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eMax Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, Potsdam 14476, Germany

E-mail: ohtan@phys.kindai.ac.jp, percacci@sissa.it, aduarte@if.uff.br

Abstract: We perform a general computation of the off-shell one-loop divergences in

Einstein gravity, in a two-parameter family of path integral measures, corresponding to

different ways of parametrizing the graviton field, and a two-parameter family of gauges.

Trying to reduce the gauge- and measure-dependence selects certain classes of measures and

gauges respectively. There is a choice of two parameters (corresponding to the exponential

parametrization and the partial gauge condition that the quantum field be traceless) that

automatically eliminates the dependence on the remaining two parameters and on the

cosmological constant. We observe that the divergences are invariant under a Z2 “duality”

transformation that (in a particularly important special case) involves the replacement of

the densitized metric by a densitized inverse metric as the fundamental quantum variable.

This singles out a formulation of unimodular gravity as the unique “self-dual” theory in

this class.

Keywords: Effective field theories, Models of Quantum Gravity

ArXiv ePrint: 1605.00454

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2016)115

mailto:ohtan@phys.kindai.ac.jp
mailto:percacci@sissa.it
mailto:aduarte@if.uff.br
http://arxiv.org/abs/1605.00454
http://dx.doi.org/10.1007/JHEP06(2016)115


J
H
E
P
0
6
(
2
0
1
6
)
1
1
5

Contents

1 Introduction 1

2 Parametrization of the quantum fluctuations 3

3 One-loop quantum GR 5

3.1 Expansion of the action 6

3.2 Gauge fixing and ghosts 7

3.3 York decomposition 8

4 One-loop divergences 9

5 Results 10

5.1 Fixing ω = 0 11

5.2 Fixing ω = 1/2 12

5.3 Fixing the gauge 13

6 Duality 15

7 Discussion 17

A Some technical details 19

B Comparison with the literature 19

1 Introduction

If one properly takes into account the Jacobian of the transformation, then a change of

parametrization of the degrees of freedom of a system should leave physical observables un-

changed, on-shell. In quantum field theory, this is known as the equivalence theorem [1–3].

On the other hand, if one does not take the Jacobian into account, functional integrals writ-

ten in terms of different variables correspond to different choices of the functional measure.

In principle these define different quantum theories and may well yield different results

even for physical observables. Insofar as the functional integral is a purely formal expres-

sion, such general statements have to be verified after introducing suitable regularizations

and renormalizations.

In quantum gravity there are many possible choices of variables, and of functional

measure. Even restricting our attention to formulations of the theory in terms of a metric

alone, one can take as fundamental quantum field the densitized metric

γµν = gµν

(√
det gµν

)w
, (1.1)
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or the densitized inverse metric

γµν = gµν
(√

det gµν

)w
, (1.2)

where w is known as the weight (note that here γµν and γµν have the same weight and

are not the inverse of each other). Writing the functional integral in terms of γµν instead

of gµν amounts to an ultralocal change in the functional measure. Several authors have

suggested specific choices of w or even different, non-covariant measures [4–11]. Here we

will not commit to any such choice but treat w as a free parameter.

The definition of the functional integral of quantum gravity as an integral over metrics

is still rather formal. In quantum gravity it is almost inevitable to use the background

field method where the true quantum variable is not the (densitized) metric but rather its

deviation from some classical value. This gives rise to another ambiguity: the densitized

metric can be written in the form γ = f(γ̄, ĥ), where the function f has the property

f(γ̄, 0) = γ̄. The most common procedure is to expand the (densitized) metric linearly

γµν = γ̄µν + ĥµν or γµν = γ̄µν + ĥµν , (1.3)

but in the literature the exponential form

γµν = γ̄µρ(e
ĥ)ρν or γµν = (e−ĥ)µργ̄

ρν , (1.4)

has also been used [12–20]. We will see that, at least at the one-loop level, all these discrete

choices can be subsumed in a continuous parameter ω.

In gravity, as in any gauge theory, there are further ambiguities due to the need of

introducing a gauge fixing procedure. On-shell quantities will generally be independent of

the choice of gauge, but sometimes one is interested in off-shell quantities. As an example we

may cite the calculation of one-loop divergences in quantum gravity, where it can be shown

that there exists a gauge choice for which the coefficient of the logarithmic divergences

is zero [21]. Off-shell calculations of beta functions are common in the asymptotic safety

approach to quantum gravity [22–24], and in such cases one may be interested in minimizing

their dependence on the gauge choice.

In this paper we consider one-loop corrections in quantum general relativity (GR),

and in particular the coefficient of the leading divergences (in four dimensions: quartic,

quadratic and logarithmic divergences). We will study the dependence of these coefficients

on two gauge parameters and a two-parameter family of functional measures. Similar

calculations in a less general setting have been performed in [25, 26].

The plan of the paper is as follows. In section 2 we define the parametrization of

the metric. In section 3 we describe the choice of gauge and the calculation of the one-

loop effective action. Section 4 contains the discussion of the results for the one-loop

divergences. In section 5 we discuss the duality between measures and section 6 contains

a brief discussion.

We plan to extend these result to higher derivative gravity in forthcoming publication.
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2 Parametrization of the quantum fluctuations

Our starting point is the gravitational action S(g), written in terms of a metric gµν in d

Euclidean dimensions. We will assume that the fundamental dynamical variable is not the

metric itself but rather a tensor density γµν or γµν of weight w. The metric and its inverse

are defined by

gµν = γµν (det(γµν))m ; gµν = γµν (det(γµν))−m (2.1)

where γµαγαν = gµαgαν = δµν . This implies a relation between the determinants of g and

γ, namely

det g = (det γ)1+dm . (2.2)

For m 6= −1/d, the relations (2.1) can be inverted:

γµν = gµν(det(gµν))−
m

1+dm , γµν = gµν(det(gµν))
m

1+dm . (2.3)

Comparing with (1.1) and (1.2) we find that m is related to the weight by

w

2
= − m

1 + dm
or

w

2
=

m

1 + dm
, (2.4)

respectively. Conversely, m = − w/2
1+dw/2 for (1.1) and m = w/2

1−dw/2 for (1.2). We observe that

the relation between m and w/2 is an involution. We choose to treat m as an independent

free parameter. All dependence on m can be translated into a dependence on w if needed,

using the preceding formulas.

For m = −1/d, the transformation (2.1) is singular and from eq. (2.2), we see that it

implies that the determinant of gµν is one. We will refer to this choice as unimodular gravity.

