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INTRODUCTION

As a consequence of Mostow’s rigidity theorem (see [7]), volumes of hyper-
bolic 3-manifolds play a similar role to that of Euler characteristic in dimension
2 because they are a topological invariant. By Thurston-Jgrgsen’s theorem ([47],
compare section 1.5 and Theorem 1.5.6), volumes of hyperbolic 3-manifolds and 3-
orbifolds (recall that a manifold is an orbifold -see paragraph 1.5) are well-ordered;
in particular if we choose a class of finite-volume orbifolds satisfying certain prop-
erties (e.g. closed manifolds, cusped manifolds, closed orbifolds, cusped orbifolds,
manifolds with totally geodesic boundary, etc.) there exists an orbifold belonging
to the class having minimum volume. In the past few years many papers have been
devoted to establish the element of minimal volume of particular given classes (see
[1], [2]; [3], [26], [33], [34], [51]).

The orbifold of minimal volume is not known yet. The orbifolds of smallest
known volumes, however, are tetrahedral orbifolds (see section 1.5 and 1.4 for
definitions) in analogy to the 2-dimensional case where the orbifold of minimal
volume is uniformized by the triangle group (2, 3,7 ). More precisely the orbifold of
minimal known volume is double covered by a tetrahedral orbifold (see paragraph
3.1): its volume is &~ 0.039050 while the lower bound given by Meyerhoff [35] is
~ 0.0000013 (see Theorem 1.5.7). On the other hand, the cusped (non-compact,
of finite volume, without boundary) orientable hyperbolic 3-orbifold of minimal
volume is a tetrahedral orbifold (see [33]).

Another example is the limit orbifold of minimal volume (i.e. its volume is a
limit of other volumes of orbifolds) which is a polyhedral orbifold (compare section
1.5), uniformized by the Picard group (see [2], [52], [15] and [16]).

In this work we shall study finite admissible (i.e. with torsion-free kernel.
see Definition 1.5.5) quotients of type PSL(2,¢) and PGL(2, q) of the tetrahedral
groups uniformizing some Lannér tetrahedral orbifolds and some cusped tetrahe-
dral orbifolds of smallest volumes.

The problem of classifying admissible quotients of linear fractional type (see
paragraph 1.3) has been considered in [30] (see also [10]) for the triangle group
(2,3,7) and in [20] for two Lannér tetrahedral groups (one of which uniformizes
the closed tetrahedral orbifold of minimum volume). The classification of admis-
sible quotients of type PSL(2,q) has also been considered in a classical work by
Macbeath [30] for the modular group and in a work by Singermann [43] for the
extended modular group (see Example 1.3.3 iii)).

The hyperbolic tetrahedral groups are the subgroups of index 2 of orientation-
preserving isometries in the Coxeter group generated by the reflection in the faces
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of hyperbolic (Coxeter) Lannér, cusped or unbounded tetrahedra (see paragraph
1.4). We exploit a generalization of the method used in [19] and [20]: we make
computations using matrices (representing the elements of PSL(2,q) -see para-
graph 1.3) thus obtaining certain algebraic conditions (see [48] and paragraph 2.1)
equivalent to the existence of an admissible homomorphism from the tetrahedral
groups to the linear fractional groups. These conditions are easily verifiable for
four of the Lannér tetrahedral groups which are not considered in [19] and will lead
us to a complete classification of admissible quotients of linear fractional type for
these four groups; surjectivity will be ensured by the maximality of some spherical
vertex-groups (see 1.4) of the tetrahedral groups, considered as subgroups inside
PSL(2,q) (see Theorem 1.3.8). For the remaining three groups, the conditions
cannot be discussed for all ¢’s at the same time but must be checked case by case
(see paragraph 2.2). In any case we see that we have admissible quotients of linear
fractional type only for ¢ = p, ¢ = p? or ¢ = p*.

In paragraph 2.3 we classify the admissible quotients of linear fractional type
for some cusped tetrahedral groups uniformizing orbifolds of small volumes, in
particular the cusped orbifold of minimal volume (Theorems 2.3.1 and 2.3.2).
The cusped tetrahedral groups we are going to study are interesting also from
a number-theoretical point of view since some of them are Bianchi groups or ex-
tended Bianchi groups (see [15] and Example 1.3.3 iv)) which can be considered
as generalizations of the classical modular group. Indeed the groups uniformizing
the three smallest cusped hyperbolic 3-orbifolds are the (extended) Bianchi groups
studied in Theorems 2.3.1 case k¥ = 3 and 2.3.2, 2.3.3 and 2.3.4 case n = 3 (see
[37]). These groups admit natural homomorphisms to PSL(2,q) or PGL(2,q)
given by reduction of matrix coefficients mod p (see 1.3.3 iv)). We prove that all
the admissible quotients of linear fractional type of these groups are obtained as
reductions mod p (with one exception, see Theorem 2.3.4). It turns out that we
can have admissible quotients only for ¢ = p or ¢ = p?.

From a geometric viewpoint, looking for admissible quotients of linear frac-
tional type of a group uniformizing a certain orbifold is equivalent to looking for
hyperbolic 3-manifolds which are finite regular coverings of the orbifold itself (for
the notion of orbifold covering see section 1.5). Consequently, the manifolds asso-
ciated to the admissible quotients we classify are hyperbolic 3-manifolds (of small
volumes) admitting actions of some linear fractional group. In paragraph 4.3,
some application to the construction of closed 3-manifolds admitting large group
actions (see also paragraph 1.6) is also discussed.

Using the results of chapter 2 and generalizing further the techniques adopted
there, in chapter 3 we study some natural extensions of the tetrahedral groups. The
first extension we consider (section 3.1) is the fundamental group of the hyperbolic
3-orbifold of minimal known volume. Notice that the tetrahedral orbifold which
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1s its double covering is uniformized by one of the groups studied in detail in
paragraph 2.2 (Theorem 2.2.1, case k = 2,n = 5). Again we find necessary and
sufficient conditions to have an admissible quotient of linear fractional type. In
this case (like for the three Lannér tetrahedral groups for which we do not give a
complete classification) the conditions have to be checked case by case with the
help of a computer.

The other type of extension we consider are the Coxeter groups (see 1.4). Since
they contain the groups of global symmetries (also orientation-reversing) of some
of the platonic solids, they cannot be mapped admissibly to the linear fractional
groups (see Theorem 1.3.8, for a classification of all subgroups of PSL(2,q), and
paragraph 3.2). In this case it seems natural to consider admissible quotients
of type PSL(2,q) X Z,. The main result here is the complete classification of
admissible surjections of this type for the Coxeter groups studied in chapter 2.
One can compare [25] where some examples of admissible quotients of this type
are found by computational methods.

In the last chapter we classify all admissible quotients of type PSL(2,q) for
another remarkable Bianchi group: the Picard group which is a polyhedral group
associated to a cusped Coxeter pyramid. Here we exploit the result and method
of Macbeath [30] concerning the (2,3)-generation of the groups PSL(2,q) (see
Theorem 1.3.9). The same question is considered in [43] for the extended modular
group, as we have already noted. The Picard group is interesting from a geometric
viewpoint as well since, as we have already said, it is the fundamental group of
the limit orbifold of minimal volume (see [2]). The situation for the Picard group
is more similar to that of the modular group rather than to that of the small
Bianchi groups of tetrahedral type. In fact we shall see that PSL(2,q) is an
admissible quotient of the Picard group for most values of ¢ (and in particular
for infinite powers of any prime p). The reason is that the Picard orbifold (i.e.
the quotient of the hyperbolic space by the Picard group) has a non-rigid cusp
on which hyperbolic Dehn surgery can be performed while the cusped tetrahedral
orbifolds have rigid cusps (see paragraph 1.6). Moreover the tetrahedral groups
are unsplittable as a free-product with amalgamation or HNN-extension (as are
the bounded triangle groups in dimension 2), see [56], whereas the Bianchi groups
which are not of tetrahedral type, including the Picard group, are splittable (as
is the modular group which is a cusped triangle group uniformizing the cusped
orientable hyperbolic 2-orbifold of minimal volume), see [15] or [16]. The same
behavior of the Picard group is shown by another Bianchi group of polyhedral
type for which we give again the complete classification of all admissible quotients
of type PSL(2,q) in Theorem 4.2.2. Indeed our method works for all amalgams
of type Gy, *(z,+z,) G, generalizing the Picard group (for the definition of the
groups Gy see 1.6.3; for ky = 2,k; = 3 we obtain the Picard group and for k; =
2, ka2 = 4 the group PGL(2,Z[i~/2]) studied in 4.2.2). These results also answer a
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question by Alperin (see [5]) showing that there are imaginary quadratic rings of
integers whose associated Bianchi groups admit quotients of linear fractional type
not induced by reduction of coefficients mod p. Nevertheless for the Bianchi group
considered by Alperin all quotients of type PSL(2,q), ¢ > 5, arise by reduction
of matrix coefficients mod p (Theorem 2.3.4) as it always happens in the non
imaginary quadratic case.

