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Introduction

The purpose  of  this  work is  to  provide  an improved version  of  multi-

constellation  GNSS  TEC  calibration  software[29],  used  by

Telecommunications/ICT for  Development  Laboratory,  Applied  Physics

section,  ICTP.  This  tool  is  based  on  an  arc-by-arc  GPS  based  TEC

calibration algorithm[20].  The current version of the code runs only on

Windows  operating  system  and  does  not  use  standard  libraries,

Furthermore the code is serial and without sufficient documentation. It is

very difficult for the T/ICT4D Lab to maintain the current version. A web

model based on this tool is running and accessible from ICTP website[30].

Improvements  in  this  tool  would  also  increase the functionality  of  this

published service for external  users.  Furthermore it  would enable us to

build on top of this framework a more flexible and scalable service. We

start this work from scratch as a new development project, based on C++

(using  OOP  features)  and  with  the  documentation  describing  the

calibration  technique.  We  also  make  use  of  existing  executables  for

benchmarking.  We  were  able  to  achieve  impressive  performance

improvements  over  current  version  by  integrating  standard  high

performance libraries[27], besides that we now have a software which is

well structured, uses OOP features, is well documented, and therefore it

would now be possible for T/ICT4D Lab, Applied Physics group ICTP to

maintain this software.
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Chapter 1

Calibration Algorithm

1.1  TEC:

Total Electron Content (TEC) is a descriptive quantity of Earth’s 

ionosphere, having a practical importance. TEC data is derived from 

carrier phase measurements of Global Navigation Satellite Systems, but is 

biased by satellite-receiver biases. TEC calibration is the process of 

determining and removing these biases from raw biased TEC.

The basic relation used to calibrate the TEC is given by:

SΦ=sTEC +βarc

Where:

SΦ  is  the  ionospheric  delay  from  the  raw  carrier  phase

observations,

βarc  is  the  Arc-Offset,  a  constant  to  be  determined  for  each

arc[20].

An arc  here means a  set  of  continuous observations  related  to  a  given

receiver and satellite pair.  βarc  represents the contribution of receiver

and satellite biases.

The sTEC  and βarc  are unknowns to be determined by the so-called

calibration or de-biasing process.

1.2 The Thin Shell Model:

A two-dimensional thin shell model at 350 km is assumed to define the

mapping  function  between  the  slant  and  vertical  TEC.  The  vertical

ionospheric variation over the thin shell is expressed as a function of the

MODIP and the Local Time of the IPPs.
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1.3 The current version:

The  current  version  of  the  software  provides  a  single-station,  multi-

constellation  solution.  Constellations  being  processed  are  GPS,

GLONASS,  Galileo and BeiDou. Several stations could be processed for

a defined period in a sequence.

The  software  is  written  in  FORTRAN  using  the  Compaq  Visual

FORTRAN 6.6 environment, with IMSL library,  used for linear algebra

operations[21].

1.4 Multi-constellation solution:

The current version allows the processing of multi-constellation (Section

1.3)  solution.  There  are  major  differences  in  the  signal  characteristics

among  different  constellations,  which  is  relevant  to  TEC  estimation.

Nevertheless,  the  calibration  technique  could  be  applied  to  multi-

constellation measurements, since the satellite and receiver biases are not

explicitly separated.

1.5 Calibration Parameters

Here we provide a list of calibration parameters, which strongly govern the

calibration  process.  Some  of  these  parameters  are  fixed  and  some  are

allowed to be changed by user.
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Parameter Value Description

href 350 Reference ionosphere height

minimumelevation 5 degrees Minimum Satellite Elevation 

maxlosstime 5 minutes Maximum arc discontinuity 

decday 12 hours
Data duration to discard from

start and end

minblocktime 2×decday+24hours
Minimum data to load for

calibration

minimumarclength 2 hours Minimum arc length

intervaltime 30
Observation interval in data

files 

samplingtime 10 minutes
Refreshing interval for

vTECeq

Constellation
Codes

GREC

Constellations to add in
calibration

G(GPS) R(GLONASS)
E(Galileo) C(BeiDou)

Table 1.1: Calibration Parameters

1.6 Non calibrated TEC from the GNSS observables:

The non calibrated TEC is calculated using the first order approximation of

the Appleton-Hartree formula for the refractive index for electromagnetic

wave  propagation  in  a  cold  magnetized  plasma,  i.e.  the  ionosphere

(Section 2.4)
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1.7 Calculation of the Geometry:

Satellite positions are calculated based on individual constellation’s ICD

documents(Section  2.5),  followed  by  computation  of  geometrical

parameters IPP and zenith angle over IPP (Section 2.6)

1.8 Preprocessing:

In preprocessing we account for arc discontinuities and phase jumps. This

section is very important for a smooth calibration and is highly affected by

data quality (Section 2.7).

1.9 Definition of vTEC model:

Representation of vTECeq by a 2D function and Thin Shell model. The

vTECeq variation is expressed as a function of the variation of local time

and MODIP (Section 2.8).

1.10 Calibration:

To perform calibration we Solve the equation system defined as:

S=AC+Bβ

where,

S is matrix of the non-calibrated TEC.

