and satisfies the

estimates in Lemma [8.201



Chapter 9

Partial reduction of L

By the study in Chapters [7] and [§] the operator £ in 1] is conjugated to the operator ﬁN[+5 defined

in
Larys =WTHLW. (9.1)

Therefore, by (8.81]), the operator £ defined in (6.10]) is semi-conjugated to the real operator Ly45, up

to operators which are supported only on high Fourier frequencies, that is

Lyys =W'LW—CH —Ry, 92
W=ZNTT50..0Ty3ThviaThys,

where C* and Ry, are defined in (8.83) and (8.76). The map W~' sends the subspace E defined in
(7.26) into itself, moreover it is real and reversibility preserving. We denote by Ilg the L?-orthogonal
projection on S (defined in (I.31))) and g := 1 — Is.

1

Lemma 9.1. For uy~" small enough, the operator

il 1 1
1s invertible and for all pg < p < P it satisfies the tame estimate

- ko, ko, ko,
IWVER[GeY + (V) Rl <par [BI%0 + Vol are o 1R oo - (9.3)

Moreover if v in (6.11) satisfies p1 +5+ M? + o < po + v, then

OV [ilBllpy, 18: V) [(hllpy <poa lillps 45420240 I Bllpo-+o (9-4)

Proof. By Lemmas [2.13] and and by (6.11)) we have that the operator W is invertible and

satisfies

ko, , ko, ko,
IOV hll% <p 1Rl + DVolly% e g so 1Pl

95
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By the definition of Hé‘, in order to prove that W= is invertible, it is sufficient to prove that IIsWIIg

1

is invertible. This follows by a perturbative argument, for py~' small enough, using that Ilg is a finite

dimensional projector. O

The operator L, defined in or in is semi-conjugate to
(WH) L W =g Lasysllg + Re — g R4l — Tg Ry, Tl
where
Rp == WH I uRWt (9.5)
and R is the finite dimensional remainder defined in .
Lemma 9.2. The operator R has the finite dimensional form —.

Proof. We have that R has the form (6.3)), hence we have to prove that, given R : h — (h, g)r2(r,)X,
the operator (W1)~'RW has the form (6.3) as well. We will use the following property: given a scalar
function a : TV — C and x = x(6,-) € Hy, we have

W) a(0)x] = a(@)(WH)*[x].-

Indeed ITga(6) = a(#)I1z and for operator of the following form 1+¢d, ¥ we have that (14949, *)a(0) =
a(f) + era(0)0; " = a(0)(1+ r0; ).
For any h(f,-) € H: we have

V)T RWA[R] =)~ [(WHIRL 9) g | X
= [V 1], 9) e, | V9
= (. V) 79) gy WH TN

= (h, g*)LQ(Tw) XAl
where , g, := (W+)"tg and x, := (W) 1[x]. Therefore (W)~ RW-[h] has exactly the form (6.3)).

O
In conclusion we write £,,, defined in (i.e. (6.9)), as follows:
Lo=WH)LueWH) ™ + G (9.6)
where
Larye=Luys+Re  and  Ghi= —WH(CH + Ry, )W) (9.7)
The operator G+ satisfies, for all po < p < P and ¢ := o (1, N, ky) > 0
IG ARl <p ik (5T + VOl Tare s IR T ) W0 >0 05

ko, ko,
IGH Rl <p g (1IRI5%2 + IVollf3

ko,
Ml T 1)

The estimates follows by (8.83)), (8.76)), (8.23)), (9.3)), (2.36]) and (6.13]).
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Proposition 9.3. Assume (6.11). For all (w,e) € DCj X [e1,€2] (see (5.5)) the operator L, defined
m is semiconjugated to the real, reversible operator Lyjie : E — E up to the remainder G+ which

satisfy . The operator
Lyrre =g (- 9p + T(D) + M0, + Q)11 (9.9)

where T(D) is defined in (7.18]), the diagonal constant coefficient M with entries my := my(w,€), (see
(8.79)) ) is defined for all (w,e) € RN x [e1, 2], and satisfy

e < O, (@i li]| < Cplillo (9.10)

The remainder (defined in Lemma

Q:= (9.11)
0 Q4

satisfy the following tame properties: Y38 € N, B+ ko + 1 < M the operators 82@,,1,8& [Qm, Ox], for

m=1,4 andr =1,....N are D*o-tame and their tame constant satisfy, for all po < p < P,

max (Myz o (0. Myg 0, 01®) Saee iy (LH IS T prsansioross) - 912)
for some o := o(1, N, ko) > 0.
Moreover if the constant v in satisfies
p+M+1)M+3M+6+0+M—ky+1<pg+v, (9.13)
then, for all 5 € N, 5+ ko +1 < M we have
||35T5¢Qm[%]||L(Hm) ; Hai (0:Qumli], ulll ccrirry <at,p 17 Hlillpy 4 (V1) M4+3M 464045 - (9.14)

Proof. We have that the approximate solution (g, p) is defined for all (w,e) € RY x [e1, 2] at each step
of the Nash-Moser iteration in Chapter as it is proved in the extension Lemma [10.5] For this reason
my in (8.78), and hence M in (8.79)), is defined for all the parameters (w,e) € RY x [e1,e2]. By Section

and Lemma we have that the estimate ((9.14]) and (9.12) holds for Q. We have to prove that
the estimates are satisfied for Rp defined in (9.5). We have that Vh € E N Hg

Rplh] = W5 RWAA) = (h,.) 2y el

where g, ;== (W+)"lg € ENHE and y, := (W) "!x] € ENHE. Hence by (9.4) we have for pg < p < P

Il Mgelly™ <poar iy ™ L+ [Vollpsarz4540)

. . ) (9.15)
||6ix*[i]||1?1 ) ”alg*[l]”p SP,M Mry_l(l + ||7;||p1+M2+5+U) .
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Therefore, using

0y OfRph = > C(B1,Ba, k1, ko) (85: O X (h, 05202 g) 12 + 0 O X (B, 6538§29)Lg)
B1+B2=8
k1+ko=k
05 OF (R, 0Jh = > ClB1, ok, kz) (00 08 xa(h, 0202 (9:9)) 2 + 0 08 (D) (s 002 g) 12 )
B1+B2=8
kitka=k
we have that the estimates (9.12)) follow. For Bﬁgr Ry[i] and 8& [0; Rp[i], 8,] we have similar expressions.

O

9.1 Almost diagonalization and invertibility of L,

The goal of this section is to diagonalize the operator L£ys,s. We neglect the remainder G+ supported
on the high fourier modes, which will contribute to the remainder in and . We shall apply
an iterative reducibility scheme. Let Ly be an operator acting on E N Hé‘, where F is defined in
and H§ is defined in . The operator can be written as

1 0
Lo = Lo(i) :== Q- 9g1t +iDo + Qp, 1+ := 1Tl := Mg, . (9.16)
0 1

Note that Lg is defined for all (w,e) € DC X [e1, 2], where DC is defined in (5.5). Let Zo := Z\ {0}
and St := SU (—S) where S is defined in (I.31)). The diagonal part (with respect to the exponential

representation) is given by

D 0 2 1
Do=| . Do =diagjezps+ A A0 =i/ Tt + 222+ 1+ maj (9.17)
0 -D J J 15 3
0
where m; = m; (w,e) € R is defined for all (w,e) € RY x [g1,e2]. The remainder

0
Qo:ENH: > ENH: Q= @ , (9.18)

0 Q4
is real and reversible. The operators @1, Q4 satisfy (8.108) and (8.109). Moreover the operator Qg

satisfies the following tame estimates:
e Smallness assumptions on Qg. The operators
Qm 5 [Qma 81] 5 angm y agf[va a:E]? r=1,.., N7 m = 174

are D*o-tame with tame constants defined for all po < p < P,

M (p) = max N{MQm (P): M(Q,.0,1(P); Mapog,, (P) Mpo [Qm,az](p)} : (9.19)

m=14,r=1,...,

In addition the operators

8gv[~)+me7 agf+b[Qm78I]7 r = 1,...N m = 1’4
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are D*o-tame with tame constant defined for all pg < p < P,

Mo(p.o) = max A Mgpong (1) Moporng 0,0} - (9.20)

where b € IN satisfies

b:=[a]+2eN, a:=3n, 7 :=7(1+ko)+ko. (9.21)

We assume that the tame constant satisfy
Mo (po, b) := max{Mo(po), Mo(po, b)} < C(P)y ™' (9.22)
and that there is o(b) > 0, (o(b) = v(b) 4+ o) such that, forallr =1,.... N, g€ N, 8 <b+py we have

max {10 2iQulilll a0y 195, [0:Qumli), 0u)l cavo} < CPYY ullillpg+otw) (9.23)

Remark 9.4. The conditions b > a + % and a > 37 arise for the convergence of the iterative scheme
(19.78), (9.79) in Lemma|9.16. We take an integer b := [a]+2 € IN so that 8531% are differential operators

since pg € IN). Note also that a > 3ko(t+2)4+ 1 (as 7 > 1) which is used in the extension procedure in
2
(52), (see (9.43)). Moreover a > 3[r + ko( + 2)] which is used in Lemma .

We have to choose M > b + pg + kg + 1 and for definiteness we fix
M =b+po+ko+1. (9.24)
We also define
c(b):=(M+1)M +3M+6
= (b+po+ko+2)(b+po+ko+1)+3(b+po+ko+1)+6, (9.25)
v(b) :=c(b) +b
where M is the regularization order that we require on the off-diagonal terms of the remainder, and
¢(b), v(b) represent the loss of derivatives on the coefficient and from the next Lemma and so on we shall

use those constant. The operator Ly := Lp;4¢, where Lys4¢ is defined in satisfies the previous

assumptions.

Lemma 9.5. Tame estimate for Q. Assume (6.11) . Then the operator Q := Qq defined in (9.11)
satisfies , for all pg < p < P the tame estimates (9.19) and (9.20) with

Mo(p) <p v~ (L4 [Vollptpoteto)  Mo(p,o) <p iy~ (14 [Vollptww)to) (9.26)
and (9.22)) holds. Moreover for allr =1,...,N and 8 € N, 8 < b+ pg the operators
0y 0:Qm[il, 9y [0:Qmli), 0., m=1,4

satisfy the bounds (9.23)) with o(b) = v(b) + 0.
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Proof. For prove (9.26)) we use (9.12) and (9.25). If v := v(b) +o the condition (9.13)) holds (with p; = po)
and so the bounds (9.23) holds by (9.14)) with v := v(b) + 0. O

By this lemma follows that for all po < p < P

Mo(p,b) = max{Mo(p), Mo(p, )} < C(P)uy " (1+ [Voll32) (9.27)

p+u(b)+a) .

Let
Noi=1, N, =N w>1, (9.28)

this is the scale that we will use when we shall perform the almost reducibility of Lg. Given a set A we
define NV'(A,5) € RN x [ey1, 2] as

N(A,0) == {¢ € RN x [e1, 2] : dist(A, ) <6} . (9.29)

Let Zo := Z\ {0} and ST := SU (—S) where S is defined in (1.31). Now we can enunciate the almost
reducibility theorem, that is

Theorem 9.6. Almost Reducibility. There exists 7o = 17o(1, N) > 0 such that, for all P > pg there is
Ny := No(P,b) € N such that, if
Ng° Mo(po, o)y~ < 1 (9.30)

then, for allm € N,v =0, ...,n:
(S81), There exists a real, reversible operator

D, 0
L,=Q-09+iD,+Q, where D, = D, = diagjcz\s+Aj (9.31)
0 -D,

which acts on E, defined in for (w,e) € DCy X [e1,€2] (where DC s defined in (5.5)) for
v =0, and for all (w,e) in

NOLANTTH cn)? v > 1 (9.32)

where N are ko-times differentiable functions of the form

A (w,e) = Aj(w, )" + i (w,€) Nj(w, ) =3 <12554j4 _ %52]2 + 1) v +mij, (9.33)
satifying
A==\ e 1) =-r", and |r‘;’|k°"y <C(P)uy™' VjeZ\S*. (9.34)
The sets N}, are defined by A} := Q x [e1,¢€2], and for allv > 1

A = A)(i) = {( =(w,e) €A)_1 N ([DC}’(R NDCy, ] x [51,52]) :
(9.35)
w - L+ X=X 2 )5 = PO 7T VI S Ny, ' € 7\ Si} :
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The remainder Q,, given by

Q= @) 0 (9.36)
0 (QF)

satisfy (8.108)), (8.109) and it is D*o-modulo-tame, more precisely the operators QY, QY and

(39)° (Q%), (39)° (QY), are D*-modulo-tame with modulo-tame constants respectively

._ f o f
M (p) = max Mg, (p),  Mi(p,b) := max Mig,yeqr (PP) (9.37)

m m=1,4

satisfying for allpo < p < P

ME(p) < Mo(p, )N % ME(p,b) < Mo(p,D)Ny—s . (9-38)
Moreover, for v > 1 there exists a real, reversibility preserving map (see (7.32))), from E to E (see
(7.26)) )

oo
, (9.39)

b, | = 1+ + W, 1 where W, = )
0 1

such that
L, =&'L,,®, ,, (9.40)

the operators ¥ 1 and (9g)° 2=, m = 1,4 are D¥-modulo tame with modulo tame constants

satisfying, for allpy <p < P

Q

k
( O)N,jl_lN;_“QMo(p, b)

8}; (9.41)
M%awbw;—l(p) < ’YO N;l,lNV,QMO(p,b)

g
M (p) <

Q

where 71 :=7(ko + 1) + ko, a:=37 (see (9.21))).

(82), For all j € Z\ ST there exists a ko—times differentiable extension 5\3’ 1 Q X [e1,e2] = R such that

AV = A on A) and

N(w,e) = No(w, &) +7% (w,e) €R, 7 =~ [F"7 <p puy NPT wj e Z\ST (9.42)

and for allv > 1

XY = At [Eor < (ko) NI T2 MY (po) < Clho, Py Ny TN, (9.43)

(S3), Let i1(w,e),i2(w, ) such that Qo(i1) and Qo(iz) satisfy (9.22). Assume that also (9.23) holds.
Then for all v = 0,..n and for all (w,e) € AJ(i1) U A)2(ia) with y1,72 € [v/2,27] there exists
o :=o(r,v, ko) >0 such that, for m = 1,4

11Q%, (i1) — Q% (i)l £crvoy Spo Y™ N, i1 — i2lpotv(o)+o
(HPo) 1 po-+v(b)+ (9.44)

111 (90)° (@4, (31) — Q% (i)l £(arvoy <po 1Y Nu—1llit — 2l p 4 ) +o -
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Moreover, for allv =1,...,n and for all j € 7.\ S*

|(r (1) = 7% (i2)) = (7 (@) = 57 (32))] < Oll1Qu(ix) — Qu (i)l £rro)

(9.45)
7Y (1) — ¥ (i2)] <p v~ pllis = d2llpgtv o) 4o
where v(b) is defined in (9.25), and we recall that |Qhl|p := maxy;—1.4 [|Q%, |-
(54), Let iy, iz be like in (S3), and 0 < p < v/2. Then
pyFCPYNG_1llin = iallpgsvoyro <o = AJ(in) S AT (2). (9.46)

Remark 9.7. Note that (9.45) are sufficient to prove (S4), about the inclusion of the Cantor sets
N)(i1), A} 7P(i2) corresponding to two nearby approximate solutions. These bounds follow by (9.44)),

which is in terms of the Sobolev index po and not in terms of the derivatives with respect to (w,¢€).

