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1 Introduction

Although asymptotically flat or (anti) de Sitter (A)dS backgrounds have been studied

extensively in (super)gravity and string theory, solutions that are asymptotically supported

by matter fields have attracted attention relatively recently. Such backgrounds range from

flux vacua in string theory to holographic backgrounds dual to supersymmetric quantum
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field theories (QFTs) [1, 2] and non-relativistic systems [3–6], to name a few. Understanding

the macroscopic properties of black holes with such exotic asymptotics is not only essential

in order to address questions of stability and uniqueness, but also a first step towards their

microscopic description.

Thermodynamic quantities such as the black hole entropy or temperature are not

sensitive to the asymptotic structure of spacetime, since they are intrinsically connected

with the horizon, but observables like conserved charges and the free energy depend heavily

on the spacetime asymptotics. This is particularly important for backgrounds that are

asymptotically supported by matter fields because the conserved pre-symplectic current

that gives rise to conserved charges receives contributions from the matter fields [7, 8]. As

a result, the usual methods for computing the conserved charges, such as Komar integrals,

often do not work. Moreover, the large distance divergences that plague the free energy and

the conserved charges cannot be remedied by techniques such as background subtraction,

since it is not always easy, or even possible, to find a suitable background with the same

asymptotics. The main motivation behind this paper is addressing these difficulties using a

general and systematic approach that does not rely on the specific details of the theory or

its asymptotic solutions, even though we will demonstrate the general methodology using

a concrete example.

The backgrounds we are going to consider were originally obtained from generic multi-

charge asymptotically flat black holes in four [9–13] and five dimensions [14] through a

procedure dubbed ‘subtraction’ [15, 16]. The subtraction procedure consists in excising

the asymptotic flat region away from the black hole by modifying the warp factor of the

solution, in such a way that the scalar wave equation acquires a manifest SL(2,R) ×
SL(2,R) conformal symmetry. This leaves the near-horizon region intact, but the resulting

background is asymptotically conical [17]. Moreover, it is not necessarily a solution of the

original equations of motion.

It was later realized that the subtracted geometries are solutions [16, 17] of the STU

model in four dimensions, an N = 2 supergravity theory coupled to three vector multi-

plets [18]. The STU model can be obtained from a T 2 reduction of minimal supergravity

coupled to a tensor multiplet in six dimensions. In particular, the bosonic action is obtained

from the reduction of 6-dimensional bosonic string theory

2κ26L6 = R ⋆ 1− 1

2
⋆ dφ ∧ dφ− 1

2
e−

√
2φ ⋆ F(3) ∧ F(3), (1.1)

where F(3) = dB(2), and then dualizing the 4-dimensional 2-form to an axion. The re-

sulting 4-dimensional theory has an O(2, 2) ≃ SL(2,R)× SL(2,R) global symmetry, which

is enhanced to SL(2,R)3 on-shell, when electric-magnetic S-duality transformations are

included [11].

In [17] it was shown that subtracted geometries correspond to a scaling limit of the

general non-extremal 4-charge rotating asymptotically flat black hole solutions of the STU

model [10, 11], with all four U(1) gauge fields electrically sourced. In [19], starting with the

same non-extremal asymptotically flat black holes, but in a frame where only one gauge

field is electrically sourced while the remaining three are magnetically sourced, it was shown
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that the subtracted geometries can also be obtained by Harrison transformations, a solution

generating technique exploiting the hidden SO(4, 4) symmetry of the STU model upon

reduction on a Killing vector [11]. General interpolating solutions between asymptotically

flat black holes in four and five dimensions and their subtracted geometry counterparts

were subsequently constructed in [20] by extending these techniques.

When uplifted to five dimensions the subtracted geometries become a BTZ×S2 back-

ground, with the 2-sphere fibered over the BTZ black hole [16, 21], which makes manifest

the origin of the SL(2,R) × SL(2,R) symmetry of the wave equation. Using this connec-

tion with the BTZ black hole, [22] showed that the parameters that need to be tuned in

order to interpolate between the asymptotically flat black holes and the subtracted ge-

ometries correspond to the couplings of irrelevant scalar operators in the two-dimensional

conformal field theory (CFT) at the boundary of the asymptotically AdS3 factor of the

five-dimensional geometry.

The thermodynamics of asymptotically conical black holes were first studied in [23].

In the present work we emphasize the importance of the variational problem in black hole

thermodynamics. Using lessons from asymptotically AdS backgrounds [24], we show that a

well posed variational problem automatically ensures that all thermodynamic observables

are finite and satisfy the first law of thermodynamics. This relegates the problem of seeking

the correct definition of conserved charges in backgrounds with new exotic asymptotics to

that of properly formulating the variational principle, which in non-compact spaces can be

achieved through the following algorithmic procedure:

i) Firstly, the integration constants parameterizing solutions of the equations of motion

must be separated into ‘normalizable’ and ‘non-normalizable’ modes. A complete set

of modes parameterizes the symplectic space of asymptotic solutions. Normalizable

modes are free to vary in the variational problem, while non-normalizable modes

should be kept fixed.

ii) Secondly, the non-normalizable modes are not determined uniquely, but only up to

transformations induced by the local symmetries of the bulk theory, such as bulk

diffeomorphisms and gauge transformations. Hence, what should be kept fixed in the

variational problem is in fact the equivalence class of non-normalizable modes under

such transformations [24].

iii) Formulating the variational problem in terms of equivalence classes of non-

normalizable modes requires the addition of a covariant boundary term, Sct, to the

bulk action, which can be determined by solving asymptotically the radial Hamilton-

Jacobi equation [25]. Since radial translations are part of the local bulk symmetries,

formulating the variational problem in terms of equivalence classes ensures that the

total action is independent of the radial coordinate, and hence free of long-distance

divergences.

iv) Finally, besides determining the boundary term Sct, the first class constraints of

the radial Hamiltonian formulation of the bulk dynamics also lead to conserved
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charges associated with Killing vectors. The canonical transformation generated

by the boundary term Sct ‘renormalizes’ the phase space variables such that these

charges are independent of the radial cutoff, and hence finite. These charges automat-

ically satisfy the first law of thermodynamics, with all normalizable modes treated

as free parameters and the non-normalizable modes allowed to vary only within the

equivalence class under local bulk symmetries.

Although this algorithm originates in the AdS/CFT correspondence and holographic

renormalization [26–35], it is in principle applicable to any gravity theory, including the sub-

tracted geometries we consider here. However, in this case we find that there are two addi-

tional complications, both of which have been encountered before in a holographic context.

The first complication arises from the fact that subtracted geometries are obtained as solu-

tions of the STU model provided certain conditions are imposed on the non-normalizable

modes. For example, it was shown in [22] that certain modes (interpreted as couplings of

irrelevant scalar operators in the dual CFT2) need to be turned off in the asymptotically

flat solutions in order to obtain the subtracted geometries. We show that all conditions

among the non-normalizable modes required to obtain the subtracted geometries can be

expressed as covariant second class constraints on the phase space of the theory. This is

directly analogous to the way Lifshitz asymptotics were imposed in [36]. The presence of

asymptotic second class constraints in these backgrounds is crucial for being able to solve

the radial Hamilton-Jacobi equation and to obtain the necessary boundary term Sct.

The second complication concerns specifically the duality frame in which the STU

model was presented in e.g. [17, 23]. In this particular frame, one of the U(1) gauge

fields supporting the subtracted geometries asymptotically dominates the stress tensor,

which is reminiscent of fields in asymptotically AdS space that are holographically dual

to an irrelevant operator. The variational problem for such fields is known to involve

additional subtleties [37], which we also encounter in this specific duality frame of the

STU model. We address these subtleties by first formulating the variational problem in a

different duality frame and then dualizing to the frame where these complications arise.

Remarkably, the form of the boundary term that we obtain through this procedure is

exactly of the same form as the boundary term for fields dual to irrelevant operators in

asymptotically AdS backgrounds.

It should be emphasized that our analysis of the variational problem and the derivation

of the necessary boundary terms does not assume or imply any holographic duality for

asymptotically conical black holes in four dimensions. Nevertheless, subtracted geometries

possess a hidden (spontaneously broken) SL(2,R)×SL(2,R)×SO(3) symmetry which can be

traced to the fact that they uplift to an S2 fibered over a three-dimensional BTZ black hole

in five dimensions [16, 17]. The most obvious candidate for a holographic dual, therefore,

would be a two-dimensional CFT at the boundary of the asymptotically AdS3 factor of

the 5D uplift [22]. However, if a holographic dual to asymptotically conical backgrounds

in four dimensions exists, it is likely that its Hilbert space overlaps with that of the two-

dimensional CFT only partially. In particular, we show that the variational problems in

four and five dimensions are not fully compatible in the sense that not all asymptotically
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conical backgrounds uplift to asymptotically AdS3 × S2 solutions in five dimensions, and

conversely, not all asymptotically AdS3 × S2 backgrounds reduce to solutions of the STU

model. This is because turning on generic sources on the boundary of AdS3 leads to

Kaluza-Klein modes in four dimensions that are not captured by the STU model, while

certain modes that are free in the four-dimensional variational problem must be frozen or

quantized in order for the solutions to be uplifted to 5D. Although we do not pursue a

holographic understanding of the subtracted geometries in the present work, elucidating

the relation between the four and five-dimensional variational problems allows us to find

a precise map between the thermodynamics of asymptotically conical black holes in four

dimensions and that of the BTZ black hole.

The rest of the paper is organized as follows. We begin with a review of the STU

model and the relevant truncations in two distinct duality frames in section 2, paying

particular attention to the surface terms that arise from the dualization procedure. In

section 3 we reparameterize the subtracted geometries in a way that simplifies the sepa-

ration of the parameters into boundary conditions and dynamical modes that are allowed

to vary independently in the variational problem. Moreover, by analyzing the asymptotic

symmetries we identify the equivalence classes of boundary conditions in terms of which

the variational problem must be formulated. Section 4 contains the main technical results

of the paper. After arguing that the subtraction procedure, i.e. excising the asymptotically

flat region in order to zoom into the conical asymptotics of the subtracted geometries,

can be implemented in terms of covariant second class constraints on the phase space of

the STU model, we derive the covariant boundary terms required in order to formulate

the variational problem in terms of equivalence classes of boundary conditions under the

asymptotic symmetries. The same boundary terms ensure that the on-shell action is free

of long-distance divergences and allows us to construct finite conserved charges associated

with any asymptotic Killing vector. In section 5 we evaluate explicitly these conserved

charges for the subtracted geometries and demonstrate that they satisfy the Smarr for-

mula and the first law of black hole thermodynamics. Section 6 discusses the uplift of

the STU model to five dimensions and the Kaluza-Klein reduction of the resulting theory

on the internal S2 to three dimensions, which relates the subtracted geometries to the

BTZ black hole. By keeping track of all surface terms arising in this sequence of uplifts

and reductions, we provide a precise map between the thermodynamics of the subtracted

geometries and that of the BTZ black hole. We end with some concluding remarks in

section 7. Some technical details are presented in two appendices.

2 The STU model and duality frames

In this section we review the bosonic sector of the 2-charge truncation of the STU model

that is relevant for describing the subtracted geometries. We will do so in the duality frame

discussed in [17], where both charges are electric, as well as in the one used in [19], where

there is one electric and one magnetic charge. We will refer to these frames as ‘electric’

and ‘magnetic’ respectively. As it will become clear from the subsequent analysis, in order
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to compare the thermodynamics in the two frames, it is necessary to keep track of surface

terms introduced by the duality transformations.