A is  matrix  of  the  data  of  the  vTECeq  variations  in  the  2D

representation.

C is matrix of the solution of the coefficients of the function that

defines vTECeq.

B is matrix of the arcs. Its values are 0 or 1 .

β is matrix of the Arc-Offset.
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Here C  and β  are the unknowns to be determined by this calibration

algorithm.

A double substitution is performed, to final expression:

S−AcS=(B−AcB)β

being c=(AT A)
−1 AT

It is assumed that the functional representation of vTECeq is separated for

each of the continuous interval of duration “samplingtime” (Table: 1.1),

therefore  it  is  possible  to  compute  independently  the  values  of c ,

S−AcS and B−AcB and accumulate in the end. We call this section

as computing for blocks of A  (A_Blocks).

Once  full  data  interval  is  completed,  the  solution  for β is  computed

(Section 1.10.1), and the calibration is formally completed:

calibrated sTEC=S – Bβ

calibration residuals are:

(S−AcS) – (B−AcB)β

1.10.1 Solution for β :

Assuming B−AcB=BAcS and S−AcS=S AcS

we have:

B AcB
T S AcS=BAcB

T BAcBβ

β=(BAcB
T BAcB)

−1 BAcB
T S AcS

The inverse of B AcB
T BAcB is computed by LU factorization.  We call this

section Arc-Offset solution as we are computing for β (Arc-Offset).
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1.10.2 vTECeq solution:

The solution for the coefficients of the function that defines the vTECeq is:

C=c (S – Bβ)

given

calibrated sTEC=S−Bβ computed earlier, 

we have 

C=c (calibrated sTEC)

1.11 Matrix Dimensions in a single-station single-day calibration

Given 10 SV per epoch, 2 observations per minute, and  “samplingtime” of

10 minutes, for one day TEC calibration:

time interval for the calibration = 24h+12 h×2=48h *

total quantity of epochs = 48×60×2=5760

total quantity of observations = 5760×10 SV=57600

quantity of epochs in one samplingtime = 10minutes×2=20

quantity of observations in one samplingtime = 20×10 SV=200

quantity of blocs of 10 mins (blocs of A) = 48×60/10=288

*This calibration technique is applied to non real time data. To
process one day (24 hours), the previous and last 12 hours, at least, are
discarded. This is to guaranty that full arcs are processed.

6



Matrix Description in one ‘sampling time’ Full time interval

Dim Type Dim Type

S
The uncalibrated 
TEC 
observations

(200,1) (57600,1)
real

no sparse

A
the coefficients 
of the functional 
vTECeq

(200,9)
real

no sparse
(57600,2592)

real

sparse

c c=(AT A)
−1 AT (9,200)

real

no sparse
(2592, 57600)

real

sparse

S AcS S AcS=S−AcS (200,1) (57600,1)
real

no sparse

B
The arcs, values 
are 0 or 1

(200, narcs)
real

sparse
(57600, narcs) real sparse

B AcB B AcB=B−AcB (200, narcs) (57600, narcs) real sparse

The solution

Matrix Description

C

The coefficients 
of the function 
that defines 
vTECeq

(9,1) (2592,1)

β
Solution of the  
Arc-Offset

(narcs,1)

Table 1.2: Sample Matrix Sizes
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Chapter 2

Implementation

2.1 Input/Output file formats:

For  calibration  tool  we  use  RINEX files  which  are  structured  formats

having separate header and data sections within a single file as defined by

IGS  formats[1].  RINEX  allows  a  user  to  exchange  mixed  GNSS  data

without worrying about differences in receivers being used. As of the latest

RINEX version, one can find data for GPS, GLONASS, Gallileo, Beidou

(Compass),  QZSS,  and SBAS.  Different  versions  for  this  format  exist

which are:

1) RINEX Version 2

i. Version 2.10[2]

ii. Version 2.11[3]

2) RINEX Version 3

i. Version 3.01[4]

ii. Version 3.02[5]

iii. Version 3.03[6]

RINEX format provides following file types:

1) Observation Data

2) Navigation Data

3) Meteorological Data

We use RINEX 3 for all computations mentioned in this thesis¬, and the

type of  files  relevant  for  this  activity  are  RINEX observation  data  and

¬Although we use RINEX 3, but its not adopted fully by the community 
and RINEX 2 data is still useful and could be used with this tool.
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RINEX navigation data. We employed custom I/O routines to read data

from these files.

2.2 Internal Data Structure:

After  reading  data  from  input  files  (observation/navigation)  data  is

internally stored as a hash table, for fast querying. Indexing for this data is

done by means of a hashing function. Inputs to this function are epoch and

satellite ID. We maintain a single time-line which provides the epoch input

parameter with a given satellite ID. Figure 2.1 explains how an observable

is obtained from this structure by means of hashing function. 