For this reason, quantum corrections in this specific case should be analyzed separately.

For the calculation of one-loop effects one needs the expansion of the action around a

background field. This will now depend on the parametrization of the metric. For both

cases (1.3) and (1.4), if we momentarily use γ̄µν and its inverse γ̄µν to raise and lower

indices, the field ĥµν is a genuine tensor and the fields ĥµν = γ̄µρĥ
ρ
ν and ĥµν = ĥµργ̄

ρν

are densities of the same weight as γµν and γµν . It is preferable to work with a quantum

fluctuation that is a true tensor, so we define

hµν = (det γ̄)mĥµν . (2.5)

Now that we have a genuine tensor, we can avoid having to deal with explicit powers of

determinants by using the background metric

ḡµν = γ̄µν(det γ̄)m ; ḡµν = γ̄µν(det γ̄)−m, (2.6)

to raise and lower indices. For example

hµν = ḡµρḡνσhρσ = (det γ̄)−mγ̄µργ̄νσĥρσ = (det γ̄)−mĥµν . (2.7)

We can now write

gµν = ḡµν + δgµν , (2.8)

– 3 –
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and the fluctuation can be expanded:

δgµν = δg(1)
µν + δg(2)

µν + δg(3)
µν + . . . , (2.9)

where δg
(n)
µν contains n powers of hµν .

Let us begin from the case where the quantum field is the densitized covariant metric

γµν and we use the linear background field expansion (1.3). For the expansion of the

determinant of γµν one writes

det γµν = det(γ̄µρ(δ
ρ
ν + ĥρν)) = det(γ̄) det(1 + ĥ) , (2.10)

and then expands

det(1+ĥ) = exp tr log(1+ĥ) = exp
∞∑
n=1

(−1)n+1

n
trĥn = eh1e−

1
2
h2e

1
3
h3e−

1
4
h4 . . . , (2.11)

where hn = trĥn, e.g. h1 = ĥµµ = hµµ ≡ h, h2 = hαβh
β
α, h3 = hαβh

β
γh

γ
α etc.. Here and

everywhere in the following indices will be raised and lowered with the background metric

ḡµν , ḡµν . This leads to the expansion

gµν = ḡµν + hµν +mḡµνh+mhhµν +
1

2
ḡµν(−mh2 +m2h2)

+
1

2
hµν(−mh2 +m2h2) + ḡµν

(
m

3
h3 −

m2

2
hh2 +

m3

6
h3

)
+ hµν

(
m

3
h3 −

m2

2
hh2 +

m3

6
h3

)
+ ḡµν

(
−m

4
h4 +

m2

3
hh3 +

m2

8
h2

2 −
m3

4
h2h2 +

m4

24
h4

)
+ . . . . (2.12)

Instead, if the quantum field is the densitized inverse metric γµν of weight 2m/(1+dm),

the linear expansion

γµν = γ̄µν − ĥµν , (2.13)

(notice the minus sign), followed by the redefinition (2.7), leads to

gµν = ḡµν + hµν +mḡµνh+ hµρh
ρ
ν +mhhµν +

1

2
ḡµν(mh2 +m2h2)

+ hµρh
ρ
σh

σ
ν +mhhµρh

ρ
ν +

1

2
hµν(mh2 +m2h2) + ḡµν

(
m

3
h3 +

m2

2
hh2 +

m3

6
h3

)
+ hµρh

ρ
σh

σ
λh

λ
ν +mhhµρh

ρ
σh

σ
ν +

1

2
hµρh

ρ
ν(mh2 +m2h2)

+ hµν

(
m

3
h3 +

m2

2
hh2 +

m3

6
h3

)
+ ḡµν

(
m

4
h4 +

m2

3
hh3 +

m2

8
h2

2 +
m3

4
h2h2 +

m4

24
h4

)
+ . . . . (2.14)
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Now consider the exponential expansion of the densitized metric as defined in (1.4). In

this case the expansion of the determinant only produces terms proportional to the single

trace h:

det(γµν) = det(γ̄µν) det eĥ = det(γ̄µν)etrĥ = det(γ̄µν)

(
1 + h+

1

2
h2 +

1

3!
h3 + . . .

)
.

The exponential expansion (1.4), followed by the redefinition (2.7), leads to

gµν = ḡµν + hµν +mḡµνh+
1

2!
hµρh

ρ
ν +mhhµν +

m2

2
ḡµνh

2

+
1

3!
hµρh

ρ
σh

σ
ν +

m

2
hhµρh

ρ
ν +

m2

2
h2hµν +

m3

3!
h3ḡµν (2.15)

+
1

4!
hµρh

ρ
σh

σ
λh

λ
ν +

m

3!
hhµρh

ρ
σh

σ
ν +

m2

4
h2hµρh

ρ
ν +

m3

3!
h3hµν +

m4

4!
h4ḡµν + . . . .

Finally, the exponential expansion of the inverse metric

γµν = (e−ĥ)µργ̄
ρν , (2.16)

leads again to the same formula (2.15).

For the one-loop evaluation of the effective action we only need the expansions up to

second order in the fluctuation, which are contained in the first lines of (2.12), (2.14), (2.15).

We observe that they are special cases of a two-parameter family of expansions of the

form (2.9), with

δg(1)
µν = hµν +mḡµνh ,

δg(2)
µν = ωhµρh

ρ
ν +mhhµν +m

(
ω − 1

2

)
ḡµνh

αβhαβ +
1

2
m2ḡµνh

2 . (2.17)

Here the choice ω = 0 corresponds to the linear expansion of the metric, ω = 1/2 corre-

sponds to the exponential expansion and ω = 1 corresponds to the linear expansion of the

inverse metric, as in eq. (2.13). (As a matter of fact, one observes that to this order the

exponential expansion is just the mean of the other two.)

3 One-loop quantum GR

We are going to calculate the formal path integrals∫
[Dγµν ] e−S(g(γ)) and

∫
[Dγµν ] e−S(g(γ)) , (3.1)

where the action S(g) is kept the same, but is rewritten in terms of the quantum fields

γµν or γµν using equation (2.1), and [Dγµν ], [Dγµν ] denote the usual translation-invariant

functional measures for γµν or γµν . We are thus going to repeat the classic calculation

of [27], but in a more general context: in any dimension, in a two-parameter family of

gauges specified below, in the two-parameter family of measures specified above, and also

keeping track of the leading (power) divergences.

