
Master in High Performance
Computing

Multi Constellation GNSS
based TEC Calibration

Supervisor(s):
Luigi Ciraolo supervisor,
Katy Alazo supervisor,
Ivan Girotto supervisor

Candidate:
Muhammad Owais Arain

2nd edition
2015–2016

TABLE OF CONTENTS

INTRODUCTION..VI

ACKNOWLEDGMENTS..VII

LIST OF TABLES...VIII

LIST OF FIGURES..IX

CHAPTER 1: CALIBRATION ALGORITHM......................................1

1.1 TEC...1

1.2 The Thin Shell Model...1

1.3 The Current Version...2

1.4 Multi Constellation Solution..2

1.5 Calibration Parameters...2

1.6 Non Calibrated TEC from GNSS Observables..............................3

1.7 Calculation of the Geometry..4

1.8 Preprocessing..4

1.9 Definition of vTEC model..4

1.10 Calibration..4

1.10.1 Solution for β ..5

1.10.2 vTECeq Solution..6

1.11 Matrix Dimensions...6

CHAPTER 2: IMPLEMENTATION...8

2.1 Input-Output File Formats..8

2.2 Internal Data Structure...9

2.3 Timing Systems..11

2.3.1 UT...10

2.3.2 TAI..10

2.3.3 UTC..10

2.3.4 GPST..11

2.3.5 GLONASST...11

2.3.6 GST...11

2.3.7 BDT..11

III

2.3.8 Internal Time..11

2.4 Computing RAW slant TEC...12

2.5 Computing Satellite Positions..12

2.5.1 GPS/Galileo/BeiDou Coordinate Computation........................12

2.5.2 GLONAS Satellite Coordinate Computation...........................15

2.6 Calculating Geometry...21

2.7 Preprocessing..23

2.7.1 Elevation Masking..23

2.7.2 Gap Filling..23

2.7.3 Phase Jump Detection and Correction......................................23

2.7.4 Data Arrangement...24

2.8 vTECeq...24

2.9 System Description and Sparsity..25

2.9.1 Vector S..26

2.9.2 Matrix A...26

2.9.3 Matrix B...27

2.9.4 Sparsity...27

CHAPTER 3: SOLVER...28

3.1 Intel MKL...28

3.1.2 List of Used MKL Routines...28

3.2 Compute for Blocks of A..28

3.3 Solution for Arc Offsets..28

3.4 Computing Residuals...29

3.5 Solution for vTECeq..29

CHAPTER 4: CODE STRUCTURE AND DOCUMENTATION30

4.1 Intel MKL...30

4.1.1 Class internalTime..30

4.1.2 Class triple..31

4.1.3 Class ObsData..31

4.1.4 Class ephemerisGEC..33

4.1.5 Class ephemerisR...33

IV

4.1.6 Class NavData..34

4.1.7 Class Dependency..35

4.2 Documentation using Doxygen..36

CHAPTER 5: BENCHMARKING OF CODE......................................39

5.1 Tests on a Standalone Workstation...39

5.1.1 Workstation Configuration...39

5.1.2 Workstation Test 1..39

5.1.3 Workstation Test 2..40

5.2 Tests on a Compute Node on Ulysses Cluster..............................43

5.2.1 Compute Node Specifications..43

5.2.2 NUMACTL Policy...43

5.2.3 Compute Node Test 1...43

5.2.4 Compute Node Test 2...42

5.2.5 Compute Node Test 3...43

5.2.6 Old Code Timing..44

CHAPTER 6: CONCLUSION..46

APPENDIX A (ACRONYMS)...47

APPENDIX B (Bibliography)..49

V

Introduction

The purpose of this work is to provide an improved version of multi-

constellation GNSS TEC calibration software[29], used by

Telecommunications/ICT for Development Laboratory, Applied Physics

section, ICTP. This tool is based on an arc-by-arc GPS based TEC

calibration algorithm[20]. The current version of the code runs only on

Windows operating system and does not use standard libraries,

Furthermore the code is serial and without sufficient documentation. It is

very difficult for the T/ICT4D Lab to maintain the current version. A web

model based on this tool is running and accessible from ICTP website[30].

Improvements in this tool would also increase the functionality of this

published service for external users. Furthermore it would enable us to

build on top of this framework a more flexible and scalable service. We

start this work from scratch as a new development project, based on C++

(using OOP features) and with the documentation describing the

calibration technique. We also make use of existing executables for

benchmarking. We were able to achieve impressive performance

improvements over current version by integrating standard high

performance libraries[27], besides that we now have a software which is

well structured, uses OOP features, is well documented, and therefore it

would now be possible for T/ICT4D Lab, Applied Physics group ICTP to

maintain this software.

VI

Acknowledgements

This project as presented in this thesis and its related activities were
supported by Abdus Salam International Center for Theoretical Physics
(ICTP) under the framework of Training and research in Italian
Laboratories (TRIL). I would like to express my sincere gratitude for this
institution's support towards participation in this Master, activities
presented in this thesis, and for all the opportunities for professional
growth. I would like to thank my supervisors Luigi Ciraolo, Katy Alazo,
and Ivan Girotto for their support and guidance throughout this activity. I
would also like to thank all my Instructors who kept me encouraged and
focused during the Master. Moreover I am also thankful to all my class
mates, friends, and family for their support.

VII

List of Tables

Table 1.1: Calibration Parameters

Table 1.2: Sample Matrix Sizes

Table 2.1: GPS,Galileo,and BeiDou broadcast ephemeris

Table 2.2: GLONASS broadcast ephemeris

VIII

List of Figures

Figure 2.1: Hash Table - Internal Data Structure

Figure 2.2: Satellite Geometry

Figure 2.3: Matrix A block structure

Figure 4.1: Class internalTime

Figure 4.2: Class triple

Figure 4.3: Class ObsData

Figure 4.4: Class ephemerisGEC

Figure 4.5: Class ephemerisR

Figure 4.6: Class NavData

Figure 4.7: Class Dependency

Figure 4.8: Doxygen documentation Classes

Figure 4.9: Doxygen documentation Class ObsData

Figure 4.10: Doxygen documentation public member functions

Figure 4.11: Doxygen documentation member function
pre_process

Figure 5.1: Workstation test 1 Serial Versions

Figure 5.2: Workstation test 2 Parallel MKL Scaling

Figure 5.3: Cluster Compute Node test 1 Whole Solver Scaling

Figure 5.4: Cluster Compute Node test 2 Arc-Offset Solution

IX

Chapter 1

Calibration Algorithm

1.1 TEC:

Total Electron Content (TEC) is a descriptive quantity of Earth’s

ionosphere, having a practical importance. TEC data is derived from

carrier phase measurements of Global Navigation Satellite Systems, but is

biased by satellite-receiver biases. TEC calibration is the process of

determining and removing these biases from raw biased TEC.

