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1
I N T R O D U C T I O N

1.1 the cosmic microwave background radiation

Since last decades, we have been able to estimate the age of the Universe, in-
vestigate its evolution in time depending on energy and matter contents and
observe its first emitted light: the Cosmic Microwave Background (CMB).
Since the discovery of the CMB (Penzias and Wilson, 1965), the efforts of
several generations of space, ground and balloon telescopes allowed us
to directly measure the tiny temperature CMB anisotropies arose from a
tight interplay of gravitational and quantum physics. For the latest mea-
surements see Planck Collaboration et al. (2014).

General relativity equations suggest that Universe started to expand and
cooling from a hot and high density state, the Big Bang. Three observational
evidences support the Big Bang theory: (i) the galaxy recessional velocity
measurements, (ii) the primordial abundances of the light elements (D, 4He,
3He, 7Li), computed from mathematical models as ratios to the amount of
hydrogen, in agreement with the abundances measured in galactic surveys,
(iii) the observation of a nearly isotropic radiation the CMB.

According to the theory of the Big Bang, in the hot, dense conditions
of the early Universe, photons were tightly coupled to matter via Compton
scattering. When the Universe was about 380.000 years old, the temperature
dropped below 3000 K allowing atomic hydrogen to recombine and releas-
ing the photons. These photons, then, travelled freely through the Universe
as it expanded and cooled. The cosmological relic of them is in the CMB,
this is why the CMB is the light emitted at the time of recombination from
the Last Scattering Surface (LSS).
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2 introduction

The CMB is a radiation from every direction in the sky. The form of its
spectrum is perfectly described by a blackbody spectrum with temperature of
2.725 K. In (Figure 1.1) one sees the consistency of the Cosmic Background
Explorer (COBE,Fixsen et al. (1996)) data with a blackbody spectrum, error
bars are emphasized by a factor of 500.

When it was discovered in the 1965, the CMB was found to be remark-
ably uniform across the sky. However, in 1992 that the COBE satellite dis-
covered temperature variations at the level of 1 part in 100.000 (Smoot et al.,
1992). Temperature maps of the CMB form a snapshot image of the tiny
density fluctuations in the primeval Universe. These density fluctuations
are thought to grow by gravitational attraction into the familiar structures
we see today (stars, galaxies, and clusters of galaxies) according to the grav-
itational instability model of structure formation.

Figure 1: Comparison of the intensity of radiation observed with the FIRAS ra-
diometer carried by COBE with a blackbody spectrum with tempera-
ture 2.725K. The 1σ experimental uncertainty in intensity is indicated by
the tiny vertical bars; the uncertainty in wavelength is negligible (Fixsen
et al., 1996).

The CMB is linearly polarized and presents anisotropies 10 times fainter
than the temperature ones. In the polarization anisotropies, cosmologists
are looking for the imprints of a stochastic background of Gravitational
Waves produced when the Universe experienced an exponential expansion,
the so-called inflation. These primordial gravitational waves are hidden in
the B-modes CMB polarization maps and they have not detected yet be-
cause of the diffused polarized emission from our Galaxy at the microwave
frequencies, known as Galactic foregrounds, and several technological chal-
lenges to get higher sensitivity in polarization detectors at the sub-millimeter
wavelength regime. However, lots of efforts have been made by several cos-
mology groups in order to measure the B-mode: this discovery represents
an ultimate way to probe the Universe at the ultra-high energy regimes
(∼ 1016 GeV).
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Figure 2: The CMB map observed by Planck (Planck Collaboration et al., 2014).

In this work I mainly focused on implementing a fast pipeline to produce
the CMB maps from data sets obtained from a typical CMB ground based
telescope: Polarbear (The Polarbear Collaboration: P. A. R. Ade et al., 2014). I
have been part of this collaboration since 2014 and the procedure described
in this work has been proposed as one of the two pipelines for the next
Polarbear observational seasons.

1.2 cmb map-making

The map-making procedure of CMB radiation starts from a sequence of time
ordered data (aka TOD) composed by ∼ 107 ÷ 109 noisy samples, repre-
senting the observation measurements in the time domain by hundreds (or
thousands) detectors in the focal plane.

Let us consider a collection of measurements of the TOD stream, dt (en-
coding Nt total measurements) performed during a certain lapse of time by
one detector of a CMB telescope. As one may expect the measurement can
be easily modelled as the sum of an astrophysical signal st coming from the
line of sight plus the instrumental noise of the detector itself nt. Further-
more, a certain pixel of the sky will have been observed as many times as
the telescope scanning direction intercepts that pixel. This is fully encoded
into the pointing matrix Ptp, (Nt ×Np, which is a sparse and tall matrix).
Thus, since our goal is to get a map, xp ( with Np � Nt in the pixel domain,
Np ≈ 104 ÷ 105 1), the data model can be written as:

dt = st +nt = Ptpxp +nt. (1)

For a given telescope the structure of the pointing matrix can be quite com-
plex since it involves many characteristics of the instrument. In our case

1 Depending on the chosen pixelization grid.
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it can be sparse or block-sparse depending whether the measurements are
sensitive or not to the polarization. In fact, for total intensity measurement
obtained from a single dish experiment, P has only one non-zero element
per row corresponding to the p-th pixel observed at time t and st = Ipt . In
the case of polarization measurements, Equation 1 becomes a combination
of the three Stokes parameters, I, Q, U:

st = Ipt +Qpt cos(2φt) +Upt sin(2φt) (2)

with φt being the orientation of the polariser with respect to the sky coor-
dinates at time t. Therefore, the pointing matrix has three non zero entries
per row and xp becomes an array containing three maps related to the three
Stokes parameters commonly related to linear polarization.