– 5 –
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3.1 Expansion of the action

We now concentrate on the Hilbert action

S(g(γ)) = ZN

∫
ddx
√
g(2Λ− gµνRµν(g))

= ZN

∫
ddx (det γ)

1+dm
2
(
2Λ− (det γ)−mγµνRµν(g(γ))

)
, (3.2)

where ZN = 1/(16πG) and Λ and G denote the cosmological and Newton constants,

respectively.

The expansion of the action to second order in the quantum fluctuation hµν can be

obtained as follows. One begins with the standard expansion of the Hilbert action, regarded

as a function of the metric gµν , to second order in δgµν :

S(g) = S(ḡ) +

∫
ddx
√
ḡ Eµνδgµν +

1

2

∫
ddx
√
ḡ δgµνH

µνρσδgρσ + . . . . (3.3)

Then one replaces δgµν by its expansion (2.9) to second order in hµν to obtain

S(g(γ)) = S(ḡ) +

∫
ddx
√
ḡ Eµν(δg(1)

µν (m) + δg(2)
µν (m,ω))

+
1

2

∫
ddx
√
ḡ δg(1)

µν (m)Hµνρσδg(1)
ρσ (m) + . . .

= S(ḡ) +

∫
ddx
√
ḡ E′µν(m)hµν

+
1

2

∫
ddx
√
ḡ hµνH

′µνρσ(m,ω)hρσ + . . . .

The modified Hessian H ′µνρσ contains terms coming from the equation of motion.

Expanding around a maximally symmetric background, with curvature tensor

R̄µναβ =
R̄

d(d− 1)
(ḡµαḡνβ − ḡµβ ḡνα) , (3.4)

this procedure leads to the following quadratic action

S(2) =
ZN
2

∫
ddx
√
ḡ

{
1

2
hµν(−∇̄2)hµν + hµν∇̄µ∇̄ρhρν − (1 + (d− 2)m)h∇̄µ∇̄νhµν

+
1

2

(
1 + 2(d− 2)m+ (d− 1)(d− 2)m2)

)
h∇̄2h

+

[
R̄

d(d− 1)
− (1 + dm)(1− 2ω)

(
Λ− d− 2

2d
R̄

)]
hµνhµν

+

[
d− 3 +m(d− 1)(d− 2)(1 + dm)

2d(d− 1)
R̄+

(1 + dm)2

2

(
Λ− d− 2

2d
R̄

)]
h2

}
. (3.5)

The bars on the covariant derivatives means that they are calculated from the background

metric ḡµν . Notice that ω only appears in the third line.

– 6 –
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We note that the most general form of the quadratic term in (2.17) would be

δg(2)
µν =

1

2

(
τ1hµρh

ρ
ν + τ2hhµν + τ3ḡµνh

αβhαβ + τ4ḡµνh
2
)
. (3.6)

As already observed in [28], these parameters appear in the expansion of the Hilbert action

only through the combinations T1 = 1
4τ1 + τ3 and T2 = 1

4τ2 + τ4. These are related to our

parameters m and ω by

T1 =
1

2
ω(1 + 4m)−m ; T2 =

1

2
m(1 + 2m) . (3.7)

3.2 Gauge fixing and ghosts

We consider a general linear background gauge-fixing condition

Fµ = ∇̄αhαµ −
b̄+ 1

d
∇̄µh , (3.8)

depending on a parameter −∞ < b̄ <∞, where hµν is the tensorial quantum field defined

above. The gauge-fixing term in the action is

SGF =
ZN
2a

∫
ddx
√
ḡ ḡµνFµFν , (3.9)

where a is a gauge parameter. The usual harmonic (de Donder) gauge condition corre-

sponds to b̄ = d
2 − 1. The gauge parameter a is assumed to be positive or zero. The choice

a = 1 (Feynman gauge) is often used because it simplifies calculations greatly. While

on-shell the choice of a should be completely immaterial, we note that the effect of the

unphysical (gauge) degrees of freedom is more suppressed the smaller a is, so that in some

sense the Landau gauge a = 0, which amounts to imposing the gauge condition strongly,

is expected to give the most reliable results. When the gauge parameters are allowed to

run with scale, a = 0 is expected to be a fixed point [29].

For reasons that will become apparent later, it will be convenient to redefine the gauge

parameter

b̄ = b(1 + dm) . (3.10)

After an integration by parts, the gauge fixing term can be written as

SGF =−ZN
2a

∫
ddx
√
ḡ

[
hµν∇̄ν∇̄αhαµ−2

1+b(1+dm)

d
h∇̄µ∇̄νhµν+

(
1+b(1+dm)

d

)2

h∇̄2h

]
.

(3.11)

Some care is required in the derivation of the ghost action. Although we have found it

convenient to rewrite the expansion of the action in terms of the tensorial variable hµν , in

the Faddeev-Popov procedure one has to recall that the quantum field is the tensor density

γµν , and it is the infinitesimal gauge transformation of this quantity that enters in the

definition of the Faddeev-Popov determinant. The infinitesimal gauge variation of γµν is

Lεγµν = γµρ∇νερ + γνρ∇µερ −
2m

1 + dm
γµν∇λελ . (3.12)

– 7 –
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When converted into a tensor, this gives an infinitesimal variation

hεµν = ∇µεν +∇νεµ −
2m

1 + dm
gµν∇λελ , (3.13)

where indices have been lowered with the metric gµν . The Faddeev-Popov ghost is obtained

by inserting this gauge variation in the gauge condition. A short algebra leads to the

ghost action

Sgh = −
∫
ddx
√
ḡ C̄µ

∂Fµ

∂ĥαβ
LCγαβ

= −
∫
ddx
√
ḡ C̄µ

[
δνµ∇̄2 +

(
1− 2

1 + b

d

)
∇̄µ∇̄ν +

R̄

d
δνµ

]
Cν , (3.14)

Note that here b appears without the factor 1 + dm that is ubiquitous elsewhere.

3.3 York decomposition

Following [30], the Hessian can be nearly diagonalized by using the York decomposition of

the fluctuation field:

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −

1

d
ḡµν∇̄2σ +

1

d
ḡµνh , (3.15)

where

∇̄µhTT
µν = 0 , ḡµνhTT

µν = 0 , ∇̄µξµ = 0 , h = ḡµνhµν . (3.16)

It is convenient to redefine the fields ξµ and σ so that they have the same dimension

as hµν :

ξ̂µ =

√
−∇̄2 − R̄

d
ξµ ; σ̂ =

√
−∇̄2

√
−∇̄2 − R̄

d− 1
σ . (3.17)

The York decomposition leads to a non-trivial Jacobian while redefinitions (3.17)

produce another Jacobian which exactly cancels the previous one.