The basic relation used to calibrate the TEC is given by:

SΦ=sTEC +βarc

Where:

SΦ is the ionospheric delay from the raw carrier phase

observations,

βarc is the Arc-Offset, a constant to be determined for each

arc[20].

An arc here means a set of continuous observations related to a given

receiver and satellite pair. βarc represents the contribution of receiver

and satellite biases.

The sTEC and βarc are unknowns to be determined by the so-called

calibration or de-biasing process.

1.2 The Thin Shell Model:

A two-dimensional thin shell model at 350 km is assumed to define the

mapping function between the slant and vertical TEC. The vertical

ionospheric variation over the thin shell is expressed as a function of the

MODIP and the Local Time of the IPPs.

1

1.3 The current version:

The current version of the software provides a single-station, multi-

constellation solution. Constellations being processed are GPS,

GLONASS, Galileo and BeiDou. Several stations could be processed for

a defined period in a sequence.

The software is written in FORTRAN using the Compaq Visual

FORTRAN 6.6 environment, with IMSL library, used for linear algebra

operations[21].

1.4 Multi-constellation solution:

The current version allows the processing of multi-constellation (Section

1.3) solution. There are major differences in the signal characteristics

among different constellations, which is relevant to TEC estimation.

Nevertheless, the calibration technique could be applied to multi-

constellation measurements, since the satellite and receiver biases are not

explicitly separated.

1.5 Calibration Parameters

Here we provide a list of calibration parameters, which strongly govern the

calibration process. Some of these parameters are fixed and some are

allowed to be changed by user.

2

Parameter Value Description

href 350 Reference ionosphere height

minimumelevation 5 degrees Minimum Satellite Elevation

maxlosstime 5 minutes Maximum arc discontinuity

decday 12 hours
Data duration to discard from

start and end

minblocktime 2×decday+24hours
Minimum data to load for

calibration

minimumarclength 2 hours Minimum arc length

intervaltime 30
Observation interval in data

files

samplingtime 10 minutes
Refreshing interval for

vTECeq

Constellation
Codes

GREC

Constellations to add in
calibration

G(GPS) R(GLONASS)
E(Galileo) C(BeiDou)

Table 1.1: Calibration Parameters

1.6 Non calibrated TEC from the GNSS observables:

The non calibrated TEC is calculated using the first order approximation of

the Appleton-Hartree formula for the refractive index for electromagnetic

wave propagation in a cold magnetized plasma, i.e. the ionosphere

(Section 2.4)

3

1.7 Calculation of the Geometry:

Satellite positions are calculated based on individual constellation’s ICD

documents(Section 2.5), followed by computation of geometrical

parameters IPP and zenith angle over IPP (Section 2.6)

1.8 Preprocessing:

In preprocessing we account for arc discontinuities and phase jumps. This

section is very important for a smooth calibration and is highly affected by

data quality (Section 2.7).

1.9 Definition of vTEC model:

Representation of vTECeq by a 2D function and Thin Shell model. The

vTECeq variation is expressed as a function of the variation of local time

and MODIP (Section 2.8).

1.10 Calibration:

To perform calibration we Solve the equation system defined as:

S=AC+Bβ

where,

S is matrix of the non-calibrated TEC.

A is matrix of the data of the vTECeq variations in the 2D

representation.

C is matrix of the solution of the coefficients of the function that

defines vTECeq.

B is matrix of the arcs. Its values are 0 or 1 .

β is matrix of the Arc-Offset.

4

Here C and β are the unknowns to be determined by this calibration

algorithm.

A double substitution is performed, to final expression:

S−AcS=(B−AcB)β

being c=(AT A)
−1 AT

It is assumed that the functional representation of vTECeq is separated for

each of the continuous interval of duration “samplingtime” (Table: 1.1),

therefore it is possible to compute independently the values of c ,

S−AcS and B−AcB and accumulate in the end. We call this section

as computing for blocks of A (A_Blocks).

Once full data interval is completed, the solution for β is computed

(Section 1.10.1), and the calibration is formally completed:

calibrated sTEC=S – Bβ

calibration residuals are:

(S−AcS) – (B−AcB)β

1.10.1 Solution for β :

Assuming B−AcB=BAcS and S−AcS=S AcS

we have:

B AcB
T S AcS=BAcB

T BAcBβ

β=(BAcB
T BAcB)

−1 BAcB
T S AcS

The inverse of B AcB
T BAcB is computed by LU factorization. We call this

section Arc-Offset solution as we are computing for β (Arc-Offset).

5

1.10.2 vTECeq solution:

The solution for the coefficients of the function that defines the vTECeq is:

C=c (S – Bβ)

given

calibrated sTEC=S−Bβ computed earlier,

we have

C=c (calibrated sTEC)

1.11 Matrix Dimensions in a single-station single-day calibration

Given 10 SV per epoch, 2 observations per minute, and “samplingtime” of

10 minutes, for one day TEC calibration:

time interval for the calibration = 24h+12 h×2=48h *

total quantity of epochs = 48×60×2=5760

total quantity of observations = 5760×10 SV=57600

quantity of epochs in one samplingtime = 10minutes×2=20

quantity of observations in one samplingtime = 20×10 SV=200

quantity of blocs of 10 mins (blocs of A) = 48×60/10=288

*This calibration technique is applied to non real time data. To
process one day (24 hours), the previous and last 12 hours, at least, are
discarded. This is to guaranty that full arcs are processed.

6

Matrix Description in one ‘sampling time’ Full time interval

Dim Type Dim Type

S
The uncalibrated
TEC
observations

(200,1) (57600,1)
real

no sparse

A
the coefficients
of the functional
vTECeq

(200,9)
real

no sparse
(57600,2592)

real

sparse

c c=(AT A)
−1 AT (9,200)

real

no sparse
(2592, 57600)

real

sparse

S AcS S AcS=S−AcS (200,1) (57600,1)
real

no sparse

B
The arcs, values
are 0 or 1

(200, narcs)
real

sparse
(57600, narcs) real sparse

B AcB B AcB=B−AcB (200, narcs) (57600, narcs) real sparse

The solution

Matrix Description

C

The coefficients
of the function
that defines
vTECeq

(9,1) (2592,1)

β
Solution of the
Arc-Offset

(narcs,1)

Table 1.2: Sample Matrix Sizes

7

Chapter 2

Implementation

2.1 Input/Output file formats:

For calibration tool we use RINEX files which are structured formats

having separate header and data sections within a single file as defined by

IGS formats[1]. RINEX allows a user to exchange mixed GNSS data

without worrying about differences in receivers being used. As of the latest

RINEX version, one can find data for GPS, GLONASS, Gallileo, Beidou

(Compass), QZSS, and SBAS. Different versions for this format exist

which are:

1) RINEX Version 2

i. Version 2.10[2]

ii. Version 2.11[3]

2) RINEX Version 3

i. Version 3.01[4]

ii. Version 3.02[5]

iii. Version 3.03[6]

RINEX format provides following file types:

1) Observation Data

2) Navigation Data

3) Meteorological Data

We use RINEX 3 for all computations mentioned in this thesis¬, and the

type of files relevant for this activity are RINEX observation data and

¬Although we use RINEX 3, but its not adopted fully by the community
and RINEX 2 data is still useful and could be used with this tool.