A General Least Squares (GLS) solution to the data model in Equation 1

is given by (in a more compact form):

x̂ =
(
PtMP

)−1
PtMd, (3)

with M being a positive definite weight matrix (Tegmark, 1997a). If M ≡
C−1
n than x̂ is a minimum variance estimator and a maximum likelihood

solution.
If one than collects all temporal templates, which have to be filtered out

from the data into a single template matrix, T , (whose each column corre-
spond to one template ) we can define a filtering operator. It de-projects the
temporal components of several templates from the data:

d ′ := (1 − T(T tT)−1T t)d (4)

Since we want not only to filter all modes (belonging to the subspace spanned
by T ) but also weight all the modes orthogonal to this subspace by a sym-
metric weight matrix, M, we can generalize Equation 4

2 as follows:

d ′ = (M−MT(T tMT)−1T tM)d ≡ FTd. (5)

With the help of the filtering operator we can now easily generalise the
map-making equation Equation 3 as :

x̂ =
(
PtFTP

)−1
PtFTd, (6)

By looking at the Equation 6 one may notice that in order to get the map
x̂ one should compute and invert a Np ×Np matrix resulting from the first
product PtFTP (usually dense and without some general symmetry). The
computation usually can be performed by explicitly factorising a huge ma-
trix (with a number of operations (flops) ∼ O(N3p)) (Tegmark, 1997b; Borrill,
1999; Stompor et al., 2002). Recently, Poletti et al. (2016) applied an explicit
inversion of the system matrix in a very similar context: small regions of
the sky (0.1%) observed by the Polarbear Telescope by means of distributed
data among several processes and exploiting Scalapack routines.

2 This generalization is unique if we require the operator being symmetric.
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This approach to the map-making problem is becoming more and more
unfeasible because of the increasing need by the several CMB collaborations
of observing larger regions of the sky.

An alternative to the explicit inversion approach is represented by itera-
tive methods (Wright, 1996; Oh et al., 1999; Doré et al., 2001). They involves
algorithms as the one we are considering in this work, namely the Conjugate
Gradient within the class of Krylov methods, (Golub and Van Loan, 1996).
They are aimed at iteratively solving the map-making equation by means
of large matrix-vector products. Usually, they do not even need to store
the whole system matrix in the memory and they circumvent the matrix
inversion issue.

So far, many CMB iterative solvers are based on a preconditioned conju-
gate gradient (PCG) method assuming white noise in the time domain data
(Wandelt and Hansen, 2003; Naess et al., 2014). The map-making problem
started to be a numerical challenge and it is getting more and more challeng-
ing as the sizes of the maps of current and forthcoming CMB experiments
will increase.

1.3 the preconditioned conjugate gradient

By looking at Equation 6, it is worth noticing that we can rewritten it as a
linear system:(

PtFTP
)
x = PtFTd,
⇓

Ax = b,
whereA = PtFTP, (7)

andb = PtFTd, (8)

with A symmetric and positive definite (SPD).
The key-point of the Conjugate Gradient (CG) method is that after a cer-

tain number of iteration steps the vector x(k) gets the true solution x of the
linear system without inverting the matrixA but by minimizing the residual
at k-th iteration step: r(k) =‖ b−Ax(k) ‖. Therefore, x(k) satisfies:

lim
k→∞ x(k) = x,

The iterative process is stopped when it is reached a fixed tolerance: ‖
x(k+1) − x(k) ‖< εtol. In Appendix A we describe the whole algorithm, here
we would like to emphasize the fact that the most frequent computational
operation in the CG is the matrix-vector multiplication. It is thus not neces-
sary to store the matrix A in the memory, but given the very known struc-
ture of the pointing and filtering matrix we implemented directly the matri-
ces P, FT as linear operators.
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Moreover, it is well known that the convergence rate of the CG depends
on the condition number κ of the matrix A. It can be shown that (Golub and
Van Loan, 1996) after k iterations of CG,

‖ x− x(k) ‖A6 2 ‖ x− x(0) ‖A
(√

κ− 1√
κ+ 1

)k
, (9)

where x(0) is an initial guess for the solution x and ‖ x ‖A is the norm of x
defined as ‖ x ‖A=

√
xTAx. The condition number, κ = κ(A), is given by the

ratio of the largest to the smallest eigenvalue of A.
The system matrices related to the map-making problem are commonly

bad conditioned, i.e. κ � 1 because of the degeneracies introduced by the
time-domain filtering, FT . It is then very useful to precondition the linear
system by a matrix MP such that MPA has a smaller condition number
(or a more clustered eigenspectrum) and thus achieves the CG convergence
within a smaller number of iterations. This algorithm is usually referred as
Preconditioned Conjugate Gradient (PCG) and is aimed at solving the follow-
ing linear system:

MPAx =MPb (10)

where MP is called preconditioner. For further details or a full description of
the algorithm please refer to Appendix A.

1.4 the jacobi preconditioner

One of the easiest and most intuitive preconditioners is the Jacobi Precondi-
tioner which in the fashion of the Equation 3 is defined as:

MP ≡MBD = (Ptdiag(C−1
n )P)−1. (11)

In particular, when no time domain filtering is introduced and the instru-
mental noise does not have extra-correlations (among detectors) but it is
fully described by its covariance matrix Cn, MBD is exactly A−1. Given the
sparsity structure of the pointing matrix P, described above, one could eas-
ily realize that MBD is block diagonal and the sizes of each block is equal
to the number of the Stokes parameters we are taking into account. This
is why, we will refer to it in the following sections as the standard or
block-diagonal preconditioner. This class of preconditioners has a further
desirable property that it could be parallelized pretty well, especially on
distributed memory computers.

The action of this preconditioner onto the eigenspectrum of the matrix
A is to shift the large eigenvalues nearly to the unity. However, this re-
flects on a reduction of the condition number as far as smaller (close to
zero) eigenvalues are not concerned. Unfortunately, in our case matrix A
has very small eigenvalues with a very low-energy content (being related to
the smallest eigenvalues). On the other hand, they have a very high content
in noise which hinders the convergence of PCG.
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1.5 deflation preconditioners

An alternative preconditioner may be found among the class of so called
Deflation preconditioners that have proven to be successful in presence of
few isolated extremal eigenvalues. They act as de-projectors from the so
called deflation subspace, Z. This subspace is generated by r linearly indepen-
dent eigenvectors that are related to the smallest eigenvalues and constitute
the columns of the deflation matrix Z. The projection onto the deflation
subspace may be defined as:

R = 1 −AZ(ZtAZ)−1Zt (12)

The deflation subspace, Z = span{Z}, has a dimension given by r =

rank(Z). Since r � Np it is very easy to invert the coarse operator E =

(ZtAZ), either via an LU factorization or an eigen-decomposition. As A
is SPD, so is E. The projector R is orthogonal to any vector w ∈ Z since
RAZ = 0.