After the York decomposition and field redefinition

S + SGF =
ZN
2

∫
ddx
√
ḡ

{
1

2
hTT
µν

[
−∇̄2+

2R̄

d(d−1)
−2(1+dm)(1−2ω)

(
Λ− d−2

2d
R̄

)]
hTTµν

+
1

a
ξ̂µ

[
−∇̄2 − R̄

d
− 2a(1 + dm)(1− 2ω)

(
Λ− d− 2

2d
R̄

)]
ξ̂µ

− d−1

2d
σ̂

[
a(d−2)−2(d−1)

da
(−∇̄2)+

2R̄

da
+2(1+dm)(1−2ω)

(
Λ− d−2

2d
R̄

)]
σ̂

−
(d− 1)(1 + dm)

(
(d− 2)a− 2b

)
d2a

σ̂
√
−∇̄2

√
−∇̄2 − R̄

d− 1
h

− h(1 + dm)2

2d2a

[(
(d− 1)(d− 2)a− 2b2

)
(−∇̄2)− (d− 2)aR̄

− da
(
d− 2

1− 2ω

1 + dm

)(
Λ− d− 2

2d
R̄

)]
h

}
. (3.18)

The only residual non-diagonal terms are in the σ-h sector.

– 8 –
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Similarly, when the ghosts are decomposed in their longitudinal and transverse parts

Cµ = CT
µ + ∇̄µ

1√
−∇̄2

C ′L ; C̄µ = C̄Tµ + ∇̄µ 1√
−∇̄2

C̄ ′L, (3.19)

the ghost action becomes

Sgh = −
∫
ddx
√
ḡ

[
C̄Tµ

(
∇̄2 +

R̄

d

)
CT
µ + 2

d−1−b
d

C̄ ′L
(
∇̄2 +

R̄

d−1−b

)
C ′L
]
. (3.20)

4 One-loop divergences

The one-loop effective action contains a divergent part

Γk =

∫
ddx
√
ḡ

[
A1

16πd
kd +

B1

16π(d− 2)
kd−2R̄+

C1

d− 4
kd−4R̄2 + . . .

]
,

where k stands for a cutoff and we introduced a reference mass scale µ. In d = 4, the last

term is replaced by C1 log(k/µ)R̄2. In general one would have separate Riemann squared,

Ricci squared and R2 terms, but here we use the curvature conditions (3.4) and reduce

them all to a single term proportional to R̄2.

The coefficients A1, B1, C1 depend on d, m, ω, a, b and Λ̃ = k−2Λ. These functions

are too complicated to be reported in generality. We describe here the algorithm that is

used to derive them, so that the readers can easily reproduce on a computer. Instead of

Γk we shall evaluate the derivative [31, 32]:

Γ̇k =

∫
ddx
√
ḡ

[
A1

16π
kd +

B1

16π
kd−2R̄+ C1k

d−4R̄2 + . . .

]
, (4.1)

where the dot stands for k d
dk . The one-loop effective action Γk with cutoff k is given by

Γk =
1

2
Tr log

(
∆

(2)
k

µ2

)
+

1

2
Tr log

(
∆

(1)
k

µ2

)
+

1

2
Tr log

(
∆

(0)
k

µ2

)
−Tr log

∆
(1)
gh,k

µ2

−Tr log

∆
(0)
gh,k

µ2

,
(4.2)

where each ∆k is one of the kinetic operators that appear in (3.18) and (3.20), in which the

Bochner Laplacian −∇̄2 has been replaced by Pk(−∇̄2) = −∇̄2 + Rk(−∇̄2). The kernel

Rk(−∇̄2) is to some extent arbitrary, but its effect must be to suppress the contribution

of the modes with eigenvalues below k2. Thus, it must go to zero sufficiently fast for

eigenvalues greater than k2. Then, Γ̇k is given by

Γ̇k =
1

2
Tr

(
∆̇

(2)
k

∆
(2)
k

)
+

1

2
Tr

(
∆̇

(1)
k

∆
(1)
k

)
+

1

2
Tr

(
∆̇

(0)
k

∆
(0)
k

)
− Tr

∆̇
(1)
gh,k

∆
(1)
gh,k

− Tr

∆̇
(0)
gh,k

∆
(0)
gh,k

 . (4.3)

Note that in the scalar term ∆
(0)
k is a two-by-two matrix, and the fraction has to be

understood as the product of ∆̇
(0)
k with the inverse of ∆

(0)
k . The functional trace thus

involves also a trace over the two-by-two matrix. Note that any overall prefactor of ∆k

cancels between numerator and denominator.
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The most convenient choice for the function Rk is the so-called optimized cutoff [33]

Rk(−∇̄2) = (k2 + ∇̄2)θ(k2 + ∇̄2), which allows to evaluate the Q-integrals in closed form.

In this case the numerator is ∆̇k = Ṙk(−∇̄2) = 2k2θ(k2 + ∇̄2). Due to the presence of

the Heaviside function in the numerator, in the denominator we can write Ṗk(−∇̄2) = 2k2.

The integrations over the eigenvalues of −∇̄2 that are implicit in the functional traces are

therefore cut off at k2. The technique that is used to evaluate the functional traces is

explained for example in appendix A of [34]. For the spin-two contribution it gives

1

2
Tr

(
∆̇

(2)
k

∆
(2)
k

)
=

1

2

1

(4π)d/2

[
W (−∇̄2, 0)

(
Qd/2b0(∆(2)) +Qd/2−1b2(∆(2)) +Qd/2−2b4(∆(2))

)
+W ′(−∇̄2, 0)R̄

(
Qd/2b0(∆(2)) +Qd/2−1b2(∆(2))

)
+

1

2
W ′′(−∇̄2, 0)R̄2

(
Qd/2b0(∆(2))

)
+ . . .

]
, (4.4)

where W (−∇̄2, R̄) =
∆̇

(2)
k

∆
(2)
k

and primes denote derivatives with respect to R̄. The coefficients

Qn and the heat kernel coefficients bn are listed in appendix A. Similar formulas hold for

the spin one and spin zero sectors and for the ghosts. With these data one can write the

expansion of (4.3) in powers of R̄ and comparing with (4.1) one can read off the coefficients

A1, B1 and C1.

5 Results

In the following we shall discuss mainly the case d = 4, but we will point out some results

that hold in any dimension.