8

RINEX navigation data. We employed custom I/O routines to read data

from these files.

2.2 Internal Data Structure:

After reading data from input files (observation/navigation) data is

internally stored as a hash table, for fast querying. Indexing for this data is

done by means of a hashing function. Inputs to this function are epoch and

satellite ID. We maintain a single time-line which provides the epoch input

parameter with a given satellite ID. Figure 2.1 explains how an observable

is obtained from this structure by means of hashing function.

9

Figure 2.1: Hash Table - Internal Data Structure

t2

t3

t4

t1

t6

t7

t8

t5

G1 G2 G3 G4 C1 C2 C3 C4E1 E2 E3 E4R1 R2 R3 R4

Hashing
Function

Input 1
Epoch = t6
SatID = R3

Input 2
Epoch = t3
SatID = E4

2.3 Timing Systems:

A number of timing systems are involved in this calibration tool. Since we

are dealing with a solution approach which combines various satellite

constellations using their respective Time systems, in general for a mixed

constellation solution we need to convert times expressed in multiple

timing systems to a single time system (usually UTC). This makes it easy

to express a time-dependent phenomenon and reporting results after

calibration. We also need to opt for a time system which is easy to deal

with-in a computer program. For this we use internal-time which is based

on UNIX time. We convert a given epoch from its native time system to

UTC and to UNIX time. Since after time conversion to UNIX time we get

an integer, we can traverse better across a list of observables in a computer

program. Following is a brief description of individual time systems used

by this tool.

2.3.1 UT:

Universal time defined by earth’s rotation, where UT0 is “raw”

uncorrected UT, UT1 is corrected for polar wandering, UT2 is corrected

for seasonal variations in the earth’s rotation speed.

2.3.2 TAI:

Is the international atomic time with difference TAI−UT 2=0 for the

epoch at January 1st 1958[11].

2.3.3 UTC:

A compromise between TAI and UT1, and kept closer to UT1 to follow

earth’s rotation variations by adding leap-seconds[5]. Leap-seconds are

refreshed periodically and provided by IERS[12].

10

2.3.4 GPST:

GPS time is a continuous time with no leap seconds. Start epoch for GPS
is 0 hour UTC (midnight) between January 5th and 6th 1980[7]. At that
epoch TAI−UTC was 19 seconds , thence:

TAI=GPST +19 seconds

UTC=GPST +19 seconds−leap seconds

2.3.5 GLONASST:

GLONASS time is generated by the GLONASS central synchronizer and

is synchronized with UTC(SU)[8], such that:

GLONASST=UTC (SU)+3h
−τ ,where|τ|<1ms

Unlike GPS, Gallileo or BeiDou, GLONASS uses leap-seconds in the

system.

2.3.6 GST:

Galileo time is a continuous time without leap seconds, and is kept

synchronized with TAI. Start epoch for GST is 0 hour UTC (midnight)

between August 21st and 22nd 1999[9].

2.3.7 BDT:

BeiDou time is a continuous time without leap seconds, and is kept

synchronized with UTC. Start epoch for BDT is 0 hour UTC on January

1st 2006[10].

2.3.8 Internal Time:

Internal time is based on UNIX time, which is a continuous time without

leap-seconds, counting number of seconds elapsed since start epoch. Start

epoch for UNIX time is 0 hour UTC January 1st 1970.

e.g. November 25 2016 14:22:00 (UTC) is 1480083720 in UNIX time.

11

2.4 Computing raw slant TEC:

After reading Observation data we compute for each epoch and for each

satellite in that epoch, raw(uncalibrated) slant TEC, from carrier-phase

observables, using following relation:

TECφ=τ c (
φ1

f 1

−
φ2

f 2

)

where , τ=
1

(40.3×f 12)

f 12=
1

f 2
2−

1

f 1
2

and c=speed of light

Here f 1 and f 2 are chosen carrier-frequencies, φ1 and φ2 are

corresponding observables. These values after pre-processing are stored in

array S (see system description).

2.5 Computing Satellite Positions:

After reading navigation files we need to compute satellite positions

corresponding to every raw slant TEC computed in previous step. This is

needed for computing geometry (Section 3.6) and for pre-processing

(section 3.7). For GPS, Galileo, and BeiDou same algorithm can be used,

whereas for GLONASS a separate algorithm is used.

2.5.1 GPS/Galileo/BeiDou Satellite Coordinates Computation:

Here we describe the parameters obtained from navigation files which

would be used in this algorithm[13]. These parameters are refreshed

periodically and cannot be used after prescribed time[14]….

…We dont consider BeiDou Geo-stationary satellite position calculation
using this algorithm, and at the moment for this version of code we
exclude these Satellites.

12

Parameter Description

t oe Ephemerides reference epoch in seconds within the week

√a Square root of semi-major axis

e Eccentricity

M o Mean anomaly at reference epoch

ω Argument of perigee

io Inclination at reference epoch

Ωo Longitude of ascending node at the beginning of week

Δn Mean motion difference

i
• Rate of inclination angle

Ω
• Rate of node’s right ascension

cuc , cus Latitude argument correction

crc , crs Orbital radius correction

c ic , c is Inclination correction

Table 2.1: GPS,Galileo,and BeiDou broadcast ephemeris

Step 1 – Compute the time t k from the ephemerides reference epoch

t oe using following relation:

t k=t−toe

Note: t and t oe are expressed in seconds in GPS week.

Check if t k>302400Sec , then subtract 604800Sec from t k . If

t k<−302400 then add 604800Sec to t k .

Step 2 – Compute the mean anomaly for t k using following relation:

13

M k=M o+(√μ

√a3
+Δn)t k

Step 3 – Iterative Solution of Kepler equation for the eccentricity anomaly

Ek :

M k=Ek−e sin (Ek)

Step 4 – Computing true anomaly νk :

νk=arctan (
√1−e2 sin(E k)

cos (Ek)−e
)

Step 5 – Computing argument of latitude υk from the argument of

perigee ω , true anomaly νk , and corrections cuc , cus :

υk=ω+νk+cuc cos 2(ω+νk)+cussin 2(ω+νk)

Step 6 – Computing radial distance rk using corrections crc , crs :

rk=a(1−ecos E k)+crc cos2(ω+νk)+crs sin 2(ω+νk)

Step 7 – Computing inclination ik of the orbital plane using inclination

io at reference time t oe and corrections c ic , c is :

ik=io+i
•

t k+c ic cos2(ω+νk)+cis sin 2(ω+νk)

Step 8 – Computing longitude of the ascending node λk (Greenwich) .