2.1 Magnetic frame

The bosonic Lagrangian of the STU model in the duality frame used in [19] is given by

2κ24L4 = R ⋆ 1− 1

2
⋆ dηa ∧ dηa −

1

2
e2ηa ⋆ dχa ∧ dχa

− 1

2
e−η0 ⋆ F 0 ∧ F 0 − 1

2
e2ηa−η0 ⋆ (F a + χaF 0) ∧ (F a + χaF 0)

+
1

2
Cabcχ

aF b ∧ F c +
1

2
Cabcχ

aχbF 0 ∧ F c +
1

6
Cabcχ

aχbχcF 0 ∧ F 0, (2.1)

where ηa (a = 1, 2, 3) are dilaton fields and η0 =
∑3

a=1 ηa. The symbol Cabc is pairwise

symmetric with C123 = 1 and zero otherwise. The Kaluza-Klein ansatz for obtaining this

action from the 6-dimensional action (1.1) is given explicitly in [19]. This frame possesses an

explicit triality symmetry, exchanging the three gauge fields Aa, the three dilatons ηa and

the three axions χa. In this frame, the subtracted geometries source all three gauge fields

Aa magnetically, while A0 is electrically sourced. Moreover, holographic renormalization

turns out to be much more straightforward in this frame compared with the electric frame.

In order to describe the subtracted geometries it suffices to consider a truncation

of (2.1), corresponding to setting η1 = η2 = η3 ≡ η, χ1 = χ2 = χ3 ≡ χ, and A1 = A2 =

A3 ≡ A. The resulting action can be written in the σ-model form

S4 =
1

2κ24

∫

M
d4x

√−g

(
R[g]− 1

2
GIJ∂µϕ

I∂µϕJ−ZΛΣF
Λ
µνF

Σµν −RΛΣǫ
µνρσFΛ

µνF
Σ
ρσ

)
+ SGH,

(2.2)

where

SGH =
1

2κ24

∫

∂M
d3x

√−γ 2K, (2.3)

is the standard Gibbons-Hawking [38] term and we have defined the doublets

ϕI =

(
η

χ

)
, AΛ =

(
A0

A

)
, I = 1, 2, Λ = 1, 2, (2.4)

as well as the 2× 2 matrices

GIJ =

(
3 0

0 3e2η

)
, ZΛΣ =

1

4

(
e−3η + 3e−ηχ2 3e−ηχ

3e−ηχ 3e−η

)
, RΛΣ =

1

4

(
χ3 3

2χ
2

3
2χ

2 3χ

)
. (2.5)

As usual, ǫµνρσ =
√−g εµνρσ denotes the totally antisymmetric Levi-Civita tensor, where

εµνρσ = ±1 is the Levi-Civita symbol. Throughout this paper we choose the orientation in

M so that εrtθφ = 1. We note in passing that the Lagrangian (2.2) is invariant under the

global symmetry transformation

eη → µ2eη, χ → µ−2χ, A0 → µ3A0, A → µA, ds2 → ds2, (2.6)

where µ is an arbitrary non-zero constant parameter.
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2.2 Electric frame

The STU model in the duality frame in which the subtracted geometries are presented

in [17] can be obtained from (2.2) by dualizing the gauge field A.1 Following [13], we

dualize A by introducing a Lagrange multiplier, Ã, imposing the Bianchi identity dF = 0,

and consider the action

S̃4 = S4+
1

2κ24

∫

M
3Ã∧dF = S4+

1

2κ24

∫

M
3F̃ ∧F − 3

2κ24

∫

∂M
Ã∧F +

3

2κ24

∫

H+

Ã∧F. (2.7)

The factor of 3 is a convention, corresponding to a choice of normalization for Ã, chosen

such that the resulting electric frame model agrees with the one in [17]. The term added to

S4 vanishes on-shell and so the on-shell values of S̃4 and S4 coincide. The total derivative

term that leads to surface contributions from the boundary, ∂M, and the outer horizon,

H+, is crucial for comparing the physics in the electric and magnetic frames. As we will

discuss later on, this surface term is also the reason behind the subtleties of holographic

renormalization in the electric frame.

Integrating out F in (2.7) we obtain

Fµν = −(4χ2 + e−2η)−1

(
1

2
ǫµνρσ e−η(F̃ − χ2F 0)ρσ + 2χF̃µν + χ(2χ2 + e−2η)F 0

µν

)
. (2.8)

Inserting this expression for F in (2.7) leads to the electric frame action

S̃4 =
1

2κ24

∫

M

(
R ⋆ 1− 3

2
⋆ dη ∧ dη − 3

2
e2η ⋆ dχ ∧ dχ− 1

2
e−3η ⋆ F 0 ∧ F 0

−3

2

e−η

(4χ2 + e−2η)
⋆ (F̃ − χ2F 0) ∧ (F̃ − χ2F 0)

− χ

(4χ2 + e−2η)

[
3F̃ ∧ F̃ + 3(2χ2 + e−2η)F̃ ∧ F 0 − χ2(χ2 + e−2η)F 0 ∧ F 0

])

− 3

2κ24

∫

∂M
Ã ∧ F +

3

2κ24

∫

H+

Ã ∧ F + SGH. (2.9)

As in the magnetic frame, it is convenient to write the bulk part of the action in σ-model

form as

S̃4 =
1

2κ24

∫

M
d4x

√−g

(
R[g]− 1

2
GIJ∂µϕ

I∂µϕJ − Z̃ΛΣF̃
Λ
µνF̃

Σµν − R̃ΛΣǫ
µνρσF̃Λ

µνF̃
Σ
ρσ

)

− 3

2κ24

∫

∂M
Ã ∧ F +

3

2κ24

∫

H+

Ã ∧ F + SGH, (2.10)

1Notice that the duality frame in eq. (1) of [17] is not the one in which the solutions are given in that

paper. As mentioned above eq. (3), two of the gauge fields in (1) are dualized in the solutions discussed.

The corresponding action, which was not given explicitly in [17], can be obtained from the magnetic frame

action (2.2) here by first implementing the field redefinitions A → −A and χ → −χ and then dualizing A

as we describe here. The resulting action differs by a few signs from our electric frame action (2.10).
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where we have defined

ÃΛ =

(
A0

Ã

)
, Z̃ΛΣ =

1

4

(
e−3η + 3e−ηχ4

4χ2+e−2η − 3e−ηχ2

4χ2+e−2η

− 3e−ηχ2

4χ2+e−2η
3e−η

4χ2+e−2η

)
,

R̃ΛΣ =
χ

4(4χ2 + e−2η)

(
χ2(χ2 + e−2η) −3

2(2χ
2 + e−2η)

−3
2(2χ

2 + e−2η) −3

)
. (2.11)

As in the magnetic frame, the action (2.10) is invariant under the global symmetry trans-

formation

eη → µ2eη, χ → µ−2χ, A0 → µ3A0, Ã → µ−1Ã, ds2 → ds2. (2.12)

3 Asymptotically conical backgrounds

The general rotating subtracted geometry backgrounds are solutions of the equations of

motion following from the action (2.2) or (2.10) and take the form [17, 19]2

ds2 =

√
∆

X
dr̄2 − G√

∆
(dt̄+A)2 +

√
∆

(
dθ2 +

X

G
sin2 θdφ̄2

)
,

eη =
(2m)2√

∆
, χ =

a (Πc −Πs)

2m
cos θ,

A0 =
(2m)4a (Πc −Πs)

∆
sin2 θdφ̄+

(2ma)2 cos2 θ (Πc −Πs)
2 + (2m)4ΠcΠs

(Π2
c −Π2

s)∆
dt̄,

A =
2m cos θ

∆

([
∆− (2ma)2(Πc −Πs)

2 sin2 θ
]
dφ̄− 2ma (2mΠs + r̄(Πc −Πs)) dt̄

)
,

Ã = − 1

2m

(
r̄−m− (2ma)2(Πc−Πs)

(2m)3(Πc +Πs)

)
dt̄+

(2ma)2(Πc−Πs)[2mΠs+r̄(Πc−Πs)] cos
2 θ

2m∆
dt̄

+ a(Πc −Πs) sin
2 θ

(
1 +

(2ma)2(Πc −Πs)
2 cos2 θ

∆

)
dφ̄, (3.1)

where

X = r̄2 − 2mr̄ + a2, G = X − a2 sin2 θ, A =
2ma

G
((Πc −Πs)r̄ + 2mΠs) sin

2 θdφ̄,

∆ = (2m)3(Π2
c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2 cos2 θ, (3.2)

and Πc, Πs, a and m are parameters of the solution.

In order to study the thermodynamics of these backgrounds it is necessary to identify

which parameters are fixed by the boundary conditions in the variational problem. A full

analysis of the variational problem for the actions (2.2) or (2.10) requires knowledge of the

general asymptotic solutions and is beyond the scope of the present paper. However, we can

consider the variational problem within the class of stationary solutions (3.1). To this end,

2In order to compare this background with the expressions given in eqs. (24) and (25) of [17], one should

take into account the field redefinition A → −A, χ → −χ, before the dualization of A, as mentioned in

footnote 1, and add a constant pure gauge term. Moreover, there is a typo in eq. (25) of [17]: the term

2mΠ2
s cos

2 θdt̄ should be replaced by 2mΠs(Πs −Πc) cos
2 θdt̄.
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it is convenient to reparameterize these backgrounds by means of a suitable coordinate

transformation, accompanied by a relabeling of the free parameters. In particular, we

introduce the new coordinates

ℓ4r = (2m)3(Π2
c −Π2

s)r̄ + (2m)4Π2
s − (2ma)2(Πc −Πs)

2,

k

ℓ3
t =

1

(2m)3(Π2
c −Π2

s)
t̄, φ = φ̄− 2ma(Πc −Πs)

(2m)3(Π2
c −Π2

s)
t̄, (3.3)

where ℓ and k are additional non-zero parameters, whose role will become clear shortly.

Moreover, we define the new parameters

ℓ4r± = (2m)3m(Π2
c +Π2

s)− (2ma)2(Πc −Πs)
2 ±

√
m2 − a2(2m)3(Π2

c −Π2
s),

ℓ3ω = 2ma(Πc −Πs), B = 2m, (3.4)

which can be inverted in order to express the old parameters in terms of the new ones,

namely

Πc,s =
ℓ2

B2

(
1

2
(
√
r+ +

√
r−)±

√
ℓ2ω2 +

1

4
(
√
r+ −√

r−)
2

)
,

a =
Bℓω

2
√
ℓ2ω2 + 1

4

(√
r+ −√

r−
)2 , m = B/2. (3.5)

Rewriting the background (3.1) in terms of the new coordinates and parameters we obtain3

eη =
B2/ℓ2√

r + ℓ2ω2 sin2 θ
, χ =

ℓ3ω

B2
cos θ,

A0 =
B3/ℓ3

r + ℓ2ω2 sin2 θ

(√
r+r− kdt+ ℓ2ω sin2 θdφ

)
,

A =
B cos θ

r + ℓ2ω2 sin2 θ
(−ω

√
r+r− kdt+ rdφ) ,

Ã = − ℓ

B

(
r − 1

2
(r+ + r−)

)
kdt+

ωℓ3

B
cos2 θ

(
ω
√
r+r− kdt− rdφ

r + ω2ℓ2 sin2 θ

)
+

ωℓ3

B
dφ,

ds2 =
√
r + ℓ2ω2 sin2 θ

(
ℓ2dr2

(r − r−)(r − r+)
− (r − r−)(r − r+)

r
k2dt2 + ℓ2dθ2

)

+
ℓ2r sin2 θ√

r + ℓ2ω2 sin2 θ

(
dφ− ω

√
r+r−
r

kdt

)2

. (3.6)

Several comments are in order here. Firstly, the two parameters r± are the locations

of the outer and inner horizons respectively, and clearly correspond to normalizable per-

turbations. A straightforward calculation shows that ω is also a normalizable mode. We

will explicitly confirm this later on by showing that the long-distance divergences of the

3Since these solutions carry non-zero magnetic charge, the gauge potential A must be defined in the

north (θ < π/2) and south hemispheres respectively as [39, 40], Anorth = A−Bdφ and Asouth = A+Bdφ,

where A is the expression given in (3.6).
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on-shell action are independent of ω. Setting the normalizable parameters to zero we arrive

at the background

eη =
B2/ℓ2√

r
, χ = 0, A0 = 0, A = B cos θdφ, Ã = − ℓ

B
rkdt,

ds2 =
√
r

(
ℓ2
dr2

r2
− rk2dt2 + ℓ2dθ2 + ℓ2 sin2 θdφ2

)
, (3.7)

which we shall consider as the vacuum solution. The fact that the background (3.7) is

singular does not pose any difficulty since it should only be viewed as an asymptotic

solution that helps us to properly formulate the variational problem. Changing the radial

coordinate to ̺ = ℓr1/4, the vacuum metric becomes

ds2 = 42d̺2 −
(̺
ℓ

)6
k2dt2 + ̺2

(
dθ2 + sin2 θdφ2

)
, (3.8)

which is a special case of the conical metrics discussed in [17]. Different conical geome-

tries are supported by different matter fields. Although we focus on the specific conical

backgrounds obtained as solutions of the STU model here, we expect that our analysis,

modified accordingly for the different matter sectors, applies to general asymptotically

conical backgrounds.