9

Figure 2.1: Hash Table -  Internal Data Structure

t2

t3

t4

t1

t6

t7

t8

t5

G1 G2 G3 G4 C1 C2 C3 C4E1 E2 E3 E4R1 R2 R3 R4

Hashing
Function

Input 1
Epoch = t6
SatID = R3

Input 2
Epoch = t3
SatID = E4



2.3 Timing Systems:

A number of timing systems are involved in this calibration tool. Since we

are  dealing  with  a  solution  approach  which  combines  various  satellite

constellations using their respective Time systems, in general for a mixed

constellation  solution  we  need  to  convert  times  expressed  in  multiple

timing systems to a single time system (usually UTC). This makes it easy

to  express  a  time-dependent  phenomenon  and  reporting  results  after

calibration. We also need to opt for a time system which is easy to deal

with-in a computer program. For this we use internal-time which is based

on UNIX time. We convert a given epoch from its native time system to

UTC and to UNIX time. Since after time conversion to UNIX time we get

an integer, we can traverse better across a list of observables in a computer

program. Following is a brief description of individual time systems used

by this tool.

2.3.1 UT:

Universal  time  defined  by  earth’s  rotation,  where  UT0  is  “raw”

uncorrected UT, UT1 is corrected for polar wandering, UT2 is corrected

for seasonal variations in the earth’s rotation speed.

2.3.2 TAI:

Is  the  international  atomic  time with  difference TAI−UT 2=0 for  the

epoch at January 1st 1958[11].

2.3.3 UTC: 

A compromise between TAI and UT1, and kept closer to UT1 to follow

earth’s  rotation  variations  by  adding  leap-seconds[5].  Leap-seconds  are

refreshed periodically and provided by IERS[12].
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2.3.4 GPST:

GPS time is a continuous time with no leap seconds. Start epoch for GPS 
is 0 hour UTC (midnight) between January 5th and 6th 1980[7]. At that 
epoch TAI−UTC  was 19 seconds , thence:

TAI=GPST +19 seconds

UTC=GPST +19 seconds−leap seconds

2.3.5 GLONASST:

GLONASS time is generated by the GLONASS central synchronizer and

is synchronized with UTC(SU)[8], such that:

GLONASST=UTC (SU )+3h
−τ ,where|τ|<1ms

Unlike GPS, Gallileo or BeiDou, GLONASS  uses leap-seconds in the

system. 

2.3.6 GST:

Galileo  time  is  a  continuous  time  without  leap  seconds,  and  is  kept

synchronized with TAI. Start  epoch for GST is 0 hour UTC (midnight)

between August 21st and 22nd 1999[9].

2.3.7 BDT:

BeiDou  time  is  a  continuous  time  without  leap  seconds,  and  is  kept

synchronized with UTC. Start epoch for BDT is 0 hour UTC on January

1st 2006[10].

2.3.8 Internal Time: 

Internal time is based on UNIX time, which is a continuous time without

leap-seconds, counting number of seconds elapsed since start epoch. Start

epoch for UNIX time is 0 hour UTC January 1st 1970. 

e.g. November 25 2016 14:22:00 (UTC) is 1480083720 in UNIX time.
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2.4 Computing raw slant TEC:

After reading Observation data we compute for each epoch and for each

satellite  in  that  epoch,  raw(uncalibrated)  slant  TEC,  from carrier-phase

observables, using following relation:

TECφ=τ c (
φ1

f 1

−
φ2

f 2

)

where , τ=
1

(40.3×f 12)

f 12=
1

f 2
2−

1

f 1
2

and c=speed of light

Here f 1 and f 2 are  chosen  carrier-frequencies, φ1 and φ2 are

corresponding observables. These values after pre-processing are stored in

array S (see system description). 

2.5 Computing Satellite Positions:

After  reading  navigation  files  we  need  to  compute  satellite  positions

corresponding to every raw slant TEC computed in previous step. This is

needed  for  computing  geometry  (Section  3.6)  and  for  pre-processing

(section 3.7). For GPS, Galileo, and BeiDou same algorithm can be used,

whereas for GLONASS a separate algorithm is used.   

2.5.1 GPS/Galileo/BeiDou Satellite Coordinates Computation:

Here  we describe  the  parameters  obtained  from navigation  files  which

would  be  used  in  this  algorithm[13].  These  parameters  are  refreshed

periodically and cannot be used after prescribed time[14]….

…We dont consider BeiDou Geo-stationary satellite position calculation 
using this algorithm, and at the moment for this version of code we 
exclude these Satellites.
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Parameter Description

t oe Ephemerides reference epoch in seconds within the week 

√a Square root of semi-major axis

e Eccentricity

M o Mean anomaly at reference epoch

ω Argument of perigee

io Inclination at reference epoch

Ωo Longitude of ascending node at the beginning of week

Δn Mean motion difference

i
• Rate of inclination angle 

Ω
• Rate of node’s right ascension

cuc , cus Latitude argument correction

crc , crs Orbital radius correction

c ic , c is Inclination correction

Table 2.1: GPS,Galileo,and BeiDou broadcast ephemeris

Step 1 – Compute the time  t k from the ephemerides reference epoch

t oe using following relation:

t k=t−toe

Note: t and t oe are expressed in seconds in GPS week.

Check if  t k>302400Sec , then subtract  604800Sec  from  t k . If

t k<−302400 then add 604800Sec to t k .

