
Master in High Performance
Computing

Scientific image processing
within the NFFA-EUROPE

Data Repository

Supervisor :
Stefano Cozzini

Candidate:
Rossella Aversa

2nd edition
2015–2016

Acknowledgements

First of all, I definitely want to thank my supervisor Dr. Stefano Cozzini, one
of the most enlightened persons I’ve ever met.
Moreover, a special thanks goes to Stefanino, always ready to help me, to make
me laugh, and to play the right music for the most dramatic moments.
Thanks also to Pino, Francesco, Moreno, Juan, Marlon, and Owais for having
shared with me part of this trip. In particular, I want to thank Hadi for having
collaborated with me to this work.
Thanks to the people close to me: Enzino, Marco, Gabri, Ambra, and most of
all Mirko. I’m so luky to have you in my life.
Finally, thanks to my family, always supporting me when I don’t feel able to
handle things alone. I love you all.
This work has been done within the NFFA-EUROPE project. I thank the
project and the CNR-IOM for supporting my participation to the HPC master.

iii

iv

Abstract1

This thesis is embedded within the NFFA-EUROPE project, that aims to setup
the first overarching Information and Data management Repository Platform
(IDRP) for the nanoscience community.

The main goal of the IDRP developement is to semiautomatize the harvest-
ing of scientific data coming from many different instruments among NFFA Eu-
ropean facilities, and identify the correct metadata to allow them to be search-
able accordingly to the FAIR Guiding Principles [1].

For our analysis, we selected data from a specific instrument, the Scanning
Electron Microscope (SEM). The reasons for this choice are many:

• the instrument is available at the CNR-IOM in Trieste, so we could discuss
with scientists about their needs and have fast feedback;

• a significant amount of SEM images (roughly 150,000) have been provided
us for testing purposes;

• the plugin for the SEM has already been tested and is available for this
instrument;

• ten out of the twenty NFFA European partners have a SEM facility, so
our work can be exported to a sizeable part of the community.

The specific goals of this thesis are the following:

• explore machine learning algorithms to classify scientific images coming
from the SEM instrument;

• once the images have been categorized, enrich the plugin with the ingestion
of new metadata. In this way, a search engine can be used to find the
relevant images through a semantic search on the database;

• setup a computational and storage infrastructure to process a massive
amount of such images efficiently;

The achievements of our work are the following:

• a supervised machine learning algorithm has been successfully implemented
and tested;

1This chapter might have been called “Introduction”, but nobody reads the introduction,
and we want you to read this. We feel safe admitting this here, in the footnote, because
nodoby reads the footnotes, either.

v

vi

• algorithms and tools for massive data processing have been identified, set
up, optimized, and finally benchmarked;

• many tools for simplifying the setting up of complex computational and
storage infrastructures have been extensively used. In particular, we em-
ployed Docker and OpenStack;

• some estimates of the time needed to process the image data on different
environments have been provided.

The thesis is organized as follows: in Chapter 1 we will present the NFFA-
EUROPE project and we will frame our work within it; in Chapter 2 we will
offer an overview of machine learning techniques and tools used in thoughout
our work; in Chapter 3 we will explain the main Spark concepts and how we set
the environment up to employ it; scientific and technical results are discusses
in Chapter 4 and Chapter 5, respectively; finally, in Chapter 6 we will present
our conclusions and future perspectives.

Contents

1 The NFFA-EUROPE Project 1
1.1 IDRP . 1

1.1.1 The prototype . 3
1.1.2 The SEM plugin . 3

1.2 SEM images . 3

2 Machine Learning with TensorFlow 5
2.1 Machine Learning Basics . 5

2.1.1 Learning Algorithms . 5
2.1.2 Generalization . 7
2.1.3 Parameters and Hyperparameters 8

2.2 Deep Feedforward Networks . 8
2.2.1 Hidden Layers . 9
2.2.2 Stochastic Gradient Descent 9

2.3 Convolutional Neural Networks 10
2.3.1 Convolution . 11
2.3.2 Pooling . 12
2.3.3 Dropout . 12
2.3.4 Softmax . 13

2.4 TensorFlow and Inception-v3 . 14
2.4.1 The Computational Graph 14
2.4.2 Inception-v3 . 15

2.5 Environmental Setup . 16
2.5.1 Docker . 17
2.5.2 Docker installation . 17

3 Distributed image processing with Spark 19
3.1 MapReduce . 19

3.1.1 The programming model 20
3.1.2 Execution Overview . 20

3.2 Apache Spark . 22
3.2.1 Spark’s components . 22
3.2.2 RDD operations . 23
3.2.3 Spark runtime architecture 23
3.2.4 Why Spark is faster than Hadoop MapReduce 25

3.3 Environmental setup . 25
3.3.1 Databricks community edition 25
3.3.2 Instances on Openstack 26

vii

viii CONTENTS

3.3.3 Dockers on the COSILT node 27

4 Scientific Results 29
4.1 Classifying SEM images . 29
4.2 Retraining the neural network . 31

4.2.1 The code . 32
4.2.2 Achievements on Retraining 33

4.3 Image recognition . 37
4.3.1 The code . 37
4.3.2 Summary of Image Recognition 38
4.3.3 Image recognition of subcategories 40
4.3.4 Images with two categories 41

5 Technical Results 45
5.1 The Code . 45
5.2 Openstack . 47
5.3 The computational node on COSILT 48

5.3.1 Network File System . 49
5.3.2 Lustre file system . 51
5.3.3 Local file system . 52
5.3.4 Comparison of different file systems 53

6 Conclusions 57

Bibliography 59

List of Figures

2.1 Underfitting vs. Overfitting . 8
2.2 ReLU activation function . 10
2.3 Example of 2D convolution . 11
2.4 Components of a CNN layer . 12
2.5 Dropout . 13
2.6 Inception-v3 architecture . 15
2.7 Training procedure using multiple GPUs 16
2.8 Docker vs. virtual machine models 17

3.1 MapReduce job . 20
3.2 Google MapReduce implementation 21
3.3 Spark stack . 22
3.4 Spark execution . 24

4.1 Dimensionality . 30
4.2 Categories chosen for SEM images 31
4.3 Retraining execution time vs. number of images 34
4.4 Examples of annotations on SEM images 35
4.5 Accuracy vs. number of images 35
4.6 Pillars and Patterned surfaces 36
4.7 Histogram of the scores . 38
4.8 Normalized distribution of scores 39
4.9 Normalized distribution of scores 40
4.10 Nanowires vs. Biological . 41
4.11 powder . 41
4.12 MEMS electrodes covered with nanowires 42
4.13 Cantilever tips covered by nanowires 42
4.14 Nanowires decorated with particles 43

5.1 Openstack scaling . 47
5.2 Single thread vs. multithread weak scaling, NFS 49
5.3 Single thread vs. multithread speedup, NFS 50
5.4 Single thread vs. multithread weak scaling, Lustre 51
5.5 Single thread vs. multithread speedup, Lustre 52
5.6 Single thread vs. multithread weak scaling, local 53
5.7 Single thread vs. multithread speedup, local 54
5.8 File system comparison with 10000 images 55

ix

x LIST OF FIGURES

Chapter 1

The NFFA-EUROPE
Project

This first Chapter aims to frame the activities of this thesis within the NFFA-
EUROPE [2] . The project is an integrating activity carried out in the Horizon
2020 - Work Programme for European research infrastructures. The overall
objective of NFFA-EUROPE is to implement the first integrated, distributed
research infrastructure as a platform supporting comprehensive user projects
for multidisciplinary research at the nanoscale.

One of the key aims of NFFA-EUROPE is to create the first overarching In-
formation and Data management Repository Platform (IDRP) for nanoscience,
defining a metadata standard for data sharing as an open collaborative ini-
tiative within the framework of the Research Data Alliance (RDA) [3]. The
CNR-IOM [5] coordinates the Joint Research Activity 3 (JRA3) proposed by
NFFA-EUROPE, which will develop and deploy the IDRP. This repository,
through a suitable open-data access policy, will be a novel and unique instru-
ment for knowledge transfer. It is therefore within the IDRP activities of the
NFFA-Project that our thesis was developed. In the following, we will present
the basic design of IDRP, the past activities already performed and which was
our starting point, and finally a description of the scientific instrument we are
targetting in this work: the SEM.

1.1 IDRP

The goal of the IDRP is to provide its users not only with high performance data
access, but also with data sharing to promote collaboration and interoperability.
Moreover, its semantic search engine will allow users to look for scentific related
data among different resources. In this respect, it is of great importante to have
a clear identification and organization of metadata associated with scientific
data coming from different experimental and theoretical sources.

The design of the repository architecture is based on the recommendations of
the European Commission [4] and the data fabric of the RDA, and employs the
results provided by the European projects EUDAT [6] and PaNdata [7]. The
IDRP will include all the information on a given user project, from proposal
to data analysis, relevant calibrations, and references. The core of the IDRP

1

2 CHAPTER 1. THE NFFA-EUROPE PROJECT

architecture will be based on the KIT Data Manager (DM) of Karlsruhe Institute
of Technology [8], a multi-layered service architecture integrating software and
technologies to build up repository systems able to manage Big Data. The
distributed repository architecture is based on the data infrastructures that are
already used in the nanoscience facilities, and will extend them to enable long-
term preservation, data sharing, discovery, publication, access and exportation,
and will foster their interoperability to enable Transnational Access Activities.

A dataset in the repository consists of raw data, analysis data and metadata
satisfying the general requirements for data reuse. The Single Entry Point
(SEP) portal acts as a central access point for users to access the IDRP based
on single-sign-on and for data discovery based on search with the describing
metadata.

The IDRP consists of two repositories:

• a repository for published data, providing a persistent preservation of data
and metadata;

• data discovery, publicly accessible. Registration is necessary to download
data in order to restrict the load of the infrastructure.

The IDRP Management serves as a dataset registry for the facilities and handles
the data organization. Metadata already available at the facilities are extended
to offer additional data services, e.g., for discovery and policy enforcement.
Multiple measurements of a probe in various facilities may be shared and merged
to one dataset for common analysis and cross calibration. Locally available
services and data infrastructures (based on the KIT DM) at the facilities may
be integrated seamlessly, whenever possible. Also some architecture components
(for example, the content metadata management and interfaces to the NFFA
Distibuted Repository Management) may be deployed at the facilities to extend
their local infrastructure.

It is worth noticing that nanoscience poses new challeges related to the
complexity of metadata, which are not uniquely defined among such a wide
multidisciplinary area. Further challenges includes the extreme diversity and
heterogeneity of the infrastructures and of the data, which can be collected as
binary files (in some cases even with proprietary format), images, plain text,
videos, and so on. Taking these aspects into account, the overall architecture of
the IDRP will facilitate:

• seamless integration of existing technologies;

• interoperability for internal technology changes by standardized interfaces,
for example OAI-PMH for metadata harvesting;

• dataset registration and discovery;

• integration of data access policies as defined by the project:

– registration of datasets by one responsible machine/user;

– mandatory registration for all users to discover and access data;

– granting discovery and access for selected datasets;

– published datasets visible to public; access and download only for
registered users.

1.2. SEM IMAGES 3

1.1.1 The prototype

As already mentioned in Sec. 1.1, the KIT DM has been chosen as the initial
core of the IDRP architecture thanks to its multi-layered service architecture
and its several services available. A beta release of the KIT tool has been eval-
uated and tested, and a first NFFA prototype of its global data repository has
been built upon it. The prototype has been connected to three different ex-
perimental facilities, representative of the NFFA Centre: a Scanning Electron
Microscope (SEM) instrument, an Advanced Photoelectric Effect (APE) beam-
line for spectroscopy, and an open code for first principle simulation (Quantum
Espresso). The IDRP acquires data from the above facilities by means of a set of
plugins which interact through the restful interface of the KIT DM. The overall
prototype has been build on top of a cloud infrastructure with a set of virtual
machines playing the role of the computer devices located in the experimental
facilities. For each experimental device a virtual machine was installed, and the
injection plugin was tested on a set of preloaded data provided as representa-
tive by selected users. The plugins are able to allow an automatic harvest of
metadata associated to data produced by NFFA scientific users. They are ready
to be installed on the computing devices available at the experimental facilities
(APE and SEM) while the plugin for Quantum Espresso will be installed on the
CNR-IOM HPC facility, where the majority of the computations are performed.
All the plugins are then available to the final users, who can inject the data on
the experimental/computational facility.