On the other hand, being A SPD, one can build the orthogonal comple-
ment Y of Z, i.e. such that Y⊕ Z and ytz = 0 for any y ∈ Y and z ∈ Z. The
easiest choice for a basis of Y could be all the remaining larger eigenvectors
of A, Y, such that Y = span{Y}. For all of these Y, orthogonal to the deflation
subspace it holds that RAY = λRY = λY.

One can prove that if Z is invariant for A, then Y is so for RA. The demon-
stration comes by stating that for any invertible matrix B, AY = YB, hence
RAY = RYB = YB. Finally, when Z is invariant :

κeff(RA) =
λNp

(A)

λr(A)
. (13)

In other words, the deflation of an invariant subspace cancels the corre-
sponding small eigenvalues, and leaves untouched the remaining eigenval-
ues.

In the exact precision algebra, R would be a very efficient preconditioner,
as for each steps of an iterative CG-like solver would be orthogonal to the
null space of the RA. However, we deal in a finite precision arithmetic and
the zero eigenvalues are often as bothersome as the small ones due to the
numerical precision of the machine.

The solution to this issue comes by combining this deflation precondi-
tioner with another one. Due to such combination we refer it as the two-
level preconditioner. Following Szydlarski et al. (2014) we combined it to
the standard Jacobi preconditioner:

M2l =MBDR+ZE
−1Zt

=MBD(1 −AZ(ZtAZ)−1Zt) +ZE−1Zt. (14)

We note that this new preconditioner defined above fixes the issue by rescal-
ing all the null eigenvalues of RA to one:

M2lAZ = Z
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d=Ax+n

Map-Making

Polarbear 
scanning 
strategy

Figure 3: The pipeline followed in this work.

and since what we stated above, M2l acts onto a vector y ∈ Y ( the orthogo-
nal complement of Z) as the MBD does:

M2lAy =MBDAy.

In conclusion, if we define Z as the deflation subspace that includes all
small eigenvalues ofA, the two-level preconditioner will shift both the small
and large eigenvalues of A close to one. Therefore, what is very challeng-
ing in this context is to construct the basis Z ensuring that the smallest
eigenvalues (being the most troublesome eigenvalues in terms of the PCG
convergence) are included and building the deflation subspace numerically
efficient in order to have competitive and higher performances compared to
the standard preconditioner.

1.6 description of cosmomap2

We have implemented a Python package Cosmic Microwave linear Operators

for MAp making Preconditioners 2 levels (COSMOMAP2
3). This pack-

age is aimed at solving the map-making problem by means of the PCG
and its fundamental bricks are the matrices involved in Equation 6 and 10

all implemented as Linear Operators. We capitalize in developing a fast im-
plementation of the matrix-vector product especially for the time-domain
operators (such as P, FT ).

The other remarkable section of the code refers to the simulation pipeline
of input data processing. We simulated observations by exploiting the scan-
ning strategy and instrumental noise expectation from the Polarbear tele-
scope pipeline, as described in the cartoon in Figure 3. In this way we
have full control of the outputs of our code by comparing them with the
input map, which is a signal only CMB map. The documentation of COS-
MOMAP2 is available online at http://giuspugl.github.io/.

3 https://github.com/giuspugl/COSMOMAP2

http://giuspugl.github.io/
https://github.com/giuspugl/COSMOMAP2
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This work can be divided in two main parts: (i) in Chapter 2 we focused
in a comparison of performances involving two different preconditioners
introduced in Section 1.4 and Section 1.5 and (ii) in Chapter 3 we proposed
an optimal solution which further improves performances of the two-level
preconditioner.





2
T H E C O M PA R I S O N B E T W E E N J A C O B I A N D 2 - L E V E L
P R E C O N D I T I O N E R S

In this chapter we compare the performances of two different precondition-
ers: the Jacobi and the two-level ones applied on the same simulated dataset.
To be very close to the observation of the Polarbear telescope we simulated
signal observations by scanning the sky with the Polarbear strategy.

In this work we are more interested to apply, benchmark and test this new
class of preconditioner to the map-making problem of a CMB telescope as
Polarbear in presence of time-domain filtering. Indeed, although a realistic
dataset contains signal and noise into the data stream, the properties of the
whole sample are statistically equivalent with or without simulated noise
in the dataset.

As described in the end of previous chapter, the two-level preconditioner
relies on a deflation preconditioner, i.e. a de-projection of the deflation sub-
space Z generated by the eigenvectors related to the smallest eigenvalues of
our system matrix.

However, we do not have to compute the whole eigenspectrum of the
matrix (see Poletti et al. (2016)). We thus exploited the Krylov subspace pro-
jection (Golub and Van Loan, 1996) algorithms to compute approximations
of the smallest eigenvalues: the so-called Ritz eigenvalues.

2.1 the arnoldi algorithm

The Krylov subspace algorithms are based upon the structure of a sequence
of vectors naturally produced by the power method, one of those is the

11



12 the comparison between jacobi and 2-level preconditioners

Arnoldi algorithm, the key-method of the Generalized Minimal Residual
method (GMRES) (Golub and Van Loan, 1996).

An examination of the behaviour of the sequence of vectors produced by
the power method sequence suggests that the successive vectors may con-
tain considerable information along eigenvector directions corresponding
to eigenvalues other than the one with largest magnitude. The expansion
coefficients of the vectors in the sequence evolves in a very structured way.
Therefore, linear combinations of the these vectors might well be devised to
expose additional eigenvectors.