Remark 9.8. In order to prove (9.37) for v =0 we shall use (|l1] + ... + [In])? < Cs(Jl1]® + ... + |In]?)
for this reason in Section we have studied agr , r=1,..., N instead of <89>ﬁ.

Remark 9.9. Note that we have to look for D*° —modulo-tame operators (see (9.37)) because the second
estimate i Lemma does not hold for Do —tame operators.

It is important to note that in Theorem we require only the bound for Mg(po,b) in low
norm. But it is also proved that both M¥(p) and M (p,b) for all v > 0 do not diverge too much (see
[©.35)).

In addition Theorem implies that there exist a transformation U,, such that the conjugation of

Lo with U,, is a diagonal operator (up to a small remainder) as we shall prove in the Theorem below.

Theorem 9.10. KAM almost-reducibility. Assume (6.11) with v > v(b). Let 79 as in Theorem[9.6,
For all P > pg there exists No = No(P,b) > 0,00 = do(P) > 0 such that, if the smallness condition:

NPy < 8 (0.47)

holds, then for all n € N, for all ( = (w,¢) in

n+1

Ay =004 (1) = ﬂ A) (9.48)
v=0
where A} | is defined in (9.35)), the operator
U, =®po0..0d, (9.49)

s well defined and
L, :=U;'LyU, = Q- 91" +iD, +Q, (9.50)
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where D, is defined in (9.31) and Q,, in (9.36) (with v =n). The operators QV, Q% are D¥— modulo-

tame with modulo-tame constants

My, (0) <p iy NS (L4 Vol 1) Yo <p< P, m=14. (9.51)

Moreover the operators UL — 1+ are D* — modulo-tame with modulo-tame constants

— T ko,
Mis () <p iy NG (L4 Vol Dy 40) VRO <P <P (9.52)

where 71 = T(ko + 1) + ko. In addition the operators U,, U,' : E — E are real and reversibility
preserving (see (7.32))). The operator L,, : E — E is real and reversible (see (7.31))).
Proof. We consider
Un+1 = Un o q)n+1 = Un o (]].J' + ‘Iln+1) .
Hence, by (1)

M, (0) < M (0) (14 M, (o)) + M (ko) (14 M5, (0))

(9.53)
<k M, (0) (1477 N N Mo (po, b)) + MG (po) (1+ 77 Nk Ny ® Mo (p, b))
and by (9.41)), (9.22)) and (9.47) we have
M%HH(PO) ko MYy, (P0) (1 + 77 NI N, * Mo(po, b))
<ko M%nfl(po) (L+~7"N'N, 4 Mo(p,b)) (1+ 7 "N N, *Mo(p, b)) (9.54)

<o M5, (P0)II_g (1+ 77 NJ4, N " Mo (o, b))
<o MY, (p0)TT—g (1 + an(po))
where an (po) = 7' N7 N, Mo (po, b). By I >o(1+a,) < exp (C(P)y~ Mo(po, b)) <2, (9.41), (9-22)
and we have
My (p0) < M (po)TLuz0 (1+ )
< MY, (po) exp (C(p)y " Mo(po, b))

(9.55)
< M, (po) exp (C(p)y~p)
<2.
Iterating (9.53), using and II, (1 + ay, (po)) < 2 we get
M, () Sk MY, () (1497 N N *Mo(po, b)) + M, (v0) (1497 N4 Ny *Mo(p, b))
<ko Y (p) + My, (p) (9.56)

v>0
< C(ko) (14 Ng* Mo(p, o)y ")

since Ug = ®¢ = 1+ + ¥ and My, (p) <1+ C(ko)NJ' Mo(p,b)y~! by (9.41] - Finally

n—1 n—1

U, — 1t = (U, = @)+ (B —1*) =Y (Upp1 —U) + ¥ = U, ¥, + g,
v=0 v=0
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Hence (9.52) for U,, — 1+ follows by Lemma 2.18|, (©55), (9.56), (9.47), (9-27), (6.11]). The estimate for

U, ! — 1+ follows by Lemma O

9.2 Initialization

Proof of (S1)g. For v = 0 we have that that (9.16)), (9.17) and (9.18]), are satisfied and imply (9.31)),
(9.32), (9.33) (9.34) and (9.35)) with r?(w,s) = 0. Now we have to prove that (9.38) for v = 0 holds.

Therefore we have to prove the following lemmas:
Lemma 9.11. Proof of when v =10, i.e.
Mg(p) S)Jo,b MO(pab)v Mﬁ (p7 ) =po,b Mo(p; ) .

Proof. In what follows we shall write () instead of Q1 and Q4.
The matrix element of the commutator [Q, 9,] are i(j’ —j)Q;I(l —1'), of 9 Q are i*(l, — l;)ngj,(l =1
and of 9} [Q,0,] are i*T (I, — 1.)b(5’ —j)QJ (I —1"). Hence

7 Z L I0EQT (1= 1)* <o M3 (po) (I, 5™ + ME(p) I/, /)

7 Z (L.3)* ) 10EQY (1 V) <c MB(po) ', 5™ + M3 (p) (I, )

7 Z (L)% (1= V)P 10EQY (L - )2 <o ME(po) (U, 7)™ + M3 (p) (I, )™

2"“'2 (L) (L= 1) (= ) 105QY (L= 1) <c MB(po) (1. p)™ + M3 (p) (1, )
2"“'2 L (1= 1) 19EQT (1 - 1) <o ME(po) (', 5 + M3 (p) (I, 57)P"
2"“2 (1, 3)7 (1= 12 (5 — )2 108 QY (1 = 1) <e M (po) (I, 5)*" +MB(p) (I, 5)*™ .

Using the inequality
=07 =3 <+l =GP+ max =P = max [l - 1 (9.57)

we Obtain7 for p1 ="Po, p="Ppo+b, by " and ‘ )

2““‘2 (137 =1 (G = ) 105QT (1 = 1)2 <o M(po) (11,57 + M3(p) (1',5)
Q‘k‘Zzﬂp PP (G = 7 105Q) (1= 1) <o MB(po) (1,5 + ME®) (1, 5)

Let us prove that if Q,[0,,Q] : HP — HP then |Q| : H? — HP is a D*o—tame, by (9.57) and the
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Cauchy-Schwartz inequality, for all |k| < ko we get

v

2
lOEQIRIE < D™ ()™ | D 10EQ] (1~ Z’>||m«,jf|)
L,j

2

l//

<CZ LIPS G =00 10EQ) (1= )P e g2

.5’
<C’Z|h1/3/| Z l] |8<QJ (1=1)7
<Y (M%oo) 1307+ Mioo) 01,1 )

¥

< Oy (MEDIRIG, + ME(Ro)lIR]) -

We now prove that V|k| < ko also | (95)° Q| : H? — H? is D*-tame. By (9.57) and the Cauchy-Schwartz

inequality we have

2
11(@e)° EQIRI2 < S 30 [ S 11— 1) 0EQ3 (1 — )| hr |
l,j l/,j/
2
1

= D) | SN = ) 108QT (= Dl | e

; Z ¢ CITE= G =)
< CZ (L)% ST = 02 (7 2R QT (1= 1) w2

l//

—chmZuﬂp UYPETR  10kQT (1 - 1)

l/l

‘”"'Z\hw (Moo, B) (1.5 + M3(p,0) (1,5

l/,]/

< Oy M (MG (po, B) |11 + MG (p, B) 12113, - (9.58)
Therefore the Lemma, is proved. O

Proof of (52)p. The function m;(w,e) is ko-times differentiable on Q x [e1,e2] because it depends on
the torus is(w, €) that is ko-times differentiable with respect to (w,e) on all Q x [g1, &3].

Proof of (53)o. This condition follows by the Lemma below.

Lemma 9.12.

11A12QulAl2, < CPYY1Pllir — a2 ooysollbl, » m=1,4 (9.59)

11496)" 212Qunlhllz, < C(PO)Y 2P i = ially s ooysollBllyy » m = 1,4 (9.60)

where A19Qm = Qum(i1) — Qm(i2) .
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Proof. We prove . Also in this case we shall write @ instead of @; and @4. By the mean value
teorem and the estimate (9.23) we have

1212Q (170, I[A12Q; Ox] | (1170, 1105 A12Qll £ (1170,
105° P [A12Q, Oa]ll £ (rv0) < Cp,0)Y M pillin — dallpgtv)+o > Vr=1,...,N.

Hence, for all I' € ZV | j' € Z\ S* we have

S G =)= (ARQ)] (- 1) < C(P )Ry i — il oy o ()
Lj

which arguing as in (9.58]), proves . The proof of (9.59) is similar. O

Proof of (54)¢. It follows by definition, indeed Q@ = ] (i1) and @ = Q7 ”(i2).

9.3 Reducibility step

The goal of this section is to describe the generic inductive step. We show how to define, Ly, 1, V¥,

and ¢, from L,. We conjugate L, = Q- 9y + D, + Q, by a transformation close to the identity, of

the form
(v) 0
b, =1+, ¥, =|["" e (9.61)
0 4y
see ([9:39), where (¥{"”)] (1) = ()71 (1), ()] (1) = W) (=1), Vi € Z and | € ZV (see
(8.104)).
We have
qu)u - (I)V(Q : 80 + DI/ + [Qu]) =w- 80‘1111 + [Dl/7 ‘Ilu] + Ql/ + QU‘I’V - \I’V[QV] - [QV] (962)
We want to solve the homological equation
w- 0¥, + [Dv, ‘I’V] +IInQ, — [Qu] =0, (9'63)
where, Vj € Z
[ (l’)] 0
Q=" =
0 (@]
_ (9.64)
_ [diag; Q) (0) 0
0 diag; (Q5)%(0)

(see Lemma [8.16)) The equation ((9.63)) is equivalent to the two scalar homological equations

w- 8t + D), ] + TN QY = [,

w- 8l — D, ] + TN QY = [Q1].
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The solutions of this equations are

@)1 @ o . L, n
i _W.Um—., v(la.77]>7é(0a]7.7>7 |Z|SN737]€ZO\S
(W (1) = { et (9.65)

mJj
0 otherwise
where m = 1,4, 01 := 1 and 04 := —1; Zg := Z \ {0} and ST := SU (—S) with S defined in (T.3T)). Note
that if (w,e) € A}, using (9.34) we have that w -1+ \; — Ajs is different from zero, therefore the maps
Ym , m = 1,4 are well defined.

Hence, by we have
L, :=®;'L,®,
=0-0,+D,+[Q]+ 2, (IxQ, + Q. ¥, — ¥,[Q,]) (9.66)
=09 +Dyp1+Qui1,

where D, ;1 =D, +[Q,] and Q,,; = ®! (HJJ\-,QV +Q.VY, — \IIV[QV]) .

To simplify the notation we drop the index v.

Lemma 9.13. Homological equation. For all (w,e) € AZ/+21 there exists a unique solution ¥ =

1 of the homological equation (9.63). The map ,,, with m = 1,4 satisfies
0t
M, (p) <ky Ny M (p) 0.67)
My 1 (9) <o N7y MG (p,D)

where T, is defined in . Given i1,12, denote
AIme = wm(iQ) - "/Jm(il) , m=1,4.
If 3 <1, v2 < 2, then, for all (w,e) € A (i) NAJ% (i2), m = 1,4,
11A12%m| [l 2(mroy < CNTy ™ (1Qm(i2) |l crro)llir = 2ll2po+vm)+o + |1 A12Qum ||| 2(zv0))
11 (96)° Avatbmlll c(arroy < CN*Ty (||| (96)° Qu (i)l avo i1 — i2l|2p, 1) 4o (9.68)
+ 11406)° Ar2Qunlll i) -
Moreover W : E — E is real and reversibility preserving (see (7.32)) ).

Proof. In what follows we shall omit m = 1,4. Let (w,¢) € AZfl defined in (9.35)) with v 4 1 instead of
v. The inequalities (9.67) follows from the definition of ¢ in (9.65), indeed for all (I, 7,5") € ZN x (Z \
S*) x (Z\ S*) with |I| < N, (1,4,5') # (0,4,5) we have

[ ()] < CNTy QI (1))
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Moreover differentiating (9.65)) with respect to ¢ = (w, ), we get

1 .
byl C(ky, ks) |05 ok Q7 (1
S lier;k v 2){ ¢ we T X = Ap) e 1)

and, by (9.33), (0.34), (9.35),

1
sup |5k1 | < C(ko) <Z>T(ko+1)+ko 7—1—|k1\

n<ho o (W T4 A7 = Ajr)

hence, for all 0 < |k| < ko

kw3 (1)) < © (Rt TRo o =1=lkL N gkl (). (9.69)

k1| <||

We have that for all 0 < |k| < ko, using (9.69), (9-37), [2:37), |k, = |||k||l, and (9-25)

2
|||<69>ba§w|h||§sz<z7j>2”( > |<l—l’>ba§w§f’<Z—1’>|hl/,j/|)
7l

[l=U'|<N,j’

2
< Cho)N?mqy~ 20D § ™ W”'Z {1, (D<z—Z'>"8§2Q§'<I—l’>||hw,j/|)

k2| <|K| v,

|2

= C(ko) N7y 20FED N = 5282l (95)° 02 Q||
[k2|<|k|

< C(ko) N7y 2HED (AP (p, B)?|[ B3, + M (po, 0)*[[12]]12)
< C(ko) N2y~ 2HED (ME (p,0)2(|B]|7, + MP(po,B)?|12]7) -
(9.70)

Similary one gets

2
oFwh|2 <3 1.5)% (Z 19E (w7 (1 — l')hlf,ﬂ)

l,j g’

kg N7y 720 (ME ()25, + MP (o)1) -
We now prove (9.68), by (9.65), for all (w,e) € AJY;(i1) N A% (i2) we have

Q) (D(i1) — Q4 (1)(iz) 513y (ir) = 8ugy (i)
5ljj’(/\1) 513] (11)50] (22)

where 6;;;; = i(w -1 — A\; + Ajr). Hence we have to estimate 055/ (1) — 957 (é2). From and -,

Avopd (1) = ¢ (1)(i1) — ¢ (1)(i2) = — Q7 (1)(i2)

we get
0057 (31) — 1557 (i2)| = [Ar2(Aj — Ajr)]
= [(Aj = Aj) (i1 —i2)]
< Clmy(in) —ma(ig)llg — 5’| + I (in) — 7 (i2)| 4 |rje (in) — 75 (42)]