1.1.2 The SEM plugin

The SEM plugin is fully integrated with the Python interface provided by KIT
DM. Images generated from SEM are saved as tif in the Tagged Image File
Format (TIFF), a file format able to save some metadata about the image in
a header of the file. The plugin collects in an automated way the tif images
and their associated metadata (information about the user, the sample and
the instrument), and integrates them in a unique HDF5 file [11] that is then
automatically loaded into the KIT DM. The plugin works in an automatic way,
harvesting all the data stored in a specific location (directory). Several tests were
performed on SEM images, including data injection into the KIT DM. In all the
cases, the HDF5 files have been automatically submitted to the KIT DM using
the webdav protocol. At the same time, the collected metadata associated to the
files loaded into the KIT DM are sent to an Elasticsearch [9] server, to guarantee
a search engine for the users. In the prototype, the server is external to the KIT
DM for testing purposes, but is fully integrated in the virtual environment. The
SEM plugin represents the starting point of our activities.

1.2 SEM images

Scanning electron microscopy (SEM) is a common characterisation technique
used by nanoscientists to view their samples at higher magnifications than pos-
sible with traditional optical microscopes. The range of magnification on a SEM
is 250-500,000 times. Whilst visible light has a wavelength range of 400-700 nm,
an accelerated electron can have a wavelenth λ . 1 nm, allowing nanometre res-
olution to be achieved when using this technique. SEM works by scanning a

4 CHAPTER 1. THE NFFA-EUROPE PROJECT

focused beam of electrons over the surface of a sample. The interaction of
the electron beam and the sample results in the release of secondary electrons,
which are collected by a detector. The number of secondary electrons detected
depends on a number of factors, such as the atomic radius of the sample atoms
and the topography of the surface. By raster scanning over an area, the intensity
of the detected signal can be used to build a grayscale image of the topogra-
phy of a sample. Typically, SEM samples should be electrically conductive and
grounded to prevent the build-up of electrostatic charge. Non-conductive sam-
ples are often imaged by coating them with a very thin conductive layer of gold
or platinum.

SEM is a popular technique amongst nanoscientists, since it is a versatile tool
that can be used to view samples at high magnifications and to check whether
the desired stucture has been obtained without much prior sample preparation
required. For material scientists, this could be checking the morphology and
shape of nanostructures. Some scientists and engineers who fabricate devices,
such as transistors, microfluidics or other micro-/nano-scale devices on a chip,
use SEM to verify the correct fabrication of their devices before or after they
are used. Each sample is often view at different magnifications. For example, a
patterned surface might be viewed at a low magnification to check whether the
patterns have been developed correctly over large areas, and at high magnifica-
tion to check the smoothness of the edges of individual patterns. As will be dis-
cussed in Sec. 4.3, this can provide significant challenges for image recognition,
since the same object can look very different depending on the magnification
used.

Training a neural network on SEM images can offer the following benefits
for nanoscience researchers:

• automatic classification of images, avoiding the need for the users having
to manually classify each image they produce;

• providing a searchable database of nanoscience images which can allow
scientists to find specific category of SEM images.

Chapter 2

Machine Learning with
TensorFlow

In this Chapter we will present a brief overview of machine learning techniques
and tools used in our work. We will describe the basic concepts of machine
learning in Sec. 2.1, then we will give an overview, mainly based on [15], of
deep feedforward networks in Sec. 2.2 and of convolutional neural networks in
Sec. 2.3. TensorFlow and Inception-v3 are presented in Sec. 2.4, while Sec. 2.5
is dedicated to a description of how we set our work environment up.

2.1 Machine Learning Basics

2.1.1 Learning Algorithms

According to the definition of [16] “a computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves with experience
E”. In other words, a machine learning algorithm is an algorithm that is able
to learn from data.

The Task T

Machine learning tasks are usually described in terms of how the system should
process an example, which is defined as a collection of features that have been
quantitatively measured from some object or event that we want the machine
learning system to process. An example is typically represented as a vector
~x ∈ Rn where each entry xi of the vector is another feature. In our specific
case, the features of an image are the pixel brightness values.

Many kinds of tasks can be solved with machine learning; we are interested
in classification. In this type of task, the program is asked to specify which of
k categories some input belongs to. To solve this task, the learning algorithm
is asked to produce a function f : Rn → {1, . . . , k}. When y = f(~x), the model
assigns an input described by ~x to a category identified by the numeric code y.
In our specific case of object recognition, the input is an image, described as a

5

6 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

set of pixel brightness values, and the output is a numeric code identifying the
object in the image, converted into a human readable label.

The Performance Measure P

In order to evaluate the abilities of a machine learning algorithm, a quantitative
measure of its performance is needed. Usually this performance measure P is
specific to the task T being carried out by the system. For tasks such as our
classification, we measure the accuracy of the model, which is defined as the
proportion of examples for which the model produces the correct output. We
can also obtain equivalent information by measuring the error rate, defined as
the proportion of examples for which the model produces an incorrect output.
The error rate is often referred to as the expected 0-1, which is 0 if a particular
example is correctly classified and 1 if it is not.

Usually, we are interested in how well the machine learning algorithm per-
forms on data that it has not seen before, since this determines how well it will
work when deployed in a real case. We therefore evaluated P using a test set of
data that had been kept separate from the data used for training.

The Experience E

Most machine learning algorithms can be broadly categorised as supervised or
unsupervised according to what kind of experience on a dataset (defined as a
collection of many examples) they are allowed to have during the learning pro-
cess. Unsupervised learning involves observing several examples of a random
vector ~x, and attempting to implicitly or explicitly learn the probability distri-
bution p(~x) of that distribution. Supervised learning instead involves observing
several examples of a random vector ~x and an associated value or vector ~y, and
learning to predict ~y from ~x, usually by estimating the conditional probabil-
ity p(~y|~x). Roughly speaking, unsupervised learning algorithms experience a
dataset containing many features, then learn useful properties of its structure,
while supervised learning algorithms experience a dataset containing features,
but each example is also associated with a label. This is our case with SEM
image recognition.

Example: Linear Regression

We present here an example of a simple machine learning algorithm: the linear
regression. The goal is to build a system that takes a vector ~x ∈ Rn as input and
predicts the value of a scalar y ∈ R as output. In the case of linear regression,
the output is a linear function on the input. Let ŷ be the value that our model
predicts y should thake on. We define the output to be:

ŷ = ~wT~x , (2.1)

where ~w ∈ Rn is the vector of weights.
Suppose we have a matrix of m example inputs X(test), used only as a test set

for evaluating the performance of the model, and a vector of regression targets
~y(test), providing the correct value of y for each of these examples.

The task T is to predict y from ~x by outputting ŷ given by Eq. 2.1. The
performance measure P of the model can be obtained by computinig the mean

2.1. MACHINE LEARNING BASICS 7

squared error on the test set. If ~̂y(test) gives the predictions of the model on the
test set, then the mean squared error is given by:

MSEtest =
1

m

∑
i

(~̂y(test) − ~y(test))2i . (2.2)

To make a machine learning algorithm, we need to improve the weights ~w
in a way that reduces MSEtest when the algorithm is allowed to gain experience
by observing a training set (X(train), ~y(train)). For example, we can minimize
the mean squared error on the training set by solving:

∇wMSEtrain = 0 (2.3)

which gives:
~w = (X(train)TX(train))−1X(train)T~y(train) (2.4)

The system of equations whose solution is given by Eq. 2.4 is known as
normal equations. Evaluating Eq. 2.4 constitutes a simple learning algorithm.

2.1.2 Generalization

The central challenge in machine learning is the generalization, defined as the
ability to perform well on new, previously unobserved inputs. When training
a machine learning model, a training set is used: an error measure called the
training error can be computed and minimized. This is simply an optimization
problem. What distinguishes machine learning from optimization is the addi-
tional requirement of the generalization error, defined as the expected value of
the error on a new input, to be low as well. The generalization error of a model
is usually estimated by measuring its performance on a test set, which is why it
is also called test error. When using a machine learning algorithm, the training
set is sampled and used to choose the parameters in order to reduce the training
error, then the test set is sampled. Under this process, the expected test error
is greater or equal to the expected training error. The factors determining how
well an algorithm will perform are:

1. its ability to make the training error small;

2. its ability to make the gap between training and test error small.

These two factors correspond to underfitting and overfitting, respectively. Un-
derfitting occurs when the model is not able to obtain a sufficiently low error
value on the training set. Overfitting occurs when the gap between the training
error and the test error is too large.

The way to control whether a model is more likely to overfit or underfit is
by altering its capacity, which is its ability to fit a wide variety of functions.
Machine learning algorithms generally perform best when their capacity is ap-
propriate for the true complexity of the task they need to perform and the
amount of training data they are provided with. Models with low capacity are
unable to solve complex tasks because they may struggle to fit the training set;
models with high capacity may overfit by memorizing properties belonging to
the training data it has seen and is unable to generalize to unseen test data. We
show an example of this principle in Fig. 2.1.

8 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

Figure 2.1: Simple example of a function which underfits (left panel), correctly
fits (central panel) and overfits (right panel) the same data sample. Figure has
been taken from [33].

2.1.3 Parameters and Hyperparameters

Parameters are values that control the behaviour of the system. In our case, we
can think of a vector of parameters ~w ∈ Rn as a set of weights that determine
how each feature affects the prediction. If a feature xi receives a positive weight
wi, then increasing the value of that feature increases the value of the prediction.
If a feature receives a negative weight, then increasing the value of that feature
decreases the value of the prediction. If a feature’s weight is large in magnitude,
than it has a large effect on the prediction, while if its weight is zero, it has no
effect on the prediction.

Most machine learning algorithms have several settings that can be used to
control their behaviour, called hyperparameters. Unlike parameters, the values
of hyperparameters are not adapted by the learning algorithm itself. Frequently,
the settings must be hyperparameters because it is not appropriate to learn them
on the training set. This applies to all hyperparameters controlling the model
capacity. If learned on the training set, they would always choose the maximum
possible model capacity, resulting in overfitting. To solve this problem, the
subset of data used to guide the selection of hyperparameters, called validation
set, is needed. Since the test examples do not have to be used in any way to
make choices about the model, the validation set is always constructed from the
training data. Specifically, the training data is split into two disjoint subsets:
one of them is used to learn the weights, the other is used to estimate the
generalization error during or after training, allowing the hyperparameters to
be updated accordingly.

2.2 Deep Feedforward Networks

Deep feedforward networks, also often called feedforward neural networks, or
multilayer perceptrons (MPLs), are the most typical deep learning models. The
goal of a feedforward network is to approximate some function f∗. As an ex-
ample, a classifier y = f∗(~x) maps an input ~x to a category y. A feedforward
network defines a mapping ~y = f(~x; ~w) and learns the value of the weights ~w
that result in the best function approximation. These models are called feedfor-
ward because information flows through the function being evaluated from ~x,
through the intermediate computations used to define f , and finally the output

2.2. DEEP FEEDFORWARD NETWORKS 9

~y. There are no feedback connections in which an output of the model is fed
back into itself.

They are called networks because they are typically represented by compos-
ing together many different functions. The model is associated with a directed
acyclic graph describing how the functions are composed together. For exam-
ple, we might have three functions f (1), f (2), and f (3) connected in a chain, to
form f(~x) = f (3)(f (2)(f (1)(~x))). These chain structures are the most commonly
used structures of neural networks. In this case, f (1) is called the first layer
of the network, f (2) is called the second layer, and so on. The overall length
of the chain gives the depth of the model. It is from this terminology that the
name “deep learning” arises. The final layer of a feedforward network is called
output layer. During neural network training, we drive f(~x) to match f∗(~x).
The training data provides us with noisy, approximated examples of f∗(~x) eval-
uated at different training points. Each example ~x is accompained by a label
y ≈ f∗(~x). The training examples specify directly that the output layer must
produce a value close to y at each point ~x. The behaviour of the other layers is
not directly specified by the training data. The learning algorithm must decide
how to use those layers to produce the desired output, which means to best
implement an approximation of f∗, but the training data does not show the
desired output for each of these layers: for this reason, they are called hidden
layers.

Finally, these networks are called neural because they are loosely inspired
by neuroscience. Each hidden layer of the network is typically vector-valued.
The dimensionality of these hidden layers determines the width of the model.
Each element of the vector may be interpreted as playing a role analogous to
a neuron. Rather than thinking of the layer as representing a single vector-to-
vector function, we can also think of it as consisting of many units that act in
parallel, each representing a vector-to-scalar function. Each unit resembles a
neuron in the sense that it rececives input from many other units and computes
its own activation value.

2.2.1 Hidden Layers

The role of hidden units can be described as applying to an input vector ~x
a nonlinear function φ(~x; ~w) which provides a set of features describing ~x (or
simply a new representation for ~x). This function is usually built by comput-
ing an affine transformation controlled by learned weights, followed by a fixed,
element-wise, nonlinear function called activation function. Most hidden units
are distinguished from each other only by the choice of the form of the acti-
vation function. In modern neural networks, the default recommendation is to
use the rectified linear unit or ReLU [19, 20, 21], defined by the the activation
function R(z) = max{0, z}, where z is the individual output of the affine trans-
formation on x. The ReLU activation function is shown in Fig. 2.2. We will see
in Sec. 2.4.2 that all the hidden layers of the Inception-v3 architecture [13] use
this function.