Our aim is to find an approximation to the eigenvalues of a matrix B
whose linear system is :

Bx = b (15)

and to obtain additional information through various linear combinations
of the power sequence. It is, then natural to formally consider the Krylov
subspace defined as

Km(B,b) = span{b,Bb,B2b, . . . ,Bm−1b} (16)

where b is the starting guess vector. Such a Krylov subspace therefore ap-
proximates the solution as:

xm = x0 +Pm−1(B)r0,

with Pm−1 polynomial of degree m − 1. The Arnoldi algorithm is a fast
algorithm which deliver an orthogonal basis of the Krylov subspace and is
summarized in Algorithm 1.

Algorithm 1 Basic Arnoldi Algorithm

Require: : r0, w1 = r0/ ‖ r0 ‖
1: for j = 1→ m do
2: for i = 1→ j do
3: hi,j = (Bwj,wi)
4: end for
5: vj = Bwj −

∑j
i=1 hi,jwi

6: hj+1,j =‖ vj ‖
7: wj+1 = vj/hj+1,j
8: end for

The output from the Arnoldi algorithm is an orthonormal basis W(m) =

(w1|w2| . . . |wm), together with a set of scalars hi,j (with i, j = 1, . . . ,m and
i 6 j+ 1) plus an extra-coefficient hm+1,m. The former set of coefficients are
the elements of an upper Hessenberg matrix Hmwith non-negative subdiag-
onal elements and is usually called as a m-step Arnoldi Factorization of B. If
B is hermitian then Hm is symmetric,real and tridiagonal and the columns
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of W(m) are referred as Lanczos vectors (otherwise they are called Arnoldi
vectors ). B and Hm are related via the following relation:

BW(m) =W(m)Hm + hm+1,mwm+1e
t
m, (17)

where em is a 1×m unit vector with 1 on the m-th component. In other
words,Hm is the projection of B in the subspace generated by the columns of
W(m) within a certain error threshold given by the matrix W̃m = hm+1,mwm+1e

t
m.

However, the purpose here is to investigate the use of this factorization to
obtain approximate eigenvalues and eigenvectors of B. Let us consider an
eigenpair of Hm, (λi,yi):

Hmyi = λiyi,

then the vector vi =W(m)yi satisfies:

‖ Bvi − λivi ‖=‖ (BW(m) −W(m)Hm)vi ‖=‖ W̃mvi ‖ . (18)

The eigenpairs of Hm are called Ritz eigenpairs and they are immediately
available since the size of Hm is ∼ O(100) for a typical CMB case (the error
threshold is set about 10−6). Hence the relation in Equation 18 may be used
to provide computable rigorous bounds on the accuracy of the eigenvalues
of Hm as approximations to eigenvalues of B.

2.2 building the deflation subspace

Given the definitions of the 2-level preconditioner made in Section 1.5, the
matrix to which apply the Arnoldi algorithm described above is MBDA,
hence we set B =MBDA.1.

The procedure calculates the set of Ritz eigenpairs ofMBDA, (λi, vi). How-
ever, we select from all the eigenpairs the first r smallest eigenvalues and
the eigenvectors related to them. This allows us to build an orthonormal
basis of the deflation subspace Z with the selected r eigenvectors ZD and
construct the two-level preconditioner with them.

We select all the eigenvalues λi satisfying:

λi
λmax

< 10−2.

Usually, the size of the deflation subspace is rank(ZD) ≈ O(10).
The Ritz eigenvectors ZDcan be shown as maps in the sky patch and they

have the peculiar feature to appear as long modes across the observational
patch along the direction of the degeneracy introduced by the filtering. In
Figure 4 are shown some of those Ritz eigenvectors. The first row of Figure 4

shows maps with horizontal or circular structures. They are introduced by
a filtering of the ground template. The other panels (second and third rows)

1 We defined the matrix A in Equation 7 and MBD in (11)
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Figure 4: Some of the deflation eigenvectors related to the selected small eigen-
values. They change depending on which kind of filtering is applied to
the data. First row are modes with a filtering of the ground template,
whereas the others are modes with polynomial filters.
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shown in Figure 4 are Ritz eigenvectors computed by applying to the whole
dataset different polynomial filters. We filtered from the data samples the
component parallel to Legendre polynomials (up to the 3rd order). This is
very useful to remove the atmospheric contamination especially for obser-
vation from the ground.

However, exact eigenvectors of such linear system have been studied in a
paper which I coauthored with Poletti et al. (2016). The ones related to the
smallest eigenvalues are shown in Figure 9 of Poletti et al. (2016) as nearly
degenerate modes and they are consistent with the approximated eigenvectors
computed via the Arnoldi algorithm.

2.3 comparing jacobi and 2-level preconditioners

To summarize what has been discussed in the previous sections Section 2.1
and 2.2, one could state that the Jacobi preconditioner does not help the
convergence of the CG algorithm since the condition number of the pre-
conditioned matrix remains very large (O(500)), because the eigenspectrum
of A is not so clustered. We remind that the number of CG iterations is
essentially proportional to it. We thus followed the solution proposed by
Szydlarski et al. (2014) and applied the two-level preconditioner to the Po-
larbear dataset, once we have run the Arnoldi algorithm to build a basis to
the Deflation subspace with the Ritz eigenvectors.

When M2l is applied to the system matrix A, we are allowed us to rep-
resent M2lA as a two block matrix. The first block is the one related to the
deflation subspace for which it holds :

M2lAz = z, ∀z ∈ Z

and the second one is identified by the vectors y ∈ Y orthogonal to Z where
it is possible to run the CG. In this space the matrix M2lA has a smaller
condition number O(10), see the considerations made at the end Section 1.5,
therefore, the CG gets the tolerance threshold with a small number of itera-
tions.