<y 'Ol = 3|l — d2llapo v ) 4o s
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therefore, using |0z;;:| > v (1) |7% — j’|, where 77", 75 ' <+~ py~! small enough, we have
|00 (11) — i (i2)] _ P7ulg = 5"l — i2ll2pg v (o) +o
0135 (i1)[015: (i2)| V253 = 3132
Z2T

wli = 3’111 — 22l 2po +0(0)+o
Y2 — 312132 + 37 + 55’12
l27-

pllit — dz2ll2pg+v (o) +o
Y2152 452 4 55|

S CN27N772”Z.1 - Z.2||21:10—‘,-u(b)—i-<7 .
Hence

Q7 (1) (ir) — Q% (1)(i2)]
61557 (A1)]

|61 (31) — 15 (i2)]

+ |Q§ (1)(d2)]| 16,5 (i) lo (i2)|

7 (D) (i1) — 93 (1)(i2)] <c
Therefore

[Arz9] ()] < 1812Q) Dy (D7 +1Q5 (1)(i2) N7y > Cllin — dolapy (o) 4o

< N0y (1812Q] (O + 1y 1Q ()l — 2 llapy ey 1)

then, with v~ small enough
\A12¢§ ()| < CN?™~1 (|Q§ (D) (@2)[li1 = d2ll2pg+vd)+o + |A12Q§ (l)|)

and the other estimate follows as in (9.70)). In addition we have that Q is real and leaves E invariant,
(see (8.108)), hence also ¥ : E — E and it is real, hence W satisfy (8.104)). Indeed
(@)’
W(w-T+ X — A1)
_ (Qa)7)
B z(wl—k)\j —>\j/)
(’(/}4):; 5

—(n)] =

moreover

—(1)j (1) = —i(w -1+ X — A7)
@)D
BRICHCIEPYEPY)
= (1)~ (1),

similarly for ¢4. Finally, by (8.109) we have (Ql)?(—l) = —(Q4)§/(l), hence by the definition of ¢ in
(19.65) we have that

(1)) (1) = (¥a) (1)

and so ¥ is reversibility preserving (see (7.32))). O
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By we prove that at the step v + 1 (9.40) and (9.31) are satisfied. By the explicit definition
of we have that the operator L, has the same form of L, with Q, ;1 instead of Q,. Note that
the new remainder Q, 41 is the sum of quadratic function of ®, and Q,. Now we want to prove that the

new normal form D, is diagonal.
Lemma 9.14. New diagonal part. The new normal form is

D, 0
Z‘Du—i-l = Z.Du + [Qu] =1 o ) Dl/+1 = diagjeZ\Si )‘;+1(wa5)a >\l;+l = A;’ + I‘;’ eR
0 _Dv+1

with T4 = —x¥ ;, X/t = —X"F i e Z\ §*, and
X ,) = A, )07 = 2+ () = 5 (@) < CME (o). (0.71)
Moreover given i1(w,¢€), iz2(w,€) then, for all (w,e) € AJ'(i1) N AY?(i2) we have
|Ararj(w, )| < Cll|A12Q | £(av0) - (9.72)
Proof. For simplicity in the first part of the proof we will drop the index v. We have,

@] 0
[Q] = )
0 [Q4]
is defined in (9.64]). Due to Q is real and acts in E, defined in ([7.26) , the operator Q satisfy (8.108)).
Since Q is reversible (see (8.109)) we also have (Ql)g(()) = f(Q4):§(O). Hence if we define (Qm)i(O) =

af' +ar, with m = 1,4 we get

_ 4 .4
=’ —l—zr_j

_ 4 .4
= ) —ir;

= —a; + ir}
where the first equality follows by the (Ql):; (0) = (Q4)§(0), for the second we used the reality condition,

that in Fourier is (Ql):g(O) = (Ql)g (0) and for the third we use the reversible condition (Ql)g(O) =
—(Q4)§(O). Therefore we obtain that o = 0 and

(Q1)}(0) = ir} € R,

similarly for (Q4)§ (0). Moreover we also obtain that r; =-r! = —r;*. Hence
11 _ 4
r;, r_;=r; €R.

The statement follows with r} = r;.
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By the definition of M#(pg) given in (9.37), and by Definition [11| we have that
1108QiBllpe < 27 HME (po) [ 2lpy  for m =1,4.

which implies that
105(Q4)3(0)] < Oy HIMP(pg), m =1,4

hence
AL = AP0 = [ w,2) = e w,2) P07 < € max, (1@ O)107) < Oy M o).
In a similar way we obtain
|A12(Q?n)§(0)| < Cnllnjlﬁ 1A12Q | cmvo) -

By this we obtain (9.72]). O

9.4 The iteration

Now we prove iteratively that (S1),, (52),, (S3),, (S4), in Theorem [0.6] are satisfied for every v > 0.
To this end we suppose that the Theorem is true for (S1),, (52),, (53),, (S4),, and we shall prove it
for (S1)u41, (S2)u41, (93)u41, (S4)u41-

Proof of (S1),41. Since the eigenvalues \? are defined on N(A7, YN, 77?), (see , the set A}, in
is well defined. Moreover X/ are well defined also on the set N'(A], 1, YN, ;%) € N(A}, YN, 71 ?)
because A, C A). Let us prove N (A}, ,vN,772) C AZﬁ, that is at the step v + 1. Let
Co = (wo,€0) € A}, and (w,€), with |[¢ — (o] <N, 7~2 Then for all |I| < N, and for all j # k we have,

by (9.34), with py= <1,

w - L4+ N (Q) = AL (O] = lw - T+ wo - L —wo - L+ AT (Co) — A (o) + AT (C) — A% (C) + A% (Go) — A% (Go)l
> |wo - 1+ A7(Co) — A% (Go)| = [Uf]w — wo| = [(A] = AT)(C) — (AT = AT)(Co)l
> |wo - L+ N (wo) — A% (wo)| — ¢ = ol (I + pC15* = 5))
>]5° = 7P = AN T = pClP = Ry N T

R
> |i° =315 O)

with Ny > 4C large enough. Hence ¢ = (w,¢) € AZfl , defined in (9.35) with v ~» v+ 1 and v ~ /2.
By (9.32)) at the step v + 1 and by Lemma for all (w,e) € N(A], 1,7, "?) the solution ¥, of the

homological equation (9.63), defined componedwised in (9.65]), is well defined, and by (9.67) and (9.38)
satisfy for all 0 < |k| < ko the estimate (9.41)) at v + 1, that is, at v + 1 with k = 0,p = po that

M, (po) < CNpKorDFko N7 Mo (p,b), 0= 1,4. (9.73)
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We have ®,, = 11+ W, is invertible, indeed by (9.21]), (9.30)) the smallness condition (2.43) in Lemma
is satisfied for Ny := Ny(p, b) large enough. Hence we define ®! as

-
ol =1t +0, =1+ Ui ) (9.74)
0

in addition, by Lemma we have that zZAan , m = 1,4 are D*o-modulo tame with the same constants
of ¥¥ , m = 1,4, therefore ( we drop the index 1 and 4 ) we obtain

M. (p) < Cko)y ™ N, & N Kot DR A (p, b) (9.75)
M gpyoie (P) < Ok, b)y ™ Nyt Ny oD ¥R A (p, ).

Note that this is (9.41) for v+ 1. Moreover since ¥, : E — E and is reversibility preserving (see (|7.32)),
also W, : E — E and is reversibility preserving.

By Lemma the operator D, 11 is diagonal and its eigenvalues A/ *! : /\/( Y AN =5 R
satisfy (9.34) at v + 1. Now we shall estimate the remainder, Q, 1 defined in , that is

Qv+1 - Q;lHu 5 Hu - HJ]\_[VQV + QulI’v - ‘PU[QU} 5

SO

QVJrl = ,/_A,_l (1_[L QV + QI/ v ‘IIV[QVD . (976)
By (9.74)), (9.36)) and (9.61]) we have

v+1 0

Qo1 = 1 (9.77)
0

v+1
4

Since (QY*1)] = (Q4™1) 7] we shall write Q! instead of Q¥!, m =1,4.

Lemma 9.15. Nash-Moser Iterative scheme. The operator Q, 41, respectively (8@>b Q. 1, is DFo-

modulo-tame with modulo tame constant satisfying, respectively
M} 41(p) <wy Ny PME(p, o) + N7y~ MY (p) ME (o) (9.78)
M1 (p,) koo ME(p,B) + N7ty ME (9, 0) M (o) + Ny~ M (po, )M (p) - (9.79)

Proof. By Lemmas [2.20} 2.18] and by (9.67)), (9.75) we can estimate each term in (9.76). We will write
QVt! and 9" instead of QYT QYT Y Y.

1Q" Ay gy Ny My o (o)Al + Ny P AMEy o () [llpy + M () [0 By,
+ M (o)l[97Ally + N7y~ M. () [[Q NIy + N7y~ My, (po) [1Q 1Al
+ N7y ME, ()T, Q¥ Bllpy + N7y~ MEy (po) T, Q7B
+ N7 T M, (D) |QV YV Rllpy + N7y M, (p0) | Q¥4
NP My s (R0 [l 4+ N1y~ ME () ME (po) 1]

NP M @Bl + NZ ™ ME (p)ME (0) [l -
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The proof of (9.79) follows by Lemmas and by (9.67)), (9.75)), (9.38). O

Thanks to the estimate (9.78)) and (9.79) and using (9.21) we can prove that (9.38]) holds at the step
v+ 1.

Lemma 9.16.
M (p) < NJMo(p,b), M, (p,b) < Mo(p,b)N,.

Proof. We prove by induction. By (9.78)), (9.30)), (9.21) and (9.38)), for Ny := No(P,b) > 0 large enough,

we get

M43 (p) <o Ny PME (p,0) + NIy~ MY (p) ME (o)
ko Ny PNy—2Mo(p,b) + N1y HN, 2 Mo(p, D) N, % Mo (po, b)
ko [Ny °Ny—2 + NJ'y N, 2 Mo (po, b) | Mo(p, b)
<o Ny “ MG (p,b) .

This is true for a,b as in (9.21). Similarly by (9.79), (9.38), (9.21) and (9.30)), with Ny := No(P,b) > 0

large enough, we get

M1 (p,1) <o ME(p,b) + NIy M (p, 0)ME (o) + N1y~  ME (po, b) M (p)
Sko,b Nu—lMO(pa b) + 2N;1771M0(pab)Nl/—lNy_leO(pmb)

< Mo(p, b)NV .

Since @, : E — E is reversibility preserving we have that Q.41 : E — E is reversible (see )
Proof of (52),+1. We have to construct a smooth extension X}’H on QX [e1,2]. Thanks to the induc-
tive hyphotesis, we have that there exists an extension 5\3” : Q X [e1, 9], that is C*o-times differentiable,
moreover A7 = 5\;’ on A) and :\;’ = 0 outside N'(A7, VNV_J:{Q), where A} is defined in (9.35)). Note that all
the sets A} are defined by only finitely many non-resonance conditions, that is
=N {g = (w,e) €Al N ([DC}(n Nk, ] x [el,sg]) :

[lI<Ny—1

L7115 ISCN,

w - L+ X=X 2 ) = RO TV S Ny, gl € 7\ Si} :
Actually, if |52 + /2| > ON,_1, j # j', for all (w,e) € A]_, then the functions

v—1 v—1 v—1 v—1
|w~l+)\j —)\j/ |2‘)‘j _)‘j’ | — |w]|Z]
> [7% =" =l
> Clj* + "% - CN,y

1

> —.
-2
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We have that )\;’H = A/ + 1Y, defined on N'(A),,, YN, 7~ 2) hence the idea is to extend just the function

ry. For this reason we consider x, : R!*N — R, let x, € C* be a cut off function, where

0<xo <1,  x(Q)=1, YCenrl,, supp(x,) SNl ,¥N, 7%,
05X (O] < C(k) (NZ”“fl)'kl , VEENY, = | (Q7 < Clko)NSTH k.
Hence, we define
o ::Xurl",
! ! (9.80)
v+l . (v ~v
)\j =AL T

By (9.80), Lemma|9.14] and (9.38)), (9.27) we have the following estimate

Iv+1 v ko, ko, v|ko,
|>‘j _)‘j|07§|XV|D’Y|rj|O’Y
< C(ko) Nk ME (po)

< iy~ C ko, P,b) N{THDko 7o

v—1>

this is (9.43) at v + 1.

Proof of (S3),41. Let Q% (is),v% 1(is) with m = 1,4 and s = 1,2 be the operators constructed at
the v-step, defined on AJ(i1) N A)? (22)

QY (im),wr1(is) satisfy (9.38) and . Since (Q1)}, = (Q4)~ we can drop the 1,4-index.

We now want to estimate the operator AngyH. By Lemma [0.63] we have constructed the operators
v, m = 1,4 defined for all w € AJ!,(i1) N A)%(32). From now on we shall drop the index m. We

m

estimate the operator Aj99", by (9.68)), (2.33), (9.38)) and (9.44]) we have

ALY 2earoy <o N2TY~H (11QGi) | 2(arvo) it — i2llpo+v)+o + 1812Q1] £(rrv0))
<o N7y (NQolll 2earoy Ny i = d2llpotv)+o + [1812Ql (vo))
<po N2y (NQolll cearoy Ny llin = d2llpgtv)+o + 4N, lin = i2llpe4om)+o)

< C(PO)NETY2uN; % i = iallpy o )40 (9.81)

we also have,by (9.68)), (2.33]), (9.38]), (9.27)) and (9.44

1 (06)® D129 ||| (rrvoy <o N2Ty ™" (|H (99)° Q(i2) |l £(#rv0) i1 — i2llpotv(o)+o + Il (D6)” A12Q|||£(Hvo)>
<pp N7 (No—111Qolll 2(arvo lir — i2llpo+u )40 + Nu—1ll|Qolllc(zrv0))

<po NJ7y 2N, apllin = iollpgsvm)o - (9.82)

By (0.73)), for y~2v small enough, the smallness condition (2.52) is verified. Therefore if we define ®;!
as in (9.74)), by (9.81)), (9.82)), (9.75) (2.33) and Lemma we get (by dropping the 1,4 index).

|||A12¢AJVH|LHP <pn N7y 2N, % pllis — iollpo+v(v)+o
(H¥o) 1 po+v(b) (9.83)

11 (B0)° A2 [|| £(rrv0y <Pp NZTAT2N,—1pallis — i2]lpo 4o (0)to -
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Now we estimate A12Q ™ where Q" = (1+¢*) ! (Il Q" + Q*¢” — ¢”[Q"]) because (1+4*) ¢ [Q"]
satisfies the estimate we have to study the norm of Ajo(Q*)” where (Q*)” = (1+¢¥)~! (HJNVQ” +QyY").
We have that
A12(Q%) =A1yp” (T, Q¥ (i1) + Q¥ (i1)v" (i1))
+ (1 + 9" (i2)) (TIn, A12Q” + A12QY (31)1” (i) + A12Q (i)Y (i2))

then, by Lemma [2.21] (9.83)), (2.33), (9.75) (0.68) and (9.67), taking v~2u small enough, the following
inequality holds