2.2.2 Stochastic Gradient Descent

A recurring problem in machine learning is that large training sets are necessary
for a good generalization, but they are also computationally expensive. For

10 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

Figure 2.2: The rectified linear unit (ReLU) activation function. The Figure has
been adapted from [15].

example, the computational cost of a gradient descent operation is O(m), where
m is the number of training data. This means that as the training set size grows,
the time to take a single gradient step may become prohibitively long. The
insight of stochastic gradient descent, an approximation of the gradient descent
algorithm, is that the gradient is an expectation, thus it may be approximately
estimated using a small set: on each step of the algorithm, a minibatch B =
{~x(1), . . . , ~x(m′)} may be drawn uniformly from the training set. The minibatch
size m′ is usually chosen to be a relatively small number of examples, ranging
from 1 to a few hundred. The crucial aspect is that m′ is held fixed as the
training set size m increases. The estimate of the gradient for the minibatch B
becomes:

~g =
1

m′
∇~w

m′∑
i=1

L(~x(i), y(i), ~w) , (2.5)

where L is the per-example loss L(~x, y, ~w) = − log p(y|~x; ~w). The stochastic
gradient descent algorithm then follows the estimated gradient downwards:

~w ← ~w − ε~g , (2.6)

where ε is the learning rate, a positive scalar determining the size of the step.
The cost per update does not depend on the training set size, so the asymp-

totic cost of training a model is O(1) as a function on m. This is the reason why
stochastic gradient descent is used in nearly all of deep learning algorithms.

2.3 Convolutional Neural Networks

Convolutional neural networks [22] are a specialyzed type of neural networks
suited for processing data that has a grid-like topology, for example image data,
which can be thought of as a 2D grid of pixels. As the name indicates, the
network employs a mathematical operation called convolution, which is a par-
ticular kind of linear operation. We will briefly describe it in Sec. 2.3.1. Almost
all convolutional networks make use of an operation called pooling, described in
Sec. 2.3.2. It is also worth mentioning in Sec. 2.3.4 the softmax function, which
will be useful for our classification purposes.

2.3. CONVOLUTIONAL NEURAL NETWORKS 11

2.3.1 Convolution

Given a function x(t), usually referred to as the input, and a weighting function
w(t), referred to as the kernel, both dependent on an index variable t, the
convolution operation is defined as:

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a)da (2.7)

In general, convolution is defined for any function for which the above integral
is defined. Intuitively, it performs a weighted average operation on the input,
giving as output a so-called feature map. Of course, when working with data on
a computer, the index variable will be discretized, so we can define the discrete
convolution:

s(t) = (x ∗ w)(t) =
∑
a

x(a)w(t− a) (2.8)

Figure 2.3: Example of 2D convolution. For simplicity, the output is restricted
only to positions where the kernel lies entirely within the image, called “valid”
convolution. Boxes with arrows indicate how the upper-left element of the output
tensor is formed by applying the kernel to the corresponding upper-left region of
the input tensor. The Figure has been taken from [15].

In machine learning applications, the input is usually a multidimensional
array of data and the kernel is a multidimensional array of parameters that are
adapted by the learning algorithm, namely the weights. These multidimensional
arrays are referred to as tensors.

In our case, we will use convolutions over two axes, schematically represented
in Fig. 2.3. For a 2D image I as our input, and a 2D kernel K:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.9)

12 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

2.3.2 Pooling

A typical layer of a convolutional network consists of three stages (see Fig. 2.4).
In the first stage, the layer performs several convolutions in parallel to produce
a set of linear activations. In the second stage, called detector stage, each linear
activation is run through a nonlinear activation function, such as the ReLU. In
the third stage, a pooling function is used to replace the output of the net at a
certain location with a summary statistic of the nearby outputs. For example,
the max pooling operation [23] used in the Inception-v3 architecture reports the
maximum output within a rectangular neighbourhood.

Figure 2.4: The components of a typical convolutional neural network layer. The
Figure has been adapted from [15].

The role of pooling is to make the representation become approximately
invariant to small translations of the input, which means that the values of
most of the pooled output will not change if the input is shifted by a small
amount. This is a very useful property in our case, where we are interested in
detecting some features rather than in specifying their exact location. Moreover,
another very important issue in our case is to classify images which may have
different sizes, while the input to the classification layer must have a fixed size.
Pooling is essential for this task, which can be accomplished by varying the size
of an offset between multiple pooling regions, so that the classification layer
always receives the same number of summary statistics regardless of the input
size.

2.3.3 Dropout

Dropout is a technique for addressing the problem of overfitting (see Sec. 2.1.2)
in deep neural networks with a large number of parameters. The term “dropout”
refers to dropping out units (hidden and visible) in a neural network, which
means temporarily removing them from the network, along with all their in-

2.3. CONVOLUTIONAL NEURAL NETWORKS 13

coming and outgoing connections, as shown in Fig. 2.5. The choice of which
units to drop is random. In the simplest case, each unit is retained with a fixed
probability p independent of other units, where p can be chosen using a valida-
tion set or can be set to 0.5, which seems to be close to optimal for a wide range
of networks and tasks. For the input units, however, the optimal probability of
retention is usually closer to 1 than to 0.5, as reported by [10]; a typical choice
is 0.8.

Figure 2.5: Dropout model. Left: a standard neural network with two hidden
layers. Right: an example of a thinned network produced by applying dropout
to the network on the left; crossed units have been dropped.

Applying dropout to a neural network amounts to sampling a “thinned”
network from it. The thinned network consists of all the units that survived
the dropout, as shown in the right panel of Fig. 2.5. Training a neural network
with n units can be seen as training a collection of 2n possible thinned neural
networks, which all share weights so that the total number of parameters is still
O(n2) (or less), where each thinned network gets trained very rarely, if at all.
At test time, it is not feasibile to explicitly average the prediction from so many
thinned models. However, a very simple approximate averaging method works
well in practice. The idea is to use a single neural network at test time without
dropout. The weights of this network are scaled-down versions of the trained
weights. If a unit is retrained with probability p during training, the outgoing
weights of that unit are multiplied by p at test time. This ensures that for a
hidden unit the expected output (under the distribution used to drop units at
training time) is the same as the actual output at test time. By doing this
scaling, 2n networks with shared weights can be combined into a single neural
network to be used at test time. Training a network with dropout and using
this approximate averaging method at test time leads to significantly lower
generalization error on a wide variety of classification problems compared to
training with other regularization methods.

2.3.4 Softmax

The softmax function is used any time there is the need to represent a probability
distribution over a discrete variable with n possible values. In our case, it is
used as the output of the classifier in the final layer, to represent the probability
distribution over the nanoscience categories, producing a vector ~y, with yi =
P (y = i|~x). To represent a valid probability distribution, the vector ~y is required
to be such that 0 ≤ yi ≤ 1, and

∑
i yi = 1. Formally, the softmax function is

14 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

given by:

softmax(~z)i =
exp(zi)∑
j exp(zj)

, (2.10)

where ~z is the unnormalized log probability zi = log P̃ (y = i|~x), such that
P (y = i|~x) = softmax(~z)i.

The use of the exponential function works very well when training the soft-
max to output a target value y using the maximum log-likelihood, as is done in
most modern neural networks. In this case, the function that is requested to be
maximized is:

logP (y = i; ~x) = log softmax(~z)i = zi − log
∑
j

exp(zj). (2.11)

The second term in Eq. 2.11 can be roughly approximated by maxj zj because
exp(zj) rapidly becomes negligible for any zj � maxj zj . Thus, the negative
log-likelihood cost function (used as a measure of how well the neural network
performed in mapping training examples to the correct output) will always be
dominated by the most incorrect predictions, while the correct answer will give
a contribution close to zero.

2.4 TensorFlow and Inception-v3

TensorFlow [14] is an software library for numerical computation originally de-
veloped by the Google Brain team for Google’s research and production pur-
poses and later released under the Apache 2.0 open source license in 2015. It
is currently used for both research and production by tens of different teams
in dozens of commercial Google products, such as speech recognition, Gmail,
Google Photos, and Google Images.

In TensorFlow computations are represented as data flow graphs. Nodes
in the graph are called op (short for operations), and represent mathematical
operations, while the graph edges represent the tensors (see Sec. 2.3.1). An op
takes zero or more tensors, performs some computations, and produces zero or
more tensors. A TensorFlow graph is a description of computations. To compute
anything, a graph must be launched in a Session. A Session places the graph ops
onto devices, such as CPUs or GPUs, and provides methods to execute them.
These methods return tensors produced by ops as numpy ndarray objects in
Python, and as tensorflow::Tensor instances in C and C++.

2.4.1 The Computational Graph

TensorFlow programs are usually structured into a construction phase, that
assembles a graph, and an execution phase that uses a session to execute ops
in the graph. For example, our code creates a graph to represent and train a
neural network in the construction phase, and then repeatedly executes a set
of training ops in the graph in the execution phase. The TensorFlow Python
library has a default graph to which ops constructors add nodes.

To build a graph, it is necessary to start with ops that do not need any
input (source ops), and pass their output to other ops that do computation.
The ops constructors in the Python library return objects that represent the

2.4. TENSORFLOW AND INCEPTION-V3 15

output of the constructed ops. The TensorFlow implementation translates the
graph definition into executable operations distributed across available compute
resources, such as the CPU or GPU cards. As a default, TensorFlow uses
the first GPU available, for as many operations as possible. To modify this
behaviour, it is necessary to add a with tf.Device statements to specify which
CPU or GPU to use for operations. On the infrastructure we used through this
work, described in Sec. 2.5, two GPUs are present, so we explicitly set the usage
for both of them, whenever appropriate.

2.4.2 Inception-v3

Inception-v3 [13] is the 2015 iteration of Googles Inception architecture for im-
age recognition. It has reached 21.2% top-1 and 5.6% top-5 error for single crop
evaluation on the ILSVR 2012 classification, while being six times computation-
ally cheaper and using at least five times less parameters with respect to the
best published single-crop inference for [26, 27].

Figure 2.6: Inception-v3 architecture. The Figure has been taken from [24].

A schematic picture of such an architecture is shown in Fig. 2.6. The model
is a multi-layer architecture consisting of alternating convolutions and nonlin-
earities, using ReLU activation functions in all the stages. These layers are
followed by a fully connected layer leading to a softmax classifier.

The implementation of it was written by the same people who wrote Tensor-
Flow, and so it employs many TensorFlow techniques. The official TensorFlow
repository [24] has a working implementation of the Inception-v3 architecture.
The Inception code uses TF-Slim [25], which is an abstraction library over Ten-
sorFlow that makes writing convolutional nets easier and more compact.

The training procedure employs synchronous stochastic gradient descent
across multiple GPUs: replica of the model (training on a subset of data) is
placed on each GPU, and model weights are updated synchronously by waiting
for all GPUs to finish processing a batch of data. The diagram of this model
is shown in Fig. 2.7. Each GPU computes inference and gradients for a unique
batch of data. This setup requires that all GPUs share the model weights.
Transferring data to and from GPUs is known to be quite slow. For this reason,
all model weights are stored and updated on the CPU; a fresh set of model
weights is transferred to the GPU when a new batch of data is processed by all
GPUs. The GPUs are synchronized in operations: all gradients are accumulated

16 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

from them and averaged. The model weights are updated with the gradients
averaged across all model replicas.

Figure 2.7: Diagram showing the Inception-v3 training procedure in TensorFlow.
The Figure has been taken from [14].

The Inception-v3 implementation makes heavy use of the various scoping
mechanisms available in TensorFlow. The entire Inception model is wrapped
into a new TensorFlow op (Sec. 2.4): first, it is wrapped in an op scope named
inception v3, then various arg scopes are used to set the default arguments for
ops inside the model. TensorFlows arg scopes are a simple way of setting the
default arguments for a lot of ops in a model at the same time, without having
to repeatedly enter them each time an op is called. The list end points in the
model contains all intermediate tensors: for instance, end points[’conv0’]

contains the output of the first convolution, which is then fed into another
convolution, the result of which is saved as end points[’conv1’] and so on.
Convolution, max-pooling, and dropout layers are repeatedly applied to the
tensors, and the result is the logits variable, which gives the predictions (a
vector of length equal to the number of categories for each image in the batch)
and the end points list which stores all intermediate results. To reduce over-
fitting, dropout (see Sec. 2.3.3) is applied before the softmax layer. TensorFlow
tf.nn.dropout op automatically handles scaling neuron outputs in addition to
masking them (i.e., performing a pooling).