The asymptotic structure of (stationary) conical backgrounds is parameterized by the

three non-zero constants B, ℓ and k. In the most restricted version of the variational

problem, these three parameters should be kept fixed. However, there is a 2-parameter

family of deformations of these boundary data still leading to a well posed variational

problem, as we now explain. The first deformation corresponds to the transformation of

the boundary data induced by reparameterizations of the radial coordinate. Namely, under

the bulk diffeomorphism

r → λ−4r, λ > 0, (3.9)

the boundary parameters transform as

k → λ3k, ℓ → λℓ, B → B. (3.10)

This transformation is a direct analogue of the so called Penrose-Brown-Henneaux (PBH)

diffeomorphisms in asymptotically AdS backgrounds [41], which induce a Weyl transfor-

mation on the boundary sources. The PBH diffeomorphisms imply that the bulk fields do

not induce boundary fields, but only a conformal structure, that is boundary fields up to

Weyl transformations [34]. This dictates that the variational problem must be formulated

in terms of conformal classes rather than representatives of the conformal class [24]. In the

case of subtracted geometries, variations of the boundary parameters of the form

δ1k = 3ǫ1k, δ1ℓ = ǫ1ℓ, δ1B = 0, (3.11)

correspond to motion within the equivalence class (anisotropic conformal class) defined by

the transformation (3.10), and therefore lead to a well posed variational problem.
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A second deformation of the boundary data that leads to a well posed variational

problem is

δ2k = 0, δ2ℓ = ǫ2ℓ, δ2B = ǫ2B. (3.12)

To understand this transformation, one must realize that the parameters B and ℓ do not

correspond to independent modes, but rather only the ratio B/ℓ, which can be identified

with the source of the dilaton η. In particular, keepingB/ℓ fixed ensures that the variational

problem is the same in all frames of the form

ds2α = eαηds2, (3.13)

for some α, which will be important for the uplift of the conical backgrounds to five dimen-

sions. The significance of the parameter B is twofold. It corresponds to the background

magnetic field in the magnetic frame and variations of B are equivalent to the global sym-

metry transformation (2.6) or (2.12) of the bulk Lagrangian. Moreover, as we will discuss

in the next section, it enters in the covariant asymptotic second class constraints imposing

conical boundary conditions. The transformation (3.12) is a variation of B combined with

a bulk diffeomorphism in order to keep the modes k and B/ℓ fixed. The relevant bulk

diffeomorphism is a rescaling of the radial coordinate of the form (3.9), accompanied by a

rescaling t → λ3t of the time coordinate.

4 Boundary counterterms and renormalized conserved charges

The first law of black hole thermodynamics is directly related to the variational problem

and the boundary conditions imposed on the solutions of the equations of motion. As we

briefly reviewed in the previous section, in non-compact spaces, where the geodesic distance

to the boundary is infinite, the bulk fields induce only an equivalence class of boundary

fields, which implies that the variational problem must be formulated in terms of equiv-

alence classes of boundary data, with different elements of the equivalence class related

by radial reparameterizations. In order to formulate the variational problem in terms of

equivalence classes of boundary data one must add a specific boundary term, Sct = −So,

to the bulk action, where So is a certain asymptotic solution of the radial Hamilton-Jacobi

equation, which we discuss in appendix A. For asymptotically locally AdS spacetimes, this

boundary term is identical to the boundary counterterms derived by the method of holo-

graphic renormalization [26–35], which are designed to render the on-shell action free of

large-distance divergences. In particular, demanding that the variational problem be for-

mulated in terms of equivalence classes (conformal classes in the case of AdS) of boundary

data cures all pathologies related to the long-distance divergences of asymptotically AdS

spacetimes, leading to a finite on-shell action and conserved charges that obey the first

law and the Smarr formula of black hole thermodynamics [24]. This observation, however,

goes beyond asymptotically AdS backgrounds. Provided a suitable asymptotic solution So

of the radial Hamilton-Jacobi equation can be found, one can perform a canonical trans-

formation of the form

(φα, πβ) →
(
φα, Πβ = πβ − δSo

δφβ

)
, (4.1)
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such that the product φαΠα depends only on the equivalence class of boundary data. This

in turn implies that formulating the variational problem in terms of the symplectic variables

(φα, Πβ) ensures that it be well posed [25].

This analysis of the variational problem presumes that the induced fields φα on a

slice of constant radial coordinate are independent variables, or equivalently, the boundary

data induced from the bulk fields are unconstrained. However, this may not be the case.

Imposing conditions on the boundary data leads to different asymptotic structures and

accordingly different boundary conditions. A typical example is the case of asymptotically

Lifshitz backgrounds [5, 6] (see [42] for a recent review), where non-relativistic boundary

conditions are imposed on a fully diffeomorphic bulk theory [36]. The conditions imposed

on the boundary data correspond to asymptotic second class constraints of the form

C (φα) ≈ 0, (4.2)

in the radial Hamiltonian formulation of the bulk dynamics. As a result, the asymptotic

solution So of the Hamilton-Jacobi equation that should be added as a boundary term may

not be unique anymore, since it can be written in different ways, all related to each other by

means of the constraints (4.2). It should be emphasized that the potential ambiguity in the

boundary counterterms arising due to the presence of asymptotic second class constraints

is not related to the ambiguity that is commonly referred to as ‘scheme dependence’ in the

context of the AdS/CFT correspondence [32]. The latter is an ambiguity in the finite part of

the solution So, and it exists independently of the presence of second class constraints. On

the contrary, the potential ambiguity resulting from the presence of second class constraints

may affect both the divergent and finite parts of So. As we will see below, in order to

obtain asymptotically conical backgrounds from the STU model one must impose certain

asymptotic second class constraints, which play a crucial role in the understanding of the

variational problem. A subset of these second class constraints corresponds to turning off

the modes that, if non-zero, would lead to an asymptotically Minkowski background. As

such, the asymptotic second class constraints constitute a covariant way of turning off the

couplings of the irrelevant scalar operators identified in [22], or implementing the original

subtraction procedure.

After covariantizing the definition of asymptotically conical backgrounds in the STU

model by introducing a set of covariant second class constraints, we will determine the

boundary terms required in order to render the variational problem well posed, both in

the magnetic and electric frames. This will allow us to define finite conserved charges

associated with asymptotic Killing vectors, which will be used in section 5 in order to

prove the first law of thermodynamics for asymptotically conical black holes. We will first

consider the magnetic frame because the electric frame presents additional subtleties, which

can be easily addressed once the variational problem in the magnetic frame is understood.

Since the boundary term we must determine in order to render the variational problem well

posed is a solution of the radial Hamilton-Jacobi equation, the analysis in this section relies

heavily on the radial Hamiltonian formulation of the bulk dynamics discussed in detail in

appendix A. In particular, we will work in the coordinate system (A.1) and gauge-fix the
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Lagrange multipliers as

N =
(
r + ℓ2ω2 sin2 θ

)1/4
, Ni = 0, aΛ = ãΛ = 0. (4.3)

4.1 Magnetic frame

Even though we have not determined the most general asymptotic solutions of the equations

of motion compatible with conical boundary conditions in the present work, we do need

a covariant definition of asymptotically conical backgrounds in order to determine the

appropriate boundary term that renders the variational problem well posed. It turns out

that the stationary solutions (3.6) are sufficiently general in order to provide a minimal set

of covariant second class constraints, which can be deduced from the asymptotic form (3.7)

of conical backgrounds. In the magnetic frame they take the form

FijF
ij ≈ 2

B2
e2η, Rij [γ] ≈ e−ηFikFj

k, 2Rij [γ]R
ij [γ] ≈ R[γ]2, (4.4)

where the ≈ symbol indicates that these constraints should be imposed only asymptotically,

i.e. they should be understood as conditions on non-normalizable modes only. Qualitatively,

these covariant and gauge-invariant second class constraints play exactly the same role as

the second class constraints imposing Lifshitz asymptotics [36].

The fact that we have been able to determine the constraints (4.4) in covariant form

ensures that the boundary term we will compute below renders the variational problem

well posed for general asymptotically conical backgrounds — not merely the stationary

solutions (3.6). Moreover, this boundary term can be used together with the first order

equations (A.9) to obtain the general asymptotic form of conical backgrounds, but we leave

this analysis for future work.

4.1.1 Boundary counterterms

The general procedure for determining the solution So of the Hamilton-Jacobi equation,

and hence the boundary counterterms, is the following. Given the leading asymptotic

form of the background, the first order equations (A.9) are integrated asymptotically in

order to obtain the leading asymptotic form of So. Inserting this leading solution in the

Hamilton-Jacobi equation, one sets up a recursive procedure that systematically deter-

mines all subleading corrections that contribute to the long-distance divergences. Luckily,

for asymptotically conical backgrounds in four dimensions, integrating the first order equa-

tions (A.9) using the leading asymptotic form of the background determines all divergent

terms, and so there is no need for solving the Hamilton-Jacobi recursively.

In order to integrate the first order equations (A.9) we observe that the radial coordi-

nate u in (A.1) is related to the coordinate r in (3.6) as

du =
ℓdr√

(r − r+)(r − r−)
∼ ℓdr/r, ∂u = ℓ−1

√
(r − r+)(r − r−) ∼ ℓ−1r∂r. (4.5)

Using these relations, together with the asymptotic form (3.7) of the conical backgrounds,

we seek to express the radial derivatives of the induced fields as covariant functions of the
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induced fields. In particular, focusing on the three first order equations that are relevant for

our computation, it is not difficult to see that to leading order asymptotically one can write

1

N
γ̇ij ∼

eη/2

B

(
3

2
γij −B2e−2ηFikFj

k

)
,

1

N
η̇ ∼ −eη/2

2B
,

1

N
Ȧ0

i ∼
B

2
e3ηDj

(
e−7η/2F 0j

i

)
.

(4.6)

Notice that the first two expressions are not unique since they can be written in alternative

ways using the constraints (4.4). Taking into account these expressions, as well as the

freedom resulting from the constraints, we conclude that the leading asymptotic form of

the solution of the Hamilton-Jacobi equation takes the form

S =
1

κ24

∫
d3x

√−γ
1

B
eη/2

(
a1+a2B

2e−ηR[γ]+a3B
2e−2ηFijF

ij+a4B
2e−4ηF 0

ijF
0ij + · · ·

)
,

(4.7)

where a1, a2, a3 and a4 are unspecified constants and the ellipses stand for subleading

terms. The functional derivatives of this asymptotic solution take the form

δS
δγij

=

√−γ

κ24

1

B
eη/2

(
1

2
γij
(
a1+a2B

2e−ηR[γ] + a3B
2e−2ηFklF

kl + a4B
2e−4ηF 0

klF
0kl + · · ·

)

+a2B
2e−η

(
−Rij +

1

4
∂iη∂jη − 1

2
DiDjη − 1

4
γij∂kη∂

kη +
1

2
γij�γη

)

−2a3B
2e−2ηF ikF j

k − 2a4B
2e−4ηF 0ikF 0j

k + · · ·
)

∼
√−γ

κ24

1

B
eη/2

(
1

2
(a1 + 2a2 + 2a3)γ

ij − (a2 + 2a3)B
2e−2ηF ikF j

k + · · ·
)
, (4.8a)

δS
δη

=

√−γ

κ24

1

B
eη/2

1

2

(
a1 − a2B

2e−ηR[γ]− 3a3B
2e−2ηFijF

ij − 7a4B
2e−4ηF 0

ijF
0ij + · · ·

)
,

∼
√−γ

κ24

1

B
eη/2

1

2
(a1 − 2a2 − 6a3) + · · · , (4.8b)

δS
δA0

i

= −
√−γ

κ24
4Ba4Dj

(
e−7η/2F 0ji

)
+ · · · , (4.8c)

where the symbol ∼ indicates that we have used the constraints (4.4) and only kept the

leading terms. Inserting these in the first order equations (A.9) and comparing with (4.6)

leads to the set of algebraic equations

a1 − 2a2 − 6a3 =
3

2
, a2 + 2a3 = −1

4
, a4 =

1

16
, (4.9)

which admit the one-parameter family of solutions

a1 = 1− α/4, a2 = (α− 1)/4, a3 = −α/8, a4 = 1/16, (4.10)

where α is unconstrained. One can readily check that (4.7), with these values for a1,

a2, a3 and a4, satisfies the Hamilton-Jacobi equations asymptotically for any value of the

parameter α.