We begin with the coefficient A1, that is the simplest of the three. Normally the

vacuum energy, which diverges like kd, is simply proportional to the number of degrees of

freedom. As pointed out in [35], for pure gravity this is d(d − 3)/2. The general result

is actually more complicated, but it reduces to the expected value if one assumes either

Λ̃ = 0, or ω = 1/2 and b → ±∞. We will discuss the meaning of this second choice later.

In both cases one has

A1 =
16π(d− 3)

(4π)d/2Γ(d/2)
, (5.1)

independently of the choice of gauge and parametrization. In particular, note that in three

dimensions A1 = 0, reflecting the absence of propagating gravitons, and in four dimensions

A1 = 1/π. We will not discuss the coefficient A1 anymore.

For Λ̃ = 0, also B1 and C1 simplify considerably. Unless otherwise stated, we will

therefore consider only this case in what follows.1 The coefficients B1 and C1 then depend

on the four parameters m, ω, a and b. One can get some understanding of the behavior of

these functions, by fixing either the parametrization or the gauge, and studying the depen-

dence on the remaining two parameters. In figures 1 and 2 we fix the linear parametrization

1While this may seem a strong restriction, we shall see that there are choices of gauge and parametrization

where the results are automatically Λ̃-independent.
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ω = 0, m = 0 or the exponential parametrization ω = 1/2, m = 0 and plot B1 and C1

as functions of the gauge parameters a and b. In figures 3 and 4 we fix the Feynman-de

Donder gauge a = 1, b = 1 or the physical gauge a = 0, b → ±∞ and plot B1 and C1 as

functions of m and ω. Other choices such as the Landau-de Donder gauge a = 0, b = 1 or

the “tracefree” conditions b = 0 yield similar pictures. We now discuss some remarkable

special cases.

5.1 Fixing ω = 0

In the standard linear parametrization (m = ω = 0) in d = 4 we have

B1 =
a
(
−6b2 + 36b− 62

)
− 3

(
7b2 − 50b+ 79

)
8π(b− 3)2

, (5.2)

C1 =
1

17280π2(b− 3)4

[
135a2

(
3b4 − 36b3 + 162b2 − 324b+ 259

)
− 180a

(
3b4 − 36b3 + 176b2 − 360b+ 297

)
+ 4

(
431b4 − 3822b3 + 14904b2 − 26298b+ 17901

) ]
. (5.3)

We show in appendix B that the formula for C1 is in agreement with an old calculation of

Kallosh et al. [21]. We also compare our results for ω = 0 and ω = 1, but general m, with

the calculations in reference [25, 26]. To the extent that the calculations overlap, they are

again seen to agree.

The functions (5.2) and (5.3) are plotted in figure 1. One sees that there is a divergence

on the line b = 3. This can be attributed to the failure of the gauge condition at b = 3.

Elsewhere, the gauge dependence is relatively weak. As mentioned in the Introduction,

the most reliable results are obtained for a→ 0. One normally considers the gauges where

b = 1 or b = 0, which are indicated by black dots, but there is no reason to discard large

values of b, in particular for b→ ±∞ we have

B1 = −3(7 + 2a)

8π
, (5.4)

C1 = −1724− 540a+ 405a2

17280π2
.

Taking the limit b → ±∞ corresponds to imposing the condition h = 0 strongly. In the

limit a→ 0 one also imposes ξ̂µ = 0. On the other hand for a→ 0 and b→ 0 one imposes

ξ̂µ = 0 and σ̂ = 0 strongly. These were called “physical gauges” in [15].

In order to get a feeling of the numerical variability, the following table gives the values

of the coefficients for some selected gauges

Gauge B1 C1

a = 0, b = 0 −1.05 0.0052

a = 0, b = 1 −1.07 0.0046

a = 0, b = ±∞ −0.83 0.010

a = 1, b = 1 −1.39 0.0025
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Figure 1. The coefficients B1 (left) and C1 (right) in d = 4 for Λ̃ = 0, in the standard linear

parametrization ω = 0, m = 0. The functions decrease going from lighter to darker tones. The

zero-level lines of B1 are the ones ending on the left near b = 5 and b = 2.3. The interval between

level lines is 0.34. The function B1 goes to +∞ on the line b = 3, left of the point (3, 3) and to −∞
right of that point. The zero-level line of C1 is the biggest of the loops that are seen emanating

leftwards from the singular point in (3, 3), and a similar loop on the opposite side. C1 is positive

outside the loop and goes to +∞ on the line b = 3. The interval between level lines is 0.068. The

plots in the lower row are cuts through the line a = 0. The four dots mark the familiar gauges

a = 0, 1, b = 0, 1.

5.2 Fixing ω = 1/2

In the exponential parametrization a simplification occurs: B1 and C1 become independent

of m. In four dimensions one has

B1 = −159− 8a− 90b+ 15b2

8π(b− 3)2
, (5.5)

C1 = −55971− 2160a2 − 68148b+ 29754b2 − 6852b3 + 571b4 − 360a(9− 18b+ b2)

17280(b− 3)4π2
.

The independence on m can be understood by considering the Hessian (3.18). For ω = 1/2

the spin-one and spin-two operators are independent of m, while in the determinant of the

scalar sector m only appears in an overall prefactor.

– 12 –



J
H
E
P
0
6
(
2
0
1
6
)
1
1
5

The functions (5.5) are plotted in figure 2. The divergence for b = 3 is still present

but elsewhere the gauge-dependence is again weak. Numerical values are given in the

following table:

Gauge B1 C1

a = 0, b = 0 −0.70 −0.0041

a = 0, b = 1 −0.84 −0.0041

a = 0, b = ±∞ −0.60 −0.0033

a = 1, b = 1 −0.76 −0.0044

In the limit b → ±∞ a further simplification occurs: the dependence on a automatically

disappears:

A1 =
1

π
, B1 = − 15

8π
, C1 = − 571

17280π2
. (5.6)

In fact, a stronger statement can be made: if one chooses the exponential parametrization

and the partial gauge condition b→ ±∞ the coefficients B1 and C1 become automatically

independent of Λ̃, m and a, in any dimension:

B1 =
d5 − 4d4 − 9d3 − 48d2 + 60d+ 24

(4π)d/2−13(d− 1)d2Γ
(
d
2

) , (5.7)

C1 =
5d8 − 37d7 − 17d6 − 743d5 + 1668d4 + 684d3 + 16440d2 − 13680d− 8640

(4π)d/21440(d− 1)2d3Γ
(
d
2

) .