In section 4.3 we exploit the fact that the Picard orbifold has a non-rigid cusp
and construct closed hyperbolic 3-manifolds with PSL(2,q)-actions. By the above
minimality property of the Picard orbifold it seems reasonable that for many of
the groups PSL(2,q) the minimal volume of a manifold with such an action is
realized in this way. In the same section we also give a necessary and sufficient
condition for an admissible surjection obtained by reduction of coefficients mod
p of the Picard group to factorize through the fundamental group of a hyperbolic
orbifold obtained by Dehn surgery with surgery coefficients (k, n) along the cusp
of the Picard orbifold.

We remark that subgroups of small index in some Bianchi and tetrahedral
groups have been classified in [22] and [12], by computational methods using the
group-theory packages GAP [17] and Cayley, see also [8] and [15] for the Picard
group.



NOTATION

Let us fix some notations which will be used throughout this work.

The cyclic group of order n.

The cyclic group of infinite order (i.e. the free group of rank 1). We shall use
the same notation for the ring of integers.

The dihedral group of order 2n; it has the following presentation
(z,y | 2% y° (zy)").

The symmetric group acting on n elements (of order n!).

The alternating group on n elements which is the index 2 subgroup of S,,.
The field of rational numbers.

The field of real numbers.

The field of complex numbers.

The Euclidean space of dimension A.

The unit sphere of dimension h, i.e. the subset of points of R?+! at distance
1 from the origin.

The closed ball of dimension & centred at 0; observe that §B" = Sh—1,

The hyperbolic space of dimension h.



1. BACKGROUND

In this chapter we give some standard results and basic definitions which we
shall use in the following. Some of the results are not strictly needed but we state
them for the sake of completeness.

1.1. Useful properties of fields

In this paragraph we shall recall some basic facts about fields. Results are
standard and their proofs, which we shall omit, can be found in any book of algebra
(see, for instance, [27]). Throughout rings are understood to be commutative with
unity. Let us start with finite (Galois) fields.

1.1.1 Theorem: For each prime p and each positive integer m there ezists ezactly
one (up to isomorphism) field F, of order q := p™.
Fy is the splitting field of the polynomial t9 — t.

Remark that, if p is a prime, F, is the ring of residues (mod p) Z .
1.1.2 Corollary: Fy is a subfield of F, if and only if q is a power of ¢'.

1.1.3 Theorem: The multiplicative group Fy :=F, — {0} of Fq is cyclic.

1.1.4 Definition: Let ¢ = p™ and define a field homomorphism in the following
way
F:F; — T,

Fla) =aP.

It is not difficult to prove that F is an automorphism of order m which leaves
pointwise fixed exactly Fp. It is called Frobenius automorphism.
Suppose that m = 2m/ and let Zg := F™ . Zr is an automorphism of order 2

that we shall call Frobenius involution or conjugation; it leaves pointwise invariant
the subfield F ... .

1.1.5 Proposition: Assume that ¢* is odd and let Tz : Fo2 —> Fpe be the
Frobenius involution. Since [Fp2 : Fy] = 2 and by Theorem 1.1.3, we see that all
elements of F, admit square-roots in Fp2. Let 1 € Fp — Fy be the square-root of a
non-square element of F,. Then the elements of the form 1o, o € F, are exactly
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those on which Ir acts as multiplication by —1. We shall denote the set of these
elements by Fy and by (Fy the set JF, — {0}.

Proof:

If § is such that Zr(B) = —f, then squaring both sides, we get Zx(8%) = 42 so
B% € F, but 8 ¢ F; else 8 = Ix(f) = —f which is a contradiction. Viceversa
Ir (1) = Ir((1)?) = (1c)? and we deduce Zx (1) = Hia but we cannot have
Tr () = tx unless o = 0.

1.1.6 Remark: In order to simplify notations, in the following we shall always
write a? or & instead of Zx(«) to denote the Frobenius involution.

Notice that for all & € Fp2 we have a+a? € F, while ¢ —a? € tFy; the Frobe-
nius conjugation plays a similar role to that of conjugation of complex numbers.

The elements of F; which admit square-roots in I, are said to be squares in
Fy while the remaining are said to be non-squares in F. Remark that the product
of two elements of F; is a square if and only if both elements are either squares
or non-squares. Notice that if g is even all elements of I, are squares and admit
exactly one square-root (belonging to F,) since squaring an element is exactly
applying the Frobenius automorphism, instead if ¢ is odd the number of squares
in F, is (¢ + 1)/2 and they have two square-roots each, apart from 0.

The following Theorem is a classical result due to Gauss (see [41, page 315]).

1.1.7 Theorem (law of quadratic reciprocity): For two distinct odd primes

p and g we have:
(13) (z) _ (—1)EtE
q p

where (%) denotes the Legendre symbol def ined as

A {+1 if @ 15 a square in [,
D —1 otherunse.

Mainly to fix notations, we give some other definitions.

1.1.8 Definition: Let R be a ring and R’ a subring. We shall call integral closure
of R" in R the set of elements of R which are roots of some monic polynomial with
coefFicients in R'. It can be proved that the integral closure of R’ is a subring of
R containing R'.

1.1.9 Definition: Let F' be an extension of Q, the field of rational numbers. The
ring of integers of F' is the integral closure of Z in F'; we shall denote it by Op. If
F'is a finite extension of Q we shall say that F is a number field.
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We shall consider algebraic quadratic extensions of the form Q(\/Td), where
d is a positive square-free integer (imaginary quadratic number fields). In this
case, the ring of integers will be denoted by ©4. It can be shown that these rings
of integers are all of the form Z[(] for a suitable ¢ € C. Observe that the minimal
polynomial of ¢ P;(t) € Z[t] must be monic of second degree.

For all prime numbers p which do not divide d, consider the unique unitary
ring homomorphism Z — F, (i.e. reduction mod p) and the homomorphism it
naturally induces on the polynomial rings Z[t] —s F,[t]. Let P;, the image of P
in F,[t]. This polynomial either admits two (non-zero, since p does not divide d)
roots (1,(2 € F, or it does not. In this latter case the polynomial has two roots
in Fy2. Anyhow, one can define two unitary ring homomorphisms

qu :Z[C]——-—)FPQ j=1,2

defined by ¢;(¢) := ;. Their images are F, resp. Fp2 according as the (; belong
to Fp, or not.
Since they will be needed later, we give the following

1.1.10 Examples: We have

0, = Z[i]
Oy = Z[iv/?2]
03 = Z[UJ]

where 7 and w denote a primitive forth-root of unity (i-e. the imaginary unit) and
a primitive cubic-root of unity respectively. We see the number fields associated
to O and Oz are in particular cyclotomic, i.e. generated by primitive roots of
unity.

1.1.11 Remark: In what follows primitive forth- and cubic-roots of unity even
when dealing with finite fields will be denoted by ¢ and w respectively. It will be
clear from the context which field they belong to and no confusion should arise.

1.1.12 Definition: Let F be a field. The unique algebraic extension of F' which
is also algebraically closed is called algebraic closure of F and denoted by F.

1.2. Algebraic and arithmetic geometry

In this paragraph we give a sketchy review of some definition and results of
algebraic and arithmetic geometry. The approach will be the simplest possible.
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We refer to [24] for basic definitions and results. We shall use the material of this
section to solve some systems of equations over finite fields. In fact we shall need
less, i.e. an estimate of the number of solutions of the system.