2.5 Environmental Setup

We have been provided with root access on a computational node, on the C3E
Cloud Computing Environment of COSILT, located in Tolmezzo and managed
by eXact-lab srl [30]. The cluster node is equipped with two Intel Xeon CPUs
E5-2697 at 2.70 GHz (12 cores each, for a total of 24 cores) and two K20s
Nvidia GPUs. The operative system installed on the node is CentOS 7, but the
only Linux distribution TensorFlow runs on is 64-bit Ubuntu. Since Tensorflow

2.5. ENVIRONMENTAL SETUP 17

provides a Docker image on the website, the best option has been to install a
Docker container on the node and work inside it.

2.5.1 Docker

Docker [32] is a tool designed to make it easier to create, deploy, and run ap-
plications by using containers. Containers allow wrapping a piece of software
in a complete filesystem that contains everything needed to run, such as code,
runtime, system tools, system libraries and other dependencies, and ship it all
out as one package, becoming part of a base working image. This guarantees
that the software will always run the same, regardless of its environment.

Figure 2.8: A comparison between the virtual machine (on the left) and the
Docker container (on the right) model. The Figure has been taken from [32].

Docker Containers have much more potential than virtual machines. The
virtual machine model blends an application, a full guest operative system (OS),
and disk emulation. In contrast, the container model uses just the application’s
dependencies and runs them directly on a host OS. Containers do not launch a
separate OS for each application, but share the host kernel while maintaining the
isolation of resources and processes where required. The fact that a container
does not run its own OS instance reduces dramatically the overhead associated
with starting and running instances. Startup time can typically be reduced
from 30 seconds (or more) to 0.1 seconds. For the same reason, performance
of an application inside a container is generally better compared to the same
application running within a virtual machine. The number of containers running
on a typical server can reach dozens or even hundreds. The same server, in
contrast, might support 10 to 15 virtual machines. A schematic illustration of
virtual machine and Docker container models is shown in Fig. 2.8.

2.5.2 Docker installation

Installing CUDA

A preliminary step was to install DKMS (Dynamic Kernel Module Support), a
program that enables generating Linux kernel modules whose sources generally
reside outside the kernel source tree. To install CUDA, we downloaded the GPU
drivers from the Nvidia website [31] and installed them. We generated some of

18 CHAPTER 2. MACHINE LEARNING WITH TENSORFLOW

the devices (/dev/nvidia0, /dev/nvidia1, and /dev/nvidiactl) using the
nvidia-smi software, while /dev/nvidia-uvm has been generated by running
for a few seconds the command nvidia-cuda-mps-server.

Installing Docker

The Docker installation required the configuration of a repository for yum with
the RPM (originally Red Hat Package Manager, now a recursive acronym RPM
Package Manager, a package management system). We created a file called
/etc/yum.repos.d/docker.repo containing the following:
[dockerrepo]

name=Docker Repository

baseurl=https://yum.dockerproject.org/repo/main/centos/$releasever/

enabled=1

gpgcheck=1

gpgkey=https://yum.dockerproject.org/gpg

Finally, yum install docker-engine and service docker start allowed us
to have a working Docker service, and we run our Docker container using the
TensorFlow image provided on the Tensorflow website [14], with the additional
flag --device to export the Nvidia devices.

Chapter 3

Distributed image
processing with Spark

The SEM instrument provided a huge amount of images, so the obvious way to
proceed is processing them in parallel. We decided to use Apache Spark [34],
a new framework which is increasingly being used in the world of big data,
mainly for faster processing. Spark utilizes in-memory capabilities to deliver
fast processing (almost 100 times faster than Hadoop [35]). Moreover, in Spark
it is possible to write applications that use machine learning to classify data in
real time as it is ingested from streaming sources. We are very much interested
in this aspect, since in the future perspective this will be the usecase for the
processing of SEM images.

In this Chapter, we will first present the MapReduce model which Spark is
based on (Sec. 3.1), then we will give an overview of Spark (Sec. 3.2), explaining
why it is preferred to MapReduce (Sec. 3.2.4), and finally we will describe how
we set the environment up for our work (Sec. 3.3).

3.1 MapReduce

MapReduce is a programming model and an associated implementation for pro-
cessing and generating large data sets. As stated in the paper in which the
MapReduce programming abstraction is presented [37], this approach was cre-
ated to solve the three main aspects of parallel computations:

• distribution and balancing of the computing tasks;

• distribution of the data;

• fault tolerance

Programs written in this functional style are automatically parallelized and
executed on a cluster while the runtime system takes care of the details of
partitioning the input data, scheduling the program execution across a set of
machines, handling machine failures, and managing the required inter-machine
communication.

19

20 CHAPTER 3. DISTRIBUTED IMAGE PROCESSING WITH SPARK

3.1.1 The programming model

The MapReduce model consists of a Map function and a Reduce function,
schematically illustrated in Fig. 3.1. The Map function takes a set of data and
convert it into another set of data, by applying element-wise a given function,
written by the user; individual elements are broken down into tuples (key/value
pairs). The produced output is set of intermediate key/value pairs. The Reduce
takes the output from a Map as input and combines those data tuples into a
smaller set of tuples.

Figure 3.1: Schematic overview of a MapReduce job execution. The figure has
been taken from [38].

The MapReduce library groups together all intermediate values associated
with the same intermediate key, and passes them to the Reduce function, which
is also written by the user. This function takes an intermediate key and a set of
values for that key, and merges the values together to form a possibly smaller
set of values. Typically, just zero or one output value is produced per Reduce
invocation. The intermediate values are supplied to the Reduce function via an
iterator; this allows handling lists of values that are too large to fit in memory.

3.1.2 Execution Overview

The Map invocations are distributed across multiple machines by automatically
partitioning the input data into a set of M splits, which can be processes in
parallel by different machines. The Reduce invocations are distributed by par-
titioning the intermediate key space into R pieces using a partitioning function,
specified by the user.

Fig. 3.2 shows the overall flow of a MapReduce operation in the Google
implementation [37]. When the user program calls the MapReduce function, the
following sequence of actions occurs (the numbered labels in Fig. 3.2 correspond
to the numbers in the list):

1. The MapReduce library in the user program first splits the input files into
M pieces of typically 16 MB per piece (controllable by the user through
an optional parameter). It then starts up many copies of the program on
a cluster of machines;

2. One of the copies of the program is the master, all the others are workers
that are assigned work by the master. There are M Map tasks and R

3.1. MAPREDUCE 21

Figure 3.2: Execution overview of the Google MapReduce implementation. The
figure has been taken from [37].

Reduce tasks to assign. The master picks idle workers and assigns each
one a Map task or a Reduce task;

3. A worker who is assigned a Map task reads the content of the correspond-
ing input split. It parses key/value pairs out of the input data, and passes
each pair to the user-defined Map function. The intermediate key/value
pairs produced by the Map function are buffered in memory;

4. Periodically, the buffered pairs are written to local disk, partitioned into
R regions by the partitioning function. The locations of these buffered
pairs on the local disk are passed back to the master, who is responsible
for forwarding their locations to the Reduce workers;

5. when a Reduce worker is notified by the master about these locations, it
uses remote procedure calls to read the buffered data from the local disks
of the Map workers. When a Reduce worker has read all intermediate
data, it sorts it by the intermediate keys so that all occurrences of the
same key are grouped together. The sorting is needed because typically
many different keys map to the same Reduce task. If the amount of
intermediate data is too large to fit in memory, an external sort is used;

6. the Reduce worker iterates over the sorted intermediate data and for each
unique intermediate key encountered, it passes the key and the correspond-
ing set of intermediate values to the user Reduce function. The output
of the Reduce function is appended to a final output file for this Reduce
partition;

22 CHAPTER 3. DISTRIBUTED IMAGE PROCESSING WITH SPARK

7. when all Map tasks and Reduce tasks have been completed, the MapReduce
call in the user program returns back to the user code.

3.2 Apache Spark

Apache Spark [34] is a cluster computing platform designed to be fast and gen-
eral purpose. One of the main features Spark offers is the ability to run com-
putations in memory. Moreover, the system extends the popular MapReduce
model described is Sec. 3.1, and is more efficient than it for complex applications
running on disk.

The Spark project contains multiple closely integrated components. At its
core, Spark is a “computational engine” that is responsible for scheduling, dis-
tributing, and monitoring applications consisting of many computational tasks
across many worker machines, or a computing cluster. Because the core engine
of Spark is both fast and general-purpose, it powers multiple higher-level com-
ponents specialized for various workloads, which are designed to interoperate
closely. One of the largest advantages of tight integration is the ability to build
applications that seamlessly combine different processing models.

3.2.1 Spark’s components

The Spark’s components are shown in Fig. 3.3. Spark Core contains the basic
functionality of Spark, including components for task scheduling, memory man-
agement, fault recovery, interaction with storage systems, and more. Spark Core
is also the location of the API that defines the Resilient Distributed Datasets
(RDDs), which are the Spark’s main programming abstraction. RDDs repre-
sent a collection of items distributed across many compute nodes, that can be
manipulated in parallel. Spark SQL is a package for working with structured
data. Spark Streaming is a Spark component that enables processing of live
streams of data. MLib is a library that comes with Spark, containing common
machine learning functionalities. GraphX is a library for manipulating graphs
and performing graph-parallel computations. Spark can run over a variety of
cluster managers, including Hadoop YARN, Apache Mesos, and Spark’s own
built-in Standalone cluster manager, called the Standalone Scheduler, which is
the one adopted by us.

Figure 3.3: Schematic illustration of the Spark’s components. The figure has
been taken from [36].

3.2. APACHE SPARK 23

3.2.2 RDD operations

RDDs support two types of operations: transformations, which create a new
dataset from an existing one, and actions, which return a value to the driver
program after running a computation on the dataset. For example, map is a
transformation that passes each dataset element through a function and returns
a new RDD representing the results. On the other hand, reduce is an action
that aggregates all the elements of the RDD using some function and returns
the final result to the driver program.

All transformations in Spark are lazily evaluated, in that they do not com-
pute their results right away. Instead, they just remember the transformations
applied to some base dataset (e.g. a file). The transformations are only com-
puted when an action requires a result to be returned to the driver program.
This design enables Spark to run more efficiently.

By default, each transformed RDD may be recomputed each time an action
is run on it. However, an RDD can be allowed to persist in memory by using
the persist (or cache) method, in which case Spark will keep the elements on
the cluster for much faster access the next time the RDD will be used. There is
also support for persisting RDDs on disk, or replicated across multiple nodes.

3.2.3 Spark runtime architecture

Spark provides a simple way to parallelize applications across clusters, and hides
the complexity of distributed system programming, network communication,
and fault tolerance. The system gives however enough control to monitor, in-
spect, and tune applications while allowing implementation of tasks. As men-
tioned in Sec. 3.2.2, computations in Spark are expressed through operations
on distributed collections that are automatically parallelized across the cluster,
namely the RDDs.

In distributed mode, Spark uses a master/slave architecture with one central
coordinator and many distributed workers. The central coordinator is called
the driver, which communicates with a potentially large number of distributed
workers called executors. The driver runs in its own Java process and each
executor is a separate Java process. A driver and its executors are together
termed a Spark application. A Spark application is launched on a set of machines
using an external service called cluster manager. As already mentioned, Spark
is packaged with a built-in cluster manager called Standalone cluster manager.
A schematic view of the components and how they are connected during a
distributed execution of an application in Spark is shown in Fig. 3.4, and a brief
description follows.

The Driver

The driver is the process where the main method of the program runs. The driver
program accesses Spark through a SparkContext object, which represents a
connection to the computing cluster. Once a SparkContext has been initialized,
it can be used to build RDDs and to perform calculations on them, either
transformations to derive new RDDs or actions to collect or save data. A
Spark program implicitly creates a logical Directed Acyclic Graph (DAG) of
operations. When the driver runs, it converts this logical graph into a set of

24 CHAPTER 3. DISTRIBUTED IMAGE PROCESSING WITH SPARK

Figure 3.4: Schematic illustration of the components for a distributed execution
of an application in Spark. The figure has been adapted from [36]

stages. Each stage, in turn, consists of units of physical execution called tasks,
which are bundled up and prepared to be sent to the cluster.

The Executors

Spark executors are worker processes responsibile for running the individual
tasks in a given Spark job. They are launched once at the beginning of an
application and typically run for the entire lifetime of an application, though
Spark applications can continue if executors fail. Executors have two roles:

• they run the tasks that make up the application and return results to the
driver;

• they provide in-memory storage for RDDs that are cached by user pro-
grams, through a service called the Block Manager, which lives within
each executor.

The Cluster Manager

Spark depends on a cluster manager to launch executors and, in certain cases,
to launch the driver (local mode). Its main roles are:

• scheduling information, such as the amount of resources requested by the
application for the job;

• keeping information about the runtime dependencies of the application,
such as libraries of files that must be deployed to all worker machines.

As already mentioned, the cluster manager is a pluggable component; this
allows Spark to run on top of different external managers, such as YARN and
Mesos, as well as its build-in Standalone cluster manager.