Step 2 – Compute the mean anomaly for t k using following relation:

13



M k=M o+( √μ

√a3
+Δn)t k

Step 3 – Iterative Solution of Kepler equation for the eccentricity anomaly

Ek  :

M k=Ek−e sin (Ek )

Step 4 – Computing true anomaly νk :

νk=arctan (
√1−e2 sin(E k)

cos (Ek)−e
)

Step  5 –  Computing  argument  of  latitude  υk from  the  argument  of

perigee ω , true anomaly νk , and corrections cuc , cus :

υk=ω+νk+cuc cos 2(ω+νk )+cussin 2(ω+νk )

Step 6 – Computing radial distance rk using corrections crc , crs :

rk=a(1−ecos E k)+crc cos2(ω+νk)+crs sin 2(ω+νk )

Step 7 – Computing inclination ik of the orbital plane using inclination

io at reference time t oe and corrections c ic , c is :

ik=io+i
•

t k+c ic cos2(ω+νk)+cis sin 2(ω+νk )

Step 8 – Computing longitude of the ascending node λk (Greenwich) .

This computation uses right ascension at start of the current week Ωo ,

the  correction  from  the  apparent  sidereal  time  variation  (Greenwich)

between start of week and reference time t k=t−toe , and the change in

the longitude of the ascending node from reference time t oe :

λk=Ωo+(Ω
•

−ωE) t k−ωE t oe

where ωE is earth’s rotation rate according to WGS-84 datum[15].

14



Step 9 –  Compute  the  coordinates  in  TRF,  by  applying three  rotations

around υk , ik and λk :

[
X k

Y k

Zk
]=R3(−λk )R1(−ik) R3(−υk)[

r k

0
0 ]

where R1 and R3 are rotation matrices[16].

2.5.2 GLONASS Satellite Coordinates Computation:

In  order  to  compute  GLONASS satellite  coordinates  we  shall  perform

numerical  integration  of  differential  equations  describing  motion  of

satellites[8]. Initial conditions broadcast in GLONASS navigation message

are in PZ-90[15]. We must transform these initial conditions to an absolute

(inertial) coordinate system[17]. Table 2.2 lists the parameters broadcast in

GLONASS  navigation  message,  which  provides  initial  conditions  for

position and velocity. These values should be used to perform numerical

integration within interval |t−t b|<15 minutes . The accelerations due to

solar and lunar gravitational perturbations are also given.  
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Parameter Description

t b Ephemerides reference epoch

x x Coordinate at t b in PZ-90

y y Coordinate at t b in PZ-90

z z Coordinate at t b in PZ-90

v x Velocity x component at t b in PZ-90

v y Velocity y component at t b in PZ-90

v z Velocity z component at t b in PZ-90

x
• • Moon and Sun acceleration x component at t b

y
•• Moon and Sun acceleration y component at t b

z
•• Moon and Sun acceleration z component at t b

Table 2.2: GLONASS broadcast ephemeris

For numerical integration we use 4th order Runge-Kutta method. RKM

uses a weighted average of the values of the derivative f (t , y) taken at

different points in the interval  t n≤t≤t n+1 . Relation between value of

y at time n+1 and value of y at time n is given by:

yn+1= yn+
1
6
(k1+2 k2+2 k3+k4)

where

k1=h f (t n , yn)

k2=h f (t n+
h
2

, yn+
k1

2
)

k3=h f (t n+
h
2

, yn+
k2

2
)
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k 4=h f (t n+h , yn+k3)

and h is the step size.

Following are the six orbital differential equations we need to solve for

GLONASS position at a given time, as described in GLONASS ICD[8]:

dx
dt

=vx

dy
dt

=v y

dz
dt

=vz

dv x

dt
=−

μ

r3 x+
3
2

C20

μ(ae
2
)

r 5 x [1−
5 z2

r 2 ]+ω3
2 x+2ω3 v y+x

• •

dv y

dt
=−

μ

r 3 y+
3
2

C20

μ(ae
2
)

r5 y [1−
5 z2

r2 ]+ω3
2 y+2ω3 v x+ y

••

dv z

dt
=−

μ

r3 z+
3
2

C20

μ(ae
2
)

r5 z [3− 5 z2

r2 ]+z
••

where

r=√x2+ y2+ z2

μ=398600.44 km3

s2  Earth’s universal gravitational parameter

ae=6378.136 km  Earth’s equatorial radius

C20=−1082.63×10−6 zonal Geo-potential coefficient of spherical 

harmonic expansion

ω3=0.7292115×10−4 c−1  Earth’s rotation rate

The values of r ,μ , ae ,C20 ,ω3 given here are based on PZ-90 datum[15].
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Considering  initial  satellite  position (x , y , z) and  the  initial  satellite

velocity (v x , v y , vz) at the reference time t b we assume:

t 0=t b

ω10=x

ω20= y

ω30=z

ω40=v x

ω50=v y

ω60=vz

Now for each of the six GLONASS differential equations we determine

the  k-parameters  k pq ,  where  subscript p refers  to  one  of  the  four

integration  parameters  and  subscript q refers  to  one  of  the  six

GLONASS differential equations:

k11=h(ω40)

k12=h (ω50)

k13=h(ω60)

k14=h(−
μ

r 3 ω10+
3
2

C20

μ(ae
2
)