This computation uses right ascension at start of the current week Ωo ,

the correction from the apparent sidereal time variation (Greenwich)

between start of week and reference time t k=t−toe , and the change in

the longitude of the ascending node from reference time t oe :

λk=Ωo+(Ω
•

−ωE) t k−ωE t oe

where ωE is earth’s rotation rate according to WGS-84 datum[15].

14

Step 9 – Compute the coordinates in TRF, by applying three rotations

around υk , ik and λk :

[
X k

Y k

Zk
]=R3(−λk)R1(−ik) R3(−υk)[

r k

0
0]

where R1 and R3 are rotation matrices[16].

2.5.2 GLONASS Satellite Coordinates Computation:

In order to compute GLONASS satellite coordinates we shall perform

numerical integration of differential equations describing motion of

satellites[8]. Initial conditions broadcast in GLONASS navigation message

are in PZ-90[15]. We must transform these initial conditions to an absolute

(inertial) coordinate system[17]. Table 2.2 lists the parameters broadcast in

GLONASS navigation message, which provides initial conditions for

position and velocity. These values should be used to perform numerical

integration within interval |t−t b|<15 minutes . The accelerations due to

solar and lunar gravitational perturbations are also given.

15

Parameter Description

t b Ephemerides reference epoch

x x Coordinate at t b in PZ-90

y y Coordinate at t b in PZ-90

z z Coordinate at t b in PZ-90

v x Velocity x component at t b in PZ-90

v y Velocity y component at t b in PZ-90

v z Velocity z component at t b in PZ-90

x
• • Moon and Sun acceleration x component at t b

y
•• Moon and Sun acceleration y component at t b

z
•• Moon and Sun acceleration z component at t b

Table 2.2: GLONASS broadcast ephemeris

For numerical integration we use 4th order Runge-Kutta method. RKM

uses a weighted average of the values of the derivative f (t , y) taken at

different points in the interval t n≤t≤t n+1 . Relation between value of

y at time n+1 and value of y at time n is given by:

yn+1= yn+
1
6
(k1+2 k2+2 k3+k4)

where

k1=h f (t n , yn)

k2=h f (t n+
h
2

, yn+
k1

2
)

k3=h f (t n+
h
2

, yn+
k2

2
)

16

k 4=h f (t n+h , yn+k3)

and h is the step size.

Following are the six orbital differential equations we need to solve for

GLONASS position at a given time, as described in GLONASS ICD[8]:

dx
dt

=vx

dy
dt

=v y

dz
dt

=vz

dv x

dt
=−

μ

r3 x+
3
2

C20

μ(ae
2
)

r 5 x [1−
5 z2

r 2]+ω3
2 x+2ω3 v y+x

• •

dv y

dt
=−

μ

r 3 y+
3
2

C20

μ(ae
2
)

r5 y [1−
5 z2

r2]+ω3
2 y+2ω3 v x+ y

••

dv z

dt
=−

μ

r3 z+
3
2

C20

μ(ae
2
)

r5 z [3− 5 z2

r2]+z
••

where

r=√x2+ y2+ z2

μ=398600.44 km3

s2 Earth’s universal gravitational parameter

ae=6378.136 km Earth’s equatorial radius

C20=−1082.63×10−6 zonal Geo-potential coefficient of spherical

harmonic expansion

ω3=0.7292115×10−4 c−1 Earth’s rotation rate

The values of r ,μ , ae ,C20 ,ω3 given here are based on PZ-90 datum[15].

17

Considering initial satellite position (x , y , z) and the initial satellite

velocity (v x , v y , vz) at the reference time t b we assume:

t 0=t b

ω10=x

ω20= y

ω30=z

ω40=v x

ω50=v y

ω60=vz

Now for each of the six GLONASS differential equations we determine

the k-parameters k pq , where subscript p refers to one of the four

integration parameters and subscript q refers to one of the six

GLONASS differential equations:

k11=h(ω40)

k12=h (ω50)

k13=h(ω60)

k14=h(−
μ

r 3 ω10+
3
2

C20

μ(ae
2
)

r5 ω10(1− 5
r2 ω30

2)+ω3
2
ω10+2ω3 ω50+ x

• •

)

k15=h(−
μ

r3 ω20+
3
2

C20

μ(ae
2
)

r5 ω20(1− 5
r2 ω30

2)+ω3
2
ω20+2ω3 ω40+ y

••

)

k16=h(−
μ

r3 ω30+
3
2

C20

μ(ae
2
)

r5 ω30(3− 5
r2 ω30

2)+z
• •

)

k21=h (ω40+
1
2

k 14)

18

k22=h (ω50+
1
2

k15)

k23=h(ω60+
1
2

k16)

k24=h(−μ

r3
(ω10+

1
2

k11)+
3
2

C20

μ(ae
2
)

r5
(ω10+

1
2

k11)

(1−
5
r2 (ω30+

1
2

k13)
2

)+ω3
2
(ω10+

1
2

k11)+2ω3(ω50+
1
2

k15)+ x
••

)

k25=h(−μ

r3
(ω20+

1
2

k 12)+
3
2

C20

μ(ae
2
)

r5
(ω20+

1
2

k 12)

(1−
5
r2 (ω30+

1
2

k13)
2

)+ω3
2
(ω20+

1
2

k12)+2ω3(ω40+
1
2

k14)+ y
• •

)

k26=h(−
μ

r3 (ω30+
1
2

k 13)+
3
2

C20

μ(ae
2
)

r 5 (ω30+
1
2

k13)(3−
5
r 2 (ω30+

1
2

k 13)
2

)+z
• •

)

k31=h (ω40+
1
2

k 24)

k32=h (ω50+
1
2

k25)

k33=h(ω60+
1
2

k26)

k34=h(−μ

r3
(ω10+

1
2

k21)+
3
2

C20

μ(ae
2
)

r5
(ω10+

1
2

k21)

(1−
5
r2 (ω30+

1
2

k23)
2

)+ω3
2
(ω10+

1
2

k21)+2ω3(ω50+
1
2

k25)+x
• •

)

k35=h(−μ

r3
(ω20+

1
2

k 22)+
3
2

C20

μ(ae
2
)

r5
(ω20+

1
2

k 22)