As we shall see momentarily, for any α, this asymptotic solution suffices to remove all

long-distance divergences of the on-shell action and renders the variational problem well
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posed on the space of equivalence classes of boundary data. We have therefore determined

that a complete set of boundary counterterms for the variational problem in the magnetic

frame is

Sct = − 1

κ24

∫
d3x

√−γ
B

4
eη/2

(
4− α

B2
+ (α− 1)e−ηR[γ]− α

2
e−2ηFijF

ij +
1

4
e−4ηF 0

ijF
0ij

)
.

(4.11)

As we mentioned at the beginning of this section, the freedom to choose the value of the

parameter α does not correspond to a choice of scheme. Instead, it is a direct consequence

of the presence of the second class constraints (4.4). The scheme dependence corresponds

to the freedom to include additional finite local terms, which do not affect the divergent

part of the solution. Later on we will consider situations where additional conditions on

the variational problem require a specific value for α, or particular finite counterterms.

4.1.2 The variational problem

Given the counterterms Sct and following standard terminology in the context of the

AdS/CFT duality, we define the ‘renormalized’ on-shell action in the magnetic frame as the

sum of the on-shell action (2.2) and the counterterms (4.11), with the regulating surface

Σu removed. Namely,

Sren = lim
r→∞

(S4 + Sct) . (4.12)

The boundary counterterms ensure that this limit exists and its value is computed in

appendix B.

A generic variation of the renormalized on-shell action takes the form

δSren = lim
r→∞

∫
d3x

(
Πijδγij +Πi

ΛδA
Λ
i +ΠIδϕ

I
)
, (4.13)

where the renormalized canonical momenta are given by

Πij = πij +
δSct

δγij
, Πi

Λ = πi
Λ +

δSct

δAΛ
i

, ΠI = πI +
δSct

δϕI
. (4.14)

Inserting the asymptotic form of the backgrounds (3.6) into the definitions (A.4) of the

canonical momenta and in the functional derivatives (4.8) we obtain

Πt
t ∼ − kℓ

2κ24

(
1

4
(r+ + r−) +

α− 2

8
ℓ2ω2(1 + 3 cos 2θ)

)
sin θ, Πφ

t ∼ −k2ℓω

2κ24

√
r+r− sin θ,

(4.15a)

Πθ
θ ∼

kℓ3ω2

16κ24
((2− 5α) cos 2θ + 2− 3α) sin θ, Πφ

φ ∼ −kℓ3ω2

16κ24
((5α− 4) cos 2θ + 3α) sin θ,

(4.15b)

Π0t ∼ − 1

2κ24

ℓ4

B3
sin θ

(√
r+r− + 3ω2ℓ2 cos2 θ

)
, Π0φ ∼ − 1

2κ24

kωℓ4

2B3
(r+ + r−) sin θ, (4.15c)

Πt ∼ − 1

2κ24

3ωℓ3

B
sin 2θ, Πφ ∼ − 1

2κ24

2αkω2ℓ3

B
sin 2θ, (4.15d)

Πη ∼ − 1

2κ24

kℓ

8
sin θ

(
6(r+ + r−) + ℓ2ω2((13α− 18) cos 2θ + 7α− 6)

)
, (4.15e)

with all other components vanishing identically.
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Finally, we can use these expressions to evaluate the variation (4.13) of the renormalized

action in terms of boundary data. To this end we need to perform the integration over θ

and remember that the magnetic potential A is not globally defined, as we pointed out in

footnote 3. In particular, taking Anorth ∼ B(cos θ−1)dφ and Asouth ∼ B(cos θ+1)dφ we get

δSren = − 1

2κ24

∫
dtdφ (r+ + r−)kℓδ log

(
kB3/ℓ3

)
, (4.16)

independently of the value of the parameter α. Note that the combination kB3/ℓ3 of bound-

ary data is the unique invariant under both the equivalence class transformation (3.11) and

the transformation (3.12). We have therefore demonstrated that by adding the countert-

erms (4.11) to the bulk action, the variational problem is formulated in terms of equivalence

classes of boundary data under the transformations (3.11) and (3.12). This is an explicit

demonstration of the general result that formulating the variational problem in terms of

equivalence classes of boundary data under radial reparameterizations is achieved via the

same canonical transformation that renders the on-shell action finite. As we will now

demonstrate, the same boundary terms ensure the finiteness of the conserved charges, as

well as the validity of the first law of thermodynamics.

4.1.3 Conserved charges

Let us now consider conserved charges associated with local conserved currents. This

includes electric charges, as well as conserved quantities related to asymptotic Killing

vectors. Magnetic charges do not fall in this category, but they can be described in this

language in the electric frame, as we shall see later on.

In the radial Hamiltonian formulation of the bulk dynamics, the presence of local

conserved currents is a direct consequence of the first class constraints FΛ = 0 and Hi =

0 in (A.6).4 As in the case of asymptotically AdS backgrounds, these constraints lead

respectively to conserved electric charges and charges associated with asymptotic Killing

vectors.5 In particular, the gauge constraints FΛ = 0 in (A.6) take the form

Diπ
i = 0, Diπ

0i = 0, (4.17)

where πi and π0i are respectively the canonical momenta conjugate to the gauge fields Ai

and A0
i . Since the boundary counterterms (4.11) are gauge invariant, it follows from (4.14)

that these conservation laws hold for the corresponding renormalized momenta as well,

namely

DiΠ
i = 0, DiΠ

0i = 0. (4.18)

4These constraints can be derived alternatively by applying the general variation (4.13) of the renormal-

ized action to U(1) gauge transformations and transverse diffeomorphisms, assuming the invariance of the

renormalized action under such transformations. This method will be used in order to derive the conserved

charges in the electric frame.
5In asymptotically locally AdS spaces, the Hamiltonian constraint H = 0 can be used in order to

construct conserved charges associated with conformal Killing vectors of the boundary data [24]. For

asymptotically conical backgrounds, the Hamiltonian constraint leads to conserved charges associated with

asymptotic transverse diffeomorphisms, ξi, that preserve the boundary data up to the equivalence class

transformations (3.11).
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This implies that the quantities

Q
(e)
4 = −

∫

∂M∩C
d2xΠt, Q

0(e)
4 = −

∫

∂M∩C
d2xΠ0t, (4.19)

where C denotes a Cauchy surface that extends to the boundary ∂M, are both conserved

and finite and correspond to the electric charges associated with these gauge fields.

Similarly, the momentum constraint Hi = 0 in (A.6), which can be written in explicit

form as

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j

+
1

2κ24

√−γ ǫjkl
(
χ3F 0

ijF
0
kl +

3

2
χ2F 0

ijFkl + 3χFijFkl +
3

2
χ2FijF

0
kl

)
= 0, (4.20)

leads to finite conserved charges associated with asymptotic Killing vectors. Note that

the terms in the second line are independent of the canonical momenta and originate

in the parity odd terms in the STU model Lagrangian.6 However, for asymptotically

conical backgrounds of the form (3.6) these terms are asymptotically subleading, the most

dominant term being √−γǫjklχFijFkl = O(r−1), (4.21)

and so the momentum constraint asymptotically reduces to

− 2Djπ
j
i + πη∂iη + πχ∂iχ+ F 0

ijπ
0j + Fijπ

j ≈ 0. (4.22)

Since the counterterms (4.11) are invariant with respect to diffeomorphisms along the

surfaces of constant radial coordinate, it follows from (4.14) that this constraint holds for

the renormalized momenta as well,

− 2DjΠ
j
i +Πη∂iη +Πχ∂iχ+ F 0

ijΠ
0j + FijΠ

j ≈ 0. (4.23)

Given an asymptotic Killing vector ζi satisfying the asymptotic conditions

Lζγij = Diζj +Djζi ≈ 0, LζA
Λ
i = ζj∂jA

Λ
i +AΛ

j ∂iζ
j ≈ 0, Lζϕ

I = ζi∂iϕ
I ≈ 0, (4.24)

the conservation identity (4.23) implies that the quantity

Q[ζ] =

∫

∂M∩C
d2x

(
2Πt

j +Π0tA0
j +ΠtAj

)
ζj , (4.25)

is both finite and conserved, i.e. it is independent of the choice of Cauchy surface C.

However, there are a few subtleties in evaluating these charges. Firstly, Gauss’ theorem

used to prove conservation for the charges (4.25) assumes differentiability of the integrand

across the equator at the boundary. If the gauge potentials are magnetically sourced, as

is the case for Ai in the magnetic frame, then the gauge should be chosen such that Ai

is continuous across the equator. In particular, contrary to the variational problem we

6In the AdS/CFT context these terms are interpreted as a gravitational anomaly in the dual QFT.
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discussed earlier, the gauge that should be used to evaluate these charges is the one given

in (3.6), and not the one discussed in footnote 3.

Secondly, the charges (4.25) are not generically invariant under the U(1) gauge trans-

formations AΛ
i → AΛ

i + ∂iα
Λ. These gauge transformations though must preserve both

the radial gauge (4.3) and the asymptotic Killing conditions (4.24). Preserving the radial

gauge implies that the gauge parameter must depend only on the transverse coordinates,

i.e. αΛ(x) (see e.g. [24]), while respecting the Killing symmetry leads to the condition

ζi∂iα
Λ = constant. (4.26)

Under such gauge transformations the charges (4.25) are shifted by the corresponding

electric charges (4.19). As will become clear in section 5, this compensates a related shift

in the electric potential such that the Smarr formula and the first law are gauge invariant.

Nevertheless, gauge invariant charges, as well as electric potentials, can be defined if and

only if AΛ
j ζ

j
∣∣∣
∂M

= constant. However, this is not true in general.

Finally, another potential ambiguity in the value of the charges (4.25) arises from

the ambiguity in the choice of boundary counterterms used to define the renormalized

momenta. In the case of asymptotically conical backgrounds in the magnetic frame, this

ambiguity consists in both the value of the parameter α in (4.11), as well as the possibility

of adding extra finite and covariant terms. From the explicit expressions (4.15) we see that

α does lead to an ambiguity in the renormalized momenta. However, as we will see in

section 5, it does not affect the value of physical observables.

The fact that the value of the charges (4.25) is ambiguous in the precise sense we just

discussed does not affect the thermodynamic relations among the charges and the first law,

which are unambiguous. In fact, the ambiguity in the definition (4.25) of the conserved

charges allows us to match them to alternative definitions [24, 43].

4.2 Electric frame

We will now repeat the above analysis for the variational problem in the electric frame,

emphasizing the differences relative to the magnetic frame. Besides the fact that the

electric frame is most commonly used in the literature on subtracted geometries, it is also

necessary in order to evaluate the magnetic potential, also known as the ‘magnetization’.

Moreover, the variational problem for asymptotically conical backgrounds in the electric

frame presents some new subtleties, from which interesting lessons can be drawn.