1.2.1 Definitions: Let F' be a field and F” the h-dimensional vector space over
F. Aset A" is called af fine space of dimension h over F if there exists an action of
(the additive group of) F" on the set which is transitive and free (for a definition
of action see paragraph 1.5; here the group homomorphism maps to the group
of bijections of the set). We can identify A%, with F” forgetting the special role
played by 0. Points in the affine space are determined by their coordinates, i.e.
h-tuples of elements of F.

The set of all lines (i.e. vector subspaces of dimension 1) in F"**! is called
projective space of dimension h over F' and denoted by FP”. Since a line of FA+1
is determined by any of its non-zero vectors, a point in the projective space is
determined by its homogeneous coordinates, i.e. an (h+ 1)-tuple [Ag : ... : Ay] of
elements of F' not all 0 defined up to multiplication by an element win F* (ie.
Aot s An] = [Ao 1o 1 wAR)).

‘The zero locus in A" of a collection of polynomials in F [t1, ..., tg] is called
af fine variety. Notice that the zero locus of a collection of polynomials coincides
with the zero locus of the polynomials belonging to the ideal generated by the
collection. In particular, since the ring of polynomials is Noetherian, it is enough
to consider finite collections of polynomials, generators of the ideals of the ring.
The set of all affine varieties in A%, are the closed sets for a topology on A% called
the Zariski topology.

The zero locus in FP" of a collection of homogeneous polynomials belonging
to Ftg, ..., ts] is called projective variety. The set of all projective varieties in FP?
are the closed sets for a topology on FP” called again Zariski topology.

1.2.2 Examples: A variety (affine or projective) defined by a single non-constant
polynomial is called hypersurface.

A variety defined by h — 7 linearly independent linear (of degree 1) polyno-
mials is called r-plane. A projective r-plane is the image of a vector subspace
of dimension r + 1 of F"*! in the projective space. An (h — 1)-plane is called
hyperplane. A 1-plane is usually called a line.

It can be proved that A’}; can be immersed as an open subspace in F'P” e.g.
as the set {t; # 0}. This means that the projective space of dimension A is covered
by h+1 open sets which are copies of the affine space of dimension h. The closure
of an affine variety contained in A%, thought of as an open subset of the projective
space (in the Zariski topology) is called projective closure.

Any linear isomorphism of the vector space F"*! induces an automorphism
of the projective space of dimension h since it preserves lines. Such automorphism
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(with respect to the Zariski topology) of the projective space is called projective
equivalence.

Let A be a vector subspace of dimension A—r in F**! and II a complementary
vector subspace of dimension 7 + 1. Denote by P(A) & FP*~" resp. P(II) & FP"
their images in the projective space FP". Consider the linear endomorphism of
F"*1 which is the identity on IT and has kernel A. The induced map

FP" — P(A) —s P(IT)

is called projection from P(A) to P(II). Projections are continuous maps in the
Zariski topology sending projective varieties to projective varieties.

1.2.3 Definition: A continuous map
f: Vi C FP" — VY, C FP"

is called regular if it can be locally expressed as a (h -+ 1)-tuple of homogeneous
polynomials of the same degree, i.e.

[AO Tt /\r] = [Po(/\(), ---,)\r) N Ph(/\o, >/\r)]

with Py, ..., P, € Fltg, ..., t].

An isomorphism between two projective varieties is a regular map which ad-
mits an inverse regular map; the two varieties are isomorphic.

Let P € Vi; if f=1(f(P)) has finite cardinality the map is said to be of finite
degree. The cardinality of the “generical” fibre is called degree of the map.

Observe that projections and projective equivalences are regular maps.

Even if all the definitions above make sense for arbitrary fields, it is bet-
ter to assume that F' is algebraically closed. Else let F' the algebraic closure of
F. Consider F'P"; the points in the projective space which admit homogeneous
coordinates belonging to F are called F-rational points. We shall say that a pro-
Jective variety is defined over F' if it is the zero locus of a family of polynomials
in Flto, ..., th)(C Flto, ..., tn)).

Analogous definitions can be given in the affine case.

From now on fields are understood to be algebraically closed (if not otherwise
specified).

An affine variety is called irreducible if it is the zero locus of a prime ideal.
It is not difficult to prove that any affine variety is the union of irreducible ones
80 1t is not restrictive to consider only irreducible varieties (the same definition
can be given in the case of projective varieties but we shall not insist on that). It
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can be proved that two non-empty open sets of an irreducible variety have non-
empty intersection, in fact this property characterizes irreducibility (even in the
projective space).

1.2.4 Definition: Consider an affine irreducible variety V # @ defined by poly-
nomials P, ..., Py € F[tq,...,t4]. Consider the Jacobian matrix

Mij = (aP,-/é?tj)

and let
r:= h — max{rk(M;;(p))}.
peV

It can be proved that the set of smooth points (i-e. those for which the Jacobian
matrix has rank h —r) is open. The value r is called dimension of V. A variety is
sald to be smooth if all its points are. We call curves the varieties of dimension 1
and surfaces those of dimension 2.

By definition we impose the dimension of the empty variety to be —1.

For irreducible projective varieties, dimension can be computed by studying a
non-empty intersection of the variety with the affine spaces covering FP?. This is
an affine irreducible variety and dimension is well-defined because of irreducibility.

1.2.5 Examples: A hypersurface in A" has dimension & — 1 while an r-plane has

dimension r. The projective space FP"* and the affine space A", have dimension
h.

1.2.6 Definition: Let V be a projective variety of dimension 7 and let P a
“generic” (h — r)-plane (i.e. V NP consists of a finite number of points). Then
the number of points, counted with their multiplicity, of VNP is called the degree
of V.

1.2.7 Examples: The projective space and any r-plane have degree 1. A hyper-
surface has degree equal to the minimal degree of a polynomial defining it.

1.2.8 Definitions: A projective variety of dimension 1 in FP2 is called plane
curve. Any plane curve is a hypersurface. A plane curve is called a conic (cubic,
quartic resp.) if it has degree 2 (3, 4 resp.).

In projective spaces of higher dimension a hypersurface of degree 2 is called
quadric.

The analogous definitions hold in the affine space.

1.2.9 Definition: Let V be a smooth plane curve of degree d. The quantity

_ (@-1)(d-2)
g:= 5
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is called arithmetic genus of the curve. A curve of genus 0 (e.g. a line, a smooth
conic) is called rational. A curve of genus 1 (e.g. a smooth cubic) is called elliptic.
It is actually possible to define the genus for every curve. We shall not insist on
that here; we just remark that the genus is defined up to isomorphism.

1.2.10 Remarks: If F = C and CP" is endowed with the standard topology, a
smooth curve is a Riemann surface. In this case, the arithmetic genus and the
topological genus coincide. It can be proved in purely algebraic terms (see [43,
page 88]), that the Riemann-Hurwitz formula holds for the arithmetic genus over
arbitrary fields. This fact allows us to compute the genus of non-plane curves in
many cases, once we consider their projection onto a plane. We state it here

1.2.11 Theorem (Riemann-Hurwitz formula): Let f: V — V' g surjective
reqular map of finite degree d between two smooth projective curves of genera g
and g’ respectively. Then the following equality holds:

(2-29)=d(2-29) - > (d—|f}(P))

Pey!

where | f~*(P)| denotes the cardinality of the fibre f~1(P).

In the case of Riemann surfaces, the result is basely established by computing
the Euler characteristics of both manifolds. For a topological approach see [54,
page 155]. Recall that all 2-dimensional manifolds are triangulable (the result is
due to Rado [39]).

now we give some results concerning the number of points of curves defined
over finite fields.

1.2.12 Theorem (Dickson): Let ayt? + agt? — g, aj #0 7 = 1,2, be the poly-
nomaial associated to an affine conic def /ined over Fy, ¢ odd. Then the number
of Fy-rational points on the conic is:

G #0 q—1o0rqg+1 according as —aias is a square or a non-square in Fg;
8=0 29 —1 or 1 according as —ajas is a square or a non-square in F,.
Proof:

Since ay # 0 the equation a1t? + ayt? — 8 = 0 is equivalent to o?t? — (—ayan)td =
a18. Now if —ajap = 6%, § € F, we can write

’L) (altl - (5t2)(C¥1t1 + (Stz) =q10
else —ajop = (16)? and we can write

ZZ) ((Xltl - L5tz)(a1t1 + L(Stz) = (041?51 — L5t2)q+1 — alﬁ
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since 19 = —,.