3.3. ENVIRONMENTAL SETUP 25

3.2.4 Why Spark is faster than Hadoop MapReduce

Apache Hadoop [35] is a software framework written in Java for distributed data
storage and computing, offering an open source implementation of MapReduce.
One of the main limitations of Hadoop MapReduce is that it persists the full
dataset to the Hadoop File Sistem (HDFS) after running each job. This is very
expensive because it incurs three times replication of the size of the dataset
in disk I/O and a similar amount of network I/O. Spark takes a more holistic
view of a pipeline of operations. When the output of an operation needs to be
fed into another operation, Spark passes the data directly without writing to
persistent storage. This is an innovation over Hadoop MapReduce that came
from Microsoft’s Dryad paper [39], and is not original to Spark.

The main innovation of Spark was to introduce an in-memory caching ab-
straction. This makes Spark ideal for workloads where multiple operations ac-
cess the same input data. Users can instruct Spark to cache input data sets in
memory, so they don’t need to be read from disk for each operation.

Another advantage Spark has is that it can launch tasks much faster than
Hadoop MapReduce. The latter starts a new Java Virtual Machine (JVM) for
each task, which can take seconds with loading JARs, parsing configuration
XML, and so on. Spark instead keeps an executor JVM running on each node,
so launching a task is simply a matter of making a remote procedure call to it
and passing a runnable to a thread pool, which takes milliseconds.

3.3 Environmental setup

Our approach to Spark has been the following:

1. in order to get acquainted with infrastructure and methodology, we de-
ployed and tested a toy program on an already set up Spark implementa-
tion, namely Databricks [40], described in Sec. 3.3.1;

2. we deployed our own virtual Spark cluster on an OpenStack cloud pro-
vided by CNR-IOM [5], described in Sec. 3.3.2. This allowed us to check
the complexity of the installation, the configuration, and the full deploy-
ment of a real program. Such a solution revealed several weak points: no
shared filesystem, no control on real performance, and executor instabili-
ties. These points will be discussed in Sec. 5.2.

3. our final step was the installation of Spark on a bare metal system, namely
a node on the COSILT cluster, through a Docker container. The setting
up procedure is described in Sec. 3.3.3. We evaluated the performance on
this architecture and compared it with the cloud environment’s one. We
also reported estimates on the usage of different file systems, in order to
understand which is the most suited one to deal with large amounts of
image data (see Sec. 5.3).

3.3.1 Databricks community edition

Our first approach with Spark has been done employing the Databricks Com-
munity Edition, which is the free version of Databricks cloud-based big data
platform [40], hosted on Amazon Web Services, with an already set up Spark

26 CHAPTER 3. DISTRIBUTED IMAGE PROCESSING WITH SPARK

implementation. With the Databricks Community Edition, we have been pro-
vided access to a 6GB micro-cluster as well as a cluster manager acting itself as
a worker, and the notebook environment to prototype simple applications. We
used the Python notebook environment to develop the parallel version of our
serial code for image recognition and to familiarize with the Spark metodology.

3.3.2 Instances on Openstack

OpenStack [41] is an open source cloud management infrastructure, that con-
trols large pools of computing, storage, and networking resources throughout a
datacenter. It aims to be simple to implement and massively scalable. Open-
Stack consists of several independent parts, named the OpenStack services. All
services authenticate through a common Identity service. Individual services
interact with each other through public APIs, except where privileged admin-
istrator commands are necessary. Internally, OpenStack services are composed
of several processes. All services have at least one API process, which listens
for API requests, preprocesses them and passes them on to other parts of the
service. With the exception of the Identity service, the actual work is done by
distinct processes. Users can access OpenStack in many ways, for example via
the web-based user interface implemented by Dashboard or via command-line
clients. The Dashboard is a modular Django web application providing a graph-
ical interface to OpenStack services, such as launching an instance, assigning
IP addresses and configuring access controls. It allows managing of OpenStack
resources and services and interaction with the OpenStack Compute cloud con-
troller using the OpenStack APIs. Instances are the individual virtual machines
that run on physical compute nodes inside the cloud. Each launched instance
runs from a copy of the base image. When an instance is launched, a flavor
must be chosen, which represents a set of virtual resources. Flavors define vir-
tual CPU number, RAM amount available, and ephemeral disks size.

We launched 9 m1.medium instances, each of them characterized by 2 virtual
CPUs, a 40 GB disk and a 4 GB RAM. To setup our cluster, we wrote an
installation bash script to be executed as superuser on each instance. The
script first installs Java:
add-apt-repository ppa:webupd8team/java

apt-get update

apt-get install oracle-java8-installer

Then downloads Spark from the archive page [42] and creates a soft link:
ln -s spark-2.0.1-bin-hadoop2.7 spark

Change the owner (which is root since the script is running as superuser):
chown ubuntu.ubuntu spark

Adds the following lines in the .bashrc file:
SPARK HOME=/home/ubuntu/spark

export PATH=$SPARK HOME/bin:$PATH

Then downloads TensorFlow from the webpage [14] and install it and other
dependencies, in particular Pillow and h5py, through pip.

One of the instances has been used as driver. On it we started the standalone
master server by executing:
./sbin/start-master.sh

Once started, the master prints out a spark://HOST:7077 URL for itself, which
is used to connect workers to it.

3.3. ENVIRONMENTAL SETUP 27

The remaining 8 instances have been used as workers. To allow them to con-
nect to the master, its IP has to be put into the /etc/hosts file of each worker.
After having verified ability to ping the master, we started the standalone slave
server on each instance and connected them to the master by executing:
./spark/sbin/start-slave.sh spark://HOST:7077

We finally ended up with a 16 core cluster on which perform the image
processing. We did not set a distributed file system up, so we equipped each
instance with a local copy of the data, consisting of a sample of 1000 tif images
and a sample of 2000 tif images.

3.3.3 Dockers on the COSILT node

To compare the performance obtained on a virtual environment with the ones
on bare metal, we used a computational node of the COSILT cluster, equipped
with two Intel Xeon CPUs E5-2697 at 2.70 GHz (12 cores each, for a total of
24 cores).

We installed Spark and all the needed dependencies on a Docker container
built from a TensorFlow image available on the TensorFlow website [14], and
we exported it as our Spark-TensorFlow image, from which we built 3 Dockers.
Dockers containers can be configurated in order to provide them a well defined
amount of resources. We run a driver Docker with 1 CPU, and two worker
Dockers with 12 CPUs each. This has been possible adding at running time the
flag --cpuset-cpus="", putting the IDs of the CPUs which allow the execution.

On the node architecture, three different ways are available to store our own
dataset: a local file system to the node itself, a shared Network File System
(NFS), and a Lustre [12] parallel file system. To make our implemented Spark
cluster able to read and write on these file systems, we mounted on each Docker
three folders, and we put the image samples in all of them.

Using data stored on the local file system offers the advantage of consuming
no network bandwidth. On the other hand, some of the most notable benefits
that the NFS can provide are:

• Local workstations use less disk space because commonly used data can
be stored on a single machine and still remain accessible to others over
the network.

• There is no need for users to have separate home directories on every
network machine. Home directories could be set up on the NFS server
and made available throughout the network.

Lustre instead runs on commodity hardware and uses object based disks for
storage and metadata servers for storing file system metadata. This design pro-
vides a substantially more efficient division of the workload between computing
and storage resources. Distributed Object Storage Targets (OSTs) are respon-
sible for actual file system I/O. This leads to a scalable file system and more
reliable recoverability from failure conditions. Lustre also supports strong file
and metadata locking semantics to maintain total coherency of the file systems
even in the presence of concurrent access.

28 CHAPTER 3. DISTRIBUTED IMAGE PROCESSING WITH SPARK

Chapter 4

Scientific Results

In this Chapter, we will present the scientific results achieved through the ma-
chine learning/neural network approach. These results address the initial part
of the ambitious work we are doing to provide a searchable database to the
nanoscience community. The incremental steps to reach our purposes are the
following:

1. agree upon the most suitable criteria to classify the SEM images and
provide a label for each image in the training set.(Sec. 4.1);

2. retrain the last layer of a pre-trained neural network based on Inception-v3
architecture using supervised learning (Sec. 4.2);

3. employ the TensorFlow image recognition to label the SEM images with
the category it is supposed to belong to (together with the probability
score), and collect statistics on the obtained results (Sec. 4.3). This has
been done to provide directions and hints on how to use the system we
have designed to the final scientific users.

4.1 Classifying SEM images

As already mentioned, our work is based on supervised learning. Thus, in order
for the neural network to be trained, labelled training data must be provided,
from which the neural network is able to generalise to unseen images. This
section explains the process by which SEM images were classified into a labelled
training set.

For the training to be effective, the main general rules for selecting the
training images are the following:

• at least 100 images for each category should be provided;

• the images should be a good representation of what the application will
be asked to recognize once trained;

• particular attention should be paid to anything that the labeled images
have in common, to avoid the learning process acquiring irrelevant or
wrong characteristics.

29

30 CHAPTER 4. SCIENTIFIC RESULTS

Due to the highly diverse nature of nanoscience research and the wide range
of scientists and engineers who use the SEM, the images produced through this
technique also encompass a broad range. Often the images produced can look
very different to what we see in our macroscopic world. Nanoscience research
is sometimes categorised by its function, or its method of production. For ex-
ample, “top-down” approaches to making nanostructures often involve creating
smaller structures by adding and removing material from a bulk, similar to a
sculptor carving a statue. These methods have been extensively explored, and
are used to produce devices such as transistors in computer chips, and micro-
electromechanical (MEMS) devices such as accelerometers which are used in
mobile phones. On the other hand, “bottom-up” approaches involve assembling
and arranging molecular and atomic starting material to form larger structures,
as is done for molecular motors, which are capable of rotating when they receive
input energy. There are commonalities between SEM images of some structures
formed in the same way: for example, those structures formed by top-down
methods, such as lithography, are often similar in that they have repeated pat-
terns and smooth edges. However, this is not always the case. Structures formed
from chemical synthesis can have a variety of different final shapes, structures,
and morphologies.

Since the neural network can only be trained by the pixels within the images,
it was important to develop a classification system which was dependent on the
shape of the nanostructure, rather than the more abstract and subjective notion
of its function. However, where possible, the classification was chosen such that
the categories whould be relevant to the work of the scientists, and close to the
way how they might tag or label the image themselves.

Figure 4.1: Schematic representation of a classification for nanostructures based
on their dimensionality.

One way of classifying nanostructures based on their shape and structure
is their dimensionality. We can classify nanostructures as 0D, 1D, 2D, and 3D
objects, as schematically illustrated in Fig. 4.1. In this classification, 0D objects
refer to particles which can be dispersed and isolated over an area of the sample,
or clustered together. 1D objects are often referred to as nanowires, rods, or
fibres. These structures are often packed together, either in an unorganized
entangled way, or aligned parallel to one another. 2D structures refer to films
and coatings on a surface, which can be formed from a variety of different

4.2. RETRAINING THE NEURAL NETWORK 31

materials with a range of surface topologies. Some surfaces can seem smooth
and flat on a SEM, whilst others are made of small particles packed together,
covering the entire surface. 3D structures can refer to pillars, or other devices
like MEMS, typically fabricated using lithographic processes.

The dimensionality is both visually distinct, allowing it to be classified by
the neural network, as well as being meaningful, since many of the properties
of nanostructures depends on their dimensionality. Nevertheless, after further
investigation of SEM images, additional categories such as biological samples
and cantilever tips were added in order to fully cover the spectrum. The first
set of categories which were chosen is shown in Fig. 4.2.

Figure 4.2: The dimensionality of nanoscience objects provided the basis for the
categories chosen. Ther categories, such as Biological and Cantilever Tips were
added as these were common images found in the SEM images database.

These twelve categories cover a broad range of SEM images, and they are
applicable to scientists working in different areas of nanoscience. They were cho-
sen to be as distinct from one another as possible; however, as will be discussed
in Sec. 4.2, depending on the magnification chosen, different categories can look
very similar to one another, creating challenges for the image recognition.

4.2 Retraining the neural network

Training an Inception-v3 network from scratch is a computationally intensive
task and may take several days or even weeks. Transfer learning is a technique
that dramatically reduces the time by allowing use of a fully-trained model for
a set of categories, and to retrain from the existing weights for new classes. In
fact, it has been demostrated [28] that lower layers which have been trained
to distinguish between some objects can be reused for many recognition tasks
without any alteration. In our case, we employed an Inception-v3 model fully
trained on 1000 categories in ImageNet [29], a common accademic dataset for
training image recognition systems, and retrained the final layer from scratch for
SEM images, while leaving all the others untouched. Though transfer learning
is not as good as a full training, it is noticeably effective and has the great
advantage that it can be run in relatively short times, even without the need
of any GPU accelerator. The execution of the code described in Sec. 4.2.1 took

32 CHAPTER 4. SCIENTIFIC RESULTS

roughly 5 minutes (Fig. 4.3) when employing one GPU on the COSILT cluster
(Sec. 2.5).