(1−
5
r2 (ω30+

1
2

k23)
2

)+ω3
2
(ω20+

1
2

k22)+2ω3(ω40+
1
2

k24)+ y
••

)
19

k36=h(−
μ

r3 (ω30+
1
2

k 23)+
3
2

C20

μ(ae
2
)

r 5 (ω30+
1
2

k23)(3−
5
r 2 (ω30+

1
2

k 23)
2

)+z
• •

)

k 41=h(ω40+k34)

k 42=h(ω50+k 35)

k 43=h(ω60+k36)

k 44=h(−μ

r3
(ω10+k31)+

3
2

C20

μ(ae
2
)

r 5
(ω10+k31)

(1−
5
r2 (ω30+k 33)

2)+ω3
2
(ω10+k31)+2ω3(ω50+k35)+x

••

)

k 45=h(−μ

r3
(ω20+k32)+

3
2

C20

μ(ae
2
)

r5
(ω20+k32)

(1−
5
r2 (ω30+k 33)

2)+ω3
2
(ω20+k32)+2ω3(ω40+k34)+ y

••

)

k 46=h(−
μ

r3 (ω30+k33)+
3
2

C20

μ(ae
2
)

r5 (ω30+k33)(3−
5
r2 (ω30+k33)

2)+z
••

)

Finally we get satellite positions and velocities at the next time step by:

ω11=ω10+
1
6
(k11+2k21+2k31+k41)

ω21=ω20+
1
6
(k 12+2 k22+2 k32+k42)

ω31=ω30+
1
6
(k 13+2k23+2 k33+k 43)

ω41=ω40+
1
6
(k14+2k24+2 k34+k44)

20

ω51=ω50+
1
6
(k 15+2k25+2 k35+k 45)

ω61=ω60+
1
6
(k 16+2k 26+2 k 36+k46)

2.6 Calculating Geometry:

After computing satellite positions we go on with computing two key

geometrical parameters as shown in figure 2.2:

• IPP (Coordinates)

• zenith angle over IPP

These parameters are used to define vertical TEC equivalent (vTECeq) and

to define block matrix A (Section 2.9).

21

22

Figure 2.2: Satellite Geometry

S

Lo
S

M

z´

IPP

H

M = Marker (Receiver)
C = Center (Earth)
S = Satellite
IPP = Ionospheric Pierce Point
z´ = Zenith angle over IPP
LoS = Line of Sight
H = Reference Ionosphere Height
R = Earth’s Mean Radius

R

C

2.7 Preprocessing:

The goal of this section is to detect and remove any irregularity in the data,

before being served as input to the final system solver. We aim for this

section to produce smooth continuous arcs, while keeping the number of

arcs to minimum. Following are the sub-tasks being performed in this

sections:

• Elevation masking

• Gap filling

• Phase jump detection

• Data arrangement

2.7.1 Elevation masking:

In this section we use computed satellite positions (section 2.5) and

Marker (Receiver-Station) position to compute satellite elevation and

azimuth. Based on elevation threshold we cut each arc, and only then we

move to any further preprocessing step.

2.7.2 Gap filling:

In this section we find in each arc for a possible gap (missing data) and if

the gap is within a threshold (defaults to 5 minutes) , then we interpolate

the missing data, otherwise we break that arc at the gap and consider start

of a new arc after that gap. This continues until the end of the arc being

processed, after which we check resulting arc/s for minimum arc length

(defaults to 2 hours). Interpolation used here is Lagrange polynomial

interpolation of a given degree (minimum is 4, defaults to 6).

2.7.3 Phase jump detection and correction:

We can often find sudden jumps in phase observables which could be due

to reasons other than real sudden TEC variations. In order to detect these

jumps we use quartiles and IQR . A given arc is divided into n chunks

23

of length l≤10minutes , and for each chunk we compute quartiles

Q 1,Q 2,Q 3 and IQR=Q3−Q 1 . A value is marked as a false jump if

value < Q 1−LB×IQR or value > Q 3+UB×IQR , where LB and

UB are given parameters (both default to 1.5). Once detected, these

values are replace by an average of values indexed at

{ j−k ,⋯, j−1, j+1,⋯, j+k } , where j is the index of value being

replaced, and k is a given parameter (defaults to 3).

2.7.4 Data arrangement:

Finally data is arranged according to time (epochs), the same order found

in observation files. This is required so that we have input arrays ready for

final solver (see system description).

2.8 vTECeq

For vTECeq we use MODIP, local time, and the zenith angle over IPP

(Section 2.6). MODIP is obtained by following relation:

tan (μ)=
I

√cos (φ)

being I the true magnetic inclination, and φ the geographic latitude of

the receiver-station[19].

For I we compute IGRF-12± model[18], implemented as a separate class

requiring respective IGRF coefficients file to compute for I .

These values are used in the polynomial describing vTECeq:

vTECeq=C0+C1 x+C2 x2+C3 y+C4 x y+C5 y2

where

x=λ IPP−λ station+2 π
Δ t

86400

± Use of IGRF (currently 12th generation) is based on input data to be
calibrated.

24

y=μIPP−μstation

being λ IPP the IPP longitude, λstation the station longitude, μIPP the

IPP MODIP, μstation the station MODIP, and Δ t=tobs−tmid being t obs

the UT observation time in minutes, tmid the UT mid time of the

corresponding sampling time interval(see section

parameter_samplingtime).

The relation between vTECeq and sTEC is given by following relation:

cos(z ')=
vTECeq
sTEC

being cos (z ')=
1

sec (z ')

we have sTEC=sec (z ') vTECeq

or

sTEC=sec (z ')×(C0+C1 x+C2 x2+C3 y+C4 x y+C5 y2)

Here Coefficients go into Matrix C (unknowns) and the values

corresponding to coefficients makeup Matrix A (Section 2.9.2).

2.9 System Description and sparsity

In this section we define the system matrices and vectors which would be

operated on by main solver. These include following:

• S Vector

• A Matrix

• B Matrix

25

2.9.1 Vector S:

All the uncalibrated slant TEC values go into this vector S. Order of the

values is the same as it appears in the observation files (arranged by

epochs). It is a dense vector whose size depends on number of epochs,

number of satellites per epoch, and observation frequency in data files.

2.9.2 Matrix A:

This Matrix stores the values corresponding to unknown coefficients

(Section 3.8). Since in this calibration algorithm we fix the set of

coefficients for a given time interval (sampling-time, usually 10 minutes),

we get structure of Matrix A as a block diagonal. Only non-zero blocks of

this matrix are stored as shown in figure 2.3. The dimension of A depends

on number of values in Vector S and the number of coefficients in

polynomial defining vTECeq.

26

Figure 2.3: Matrix A block structure

A Stored A

2.9.3 B Matrix:

This is a boolean matrix relating a given sTEC value in vector S to a

specific arc number. These arc numbers are defined by the preprocessing

section (Section 2.7.2). Matrix is defined as follows:

B ij = { 1: Si∈ Arc j

0:elsewhere

The dimensions of B depend on number of values in vector S and number

of arcs formed after preprocessing section.