r5 ω10(1− 5
r2 ω30

2 )+ω3
2
ω10+2ω3 ω50+ x

• •

)

k15=h(−
μ

r3 ω20+
3
2

C20

μ(ae
2
)

r5 ω20(1− 5
r2 ω30

2 )+ω3
2
ω20+2ω3 ω40+ y

••

)

k16=h(−
μ

r3 ω30+
3
2

C20

μ(ae
2
)

r5 ω30(3− 5
r2 ω30

2 )+z
• •

)

k21=h (ω40+
1
2

k 14)
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k22=h (ω50+
1
2

k15)

k23=h(ω60+
1
2

k16)

k24=h(−μ

r3
(ω10+

1
2

k11)+
3
2

C20

μ(ae
2
)

r5
(ω10+

1
2

k11)

(1−
5
r2 (ω30+

1
2

k13)
2

)+ω3
2
(ω10+

1
2

k11)+2ω3(ω50+
1
2

k15)+ x
••

)

k25=h(−μ

r3
(ω20+

1
2

k 12)+
3
2

C20

μ(ae
2
)

r5
(ω20+

1
2

k 12)

(1−
5
r2 (ω30+

1
2

k13)
2

)+ω3
2
(ω20+

1
2

k12)+2ω3(ω40+
1
2

k14)+ y
• •

)

k26=h(−
μ

r3 (ω30+
1
2

k 13)+
3
2

C20

μ(ae
2
)

r 5 (ω30+
1
2

k13)(3−
5
r 2 (ω30+

1
2

k 13)
2

)+z
• •

)

k31=h (ω40+
1
2

k 24)

k32=h (ω50+
1
2

k25)

k33=h(ω60+
1
2

k26)

k34=h(−μ

r3
(ω10+

1
2

k21)+
3
2

C20

μ(ae
2
)

r5
(ω10+

1
2

k21)

(1−
5
r2 (ω30+

1
2

k23)
2

)+ω3
2
(ω10+

1
2

k21)+2ω3(ω50+
1
2

k25)+x
• •

)

k35=h(−μ

r3
(ω20+

1
2

k 22)+
3
2

C20

μ(ae
2
)

r5
(ω20+

1
2

k 22)

(1−
5
r2 (ω30+

1
2

k23)
2

)+ω3
2
(ω20+

1
2

k22)+2ω3(ω40+
1
2

k24)+ y
••

)
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k36=h(−
μ

r3 (ω30+
1
2

k 23)+
3
2

C20

μ(ae
2
)

r 5 (ω30+
1
2

k23)(3−
5
r 2 (ω30+

1
2

k 23)
2

)+z
• •

)

k 41=h(ω40+k34)

k 42=h(ω50+k 35)

k 43=h(ω60+k36)

k 44=h(−μ

r3
(ω10+k31)+

3
2

C20

μ(ae
2
)

r 5
(ω10+k31)

(1−
5
r2 (ω30+k 33)

2)+ω3
2
(ω10+k31)+2ω3(ω50+k35)+x

••

)

k 45=h(−μ

r3
(ω20+k32)+

3
2

C20

μ(ae
2
)

r5
(ω20+k32)

(1−
5
r2 (ω30+k 33)

2)+ω3
2
(ω20+k32)+2ω3(ω40+k34)+ y

••

)

k 46=h(−
μ

r3 (ω30+k33)+
3
2

C20

μ(ae
2
)

r5 (ω30+k33)(3−
5
r2 (ω30+k33)

2)+z
••

)

Finally we get satellite positions and velocities at the next time step by:

ω11=ω10+
1
6
(k11+2k21+2k31+k41)

ω21=ω20+
1
6
(k 12+2 k22+2 k32+k42)

ω31=ω30+
1
6
(k 13+2k23+2 k33+k 43)

ω41=ω40+
1
6
(k14+2k24+2 k34+k44)
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ω51=ω50+
1
6
(k 15+2k25+2 k35+k 45)

ω61=ω60+
1
6
(k 16+2k 26+2 k 36+k46)

2.6 Calculating Geometry:

After  computing  satellite  positions  we  go  on  with  computing  two  key

geometrical parameters as shown in figure 2.2:

• IPP (Coordinates)

• zenith angle over IPP

These parameters are used to define vertical TEC equivalent (vTECeq) and

to define block matrix A (Section 2.9).
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Figure 2.2: Satellite Geometry
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2.7 Preprocessing:

The goal of this section is to detect and remove any irregularity in the data,

before  being served as input to the final system solver. We aim for this

section to produce smooth continuous arcs, while keeping the number of

arcs  to  minimum.  Following  are  the  sub-tasks  being performed in  this

sections:

• Elevation masking

• Gap filling 

• Phase jump detection

• Data arrangement

2.7.1 Elevation masking:

In  this  section  we  use  computed  satellite  positions  (section  2.5)  and

Marker  (Receiver-Station)  position  to  compute  satellite  elevation  and

azimuth. Based on elevation threshold  we cut each arc, and only then we

move to any further preprocessing step.