4.2.1 The code

We adapted the retraining.py Python script available on the TensorFlow
GitHub page [24]. The images should be provided as jpg or png files located in
a directory structure in which each subdirectory corresponds to a unique label
for the images that resides within that subdirectory (i.e., all the images of a
given category must be in a subfolder named as that category). The script
performs the following steps:

• set up the pre-trained Inception graph;

• create a list of all the images and split them into different sets;

• calculate the bottlenecks image summaries and cache them on disk;

• add the new layer to be trained;

• set up all the weights to their initial default value;

• create the operations needed to evaluate the accuracy of the new layer;

• run the training for number of training steps as specified;

• run the final test evaluation;

• write out the trained graph and labels with the weights stored as constants.

Training, Validation and Test set

The provided images are divided into three different sets. The general rule is
to put 80% of the images into the main training set, keep 10% aside to run as
validation frequently during training to avoid overfitting, and then have a final
10% used as a test set to predict the performance of the classifier.

The create image list() function uses the filename of the image in the
given image dir to determine which set it should belong, according to the
testing percentage and validation percentage, and returns a dictionary
containing an entry for each label subfolder, with images split into training,
validation and testing sets within each label. This is designed to ensure that
images do not get moved between sets on different runs, since it could generate
overfitting problems if images that had been used for training a model were
subsequently used in a validation set.

To decide the appropriate set and to keep existing image file in the same
set even if more images are subsequently added, a hash of the file is used to
generate a probability value:
percentage hash=(int(hash name hashed,16)%max n images per class)*

(n class/max num images per class)

if percentage hash<validation percentage:

validation images.append(image name)

elif percentage hash<(testing percentage+validation percentage):

testing images.append(image name)

4.2. RETRAINING THE NEURAL NETWORK 33

else:

training images.append(image name)

Bottlenecks

The first phase of the script analyzes all the provided images and calculates the
bottleneck values for each of them. Bottleneck is an informal term often used for
the layer just before the final output layer that actually does the classification.
This penultimate layer has been trained to output a set of values used by the
classifier to distinguish between all the categories it has been asked to recognize.
It is a meaningful and compact summary of the images, containing enough
information for the classifier to make a good choice in a very small set of values.
The reason why the final layer retraining can work on new categories is that the
kind of information needed to distinguish among the ImageNet categories is also
useful to distinguish among new types of features. Calculating each bottleneck
takes a significant amount of time. Since every image is reused multiple times
during training, bottlenecks values are cached on disk so they do not have to be
repeatedly recalculated.

Training

Once the bottlecks are completed, the actual training of the top layer of the
network begins. Each step randomly takes 10 images from the training set,
finds their bottlenecks from the cache, and feeds them into the final layer to get
predictions, which are then compared against the actual labels to update the
final layer’s weights though the back-propagation process. Each step outputs the
training accuracy, the validation accuracy and the cross-entropy (see Sec. 2.1).
The final test accuracy is based on the percentage of images in the test set that
have been correctly classified after the model has been fully trained.

We explored the performance of the learning process varying the training
steps from 2000 to 8000. Doubling the number of steps, doubled the time,
as expected, but the final accuracy did not increase significantly, despite the
network having been trained for twice as long, because the model converged
very rapidly. Thus, we fixed the number of training steps to 4000.

Moreover, we verified how the retrain execution time could be affected by
the total number of images in the training sample, as shown in Fig. 4.3. Four
repetitions have been performed and the average time has been used. The error
bars represent the range of recorded results. It can be seen that for the range
studied (450 to 25,500 images) the number of images does not seem to strongly
influence the average retrain time.

The script writes out a version of the Inception-v3 network with a final
layer, called final result, retrained on SEM images, to a GraphDef file called
output graph.pb and the labels to a text file called output labels.txt. These
two files are the only two elements needed for the image recognition.

4.2.2 Achievements on Retraining

The pre-trained Inception model was retrained using SEM images in the cate-
gories shown in Fig 4.2. In order to investigate the retraining, and to understand

34 CHAPTER 4. SCIENTIFIC RESULTS

Figure 4.3: The average retrain time as a function of total number of images in
the training sample. Four repetitions have been performed and the average time
has been used. The error bars represent the range of recorded results.

how the overall accuracy of the neural network could be improved, the retraining
was repeated with some categories being merged, and with different numbers of
images in each category. In the first retrain in total 18,693 images were used,
with an average final train accuracy of 86.2%. The breakdown of the number
of images in each category is shown in Table 4.1.

Table 4.1: Initial training set

Category Number of images

Particles 3419
Fibres 153
Biological 953
Patterned surface 1999
Pillars 1364
Cantilever Tips 1561
Nanowires 2439
Powder 895
Forest 1253
MEMS devices electrodes 4178
Porous Sponge 171
Films Coated Surface 308

Some SEM images are annotated by scientists with lines, circles and writ-
ten measurements written directly on the image file. An example is shown in
Fig. 4.4. These images were withheld from the initial retrain, however when
they were included (increasing the total number of images to 21,106), the final
train accuracy remained the same, suggesting that the neural network is able
to ignore these features. This may be because these annotations are found in
almost all the categories, so they do not become features used by the neural

4.2. RETRAINING THE NEURAL NETWORK 35

network to identify a specific category.

Figure 4.4: Examples of SEM images which are annotated with lines and writing,
which are directly written on the image file. The neural network was able to
effectively ignore these features when re-trained.

In order to determine the effect of the number of images in each category
on the final train accuracy, only the 9 categories which had up to 800 images
available were chosen. The results are reported in Fig. 4.5. Four repetitions
have been performed and the average accuracy has been used. The error bars
represent the range of recorded results. The clear trend is that the the final train
accuracy increases as the number of images increases. Whilst the accuracy is
only 81.8% with 450 images (50 for each category), this rises to 86.1% where
there are 7200 images (800 for each category). However, it is interesting to note
that even with just 450 images, the neural network can achieve an accuracy of
more than 80%.

Figure 4.5: Average final train accuracy as a function of the number of images in
each category. Four repetitions have been performed and the average accuracy
has been used. The error bars represent the range of recorded results.

In order to further increase the accuracy, some categories were combined with
one another. The categories Pillars and Patterned surfaces share many
similarities, as shown in Fig. 4.6. They both have regular arrays of objects,
and if pillars are imaged directly from above, rather than from a tilted angle,

36 CHAPTER 4. SCIENTIFIC RESULTS

they look almost indistinguishable from some patterned surfaces. When the
neural network was retrained with these categories combined, the final accuracy
increased to 89.5%, compared to 86.2% when they were separate.

Figure 4.6: Example of how a top down view of Pillars (left) looks almost
indistinguishable from some Patterned surface (right).

To verify that this improvement in accuracy was due to the fact that these
categories are similar to one another, and not simply because there was one less
category, two dissimilar categories (Pillars and Biological) were combined.
The final accuracy dropped to 85.7%, which is lower than when they were sep-
arated. This confirmed that combining categories which are very similar to one
another can help to significantly increase the retrain accuracy, at the expense
of broadened categories which offer lower distinction. Following this idea, we
also combined Forest and Nanowires, resulting in a final set of 10 categories,
with an average final accuracy of 90.1%. Further merging of categories, such as
by combining MEMS devices electrodes within Patterned Surfaces actually
led to a decrease in the average final train accuracy.

The final categories and the number of images in each of them is shown in
Table 4.2.

Table 4.2: Final training set

Category Number of images

Particles 3419
Fibres 153
Biological 953
Patterned surface 3363
Cantilever Tips 1561
Nanowires 3692
Powder 895
MEMS devices electrodes 4178
Porous Sponge 171
Films Coated Surface 308

4.3. IMAGE RECOGNITION 37

4.3 Image recognition

When retraining the neural network, a portion of the images are automatically
kept aside for validation and testing. The final train accuracy gives an overall
score for the “average” performance, however it does not shed any light on which
types of image the neural network is able to categorise consistently well, and
which it finds more challenging.

In order to manually test the performance of the neural network, categories
were split into sub categories which represented the types of image found in each
category. For example, the main category Nanowires has images which are:

• a mesh of entangled nanowires

• a few nanowires

• a focused image of an individual nanowire

• parallel aligned forests

• forests where the top of the forest (the crust) is also seen

A summary of the results is presented in Sec. 4.3.2.
Some of these subcategories may look more similar to images in other cat-

egories, and so the accuracy of the neural network in recognising images could
be different for each subcategory. For each category, all the subcategories have
been tested by running the image recognition script on a representative sample
of images. Results are presented in Sec. 4.3.3.

There were a number of images which had elements of two categories within
the single image. These were separated from the train sample, and investigated
by passing the images through the image recognition of the trained network.
We present the results in Sec. 4.3.4.

4.3.1 The code

We adapted the classify image.py Python script available on the TensorFlow
GitHub page [24]. The code creates a graph from the GraphDef protocol buffer
we obtained from the retraining (see Sec. 4.5):
with tf.gfile.FastGFile(os.path.join(model dir,

’output graph.pb’), ’rb’) as f:

graph def = tf.GraphDef()

graph def.ParseFromString(f.read())

= tf.import graph def(graph def, name=’’)

Then it runs inference on an input jpg or png image using the last layer of the
retrained network, namely final result, and the list of labels in output labels.txt

(see Sec. 4.5):
with tf.Session() as sess:

softmax tensor = sess.graph.get tensor by name(’final result:0’)

predictions = sess.run(softmax tensor,

’DecodeJpeg/contents:0’:image data)

predictions = np.squeeze(predictions)

fname = os.path.join(model dir, ’output labels.txt’)

38 CHAPTER 4. SCIENTIFIC RESULTS

with open(fname) as f:

content = f.readlines()

top k = predictions.argsort()[-num top predictions:][::-1]

Finally, it outputs human readable strings of the top 5 predictions along
with their probabilities, as metadata ready to be added to the image file, once
converted to HDF5 format.

4.3.2 Summary of Image Recognition

All of the results from the image recognition of the test images was collated.
The top ranked score was split into three groups:

• Top ranked score is for the correct category

• Top ranked score is for an incorrect category, however the second ranked
score is for the correct category

• Both of the top two categories are incorrect

Figure 4.7: A histogram of the score of the top ranked category. Either the top
ranked category was correct (cyan), or it was incorrect with the second category
being correct (orange), or incorrect with neither of the top two categories being
correct (red).

A histogram of all of the test results is shown in Fig. 4.7. It can be noted
that when the score of the top ranked category is high (e.g. above 0.8), there
is a high chance that the top ranked category will be the correct category of
the image. However, when the score is low (e.g. below 0.5), it is more likely
that the top ranked category is not the correct one. This matches with our
understanding of the neural network. If the trained neural network is confident
that an image belongs to a certain category, it will assign that category a high
score. A low score for the first category suggests that the neural network has
struggled to identify the image.

4.3. IMAGE RECOGNITION 39

Figure 4.8: The normalised distribution of scores for each of the groups. Cyan:
Top category score when the top category was correct. Orange: Top category
score when the second ranked category was correct. Red: Top category score
when neither of the top two categories was correct.

The distribution of normalised frequencies in each group is shown in Fig. 4.8.
It can be seen that those top ranked scores which were for the correct category
(cyan bars) mostly occur at very high scores, with almost a third being in the
range of scores 0.95-1. In contrast, the distribution for those top scores which
were incorrect, but the second score was correct (orange bars) has a peak at
around 0.5-0.6. In this case the neural network is often conflicted between
two categories because the image may be an edge case and similar to trained
images found in two categories (see also Sec. 4.3.4). Finally, the normalised
frequency distribution of top ranked scores, when neither of the top two scores
were correct (red bars) shows a peak at around 0.4. As mentioned before, when
the top ranked category has such as low score, it suggests that the network is
unable to categorise the image.

The relative frequencies of the top ranked scores was used to generate plots
of the probability that a given top ranked score is for the correct category. The
left plot in Fig. 4.9 shows that the probability that a top ranked score is for a
correct category increases for higher scores. The crossover of lines indicates the
point at which the two groups are equally likely (i.e. probability 0.5). When the
top ranked category has a score of 0.5, there is a 50% chance that the top ranked
category is correct. The right plot in Fig. 4.9 shows that when we consider the
top or second ranked category being correct, the crossover point occurs at a
lower score of 0.35.

This data can be used to help design the interaction of the neural network
with users. It shows that even if the top ranked score is low (in the region of

40 CHAPTER 4. SCIENTIFIC RESULTS

Figure 4.9: For a given top ranked score for an image, probability that it is the
correct category (left) and that either it is the correct category or the second
category is correct (right). In each case the inverse is also plotted, with the cross
over point showing the score at which the two scenarios are equally likely.