In case i) if 8 = 0 the solutions are found imposing that at least one of the
two factors is 0. For a fixed o € Fq one finds two values ¢; satisfying the equation
except for the case ¢, = 0 = ¢;. So there are 2¢ — 1 possible couples (¢1,t3).

If B # 0 the equation is equivalent to the system

a1t1—5t2:7 EIF;
_ -1
aaty + 0ty = a1 By~

Summing and subtracting one can express ¢; and 2 and see that they depend on
the parameter v € Fy, so there are ¢ — 1 couples (t1,t2) on the conic.

In case ii) if § = 0 we must have a;t; — L0ty = 0 and for 4,5 to belong to F,
the only possibility is t; = t, = 0. If B # 0 instead, exploiting the fact that the
multiplicative group of the field is cyclic (Theorem 1.1.3) and a8 € F, we can
find exactly ¢ + 1 elements v of F g2 Whose (g 4 1)-power is a; 8. We again have
to solve a system

a1ty — L(stg =7
a1ty + 10ty = a1 5v9

and it is easy to see that the solutions (¢, t2) are in F, (e.g. check that they are
fixed by the Frobenius involution).

Remark that when ¢ is even the equation is equivalent to a linear one because
of the Frobenius automorphism.

1.2.13 Theorem (Hasse-Weil bound): Let N be the number of Fg-rational
pownts of a projective curve of genus g defined over F,. Then the following in-
equality holds:

IN = (g +1)| < 29¢"%.

The proof of the above result can be found in [44, page 170], while the following
Theorem is proved in [28].

1.2.14 Theorem (Lang-Weil): Let N be the number of Fy-rational points of
a projective variety of dimension r and degree d contained in F;IP”‘ defined over
Fy. Then there ezists a constant A depending only on h, d and r (but not on the
variety) such that the following estimate holds:

N =7 < (d~1)(d - 2)g""2 + A

Note that for h = 2 and » = 1 we obtain the previous result with A = 1.
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1.3. Review on linear fractional groups

We collect some definitions and properties of general linear groups and pro-
Jective linear groups. We omit proofs which can be found in [45], mainly paragraph
3.6, or in [13].

1.3.1 Definitions: Let R be a ring (commutative, with unity) and M(h, R) the
unitary ring of A x h matrices with entries in R (actually it can be also considered as
an algebra over R). The multiplicative subgroup of invertible elements in M(h, R)
is called general linear group of degree h over R and denoted by GL(h, R). Observe
that we have a surjective homomorphism of multiplicative semigroups given by the
determinant:

det : M(h,R) — R

and GL(h,R) = det™(R*), where R* is the multiplicative subgroup of R (re-
mark that GL(h, R) = (M(h, R))*). We shall call special linear group the group
SL(h, R) :=Ker(det).

If R = Fy is a finite field, we shall write GL(h,q) and SL(h,q) instead of
GL(h,F;) and SL(h,TF,) respectively.

The group R* can be identified with the central subgroup of GL(h, R) con-
sisting of diagonal elements of the form ol where I denotes the unity of the ring
M(h, R) and o € R*. The quotient PGL(h, R) := GL(h,R)/R* is called projec-
tive general linear group. The image of the subgroup SL(h, R) in this quotient is
denoted by PSL(h, R) and called projective special linear group. Remark that in
some cases we have that PSL(h, R) = PGL(h, R), for instance when R = C is the
field of complex numbers or if R = Fpm and h = p (this is due to the existence of
h-roots of elements of R*).

Notice that if R = F' is a field, the group PGL(h, F) acts on the projective
space FP"~! (see paragraph 1.2). If h = 2 these groups are also called linear
fractional groups.

1.3.2 Theorem: Let R =F,. The groups PSL(h,q) are simple for all choices of
(h,q) ezcept (2,2),(2,3),(3,2).

1.3.3 Examples: In the following we shall consider some remarkable projective
linear groups and some of their properties.

i) The group of automorphisms of the complex projective line is PSL(2,C) =
PGL(2,C). It can also be identified with the group of biholomorphisms of the
2-sphere S? to itself and with the group of orientation-preserving isometries
of the hyperbolic space H3.

ii) The group of automorphisms of the real projective line is PGL(2,R) and it
can be identified with the group of isometries of the hyperbolic plane H2. It

14



is in a natural way a subgroup of PGL(2,C) since the real numbers are a
subfield of the complex numbers. The subgroup of the orientation-preserving
isometries of the hyperbolic plane is PSL(2,R).

iii) The modular group PSL(2,Z) is in a natural way a subgroup of the previous
three. It is isomorphic to the free product Z , * Z 3. This means that a group
is (2, 3)-generated (i.e. there exists two elements in the group of orders 2 and
3 respectively which generate the whole group) if and only if it is a quotient
of the modular group. We shall call PGL(2, Z) estended modular group; it is
again a subgroup of the groups described in i) and ii).

Notice that, since the real and complex numbers are endowed in a natural way

with a topology, so are all the projective linear groups defined on them. In this

topology the modular and extended modular groups are discrete subgroups (indeed
the integers are a discrete subset of the real line and of the complex plane).

iv) The Bianchi groups and eztended Bianchi groups (see e.g. [15]) generalize
the modular and extended modular groups and constitute an important class
of discrete subgroups of PSL(2,C). They are of the form PSL(2,0,) resp.
PGL(2,04). Among them we mention the Picard group PSL(2,0).

Assume that g is such that the ring homomorphisms ¢; defined in the previous

paragraph satisfy ¢;(O4) C F,. In this case they induce group homomorphisms

@j : PSL(2,04)(PGL(2,0g)) — PSL(2,q)(PGL(2,q))

by applying ¢; to the entries of the matrices which represent the elements of
PSL(2,04) (PGL(2,0,)). We shall say that the two homomorphisms are ob-
tained by reduction of coefficients mod p.

v) Some groups of type PSL(2,q) and PGL(2,q) are isomorphic to spherical
groups (i.e. groups of isometries of S?%) or alternating groups. We recall that
the spherical groups are cyclic or dihedral of any finite order or the groups of
symmetries of the five platonic solids: tetrahedron, cube, octahedron, dodec-
ahedron, icosahedron. We have
PSL(2,2) = D3 the dihedral group of order 6,

PSL(2,3) = A, the tetrahedral group or alternating group on four elements.
PGL(2,3) = S, the octahedral group or symmetric group on four elements,
PSL(2,2%) = PSL(2,5) = As the dodecahedral group or alternating group
on five elements,

PSL(2,3%) = Ag the alternating group on six elements.

From now on we shall assume A = 2 and R = F,. For these groups see also
[17] and [18].

1.3.4 Theorem: The order of PSL(2,q) is q(q? — 1)/2 if q is odd and q(q® — 1)
if g is even. If q is odd the projective special linear group is a subgroup of index 2
in the projective general linear group; else they coincide.
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1.3.5 Definition: The unitary group is
U(2aq) = {<~Cll)q abQ) I a,be ]Fq2> a?t1 + patl € F;}

and its subgroup

sue,g) = {( S, o) €U0 0T 4 i -1y

is the special unitary group. The quotients of these two groups by their centres are
the groups PU(2,q) resp. PSU(2, q) and are called projective unitary group and
projective special unitary group.

1.3.6 Theorem: The groups SL(2,q) (PGL(2,q)) and SU(2,q) (resp. PU(2, q))
are isomorphic.

Notice that PSL(2,q) and PSU(2, q) are subgroups of PSL(2, q%). Because
every element of F, is a square in Fg2 also PGL(2,q) and PU(2,q) can be consid-
ered as subgroups of PSL(2,¢?), by normalizing determinants to one (note how-
ever that after normalization the elements in PU (2,9) — PSU(2,q) are no longer
in unitary form). Moreover the two pairs of isomorphic groups are conjugate in
PSL(2,q¢%).