4.2.1 Boundary counterterms

By construction, the electric frame action S̃4 given in (2.10) has the same on-shell value as

the magnetic frame action S4 in (2.2). Therefore, the boundary counterterms (4.11) that

were derived for S4 must also render the variational problem for S̃4 well posed and remove

its long-distance divergences. Adding the boundary counterterms (4.11) to S̃4 we get

S̃4 + Sct = S̃′
4 + Sct −

3

2κ24

∫

∂M
Ã ∧ F +

3

2κ24

∫

H+

Ã ∧ F, (4.27)
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where S̃′
4 denotes the σ-model part of (2.10) (plus the Gibbons-Hawking term), to which

the Hamiltonian analysis of appendix A can be applied.

As for the bulk part of the action in (2.10), we need to replace Fij in the boundary

terms with the electric gauge field Ãi using (2.8), which for the transverse components

reduces to the canonical momentum for Ãi in (A.4), namely

π̃i
Λ =

δL

δ
˙̃

AΛ
i

= − 2

κ24

√−γ
(
N−1Z̃ΛΣγ

ij ˙̃
AΣ

j + R̃ΛΣǫ
ijkF̃Σ

jk

)
. (4.28)

Evaluating this expression leads to the identity

Fij =
2κ24
3

εijkπ̃
k =

2κ24
3

ǫijk ̂̃π
k
, (4.29)

where we have defined ̂̃πi
= π̃i/

√−γ. Hence,

S̃4 + Sct = S̃′
4 + Sct −

∫

∂M
d3x π̃iÃi +

3

2κ24

∫

H+

Ã ∧ F, (4.30)

where the counterterms are now expressed as

Sct = − B

4κ24

∫
d3x

√−γ eη/2
(
4− α

B2
+ (α− 1)e−ηR[γ] +

1

4
e−4ηF 0

ijF
0ij +

4ακ44
9

e−2η ̂̃πî̃πi

)
.

(4.31)

The renormalized action in the electric frame therefore takes the form

S̃ren = lim
r→∞

(
S̃′
4 + Sct −

∫

∂M
d3x π̃iÃi

)
, (4.32)

with Sct given by (4.31). Moreover, the asymptotic second class constraints (4.4) become

̂̃πk ̂̃πk ≈ −
(

3eη

2κ24B

)2
, Rij [γ] ≈ −

(
2κ24
3

)2
e−η
(
γij ̂̃π

k ̂̃πk − ̂̃πi
̂̃πj

)
, 2Rij [γ]R

ij [γ] ≈ R[γ]2.

(4.33)

Note that the surface term on the horizon in (4.27) is not part of the action defining

the theory in the electric frame, which is why we have not included it in the definition

of the renormalized action (4.32). The theory is specified by the bulk Lagrangian and

the boundary terms on ∂M, which dictate the variational problem and the boundary

conditions. The horizon is a dynamical surface — not a boundary. This surface term,

however, will be essential in section 5 for comparing the free energies in the electric and

magnetic frames.

Given that the counterterms Sct render the on-shell action in the magnetic frame

finite, the limit (4.32) is guaranteed to exist: its value differs from the on-shell value of the

renormalized action (4.12) by the surface term on the horizon given in (4.27). However,

as we will show shortly, it turns out that the variational problem for the renormalized

action (4.32) is only well posed provided α takes a specific non-zero value. This value is

determined by the term implementing the Legendre transformation in (4.32), which has a

fixed coefficient. Therefore, even though any value of α leads to a well posed variational
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problem in the magnetic frame, a specific value of α is required for the variational problem

in the electric frame.

Another consequence of the Legendre transform in (4.32) is that it changes the bound-

ary conditions from Dirichlet, where Ãi is kept fixed on the boundary (up to equivalence

class transformations), to Neumann, where π̃i is kept fixed. This in turn forces the coun-

terterms to be a function of the canonical momentum, i.e. Sct[γ,A
0, ̂̃π, η, χ]. An analogous

situation arises in asymptotically AdS backgrounds with fields that are dual to irrelevant

operators [37]. An example that shares many qualitative features with the potential Ãi

here is a gauge field in AdS2, coupled to appropriate matter [44]. From the form of the

conical backgrounds (3.6) we see that Ãi asymptotically dominates the stress tensor as

r → ∞ since

Ttt ∼ eηgrr(F̃rt)
2 ∼ r, (4.34)

and hence, in this sense, the gauge potential Ãi is analogous to bulk fields dual to irrelevant

operators in asymptotically AdS spaces. This property is what makes the variational

problem and the boundary counterterms in the electric frame more subtle, which is why

we found it easier to formulate the variational problem in the magnetic frame first and

then translate the result to the electric frame.

4.2.2 The variational problem

A generic variation of the renormalized action (4.32) takes the form

δS̃ren = lim
r→∞

∫
d3x

(
Π̃ijδγij + Π̃0iδA0

i −
√−γ Ãren

i δ̂̃πi
+ Π̃Iδϕ

I
)
, (4.35)

where

Π̃ij = π̃ij − 1

2
γij π̃kÃk +

δSct

δγij

∣∣∣∣
̂̃π

, Π̃0i = π̃0i +
δSct

δA0
i

, Π̃I = π̃I +
δSct

δϕI
, (4.36)

and

Ãren
i = Ãi −

1√−γ

δSct

δ̂̃πi

∣∣∣∣∣
γ

, (4.37)

are the renormalized canonical variables in the electric frame. It should be emphasized

that the functional derivative with respect to γij in Π̃ij is computed keeping ̂̃πi
fixed

instead of π̃i. The term implementing the Legendre transform in (4.32), therefore, gives

−1
2γ

ij π̃kÃk, while

δSct

δγij

∣∣∣∣
̂̃π

= −
√−γ

κ24

eη/2

B

(
1

2
γij
(
1

4
+

1

2
B2e−ηR[γ] +

1

16
B2e−4ηF 0

ijF
0ij

)
− 1

8
B2e−4ηF 0ikF 0j

k

+
1

2
B2e−η

(
−Rij +

1

4
∂iη∂jη − 1

2
DiDjη − 1

4
γij∂kη∂

kη +
1

2
γij�γη

))

− κ24√−γ

B

3
e−3η/2

(
γij

2
π̃kπ̃k + π̃iπ̃j

)
. (4.38)
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Moreover, note that (A.4) implies that the canonical momenta π̃ij , π̃0i, and π̃I , remain the

same as their magnetic frame counterparts.

What is novel in (4.35) from the point of view of holographic renormalization is that

the variable that gets renormalized is the induced field Ãi, according to (4.37), instead of

its conjugate momentum. However, as we mentioned earlier, only a specific value of the

parameter α correctly renormalizes Ãi. In particular, from (4.31) we get

Ãren
i = Ãi +

2αBκ24
9

e−3η/2

√−γ
π̃i. (4.39)

On the other hand, from (4.28) and the asymptotic form of Ãi in (3.7) we deduce that

asymptotically

π̃i ∼ − 2

κ24

√−γ · 3

4B
e3η/2γitÃt. (4.40)

It follows that Ãren
i has a finite limit as r → ∞ provided α = 3.

Setting α = 3 in (4.31) and evaluating the renormalized variables on the conical back-

grounds (3.6) we obtain

Π̃t
t ∼

kℓ

2κ24
sin θ

(
−1

4
(r+ + r−) +

1

8
ℓ2ω2(11 + 9 cos 2θ)

)
, Π̃φ

t ∼ − 1

2κ24

kωℓ

2

√
r+r− sin θ,

(4.41a)

Π̃θ
θ ∼ − 1

2κ24

kℓ3ω2

16
(sin 3θ − 11 sin θ), Π̃φ

φ ∼ 1

2κ24

kℓ3ω2

16
(sin 3θ + 5 sin θ), (4.41b)

Π̃0t ∼ − 1

2κ24

ℓ4

B3
sin θ

(√
r+r−+3ω2ℓ2 cos2 θ

)
, Π̃0φ ∼ − 1

2κ24

kωℓ4

2B3
(r+ + r−) sin θ, (4.41c)

Ãren
t ∼ 2ω2ℓ3k

B
cos2 θ, Ãren

φ ∼ ωℓ3 sin2 θ

B
, (4.41d)

Π̃η ∼ − 1

2κ24

3kℓ

8
sin θ

(
2(r+ + r−) + ℓ2ω2(5 + 7 cos 2θ)

)
. (4.41e)

Finally, inserting these expressions in (4.35) gives

δS̃ren = − 1

2κ24

∫
dtdφ (r+ + r−)kℓδ log

(
kB3/ℓ3

)
, (4.42)

in agreement with the magnetic frame result (4.16). In particular, as in the magnetic

frame, the variational problem is well posed in terms of equivalence classes of boundary

data under the transformation (3.11).

4.2.3 Conserved charges

The last aspect of the electric frame we need to discuss before we can move on to study the

thermodynamics of conical backgrounds is how to define the conserved charges. Focusing

again on charges obtained from local conserved currents, the electric charges follow from

the conservation laws

Diπ̃
i = 0, DiΠ̃

0i = 0. (4.43)
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From (4.29) we see that the first of these expressions is simply the Bianchi identity dF = 0

and so the corresponding charge is the magnetic charge in the magnetic frame, Q
(m)
4 , while

Π̃0i coincides with the renormalized momentum Π0i in the magnetic frame. Hence,

Q̃
(e)
4 = −

∫

∂M∩C
d2x π̃t = Q

(m)
4 , Q̃

0(e)
4 = −

∫

∂M∩C
d2x Π̃0t = Q

0(e)
4 . (4.44)

Slightly more subtle are conserved charges associated with asymptotic Killing vectors.

The easiest way to derive the conservation laws in the electric frame is by considering the

variation of the renormalized action under an infinitesimal diffeomorphism, ξi, along the

surfaces of constant radial coordinate. Inserting the transformations

δξγij = Lξγij = Diξj +Djξi, δξϕ
I = Lξϕ

I = ξi∂iϕ
I ,

δξA
0
i = LξA

0
i = ξj∂jA

0
i +A0

j∂iξ
j , δξ ̂̃π

i
= Lξ

̂̃πi
= ξjDj

̂̃πi − ̂̃πj
Djξ

i, (4.45)

under such a diffeomorphism in the general variation (4.35) of the renormalized action gives

δS̃ren = lim
r→∞

∫
d3x

(
2Π̃ijDiξj + ξiF 0

ijΠ
0j −√−γÃren

i δ̂̃πi
+ΠIξ

i∂iϕ
I
)

= lim
r→∞

∫
d3x ξi

(
−2DjΠ̃

j
i + F 0

ijΠ
0j −Di

(
Ãren

j π̃j
)
+ F̃ij π̃

j +ΠI∂iϕ
I
)
, (4.46)

from which we arrive at the conservation identity

− 2Dj

(
Π̃j

i +
1

2
δji π̃

kÃren
k

)
+ F 0

ijΠ
0j + F̃ij π̃

j +ΠI∂iϕ
I ≈ 0. (4.47)

An asymptotic Killing vector, ζi, in the electric frame satisfies the same condi-

tions (4.24) as in the magnetic frame, except that the asymptotic form of the background is

now specified in terms of ̂̃πi
instead of Ai and so the condition LζAi = ζj∂jAi+Aj∂iζ

j ≈ 0

in the magnetic frame should be replaced with

Lζ
̂̃πi = ζjDj

̂̃πi − ̂̃πj
Djζ

i ≈ 0. (4.48)

With this crucial modification in the definition of an asymptotic Killing vector in the

electric frame, the conservation law (4.47) leads to the conserved charges

Q̃[ζ] =

∫

∂M∩C
d2x

(
2Π̃t

j +Π0tA0
j + π̃tÃren

j

)
ζj , (4.49)

which are again manifestly finite. The value of these charges is subject to the same ambi-

guities as the charges (4.25), but as we shall see in the next section, the gauge choice we

made in the specification (3.6) of the conical backgrounds in the two frames ensures that

the charges (4.49) and (4.25) coincide.
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5 Thermodynamics for asymptotically conical black holes

In the previous section we derived specific boundary terms that should be added to the

STU model action in both the magnetic and electric frames such that the variational

problem for asymptotically conical backgrounds of the form (3.6) is well posed. Moreover,

we showed that the same boundary terms ensure that the on-shell action is free of long-

distance divergences and allow us to construct finite conserved charges. In this section we

evaluate explicitly these conserved charges and other relevant thermodynamic observables

for conical backgrounds and we demonstrate that both the Smarr formula and the first

law of thermodynamics hold. Along the way we compare our results with those obtained

in [23], and comment on some differences.