11A12(Q*) [l 2(rvoy < A28 [l c(arvoy (1IN, Q7 (1)l cczro) + I1Q” (i) ccareoy I1¥Y i)l cizrvo)) +
I+ ) eevoy (ITR, Ar2Q L ecrrvoy + I1812Q% [l c(azvo) |[W¥ |l 2 (arvo)+
+ 1A12Q" [l 2avoy 19" (i) || £ (arvo))
<o | A129" [l £(zrv0) <N5b||| (00)" Q¥ c(zvo) + H|Q"|||L(Hvo)|||1/J”(i1)|||a(mo)> +
+ I+ D)oy (Nl (06)° B12Q" e aamo+
+ 1212Q" Il ooy 110" 2 cazvoy + 1A12QY [l 2cavoy 14" (@)1l 2arvo))
<o ONZTY T N2y i = allpo oo (V5 Pl (@0)° @1l cavo)+
+ NINS v HNQ N v 1| Qolll ccareoy) +
+ NP N(00)° A2 Q¥ [l vy + N2 NSy ALQY [l 2(arroy Q0 2(rrvoy
<o (N3P ME (90, D) + N HE T A (90)2) it = dollpg sy 40+

+ N 00)" A12Q | cevoy + N HEFDTYTIME (p0) [ 212Q [[| a0
(9.84)

and, using (9.83)), (9.68]), since (9.38) and lj imply NZH]COH)T’y_lM?j(pO) <1 we obtain

11 (96)° A12(Q*)" || c(rrvoy <po (v uNu—1 + ME(p0,b)) [li1 — i2llpo+v(m) 4o+
+ 111 (90)" A12Q" |l c(rrvoy + Ny T FFITAT AL QY (|| £ (700 M (o, b) -
(9.85)

The other terms in (9.76]) can be estimated in the same way, therefore A;,Q" ! satisfies (9.84) and ([9.85)).
We now have to prove ([9.44)) at the step v + 1. By (9.84)), (9.38), (9.22)), (9.44) and (9.21)), if v 2u < 1
and No(P,b) > 0, we get

11812Q M leqarvo) < it = izllpg oo (No PNuery™ 4 NZNZT Y7LV ot D+ (4712
<pp v "N,y — i2|po-+u(b)+0 -

Similary, by (9.85)), (9.38)), (9.22) and (9.44) we get

11 (96)° A12Q Il c(zzvoy <P ¥~ 1Nullix = d2llpg+1(0)+0
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by py~2 <1, (9.21) and taking Ny := N(P,b) > 0 large. Hence we have proved (9.44) at the step v + 1.
The first inequality in (9.72)) follows from Lemma|9.14} the second follows by a telescopic argument using

the first inequality in (9.72)) and (9.44).
Proof of (S4),41. We have to prove that, if uy " 'C(P)N;_,|li1 — i2llpgtvm)+o < p» then

Cen(in) = (er)P(ia).

Let ¢ € A)(i1). By (9.35)) and (S4), we have that A) , (i1) € A} (i1) € A} ™" (i2). Therefore ¢ € A)™7(iz) C

v

A (i2). Using (S1),, we have that the eigenvalues A7 (, i2) are well defined. Thanks to ¢ € AZ(il)mAZ/Z(ig)
we got (9.45), then by (9:33) (0:45), and [9;m (i)[i]| < uClil
(] = N0 (Criz) — (A = A9 (C i)l < T = AP)(Crd2) — (AF = A9)(¢ i)
+ 2sup [r (¢, d2) — (¢, i)
J
<y 'C(P)5® = 5% liz = i1 llpotv o) 4o - (9.86)
Using the definition of A}, (i1) in (9.35) with v + 1 instead of v, (9.86) we can conclude, for all |I| < N,
that
w1+ A (i2) =AY (i) > fw - L4 NS (i) — N5 (4)| — [(A) — A¥))(d2) — (AY — AY))(i1)]
> 417% = %107 = Cry 5 = 5Pl = i2llpe v )40
> (v=p)li° =310

provided C(P)uy Ny |li1 — iz2llpotvm)+o < p- Hence ¢ € A} f(i2), and this proves (9.46) at the step
v+ 1.

9.5 Almost invertibility of £,

Let Lo = L4, where Loy is defined in (9.9). Then by and Theorem we obtain

L,=W,L,W, '+G+* wW,=w'U, (9.87)
where L,, is the operator defined in (9.50) and G is defined in (9.7) and satisfy the estimate (9.8). Then
©.3), (9.52), (9.25)), imply that for all py < p < P,

ko, ko, ko,
W[50 <p ([Alp5a + Vol oy 4ol 2ot (9-88)

for some o := o(1, N, ko) > 0. Since we want to use a Nash-Moser scheme we have to construct at each
step an approximate inverse, that allows us to define the successive approximate solution of the Nash-

Moser iteration. For construct the approximate inverse we have to verify that the inversion assumption

given in (5.49)) and (5.50) are satisfied. For this reason we decompose the linear operator L,, in (9.50) as

L,=D:+Q+Q, (9.89)
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where

D =T, (Q- 91+ +iD, )k, + I3

n

Q=g (- 01t +iD,) g, — Ik, (9.90)
the diagonal operator D,, is defined in (9.31)) (with v = n), and the constant K, is given in (5.51)).

Lemma 9.17. First order Melinikov non-resonance conditions. For all { = (w,€) in

3
AL =) = {g €N i fwel+ A > Zlg , Y<K, jEZ\ Si} (9.91)
the operator D5 in is invertible and
D) gl <A g5 T k1) p0- (9.92)

Proof. The estimate l-j follows by |3(w ow- 1+ AT < (l}T(lkH_l)Hk‘ A~ UFIHD for all |k| < ko. O

The smoothing properties defined in (2.11)imply that the operator Q;- defined in satisfies, for
allb> 0

1Qa Al ™ < Ky Ihllge Pes 1QuRllp™™ < [IRI%3 (9.93)

Thanks to the decompositions , (9-89), Theorem [0.10} Proposition [0.3]and (9.92), (9.93), (0-88)

we can prove that £, is almost invertible, indeed we have the following theorem:

Theorem 9.18. Almost invertibility of L,. Assume (5.9)), and that for all P > po the smallness
condition (9.47)) holds. Let a,b as in (9.21)). Then for all

(wie) €A}y ==A) 1 (6) =00, NAVL (9.94)
see . B . the operator w efineda 1 . can boe aecomposed as
(see (0-48), (9:91)) the op L., defined in (5.48) can be decomposed
L,=L,+Q,+Q}, L,=W,D:W,!, Q,=W,Q,W,! Q)=W,Q:W'+G" (9.95

where Q,, is defined in (9.36)) (with n instead of v), Q;- is defined in , and G* is defined in (9.7).

Moreover Ly, is invertible and for some o := o(N, T, ko) > 0, and for all po <p < P, g € HP*? we have
- - ko, ko, ko,
22l <p a7t (Mgl + Vol s o ol ) (9.96)

where v(b) is defined in (9.25), and

1QuAlEe <p v~ Ny (IRIELE + IVollR sy oo IR T ) (0.97)

1QEAIE™ < K" (B30 + VOl s Bl ) 50> 0 (9.98)
ko, , ko,

1QERIE <p (B33 + VOl ) o IB157,) - (9.99)

Proof. Use the decomposition (9.87)), (9.89) and Theorem [9.10, and the estimates (9.92]), (9.93) and
(19.88). O
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We finally define the operator W, (0), as follows

Wo =WHU,, where Uy := lim U,, (9.100)

n— oo

where W is defined in (9.2) and U, in (9.49). It completely diagonalizes the operator L, defined in
(15.48)).
By the arguments of as in Chapter |z| and [8| one can prove that the operator W, () satisfies the

following tame estimates

W..(0) : (H?(T,,C) x H?(T,,C)) NHs — (H?(T,,C) x H?(T,,C)) NHs (9.101)
w_(): (H?(T,,C) x H?(T,,C)) NHy — (H?(T,,C) x H?(T,,C)) NHg . (9.102)



Chapter 10

Nash-Moser Iteration

We define the finite-dimensional subspaces of trigonometric polynomials
E, = {V(o) = (67]7 ’LU)(G), 0= HTL@a =1L, w= Hnw}
where II,, is the projector

I, =g, :w(b,x):= Z wyj et 0T T w(0, 1) = Z wy et 0T (10.1)
IEZN j€Zo \S* (1) ISKn

with K, = Ké?’/ 2" ( see (5.51) and (5.5))). With an abuse of notation we shall denote

IT,q(0) := Z qle”'e.

[<Kn

In addition we define

It :=1-1I,.
We recall the smoothing properties (2.11]) for V € HP that are

ko, R 20, — ko,
ML VIRYe < KnlViper, Ve < KPIVIRY,  ¥hp >0 (10.2)

where | - ||k is defined in (2.9) . In view of the Nash-Moser Theorem we introduce some constants

o1 :=max{7,0,4} (10.3)
3 2

a; :=max{3(201 +6) + 1, i[Tk()(T +2)+r7 4+ v(b) + 201] + 1}, ag = 381~ rko(T 4+ 2) — v(b) — 207

(10.4)

2
by =v(b) +301 + 341+ gvi, v i=3(u(b) +200) + 1 (10.5)

where ¢ := (7, N, ko) > 0 is defined in Theorem o = o(1,N, ko) > 0 is the constant which appears

in Theorem [9.10] 4 is the largest loss of regularity in the estimate of the Hamiltonian vector field Xp in

119
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Lemma v(b) is defined in (9.25), the constant b := [a] + 2 € IN is defined in (9.21)) and the exponent
r in (5.51)) satisfies

1 3
ra > §a1 + 50'1 . (106)

By Remark the constant a > 2ko(7 4+ 2) + 1. Hence, by the definition of a; in (10.4), there exists
r:=r(7, N, ko) such that (10.6|) holds. Indeed we can fix

1 2(v(v k 2 6 1
r._max{ 901 + 19 5 (w(b) + rko(T +2) +r7) + 601 + } (10.7)

Bko(r+2)+27 3ko(T +2) + 2
Remark 10.1. The constant a; is the exponent in . The constant as is the exponent in .
The constant vy is the exponent in (P3),. The conditions a; > 3(201+6), by > v(b)+301+3+a;+ %1/1
and ra > %(01 + %al) arise for the convergence of the iterative scheme , in Lemma m
In addition we require that ay > 3[rko(r +2) 4+ v(b) + 201] + 3r7 +1 so that ay > r7, actually in Lemma

10.6| we need as > r7 + %

Theorem 10.2 (Nash-Moser). There exist dg, Cyx > 0, such that, if

KPuy™2 <dp, 79:=max(rm,201+a1+6), Ko:=v"", ~vi=p 0<a< g (10.8)
where 7y := 1o(7, N) is defined in Theorem[9.¢. Then, for all n > 0:
o (Py), There exists a ko-times differentiable function
W, i RN x [e1,62] = Epoy xRY, ¢ = (w,€) = Wa(C) i= (Vn, &y — w),
forn >1 and Wy = 0, satisfying
W 507, ), < BT 2 (10.9)

Let U,, = Uy + W,, where Uy := (0,0,0,w). The difference H, =U, —U,_1, for n > 1 satisfies

ko, _ ko(T+2 ko,
(50 oy < Comy ™ K ot 1597 oy < Corr™ K%, ¥n>1.  (10.10)

o (Py)n Setting iy, == (6,0,0) + V,, we define
Go =0 x[e1,62], Gni1=0Gn[ |AL1(1), n>0 (10.11)

where AZ+1(~') is defined in (9.94). Then for all ¢ in N(gn,’yK;j(lTH)) setting y_1 = v and
K_1 =1 we have

IF(T)llpe™ < Conk 2 (10.12)

o (P3),

W[k < Copy ' KEL,, Y € NGy y KT 2).

n—1>
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We prove this theorem by iteration. We have that (Py)o, (Ps)o, (P3)o follow by || F(Up)|/k" = O(u)
and taking C, large enough. Let us assume that (Pp)n, (P2)n,(Ps), hold for some n > 0, we prove
(P1)nt1, (P2)n+1, (P3)nt1. We shall define the successive approximation U,+1 by the Nash-Moser scheme.
Note that in order to define U,1 we need to prove the almost-approximate invertibility of the linear

operator
Ly := L (C) = di,aF (in(C)) -

Theorem allows us to prove that L,, is almost-approximate invertible, so we have to verify that the
inverse assumptions and (of Theorem are satisfied. For this reason we have to use
Theorem with ¢ = i,,. By 7 with p small enough, we have that the the smallness condition
holds. Hence we can apply Theorem therefore we can prove that and are satisfied

for all

CEN (Al (in 2915742 )

where A) | is defined in (9.94). Indeed by (9.32) and recalling the definition of Axil (in) in ([9.91)) with

in instead of 4, that gives

N (A1) 9B ) € JE )

we have

N (AZLHGn)a QVKJT(TH)) < Alﬁ (in), Yn>0.
Now we can apply Theorem to the linear operator L, (¢) with Ay = /\[(AZ+1(§”)7 Q’YK:L(TH)) and

P:=po+0b;, where by isdefined in (10.5)), (10.13)

and P is the larger scale used in the Nash-Moser theorem. Finally we have the existence of an almost-

approximate inverse T,, := T, ((, 1,(¢)) which satisfies

- ko, Koy (177 ||kos
ITngl5o <poson 7 (Ilgllpill + \IngSlalIIVn||p1§1+y(b)) . Vpo <p<po+b (10.14)
ko, — ko,
||T7Lg||rlg K Spo-‘rbl Y 1”9”{18101 . (1015)
For all
C €N (Gpi1, 29K "TH2) C N (G /KT, n>0 (10.16)

we can define the successive approximation as follows
Un+1 = Un + Hn+1 5 Hn+1 = (fjn—l-lyéln-&-l) = 7HnTanF(ﬁn) € En X RN (1017)
where IT,, is defined by (see (10.1))

IL,(V,a) := (I,V,a), IIr(V,a):=10:V,0), YV, a). (10.18)
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At this point we have to prove that the iterative scheme defined in (10.17) is rapidly converging. By

definition we have that L, = d; o F (in), then we can write
F(Ups1) = F(Un) + LyHyy1 + QUn, Hyy 1) (10.19)

where
Q(ﬁna Hn—i—l) = ]:(Un + Hn+1) - ]:(On) - Lan+1 . (10.20)
By the definition of H,, 1 in (10.17)) and using the definition of II,, given in (10.18)) we have
F(Uni1) = F(Up) = LI, Tl F(Uy) 4+ Q(Un, Hyt1)
- L, T,I1,F(U,) + L,JI:T,11,F(U,) + Q(U,, Hu11)

n

F(Uy,)
F(U,) —11,L, T, F(U,) + (L,JI: — II-L,)T,IL, F(U,) + Q(U,, H, 1)
L, F(

where
Ry = (LI —IL-L,)T, 0, F(U,),  Sn:=—I,(L,T, — DILF(U,). (10.22)
Thanks to (5:2), (4), (10:3), (10:9) we have V¢ € 2 x [e1,£2], p > po
1F () 150 <pp [F U)o + |F () = FU)IIET <p o+ WIS, (10.23)

and, by (10.9) and -

YIF @) ™ < 1. (10.24)