In order to compare the performances of both the Jacobi and the two-level
preconditioners we consider a common right hand side (RHS) vector b as it
has been defined in Equation 8 collecting 4 constant elevation scans (CES)
of Polarbear telescope (15 minutes each, Nt ∼ 108) and we filter our data
set with a 0-th order Legendre polynomial (the action of such a filter is to
remove the average value of the TOD within a sub-scan chunk of data). The
Arnoldi algorithm reached the error threshold 10−7 after 211 iterations. We
then selected 8 Ritz eigenvectors whose eigenvalues were smaller than 0.01:

λ̃i = [−2 · 10−15,−1 · 10−15,−1 · 10−16,

5 · 10−16, 1 · 10−15, 2 · 10−15, 5 · 10−4, 6 · 10−4]
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Figure 5: Residuals ‖ r(k) ‖ / ‖ b ‖ vs the CG iteration steps for the (solid red)
Jacobi and (solid green) two-level preconditioners. The top panel refers to
the run with only one Stokes Parameter (the intensity I one), the bottom
with both the Q,U linear polarization parameters.



2.3 comparing jacobi and 2-level preconditioners 17

Therefore, we run serially the CG with the two preconditioners and we stop
it as soon as we reach the convergence threshold:

‖ r(k) ‖
‖ b ‖

=
‖MPAx

(k) − b ‖
‖ b ‖

= 10−5.

Moreover, since we developed the COSMOMAP2 code to solve the map-
making problem for all the Stokes parameters, i.e. intensity + polarization,
in Figure 5 are shown results for both intensity (top) and polarization (bot-
tom) cases. The difference among the two cases is that the number of pixels
per map, i.e. Np ≈ 24, 000, doubles if one solves only for polarization maps,
i.e. the two Stokes parameters2. Figure 5 shows the residuals at each CG
iteration step for the Jacobi and two-level preconditioners respectively in
red and green.

It is remarkable to state that the performances for the two-level precon-
ditioner do not change if a larger number of pixels are involved. On the
contrary, looking at the performances of MBD the iteration steps are even
larger for intensity only maps than for the polarization case (91 vs 52). This
is due to the fact that the number of iteration steps is strictly related to the
condition number of the preconditioned matrix, whereas it does not depend
on the number of pixels. The plateau observed for the Jacobi convergence
performance is very well known by the Polarbear collaboration and already
observed by Szydlarski et al. (2014). It is due to the presence of the small
degenerate eigenvalues of the system matrix A for which the CG is not able
to converge. They constrain the convergence to hang up within a higher
threshold (10−4) and makes the residuals to fluctuate around it. Vice versa,
the two-level preconditioner gets the CG tolerance with a speed-up of 2÷ 3
iteration steps less compared to the Jacobi one as expected.

However, one may argue that the gain in execution time is negligible
since the total time took to run the Arnoldi algorithm and the PCG is larger
than the PCG using simply the Jacobi preconditioner. In fact, this is the
case: by timing these two runs, the PCG took ∼ 1÷ 2 minutes for both the
methodologies, whereas the Arnoldi algorithm took ∼ 30 minutes. This is
quite expected since the algorithm needs ∼ O(100) iterations and encodes
several matrix vector operations onto time domain vectors(Nt ∼ 108).

This would not be an issue if it could be possible to compute the deflation
subspace by considering only a single case containing enough structure
informations which may be shared among several RHSs. If we were able to
build such a deflation subspace, we could overcome this issue by running
only once the Arnoldi algorithm with the most representative basis of the
Deflation subspace.

Due to our strong interests in seeking the most representative deflation
subspace among several observations, we devote the next Chapter 3 to it.

Finally, by comparing Figure 6 and 7 one can notice that the residual maps
shown in the right panels are different. The difference maps in Figure 6, de-

2 Namely, the number of pixels in the output maps is equal to the number of Stokes param-
eters involved times the number of pixel per map
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Figure 6: From top to bottom Q,U maps computed with Jacobi preconditioner
(middle panel). They are compared to the input ones (left panel ) which
are used to simulate the Polarbear data, differences are shown in the
right panel

Figure 7: As in Figure 6, Q,U maps computed with the two-level preconditioner.
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fined as the difference between the input and the output maps, look very
similar to the Ritz eigenvector maps shown in Figure 4. The interpretation
to that is quite straightforward: the PCG with the block-diagonal precondi-
tioner converges more hardly because is not able to solve the component
of the solution parallel to the low modes, which as we have already com-
mented, is strictly related to the smallest eigenvalues. On the other hand, the
difference maps in Figure 7 have narrower ranges (around ±10−6), though
we can still infer some low mode trend in them, it represents a clear indi-
cation of the better quality of the run performed with two-level precondi-
tioner.

2.4 comparison on the full season dataset

The first season of Polarbear observations began in 2012 June and ended in
2013 June. Since the full dataset is divided in CES, there is not actual need
to communicate among the processor, the problem can be already solved in
parallel since the characteristic of the full set of data. Thus, each processor
solves the linear system in Equation 6 for one daily maps (in total there are
∼ 300 days of observations, usually encoding ∼ 20÷ 30 CES files per day,
each one containing the scanning strategy, the RHS, the sub-scans etc...).
The total number of samples is about Nt ≈ 109 and we solved the map-
making problem for maps of Np ≈ 24, 000 pixels each (as the one shown
in Figure 7). Moreover, given the cosmological importance of the CMB po-
larization signal, we focused mainly on the Q,U maps which essentially
doubles the number of pixels Np ≈ 48, 000.

The results shown hereafter refer to polarization only maps.
The deflation subspace has been computed by running once the Arnoldi

algorithm on one day of data. As described in the previous section, it re-
quired about 30 minutes to converge in serial execution (∼ 0.5 cpuh). We
found 6 Ritz eigenvectors with 10−6 as the Arnoldi tolerance, we therefore
applied the two-level preconditioner (built with this deflation basis) to the
whole dataset.

We set the PCG tolerance to 10−7 and ran the PCG with both the precon-
ditioners. Moreover, if the PCG does not get the tolerance within 150 steps
we stop it and flag the run as unconverged.

Since the whole dataset of Polarbear collaboration have been located in
the storage systems at NERSC (Berkeley, CAL), we performed our runs on
the Edison computational system3 across 100 processors.