Since SL(2,q) is a matrix group, we can consider the trace of an element of
SL(2,q) which is an element of Fq. Elements of PSL(2,q) are just elements of
SL(2,q) up to sign (indeed if ¢ is even, we have PSL(2,q) = SL(2,q)). Thus we
can associate to each element of PSL(2,q) an element of Fy, well-defined up to
sign, which is the trace of one of the matrices representing our element; we shall
call such number again trace. There exists an element of order k in PSL(2,q) if
and only if k£ divides either (g — 1)/2 (resp. ¢ — 1) or (¢ +1)/2 (resp. ¢+ 1), or
if k = p (where ¢ = p™) if ¢ is odd (resp. even); in this last case the element is
parabolic, that is, has trace +2. Two non-parabolic elements are conjugate if and
only if they have the same trace. For all integers k > 2 there exists a polynomial
Py € Z[t] with the following property (see [49]):

Consider an element of PSL(2,q) of order k > 2. Then its trace is a root of the
polynomial Py, € Fy[t] which is the image of P in the canonical unitary ring
homomorphism Z[t] — F, [¢] (this is an easy consequence of the Cayley-Hamilton
theorem, see [26]). Viceversa if there exists a root to of Py 4 in F, then the image
in PSL(2,q) of the matrix
to 1
(5 0)

has order a divisor of k. In particular if k is a prime number and a root of the
polynomial exists, then elements of order k exist in PSL(2,q).
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1.3.7 Examples: We give some examples of polynomials P(t).

Pz(t) -

P(t)=t*-1

Py(t) =t* -2

Ps(t)= (2 +t—-1)(t2 =t —1)
Ps(t) =t2 -3

P,(t) =t — 4.

Since PGL(2,q) C PSL(2,¢?), it will make sense to talk of traces, parabolic
elements and so on also for elements of PGL(2,q) and PU(2,q); observe that the
trace of an element in PGL(2,¢) — PSL(2,q) is an element in tFy. The orders of
non-parabolic elements in PGL(2,¢) divide either ¢ — 1 or ¢ + 1. Non-parabolic
elements of PSL(2,q), ¢ odd, (resp. g even or PGL(2,q)) are conjugate to diagonal
matrices if their orders divide (¢ — 1)/2 (resp. g — 1) -hyperbolic elements; they
are conjugate to diagonal matrices in PSU(2,q) = PSL(2,q), ¢ odd, (resp. g even
or PU(2,q) & PGL(2,q)) if their order divides (¢ + 1)/2 (resp. g+ 1) -elliptic
elements.

1.3.8 Theorem (classification of subgroups of PSL(2,q)):
A group 1is contained in PSL(2,q) if it is a subgroup of one of the following
groups:

1) dihedral of order g+ 1 (resp. 2(q+1)) if ¢ is odd (resp. even);

ii) a group H such that 1 — (Z,)™ — H — Z,, —> 1 where ¢ = p™ and
n=(q—1)/2 if ¢ is odd orn = q—1 if q is even;

i) A4 if g # 22+ and it is a mazimal subgroup whenever q is a prime number.
g >3 and q=3,13,27,37 (mod 40);

iv) 84 if ¢ = +1 (mod 8) and it is a mazimal subgroup whenever q is a prime
number;

v) As if ¢(¢®> —1) =0 (mod 5) and it is mazimal whenever ¢ = 4™ 5™ and m, is
a prime, ¢ = £1 (mod 5) is a prime number or ¢ = —1 (mod 5) is a square
of an odd prime number;

vi) PSL(2,q') if q is a power of ¢’ and it is mazimal if ¢ = (@)™ with m an odd
prime number;
vil) PGL(2,4¢") if q is an even power of ¢ and it is mazimal if g = (q')?.
In particular PSL(2,q) does not have subgroups of index lesser than g-+1
unless ¢ = 2,3,5,7,3% 11.

The subgroups in ii) are called af fine (as well as the cyclic subgroups); those
in vi) and vii) are called projective and the remaining exceptional.

1.3.9 Theorem (Macbeath): The groups PSL(2,q) are (2,3)-generated or,
equivalently, quotients of the modular group, for all ¢ # 32.
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1.3.10 Theorem (Dickson): Let g #2™.3% and let € € Fq be a generator of F,
over By (q=p™). Then the group PSL(2,q) is generated by the matrices

(01) = (% 1)-

For the last two results see [39] and [13] respectively.

1.4. Coxeter, triangle and tetrahedral groups

In this paragraph we shall give the basic definitions concerning some impor-
tant classes of groups, i.e. Coxeter, triangle and tetrahedral groups. Again we
refer to [45], paragraph 3.4. Some results on triangle groups can be found in [6]
(see also [54]).

1.4.1 Definition: Let C be a group admitting a system of generators {z;}jes C
C of order 2 (i.e. ({z;}jes) = C and a:f = 1). Let m;; be the order of the element
z;x; if the order is finite, so that ™;j 18 a positive integer, or m;; = 0if the order of
i%; is infinite. Consider the set {(z;z;)™} for all 4, j. If it is a complete system
of relations for the group C, then we shall say that C'is a Cozeter group. Notice
that m;; = my;. If J is a finite set, we can store all the information concerning a
Coxeter group in a symmetric matrix M such that M — (mij) (note that my; =1
for TiT; = 1)

1.4.2 Example: The Coxeter groups with two generators are the dihedral groups
if miz # 0; all dihedral groups arise in this way. If mis = 0, the group is the free
product of two copies of the cyclic group of order 2.

Geometrically, examples of Coxeter groups are given by the groups of reflec-
tions in the sides (resp. faces) of a polygon (resp. polyhedron) with (dihedral)
angles of width m/n, for some integer n > 2. Indeed a presentation for these
groups can be given using Poincaré’s theorem for fundamental polygons (resp.
polyhedra) (see [32]), thus proving that these groups are Coxeter groups. Polygons
(resp. polyhedra) with (dihedral) angles of this kind are called Cozeter polygons
(resp. Cozeter polyhedra). Their subgroups of index 2 consisting of all orientation-
preserving isometries are called polygonal (resp. polyhedral) groups. In particular,
if the polygon (resp. polyhedron) is a triangle (resp. tetrahedron) we shall call the
subgroup of orientation-preserving isometries triangle (resp. tetrahedral) group. A
presentation for these subgroups can be given using the Reidemeister-Schreier’s
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subgroup method (see [54]). Remark that the polygons (polyhedra) (resp. two
copies of them) are fundamental domains for the associated Coxeter groups (resp.
their subgroups of orientation-preserving isometries).

It is well-known that, given a triplet (m,n, k) of integers & > n > m > 2, there
exists a triangle with angles (w/m, «/n,7/k) in the 2-sphere, Euclidean plane or
hyperbolic plane exactly when 1/m + 1/n + 1 /kis > 1, =1 or < 1 respectively.
This means that we can always realize a Coxeter group with three generators and
three relations, all of finite orders, as a group of isometries (in the appropriate
space). In this case we shall call the Coxeter group eztended triangle group and
denote it by [m,n, k]. A (extended) triangle group is called spherical, Euclidean or
hyperbolic according as it acts as a group of isometries of the 2-sphere, Euclidean
plane or hyperbolic plane respectively. The triangle group associated to [m,n, k]
will be denoted by (m,n, k).

1.4.3 Examples: Extended triangle groups and triangle groups have the following

presentations:

[m,m, k] = (21, 22, 23 | {23}j=1,2,3, (©122)™, (2123)", (z223)F)

(m7 mn, k) = (Z? = $1$27y-—1 = I17%3 I :Em: yna (xy)k> .

Some triangle groups of special type are
i) the dihedral groups:
D, = (2,2, n);

ii) the groups of symmetries of the platonic solids:

A4 - (2a3> 3)’
S4 = (2)374)>
A5 = (2,3,5)

Notice that the above are exactly the groups associated to all possible spher-
ical triangles.

The Coxeter groups of reflections in the faces of a tetrahedron have four
generators. All information concerning them can be summarized in the following
way. Draw a tetrahedron and mark its faces with the numbers 1,2,3,4, then mark
the edge common to the faces ¢ and j € {1,2, 3, 4}, # j, with the integer My > 2
if the associated dihedral angle has width 7 /mij. The associated Coxeter group
has presentation

(01,22, 23,24 [ {25} o0, 00 {(325) ™ Figg)
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(z; denotes the reflection in the face i) while its tetrahedral subgroup has presen-
tation

(=i = zizjbins | {237 }ij=1,....4) -

m

(m,, m,, m, 13 (m,;,m,,, m,,)
m,, 3
m,, | m,,
m,, 2
4
(m,, m, m,,) m, (m,, m;, m,,)
4
Figure 1

Notice that the labels of the edges are the orders of the rotations along the
edges themselves (i.e. the orders of the cyclic groups stabilizing the edges), which
generate the tetrahedral group. We can label each vertex with the triangle group
generated by the rotations along its three incoming edges (see Figure 1). We shall
call a vertex spherical, Euclidean or hyperbolic if such is the triangle group attached
to it. Observe that the 1-skeleton of the tetrahedron plus the labels is a graph of
groups, thus we shall call vertez-groups (resp. edge-groups) the groups attached to
vertices (resp. edges) of the graph.