In order to prove that the scheme is rapidly convergent we have to prove that F(U,41) and W,y =

W,, + H, 41 decrease fastly, for this reason (recalling Definition (10.19), and (10.17))) we start by proving

some estimate for H,, 1, Q(ffn, Hy,1), S, and R,,.

e Estimates of H, ;. By (10.17)), (2.11), (10.14)), (10.15) and (10.9) we have

ko, s
| Ha 1505, < ITL T 1L, F ()|

ot VK (1@, + K2 Do, IF @) I57)  (10.25)

_ 1711 ko,
<podbs ¥ 1K301+V(b) (/u' + HW“pg-i’-Ybl) ’

where the last estimate follows by (10.23). Using (10.17)), (2.11), (10.14), (10.15) and (10.9) and
(110.24)), we get

ko, ko, L peon || E(TT ) | oo
1Hally ™ < I T L F (U)o, Sposn v EZHIF )l - (10.26)

e Estimate of Q(Un,HnH). Using (10.20)), (4.4)), (5.2)), (10.9)) and (2.11]) we obtain the quadratic

estimate, VH € E, x RV

1Q(Tn, H)5s™ <po nEL(IVII5e™)?, V€ By (10.27)
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Then the term Q(U,, H, 1) defined in (10.20) satisfies, by (10.26)), (10.27) and py~' < 1

QW Ha )15 <po 7 270 (IF @I, ) (10.28)

e Estimate of S,,. According to ((5.74]), we revrite the term S, in [10.22| as
Sp =~ (L, T, — DILF(U,) = =SV = Snw — Sit,
where

Using (10.2)), (10.9), (10.8) and (10.24]) we have

= ko, ko, Ko,
IFOa)llp oy < I F (Un)llpo o, + 1T F(On) o s,

(10.29)
< K7 (IF@l5 + K IFO)E) -

Hence by (10.29)), using the bounds (5.75)), (5.76]), (5.77) , (5.78), and by (10.23)), (10.2) we obtain

1SN Spason v K2 (IF @) lge” + K I F @) 1507 ) 17 D)l
pwton VKR [IF @)l + K~ e Wl | IF @)l (10.30)
IS

ko, ¥ ,
ISrllf Sputo, 7T KR O (IF @)1 + pll Dallfo)

posbs 1Y 2N K| F(T,)[I507 (10.31)

<Po+b1 7*1K201+V(b)*b1 (‘LL + ||Wn||zof‘/> . (1032)

e Estimate of R, For H := (V,&) we have
(L, JIE —TE L) H = pldi X p(in), ]V = p[ll,, d; Xp(i,)]V  H € B, x RY

where X p is the Hamiltonian vector field of the perturbation P defined in ([1.44) (see (4.4))). Hence
from (|5.1) and (|10.2)), recalling the definition of ¢ in (10.3]) we obtain

ko, — o s s Y , Vy11ko,
| (EaTlE — T L) BT <poroy w0788 (D507 4+ [Vl [D)e7) - (1033)

Hence, R,, defined in ([10.22)), using (10.33),(10.14)), (10.2)), (10.8), (10.9), and (10.24)) we have

IRallps™ < II(LaTL; =Ly L) (TuILu F (U)o

1401 ) ko,
Spottn WK T (TG, F(T) [0 + Voo

T 1L, F(Un)|[50775)
. . pots (10.34)
poby Ky P23 ®) (= F (U ) lpobs + 1| Vallgor?)

_ I ko,
Sporton Ky EBTEIRO) (W 00)

where the last inequation follows by ((10.23)).
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Using the estimates above we can estimate F (U, +1) as proved in the following Lemma.

Lemma 10.3. For all ¢ € N(Gpy1, QVKJT(TH)) we have, setting v := v(b) + 301 + 3

1 vo—b T ko,y K201+6 ko,y
IF@ellgs”™ Sporon B (o Wl s, ) + 27— (IF @) 5"
+ K, ”{K‘”*IIF( Un)llpe” (10.35)
ko, — ko, v o — T ko,
||W1||pg-:b1 SP(J-i-bl Y /1’7 HWn-"-l”pg-:bl Spo+b1 Kn(b)+2 ty 1(:“ + ||Wn||p(0)_:b1)7 n>1. (1036)

Proof. The estimate (10.35) on F(U,+1) follows by (10.21)), (10.30), (10.31)), (10.32)), (10.34)), (10.8]),

(10.9). By (10.17) and (T0.14) we have

ko, k :
Wl = IHLI T, <porsn ¥ IFU)nd, Spotbr py ™"

Finally the stimate (10.36) follows by W41 := W, + H,,1 and (10.25)). O

Lemma 10.4. For all ¢ € N(Gpn1, K, ") we have

k?, —a k, - 1%
IFUns)llpg™ < ConB = [Waga [0, < Copy ™ K (10.37)
Iy ron SO I st 107 ) ror Spo 7 KGR 0> 10 (10.38)

Proof. Note that, by ([0.16), if ¢ € N(Gnr1,27Kn ") then ¢ € N'(Gpy1,7K,, ")), Hence ([0.12)
and (P3), hold. The first inequality in follows by (10.35), (P2),, (P3),, v ' = Ko <
K, , py~? < ¢ small, and by (10.4)), (10.5), (10.6), (10.7). For n = 0 we use also (10.8).

The second inequality in follows by (10.36), (P3),, (10.5)), Ko large enough.

Since H; = Wj the first inequality in (10.38]) follows by (10.36). For n > 1, the estimate (|10.38))
follows by (10.26)), (10.12) and (10.2)) . O

Lemma 10.5. Extension. There is a C*-smooth function fInH defined on the whole RN x [e1,e29]
such that
Hypy = Hop1, Y6 EN(Gnpr, 7K, ") (10.39)

and (10.10) holds also at the step n + 1.

Proof. Since the function H, 1 is defined for all ¢ € N (Gp11, VKET(TH)) and it is the extension of ﬁnH
a good strategy is to consider the cut-off functions. Hence let 1,41 be a C* cut-off functions satisfying
0 < 1/’n+1 < 17 ¢n+1(C> = 1a VC € N<gn+1?’yKr:r(T+2))a
supp(n+1) € N(Gra1, 29K, ")

k]
|08 ns1(C)] < C(k) (flK;(T”)) . Yk e NN+
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Then we define

f{nﬂ(C) — Un+1(Q) Hp41(C) V(¢ € N(gn+1,2vK;T(T+2))
’ VC & N (G, 27Kn "))

So (|10.39) holds and we have the estimate

r7 ko, r(r k ko,
1 0y oy oo KT 107, o) -
The first inequality in ((10.10]) for n = 0 follows by ((10.38]), while for n > 1, and also at the step n + 1,
we deduce the estimate ((10.10|) by the definition of as in ((10.4)) and by (10.38)). O

We now define
Whgr :=Wn+Hpy1, Upypri=Un+ Hyyr = Ug+ Wy, + Hpy1 := Uy + Wi
which are defined for all ¢ € RN x [e1, 2] and satisfy
Wii1 :=Wyi1, Upi1:=Ups1, V¢ EN(Gny1,7K, ).

Therefore (P2),,41, (P3)n+1 are proved by Lemma In addition by ([10.10f), which has been proved
up to the step n + 1 in Lemma [I0.5] we have

n+1

T ko, 7 11ko, ko (T+2) -1
IWas1llpo (o) 400 < Z 1kl oy 4, < GG 1y

and thus (10.9) holds also at the step n + 1. So the proof of Theorem is completed.

10.1 Proof of Theorem [4.1]

We now have to prove that the scheme in Theorem converges when n — oo. Let v = p® with
a € (0,ap) and ag := 1/(2 + 72). Note that the smallness condition defined in is satisfied for
0 < p < po small enough and also Theorem [10.2] m holds. Thanks to we have that the sequence of
functions U, := (in, &) is a Cauchy sequence in || - ||k°’7 (see (2.9))) hence we can define its limit function

as follows

Uso := (ioo, Qo) = (6,0,0,w) + Weo,  Wao : @ [e1,80] = HJ® x HJ® x HYY xRN, W := lim W,.

n— oo

Then, using (10.9) and (10.10|) we obtain that

— ko(T — —a.
Uso = Uoll£27 )0y < Coty KE T2 U = U507, )40y < Cuy ™ K7™ Wn>1. (10.40)

In addition by Theorem recalling the Definitions (9.94]), (9.48)) and (9.91)), we deduce that
F((,Usx(€)) = 0 for all ¢ belonging to

(N Gn =00 ) ALlin-) =00 | () ALGn) [ () [ () A2 )| (10.41)

n>0 n>1 n>1 n>1
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where A := Q X [e1,&2]. Therefore, by (10.40)), for n = 0 and since Ko = v~ (see (10.8)) we deduce the
estimates (4.6) and (4.7) with k1 := rko(7 + 2).

We now have to provide the caractherization of CY, in (4.10), in order to do that we firstly consider

the following set

Goo = A0 | [V A7 (i) | )| () 427 (i) | - (10.42)

n>1 n>1

Lemma 10.6. Let G as in (10.42)) and G, as in (10.11f). Then

Goo €[] G-

n>0

Proof. By (/10.40)) and (|10.8) we have

— T - . ko, — rr 7-rko(7+2
Y COING llise — iollf07 oy 4oy < 127 2C(D)CLEGTR T <

n

- T : bt ko, - rT —ap
128] 1C(p)N —1||ZOO - ln—alz_:y(b)J,.o—l S /'LQ’Y QO(p)CKn—lKn S v vn 2 2

where 75 is defined in (10.8)) and by (10.4) and that as > r7 + 2/3 (defined in (10.4])) we have that
T > ag > 3(rko(rT + 2) + r7)/2. Therefore Theorem |9.6| implies

A2 (ioo) C A (in—1), Yn > 1,
where A} is defined in (9.48)). Using the definition of A7/ in (9.91)) and similar arguments we have
221Gy e N (1), Yn> 1.
So the lemma is proved. O

We now can define the final eigenvalues as follows

2 1
AX = j (15j454—3j252+1> +mTj+re, jEN\S,j#0, (10.43)
where
m® i=my(ic), 17 = ligbfgl(ioo), Vi eIN\S, j#0 (10.44)

where m; is defined in (8.78) and 7} are defined in (9.42). Note that by (9.43) the sequence (77 (ioc))nenN

is a Cauchy sequence in | - |57 defined in (2.7). As a consequence its limit function r°(w,e) is well

defined, it is kg-times differentiable and satisfies

73 = 75 (o) 7 < Cpy INRTHINZE > 0. (1045)

Note that, since 7(io) = 0 and Ko =~~", one has
|r;>o|k0,'y < C‘u,yflngo(T-&-Q)-&-l

and (4.9) holds with ky = rko(T + 2) + 1.
We are now ready to consider the set C2, defined in (4.10]).
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Lemma 10.7. Let C1 be the set defined in (4.10) and G be the set defined in (10.42)). Then
€L C G

Proof. Thanks to we have only to prove that C, C A?7(iy,), Vn € IN. We prove it by induction.
For n = 0 the inclusion is verified because Aj”(in) = 2 X [€1,€2] = A. Assume that C2 C A27(iy,) We
shall prove that C2, C Ai11(ioo)~ By Theorem m we have that S\;L(ZOO)(C) = M (io)(¢), V¢ € A2 (o).
Hence V¢ € C, € A¥ (i) , by (9-33), and we obtain

(] = A )(ise) = (AT = AF)| < Oy INGeTHIIN 8

and therefore, using (4.10) with j # j we have
|w - L4+ A (foo) = A (foo)| 2> |w - L4+ A7 = AT7] = [(A] =A%) (ioo) — (AF° = AT
> w1+ A° = AP — Cpuy I N+ N e
> 4® = |0 = Cuny NS TIN5 —
> 205 =710 VIl < Na,
provided puy=2 < C’N{kO(TH)NflLl, ¥n > 0, which holds true by (9.21) and (10.8). Hence we have

proved that CJ, C Ai’j_l(ioo). One can prove similarly that C1, C A" (i), Vn € IN which proves the

lemma. O

By Lemmas [10.6] and we have the following result
Lemma 10.8. Let C), as in (4.10) and G, as in (10.11). Then

CLC()Gn-

n>0



Appendix A

Approximate model PDEs of water

waves

A.1 Transformation laws of Hamiltonian systems

We now recall some well known properties (that can be found e.g. in [38]) of Hamiltonian systems. Let
Y be a Hilbert space with scalar product (-,-), W be a non degenerate symplectic two-form and H be an

Hamiltonian. Then the associated Hamiltonian vector field Xy is defined by
W (Xg(v), ) = —dH(v)("). (A1)

If W(a,b) = <J_1a,b>7 where J~! is a non degenerate and anti-symmetric linear operator, then the

condition (A.1I)) is equivalent to
<J_1XH(U)7 > = <V1,H(1)), > )

that is J ' Xy (v) = =V, H(v), and
Xu(w)=—-JV,H(v). (A.2)

Therefore the associated Hamiltonian system can be written as
v+ JV,H(v) =0.
In the next Lemma we discuss how a vector field transforms under a linear change of variables.

Lemma A.1. Let X(v) be a vector field. Consider a linear change of variables w = ®v. Then the

differential equation vy = X (v) transforms in

wy=®oX od .

128
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If the vector field X (v) is Hamiltonian we have the following Lemma.

Lemma A.2. Let —JV,H(v) be an Hamiltonian vector field, whose Hamiltonian is H. Under the linear

change of variables w = v, the differential equation vy = —JV,H (v) transforms
wy = — 1V K(w), where Jp:=®J0T,

and K is the Hamiltonian given by

K(w) = H(® 'w).

A.2 Craig-Sulem-Zakharov’s Hamiltonian formulation

In this Section we present the computations that W. Craig gave to us (in a private communication [26]),
in order to arrive at the system .

This system is derived from the Hamiltonian formulation of the water waves equations introduced by
Zakharov in [65] and Craig-Sulem in [33]. Let us precisely describe this system. We consider the evolution
of a perfect, incompressible, irrotational fluid under the action of gravity which occupies the free boundary
region

Sy ={(z,y) eRxR:-h <y <nx)}.