The reason for the independence on Λ̃ can be understood as follows [15]. In exponential

parametrization the expansion of the cosmological term contains only terms proportional

to h, the trace of the fluctuation field. The gauge b → ±∞ amounts to imposing h = 0,

so the cosmological term disappears from the effective action. In contrast, in the linear

parametrization, the second order expansion of the cosmological term contains a term

proportional to hµνh
µν . This contributes a “mass” term proportional to Λ to the gravi-

ton propagator, which then gives rise to denominators of the form 1 − 2Λ̃ that appear

everywhere in Γ̇k.

5.3 Fixing the gauge

An alternative way to cut up the four-parameter space is to fix the gauge. One can then

study the dependence of the off-shell effective action on the choice of the measure. Figure 3

shows the coefficients B1 and C1 as functions of ω and m in the familiar Feynman-de Donder

gauge. In interpreting these figures one has to recall that the vertical lines at ω = 0 and

ω = 1 correspond to treating the (densitized) or inverse metric as fundamental variables,

while the line ω = 1/2 corresponds to the exponential parametrization. Intermediate values

do not have direct physical interpretation. The vertical axis measures the weight of the

quantum field. Near ω = 0 and ω = 1 the functions B1 and C1 are approximately linear and

quadratic, respectively, apart from a singularity at m = −1/4. The singularity is located

precisely where the relation between gµν and γµν is not invertible. Exactly at ω = 1/2, B1

and C1 are both constant:

B1 = − 19

8π
, C1 = − 751

17280π2
. (5.8)
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Figure 2. The coefficients B1 (left) and C1 (right) in d = 4 for Λ̃ = 0, in the exponential

parametrization ω = 1/2. The function B1 is negative throughout most of the plot, with the zero-

level line being the the second innermost parabola ending on the right a little below b = 4 and

above b = 2. The interval between level lines is 0.11. In contrast to the linear parametrization, the

function B1 goes to −∞ on the line b = 3, left of the point (3, 3) and to +∞ right of that point.

The function C1 is slightly negative in the areas in the top right and bottom of the figure with the

zero-level lines being the outermost lines both in the upper and lower regions, and goes to +∞ on

the line b = 3. The plots in the lower row are cuts through the line a = 0. The four dots mark the

familiar gauges a = 0, 1, b = 0, 1. Both coefficients diverge at b = 3 and become independent of a

for b→ ±∞.

Slightly different gauge choices, for example the Landau-de Donder gauge b = 1, a = 0, or

“traceless” gauges2 b = 0, give qualitatively the same results.

Finally, figure 4 shows the coefficients B1 and C1 as functions of ω and m in the

“physical” gauge a = 0, b → ±∞, which corresponds to imposing h = 0, ξµ = 0. The

general behavior is very similar to that of figure 3 with the striking difference that the

singularity at m = −1/4 is absent. On the line ω = 1/2 the coefficients are given by (5.6).

On the line m = −1/4 (where the present calculation is not supposed to be valid) one also

obtains the same values.

2By this we mean that the gauge condition is imposed on the traceless part of hµν , not that the trace

hµν is zero. Such gauge choice is obtained in the opposite limit b→ ±∞.
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Figure 3. The coefficients B1 (left) and C1 (right) in d = 4 for Λ̃ = 0, in the Feynman-de Donder

gauge a = 1, b = 1, as functions of ω and m. B1 is positive in the lower left and upper right corners.

The zero-level lines are the ones ending near m = −0.5 on the left and m = 0 on the right. C1

is negative in the two darkest regions in the center of the plot. The structure of the singularity

at m = −1/4 can be understood from the plots in the lower row, which are cuts through the line

ω = 0. Both coefficients are constant on the line ω = 1/2.

6 Duality

Figures 3 and 4 have a reflection symmetry about the point with coordinates ω = 1/2,

m = −1/4. This is a special case of a much more general relation: in any dimension, for

any value of Λ̃ and in any gauge, the functions B1 and C1 have the following property:

B1(ω,m) = B1

(
1− ω,−m− 2

d

)
,

C1(ω,m) = C1

(
1− ω,−m− 2

d

)
. (6.1)

To trace the origin of this invariance, we note that it is present also in the Hessian. More

precisely, it is an invariance of the gauge-fixed spin-two, spin-one and ghost kinetic oper-

ators. It is not an invariance of the two-by-two spin-zero gauge-fixed Hessian matrix, but

it is an invariance of its determinant. The redefinition (3.10) is essential in order to have

the duality manifest. The invariance of the Hessian implies that not only the one-loop

divergences, but the whole one-loop effective action is invariant under (6.1).
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Figure 4. The coefficients B1 (left) and C1 (right) in d = 4 for Λ̃ = 0, in the “unimodular physical”

gauge a = 0, b → ±∞, as functions of ω and m. The color code is as in the previous figure. The

zero-level lines of B1 now end near m = −0.7 on the left and 0.2 on the right. C1 is negative

in the three darkest regions (aligned north-east and south-west) in the center. The simple plots

below each contour plot are cuts through the line ω = 0. In this case there are no divergences at

m = −1/4: B1 is simply linear and C1 is simply quadratic. Both coefficients are constant on the

lines ω = 1/2 and m = −1/4.

There is a completely general proof of the invariance of the measure under these trans-

formations. Assume that the quantum field is related to the metric by γµν = gµν(det g)w/2.

The relation between the variations of the quantum field and the metric is then

δγµν = δ
(
gµν(det g)w/2

)
= (det g)w/2Mαβ

µν δgαβ , (6.2)

where

Mαβ
µν =

(
δα(µδ

β
ν) +

w

2
gµνg

αβ
)
. (6.3)

This can be inverted to give

δgαβ = (det g)−w/2
(
δρ(αδ

σ
β) −

w/2

1 + dw/2
gρσgαβ

)
δ
(
gρσ(det g)w/2

)
. (6.4)

Likewise, if the quantum field is related to the metric by γµν = gµν(det g)w
′/2, we have

δγµν = δ
(
gµν(det g)w

′/2
)

= (det g)w
′/2

(
−g(µ|αg|ν)β +

w′

2
gµνgαβ

)
δgαβ . (6.5)
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Substituting (6.4) into (6.5) one finds the Jacobian matrix for the change of variables:

δ
(
gµν(det g)w

′/2
)

δ
(
gρσ(det g)w/2

) = (det g)
w′−w

2

(
−g(µ|ρg|ν)σ +

w + w′

2 + dw
gµνgρσ

)
. (6.6)

The Jacobian determinant is

det

δ
(
gµν(det g)w

′/2
)

δ
(
gρσ(det g)w/2

)
 = N(det g)

w′−w
2

d(d+1)
2
−(d+1) , (6.7)

where N is a numerical coefficient. The two measures are equivalent if this Jacobian

determinant is a purely numerical factor. This happens if

w′

2
=
w

2
+

2

d
. (6.8)

Using (2.4), this is equivalent to m′ = −m − 2
d . Thus, we have a general formal proof

that if the action, written in terms of gµν , is kept fixed, then the quantum theories defined

in terms of the densities γµν = gµν
√

det(gµν)
w

and γµν = gµν
√

det(gµν)
w′

, with w and

w′ related as in (6.8), are equivalent. The calculations we have reported in the previous

sections are a detailed confirmation of this statement.