Observe that the extended triangle groups are a particular class of Coxeter
groups generated by the reflections in the faces of certain tetrahedra. With the
notation of Figure 1, we have that the extended triangle group [m,n, k] is the
tetrahedral group associated to the Coxeter tetrahedron with edges labeled by
Mi2 =M13=M14 =2, Ma3 =m, Mag =n and mg4 = k.

We are interested in particular in tetrahedra that can be realized in hyperbolic
space (see [47]). It turns out that only nine Coxeter tetrahedra can be realized
as bounded tetrahedra in H3. Such tetrahedra are called Lannér tetrahedra and
all their vertices are spherical. There are then 23 tetrahedra whose vertices either
belong to H? or to the sphere at infinity (they have at least one vertex of this
kind). We shall call these cusped tetrahedra. They have finite volume and their
ideal vertices are Buclidean (for a list, see [35] or [47]). The remaining hyperbolic
Coxeter tetrahedra have infinite volume since some of their vertices (the hyperbolic
ones) are beyond the sphere at infinity. We shall call these unbounded.
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1.4.4 Examples:
i) The extended Picard group is a hyperbolic cusped tetrahedral group.
ii) Other hyperbolic cusped tetrahedral groups are: PGL(2, Z[w]), PSL(2, Zlw)).
iii) The Picard group is the polyhedral group of the Coxeter group generated by
the reflexions in the faces of a hyperbolic quadrangular pyramid.

It is possible to describe Coxeter (tetrahedral) groups by means of Cozeter
diagrams but we will not make use of them in this work.

1.5. Hyperbolic geometry, orbifolds and volumes

In this paragraph we shall recall some basic definitions concerning hyperbolic
geometry. The main references here are [7] and [47]. For group actions one can
see also [6].

We recall that by a hyperbolic h-manifold we mean a h-dimensional Rieman-
nian manifold of constant negative curvature —1. In the following we shall always
assume manifolds to be orientable. The notion of orbifold generalizes that of man-
ifold: an orbifold is a space locally modelled on R* modulo some finite-group
action. We say that a group G acts on a topological space M if there is a group
homomorphism mapping G to the group of homeomorphisms of M. We shall only
consider faithful actions, i.e. the homomorphism mapping the group is injective.

1.5.1 Definition: We shall call hyperbolic G-manifold of dimension h an ori-
entable complete hyperbolic h-manifold on which a finite group G acts effectively
(i.e. faithfully) by orientation-preserving isometries.

A group is discrete if its image has discrete subspace topology. The stabilizer
of a point is the subgroup of G which leaves the point fixed. A group acts freely
if the stabilizer of any point is trivial. A group acts transitively if for any pair of
points there exists an element of G mapping the first point to the second. The
set of the images of a point by all elements of G is called orbit of that point. The
stabilizers of two points in the same orbit are conjugate; in particular, if the action
1s transitive, there exists exactly one orbit and the stabilizers of any two points of
the space are conjugate. A group acts discontinuously if for any point there exists
a neighbourhood which intersects only finitely many of its images (or translates)
by elements of G; in particular: if a group acts discontinuously the stabilizers of
any point must be finite, a finite group acts discontinuously. The guotient of a
topological space under a group action is the space consisting of all orbits of G
with the quotient topology induced by the natural projection mapping a point to
its orbit. It is very easy to see that the orbits form an equivalence relation.
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1.5.2 Definition: A hyperbolic orientable h-orbifold Or is the quotient of H” by
the discontinuous action of a discrete group of orientation-preserving isometries
I of the hyperbolic h-space. The singular set of an orbifold is the set of points
which are images in Or of points of the hyperbolic space fixed by some non-trivial
element of I'. We shall say that a singular point (i.e. a point belonging to the
singular set) P € Or is of type I'p if I'p is (up to conjugation) the stabilizer in T’
of a preimage in H* of P. If I'p = Z,, we shall say that P has order n. We shall
say that I' uniformizes Or or that T is the group of deck transformations of Or
acting on its universal covering H”. Extending the usual concept of covering, we
shall call I' orbifold fundamental group of Or and denote it by 9" (Or) or simply
by 71(Or); moreover for all subgroups IV C I' the quotient space " /T will be
called orbifold covering of Or associated to I'V. Notice that outside the singular
set an orbifold covering is a covering.

We shall say that a group uniformizing an orbifold is cocompact, of finite
covolume, etc. if the associated orbifold is compact, of finite volume, etc..

1.5.3 Remarks: In a similar fashion one defines spherical and Euclidean orbifolds.
Indeed a more general definition of the notion of orbifold can be given (see [47]).
Notice that we are considering only good orbifolds.

Notice that according to a theorem by HopfKilling (see [53, pag 69]) any
hyperbolic manifold is in particular an orbifold. The theorem states that any
hyperbolic h-manifold is the quotient of H" by the free and discontinuous action
of a discrete group of isometries of H”. Trivially the singular set of an orbifold
which is also a manifold is empty. Viceversa an orbifold is a manifold whenever it
is uniformized by a group acting freely.

Recall that for h = 3 a group acts discontinuously if and only if it is discrete
(see [6]). As a consequence of this fact, the group of isometries of a hyperbolic
3-manifold (orbifold) closed or with totally geodesic boundary is finite.

Naively an orbifold is a topological manifold endowed with a metric which
becomes singular at certain points. Thus an orbifold is determined by a topolog-
ical space plus a subspace (the singular set) whose points are labeled by groups
describing the type of singularity. In some sense the orbifolds are analogous to
branched coverings in algebraic geometry. For this reason in some cases we shall
also say that an orbifold covering is a branched covering.

Observe that the orbifold fundamental group and the fundamental group of
the underlying topological space are different in general (unless the orbifold is a
manifold). Consider, for instance, the group of rotations of order n about a point
in the hyperbolic plane. The associated orbifold is a cone, 1.e. topologically it is
simply a disk. Its orbifold fundamental group is Z,, while the fundamental group
of the underlying space is trivial. For a hyperbolic orbifold one can prove that
71 (Or)/(Tor(n™ (Or))) = 71 (Or) where the quotient is over the normal closure
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of the torsion elements in the group (compare [23]; in the hyperbolic case only
elliptic elements have finite order and fixed points -see [6]).

Assume from now on that h = 3. In this case, the singular set of an orbifold
is an embedded graph of groups whose edges are always labeled with finite cyclic
groups. The orbifold fundamental group can be recovered by applying either the
orbifold version of the Seifert-Van Kampen theorem (see [23]) or, if the orbifold is
topologically S*, the Wirtinger’s method for knots to the complement of the graph
(see [40], [58, page 202]). Considering orbifold coverings of S3 is not restrictive, in
a certain sense, as the following result shows (see [4]):

1.5.4 Theorem (Alexander): Every 3-manifold is a branched covering of S3.

The orbifolds which are uniformized by a hyperbolic (cusped, Lannér, etc.)
tetrahedral group (see section 1.4) are called hyperbolic (cusped, Lannér, etc.)
tetrahedral orbifolds. Topologically they are S® minus a finite number of points
(corresponding to the ideal and hyperbolic vertices) with singular set a graph which
is the 1-skeleton of the tetrahedron without the ideal and hyperbolic vertices. More
precisely, the graph is the image of the 1-skeleton of the Coxeter tetrahedron whose
double is a fundamental domain for the tetrahedral group. The interior points of an
edge have exactly the order of the rotation along that edge. Indeed such rotation
stabilizes the edge. The vertices are instead of type (m,n, k) if the three incoming
edges have orders m,n, k (compare also the previous paragraph). When we are
not considering Lannér tetrahedra, we can truncate the hyperbolic space along
horospheres centred at the ideal vertices and along hyperbolic planes orthogonal
to the three faces meeting at the hyperbolic vertices of our Coxeter tetrahedron.
We thus construct a (convex) subspace of H® which is invariant for the action of
the corresponding tetrahedral group. The quotient of this subspace by the action
of the tetrahedral group is a compact orbifold with non-empty boundary. The
boundary consists of Euclidean (in the case of ideal vertices) or totally geodesic
hyperbolic triangular 2-orbifolds (i.e. 2-spheres with three branch points).