We refer to the classical book of Stoker [63]. The unknowns of the problems are the free surface y = n(z),

and the velocity potential ® : S, — R, i.e. the irrotational velocity field V®. The gravity water-waves

problem can be written as follows

P+ F|VO>+gn=0, at y =n(r), Bernoulli condition
AP =0 in 5,, incompressibility
(A.3)
0y®=0 at y =—h, impermeability
Oin = 0y® — 0, - 0, P at y =n(z), kinematic condition,
where g > 0 is the acceleration of gravity. In addition we consider periodic boundary conditions:
n(x +27) =n(z), ®(x+2my) =o(z,y), VrelR. (A.4)

It was observed by Zakharov in [65] that the system (|A.3)), is an infinite dimensional Hamiltonian system
in the variables 7 (the profile of the fluid) and (z) := ®(x, n(z)), that is the value of the velocity potential
® restricted to the free boundary. The first observation is that n(z) and £(x) uniquely determine the
velocity potential ® in the whole fluid domain S, solving the elliptic problem

A®P=0 in S,

0,® =0 at y=—h (A.5)

(bzg at y:_n(‘r)7
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with the periodicity conditions (A.4).
In [65] and [32] it is proved that the system (A.3)) can be written in the variables (1, £) as the following

Hamiltonian system

i onH 0 -1
Oy =—J , J= , (A.6)
¢ d¢H 1 0

where ¢ , &, denote the L2 gradient, the Hamiltonian H is

70,6 = 5 [ (€ GOe +g1?) da (A7)

and
G(n) = (9y®)(z,n(z)) — (0:®)(x,n(z)) - Iun(2)

is the so called the Dirichlet-Neumann operator. The first term in the Hamiltonian (A.7)) represents the

kinetic energy of the fluid, and the second term the potential energy.

A.3 Derivation of system

We now present the derivation of system from the Hamiltonian system (A.6]).

In [32] it has been proved that the Dirichlet-Neumann operator admits the following Taylor expansion

G(n)¢ = Dtanh(hD)¢ + (DnD — GOnGO) ¢+
1

+ 5(G<0>772D2 + D*2G© — 2G0OpGOnG)¢ 4 R®)

where D := —id,, G (D) := Dtanh(hD) and R® collects all the terms of order at least four in the

variables 1 and £. Using this expansion the Hamiltonian (A.7) reads

1

H(n,¢) 25/ [{ (D tanh(hD)¢ + (DnD — G(O)UG(O))£ +
T

1
+ 5(G<0>n2172 + D*2GO — 2G<0>nG<0>nG<O>)§) +R® + grﬁ] dz

h (A.8)

T

+ %g GO’ D¢ + %g - D*PGO¢ — ¢ GOnGOGO¢ + RP) + gnz} dz .
We now introduce the long wave and the small amplitude regime scaling taking
n=c?y', ¢=ef’, ex=X, D,=eDx. (A.9)
After this rescaling the Fourier multiplier tanh(hDx) reads
5 2h°

hS
tanh(ehDx) = ehDx — 5331)_?;( +e 1—5D§( +0(7). (A.10)
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The transformation (A.9) changes the matrix J in (A.6) only for a scalar factor. Denoting by A the

matrix that represents the change of variables (|A.9))

then (see Lemma [A.2))
Jii=AJAT =73

Introducing the transformation into the Hamiltonian (A.8), thanks to (A.10) and Lemma we
get

1 /
H= 3 / <E3§/DX tanh(heDx )¢ +e*n?g + ¢’ Dxn/'Dx ¢’
T

— £5%¢'Dx tanh(he Dx )n/ Dy tanh(he D x )¢’

+ 0(59)> ax

€

1 3¢/ 3h3 3 52h5 5 /! 6 ¢/ / /
=5/ 5§Dx<shDst D} +e EDx)g 45 Dyn/ D€

6 ¢/ 3h3 3 5217’5 5 ’
h3 2h5 /
— €3€D§( + €5ED§()£I + 5477 29 + 0(59)

ax

- ;A[gfﬂ (h&’Dif’ +77’29) _55(%35'%(5’ —¢Dy (n’Dxf’))

2h°
— &7 (W¢ D% (f DXE) = T DRE) + O(") |dX.

From now on we drop the primes in our notation and we shall omit both O(¢°) and R®) terms. Then,
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by D% = —0%, D% = 0%, D% = —0% we rewrite the above Hamiltonian as follows

2H = 53/ [—hax ((0x8)€) + h(9x&)* + gnz} dX+
T
3
+€° /T [}; <—3X(§(3§c§)) — (0% + 8X((3Xf)(3§<€)))

— Ox(En(9x¢)) + U(axf)ﬂ dX

e H; (~0x (€(@%6) + Ox (0x8)(9%)) — Ix (85)(9%) + (9%€)°)

e (_ax (€0x (n(3%€))) + Ox ((OxE)N(9%€)) — (83(5)277)] dx
3
g /T h(0x€)* + gn*dX + 65/T (f;(ag(g)z + 77(3)(5)2) e

2h°
we [ (G5 0k - meke) ax.

132

(A.11)

We now introduce the surface elevation-velocity coordinates (n,£) — (n,u := 0x§). If we call B the

matrix that represents this change of variable, that is

1 0
B =

)
Jy = BJ,BT =3 X1 .
dx 0

After the change of variable B the Hamiltonian in (A.11]) reads (see Lemma |A.2])

then (see Lemma [A.2))

3
2H = 53/ (hu® + gn?) dX —|—e’:‘5/ <_];(8Xu)2 + nu2> dX+
T T
7 2h° 5 0 o 2
+e T (05 u)® — h*(Oxu)’n | dX .
T

The Hamiltonian equations corresponding to this Hamiltonian are

onH
o ") ==a |
U o H

atn = —6_36)(6uH(77, ’LL)

where Jy in defined in (A.12]), i.e.

O = —e30x 6, H(n,u).

The Hamiltonian equations defied above are explicitly given by
2 (1P o 4 (2h° 2
om=-0xhute §8Xu+77u +e E(?Xquh Ox (ndxu)

52 h2
Ou = —0x <g77 + Euz - 542(8Xu)2> .

(A.12)

(A.13)

(A.14)
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For simplicity we assume h,g = 1. Moreover we can also assume, instead of the Hamiltonian in (A.13)

the Hamiltonian divided by a factor e =2, and we can redefine

0 0,
0 0

J2 =J:=

With these assumptions the Hamiltonian (A.13)) (divided by &® ) become the Hamiltonian , whose
the corresponding equations of motion are equal to (A.14) (with h,g = 1).



Appendix B

Asymptotic expansions

In this Section we will prove that each remainder, obtained along the descent method in Chapter [8] has
always the same structure , in homogeneous components up to smoothing operator in S —M-1
Moreover we provide some explicit estimates on the coefficients and the symbols in this expansion.
For that we use systematically the asymptotic expansion for the composition operators (see ) in
homogeneous symbols and the estimates given in Proposition (with oo = 0). This method is slightly
different by [19]. We decide to use this strategy because the homogeneous structure allows us to eliminate
the out of diagonal terms up to order —M by means some easy transformations. We underline that the
order —M, at which we arrest the expansion, is a fixed constant provided by the KAM iteration in
Chapter@ see .

In what follows we shall use the norm || - ||k, defined in (2.8)), for functions and for 2 x 2 matrices of
functions (see Remarks , similarly we shall use the norm |- |k(w defined in , both for operators

m,p,0°
and for 2 x 2 matrices of operators (see Remarks [2.7)).

B.1 Inverse of T}

In this Section we invert operators Ty = 1+®,9;%, k =1,..., M +3, where ®;, := & (z, ) are functions.

By the composition formula in (2.19)) we obtain

0, *0,F =@ C(B)(9)0)(0; 7 F) + (B.1)
B=0

where —2k —p = —M, C(p) is a constant and r € OPS~™~1. Hence iterating this formula we have

arrive to

P1 P2 Ps—1

(@05 =0 >0 > C(Br, oy B5-1)00 (BT (0P (DD @)...))0, P g

61:0 6220 ﬂ571:0

134
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M—ké

= > COH)Pjrsd ¥ 41, (B.2)

§=0
for some suitable constant C(j) and where rs € OPS~ =1 is the sum of r and all the pseudo-differential

operators in OPS~M—1

generated by the composition.
Actually we are interested in T, = 1 + <I>k6;k where @ for k = 1,..., M + 3 is an out of diagonal

matrix, small enough, that is

(k)
0 v
Y3 0
see (8.2)), (8.20) and (8.37)). Moreover we shall require that the functions @, satisfy
ko,
H¢k||Pg-:X(M)+O' S 1a (B4)
where x (M) is a constant depending on M and o := o(7, N, ko).
Lemma B.1. Let Ty, = 1+ ®,0,%. Then
M—k§ _
(®0, " Z C() (k) 44505 + w5,
for some suitable functions ®;, and constants C(j). The operator v s € OPS™M~1,
Moreover for j =0, ..., M — k6,
= ko, ko, ko,
1(@x)jrslly” < CONPRILST S Vhs|Z 1 p.0 < CO MNPl 19520 an - (B.5)
Proof. We prove (B.5]) by induction on k and . Let k = 1,0 = 2 then using (B.2) we have
®,0,10,0; ! = ZC’ )(D1)s4205° 72 + 1 (B.6)
where the functions (ti>1)s+2 are defined as follows
(&31)5+2 = <I>1ath>1 . (B7)
Therefore, by the definition above and (2.36)) immediately follows that
- ko,
1(@1)s2ll>" < Co)Pallp57 - (B.8)
For the pseudo-differential operator v; o, by (2.25), (2.26) and (2.28]) we have
ko, ko,
V1225 1 p0 < CO M@ lL5 T ons—a - (B.9)

Now we suppose that it is true for k = 1 and 6 = m, that is (see (B.2]))

Z k+m8 m=k + Vim (BlO)
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where <i>1 are some suitable functions. Then

. o,
(@) ktm [0 < CR) (@17 - (B.11)
The pseudo-differential operator vy ,, is defined as follows

Vim = Ul + @10, V1 mt (B.12)

hence by (2.28]), we have
ko, ko,
|Z/17"n|—01\2—1,p,0 < C(p, M)H(I)1||p3-gM+m—1—4- (B.13)
Remark B.2. Note that the formula (B.10) follows by iteration, indeed
(@10, )™ = @19, o (P10, 1)
M—m+1 .
( Z C (b k+m 1a mAL=k + Vlﬂn—l)

M—m+1 R
( Z C(k)(P1)ktm-10, m+1_k> + 010, 'v1 mo1

= Y CE) (@) krmOy ™  + D1 + ©10; 11

where we define vy y, 1= U1y + @18;11/177”,1.

Now we prove the formula for k =1 and 6 = m + 1. By (B.2)) we have

M—-m-—1
0,0, (@10, )™ ( Z C(k)(P1)k4m0; ™ k+yl,m>

M-—-m—1—5 M—m—-1—k

=, Z Z Cky )P Oy ™ 1T 4 Dy + 210, v

—m—

1
Z P1)s4m+19; "+ Vi,
5=0

where vy 41 collects all the terms in OPS ~M-=1"and the functions d, are defined
(P1)stmr1 =) 10 P1)mrs—j -
j=0

Hence, by (2.36)), (B.11)), (B.12) and (B.13]) we have the following estimates

[@0)ssmiall? <O@) (N @D meall5o? + 1@ mamall3] + o+ 1@l
k
<CNPl;%7, s=0,.. M —m—1,

ko,
Vim+1 M 1,p,0 <C(p7 M)||®1Hp?|-;M+m—4'
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The Lemma is obviously true for K = s+ 1 and § = 1. It is also true for k = s+ 1, = 2, indeed, by

(B.2) we have

M—2s—2

Bo10, T B0, = Y CyPastan 077 TH 4 e )
=0

where the functions @Sﬂ are defined as follows

(Poy1)osrory = Py 1 Deyy

hence by (2.36)), (2.27), (2.28)), (2.29) we have

. ko,
1(@s1)25245[15°7 < CP)IPsrallp%]

ko, ko,
\V(s+1,2)|_01\2_1,p,0 < C(p, M)||q)5+1||p3-3+2M—4s—4'
Suppose that the lemma is true for k = s + 1 and § = m, that is

M—ms—m

(Pot18, "1™ = Z CR)(@s1)kpmymsDy ™7 H + Vs+1,m (B.14)

for some suitable @, with

||((is+l)k+m+ms||§07’y < C(p)||q)8+1||23:z ’ k= 0, M —ms — m,

(B.15)
ko, ko,
Vsr1m| 211 p0 < C0 M) Pssll S 1y sty ronr—aas -

By (B.14), (2.19) and (B.2]) with k = s+ 1 and § = m + 1, we have

M—ms—m

(I)s+185871(¢3+185871)m = (I)s+1aac7571 Z C(k )( 9+1)k+9m+ma smom—k 4 ®5110,° Vs+1 m

Mf(erl)(erl)fJ M—(m+1)(s+1)—k

_a.,, 3 3 C (k) (Pyi1)ktsmim
k=0 J=0
< 8 (m4+1)(s+1)—k—j + Vs+1 m+1 + (I)5+18 Vs+1 m

M—(m+1)(s+1)

= > C)(@us1)(s1)ma1)+5 05 "TETITT Ly
=0

where the functions és_l,_l are defined as follows

((i) )(s+l)(m+1 Z (I)s+1a s+1)(s+1 ym+j—k»

and the pseudo-differential operator v 1 collects all the terms in OPS —M=1"that is

—— 77 —s—1
Vstl,m+1 ‘= Vst1,m+1 + Ps410; ° " Vsi1,m -

Hence, by the explicit definition of (<I>s+1)(s+1)(m+1)+j, Vs+1,m+1 given above, by (B.15)), (2.29) and

[@36), [2:27), [2-28) we have

1@ s0) sl SCE) (1 @ui)mara s ll57 + o+ 1@ 1557)

<CON@srallyy) s 5 =000y M = (m+1)(s+ 1)

ko,
Vs4+1,m+1 _01\2_17[,70 Sc(pv )H(PS-Fl”erm (s+1)+2M—4s—4 "
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So the Lemma is proved. O

Thanks to this Lemma we can prove that, if an operator admits the asymptotic expansion in homo-
geneous components up to order —M, then, under some suitable assumption, by the Neumann series also

the inverse operator admits the asymptotic expansion up to the same order.