2.9.4 Sparsity:

As described above matrices A and B are sparse matrices, and in the case

of matrix A, we only store non-zero values. We also take advantage of the

block structure of A and all operations with A are performed on individual

blocks(see section solution).

27

Chapter 3

Solver

3.1 Intel MKL Library

For the main solver routine we integrate this code with Intel MKL[27],

which feature highly optimized, threaded, and vectorized routines to

maximize performance. It utilizes the de facto standard C/Fortran APIs, in

order to be compatible with BLAS, LAPACK and other math libraries.

3.1.2 List of used MKL routines

Here we present the list of used routines in the whole solver and their

description[28].

• cblas_dgemm: Computes a matrix-matrix product

• LAPACKE_dgetrf + LAPACKE_dgetri: To comput LU

factorization and then inverse of a matrix, used together

• cblas_dgemv: To compute a matrix-vector product

• cblas_daxpy: For vector-vector or matrix-matrix subtraction

3.2 Compute for Blocks of A:

For this Section of solver we compute for individual blocks of matrix the

required computations as described in section 1.10. We loop over

individual blocks of matrix A and the corresponding sections of vector S

and Matrix B.

3.3 Solution for Arc-Offset:

Once we have the values for S AcS and B AcS from the previous section

we move on with the solution of Arc-Offset β , as described in Section

1.10.1.

28

Afterwards we compute calibrated sTEC=S – Bβ as described in

Section 1.10.

3.4 Computing Residuals:

Once we are done with Arc-Offset Solution we calculate residuals by

residuals=(S−AcS) – (B−AcB)β as described in Section 1.10.

3.5 Solution for vTECeq:

Finally the Solution for vTECeq is computed by going over precomputed

c and computing C=c (calibrated sTEC) as described in Section

1.10.2.

29

Chapter 4

Code Structure and Documentation

4.1 Code Structure

The new code for the calibration tool is written from scratch in C++

language, complying to at-least standard C++11[22]. The code is

structured in classes using object-oriented techniques. Not everything is

modeled around OOP concept during this development project, but rather

we take the middle option to structured some section of code in classes and

leaving some sections flat as per the compromise between beauty and

performance. Following is a series of short descriptions about some

sample classes in the code with class diagrams.

4.1.1 Class internalTime:

This Class Defines Internal time which is based on Unix Time. It stores the

normal Date/Time as (Year,Month,Day,Hour,Minute,Second), while also

providing equivalent UNIX Time. An instance of this class could be

generated by explicitly providing normal Date/Time values as Integers or

by providing a string which would be parse to store time in both formats.

The later being more useful for reading observation files, as epochs appear

in observation files as strings.

30

4.1.2 Class triple:

This is the most simple class in the project, being providing an object

defining a point using three dimensional coordinates. Instances of this

class are used extensively throughout the project.

4.1.3 Class ObsData

This Class Defines observation data handling, including reading from

observation files and storing in internal data structure, the raw non-

calibrated TEC from phase observables. This class also includes

preprocessing routines being applied to internal data structure, and allot of

dump routines for debugging and plotting arc states.

31

Figure 4.1: Class internalTime

Figure 4.2: Class
triple

32

Figure 4.3: Class ObsData

4.1.4 Class ephemerisGEC:

This class defines ephemeris data object based on GPS/Galileo/BeiDou

ephemeris record in navigation files. This class serves as the data type for

for vectors containing navigation data for GPS/Galileo/BeiDou.

4.1.5 Class ephemerisR:

This class defines ephemeris data object based on GLONASS ephemeris

record in navigation files. This class serves as the data type for for vectors

containing navigation data for GLONASS.

33

Figure 4.4: Class ephemerisGEC

4.1.6 Class NavData:

This class defines navigation data, stored after reading RINEX navigation

files, for different constellations.

34

Figure 4.5: Class ephemerisR

Figure 4.6: Class NavData

4.1.7 Class Dependency:

following is a class dependency diagram for sample classes described

above:

35

Figure 4.7: Class Dependency

4.2 Documentation using doxygen:

Besides the new code being well structured using classes, the code is also

well documented. Documentation is done by means of doxygen. Doxygen

is the de facto standard tool for generating documentation from annotated

C++ sources, but it also supports other popular programming languages

such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft,

and UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent

D[23]. We can generate documentation as HTML or pdf using this tool.

Following are some snaps from HTML version of sample class

documentation:

36

Figure 4.8: Doxygen documentation Classes

37

Figure 4.9: Doxygen documentation Class ObsData

Figure 4.10: Doxygen documentation public member functions

38

Figure 4.11: Doxygen documentation member function pre_process

Chapter 5

Benchmarking of Code

5.1 Tests on a standalone workstation

In this section we present the benchmarking results on a standalone

workstation. We choose a workstation similar to the configuration which is

used by T/ICT4D Lab for calibration tool. It is important to note that the

old version of the software runs on Windows, therefore we choose a

workstation with both Linux and Windows configured and use this

machine for benchmarking.

5.1.1 Workstation Configuration:

The workstation used in this benchmark is based on Intel Quad-Core i7 –

3770 with 4 Cores, and 8 Threads with Hyper-threading[24], having base

frequency at 3.40 GHz, and up to 3.90 GHz with single core turbo

boost[25].

5.1.2 Workstation Test1:

In this test we compare execution time (time to solution) for serial versions

with different system sizes (Varying observation interval)

• fsolve is single precision version with serial MKL

• dsolve is double precision version with serial MKL

• Time to solution for fsolve is scaled to 40

• Time to solution for dsolve is scaled to 25

39

5.1.3 Workstation Test2:

• Parallel versions compared with fixed highest possible system size

(Interval 15) against number of threads

• fsolve is single precision version with Parallel MKL

• dsolve is double precision version with Parallel MKL

40

Figure 5.1: Workstation test 1 Serial Versions

51906 79186 119206 238403
0

10

20

30

40

50

60

Serial Versions

Intel core i7-3770 (4 Cores, 8 Threads)

old_version

dsolve_25

fsolve_40

System Size

Ti
m

e
 to

 S
o

lu
tio

n
 (

S
e

co
n

d
s)

Figure 5.2: Workstation test 2 Parallel MKL Scaling

1 2 3 4 6 8
0

0.5

1

1.5

Parallel MKL Scaling

Intel Core i7-3770 (4 Cores, 8 Threads)

dsolve_omp

fsolve_omp

NUM_THREADS

Ti
m

e
 to

 S
o

lu
tio

n
 (

S
e

co
n

d
s)

5.2 Tests on a Compute node from Ulysses Cluster:

This section discusses benchmarks ran on a Compute node from Ulysses

Cluster being operated by SISSA[26].