0.35) the top two ranked categories could be suggested to the user, whilst for
very high scores (& 0.9) it may be sufficient to automatically assign the top
ranked category with a high confidence of it being the correct one. Moreover,
when the top ranked category is not correct, in 55% of cases the second top
ranked category is correct.

4.3.3 Image recognition of subcategories

The neural network with ten categories and a final train accuracy of 90.1% was
used for testing. For each image, the output of the image recognition is that
each category is given a probability score of being the category to which the
image belongs. If the neural network is confident that an image belongs to a
category, it will assign that category a score close to 1. Images which are more
difficult for the neural network to identify will have many categories with ap-
proximately similar scores. For example, one image of an electrode scored the
following:

MEMS devices and electrodes: 0.88 (top ranked category)

Patterned surface: 0.035 (second ranked category)

Biological: 0.028

Cantilever tips: 0.016

Nanowires: 0.011

In the following, for some representative test folders, the highest scoring cat-
egories are shown. An explanation is provided for why an “incorrect” category
has scored highly for a set of test images which should all belong to another
category.

Nanowires

The “crust” of forests bares a strong resemblance to neurons in biological images,
as shown in Fig. 4.10. This explains why 12% of the images in the crust sub

4.3. IMAGE RECOGNITION 41

folder had Biological as their top category, instead of the expected result of
Nanowires.

Figure 4.10: Comparison showing the resemblance between the crust of forest (a
subcategory of Nanowires) and Biological, explaining why 12% of the times the
neural network failed in identifying the correct category.

Powder

The boundary between particles, powders, and certain types of films and coated
surface could be down just to the magnification used, as shown by the results
in Fig. 4.11. Whilst a zoomed out image of a powdery material is correctly
identified 80% of the time, when an image at a higher magnification is taken,
at which point individual circular particles which form the powder can be seen,
the top ranked category changes to particles. There is very little that can
be done to correct this, because the neural network is correctly judging what it
is seeing in the image, whilst the human observer has the benefit of seeing the
image in the context of the previous images, and thus s/he knows that this is
in fact a zoomed in image of a powder.

Figure 4.11: Comparison between zoomed in and zoomed out powder, explaining
why 20% of the times the neural network failed in identifying the correct category.

4.3.4 Images with two categories

Images which had elements of two categories within the single image were inves-
tigated as a separate case. As expected, for these images the neural network was

42 CHAPTER 4. SCIENTIFIC RESULTS

able to identify both categories within the images, with often the more dominant
category receiving a high score, as the following examples demonstrate.

Nanowires on MEMS electrodes and devices

Files in this test folder comprised images of electrodes and MEMS structures
which had nanowires dispersed over them. The dominant feature in the image
is the electrode like structure, since the nanowires were mostly dispersed and
isolated from one another. These observations are reflected in the scores, with
MEMS devices and electrodes being the top ranked category in 69.2% of cases,
whilst for 23% of images Nanowires were identified as the top ranked category.

Figure 4.12: A representative image from a test folder of SEMs which are MEMS
electrodes covered with nanowires.

Nanowires on Cantilever tips

This test folder contained images of nanowires which were present at the very
end of tips. In this case the triangular shape of the tip is evident, as well as the
web of nanowires which are present on the surface. The neural network identified
both of these categories, with 56% of images being classified as Nanowires, and
28% of images classified as Cantilever tips.

Figure 4.13: A representative image from a test folder of SEMs which are of
cantilever tips covered by nanowires.

Particles on Nanowires

These are images of nanowires which have small particles on their surface along
their length. If these images had to be classified into one category, they would

4.3. IMAGE RECOGNITION 43

be classed as nanowires, since the nanowire is the dominant feature, and the
particles are decorating their surface. This is represented by the behaviour of
the neural network, which selected Nanowires as the correct category in over
85% of cases, and Particles as the correct category in ∼ 9% of cases.

Figure 4.14: A representative image from a test folder of SEMs which are of
nanowires decorated with particles along their length.

44 CHAPTER 4. SCIENTIFIC RESULTS

Chapter 5

Technical Results

This Chapter reports the work and the results obtained in setting up the com-
putational infrastructure to perform a massive image processing. As a matter
of fact the image classification through TensorFlow used to obtain the results
presented in Sec. 4.3 should be run on hundreds of thousand of images. Our
aim is to survey the available computational tools and storage services allowing
us to process the huge amount of data provided by the SEM instrument.

We therefore ported our Python code on an Apache Spark cluster implemen-
tation (Sec. 5.1) and we studied the performance behaviour of the whole pro-
gram on large image samples obtained in two different environments, the first
one created on an OpenStack infrastructure (Sec. 5.2), and the latter created
by means of Docker infrastructure on a real bare metal platform on a COSILT
cluster node (Sec. 5.3). Due to the fact that the Spark cluster is embedded
within a real HPC cluster we were also able, in this latter case, to evaluate
different file systems as storage for all the images to be processed. On COSILT
cluster three different options are available: we will first present individually the
results obtained with the shared NFS (Sec. 5.3.1), the parallel Lustre file system
(Sec. 5.3.2), and the local file system to the node itself (Sec. 5.3.3); finally, a
comparison is presented in Sec. 5.3.4.

5.1 The Code

In this section we briefly discuss the strategy we adopted for porting and par-
allelising the serial code described in Sec. 4.3.1 on a Spark (See Chapter 3)
cluster.

We remark that the classification part is only one section of the whole pro-
cessing, which also includes the conversion of the image from tif to jpg format
and the conversion from tif to a HDF5 file in which the top 5 label outputs of
the image recognition are added as new metadata, along with their rates. We
therefore included these two additional steps in the code we discuss below, and
we instrumented our parallel version for all these functions. We will report and
comment the different times and roles of the three sections mentioned above for
all the cases we studied on the bare metal infrastructure.

The final code is still written as a Python script that will be launched within
the Spark cluster with some scheduling mechanism. In this work we used the

45

46 CHAPTER 5. TECHNICAL RESULTS

Standalone mechanism through the bin/spark-submit script, which includes
the Spark dependencies for us in Python, and sets up the environment for the
Spark’s Python API to work properly.

The first thing the Spark program does is to create a SparkContext object,
which tells Spark how to access the cluster:
from pyspark import SparkContext

sc = SparkContext()

After this initialization, all the Spark methods to create and manipulate RDDs
can be used. We created the first RDD by parallelizing an existing collection of
image paths. Unless explicitly indicated, Spark automatically splits the RDD
into multiple partitions, which may be computed on different nodes of the clus-
ter. To take over control of this aspect, we manually forced the distribution of
the collection by setting the optional numSlices parameter:
tif RDD=sc.parallelize(tif list batched,numSlices=len(tif list batched))

where the tif list batched has been obtained by splitting the whole list ac-
cording to the number of cores and managing the rest:
def split list(image list, n core):

dim batch = [len(image list) // n core for in range(n core)]

for i in range(len(image list)%n core):

dim batch[i] = dim batch[i]+1

splitted list = []

k=0

for d in dim batch:

splitted list.append(image list[k:k+d])

k = k + d

return splitted list

To obtain the new RDDs, we called either the map or the flatMap trans-
formations, which apply the given function on each element of the RDD and
return a RDD of the contents of the iterator returned. For example:
jpg RDD = tif RDD.map(tif2jpg batch)

Due to the lazy evaluation of Spark (see Sec. 3.2.2), to obtain the final values
we had to perform a collect() action:
hdf5 RDD = labelled images.flatMap(tif2hdf5 batch).collect()

It is worth noting that each time we call a new action, the entire RDD must be
computed from scratch. To avoid this inefficiency, we explicitly asked Spark to
persist() the data for the RDD we used more than once, saving them in the
cache.

The TensorFlow graph reads the GraphDeph and the list of labels, which
are outputs of the neural network training (see Sec. 4.3.1). These two variables
must be available on each node, so the obvious option was to broadcast them:
model data bc = sc.broadcast(model data)

content bc = sc.broadcast(content)

We note that broadcast variables keep a read-only variable cached on each ma-
chine rather than shipping a copy of it with tasks. Spark attempts to distribute
broadcast variables using efficient broadcast algorithms to reduce communica-
tion cost.

5.2. OPENSTACK 47

5.2 Openstack

As described in Sec. 3.3.2, we built a 16 core Spark cluster, where the images
to be processed were locally stored. In the first version of the parallel code, the
images had been previously converted to the jpg format, so they were ready
to be processed in parallel by the TensorFlow image recognition, using a map

approach. In the second version, we took images in the original tif format
generated by the SEM, and included the tif2jpg conversion using the same
parallel approach. In the third version, we finally improved our initial imple-
mentation, by reading the input pipeline at the beginning of the TensorFlow
graph and thus noticeably reducing the execution time.

Figure 5.1: Comparison of the strong (upper panel) and weak (lower panel) scal-
ing of different implementations on Openstack, respectively as a function of the
number of cores using a sample of 2000 images, and as a function of the sample
size using 8 cores.

The performance of the different implementations have been compared in
Fig. 5.1, where the execution time is shown as a function of the sample size at
a fixed number of cores (top panel), and as a function of the core number for a
fixed sample size (bottom panel). The plotted values are the average over five

48 CHAPTER 5. TECHNICAL RESULTS

runs, with the error bars representing the standard deviation of the measures.
It is worth noticing the large fluctuations among the five runs that at a first
glance seem quite surprising: they reach up to 40%-50% in some cases.

After a careful analysis, we discovered that the task completed correctly
despite the fact that many jobs failed on some nodes of the Spark cluster. The
overall fault tolerant Spark architecture was stable enough to cope with the
failing jobs in a completely transparent way: the lost RDD partitions were re-
computed from the original dataset by the other worker nodes. However, it is
clear that execution times allocated to those jobs are not meaningful and reliable
in those cases. Many repetitions have been necessary to obtain the complete
overview shown in Fig. 5.1.

In the Figure, the comparison between the magenta and the purple bars in
both the panels gives an estimate of the time needed to execute the tif2jpg

conversion, which is a relatively small fraction of the total execution time for a
minimum sample size of roughly 1000 images. We will further investigate this
aspect, and will offer a more quantitative estimate of the relative durations of
the individual functions in Sec. 5.3. The cyan bars in both the panels show
the optimized version of the code represented by the purple bars. Given the
remarkable improvement obtained, from now on we will always refer only to
the optimized version. However, it must be noted that even with the optimized
version the time needed to process the images seems to be longer than expected.

Thus, our results suggest that the virtual environment is neither stable nor
performing well enough for our purposes. This is likely due to the limited
amount of resources available on the OpenStack infrastructure we used.

5.3 The computational node on COSILT

In this section we present and discuss results for the code which encompasses all
the three functions on each parallel batch of images: the tif2jpg conversion, the
TensorFlow image recognition, and the tif2hdf5 conversion with the metadata
writing.

We run this code on the computational node of COSILT described in 3.3.3,
measuring the time of each of the three functions.

It is also worth studying the role of multithreading and how it could affect the
performance, due to the fact that TensorFlow is natively multithreaded. In gen-
eral, multithreaded code will detect the number of cores available on a machine
and make use of all of them. The number of threads available to the TensorFlow
process can however be explicitly configured by passing a tf.ConfigProto ar-
gument when constructing the tf.Session in which the image recognition takes
place:
tf.Session(config=tf.ConfigProto(intra op parallelism threads=1))

In this way, we were able to compare the behaviour of both the single thread
and the multithread implementations.

Moreover, as already mentioned, we investigated with care the impact of the
file system on the overall performance by running the code on data located in
the NFS (Sec. 5.3.1), in the Lustre file system (Sec. 5.3.2) and in the local file
system (Sec. 5.3.3).

5.3. THE COMPUTATIONAL NODE ON COSILT 49

5.3.1 Network File System

The NFS allows a system to share directories and files with others over a net-
work: in case of COSILT cluster, the NFS is mounted over infiniband high speed
network; the NFS server provides a RAID5 disk.

The execution times for both single thread and multithread algorithms are
compared in Fig. 5.2, where different panels are shown for different sample sizes.
Scalability for both the algorithms is rather good on a relatively small number
of cores (N . 8), but with a further increase of the core number it seems that
no real gain is obtained.

We note that the executors are distributed by Spark in a balanced way: if
8 cores are requested for a job, and two workers are available, 4 cores will be
allocated to each worker. Our cluster consists of 2 workers with 12 cores each.
Thus, a single process running on a worker has 12 physical threads available.
When using 2 cores, 12 threads are launched on each worker, when using 4 cores,
24 threads are launched on each worker, and so on.

Figure 5.2: Execution time of single thread (magenta) and multithread (purple)
TensorFlow image recognition, tif2jpg conversion (yellow) and tif2hdf5 (cyan)
as a function of the number of cores on the COSILT node, using different sample
sizes. Data images are located in the NFS.