All the executions for both preconditioners converged and each one re-
quired ∼ 600 cpuh. The statistics of the runs are summarized in Table 2 and
through the histograms in Figure 8. However, since the histograms do not
show a preferred symmetry, we computed also the median values (see Ta-
ble 1) for the execution times, iteration steps and residual norms. They are
consistent with the values listed in Table 2.

3 NERSC website.

http://www.nersc.gov/users/computational-systems/edison/
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One can easily realize that there is an improvement in terms of perfor-
mances: the average of PCG execution time and of the iteration steps for
the two-level preconditioner is a factor of 1.5 less than the Jacobi one.

This is an interesting result since it confirmed our expectations that the
degeneracies introduced by the smallest eigenvalues observed in one month
of data are roughly the same for the remaining data set (see Poletti et al.
(2016)). However, we ask ourselves whether it is possible to improve these
performances and compute a priori a better deflation subspace since there
are specifics in common among all the RHSs and similar degeneracies when
the same filters are applied.

PCG execution time [sec] Iteration steps ‖ rk ‖ / ‖ b ‖ (×10−8)

MBD 392.8 32 5.8

M2l 260.4 20 6.2

Table 1: Median values of PCG runs with the Jacobi and the two level precondi-
tioner.

PCG execution time [sec] Iteration steps ‖ rk ‖ / ‖ b ‖ (×10−8)

MBD 402.3± 113.2 32.3± 6.4 6.1± 2.2
M2l 283.7± 134.5 22.8± 11.1 6.4± 1.9

Table 2: Mean and standard deviation of PCG runs with the Jacobi and the two
level preconditioner.
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A C C E L E R AT I N G C O N V E R G E N C E W I T H D E F L AT I O N
P R E C O N D I T I O N E R S

In the previous chapter we have seen that the PCG converges more quickly
if the linear system is preconditioned by a two-level preconditioner. This is
due to the fact that we reduce the condition number by means of this class
of preconditioners and hence less iteration steps are needed to converge.
However, it is not convenient to compute for any RHS the deflation sub-
space (the procedure involves the Arnoldi algorithm which takes time due
to the number of iterations needed).

This is the reason why in Section 2.4 we did not compute the deflation
basis for each RHS but we did only once and then we used it as the basis to
all the RHS of the full Polarbear dataset.

Although we get improvements in terms of iteration steps and execu-
tion time, we wonder if it is possible to compute a more representative
deflation subspace whose basis better approximates properties encoded in
several RHSs.

This kind of issues in numerical analysis are approached via the Low Rank
Approximation or the Proper Orthogonal Decomposition and usually involve the
Singular Value Decomposition of a matrix. They are aimed at extracting a ba-
sis encoding characteristics from the system of interest. Generally speaking,
these methods give a good approximation with substantially lower dimen-
sions.

23



24 accelerating convergence with deflation preconditioners

3.1 low rank approximation of a matrix

For any matrix R of rank r it is always possible to decompose it via a Singu-
lar Value Decomposition (SVD) (Golub and Van Loan, 1996):

Theorem 1 (SVD Theorem). If R ∈ Rm×n and rank(R) = r
⇒ ∃U,V , U ∈ Rm×m,V ∈ Rn×n, orthogonal matrices such that:

UtRV = Σ = diag(σ1,σ2, . . . ,σp), (19)

with p = min{m,n}, σ1 > σ2 > · · · > σp > 0 and Σ ∈ Rm×n is called
the SVD of R. The σi are commonly referred as the singular values, ui and
vi respectively columns of U and V are known as the left and right singular
vectors of R.

Corollary 1.1. If UtRV = Σ is the SVD of R ∈ Rm×n, with m > n then for
i = 1, . . . ,n : Rvi = σiui and Rtui = σivi.

The singular values σi can be geometrically interpreted as the lengths
of the semiaxis of an hyper-ellipsoid E := {Rx :‖ x ‖= 1}. The semiaxis
directions are defined by ui whereas their lengths are the singular values.

From the Corollary1.1 it follows that:

RtRvi = σiR
tui = σ

2
ivi

RRtui = σ
2
iui

Therefore, there is an intimate connection between the SVD of R and eigen-
system of the symmetric matrices as RRt and RtR.

Finding the Low-rank approximation of R means to minimize the Frobenius
norm1 of ‖ R−X ‖F such that rank(X) = k, with 1 6 k 6 r = rank(R).

The SVD naturally provide a best k-rank approximation:

Theorem 2 (Low-rank approximation). Be R̂k a k-rank approximation of R,
given by setting to zero all the r− k trailing singular values of R, i.e.:

R̂k = UΣ̂kV
t, Σ̂k = diag(σ1, . . . ,σk, 0, . . . , 0)

Then the minimal error is given by the Euclidean norm of the singular values that
have been zeroed out in the process:

‖ R− R̂k ‖F=
√
σ2k+1 + · · ·+ σ2r .

1 The Frobenius norm is a matrix norm of an m × n matrix A defined as (Golub and
Van Loan, 1996):

‖ A ‖F=

√√√√ m∑
i=1

n∑
j=1

|Aij|
2.
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3.2 applying svd on polarbear dataset

In order to build the deflation subspace containing common informations
of several days of observations we apply the SVD following two different
methods. The first one comes straightforwardly: it computes the best ap-
proximation RHS by means of the SVD on the matrix composed by several
Nrhs RHSs, see Section 3.2.1. The second one performs Nrhs Arnoldi runs
and then builds the two-level preconditioner from the SVD applied to the
matrix whose columns are the Nrhs deflation subspace basis, see details in
Section 3.2.2.

3.2.1 SVD onto RHSs

We performed a SVD onto the RHS matrix, R, a Np ×Nrhs matrix, whose
columns are several RHSs, R = (b0|b1| . . . |bNrhs

). We then compute the SVD
onto the matrix R and selected the left singular vectors, (from the columns
of U, see Equation 19) related to the most important singular values σ̃. Since
σ2i are eigenvalues of RRt, we selected the σ̃ that satisfy:

σ̃2 →
σ2i
Etot

> 0.8. (20)

i.e. the ones containing most of the energy (defined as Etot :=
∑
k σ

2
k ),

namely 80%.
The best estimate RHS of R, bbest was then assigned to the left singular

vector Ũ related to the selected singular values σ̃ which satisfy the Equa-
tion 20.