5.2.1 Compute node Specifications:

A single compute node on Ulysses cluster is based on dual Intel Xeon CPU

E5-2680 v2 base frequency at 2.80GHz. This is a 10 core processor,

therefore we have 20 cores in total on two processor sockets. Following is

the NUMA processor affinity policy used for this test.

5.2.2 NUMACTL Policy:

NUMACTL physcpubind:

• NUM_Threads 1 → CPUs (0)

• NUM_Threads 2 → CPUs (0,10)

• NUM_Threads 4 → CPUs (0,1,10,11)

• NUM_Threads 8 → CPUs (0,1,2,3,10,11,12,13)

• NUM_Threads 16 → CPUs (0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17)

5.2.3 Compute node Test 1:

• following graph shows scaling on single Ulysses node using

NUMA policy mentioned above

• It describes scaling of whole solver code (including times for all

sections of the solver)

• Notice that this scales up to 8 cores

• dsolve_omp is double precision version with Parallel MKL

41

5.2.4 Compute node Test 2:

• following graph shows scaling on single Ulysses node using

NUMA policy mentioned above

• It describes scaling of only Arc-Offset solution (including only

times for Arc-Offset)

• This Section of code was the most time consuming in the old

version (Section 5.2.5)

• Notice that this scales up to 16 cores

• dsolve_omp is double precision version with Parallel MKL

42

Figure 5.3: Cluster Compute Node test 1 Whole Solver Scaling

1 2 4 8 16
0

0.5

1

1.5

Whole Solver Scaling

Ulysse Single Node

dsolve_omp

Num Threads

Ti
m

e
 to

 S
o

lu
tio

n
 (

S
e

co
n

d
s)

To
ta

l T
im

e

5.2.4 Compute node Test 2:

• following graph shows scaling on single Ulysses node using

NUMA policy mentioned above

• It describes scaling of only A_Blocks solution (including only

times for A_Blocks section)

• This Section of code was the 2nd most time consuming in the old

version (Section 5.2.5)

• Notice that this doesn't scale much, and after 8 cores it blows

timing.

• Affect of this section could be seen in whole solver timing (Section

5.2.3)

• dsolve_omp is double precision version with Parallel MKL

43

Figure 5.4: Cluster Compute Node test 2 Arc-Offset Solution

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

Arc Offsets Solution

Ulysse Single node

dsolve_omp

Num Threads

Ti
m

e
 to

 S
o

lu
tio

n
 (

S
e

co
n

d
s)

A

rc
 O

ffs
e

ts

5.2.5 Old Code Timing:

• This graph shows timings of different solver sections in the old

version

• T_blocks is timing for (A_Blocks) section of the code

• T_ArcOffsets is timing for (Arc-Offset) section of the code

• T_Residuals and T_vTECeq have negligible share in time to

solution

44

Figure 5.5: Cluster Compute Node test 2 A_Blocks Solution

1 2 4 8 16
0

0.1

0.2

0.3

0.4

A_Blocks Solution

Ulysse single node

dsolve_omp

Num Threads

Ti
m

e
 to

 S
o

lu
tio

n
 (

S
e

co
n

d
s)

B

lo
ck

s

45

Figure 5.5: Old Code Timing

Old Code Timing

Solver Sections

T_blocks

T_ArcOffsets

T_Residuals

T_vTECeq

Chapter 6

Conclusion

As prominent by the benchmarking results shown in the previous chapter,

we improve the time to solution in new serial version of the code by a

factor of 45, considering the double precision new serial version (Section

5.1.2). Furthermore we improve the time to solution by a factor of more

than 100, considering old serial version and multi-threaded new version on

the same hardware (Section 5.1.3). The code is now well structured,

flexible, and maintainable. The new implementation now makes the code

portable to both Linux and Windows, or to any other operating system.

The code now includes interfaces to standard LAPACK libraries which

allows to drastically improve performance when linked with high-

performance libraries such as MKL. The code also provides in-depth and

structured documentation with a possibility of easy update of the

documentation as this version improves in future. Furthermore the new

code and the work of restructuring greatly enhance the collaborative

development, which is fundamental in modern science.

Although we improve the code by an impressive factor, still we do not deal

with the sparse nature of matrix B (Section 2.9.4). This could be a future

room for more improvement. Furthermore we don't explore other parallel

platforms like accelerators for this problem, it would be interesting to see

if different sections of the code ported to other platforms can provide

better scaling and performance or it may be better to go for heterogeneous

CPU/Accelerator code for the optimal results.

46

APPENDIX A

Acronyms

RINEX Receiver Independent Exchange

GNSS Geographical Navigation Satellite System

GPS Global Positioning System

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema

(Russian: Global Navigation Satellite System)

QZSS Quasi-Zenith Satellite System

SBAS Satellite-Based Augmentation System

IGS International GNSS Service

GPST GPS Time

GLONASST GLONASS Time

GST Galileo System Time

BDT BeiDou Time

UT Universal Time

UTC Universal Time Coordinated

TAI Temps Atomique International (International Atomic time)

IERS International Earth Rotation and Reference systems Service

WGS World Geodetic System

TRF Terrestrial Reference Frame

RKM Runge-Kutta Method

IPP Ionospheric Pierce Point

47

MODIP Modified Dip Latitude

TEC Total Electron Content

vTECeq Vertical TEC Equivalent

sTEC Slant TEC

IGRF International Geomagnetic Reference Field

IMSL International Mathematics and Statistics Library

SV Satellite Vehicle

FLOP Floating Point Operations

ICTP International Center for Theoretical Physics

SISSA International School for Advanced Studies

MKL Math Kernel Library

API Application Programming Interface

T/ICT4D Telecommunications/ICT for Development Laboratory

LAPACK Linear Algebra Package

48

APPENDIX B

Bibliography

[1] IGS Formats
http://kb.igs.org/hc/en-us/articles/201096516-IGS-Formats

[2] RINEX Version 2.10
ftp://igs.org/pub/data/format/rinex210.txt

[3] RINEX Version 2.11
ftp://igs.org/pub/data/format/rinex211.txt

[4] RINEX Version 3.01
ftp://igs.org/pub/data/format/rinex301.pdf

[5] RINEX Version 3.02
ftp://igs.org/pub/data/format/rinex302.pdf

[6] RINEX Version 3.03
ftp://igs.org/pub/data/format/rinex303.pdf

[7] GPS Interface Specification, Navstar GPS Space Segment/Navigation
User Segment Interfaces (IS-GPS-200G), GPS Directorate, Revision G, 21
September 2011

[8] GLONASS-ICD Interface Control Document Version 5.1 2008,
English Version
http://kb.unavco.org/kb/assets/727/ikd51en.pdf