Lemma B.3. Let T}, = 1+ ®,0; %, with ®; as in (B.3) fork =1,..M +3. Let ®, satisfies [2.31) (with
a=0). Then Tk_1 can be expanded as follows

M—2k
T, ' =1+ ®,0, "% + Z C(5)(Pr) 26057 2F + vy,
§=0
for some suitable functions dy and constants C(j). The operator v, € OPS™™~1. Moreover we have

that

A ko, ko, k
1(@r)j42 157 < CONPRIST s 1val™57 -1 0 < C0 MNPty kg 20s -k - (B.16)

where n = [M] > 2.
Proof. By the Neumann series and Lemma [B.I] we have
Tt =1+ (-1)%(®0,%)°
5>1

=1+ 0,0, + (20, 7)2 + ... + (2RO + 7

M—2k

) B.17
=1+ <I>k8;k + Z C// CI)]C +2k8 Tt |+ ( )

M —kn
+ Z C/ (I)k j+nk8 =3 +Vgn+r1,

where n = [%] , C'(j3),C"(j) are some constants, vy s for 6 = 1,..., M — 2k is the pseudo-differential
operator in OPS~™™~1 given in Lemma and r is the remainder of the convergent series. Then, we

redefine the homogeneous terms as follows

M—2k M—kn M—2k
Z C" () (k) jok0; 2T 4o Y CT (k) a0y T = D O ar0;, 7
j=0 j=0

We define the new pseudo-differential operator of order —M —1 as the sum of the other pseudo-differential
operators, that is

Vg2t . +Vgn + 7= V.
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By Lemma and ([2.27) the remainder r can be estimate by induction. Let s = M — 2k, then

—k\s ko, ko,
(@0 ) 5 0y 0 =1 (002 @ (@10 ) 0.0
—kys(kos kKo,
SQC(}J(), kO)'(cI)k?aw k>s|0?pz70|(bkaa: k‘fok’,);ag,o
s —kko,y st
<C(posko)* (12405 16%70)
1

< Sl
2s
1

< —,

A

Moreover by (2.27) and (2.29) we also have
—kys+1k —ky ko,
[(@0;%) R0 (@055 0 (@40 ) 1)

—kysiko, —k ko, —k\s|ko, —
< C0) (@05 ") 05701 ®x0 1250 0 + C(00) (@5 ) (6550 0l P10,

< (s + 1)C(p, ko) (C(po, ko) [Bl1507) 1 @]15

Then (recall that s = M — 2k) by (B.19) and (2.31)

T w2 lma

s>0 s>0

< <Z<s+ 1) (Clpo ko) |24 57) >c<p, Fo) [ 150

>0

< C'(p, ko) || @ik

(B.18)

k|k07’Y

—k,p,0

(B.19)

(B.20)

Therefore we can decompose the inverse operator as the sum of a homogeneous terms plus a bounded

regularizing remainder. The estimates (B.16|) follow by Lemma

O

Now we want to prove that the composition of two operator that can be written as the sum of

homogeneous terms plus a bounded regularizing remainder has the same structure. Note that given two

operator B = 311 B0 " +vp and A = Y30 Ag0; w4 such that |A[7 )[BT

then the composition operator it is given by

M M
BoA= | B;o;"+vs <2Ak8;k+1/,4>

7=0 k=0
M M

= ZBja;k-i-l/B o (ZAJ)‘J“) +vaB
7=0 k=0

where

S

VAB = EBJ@;’“ ova+rvgovy.
—

pot+x(M)+o —

<1
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Then, by (2.27) we have immediately that v4p is a pseudo-differential operator in OPS~~! and

M M
ko, . ko, ko, . ko,
‘VAB|—OJ\}—1,p,0 < Z O(p7])”Bj”p0 7|’/A|—Oj\;—1,po+j,o + Z C(FO?])|VA|—OA;IY—1,p+j,O
j=0 j=0

ko, ko, ko, ko,
+ OBl 1 polval™i] 1 po0 T COROIVEIZH 1 py0lValZi 1 p0-

Therefore we now want to prove the following Lemma.

Lemma B.4. Let A0;™, m=0,...M and Ty, = 1+ ®,.0;%, k=1,..., M + 3 such that

HAH;:S’:X(MHU,S 1, where x(M) is a constant and o := o(7,N, ko). Then the following asymptotic
expansion holds
M—k
T, 'A0;™ = A9, ™ + C(s)Apys0, "+ 0a, (B.21)

o
for some suitable functions Ay, and constants C(s).The operator op € OPS—M~1,
Moreover we have

< ko, ko,
JAkeslfer < @) (IOl + IAIRT) . ks =m, -

ko, ko, ko,
|0A|_OJ\Z—1,p,0 < C(p, M) (||A||p3-gM—k—2m+1 + ||(I)k||p0+gnf1)k+2M74k) J
where n = [21] > 2 (see (B17)).

Proof. We shall write C(-) for the constants. The proof follows by Lemmas and indeed

M—2k—m
T A0, ™ = A0, + ®,0, A0+ Y C(j)D 0 A + 1 AD
j=0
M—k—m B
=AD"+ Y C8)Amirss0, "+ oa
s=0

where A, x5 is a suitable matrix whose entries are some suitable functions. After reordering the terms
of the series, using ([2.19)) one arrive to the expansion defined in the Lemma. The first estimate follows by
Lemma Now we prove the second inequality in (B.22)). Let v2 4 be the remainder of ®,0;*Ad; ™,

then, by ([2:28), [225) and ([2.20)
ko, ko,
|V2,A|701\/771,p,0 < C(p, M)”Allpi;Mfkam :

Let v; o be the remainder of (i>j+2k8;j’2’“A8;m, for j =0,...,.M — 2k —m, then by (2.28]), (2.25)) and
[2.26)

ko, ko, ko, .
Vi alZi 1 p0 < CO M)A 4ok —2m < O M)A S —ah—3m > Y3 =0,., M =2k —m.

Using (2.27) , (2.25) and (2.26]) we can estimate v, A0, ™ as follows:

—m ko, ko, ko,
|VkA8;L- m|_0]\/7_1_m,p,0 S C(pa M) (||¢)kaO+E/n—l)k+2M—4k + HAHpO-‘,-X/[J,-l) .
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Finally we define oa := vp o +vj A + 1A, ™. Then, by (2.27)) and (2.29), the following estimate follows
ko, ko, ko, ko, ko,
\0A|—0ﬁ—1,p,o <C(p,M) <||A||pigM7k72m + ”A”pingélkam + ||(I)k||p3—?n—1)k+2M—4k + ”A”I)?FX/I-"J)
ko, ko,
<O M) (A2 mzmn + 16 s zar—ae) -

This complete the proof of the Lemma. O

Lemma B.5. Let R = ﬁiOAka;k + X, and Ts = (1 + ®:,0,°), s = 0,...,M + 3, such that
k M4os < 1, where x is a constant and o = o(7, N, ko). en the following asymptotic
Apllpotx(d)4+0, < 1, wh M) i tant and N,k Then the followi toti

expansion holds

M
RT, =Y C(k)Aw0; "+ 3,
k=0
for some suitable functions Ay and constants C(k). The operator ¥, € OPS~M~1,

Moreover

Ak k ko, ko, ko, ko,
1Akl < C) (Al +101557) 125010 < O M) (1281571 + 196153 T0rn ) -

Proof. By Lemma we have

M M—s—m M—s—k
RT, ==Y A"+ > Ay ( > Cm)(opd)o 4+ ak> + 2gT,
k=0 k=0 m=0
M M—s—m
= Z Aoy + Z C(k) Ak 150,57 % + 0y, 4 + ZRT,
k=0 k=0

where the functions As+k are defined as follows

A=) C(5olo.
=0

Then the estimate on the coefficient follows immediately, for the estimate on ¥ we have to use (2.28)

(2.27)), (2.25) and ([2.26).
ko, ) ko,
okl o < Co M) (AL + 1901530 0 )

< O, M) (AN + 1003930 o,) Wk =0, M =5 —m.

ko, ko, ko,
SR 1 o < C0 M) (ISR 1o + 1961523001 )

Then the Lemma is proved. O

B.2 The remainder R,

We can apply the general tools proved in Section to the operators defined in Chapter [7] and [§ In
this Section we prove that the operator R in admits an asymptotic expansion and the estimates
given in Lemma 8.2

As before we shall write C(-) for the constants. Moreover we shall assume that ||v||p,+y ()40 < 1,

for some constant x (M) and for o := o(1, N, ko).
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Lemma B.6. Let Ry defined in (8.7), Ung in (8.10), WO, in , Pin (8.13) and Ty in (8.2).

Then we have an asymptotic expansion of the form

M 1) (2
- F(x,0) F;7(x,0 ) z,0,D xz,0,D
Ri+ U+ Wo, ' +P =) p j(:a)( ) J(4)( ) 97+ ot ) : (B.23)
=0 \F}7(z,0) F;7(z,0) Bs(x,0,D) By4(x,0,D)
where 8% denotes one of the operators belonging to {amy +bl, a,be {0,1}}. F,om =1,..,4 and
j=1,...,M are some suitable functions and By € OPS™™~! for k =1,...,4.

Moreover for all j =0,...., M and for all k =1, ...,4 we have

(R e [ s (B.24)
|Bk|]iof\2—1,p,0 <p.M ||V||I;$;M+6+a (B.25)
10:F ) iy <puo 1illpsts45-0 (B.26)

10381 ()| ~nt.p1.0 <pyont lillpy+201 4640 - (B.27)

Proof. Now we prove that we can decompose Ry +Umg+ W, +P as in (B.23). First of all we consider
the remainder R; defined in . It is clear that it can be written as

R; = Vomo+ V19,1 + RTy, Vo=CWa, + 2B (@), (B.25)
B.28
Vi = (w-9®) + CH(d1), + BY(®),, .

Therefore we have the following estimate (recall that, by (8.2) and (8.15), we have || @[k < ||vH’;°+I’)

ko,

IVollz> <p lIvllp%3 (B.29)
ko,

IVl <p [1¥Ilp%340 (B.30)

The linear operator £ in (6.10]) can be written in homogeneous component plus a regularizing remainder

(see (7.9) in Chapter [7). The remainder R can be written as in (7.22)), therefore

M (1) (
RT, = 4 AZ#) (z,0) AZ4> (z,0) o + p(oi(z,0,£)) Op(oa(z,0 T

7=0 Aj (1’,0) Aj (1(,',9) Op 03(‘T797§)) Op(04(1',9, )

M4 @)
+uy Afg)(x’ ) Aa)(w’ % 957 0 3107 (B.31)

j=0 A] (.’E,G) A] ({E79)

M M

t= > pAO + ST+ pA0 0 810,
§=0 §=0

Sfol

where A; is the matrix that represents the j-th coefficient, and ¥ is in OP and represents the

matrix whose entries are 0;,7 = 1,...,4. Note that we can estimate the first term as in (7.23). We now
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consider only the third term, that is

M-1 ' M—-1-k M—j—1
Z Aja;Jo(bla;l — Z A]( C( )(8kq)1)8;k j 1_’_1/~ )
j=0 §=0 k=0
M-1 } M
=) C(5)Ac10,° 7 + ) Ay (B.32)
s=0 j=0
M-1 )
= C(s)As410, " +vi
s=0
where
M M (1) (2)
A 0) A 0
VA = ZAan = Z ?3>(x’ ! Z4)(x, ) VA,
j=0 j=0 A]» (93,9) Aj (1,9)
and
- AQ (2,0) AD),(,0)
Astr= | ) (@)
AZ) (x,0) AL (2,0)
with
M-1 1) i(2) M—-1—k M—j-1 (2) (1) (1)
Z Al (x,0) A7 (x,0) -1 — 4 Z J 6B A; ak A; ok I
5=0 Aﬁ)l(%@) Aﬁﬂxﬁ) j=0 k=0 A§4)8k ASS ok (1)
Note that

M—-1M-j—-1

pY Y ClhkAY kY = ZA with AL, =g ZC’ o Fel)).  (B33)
j=0 k=0

Then, using (2.36), (2.28) , (2.25) and (2.26) and (7.23), by the explicit definition of A, given in (B.33)),

we obtain that

- ko,
VAt S o157 50 V= 0,0 M =1 (B.34)
~ ko, ko, .
|VAS 701\;/71,;3,0 <p.M ||‘I)1Hp3r;+2M72j72, J=0,..,M -1
ko, .
SZ’,]V[ ||(I)1Hp?k’2yM7j727 J= 07 7M -1
<p,M /L||V||p+2M 140
ko, ko, ko, k A 1. ko,
val™ir —1.p,0 Sp.M Z <N|A |0?p7 |VA %% 1 po,0 TH o A, 701\;1/71,19,0) (B.35)
<p,M M||V||p+2M 140 ° (B.36)
By (B28), (B.31) and (B.32) we can rewrite R; as
. iu Vi@ o) Vw0 4 [OP01(@8.9) Oplra(a,6,€)
1= .
= @ vV Op(vs(x,0,€))  Oplva(x,,)) B.37)
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where we define,
vy :=X1T1 +vg

(1) (2)
v (Y Yo

WO YO0

Yo :=Vgomg+ CAyp,

Y, =V, +CA, +C'uA,,

Y, :=uC'(s)A, + C(s)A,, for s=2,...M.

By (2.28)), (7.13), (B.36f) , (2.25)) and (2.26)) we have i =1, ...,4

ko, : 1 ko, ko,
|V74‘ 0]\’4Y 1,p,0 = |J’L| ! 1pO+IU’|J’LO(I) a | OI\;IY pO+M|VA| O’Y 1,p,0

) ko,
<port 10336 + 1Vl a1+ VIS 30140

ko,
<p.M HV||p?|-gM+6+g- (B.38)
Moreover, by (|7.12]) and (B.34)) we have that, for evey j =0, ..., M
Y5150 <pg 1155 4540 (B.39)

p+j+5+o

We have to study the commutator , we start by P defined in (8.13)). Let ¢ = 2,3, then

a:<2_cka;’“>°% 0"+ Op(r(€)) 0 (V0" + {0, 0 Op(r(€))

k=1

(B.40)
M—1
Jr%l)a (Z Ck6zk> .
k=1
We study the first term
M—1 M—-1-8 M—k—1
(Z cka;k> ooty = Y a| Y @ear P 4 oM D)
k=1 k=1 B=0 (B.41)
M—2
= Cs zs+26_2 ° z‘(k)(gﬂwa)
s=0

where i = 2,3 and <pl S+2 = > o CkOk l(-l), with ¢; € R. We recall that ¢, are the real constants
generated by the asympotic expansion of A (see (7.3))) . Using (2.28)), , (2.25) and (2.26) for i = 2,3 and

by (8.15]), we have

|J§k)|k07"/

(1) ko, ko,
Koo <por 0871502 el

p+2M—k—2 <p.M ||V||p+2M—k—1

and

(1)||ko,’v s =0,

~(1
[ LS PPl M-2. (B.42)

ceey

Hence for all £ =0,...., M —1,i = 2,3 we have

k ko, (1) ko, ko,
oM (6,2, 0)57 o <por 1015030 <ponr 19115 T0r s - (B.43)
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Note that the last term in (B.40]) can be written as cpl(l) ZQ/[:BQ k4207572 hence we do not lose derivatives
on the coefficients. The other two terms in (B.40]) are in OPS~~1! then, by (2.28) , (2.25) and (2.26)),

we can estimate they

(1) 5—1 ko, ko, ;
|OP(7’(§)) oMo L ko —2,p,0 Sp.M w lled! ||p0+;\/4+1 Sp,M HV||p0+X4+2 (B.A4)
1) a— ko, , ko, .