The SVD given the size of our problem (Np ∼ 104 and Nrhs . 10) does
not require lot of time since its complexity is O(N2p) operations.2

We computed the SVD on R given two choices of Nrhs = 4, 10 and we
have found only one singular value satisfying Equation 20. Thus, chosen a
value for Nrhs, we can summarize the procedure pursued as follows:

1. get the best estimate RHS as bbest = Ũ via the SVD on the RHS matrix;

2. run the Arnoldi algorithm in order to compute the deflation subspace
basis. As matrix B, we choose MBDA0 (see notation as in Equation 16)
where A0 is the system matrix associated to one of the RHSs, columns
of R. The Arnoldi iterations start with bbest;

3. build the deflation basis ZD and the two-level preconditioner;

4. run the PCG with M2l, computed in the previous step, to all the data
as we did in Section 2.4.

2 The computational cost of Numpy SVD for a dense matrix is 2(n2m +m2n). In our case
∼ 2nm2since m� n.
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The statistics of both the cases are summarized in Table 3, Table 4 and
Figure 9. As one can notice both the cases are very similar to the two-level
preconditioner performances in Section 2.4.

This was quite expected since the inner core of Arnoldi algorithm is to
iterate via the power method on the Krylov subspace Kk(B,b). The basis on
this space depends more on the matrix B than on the choice of the initial
vector b.

Therefore, though it is useful to build a deflation subspace encoding infor-
mations of several daily RHS we think could more helpful to also consider
the degeneracies induced by the scanning strategy, different weather con-
ditions (such as wind speed and pressure of water vapour) during several
days of observation.

3.2.2 SVD onto Deflation Subspaces

To encompass the issue spotted at the end of Section 3.2.1, we followed
a procedure very similar to the one presented in the previous section: the
difference is in the way we compute the final basis of the deflation subspace.
In this section our aim is to build a two-level preconditioner with a deflation
basis which takes into account as many approximated eigenvectors as we
could with a small number of RHSs. The starting point of the procedure is
the very same as the first step in Section 3.2.1. Assuming we have chosen a
set of Nrhs RHSs, as in 3.2.1:

1. get the best estimate RHS as bbest = Ũ;

2. run the Arnoldi algorithm Nrhs times, with the same Arnoldi starting
vector bbest but with Nrhs Arnoldi matrices: Bi = MBDAi, with i =
1, . . . ,Nrhs; 3

3. each Arnoldi run yields ri Ritz eigenvectors ZDi
and we store all of

them into a matrix,Zall;

4. perform SVD onto the matrix Zall = UZΣZVtZ ;

5. set as the deflation basis ZD ≡ UZ and build the two-level precondi-
tioner from ZD;

6. run the PCG with this two-level preconditioner to the whole set of
data.

As in Section 3.2.1, we run this procedure for two different choices of
Nrhs = 4, 10. We summarize the results in Table 4 and in Figure 9. Although
this procedure requires to perform Nrhs runs Arnoldi algorithm (∼ 20÷ 30
minutes each), they can be distributed among an equal amount of process-
ing elements and executed in parallel. However, this is an extra time which

3 Recalling the definition of A in (7), it does depend daily on the scanning strategy pursued
via the pointing matrix Pi as well as the noise weights and filters defined in Equation 5.
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should be added to execution time of the PCG (in Table 4), which is basi-
cally the same as the one required for the cases described in Section 3.2.1
and 2.4 since the computation has been performed among Nrhs processes.
It took ∼ 5 cpuh4.

As one can notice in Figure 9 and in Table 4, this procedure improves the
convergence performances with a Speedup of 2 (with respect to the Jacobi
preconditioner see Section 2.4). However, as we did in Chapter 2, it may be
more helpful to look at the median values summarized in Table 3. They are
consistent within the error bars to the values shown in Table 4.

Moreover, we have found that by increasing Nrhs it may be helpful in
terms of convergence iteration steps; on the other hand one has to take
into account the computational resources required to perform Nrhs Arnoldi
runs, as we have noticed above. A trade off among these two key-aspects
can be found by considering Nrhs not larger than 20. In Figure 9 one can
notice how the peak moves toward smaller values of execution time and
iteration steps as one considers 4 (top) and 10 (bottom) RHSs.

Nrhs PCG execution time [sec] Iteration steps ‖ rk ‖ / ‖ b ‖ (×10−8)

SVD on RHS 4 256.1 21 6.5

SVD on RHS 10 248.3 21 6.4

SVD on ZD 4 224.2 18 6.5

SVD on ZD 10 175.4 14 5.2

Table 3: Median values of PCG runs with the two-level preconditioner computed
by means of SVD on several RHSs as described in Section 3.2.1 and 3.2.2.

Nrhs PCG execution time [sec] Iteration steps ‖ rk ‖ / ‖ b ‖ (×10−8)

SVD on RHS 4 268.5± 81.7 21.7± 6.2 6.4± 1.8
SVD on RHS 10 263.4± 89.5 22.1± 7.0 6.5± 1.9
SVD on ZD 4 247.1± 104.2 19.6± 7.9 6.4± 1.9
SVD on ZD 10 186.8± 74.8 14.9± 6.0 5.6± 2.1

Table 4: Mean and standard deviation of PCG runs with the two-level precondi-
tioner computed by means of SVD on several RHSs as described in Sec-
tion 3.2.1 and 3.2.2.