5.1 Renormalized thermodynamic observables

Let us start by evaluating in turn all relevant thermodynamic variables that we will need

in order to prove the first law and the Smarr formula. We will use a subscript ‘4’ to denote

the variables computed in this section to distinguish them from their counterparts in 5 and

3 dimensions, which we will discuss in section 6.

Entropy. The entropy is given by the standard Bekenstein-Hawking area law and its

value for the conical black holes (3.6) is7

S4 =
πℓ2

G4

√
r+ . (5.1)

Temperature. The Hawking temperature can be obtained by requiring that the Eu-

clidean section of the black hole solution is smooth at the horizon, which determines

T4 =
k(r+ − r−)

4πℓ
√
r+

. (5.2)

Angular velocity. We define the physical (diffeomorphism invariant) angular velocity

as the difference between the angular velocity at the outer horizon and at infinity, namely

Ω4 = ΩH − Ω∞ =
gtφ
gφφ

∣∣∣
∂M

− gtφ
gφφ

∣∣∣
H+

= ωk

√
r−
r+

. (5.3)

In the coordinate system (3.6) there is no contribution to the angular velocity from infinity,

but there is in the original coordinate system (3.1). The rotation at infinity was not

taken into account in [23], which is why our result does not fully agree with the one

obtained there.

Electric charges. In the magnetic frame there is only one non-zero electric charge given

by (4.19), whose value is

Q
0(e)
4 = −

∫

∂M∩C
d2xΠ0t =

ℓ4

4G4B3

(√
r+r− + ω2ℓ2

)
. (5.4)

7We hope that using the same symbol for the entropy and the action will not cause any confusion, since

it should be clear from the context which quantity we refer to.
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In the electric frame both electric charges defined in (4.44) are non-zero:

Q̃
(e)
4 = −

∫

∂M∩C
d2x π̃t =

3B

4G4
, Q̃

0(e)
4 = Q

0(e)
4 . (5.5)

Magnetic charge. The only non-zero magnetic charge is present in the magnetic frame

and it is equal to one of the electric charges in the electric frame:

Q
(m)
4 = − 3

2κ24

∫

∂M∩C
F = Q̃

(e)
4 . (5.6)

Electric potential. We define the electric potential as

Φ
0(e)
4 = A0

iKi
∣∣∣
H+

= k

(
B

ℓ

)3√r−
r+

, (5.7)

where K = ∂t+ΩH∂φ is the null generator of the outer horizon. Note that A0
iKi is constant

over the horizon [24] and so leads to a well defined electric potential. However, as we

remarked in the previous section, the electric potential is not gauge invariant. Under gauge

transformations it is shifted by a constant (see (4.26)) which compensates the corresponding

shift of the charges (4.25) in the Smarr formula and the first law.

Magnetic potential. Similarly, the magnetic potential is defined in terms of the gauge

field Ãi in the electric frame as

Φ
(m)
4 = ÃiKi

∣∣∣
H+

=
ℓk

2B

(
(r− − r+) + 2ω2ℓ2

√
r−
r+

)
. (5.8)

Mass. The mass is the conserved charge associated with the Killing vector8 ζ = −∂t −
Ω∞∂φ. Since Ω∞ = 0 in the coordinate system (3.6), (4.25) gives9

M4 = −
∫

∂M∩C
d2x

(
2Πt

t +Πt
0A

0
t +ΠtAt

)
=

ℓk

8G4
(r+ + r−) . (5.9)

The same result is obtained in the electric frame using (4.49).

Angular momentum. The angular momentum is defined as the conserved charge cor-

responding to the Killing vector ζ = ∂φ, which gives

J4 =

∫

∂M∩C
d2x (2Πt

φ +Πt
0A

0
φ +ΠtAφ) = − ωℓ3

2G4
. (5.10)

The same result is obtained in the electric frame.
8The overall minus sign relative to the Killing vector used in [24] can be traced to the fact that the free

energy is defined as the Lorentzian on-shell action in section 5 of that paper, while in section 6 it is defined

as the Euclidean on-shell action. We adopt the latter definition here.
9In [23] the mass for static subtracted geometry black holes was evaluated from the regulated Komar

integral and the Hawking-Horowitz prescription and shown to be equivalent. Both the Smarr formula

and the first law of thermodynamics were shown to hold in the static case. In the rotating case, the

chosen coordinate system of the subtracted metric in [23] has non-zero angular velocity at spatial infinity

which was erroneously not included in the thermodynamics analysis of the rotating subtracted geometry.

Furthermore, the evaluation of the regulated Komar integral in the rotating subtracted geometry would

have to be performed; this would lead to an additional contribution to the regulated Komar mass due to

rotation, and in turn ensure the validity of the Smarr formula and the first law of thermodynamics.
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Free energy. Finally, the full Gibbs free energy, G̃4, is related to the renormalized Eu-

clidean on-shell action in the electric frame, where all charges are electric. Namely,

Ĩ4 = S̃E
ren = −S̃ren = β4G̃4, (5.11)

with β4 = 1/T4 and S̃ren defined in (4.32). The Euclidean on-shell action in the magnetic

frame similarly defines another thermodynamic potential, G4, through

I4 = SE
ren = −Sren = β4G4, (5.12)

where Sren was given in (4.12). Evaluating this we obtain (see appendix B)

I4 =
β4ℓk

8G4

(
(r− − r+) + 2ω2ℓ2

√
r−
r+

)
. (5.13)

Moreover, (4.27) implies that the on-shell action is given by

Ĩ4 = I4 +
3

2κ24

∫

H+

Ã ∧ F = I4 − β4Φ
(m)
4 Q

(m)
4 . (5.14)

An interesting observation is that the value of the renormalized action in the magnetic

frame, as well as the value of all other thermodynamic variables, is independent of the

parameter α in the boundary counterterms (4.11). This property is necessary in order for

the thermodynamic variables in the electric and magnetic frames to agree, and in order to

match with those of the 5D uplifted black holes that we will discuss in section 6. Recall

that the terms multiplying α are designed so that their leading asymptotic contribution to

the Hamilton-Jacobi solution (4.7), as well as to the derivatives (4.8), vanishes by means of

the asymptotic constraints (4.4). This is the reason why any value of α leads to boundary

counterterms that remove the long-distance divergences. However, the parameter α does

appear in the renormalized momenta, as is clear from (4.15), and in the unintegrated value

of the renormalized action. Nevertheless, α does not enter in any physical observable. This

observation results from the explicit computation of the thermodynamic variables, but we

have not been able to find a general argument that ensures this so far.

5.2 Thermodynamic relations and the first law

We can now show that the thermodynamic variables we just computed satisfy the expected

thermodynamic relations, including the first law of black hole mechanics.

Quantum statistical relation. It is straightforward to verify that the total Gibbs free

energy G̃4 satisfies the quantum statistical relation [38]

G̃4 = M4 − T4S4 − Ω4J4 − Φ0(e)Q0(e) − Φ
(m)
4 Q

(m)
4 . (5.15)

Similarly, the thermodynamic potential G4, which was obtained from the on-shell action in

the magnetic frame, satisfies

G4 = M4 − T4S4 − Ω4J4 − Φ0(e)Q0(e). (5.16)

Note that the shift of the mass and angular momentum under a gauge transformation (4.26)

is compensated by that of the electric potentials so that these relations are gauge invariant.
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First law. In order to demonstrate the validity of the first law we must recall the trans-

formations (3.11) and (3.12) of the non-normalizable boundary data that allow for a well

posed variational problem. In particular, variations of B, k and ℓ that are a combination of

the two transformations (3.11) and (3.12) are equivalent to generic transformations keep-

ing kB3/ℓ3 fixed. Considering such transformations, as well as arbitrary variations of the

normalizable parameters r± and ω, we obtain

dM4 − T4dS4 − Ω4dJ4 − Φ
0(e)
4 dQ

0(e)
4 − Φ

(m)
4 dQ

(m)
4 = 0. (5.17)

Smarr formula. Finally, one can explicitly check that the Smarr formula

M4 = 2S4T4 + 2Ω4J4 +Q
0(e)
4 Φ

0(e)
4 +Q

(m)
4 Φ

(m)
4 , (5.18)

also holds. This identity can be derived by applying the first law to the one-parameter

family of transformations

δM4 = ǫM4, δS4 = 2ǫS4, δJ4 = 2ǫJ4, δQ
0(e)
4 = ǫQ

0(e)
4 , δQ

(m)
4 = ǫQ

(m)
4 , (5.19)

which corresponds to the parameter variations

δℓ = ǫℓ, δB = ǫB, δω = −ǫω, (5.20)

while keeping all other parameters of the solutions fixed. This transformation keeps kB3/ℓ3

fixed and, therefore, it is a special case of the allowed transformations for the variational

problem and the first law. The weight of ω under this transformation follows from dimen-

sional analysis.

6 5D uplift and relation to the BTZ black hole

The STU model (2.1) can be obtained by a circle reduction from a five-dimensional the-

ory [19]. Kaluza-Klein reducing the resulting theory on an S2 gives rise to Einstein-Hilbert

gravity in three dimensions, coupled to several matter fields [11, 19, 22]. Through this se-

quence of uplifts and Kaluza-Klein reductions, the conical backgrounds (3.6) can be related

to the BTZ black hole in three dimensions [16, 22, 23].

In this section we revisit the uplift of the truncated STU model (2.2) to five dimensions,

as well as the reduction of the resulting 5D theory to three dimensions, keeping track of all

surface terms on the boundary and on the horizon. As we will demonstrate, these terms

are essential in order to connect the thermodynamics of the 4D black holes with that of the

BTZ black hole. Moreover, we find that some continuous parameters of the 4D solutions

must be quantized in order for the uplift to 5D to be possible, which explains the mismatch

between the number of thermodynamic variables in four and three dimensions.

6.1 4D action from circle reduction

A consistent truncation of the 5D uplift of the STU model is given by the action [19, 22]

S5 =
1

2κ25

∫

M̂
d5x

(
R[ĝ] ⋆ 1− 3

2
⋆ F̂ ∧ F̂ + F̂ ∧ F̂ ∧ Â

)
+

1

2κ25

∫

∂M̂
d4x

√
−γ̂ 2K[γ̂], (6.1)
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where hats signify 5D quantities. If z is a compact dimension of length Rz, then the

Kaluza-Klein ansatz

dŝ2 = eηds2 + e−2η(dz +A0)2, Â = χ(dz +A0) +A, (6.2)

gives [45]

√
−ĝ R[ĝ] =

√−g

(
R[g]− 3

2
∂µη∂

µη − 1

4
e−3ηF 0

µνF
0µν −�gη

)
, (6.3a)

√
−ĝ

1

4
F̂ 2 =

√−g

(
1

4
e−η(F + χF 0)µν(F + χF 0)µν +

1

2
e2η∂µχ∂

µχ

)
, (6.3b)

F̂ ∧ F̂ ∧ Â = dz ∧
(
3χF ∧ F+3χ2F ∧ F 0+χ3F 0 ∧ F 0−d

(
χ2A ∧ F 0+2χA ∧ F

))
. (6.3c)

In order to reduce the Gibbons-Hawking term we need the canonical decomposi-

tion (A.1) of the 5D metric, which takes the form

dŝ2 = N̂2du2 + γ̂îĵdx
îdxĵ = eηN2du2 + eηγijdx

idxj + e−2η(dz +A0
i dx

i)2, (6.4)

where î = (z, i). In matrix form, therefore, the induced metric, γ̂îĵ , on the four-dimensional

radial slices Σ̂u is related to the induced fields on the three-dimensional radial slices Σu via

γ̂îĵ =

(
e−2η e−2ηA0

i

e−2ηA0
i eηγij + e−2ηA0

iA
0
j

)
, γ̂ îĵ =

(
e2η + e−ηA0

kA
0k −e−ηA0i

−e−ηA0i e−ηγij

)
. (6.5)

From these expressions it is straightforward to compute det γ̂ = eη det γ. Moreover, the

extrinsic curvature of γ̂îĵ is given by

K[γ̂ ]̂iĵ =
1

2N̂
˙̂γ îĵ , (6.6)

and can be expressed in terms of four-dimensional variables as

K[γ̂]zz = − 1

N
e−5η/2η̇, (6.7a)

K[γ̂]zi = − 1

N
e−5η/2

(
η̇A0

i −
1

2
Ȧ0

i

)
, (6.7b)

K[γ̂]ij =
1

N
e−η/2

(
1

2
eηη̇γij + e−2ηA0

(iȦ
0
j) − e−2ηη̇A0

iA
0
j +

1

2
eηγ̇ij

)
. (6.7c)

In particular, the trace of the extrinsic curvature is given by

K[γ̂] = γ̂ îĵK[γ̂ ]̂iĵ =
1

2N
e−η/2η̇ + e−η/2K[γ], (6.8)

which allows us to reduce the 5D Gibbons-Hawking term to 4D.