For tetrahedral orbifolds the orbifold fundamental group is given by the graph
amalgamation or polygonal product over the graph of groups associated to the
singular set (see [9], [52]), that is the iterated free-product of the vertex groups
amalgamated over the edge groups. Notice that this is the quotient of the fun-
damental group of the graph of groups obtained by setting the HNN-generators
equal to 1.

1.5.5 Definition: A group homomorphism defined from a graph amalgamation
product to a finite group will be called admissible if it preserves the orders of
torsion elements in the vertex groups. In particular, if the graph amalgamation
product has infinite order an admissible homomorphism has torsion-free kernel
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and if has a finite vertex-group then the homomorphism restricted to such vertex-
group is injective.

We want to recall some basic results concerning hyperbolic volumes. As a
consequence of Mostow’s rigidity theorem (see [7]) which states that two hyper-
bolic closed manifolds of dimension & > 3 are isometric if and only if they are
homotopically equivalent (in particular if and only if they are homeomorphic), the
hyperbolic volume of a manifold is a topological invariant and so plays an impor-
tant role in hyperbolic geometry (in dimension 2 this follows from Gauss-Bonnet
theorem -see again [7]). We state here some important results holding in dimension
3.

1.5.6 Theorem (Jgrgsen-Thurston): The volumes of complete orientable hy-
perbolic 3-orbifolds form a closed non-discrete subset of the real line. The set is
well-ordered (of ordinal type w*” ). There are only finitely many orbifolds of a given
volume.

Remark that the number of orbifolds having the same volume can be arbitrary
large.

1.5.7 Theorem (Meyerhoff): Aill complete orientable hyperbolic 3-orbifolds
have volume at least 0.0000013. All cusped complete orientable hyperbolic 3-
orbifolds have volume at least 0.07217.

For these two results see [47] and [35] respectively.

The Thurston-Jorgsen theorem implies that there must exist an orbifold of
minimal volume and that if we consider the class of orbifolds satisfying certain
given properties, there must be an orbifold of minimal volume belonging to the
class.

1.5.8 Examples: The manifold of smallest volume (= 0.94) was constructed by
Weeks (see [51]) and by Matveev and Fomenko (see [33]). Manifolds of second
and third known smallest volumes were constructed by Thurston (see [47]) and
Meyerhoff and Neumann (see [36)).

Among all hyperbolic 3-manifolds with totally geodesic boundary there are six
of minimal volume (see [26]). They are quotients of a double triangular pyramid
(the suspension of a triangle) whose vertices (which are hyperbolic) are truncated
along planes orthogonal to the faces. One of these manifolds was investigated by
Thurston in [47].

The non-compact manifold of minimal volume is the figure-eight knot com-
plement (see [1]).

We stress that the closed orbifold of minimal volume is not known yet. Lannér
tetrahedral orbifolds have actually volumes among the smallest known. Indeed the
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smallest known orbifold volume is attained by an orbifold which is double covered
by a Lannér tetrahedral orbifold (see [35], a list can be found also in [47]). Recall
that in dimension 2 the orbifold of minimal volume is uniformized by the triangle
group (2,3,7). |

Among cusped orbifolds, the smallest volume is attained by the orbifold uni-
formized by the group PGL(2,Z[w]) (see [34]) which is a tetrahedral group (see
Examples 1.3.3 iv) and 1.4.4 ii)). The second and third smallest volumes of cusped
orbifolds are again attained by tetrahedral cusped orbifolds (see [3], [38]).

The Picard group (see Examples 1.3.3 iv) and 1.4.4 iii)) uniformizes the limit
orbifold of minimal volume (i.e. its volume is a limit of other volumes of orbifolds
-see [2]).

1.6. Heegaard splittings and Dehn surgery

In this paragraph we shall consider some facts concerning low-dimensional
topology. We refer to [38] (for Heegaard splittings and Dehn surgery) and [42] (for
triangulations and handles).

1.6.1 Definition: Let M be a h-manifold with non-empty boundary. A h-ball
B" x B"" such that 8B" x B~ is glued homeomorphically into M will be called
an r-handle of dimension h. The subspace 9B x B"~" is called the attaching
sphere while the subspace B™ x B"~" is called the belt sphere.

It is a standard fact that, attaching to a manifold an r-handle and an (r+1)-
handle in such a way that the belt sphere of the former intersects transversally in
exactly one point the attaching sphere of the latter, the manifold does not change.
In this case the handles are said to be complementary and they cancel.

From now on let h = 3.

1.6.2 Definition: An handlebody of dimension 3 and genus g 1s a 3-ball with
g 1-handles attached. Notice that g is the genus of the boundary (an orientable
surface) and that a handlebody of genus g is the connected sum of g solid tori.
A handlebody of genus g can also be seen as the product of a 2-disk with g holes
times a closed interval.

1.6.3 Definition: For all integers k > 2 let
Gk == Dk *Z (2, 3, k)

We shall call G-group any finite admissible (see Definition 1.5.5) quotient of the
group Gy, defined above.
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Notice that the group Gg is the extended modular group PGL(2,7Z) (see
Example 1.3.3 iii)).

We recall the well-known theorem by Hurwitz (1893) (see e.g. [54]) which
gives a bound on the order of a group acting orientation-preservingly on a closed
Riemann surface of genus g > 1. Any such group must have order not larger than
84(g — 1). In analogy in [55] the following result was proved

1.6.4 Theorem (Zimmermann): If the finite group G acts orientation-preserv-
ingly on a handlebody of genus g > 1, then |G| < 12(g — 1). If equality holds, then
G 1s a surjective image with torsion-free kernel of the group Gyg, k = 2,3,4,5,
moreover any such quotient give rise to an action of mazimal order.

In other words, a group G of order 12(g — 1) acts orientation-preservingly on
a handlebody of genus g > 1 if and only if it is a Gg-group (k=2,3,4,5). These
groups are also called handlebody groups (see also [57]).

Remark that the Ga-groups are also the finite symmetry groups of maximal
possible order (i.e. 12(g—1)) of compact bounded (non-closed) surfaces of algebraic
genus g > 1 (compare Definition 1.6.1; given an action on a 2-disk with g holes
we recover the action on the handlebody by letting the action be trivial on the
interval).

1.6.5 Definition: Assume that a 3-manifold M can be decomposed into two
handlebodies of genus ¢ identified along their boundaries. Such a decomposition is
called Heegaard splitting (or decomposition or diagram) of genus g for the manifold

M. The genus of M is the minimal genus of all possible Heegaard splittings for
M.

1.6.6 Remarks: The only 3-manifold of genus 0 is S3.

Every triangulable 3-manifold admits a Heegaaard splitting where one of the
two handlebodies is given by a tubular neighbourhood of the 1-skeleton of a tri-
angulation. According to a theorem of Moise-Bing (see [37]) every 3-manifold is
triangulable and hence every 3-manifold admits a Heegaard splitting.

Heegaard diagrams can be represented by the curves on one of the two han-
dlebodies along which the meridians of the other are glued.

One can extend the definition of Heegaard splitting to the orbifold case. Topo-
logically nothing changes but in this case the handlebodies are endowed with some
singular set.

As in [57] we give the following

1.6.7 Definition: Let G be a finite group acting on a closed 3-manifold M. M
is called G'-manifold of genus g if g is the minimal genus of a Heegaard splitting
for M which is left invariant under the G action.
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If g >1and |G| =12(g — 1) (i.e. G has maximal possible order) we say that
the G-manifold and the G-action are mazimally symmetric (see [57] and [58]).