We note that the relation (6.8) has the following meaning: if we give the metric any

dimension D, then the variables γµν and γµν have dimensions D(1 + dw/2) and D(−1 +

dw′/2) respectively, and these dimensions agree if and only if (6.8) holds.

In [9, 10], BRST invariance was used as a criterion to fix m. This leads to the

two choices

γµν = gµν(det g)
d−4
4d ; γµν = gµν(det g)

d+4
4d , (6.9)

that correspond to

m =
4− d
d2

; m′ = −d+ 4

d2
. (6.10)

It is easy to check they are related through the duality transformation.

7 Discussion

We have investigated the dependence of the one-loop divergences in Einstein theory on

the choice of gauge and parametrization. To avoid misunderstandings, we reiterate that

whereas gauge dependence is certainly unphysical, and must therefore drop out in any

observable, our treatment of different parametrizations amounts really to different choices

of functional measure. Our analysis does not prove that observables can depend upon this

choice, but it shows at least that the divergent part of the effective action does. We have

found that measures come in dual pairs that lead to equivalent results. The implications

of this result for quantum gravity will have to be investigated more thoroughly.

One of the motivations for this work was to minimize the gauge- and parametrization-

dependence of the gravitational beta functions and their fixed point. In the context of
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asymptotic safety, the coefficients A1 and B1 determine the beta functions of Λ and G. In

particular, Newton’s constant has a fixed point at G̃∗ = −(d− 2)/B1. For the exponential

parametrization, G̃∗ is positive in any gauge as long as a < 3. In any parametrization, it

vanishes along the line b = 3, where B1 diverges, and there is a region near the line b = 3

where it changes sign, but we have seen that this pathological behavior can be attributed

to a failure of the gauge-fixing. The generally weak gauge-dependence is encouraging.

On the other hand, in any fixed gauge, B1 has a strong dependence on the parameters

m and ω, such that G̃∗ becomes negative when m and ω become simultaneously sufficiently

large or small (upper right and lower left corners in figure 3 and 4). For example, in d = 4,

this happens for ω < 1/2 and m < − 7−4ω
8(1−2ω) or ω > 1/2 and m > − 7−4ω

8(1−2ω) . The origin of

this parametrization-dependence is clear: we did not take into account the Jacobians due

to the changes of variables. Then, different parametrizations really correspond to different

definitions of the functional integral, and hence in principle to different quantum theories,

so the observed parametrization-dependence is not only acceptable but even expected.

Still, lacking strong arguments in favor of one specific choice of measure, one may

want to minimize the dependence of the results on this choice. We have seen that the

choice ω = 1/2 (exponential parametrization) and b→ ±∞ (unimodular gauge) automat-

ically eliminates also all dependence on m, a and on the cosmological constant. Each of

these quantities has a different physical meaning, but each in its different way is a source

of uncertainties.3 A quantization scheme that eliminates these dependences is therefore

quite attractive.4

If one wants to minimize the dependence on the measure, a special choice clearly

stands out: it is the point ω = 1/2, m = −1/d, or in other words the unimodular theory

in exponential parametrization. This is the unique point that is invariant under duality

transformations, and the unique stationary point for the coefficients B1 and C1. We recall

that in the case m = −1/d the correspondence between gµν and γµν is not invertible, so

that the calculation presented here cannot be strictly applied in that case. This case has

been considered from different viewpoints in [39–44]. Our results are a strong motivation

to further investigate the quantum properties of this theory.
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A Some technical details

Here we list the first three heat kernel coefficients for the operator ∆ = −∇̄2 on a non-

compact maximally symmetric space, acting on spin-zero, spin-one and spin-two fields:

b0(∆0) = 1 ,

b2(∆0) =
1

6
R̄ ,

b4(∆0) =
6− 7d+ 5d2

360d(d− 1)
R̄2 ,

b0(∆1) = d− 1 ,

b2(∆1) =

(
d− 1

6
− 1

d

)
R̄ ,

b4(∆1) =
180− 186d− 47d2 − 12d3 + 5d4

360d2(d− 1)
R̄2 ,

b0(∆2) =
(d+ 1)(d− 2)

2
,

b2(∆2) =
(d+ 1)(d+ 2)(d− 5)

12(d− 1)
R̄ ,

b4(∆2) =
(d+ 1)(−228− 392d− 83d2 − 22d3 + 5d4)

720d(d− 1)2
R̄2 . (A.1)

In the compact case (a sphere) there are some discrete modes that have to be removed from

the spectrum and change the coefficient of R̄2. In this paper we restrict our attention to

the non-compact case, where the spectrum is continuous. Then, the modes to be removed

are of measure zero and have no effect.

Finally we list the values of the coefficients that enter in (4.4) and its lower-spin

analogues:

Qd/2 =
2kd

dΓ(d/2)
,

Qd/2−1 =
kd−2

Γ(d/2)
,

Qd/2−2 =
(d− 2)kd

2Γ(d/2)
. (A.2)

B Comparison with the literature

The formula (5.3) can be compared with an old calculation of Kallosh et al. [21], giving

C1 =
1

8π2

(
3

2
a+

1

4
b

)
,

where a and b (not to be confused with our gauge parameters) are given in their equations

(2.10) and (2.11). Taking into account that their gauge parameters aK and bK are related
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to ours by aK = −1/a, bK = −(1 + b)/d, this translates to

C1 =
1

17280π2(b− 3)4

[
135a2

(
3b4 − 36b3 + 162b2 − 324b+ 259

)
− 180a

(
3b4 − 36b3 + 176b2 − 360b+ 297

)
+ 216

(
7b4 − 59b3 + 223b2 − 381b+ 252

) ]
. (B.1)

The difference with our result is 53/4320π2, which corresponds to the term in the B4

coefficient proportional to the Euler invariant. Up to this irrelevant total derivative term,

there is therefore complete agreement.