Combining the reduction formulae for the bulk and Gibbons-Hawking terms leads to

the four-dimensional action

S5 = S4 −
1

2κ24

∫

∂M

(
χ2A ∧ F 0 + 2χA ∧ F

)
+

1

2κ24

∫

H+

(
χ2A ∧ F 0 + 2χA ∧ F

)
, (6.9)
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where S4 is the magnetic frame action (2.2), and the 5D and 4D gravitational constants are

related via κ25 = Rzκ
2
4. Hence, even though the 4D magnetic frame action can be obtained

by a circle reduction from the 5D action (6.1), there are additional surface terms that are

necessary for connecting the physics in 4 and 5 dimensions. In particular, the surface term

on the boundary vanishes on-shell when evaluated on the conical backgrounds (3.6), but it

is required in order to properly relate the 5D and 4D variational problems. Moreover, the

surface term on the horizon is necessary to relate the free energies.

However, we also need to uplift the boundary counterterms (4.11) so that the five-

dimensional on-shell action is free of long-distance divergences and the variational problem

is well posed. Since

√
−γ̂ =

√−γ eη/2, (6.10a)

√
−γ̂ R[γ̂] =

√−γ e−η/2

(
R[γ]− 1

8
∂iη∂

iη − 1

4
e−3ηF 0

ijF
0ij

)
+ total derivative, (6.10b)

√
−γ̂ F̂ijF̂

ij =
√−γ e−η/2

(
e−ηFijF

ij − 2e2η∂iχ∂
iχ
)
, (6.10c)

it follows that the boundary counterterms for the 4D action can be uplifted to five di-

mensions provided they are a linear combination of the expressions on the r.h.s. of these

identities. Moreover, the same counterterms must coincide with (4.11) up to finite local

counterterms and at least for some specific value of the parameter α, or else the variational

problem in four dimensions would not be well defined. The only way to reconcile these con-

ditions is by setting α = 0 in (4.11) and adding the finite local counterterm
√−γe−η/2(∂η)2

with the appropriate coefficient.10 The resulting boundary counterterms are

S′
ct = − 1

κ24

∫
d3x

√−γ
1

B
eη/2

(
1− 1

4
B2e−ηR[γ] +

1

16
B2e−4ηF 0

ijF
0ij +

1

32
B2e−η∂iη∂

iη

)
,

(6.11)

whose uplift is

S′
ct = − 1

κ25

∫
d4x

√
−γ̂

1

B

(
1− 1

4
B2R[γ̂]

)
. (6.12)

6.2 Uplifting conical backgrounds to 5D

Uplifting the conical black hole solutions (3.6) using the Kaluza-Klein ansatz (6.2) results

in the 5D background [21]

dŝ2 =
4B2ρ2dρ2

(ρ2 − ρ2+)(ρ
2 − ρ2−)

− (ρ2 − ρ2+)(ρ
2 − ρ2−)

4B2ρ2
dt2 + ρ2

(
dφ3 −

ρ+ρ−
2Bρ2

dt

)2

+B2
(
dθ2 + sin2 θ (dφ+ 2Bkωdφ3)

2
)
, (6.13a)

Â = B cos θ (dφ+ 2Bkωdφ3) , (6.13b)

10Note that the value of the parameter α required for the uplift to 5D (α = 0) is different from that

required in the electric frame (α = 3). This reflects the fact that the variational problems in the two cases

are somewhat different, with the uplift to 5D only being possible provided B is kept fixed and ω is quantized

in units of 1/2Bk, as we will see below.
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where the new coordinates ρ and φ3 are defined through the relations

z = 2Bk

(
B

ℓ

)3

φ3, r =
1

(2Bk)2

(
B

ℓ

)−2

ρ2. (6.14)

In this coordinate system the 5D metric (6.13a) is immediately recognizable as a 2-sphere

of radius B, fibered over a three-dimensional BTZ black hole [46] with AdS3 radius L = 2B.

Since the BTZ angular coordinate φ3 must have periodicity 2π, the length Rz of the 5D

circle is determined through (6.14) to be

Rz = 4πBk

(
B

ℓ

)3

. (6.15)

Given that the gravitational constants in four and five dimensions are related by κ25 = Rzκ
2
4,

this implies that the variational problem in five dimensions must be formulated keeping B

fixed, in addition to kB3/ℓ3, which must be kept fixed even in four dimensions. Moreover,

the internal S2 has a conical singularity at the north and south poles unless 2Bkω is an

integer. This implies that the conical backgrounds (3.6) can be uplifted to five dimensions if

and only if ω is quantized in units of 1/(2Bk). With this condition, the internal part of the

metric (6.13a) becomes the standard metric on S2 with azimuthal coordinate φ′ = φ+nφ3,

where n ∈ Z.

6.3 S
2 reduction and BTZ thermodynamics

The 5D action (6.1) can be Kaluza-Klein reduced on the internal S2 using the reduction

ansatz [22]

dŝ2 = ds23 +B2dΩ2
2, Â = B cos θ (dφ+ 2Bkωdφ3) . (6.16)

The resulting theory in three dimensions is Einstein-Hilbert gravity

S5 = S3 =
1

2κ23

(∫

M3

d3x
√−g3(R3 − 2Λ3) +

∫

∂M3

d2x
√−γ2 2K2

)
, (6.17)

with cosmological constant Λ3 = −1/(2B)2 and gravitational constant given by

κ23 =
κ25

(2B)2π
=

κ24
B

k

(
B

ℓ

)3

. (6.18)

Moreover, from (6.16) follows that

R[γ̂] =
2

B2
+R[γ2], (6.19)

and so the boundary counterterms (6.12) for the five-dimensional theory reduce in three

dimensions to the boundary terms

S′
ct = − 1

κ23

∫
d2x

√−γ2

(
1

2B
− B

4
R[γ2]

)
. (6.20)

The first term is the standard volume divergence of an AdS3 space with radius L = 2B. The

second term is proportional to the Euler density of the induced metric γ2 and corresponds to
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a particular renormalization scheme. It shifts the on-shell action by a finite multiple of the

Euler characteristic of the AdS3 boundary. However, three-dimensional solutions with non-

trivial z dependence, such as those obtained by turning on a generic metric source γ2 on the

AdS3 boundary, excite Kaluza-Klein fields in the circle reduction to 4D and, therefore, are

not captured by the STU model. 4D solutions of the STU model uplift to 5D solutions that

are oxidized along the z coordinate, and consequently reduce to 3D solutions that can only

have a non-trivial profile along an AdS2 inside the AdS3. For such solutions R[γ2] vanishes

identically, which explains why the boundary counterterms (6.20) we obtained from the

STU model do not include the logarithmic counterterm −B
2 R[γ2] log ǫ

2 corresponding to

the conformal anomaly of the dual CFT2 [26].

Combining (6.9) and (6.17), the renormalized action in three dimensions can be related

to that of the STU model in the magnetic frame, namely

S3 + S′
ct = S4 + S′

ct +
1

2κ24

∫

H+

(
χ2A ∧ F 0 + 2χA ∧ F

)
, (6.21)

where we have used the fact that the surface term on the boundary in (6.9) vanishes iden-

tically for the conical solutions (3.6). However, the contribution on the horizon is non-zero,

which implies that the value of the Gibbs free energies in three and four dimensions do not

coincide. More specifically, the complete set of relations between the BTZ thermodynamic

variables [46]

T3 =
ρ2+ − ρ2−
2πL2ρ+

, S3 =
4π2ρ+
κ23

, M3 =
π

κ23L
2

(
ρ2+ + ρ2−

)
,

Ω3 =
ρ−
Lρ+

, J3 =
2πρ+ρ−
κ23L

, I3 =
πβ3
κ23L

2
(ρ2− − ρ2+),

(6.22)

and the 4D ones computed in section 5 is

T4 = T3, S4 = S3, M4 = M3, I4 +
1

2
β4Ω4J4 = I3,

Ω4 = (2Bkω)Ω3 = nΩ3, n ∈ Z, J4 = −(2Bkω)
πL

κ23
= −nπL

κ23
,

Φ
0(e)
4 = Lk

(
B

ℓ

)3

Ω3, Φ
0(e)
4 Q

0(e)
4 +

1

2
Ω4J4 = Ω3J3,

Φ
(m)
4 Q

(m)
4 +

3

2
Ω4J4 = −3

2
T3S3, Q

(m)
4 =

6π

κ23
k

(
B

ℓ

)3

.

(6.23)

Clearly, besides the mass, entropy and temperature, the relation between the 3D and 4D

variables is non-trivial. In particular, the 3D thermodynamics ensemble corresponds to a

subspace of the 4D ensemble, since the 4D angular momentum and magnetic charge are

fixed constants in the 5D and 3D thermodynamics, which also renders the corresponding

potentials Ω4 and Φ
(m)
4 redundant. This is a direct consequence of the fact that the

magnetic field B must be kept fixed in the 5D and 3D variational problems, while the

rotation parameter ω must be quantized in units of 1/(2Bk).
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We end this section with the observation that inserting the relations (6.23) into the

4D quantum statistical relation (5.16) and the first law (5.17) we obtain the corresponding

3D thermodynamic identities, namely

I3 = β3(M3 − T3S3 − Ω3J3), (6.24)

and

dM3 = T3dS3 +Ω3dJ3. (6.25)

The fact that J4 and Q
(m)
4 must be kept fixed in the 3D variational problem is crucial for

deriving the first law in three dimensions from its 4D counterpart. Moreover, the Smarr

formula (5.18) gives

M3 =
1

2
T3S3 +Ω3J3, (6.26)

which can be verified explicitly from the expressions (6.22). This identity follows from the

scaling transformation δM3 = 2ǫM3, δJ3 = 2ǫJ3, δS3 = ǫS3, corresponding to rescaling the

BTZ parameters according to ρ± → (1 + ǫ)ρ±.

7 Concluding remarks

The main message we would like to get across in this paper is that a well defined thermody-

namics, including finite conserved charges and thermodynamic identities, is an immediate

consequence of a well posed variational problem, formulated in terms of equivalence classes

of boundary data under the asymptotic local symmetries of the theory. This has been

known for some time in the case of asymptotically AdS black holes, but we argue that it

applies to more general asymptotics, including cases where matter fields are required to

support the background.

We demonstrated this claim by carefully analyzing the variational problem for asymp-

totically conical backgrounds of the STU model in four dimensions and deriving the ther-

modynamics of subtracted geometry black holes. Moreover, by uplifting these solutions to

five dimensions, we provided a precise map between all thermodynamic variables of sub-

tracted geometries and those of the BTZ black hole. Crucial to this matching was the fact

that some free parameters of the four-dimensional black holes must be fixed or quantized

in order for the solutions to be uplifted to five dimensions.