2.7.2 Gap filling:

In this section we find in each arc for a possible gap (missing data) and if

the gap is within a threshold (defaults to 5 minutes) , then we interpolate

the missing data, otherwise we break that arc at the gap and consider start

of a new arc after that gap. This continues until the end of the arc being

processed, after which we check resulting arc/s for minimum arc length

(defaults  to  2  hours).  Interpolation  used  here  is  Lagrange  polynomial

interpolation of a given degree (minimum is 4, defaults to 6).

2.7.3 Phase jump detection and correction:

We can often find sudden jumps in phase observables which could be due

to reasons other than real sudden TEC variations. In order to detect these

jumps we use quartiles and IQR . A given arc is divided into n chunks
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of  length l≤10minutes ,  and  for  each  chunk  we  compute  quartiles

Q 1,Q 2,Q 3 and IQR=Q3−Q 1 . A value is marked as a false jump if

value < Q 1−LB×IQR or value > Q 3+UB×IQR ,  where LB and

UB are  given  parameters  (both  default  to  1.5).  Once  detected,  these

values  are  replace  by  an  average  of  values  indexed  at

{ j−k ,⋯, j−1, j+1,⋯, j+k } ,  where j is  the  index  of  value  being

replaced, and k is a given parameter (defaults to 3).

2.7.4 Data arrangement:

Finally data is arranged according to time (epochs), the same order found

in observation files. This is required so that we have input arrays ready for

final solver (see system description).

2.8 vTECeq  

For vTECeq we use MODIP, local time, and the zenith angle over IPP

(Section 2.6). MODIP is obtained by following relation:

tan (μ)=
I

√cos (φ)

being I the true magnetic inclination, and φ the geographic latitude of

the receiver-station[19]. 

For I we compute IGRF-12± model[18], implemented as a separate class

requiring respective IGRF coefficients file to compute for I . 

These values are used in the polynomial describing vTECeq:

vTECeq=C0+C1 x+C2 x2+C3 y+C4 x y+C5 y2

where 

x=λ IPP−λ station+2 π
Δ t

86400

± Use of IGRF (currently 12th generation) is based on input data to be 
calibrated.
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y=μIPP−μstation

being λ IPP the  IPP  longitude, λstation the  station  longitude, μIPP the

IPP MODIP, μstation the station MODIP, and Δ t=tobs−tmid being t obs

the  UT  observation  time  in  minutes, tmid the  UT  mid  time  of  the

corresponding  sampling  time  interval(see  section

parameter_samplingtime).

The relation between vTECeq and sTEC is given by following relation:

cos(z ' )=
vTECeq
sTEC

being cos (z ' )=
1

sec (z ')

we have sTEC=sec (z ') vTECeq

or

sTEC=sec (z ')×(C0+C1 x+C2 x2+C3 y+C4 x y+C5 y2)

Here  Coefficients  go  into  Matrix  C  (unknowns)  and  the  values

corresponding to coefficients makeup Matrix A (Section 2.9.2).

2.9 System Description and sparsity

In this section we define the system matrices and vectors which would be

operated on by main solver. These include following:

• S Vector

• A Matrix

• B Matrix
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2.9.1 Vector S:

All the uncalibrated slant TEC values go into this vector S. Order of the

values  is  the  same  as  it  appears  in  the  observation  files  (arranged  by

epochs). It is a dense vector whose size depends on number of epochs,

number of satellites per epoch, and observation frequency in data files.

2.9.2 Matrix A:

This  Matrix  stores  the  values  corresponding  to  unknown  coefficients

(Section  3.8).  Since  in  this  calibration  algorithm  we  fix  the  set  of

coefficients for a given time interval (sampling-time, usually 10 minutes),

we get structure of Matrix A as a block diagonal. Only non-zero blocks of

this matrix are stored as shown in figure 2.3. The dimension of A depends

on  number  of  values  in  Vector  S  and  the  number  of  coefficients  in

polynomial defining vTECeq.
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2.9.3 B Matrix:

This  is  a  boolean matrix  relating a  given sTEC value in  vector  S to  a

specific arc number. These arc numbers are defined by the preprocessing

section (Section 2.7.2). Matrix is defined as follows:

B ij = { 1: Si∈ Arc j

0:elsewhere

The dimensions of B depend on number of values in vector S and number

of arcs formed after preprocessing section.

2.9.4 Sparsity:

As described above matrices A and B are sparse matrices, and in the case

of matrix A, we only store non-zero values. We also take advantage of the

block structure of A and all operations with A are performed on individual

blocks(see section solution).
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Chapter 3

Solver

3.1 Intel MKL Library

For the main solver routine we integrate this code with Intel MKL[27],

which  feature  highly  optimized,  threaded,  and  vectorized  routines  to

maximize performance. It utilizes the de facto standard C/Fortran APIs, in

order to be compatible with BLAS, LAPACK and other math libraries.

3.1.2 List of used MKL routines

Here we present the list  of used routines in the whole solver  and their

description[28].

• cblas_dgemm: Computes a matrix-matrix product

• LAPACKE_dgetrf + LAPACKE_dgetri: To comput LU 

factorization and then inverse of a matrix, used together

• cblas_dgemv: To compute a matrix-vector product

• cblas_daxpy: For vector-vector or matrix-matrix subtraction

3.2 Compute for Blocks of A:

For this Section of solver we compute for individual blocks of matrix the

required  computations  as  described  in  section  1.10.  We  loop  over

individual blocks of matrix A and the corresponding sections of vector S

and Matrix B.