Reference [26] contains a more general calculation, which corresponds in our notation

to the cases ω = 0 or ω = 1, with arbitrary m. In the case ω = 0 our result for C1 is

C1 =
1

17280π2(b− 3)4(1 + 4m)2

{
324(221 + 3958m+ 24236m2 + 57600m3 + 43200m4)

− 216 b (1 + 4m)(487 + 6388m+ 23400m2 + 21600m3)

+ 432 b2(1 + 4m)(138 + 1697m+ 5910m2 + 5400m3)

− 24 b3(1 + 4m)2(637 + 5040m+ 5400m2)

+ 4 b4(1 + 4m)2(431 + 3510m+ 4860m2)

+ a
[
− 1620(33 + 404m+ 1696m2 + 2304m3)

+ 12960 b (1 + 4m)(5 + 42m+ 92m2)

− 1440 b2(1 + 4m)(22 + 185m+ 426m2 + 144m3)

− 540 b3(b− 12)(1 + 4m)3
]

+ a2
[
135(259 + 4144m+ 25120m2 + 68352m3 + 71424m4)

+ 405 b (b− 6)(18− 6b+ b2)(1 + 4m)4
]}
. (B.2)

This should be compared to the quantity

1

16π2

(c1

4
+ c4

)
, (B.3)

where c1 and c4 are given in their equations (20)-(21), with f1 = 1
1+4r , f2 = − r

1+4r ,

f3 = f4 = 1, f5 = 0, f6 = 6r2+4r+1
(1+4r)2

. Their gauge parameters are related to ours by

α = a − 3, γ = 2
3−b and r is equal to w/2, which is related to m as in the first equation

in (2.4). When this is done, the result is again found to differ from (B.2) by the Euler term

53/4320π2.
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In the case ω = 1 our result for C1 is

C1 =
1

17280π2(b− 3)4(1 + 4m)2

{
324(−199− 1322m+ 2636m2 + 28800m3 + 43200m4)

− 216 b (1 + 4m)(−443− 812m+ 9000m2 + 21600m3)

+ 432 b2(1 + 4m)(−92− 163m+ 2190m2 + 5400m3)

− 24 b3(1 + 4m)2(−533 + 360m+ 5400m2)

+ 4 b4(1 + 4m)2(−109 + 1350m+ 4860m2)

+ a
[
1620(33 + 436m+ 1760m2 + 2304m3)

− 12960 b (1 + 4m)(7 + 50m+ 92m2)

+ 1440 b2(1 + 4m)(18 + 133m+ 210m2 − 144m3)

+ 540 b3(b− 12)(1 + 4m)3
]

+ a2
[
135(387 + 5424m+ 29728m2 + 74496m3 + 71424m4)

+ 405 b (b− 6)(18− 6b+ b2)(1 + 4m)4
]}
. (B.4)

This time we compare again with (B.3) but with f1 = 1
1−4p , f2 = p

1−4p , −f3 = f5 = 1,

f4 = 0, f6 = 6p2−4p+1
(1−4p)2

and p = w/2, related to m as in the second equation in (2.4). The

results agree again modulo 53/4320π2.
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[42] E. Álvarez, S. González-Mart́ın, M. Herrero-Valea and C.P. Mart́ın, Quantum Corrections to

Unimodular Gravity, JHEP 08 (2015) 078 [arXiv:1505.01995] [INSPIRE].

[43] R. Bufalo, M. Oksanen and A. Tureanu, How unimodular gravity theories differ from general

relativity at quantum level, Eur. Phys. J. C 75 (2015) 477 [arXiv:1505.04978] [INSPIRE].

[44] D. Benedetti, Essential nature of Newton’s constant in unimodular gravity, Gen. Rel. Grav.

48 (2016) 68 [arXiv:1511.06560] [INSPIRE].

– 23 –

http://dx.doi.org/10.1103/PhysRevD.92.084020
http://arxiv.org/abs/1507.08859
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08859
http://dx.doi.org/10.1007/s002880050073
http://arxiv.org/abs/hep-th/9506019
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506019
http://dx.doi.org/10.1016/0550-3213(84)90074-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,472%22
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1103/PhysRevD.57.971
http://arxiv.org/abs/hep-th/9605030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605030
http://dx.doi.org/10.1088/0264-9381/15/11/011
http://dx.doi.org/10.1088/0264-9381/15/11/011
http://arxiv.org/abs/hep-th/9707239
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707239
http://dx.doi.org/10.1103/PhysRevD.64.105007
http://arxiv.org/abs/hep-th/0103195
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103195
http://dx.doi.org/10.1016/j.aop.2008.08.008
http://arxiv.org/abs/0805.2909
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2909
http://dx.doi.org/10.1103/PhysRevD.92.124057
http://arxiv.org/abs/1501.05331
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05331
http://dx.doi.org/10.1103/PhysRevD.65.065016
http://arxiv.org/abs/hep-th/0110054
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110054
http://dx.doi.org/10.1088/1367-2630/14/1/015005
http://arxiv.org/abs/1107.3110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3110
http://dx.doi.org/10.1007/JHEP01(2016)069
http://arxiv.org/abs/1408.0276
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0276
http://dx.doi.org/10.1088/0264-9381/30/11/115016
http://arxiv.org/abs/1301.0879
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0879
http://dx.doi.org/10.1007/JHEP04(2015)096
http://dx.doi.org/10.1007/JHEP04(2015)096
http://arxiv.org/abs/1501.05848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05848
http://dx.doi.org/10.1103/PhysRevD.90.124052
http://arxiv.org/abs/1410.6163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6163
http://dx.doi.org/10.1007/JHEP08(2015)078
http://arxiv.org/abs/1505.01995
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01995
http://dx.doi.org/10.1140/epjc/s10052-015-3683-3
http://arxiv.org/abs/1505.04978
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04978
http://dx.doi.org/10.1007/s10714-016-2060-3
http://dx.doi.org/10.1007/s10714-016-2060-3
http://arxiv.org/abs/1511.06560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06560

	Introduction
	Parametrization of the quantum fluctuations
	One-loop quantum GR
	Expansion of the action
	Gauge fixing and ghosts
	York decomposition

	One-loop divergences
	Results
	Fixing omega=0
	Fixing omega=1/2
	Fixing the gauge

	Duality
	Discussion
	Some technical details
	Comparison with the literature