Although our analysis here does not assume or imply a holographic duality for asymp-

totically conical backgrounds, we would like to view it as a first step in this direction.

Our comparison of the variational problems in four and five dimensions indicates that not

all asymptotically conical solutions of the STU model in four dimensions correspond to

asymptotically AdS3 × S2 solutions in five dimensions and vice versa. This suggests that

the Hilbert space of a putative holographic dual to subtracted geometries can at most have

a partial overlap with that of the two-dimensional CFT at the boundary of AdS3. The next

steps in order to construct a genuine dual to asymptotically conical backgrounds, as well

as to understand the connection with the two-dimensional CFT, would be a systematic

analysis of the most general asymptotically conical solutions of the STU model (i.e. not
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merely stationary), and the identification of the symmetry algebra acting on the modes as

a result of the asymptotic local symmetries. We plan to address both these problems in

future work.
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A Radial Hamiltonian formalism

In this appendix we present in some detail the radial Hamiltonian formulation of the

reduced STU σ-model (2.2). This analysis can be done abstractly, without reference to

the explicit form of the σ-model functions GIJ , ZΛΣ and RΛΣ, and it therefore applies to

the electric Lagrangian (2.10) as well, provided AL, ZΛΣ and RΛΣ are replaced with their

electric frame analogues in (2.11).

The first step towards a Hamiltonian formalism is picking a suitable radial coordinate u

such that constant-u slices, which we will denote by Σu, are diffeomorphic to the boundary

∂M of M. Moreover, it is convenient to choose u to be proportional to the geodesic

distance between any fixed point in M and a point in Σu, such that11 Σu → ∂M as

u → ∞. Given the radial coordinate u, we then proceed with an ADM-like decomposition

of the metric and gauge fields [47]

ds2 = (N2 +NiN
i)du2 + 2Nidudx

i + γijdx
idxj ,

AL = aΛdu+AΛ
i dx

i, (A.1)

where {xi} = {t, θ, φ}. This is merely a field redefinition, trading the fully covariant fields

gµν and AL
µ for the induced fields N , Ni, γij , a

Λ and AΛ
i on Σu. Inserting this decomposition

in the σ-model action (2.2) and adding the Gibbons-Hawking term (2.3) leads to the radial

Lagrangian

L =
1

2κ24

∫
d3xN

√−γ

{
R[γ] +K2 −KijK

ij − 1

2N2
GIJ(ϕ)

(
ϕ̇I−N i∂iϕ

I
) (

ϕ̇J −N j∂jϕ
J
)

− 2

N2
ZΛΣ(ϕ)γ

ij
(
ȦΛ

i − ∂ia
Λ −NkFΛ

ki

)(
ȦΣ

j − ∂ja
Σ −N lFΣ

lj

)
(A.2)

−4RΛΣ(ϕ)ǫ
ijk
(
ȦΛ

i − ∂ia
Λ
)
FΣ
jk −

1

2
GIJ(ϕ)∂iϕ

I∂iϕJ −ZΛΣ(ϕ)F
Λ
ijF

Σij

}
,

11We assume M to be a non-compact space with infinite volume such that the geodesic distance between

any point in the interior of M and a point in ∂M is infinite.
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where

Kij =
1

2N
(γ̇ij −DiNj −DjNi) , (A.3)

is the extrinsic curvature of the radial slices Σu, Di denotes a covariant derivative with

respect to the induced metric γij on Σu, while a dot ˙ stands for a derivative with respect

to the Hamiltonian ‘time’ u.

The canonical momenta conjugate to the induced fields on Σu following from the

Lagrangian (A.2) are

πij =
δL

δγ̇ij
=

1

2κ24

√−γ
(
Kγij −Kij

)
, (A.4a)

πI =
δL

δϕ̇I
= − 1

2κ24
N−1√−γ GIJ

(
ϕ̇J −N i∂iϕ

J
)
, (A.4b)

πi
Λ =

δL

δȦΛ
i

= − 2

κ24
N−1√−γZΛΣ

(
γij
(
ȦΣ

j − ∂ja
Σ
)
−NjF

Σji
)
− 2

κ24

√−γ RΛΣǫ
ijkFΣ

jk.

(A.4c)

Notice that the momenta conjugate to N , Ni, and aΛ vanish identically, since the La-

grangian (A.2) does not contain any radial derivatives of these fields. It follows that the

fields N , Ni, and aΛ are Lagrange multipliers, implementing three first class constraints,

which we will derive momentarily. The canonical momenta (A.4) allow us to perform the

Legendre transform of the Lagrangian (A.2) to obtain the radial Hamiltonian

H =

∫
d3x

(
πij γ̇ij + πI ϕ̇

I + πi
ΛȦ

Λ
i

)
− L =

∫
d3x

(
NH+NiHi + aΛFΛ

)
, (A.5)

where

H = − κ24√−γ

(
2

(
γikγjl −

1

2
γijγkl

)
πijπkl + GIJ(ϕ)πIπJ

+
1

4
ZΛΣ(ϕ)

(
πΛi +

2

κ24

√−γRΛM (ϕ)ǫi
klFM

kl

)(
πi
Σ +

2

κ24

√−γRΣN (ϕ)ǫipqFN
pq

))

+

√−γ

2κ24

(
−R[γ] +

1

2
GIJ(ϕ)∂iϕ

I∂iϕJ + ZΛΣ(ϕ)F
Λ
ijF

Σij

)
, (A.6a)

Hi = −2Djπ
ij + πI∂

iϕI + FΛij

(
πΛj +

2

κ24

√−γRΛΣ(ϕ)ǫj
klFΣ

kl

)
, (A.6b)

FΛ = −Diπ
i
Λ. (A.6c)

Since the canonical momenta conjugate to the fields N , Ni, and aΛ vanish identically, the

corresponding Hamilton equations lead to the first class constraints

H = Hi = FΛ = 0, (A.7)

which reflect respectively diffeomorphism invariance under radial reparameterizations, dif-

feomorphisms along the radial slices Σu and a U(1) gauge invariance for every gauge

field AΛ
i .
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Hamilton-Jacobi formalism. The first class constraints (A.7) are particularly useful

in the Hamilton-Jacobi formulation of the dynamics, where the canonical momenta are

expressed as gradients of Hamilton’s principal function S[γ,AΛ, ϕI ] as

πij =
δS
δγij

, πi
Λ =

δS
δAΛ

i

, πI =
δS
δϕI

. (A.8)

Since the momenta conjugate toN, Ni, and aΛ vanish identically, the functional S[γ,AΛ, ϕI ]

does not depend on these Lagrange multipliers. Inserting the expressions (A.8) for the

canonical momenta in the first class constraints (A.7) leads to a set of functional partial

differential equations for S[γ,AΛ, ϕI ]. These are the Hamilton-Jacobi equations for the

Lagrangian (A.2).

Given a solution S[γ,AΛ, ϕI ] of the Hamilton-Jacobi equations, the radial evolution of

the induced fields γij , a
Λ and AΛ

i is determined through the first order equations obtained

by identifying the expressions (A.4) and (A.8) for the canonical momenta. Namely, gauge-

fixing the Lagrange multipliers Ni = aΛ = 0, but keeping N arbitrary, the resulting first

order equations are

1

N
γ̇ij = − 4κ24√−γ

(
γikγjl −

1

2
γijγkl

)
δS
δγkl

, (A.9a)

1

N
ϕ̇I = − 2κ24√−γ

GIJ(ϕ)
δS
δϕJ

, (A.9b)

1

N
ȦΛ

i = − κ24
2
√−γ

ZΛΣ(ϕ)γij
δS
δAΣ

j

−ZΛΣ(ϕ)RΣP (ϕ)ǫi
jkFP

jk. (A.9c)

The complete solution of the equations of motion can be obtained by solving the Hamilton-

Jacobi equations, together with the first order equations (A.9), without actually solving

the second order equations of motion. Even though this may not seem an easier avenue to

solve the system, it is a very efficient approach for obtaining asymptotic solutions of the

equations of motion, which is all that is required in order to determine the boundary terms

that render the variational problem well posed [25].

These boundary terms, commonly referred to as ‘boundary counterterms’, can in

fact be read off a suitable asymptotic solution S[γ,AΛ, ϕI ] of the Hamilton-Jacobi equa-

tions [25]. This is related to the fact that Hamilton’s principal function generically coincides

with the on-shell action,12 up to terms that remain finite as Σu → ∂M. In particular, the

divergent part of S[γ,AΛ, ϕI ] coincides with that of the on-shell action. Adding, there-

fore, the boundary counterterms Sct = −S to the action, where S[γ,AΛ, ϕI ] is a suitable

asymptotic solution of the Hamilton-Jacobi equations, not only renders the variational

problem well posed, but also automatically ensures that the on-shell action remains finite

as Σu → ∂M [24, 25]. For asymptotically AdS backgrounds, the fact that the divergences

of the on-shell action can be canceled by a solution of the radial Hamilton-Jacobi equation

was first observed in [28].

12This holds provided the Hamilton’s principal function in question corresponds, through the first order

equations (A.9), to asymptotic solutions satisfying the same boundary conditions as the solutions on which

the action is evaluated.
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B Evaluation of the 4D renormalized on-shell action

The easiest way to evaluate the renormalized on-shell action of the reduced STU model in

the magnetic frame is to utilize the relation (6.21), namely

Sren = lim
r→∞

(
S4 + S′

ct

)
= lim

r→∞

(
S3 + S′

ct

)
− 1

2κ24

∫

H+

(
χ2A ∧ F 0 + 2χA ∧ F

)
, (B.1)

which relates Sren to the renormalized on-shell action in three dimensions, plus a surface

contribution from the outer horizon. The renormalized on-shell action in three dimensions

is (see (6.22))

lim
r→∞

(
S3 + S′

ct

)
=

πβ3
κ23L

2

(
ρ2+ − ρ2−

)
=

β4kℓ

8G4
(r+ − r−), (B.2)

where (6.14) and (6.18) have been used in the second step. Moreover, the parity-odd term

on the horizon gives

1

2κ24

∫

H+

(
χ2A ∧ F 0+2χA ∧ F

)
=

kℓ3

2κ24

∫
d3x ∂θ

(
ω2√r+r− cos3 θ

r++ω2ℓ2 sin2 θ

)
= − β4

4G4
kℓ3ω2

√
r−
r+

.

(B.3)

Combining these two results we obtain

Sren =
kℓ

8G4

(
r+ − r− − 2ℓ2ω2

√
r−
r+

)
. (B.4)

A few comments are in order here. Firstly, although in the gauge in which the back-

grounds (3.6) are given the parity-odd terms on the boundary in (6.9) give a zero contribu-

tion, this is not the case for a generic choice of gauge for the potential A. In general both

contributions from the boundary and the horizon must be considered, and their difference

is clearly gauge invariant.

A second comment concerns the potential dependence of the renormalized on-shell ac-

tion on the parameter α. Here we have evaluated the renormalized on-shell action through

the relation (6.21), which holds only for α = 0. However, evaluating the counterterms (4.11)

for generic α we obtain

Sct = − ℓ

κ24

∫

Mr0

d3x sin θ

(
1

2
r0 −

1

4
(r+ + r−)−

α

8
ω2ℓ2(1 + 3 cos 2θ) +O

(
r−1
0

))
, (B.5)

where r0 is the radial cut-off. It is obvious that the α-dependent term drops out after

integration over θ, which implies that for all values of α we get the same result (B.4).

Therefore, the renormalized on-shell action is independent of the choice of α.

The same conclusion holds for the finite counterterm
√−γe−η/2(∂η)2 that was added

in (6.11) in order to uplift the counterterms to five dimensions. Namely, this term does

not contribute to the on-shell action since
∫

d3x
√−γeη/2

(
e−η∂iη∂

iη
)
=

∫
d3x

kω2ℓ3

B

(
sin3 θ − 2 cos2 θ sin θ

)
= 0. (B.6)

Hence, evaluating Sren with S′
ct in (6.11) or with Sct in (4.11) gives the same result (B.4).
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