070, 0 Op(r(EDI™i 2 0 <pr Il 1577 <par 19I55 -
We now consider U, and W defined in (8.10) and (8.11]). By the explicit definition we have that U,
and W satisfy

ko, , ko,
IO <p pllvllpyd s WG <p pllvlped- (B.45)
In addition, using (B.41)) we can define

E:=Wo, !+ Uny +P

B iﬂ 0 XP@o)) i 0 Op(in(x,,€))
= \XP@o o : Op(i5(x,0,€)) 0 (B.46)
M
:Z X;0, I+ vy,
j=0
where
XO = UO, 82 =T
Xl =W
~(1 ~ 1
X, 0 ci(B5); + & (e, Vi M1
= ) , =2,..
—Cj (‘Pz(), ))J - Cj(@gl))j 0

Op(55) = o + Op(r(€)) 0 N0, + VD 0 Op(r(€)), i=2,3
then, by , for i = 2,3 we have

1X§7 ko <, loliBog,  (1xL”

k ko,
g T < vl

”p p+4
and for j = 2,...M by (B.42) we have

i ko, ko,
(B Rl T R A DALY

p+j—1> M—1,p,0 <p.M HV||p+2M+1 (B.47)
Finally by (B.37) and (B.46|) we define

P Mo FM(@,0) FP(x,0) 9 Op(Bi(x,0,€))  Op(Ba(x,6,£))
1+ ZM (3) @ )
j=0 ( H) Fg (‘T79) Op<53(x79a5)) Op(ﬁ4(x,9,§))

M
::ZMFJO;J +us,
j=0

0 ,0, 0] ,0,
where F; = Y; +X; forall j =0,...,.M, and f = vy +vx = P(br(@,6,)) p(Ba(2,9,5)) €

Op(/83(x797§)) Op(ﬁ4(x70a§))
OPS—M-1_By ([B47), (B45), (B.47), (B-39) we can prove (B.24).
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In order to prove (B.25) we have to use (B.44), (B.43) (B.47) and (B.38). The estimates (B.26]) and
(B.27) follows by the definition of F; and 8 in (B.48)) (recall also the estimates (7.25)) ). O

Thanks to Lemma we can write the inverse of the operator T as follows

Lemma B.7. The inverse of the operator Ty defined in (8.2) admits the following asymptotic expansion

M—2
T =1+210;" + ) Ck)($1)rs20, "2 + 0, (B.49)
k=0
where

~ 1 ~ 2 1 2
= B (‘I)l)l(ciz (¢1)§€J22 _ n' n?
(@1)kt2=| . (3) =\ (4) =L e @
((I)l)k+2 ((I)l)k+2 vy V1

are some suitable matrices and pseudo-differential operators in OPS~M~1,

Moreover, for k =0,..,M — 2 and for alli =1,...,4 we have the following estimates

- ko,
(@2l <pe pllvIlp5 7140 (B.50)
ko, ko,
‘V1|7O]\]71,p,0 <p.M /‘L”va?l»ng(S«I»o" (B.51)
Proof. By Lemma [B.3|and the explicit definition of ®; in (8.2) and (8.15)) the Lemma follows. O

Lemma B.8. Let Ty in (8.2)), and consider its decomposition defined in (B.49)). Let E be the operator
defined in (B-46) and Ry defined in ([B.37)), so that E+Ry can be written as in (B.48)). Then the following

asymptotic expansion holds

M o (2
T{ (E+R1) :Z,LL HJ(S) 1’,9) H](4)(£E,9) 3;]+u (51($,0,D) 52(1'707D)
=0 \H;"(x,0) H;"(x,0) d5(x,0,D) 64(x,6,D) B.59
N (B.52)
= quﬁw_j + ud,
j=0

for some suitable functions H; and § € OPS~M~1,
Moreover for s=1,....4 andVj=0,....M

s ko,
Ik <, 5 [v15%T 540 (B.53)
ko, ko,
1011 2% 1 po <ot V15330 640 (B.54)
10:H {1y <puj Willpn 4540 (B.55)
10365 (]| ~a1.p1,0 <pr.1 [[illpy+301+640 - (B.56)
Proof. By (B.49), (B.48) and Lemma [B.4] we can write
~ M-2 ~ M )
T E+Ry) = (1 + @10, + Y O(k)(D1)r420, "% + V1> pYy CUGF;0,7 | +pTi's
k=0 =0
M . M-—1 _ ) M—-2—5 M—-2—k )
=Y COHHIF;0;,7 + Y CHEF; 10,7+ > Y pC(i)Fryar;0, 5%
=0 =0 k=0  j=0

+ pojp 4 pT B,
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where ' '
J J
Fii =01 C)F; s, Frioy = (1)12 Y C(m)IyFr m
s=0 —
and o; F collects all the terms in OPS ~M=1 generated by the composition (see Theorem ).
We define § := o p + 17 '3 . By riorganizing the series above we arrive to (B.52). Hence, by Lemma

and (B.24) we have

ko,
I 507 1B rrs 1507 <pg pllvlpsy

p+j+5+0>
that, also by (B.24]) proved (B.53)). The estimate follows by (B.25) and Lemma[B.4 The estimates
(B.55) and (B.56)) follows by Lemma [B.6] O

Lemma B.9. Let T} be th operator in [8.2)) and let C?) the matriz of functions defined in (8.4)). Then

the following asymptotic expansion holds:

= EY Bs B

v(2) ~ ~
(Tl—l 2)31 Z F; a;jJruz A ﬂf

for some suitable functions and pseudo-differential operators in OPS~™=1. Moreover, for all j =0, ..., M

and s=1,...,4

1B 50 <p i 191155 4140 (B.57)
1Bol 71 o <ot 191500 g (B.58)
10:E il <pg lillpsi140 (B.59)

103 Bs[i]l - a1,p,0 <poar lillpr2nr—24o - (B.60)

Proof. By Lemma [B.7] we have

M—1
(T = 1)CP0; = 9,0,'CPo, + Y C(j)d;420,72CP o771+ 1 §
7=0

M ) M-—1 ~ ) -
=Y CF*+ > C(j)Fj410,77'3
k=0 =0

where

k
Fk = @18§C(2) , Fj.;,.l = (i)j+2 ZO(S)@;C(Z) 5
s=0

and A collects all the terms in OPS—M~1 generated by the composition (see Theorem ). Therefore
we can define

F():Fo, Fk:Fk+Fk_1, vk > 0.

The estimate follows by (2.27)), (2.28) and (8.4) O
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In conclusion, by Lemmas and we can expand the remainder R; in (8.17)) as follows

M A(l) A(Q)

5 )

o k k -k Ri,1 Ri1,2

Ri=n), 4B 4@ "+
k=0 k k

(B.61)
YR,3 2R, 4

where 09 that denotes one of the operator belonging to {amy + b1, a,b € {0,1}},

1 2 =(1)  m(2 1 2
A A®\ (ED E®\  (H® m®\
A® 4@ Tl e pe ® 0 M
k k AR H.™ H
and
YRl XRi2 - ﬂ~1 5~2 N 01(x,0,D) 63(x,0,D) cOpPS-M-1
YRi,3 XR; 4 Bz Ba d3(x,0,D) 64(x,0,D)

Moreover the estimates in Lemma [R2] holds.

B.3 The remainder R,

We now want to prove the expansion and the estimates given in Lemma [84] for the remainder R.

For all the section we shall assume that ||v/"" < 1, where x(M) € R is a constant and

potx(M)+o —
o:=o(1,N, ko).

Lemma B.10. Let T, * be the inverse of the operator Ty defined in (8.20). Let R, in (8.25) and Py in
(18.28) (see also (8.29)) and (8.31) ). Then the following asymptotic expansion holds:
1 2
Moo (e HP — 61(2,0,D) 5(x,0,D)
= \&” =Y 63(2,6,D) 64(x,6,D)

for some suitable functions and pseudo-differential operators in OPS~™=1. Moreover, for all s =1,...,4

and for all k=1,... M

L5 <ok 1350 s b= 0, M (B.62)
161537 1 p0 <ptt VI3 Tnrs6s0 (B.63)
10:H {1y <puk [illpr42rssba s k=0, M (B.64)
10:01) |~ Mpr.0 <puot 1illps 40160 - (B.65)

Proof. The proof is similar to the one in the previous Section and it is omitted. It follows by Lemmas

[B.3] and [B.4 O

Lemma B.11. Let Ty in ([8.20), and C®) in ([8.22). Then the following asymptotic expansion holds

M50 A2 5z M

_ TR _j B B2 s

(T =1)CPo, =Y | 0 S |07 et L =t Y F0 s,
=0\ Fj B3 Ba =0
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for some suitable functions and pseudo-differential operators in OPS~™™=1. Moreover, for s = 1,...,4

and for j =0,.... M

) 11k ko,
IF o <, 115

> ko, ko,

‘6|—01\;[Y—1,p,0 Sp,]\/[ ||V||p3-7\4+1+0
~ ko,

N0 F [y <pog IEINED 0o

= 21ko,
|0; Bl3]| - —1,p1,0 Sp,m ||Z||p(1)J’rYM+1+o"

Proof. The proof follows by Lemma and by the explicit definition of C®) and ®3 given in (8.22) and
®31) . O

In conclusion by Lemmas and the remainder Ry in (8.33)) as the following asymptotic

expansion
M 0y(1) 0Y(2)
A A by x
Ry = MZ (4%) (43) ) ok 1 Ra,l  2Ry2 (B.66)
im0 \(AD)® (A9 W YRy3 2R,
where 99 that denotes one of the operator belonging to {amy + b1, a,b € {0,1}} and
0 0)(2 P 4(2) (1) (2)
(AD® (A9 (FF L A =0 M
(AQ)(?’) (AQ)(4) 1:—,(3) F(4) H(B) H(4) ’ g ey
J J ~J ) J j j (B.67)
Yrot YRp2\ [P B2 N 01(z,0,D) 62(x,0,D)
YRs3 XRya Bs Ba 03(x,0,D) 64(x,0,D)

Moreover the estimates in Lemma [R.4] holds.

B.4 Smoothing remainders along the block symmetrization

We now want to study the loss of derivatives that we have on the coefficients obtained in Section [8:2.2]
during the block symmetrization. In order to give an explicit estimate of the coefficients we want to iterate
Lemmas and The coefficients of the remainder at the n—th step (of the block symmetrization),
depend on the coefficients of the (n — 1)-th step. Hence for convenience we provide different numeration
of the coefficients, e.g. we define A% the matrix coefficient of the homogeneous terms 9, % at the “step
07, for k=0, ..., M (see also Rs in or above).

By Section we have that every time that we are considering the remainder, we are allowed to
write it as the sum of homogeneous terms plus a pseudo-differential operator in OPS~~1. In addition,

92 shell denote one of the operators belonging to {am + b1 ,a,b € {0,1}}.

ko,y

poix(M)+o < 1 where X(M) € R is a constant and o := o (1, N, k).

We assume that ||v||
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We start with Lo defined in (8.21)), where the remainder Ry is written as in Lemma (8.4). Therefore

the operator Lo is given by,

M
Ly =909+ T(D)+CP, + Y A%9,7 + g, (B.68)

§=0
We consider the first transformation given in Lemma that is T3 = 1 + ®30,3. By Lemmas
and B:4] the conjugation of L5 with T3 can be written as an homogeneous part plus a remainder in

ops—M-t,

A1) 4@)
Moreover for every matrix A = we define
ABG) A
AM 0
(A) =
0 A®
Lemma B.12. Let L5 and T3 as above, with
2v/2 : 2v/2
o = 22 q@ ol = Dz
15 15
Then
M—1
Ly = T5  LoTs = Q- 0p + T(D) + CP0, + u(ADP + 10 > AW 97771 4 g, (B.69)
j=0
Moreover
ko, s ko,
1@3]15°7 <p el AQNEY <p ullvilpide,  ICASPIE <p llvlpSdss (B.70)
ko, R R ko,
1AL <p 1A <p lvlpees s NAZIE"Y <p 1AZI"Y <p IVI5040
||aiA%m”p1 <p ||g”p1+6+07 ||aiA%m||p1 <p ||%||p1+9+0 (B~71)
ko, A .
IAGI5 <pg IVIp3 350500y NOAT[Ellpy <pu IVlpitajiste G=3,s M (B.72)
k 3 k y 2 ~
03|25 —1p0 Sp VS50 s640>  10i08[ill-n1p1.0 <pios [illpi+5ars640 - (B.73)

Proof. The estimates (B.70]) follow immediately by (8.36]), with & = 0. Moreover, by the explicit definition
of the remainder Ry, in (8.46) (that is the collection of all the homogeneous terms and symbols of order
higher then —k), with k£ = 0, and by (8.44]) we have that

Al =AY+ c1(P3),, A =AY+ c2(P3) 0,  c1,c2 €R. (B.74)

Therefore the estimate (B.71]) follows by (8.36]) and (B.74)).

Note that A} , j =3,...,M are linear combination of the derivatives of C®), A?, j=0,...M, (see
(8.46))), hence, iterating (8.19) and (8.36) we can prove the estimate (B.72]) and (B.73). O
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We now argue inductively. Suppose that after k& transformations we have

Lito = k+2£k+1Tk+2

=095 + T(D) + CP0, + (A" + u(ADP; " + n(A3)P0;?

(B.75)
o+ (AP Z M0 4 SRy,
In addition suppose that the following estimates hold:
ko, 4 4
AP <ps 1132 ys10s  NOADP Ly Spiss lillpis2ts40, 0Ss<k—1
kk k—1k ko, Kt ~
IARIEY <pr 1AL <p VIS e snio s NOARE oy <pik lillpy k24540
ko, 2 4 -
||A§||k0”y =p,j ||V||p3_’yk'+1)j+5+g’ HaiA?[l]”pl Spuj ||7'||p1+(7€+1)j+5+0 y J = k + 1,..M
ko, ko, . .
|ZRH2‘ - —1,p,0 <p.M HV||p0+(k+1)M+3M+6+ga |aiERk+z [Z]|_M7P170 <p1,M ||’Hp1+(k+1)M+3M+6+a-
(B.76)
Now we want to prove that the same estimate holds for Li3.
Lemma B.13. Let Ly.2 in (B.75), and Ty3 = 1 + ®4130; %73, as in (8.37) with
30(2) _ 2\/> —Q(Ak) 90(3) 2\[ —2(A/€)(3)
k+3 \/ﬁ ’ k+3 — \/*
Then
Liys =Ty Lrr2Trro
=099+ T(D) + C0, + (A" + (AP0 + u(A3)0, + ... + u(AF ") o (B.77)
M—k—1
+/”'(A£)Dam_k tu Z Afi]i+18_k =t + ,U/ERkJrs
§=0
Moreover the following estimates hold
k ko,
1Pk+sllp” <p mllvILS ey 50
k+1k k ko,
JASEHE < IAE 15 <ok IV155 01y apo
k
||3 Aki%[ ]le =p1,k H Hp1+(k+1)k+4+0
ko,
P M L P (B.78)

HalAk[Z]Hm Sp1.j Hinl‘f’(k+2)j+4+0’ v J=k+2,.M

/COKY

X Riys D190 St HV”p+(k+2)M+3M+4+a ,

|8iZRk+3 [i]lfM,Pl,U S191,1\4 ||7;||p1+(k+2)M+3M+4+0 .

Proof. The Lemma follows by Lemmas and by (B.76). O
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