3.3 Solution for Arc-Offset:

Once we have the values for S AcS and B AcS from the previous section

we move on with the solution of Arc-Offset β , as described in Section

1.10.1.
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Afterwards  we  compute  calibrated sTEC=S – Bβ as  described  in

Section 1.10.

3.4 Computing Residuals:

Once we are done with Arc-Offset Solution we calculate residuals by

residuals=(S−AcS) – (B−AcB)β as described in Section 1.10.

3.5 Solution for vTECeq:

Finally the Solution for vTECeq is computed by going over precomputed

c and  computing  C=c (calibrated sTEC ) as  described  in  Section

1.10.2.
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Chapter 4

Code Structure and Documentation

4.1 Code Structure

The  new code  for  the  calibration  tool  is  written  from scratch  in  C++

language,  complying  to  at-least  standard  C++11[22].  The  code  is

structured in classes using object-oriented techniques. Not everything is

modeled around OOP concept during this development project, but rather

we take the middle option to structured some section of code in classes and

leaving  some sections  flat  as  per  the  compromise  between  beauty  and

performance.  Following  is  a  series  of  short  descriptions  about  some

sample classes in the code with class diagrams.

4.1.1 Class internalTime:

This Class Defines Internal time which is based on Unix Time. It stores the

normal  Date/Time as  (Year,Month,Day,Hour,Minute,Second),  while  also

providing  equivalent  UNIX  Time.  An  instance  of  this  class  could  be

generated by explicitly providing normal Date/Time values as Integers or

by providing a string which would be parse to store time in both formats.

The later being more useful for reading observation files, as epochs appear

in observation files as strings.
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4.1.2 Class triple:

This  is  the most  simple class in  the project,  being providing an object

defining  a  point  using  three  dimensional  coordinates.  Instances  of  this

class are used extensively throughout the project.

4.1.3 Class ObsData

This  Class  Defines  observation  data  handling,  including  reading  from

observation  files  and  storing  in  internal  data  structure,  the  raw  non-

calibrated  TEC  from  phase  observables.  This  class  also  includes

preprocessing routines being applied to internal data structure, and allot of

dump routines for debugging and plotting arc states. 
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Figure 4.3: Class ObsData



4.1.4 Class ephemerisGEC:

This  class defines ephemeris  data  object  based on GPS/Galileo/BeiDou

ephemeris record in navigation files. This class serves as the data type for

for vectors containing navigation data for GPS/Galileo/BeiDou.

4.1.5 Class ephemerisR:

This class defines ephemeris data object based on GLONASS ephemeris

record in navigation files. This class serves as the data type for for vectors

containing navigation data for GLONASS.
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4.1.6 Class NavData:

This class defines navigation data, stored after reading RINEX navigation

files, for different constellations. 
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4.1.7 Class Dependency:

following  is  a  class  dependency  diagram for  sample  classes  described

above:
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Figure 4.7: Class Dependency



4.2 Documentation using doxygen:

Besides the new code being well structured using classes, the code is also

well documented. Documentation is done by means of doxygen. Doxygen

is the de facto standard tool for generating documentation from annotated

C++ sources, but it also supports other popular programming languages

such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft,

and UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and to some extent

D[23]. We can generate documentation as HTML or pdf using this tool.

Following  are  some  snaps  from  HTML  version  of  sample  class

documentation:
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Figure 4.8: Doxygen documentation Classes
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Figure 4.9: Doxygen documentation Class ObsData

Figure 4.10: Doxygen documentation public member functions
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Figure 4.11: Doxygen documentation member function pre_process



Chapter 5

Benchmarking of Code

5.1 Tests on a standalone workstation

In  this  section  we  present  the  benchmarking  results  on  a  standalone

workstation. We choose a workstation similar to the configuration which is

used by T/ICT4D Lab for calibration tool. It is important to note that the

old  version  of  the  software  runs  on  Windows,  therefore  we  choose  a

workstation  with  both  Linux  and  Windows  configured  and  use  this

machine for benchmarking.

5.1.1 Workstation Configuration:

The workstation used in this benchmark is based on Intel Quad-Core i7 –

3770 with 4 Cores, and 8 Threads with Hyper-threading[24], having base

frequency  at  3.40  GHz,  and  up  to  3.90  GHz  with  single  core  turbo

boost[25].

5.1.2 Workstation Test1:

In this test we compare execution time (time to solution) for serial versions

with different system sizes (Varying observation interval)

• fsolve is single precision version with serial MKL

• dsolve is double precision version with serial MKL

• Time to solution for fsolve is scaled to 40

• Time to solution for dsolve is scaled to 25
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5.1.3 Workstation Test2:

• Parallel versions compared with fixed highest possible system size

(Interval 15) against number of threads

• fsolve is single precision version with Parallel MKL

• dsolve is double precision version with Parallel MKL
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Figure 5.1: Workstation test 1 Serial Versions
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Figure 5.2: Workstation test 2 Parallel MKL Scaling
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5.2 Tests on a Compute node from Ulysses Cluster:

This section discusses benchmarks ran on a Compute node from Ulysses

Cluster being operated by SISSA[26].