In the range in which scalability is good, multithreading is of course much
more efficient than single thread algorithm and the codes run faster. On the
other hand, comparing the plots in Fig. 5.3 we can note that the speedup of
the single thread algorithm is higher than the multithread one’s. This is due in
part to the higher baseline for the single thread algorithm (the execution time
is nearly double the execution time for the multithread one), and in part to the

50 CHAPTER 5. TECHNICAL RESULTS

mutual interference of multiple threads when the number of cores is N & 4.

Thus, it is not surprising that for a larger number of Spark executors the
multithread algorithm is not working optimally, due to the limited number of
physical cores: i.e., threads are mutually interfering negatively due to the lack
of physical resources.

In Fig. 5.2 the execution times of tif2jpg conversion (yellow) and tif2hdf5

(cyan) are also plotted, in addition to the time of the TensorFlow image recogni-
tion. As we have estimated in Sec. 5.2, it is now evident that the execution time
is dominated by the TensorFlow image recognition function. As expected, the
tif2jpg and the tif2hdf5 conversions take approximatively the same amount
of time, being two equivalent functions. Moreover, their scalability is good,
confirming the image recognition to be the non-optimally scaling function, es-
pecially in the multithread case.

Figure 5.3: Speedup of single thread and multithread implementations as a func-
tion of the number of cores on the COSILT node, using different sample sizes.
Data images are located in the NFS. Errorbars, of the order of 10%, are not
reported to avoid confusion.

5.3. THE COMPUTATIONAL NODE ON COSILT 51

5.3.2 Lustre file system

The Lustre File System is a high-performance distributed file system, providing
high I/O throughput in clusters and shared-data environments, and also inde-
pendence from the location of data on the physical storage. On the COSILT
infrastructure it spawns two I/O servers with two OSTs each. The network
connectivity is provided by Infiniband.

Figure 5.4: Execution time of single thread (magenta) and multithread (purple)
TensorFlow image recognition, tif2jpg conversion (yellow) and tif2hdf5 (cyan)
as a function of the number of cores on the COSILT node, using different sample
sizes. Data images are located in the Lustre file system.

The execution times for both single thread (magenta) and multithread (pur-
ple) TensorFlow image recognition, tif2jpg conversion (yellow) and tif2hdf5

(cyan) functions are compared in Fig. 5.4, where different panels are shown for
different sample sizes. The scalability for both the algorithms is slightly better
than for the NFS case, in particular for a large number of images (∼ 10, 000).
This is even more evident in Fig. 5.5, where the speedup of single thread (top
panel) and multithread (bottom panel) algorithms is shown as a function of the
number of cores for different sizes.

The same considerations concerning the multithreading made in Sec. 5.3.1
apply here. It can be noted how the execution times of tif2jpg and the
tif2hdf5 conversions are fluctuating, especially for a large number of cores
(N & 16). This is not a serious problem, which can be explained with the
statistical fluctuations of the runs, of the order of 20%.

52 CHAPTER 5. TECHNICAL RESULTS

Figure 5.5: Speedup of single thread and multithread implementations as a func-
tion of the number of cores on the COSILT node, using different sample sizes.
Data images are located in the Lustre filesystem. Errorbars, of the order of 20%,
are not reported to avoid confusion.

5.3.3 Local file system

Finally, we explored the performance of the parallel implementation when em-
ploying the local file system to the node on the COSILT cluster. Such a storage
area is provided by a single SATA disk of about 1 TB size.

Fig. 5.4 shows the execution times for both single thread (magenta) and mul-
tithread (purple) TensorFlow image recognition, tif2jpg conversion (yellow)
and tif2hdf5 (cyan) functions, where different panels are for different sample
sizes. The scalability for both the algorithms is the worst among the three file
systems, in particular for a relatively small number of images (. 5, 000). This
is even more evident in Fig. 5.5, where the speedup of single thread (top panel)
and multithread (bottom panel) algorithms is shown as a function of the num-
ber of cores for different sizes. Fluctuations in the data points are considerable,
and may be partially explained by statistical errors, which in this case amount
to 25-30%.

5.3. THE COMPUTATIONAL NODE ON COSILT 53

Figure 5.6: Execution time of single thread (magenta) and multithread (purple)
TensorFlow image recognition, tif2jpg conversion (yellow) and tif2hdf5 (cyan)
as a function of the number of cores on the COSILT node, using different sample
sizes. Data images are located in the local files ystem.

The execution time of the multithread algorithm increases when more than
8 cores are used. This is partially due to the mutual interference of multiple
threads as the number of involved processes increases. However, this clearly
indicates that the local file system is not able to manage the I/O overhead in
an optimal way.

On the other hand, the scaling of tif2jpg and the tif2hdf5 parts is good
with respect to the TensorFlow image recognition for both the multithread and
the single thread implementations, which seems to represent the bottleneck in
the process. Further and more dedicated investigations are needed to fully
understand this issue.

5.3.4 Comparison of different file systems

The behaviour of our application is generally similar for all the file systems, i.e.
limited scalability, especially for the multithreaded version, but some pattern
performance related to the different file systems clearly emerge. In this section,
we will briefly compare the impact on performance of the studied file systems for
some significant cases, highlighting some differences. The top panel of Fig. 5.8
shows the total execution time of the multithread algorithm running on 2 cores,
when all the physical threads are still employed in an efficient way, for the three
file systems. Computational times are similar, and we observe that the local file
system seems to perform slightly better than the Lustre file system: this should

54 CHAPTER 5. TECHNICAL RESULTS

Figure 5.7: Speedup of single thread and multithread implementations as a func-
tion of the number of cores on the COSILT node, using different sample sizes.
Data images are located in the local filesystem. Errorbars, of the order of 25-30%,
are not reported to avoid confusion.

be due to the favourable data proximity.
The top panel of Fig. 5.8 shows the total execution time of the single thread

algorithm when all the available 24 cores are used, for the three file systems.
Here the situation is quite different with respect to the previous case: the local
file system here gives the worst performance, while Lustre file system is per-
forming better. Our explanation is that 24 independent processes are actually
overwhelming the capacity on the single local disk, while the Lustre FS thanks
to its characteristic high I/O throughput is able to deliver much better perfor-
mance. At first sight, NFS is delivering relatively good performance with respect
to the local disk: our guess here is that the combined action of RAID and the
infiniband network is able to reduce the congestion of the I/O operations on the
same storage area.

5.3. THE COMPUTATIONAL NODE ON COSILT 55

Figure 5.8: File system comparison with a fixed size of 10000 images. Top panel:
multithread execution time comparison at 4 cores. Bottom panel: single thread
execution time comparison at 24 cores.

56 CHAPTER 5. TECHNICAL RESULTS

Chapter 6

Conclusions

In this thesis, we explored different methods and tools to implement a semi-
automatic classification of images coming from the SEM instrument, with the
final aim of providing a searchable database to the nanoscience community.

In the first part of our work, we retrained the last layer of a pre-trained neural
network based on the Inception-v3 architecture using supervised learning, and
employed the TensorFlow library to perform image recognition on SEM images.

The results of the image recognition show that the neural network has a
high accuracy at detecting distinct and representative images of each category,
however certain subcategories of different objects can look very similar to one
another. This effect is primarily due to the nature of the SEM which allows
magnification over a very wide range (250-500,000 times). In fact, a zoomed
out image of a structure can look completely different to its surface topology
when zoomed in. Therefore, while the zoomed out image may be easily classified,
the zoomed in image could be confused with another category.

The summary of the test results shows that when the score for the top ranked
category is high, there is a high probability that the net has identified the correct
category. However, when the score of the top ranked category is low, it becomes
more likely that either the second category is correct, or both of the top two
categories are incorrect. This information can be used in deciding whether to
automatically assign labels to SEM images taken by scientists, or, based on the
score of the top ranked category, to suggest the most likely categories to the
user to choose from.

As a matter of fact, the image classification through TensorFlow used to
obtain the results presented above should be run on hundreds of thousand of
images. Thus, in the second part of our work, we surveyed the available com-
putational tools and storage services allowing us to perform a massive data
processing.

Our results shows that the Spark architecture is optimally suited for our
purposes, and has many advantages: it is simple to use, efficient, flexible, and
fault tolerant.

We compared the implementation on two different environments: the first
one created on an OpenStack infrastructure, and the second created by means
of Docker infrastructure on a bare metal platform on a real HPC cluster node.
In this latter case, we were also able to evaluate different file systems as storage
for all the images to be processed: a shared NFS, a parallel Lustre file system,

57

58 CHAPTER 6. CONCLUSIONS

and the local file system to the node itself.
Our results suggest that the virtual environment is neither stable nor per-

forming well enough for our purposes. This is likely due to the limited amount
of resources available on the OpenStack infrastructure we used. As for the HPC
cluster node, the scalabilty of our application is generally limited for all the files
systems, especially for the multithreaded version. However, some differences
arise: when few cores are allocated and all the physical threads are employed
in an efficient way, the local file system seems to perform slightly better than
the others, probably due to the favourable data proximity. On the other hand,
when all the available resources of the cluster are employed the Lustre file sys-
tem is performing better than the others, thanks to its characteristic high I/O
throughput.

Further and more dedicated investigations are needed to obtain a detailed
and focused analysis. With a complete view of all these aspects, we are then
planning to employ our parallel image recognition engine, eventually using
GPUs, to classify the remaining 125,000 SEM images in a semi-automatic way.
We will also be able to provide the estimate of the time needed to process such
amount of data.

Once classified and labelled, the images will be used to further enhance the
accuracy of the neural network training. We will also explore the improvement
that can be reached by training more layers in addition to the final one.

This work will be integrated into the NFFA-IDRP workflow, which will en-
visage the ingestion of data from SEM in real time. For this purpose, it will be
crucial to employ the Spark stream.

The development of the complete workflow will be exported to the NFFA
partners, since 10 SEMs belongs to the collaboration. Thus, our work will be
very innovative and useful for the nanoscience community.

Bibliography

[1] M. D. Wilkinson et al., The FAIR Guiding Principles for scientific data
management and stewarship, Scientific Data, 3:160018, 2016

[2] www.nffa.eu

[3] www.rd-alliance.org

[4] COMMISSION RECOMMENDATION of 17.7.2012 on access to and
preservation of scientific information,
http://ec.europa.eu/research/science-society/document library/pdf 06/recommendation
-access-and-preservation-scientific- information en.pdf

[5] www.iom.cnr.it

[6] www.eudat.eu

[7] http://pan-data.eu

[8] kitdatamanager.net

[9] www.elastic.co/products/elasticsearch

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, JMLR,
2014

[11] https://support.hdfgroup.org/HDF5

[12] lustre.org

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the
Inception Architecture for Computer Vision, CoRR, 1512.00567, 2016

[14] www.tensorflow.org

[15] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Book in preparation
for MIT Press, 2016, www.deeplearningbook.org

[16] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997

[17] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classication with deep
convolutional neural networks, NIPS, 2012

[18] S. Ioffe & C. Szegedy, Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, CoRR, 1502.03167, 2015

59

60 BIBLIOGRAPHY

[19] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-
stage architecture for object recognition?, ICCV, 2009

[20] V. Nair & G. Hinton, Rectied linear units improve restricted Boltzmann
machines, ICML, 2010 .

[21] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectier neural networks, AIS-
TATS, 2011

[22] Y. LeCun, Generalization and network design strategies, Technical Report
CRG-TR-89-4, University of Toronto, 1989

[23] Y. Zhou & R. Chellappa, Computation of optical ow using a neural network,
IEEE, 1988

[24] https://github.com/tensorflow/tensorflow

[25] https://github.com/tensorflow/models/tree/master/slim

[26] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, arXiv:1502.01852,
2015

[27] A. Canziani, E. Culurciello, A. Paszke, An Analysis of Deep Neural Network
Models for Practical Applications, arXiv:1605.07678, 2016

[28] J. Donahue, y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Dar-
rell, DeCAF: A Deep Convolutional Activation Feature for Generic Visual
Recognition, DBLP journals, arXiv:1310.1531, 2013

[29] www.image-net.org

[30] www.exact-lab.it

[31] www.nvidia.it

[32] www.docker.com

[33] aws.amazon.com/documentation/machine-learning

[34] spark.apache.org

[35] hadoop.apache.org

[36] H. Karau, A. Konwinski, P. Wendell, M. Zaharia, Learning Spark, O’Reilly,
2015

[37] J. Dean & S. Ghemawat, MapReduce: Simplified dta processing on large
clusters, Google Inc., OSDI, 2004

[38] C. Henderson, Scalability with MapReduce, published online, craighender-
son.co.uk/papers/software scalability mapreduce/, 2010

[39] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: Distributed Data-
parallel Programs from Sequential Building Blocks, Proceedings of the 2007
Eurosys Conference, 2007

BIBLIOGRAPHY 61

[40] www.databricks.com

[41] docs.openstack.org

[42] spark.apache.org/downloads.html