4 Of course, the number of cpuh increases of a factor Nrhs, with respect to the one referred
in Section 2.4.
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Figure 9: Normed histograms of the PCG runs with the two-level preconditioner
computed by means of SVD on several RHSs as described in sections 3.2.1
and 3.2.2. The top (bottom) panel compare the runs with Nrhs = 4(10).
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C O N C L U S I O N S

Since laste decades, the CMB map-making problem has started to be a nu-
merical in order to quickly produce very accurate maps. This is due be-
casue of the cosmological implications related to the high energy universe
encoded in CMB polarization. The current (as well as the forthcoming) CMB
experiments are observing the cosmic signal from the ground (mostly at the
Atacama Desert (Chile), and in the Antarctica).

We developed the COSMOMAP2 package whose aim is to create an inter-
face to the Polarbear data set, process it by means of linear operators, and
solve iteratively the map-making problem with the PCG. The code and its
documentation are already available online in a public repository.

We implemented two preconditioners as linear operators: the Jacobi and
the two-level preconditioners and we compared the performances of both
on the same Polarbear data set simulated on the first seasons of data (from
2012 to 2013) in Chapter 2. They are in agreement with the results shown
by Szydlarski et al. (2014).

In this work, finally, we propose a further step which improves the perfor-
mances of the two-level preconditioner by constructing a common basis of
the Deflation subspace by means of SVD. We tested several options and we
have found a speedup of 2. Moreover, by means of this procedure, we have
found a way to improve the a priori construction of the M2l preconditioner
and it will be very useful in order to estimate noise maps from Monte-Carlo
simulations.

However, in the next months we are planning to apply such a procedure
to the Polarbear dataset. Previous results shown that the Jacobi PCG MBD

when applied to real data does not converge under a 10−3 threshold. This

29
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is due to the presence of small eigenvalues and degeneracies generating a
sort of iteration plateau preventing the residuals ‖ r(k) ‖ to go further beyond
to a lower threshold than 10−3 . We have seen this plateau-like feature in
our runs on simulated data, see solid red line in Figure 5.

The two-level preconditioner is meant (by definition ) to get rid of these
small eigenvalues and we do not expect such a feature. Hence, the need
of having accurate maps in wide observational sky-patches can be fully
achieved by the M2l preconditioner with optimal performances.
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A
I T E R AT I V E M E T H O D S

The general idea of iterative methods is to construct a sequence of vectors
x(k) such that:

lim
k→∞ x(k) = x,

where x is the solution to eq.(3). The iterative process is stopped when it is
reached a fixed tolerance: ‖ x(k+1) − x(k) ‖< ε.

The iterative methods we consider are of the form:

given x(0), x(k+1) = Bx(k) + f, k > 0, (21)

having denoted B an iteration matrix, (depending on A) and g a vector de-
pending onA and the right hand side b. An iterative method of the form (21)
is said to be consistent if both B and g satisfy at the convergence x = Bx+ f.

a.1 preconditioned conjugate gradient method

A general way of setting up an iterative method is based on the decompo-
sition of the matrix A of the form A =MP − (MP −A), where MP is a non
singular and suitable matrix called Preconditioner of A. Hence by applying
this decomposition on eq.(3),

Ax = b⇔MPx = (MP −A) x+ b

which is of the form (21), with

B =MP
−1 (MP −A) = I−MP

−1A and f =MP
−1b.

Thus, eq.(21) can be written as:

x(k+1) =Bx(k) + g

=
(
I−MP

−1A
)
x(k) +MP

−1b

=x(k) +MP
−1r(k)

⇒ x(k+1) − x(k) =MP
−1r(k),

where r(k) = b − Ax(k) is the residual vector at the k-th iteration. We can
generalise this method as follows:

x(k+1) − x(k) = αkMP
−1r(k) (22)

where αk 6= 0 is a parameter that improves the convergence of the series
x(k) and generally varies during the iterations. The (22) is called dynamic
preconditioned Richardson method. To summarize this method requires at each
k+ 1-th step the following operations:
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• find the preconditioned residuals, z(k) by solving the linear systemMPz
(k) =

r(k);

• compute the acceleration parameter αk;

• update the solution x(k+1) = x(k) +αkz(k);

• update the residual r(k+1) = r(k) −αkAz(k).

In the previous steps one could notice the accelerator parameter, αk playing
a key role through all the iterations. In the special case of symmetric and
positive definite matrices one can demonstrate that the optimal choice for it
is:

αk =

(
z(k)
)T
r(k)(

z(k)
)T
Az(k)

, k > 0,

this method is also called Preconditioned gradient method. It is called gradient
method since to solve the system (3) means to solve the minimizer of the
following quadratic form:

Φ(y) =
1

2
yTAy− yTb,

which is called energy of the system. The gradient of Φ is given by:e

∇Φ(y) =
1

2

(
AT +A

)
y− b = Ay− b.

Conversely, if ∇Φ(x) = 0 then x is solution of our linear system.
The method we are dealing with is called conjugate gradient method and it

is more efficient and effective than the preconditioned gradient method. The
former is fully based on the latter but there is an extra-condition holding
during each iteration: the direction set by the residual vector at each iteration has
to be perpendicular with respect to the direction of the previous ones.

In other words, let x(0) be given (usually 0), from it we compute r(0 =

b−Ax(0), z(0) =MP
−1r(0) and p(0) = z(0), then for k > 0,:

αk =

(
p(k)

)T
r(k)(

p(k)
)T
Ap(k)

,

Hence compute x(k+1), r(k+1), z(k+1) as we did in the previous section and
finally to ensure orthogonality between p(k) and p(k+1) we introduce βk in
such a way that:

βk =

(
Ap(k)

)T
z(k+1)(

Ap(k)
)T
p(k)

, (23)

p(k+1) =z(k+1) −βkp
(k). (24)
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Finally the error estimation is given by:

‖ x(k) − x ‖6 2ck

1+ 2c2k
‖ x(0) − x ‖ k > 0 (25)

where c is defined by the condition number1:

c =

√
κ(P−1A) − 1√
κ(P−1A) + 1

.

1 κ(P−1A) is the condition number. It measures how much the output value of the function
can change for a small change in the input argument. IT is defined as a product of two
operator norms: κ(A) =‖ A−1 ‖ · ‖ A ‖
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