5.2.1 Compute node Specifications:

A single compute node on Ulysses cluster is based on dual Intel Xeon CPU

E5-2680  v2  base  frequency  at  2.80GHz.  This  is  a  10  core  processor,

therefore we have 20 cores in total on two processor sockets. Following is

the NUMA processor affinity policy used for this test.

5.2.2 NUMACTL Policy:

NUMACTL physcpubind:

• NUM_Threads 1 → CPUs (0)

• NUM_Threads 2 → CPUs (0,10)

• NUM_Threads 4 → CPUs (0,1,10,11)

• NUM_Threads 8 → CPUs (0,1,2,3,10,11,12,13)

• NUM_Threads 16 → CPUs (0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17)

5.2.3 Compute node Test 1:

• following  graph  shows  scaling  on  single  Ulysses  node  using

NUMA policy mentioned above

• It describes scaling of whole solver code (including times for all

sections of the solver)

• Notice that this scales up to 8 cores

• dsolve_omp is double precision version with Parallel MKL
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5.2.4 Compute node Test 2:

• following  graph  shows  scaling  on  single  Ulysses  node  using

NUMA policy mentioned above

• It  describes  scaling  of  only  Arc-Offset  solution  (including  only

times for Arc-Offset)

• This  Section  of  code  was  the  most  time  consuming  in  the  old

version (Section 5.2.5)

• Notice that this scales up to 16 cores

• dsolve_omp is double precision version with Parallel MKL
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5.2.4 Compute node Test 2:

• following  graph  shows  scaling  on  single  Ulysses  node  using

NUMA policy mentioned above

• It  describes  scaling  of  only  A_Blocks  solution  (including  only

times for A_Blocks section)

• This Section of code was the 2nd most time consuming in the old

version (Section 5.2.5)

• Notice  that  this  doesn't  scale  much,  and  after  8  cores  it  blows

timing.

• Affect of this section could be seen in whole solver timing (Section

5.2.3)

• dsolve_omp is double precision version with Parallel MKL
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5.2.5 Old Code Timing:

• This graph shows timings of different solver  sections in the old

version

• T_blocks is timing for (A_Blocks) section of the code

• T_ArcOffsets is timing for (Arc-Offset) section of the code

• T_Residuals  and  T_vTECeq  have  negligible  share  in  time  to

solution
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Figure 5.5: Old Code Timing
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Chapter 6

Conclusion

As prominent by the benchmarking results shown in the previous chapter,

we improve the time to solution in new serial version of the code by a

factor of 45, considering the double precision new serial version (Section

5.1.2). Furthermore we improve the time to solution by a factor of more

than 100, considering old serial version and multi-threaded new version on

the  same  hardware  (Section  5.1.3).  The  code  is  now  well  structured,

flexible, and maintainable. The new implementation now makes the code

portable to both Linux and Windows, or to any other operating system.

The code now includes interfaces to  standard LAPACK libraries which

allows  to  drastically  improve  performance  when  linked  with  high-

performance libraries such as MKL. The code also provides in-depth and

structured  documentation  with  a  possibility  of  easy  update  of  the

documentation as this  version improves in  future.  Furthermore the new

code  and  the  work  of  restructuring  greatly  enhance  the  collaborative

development, which is fundamental in modern science. 

Although we improve the code by an impressive factor, still we do not deal

with the sparse nature of matrix B (Section 2.9.4). This could be a future

room for more improvement. Furthermore we don't explore other parallel

platforms like accelerators for this problem, it would be interesting to see

if  different  sections  of  the  code  ported  to  other  platforms  can  provide

better scaling and performance or it may be better to go for heterogeneous

CPU/Accelerator code for the optimal results.
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APPENDIX A

Acronyms

RINEX Receiver Independent Exchange

GNSS Geographical Navigation Satellite System

GPS Global Positioning System

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema 

(Russian: Global Navigation Satellite System)

QZSS Quasi-Zenith Satellite System

SBAS Satellite-Based Augmentation System

IGS International GNSS Service

GPST GPS Time

GLONASST GLONASS Time

GST Galileo System Time

BDT BeiDou Time 

UT Universal Time

UTC Universal Time Coordinated

TAI Temps Atomique International (International Atomic time)

IERS International Earth Rotation and Reference systems Service

WGS World Geodetic System

TRF Terrestrial Reference Frame

RKM Runge-Kutta Method

IPP Ionospheric Pierce Point
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MODIP Modified Dip Latitude

TEC Total Electron Content

vTECeq Vertical TEC Equivalent 

sTEC Slant TEC

IGRF International Geomagnetic Reference Field

IMSL International Mathematics and Statistics Library

SV Satellite Vehicle 

FLOP Floating Point Operations

ICTP International Center for Theoretical Physics

SISSA International School for Advanced Studies

MKL Math Kernel Library

API Application Programming Interface  

T/ICT4D Telecommunications/ICT for Development Laboratory

LAPACK Linear Algebra Package
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