[9] Galileo Open Service Signal In Space Interface Control Document (OS
SIS ICD), GSA, Issue 1.1, September 2010

[10] BeiDou Signal In Space Interface Control Document, Open Service
Signal (BDS-SIS-ICD-2.0), China Satellite Navigation Office, Version 2.0,
December 2013

[11] “Atomic Time” navipedia article by J. Sanz Subirana, J.M. Juan
Zornoza and M. Hernández-Pajares, Technical University of Catalonia,
Spain. (http://www.navipedia.net/index.php/Atomic_Time)

[12] International Earth Rotation Service
(https://www.iers.org/IERS/EN/Home/home_node.html)

49

http://kb.igs.org/hc/en-us/articles/201096516-IGS-Formats
https://www.iers.org/IERS/EN/Home/home_node.html
http://www.navipedia.net/index.php/Atomic_Time
http://interact.beidou.gov.cn/interact/download.service?attachment=2013/12/26/20131226b8a6182fa73a4ab3a5f107f762283712.pdf
http://interact.beidou.gov.cn/interact/download.service?attachment=2013/12/26/20131226b8a6182fa73a4ab3a5f107f762283712.pdf
http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf
http://ec.europa.eu/enterprise/policies/satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf
http://kb.unavco.org/kb/assets/727/ikd51en.pdf
http://www.gps.gov/technical/icwg/IS-GPS-200G.pdf
http://www.gps.gov/technical/icwg/IS-GPS-200G.pdf
ftp://igs.org/pub/data/format/rinex303.pdf
ftp://igs.org/pub/data/format/rinex302.pdf
ftp://igs.org/pub/data/format/rinex301.pdf
ftp://igs.org/pub/data/format/rinex211.txt
ftp://igs.org/pub/data/format/rinex210.txt

[13] Global Positioning System Standard Positioning Service Signal
Specification
http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf

[14] “GPS and Galileo Satellite Coordinates Computation” navipedia
article by J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares,
Technical University of Catalonia, Spain.
http://www.navipedia.net/index.php/GPS_and_Galileo_Satellite_Coordina
tes_Computation

[15] “Reference Frames in GNSS” navipedia article by J. Sanz Subirana,
J.M. Juan Zornoza and M. Hernández-Pajares, Technical University of
Catalonia, Spain.
http://www.navipedia.net/index.php/Reference_Frames_in_GNSS

[16] “Transformation between Terrestrial Frames” navipedia article by J.
Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical
University of Catalonia, Spain.
http://www.navipedia.net/index.php/Transformation_between_Terrestrial_
Frames

[17] “GLONASS Satellite Coordinates Computation” navipedia article by
J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, Technical
University of Catalonia, Spain.
http://www.navipedia.net/index.php/GLONASS_Satellite_Coordinates_Co
mputation

[18] International Geomagnetic Reference Field: the 12th generation,
Erwan Thébault, Christopher C Finlay, Ciarán D Beggan, Patrick Alken,
Julien Aubert, Olivier Barrois, Francois Bertrand, Tatiana Bondar, Axel
Boness, Laura Brocco, Elisabeth Canet, Aude Chambodut, Arnaud
Chulliat, Pierdavide Coïsson, Francois Civet, Aimin Du, Alexandre
Fournier, Isabelle Fratter, Nicolas Gillet, Brian Hamilton, Mohamed
Hamoudi, Gauthier Hulot, Thomas Jager, Monika Korte, Weijia Kuang,
Xavier Lalanne, Benoit Langlais, Jean-Michel Léger, Vincent Lesur, Frank
J Lowes et al. Earth, Planets and Space 2015, 67:79 (27 May 2015)

[19] Rawer, K., B. Landmark (Ed.), Meteorological and Astronomical
Influences on Radio Wave Propagation, Pergamon Press, Oxford (1963),
pp. 221–250

[20] Ciraolo, L., Azpilicueta, F., Brunini, C. et al. “Calibration errors on
experimental slant total electron content (TEC) determined with GPS”
Journal of Geodesy (2007), Volume 81, Issue 2, pp 111–120.

50

http://www.earth-planets-space.com/content/67/1/79
http://www.navipedia.net/index.php/GLONASS_Satellite_Coordinates_Computation
http://www.navipedia.net/index.php/GLONASS_Satellite_Coordinates_Computation
http://www.navipedia.net/index.php/Transformation_between_Terrestrial_Frames
http://www.navipedia.net/index.php/Transformation_between_Terrestrial_Frames
http://www.navipedia.net/index.php/Reference_Frames_in_GNSS
http://www.navipedia.net/index.php/GPS_and_Galileo_Satellite_Coordinates_Computation
http://www.navipedia.net/index.php/GPS_and_Galileo_Satellite_Coordinates_Computation
http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf

[21] IMSL FORTTRAN Numerical Libraries
http://www.roguewave.com/products-services/imsl-numerical-
libraries/fortran-libraries

[22] ISO C++11 Standard https://isocpp.org/std/standing-documents

[23] doxygen a documentation generator by Dimitri van Heesch
http://www.stack.nl/~dimitri/doxygen/

[24] Intel Hyper-Threading Technology (Intel HT Technology)
http://www.intel.com/content/www/us/en/architecture-and-
technology/hyper-threading/hyper-threading-technology.html

[25] Intel Turbo Boost Technology
http://www.intel.it/content/www/it/it/architecture-and-technology/turbo-
boost/turbo-boost-technology.html

[26] Ulysses High Performance Computing Cluster – SISSA
https://www.itcs.sissa.it/services/computing/hpc

[27] Intel Math Kernel Library
https://software.intel.com/en-us/intel-mkl

[28] Intel Math Kernel Library Documentation
https://software.intel.com/en-us/mkl-reference-manual-for-c

[29] Calibration Fortran code implemented by Katy Alazo-Cuartas
http://t-ict4d.ictp.it/nequick2/gnss-tec-calibration

[30] GNSS TEC Calibration online tool - ICTP
http://t-ict4d.ictp.it/nequick2/gps-tec-calibration-online

51

http://t-ict4d.ictp.it/nequick2/gps-tec-calibration-online
http://t-ict4d.ictp.it/nequick2/gnss-tec-calibration
https://software.intel.com/en-us/mkl-reference-manual-for-c
https://software.intel.com/en-us/intel-mkl
https://www.itcs.sissa.it/services/computing/hpc
http://www.intel.it/content/www/it/it/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.it/content/www/it/it/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.stack.nl/~dimitri/doxygen/
https://isocpp.org/std/standing-documents
http://www.roguewave.com/products-services/imsl-numerical-libraries/fortran-libraries
http://www.roguewave.com/products-services/imsl-numerical-libraries/fortran-libraries