1.6.8 Definition: Let M be a 3-manifold perhaps with non-empty boundary. Let
L = U;L; a (finite) link in the interior of M. Let Uj’s be disjoint tubular neigh-
bourhoods of the L;’s (i.e. U; is homeomorphic to the product of the component
Lj of the link times an open 2-ball). Let C; a simple closed curve in 9U;. Remove
from M the tubular neighbourhoods U; and glue them back in such a way that a
meridian of Uj is identified with C;. The resulting manifold is said to be obtained
by Dehn surgery on M along L. It can be proved that the resulting manifold
does not depend on the particular identification chosen. Moreover if we substitute
the curves C; with other curves in the same homology class (in H 1(0U;; Z2)) the
resulting manifold does not change.

The following is a fundamental result of 3-dimensional topology (see [29] and
[50]).

1.6.9 Theorem (Lickorish-Wallace): Any closed 3-manifold can be obtained by
Dehn surgery on S3.

We thus see that it is not restrictive to assume M = S2. Recall that the
homology H;(0Uj;Z) is a free Z-module of rank 2 with basis given by a preferred
frame, i.e. alongitude (a curve which is null-homologous in the solid torus M — U;)
and a meridian (a curve which is null-homologous in the solid torus Uj). Any curve
C; is then determined by a pair of coprime integers, i.e. its coefficients in terms
of the preferred frame. These pair of integers are called surgery coef ficients.

Let us now go back to hyperbolic geometry. If we consider a cusped hyperbolic
3-manifold (with finite volume) we can truncate the cusps obtaining a manifold
with boundary consisting of tori. Along these tori it is possible to perform Dehn
surgery. In this setting we have the following result (see [47])

1.6.10 Theorem (Thurston’s hyperbolic Dehn surgery): Let M be a cusped
hyperbolic 3-manifold with finite volume. For almost all surgery coef ficients the
manifold obtained by Dehn surgery along the truncation of M is hyperbolic with
volume not greater than the volume of M.

The theory can be extended to the orbifold case (see [14]) but we will not give
details here.
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2. TETRAHEDRAL CASE

In this chapter we classify admissible quotients of type PSL(2,q) and of type
PGL(2,q) of some hyperbolic tetrahedral groups. In paragraph 2.1 working with
matrices we obtain necessary and sufficient conditions for three classes of tetra-
hedral groups to have an admissible homomorphism with image in PSL(2,q) or
PGL(2,q). This result is applied in the remaining paragraphs to obtain the com-
plete classification of quotients of linear fractional type for some groups belonging
to the classes considered in 2.1.

2.1. Technical results

Dk k (2,3,k)
2 3 =
2 2
D, n (2,3,n)
Figure 2

In this paragraph we shall discuss some technical results giving necessary
and sufficient conditions for the existence of an admissible homomorphism (see
Definition 1.5.5) from three classes of tetrahedral groups (see paragraph 1.4) to
the linear fractional groups PSL(2, q) and PGL(2,q) (see paragraph 1.3). We also
give necessary and sufficient conditions for another class of tetrahedral groups to
be mapped admissibly to the groups P9 L(2,q). The first two classes of tetrahedral
groups depend on two integer parameters k and n. We shall denote these classes
by Tk, and Tk,n. In Figures 2 and 3 the singular sets of the tetrahedral orbifolds
associated to the two classes are drawn; a set of generators for the groups is also
pictured. Notice that the Figures represent also the Coxeter tetrahedra whose
doubles are fundamental polyhedra for the associated tetrahedral groups (see again
paragraph 1.4).
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(2,3.K) k (2,3,k)

I N
A4
=

230  n (2,3,n)
Figure 3

The two classes of groups have the following presentations in terms of the
given generators:

Tim = (z,y,2 | 32,5°% 22, (z9)F, (zy2)?, (23)")

Tim = (2,2 | 2%,9%, 2, (z9)F, (zy2)?, (22)™) .

In particular, they are quotients of the free-products with amalgamation of their
upper vertex-groups. The vertex groups are the following triangle groups:

(2,3.k) = (z,y | %, 0%, (zp)")
right-upper vertex-group
Dy = (z,w | 2%, w?, (zw)")

(2,3,k) = (z,w | 2°,w?, (zw)*)

left-upper vertex-groups. We have
Ty = (Dg *z, (2,3,K))/Z ,,

fk:,n - ((27 3; k) *7 (27 3) k))/ZTL

where Z = (zy) = ((zw)~?!) and Z,, = (zz).

Observe that, for a symmetry matter, Tx , = T), 1, and Tk,n >~ fnk

Remark that Ty, = Gg/Z, (see Definition 1.6.2). This implies that the
tetrahedral orbifolds associated to the tetrahedral groups Ty, are those which
admit a Heegaard splitting along a 2-orbifold which is a 2-sphere with four branch
points of orders 2, 2,2 and 3. This is the minimal possibility for Heegaard splittings
of 3-orbifolds which is not too special (i.e. along hyperbolic Heegaard 2-orbifolds).
see [56] and paragraph 1.6.

29



We have thus seen that the groups Tnx are Gg-groups (and G,,-groups as
well). In particular for £ = 2 these groups are quotients of the extended modular
group (see Example 1.3.3 iii)) and it is not difficult to see that T n = [2,3,n]
(compare paragraph 1.4).

Among the tetrahedra associated to these groups there are two Lannér tetra-
hedra (associated to Ty 5 and Ts5) and four cusped hyperbolic tetrahedra (asso-
ciated to T 6 with k = 3,4,5,6). For all larger values of k, n the associated tetra-
hedra are unbounded hyperbolic, while for smaller values they belong to other
geometries. The tetrahedron associated to T45 has minimal volume among the
Lannér tetrahedra (see [35]), and finite admissible quotients of the tetrahedral
groups Ty s and T5 5 have been investigated in [20]. As we have already pointed
out in Examples 1.5.8, the tetrahedral orbifold associated to T3 6 is the unique
cusped hyperbolic 3-orbifold of minimal volume ([34]).

All but one of the remaining Lanner tetrahedra are associated to groups in
the second class; more precisely to T4 n with n = 3,4 and T5 n withn =2,34,5
The tetrahedral orbifold associated to T5 2 is the double covering of the hyperbohc
3-orbifold of minimal known volume (see again [35]).

To study the admissible homomorphisms from these tetrahedral groups to the
groups of linear fractional type we give necessary and sufficient conditions to the
existence of matrices of proper orders to which the generators of the tetrahedral
group can be mapped. We first give conditions for the existence of an admissi-
ble homomorphism from a vertex group (which is a particular triangle group) to
PSL(2,q) and PGL(2,q) and then we try to extend such homomorphism to the
whole tetrahedral group. We shall consider the triangle vertex-group

(2,3,k) = (z,y | 2%, 9%, (zy)).

2.1.1 Lemma: Let y be the trace of an element of order k in PSL(2,q%).

There ezists an admissible homomorphism ® from the triangle group (2,3, k)
to PSL(2,q) (resp. PGL(2,q)) such that the trace of ®(zy) is v if and only if
v €Wy (resp. v € JFy; in this case assume g # 2™), unless k = 2 and g = 32™+1
In this case the image is in PGL(2,q). Moreover if 42 + 3, up to conjugation in
PGL(2,q) there is ezactly one such homomorphism.

Proof:

In the following we shall write X := ®(z) and ¥ := &(y).

First of all notice that the condition on the trace is trivially necessary. More-
over if we want the image of our triangle group to be in PGL(2,q) but not
in PSL(2,q) we must require the element of order k to belong to PGL(2,q) —
PSL(2,q) (compare paragraph 1.3).

Assume that v # +2 and suppose there exists an admissible homomorphism
® : (2,3,k) — PSL(2,q). Since XY is not parabolic, up to conjugation in
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PSL(2,q), we can assume that it is in diagonal form either working in PSL(2, q)

or in PSU(2,q). So
A0
xr=x (3 0)
where ¥ = A+A~" and A € F} if we are working in PSL(2, q) or A=! = A? if we are
-1

working in PSU(2, ¢). Remark that the matrices + <6\ /\91 ) and + (AO 2)
are conjugated by the matrix =+ _01 é . Now we must be able to find an
element of order 2 or equivalently trace 0 such that the element ¥ = X XY has
order 3 or equivalently has trace =1 =: €. An element of order 2 must be of the

form
X=a(® B
) 0 —«

with o, 8,0 € Fy if we are working in PSL(2,q) or a? = —a and § = —f39 if we
are working in PSU(2, ¢). Multiplying we obtain

B al  pATE
Y“i((s,\ ——a/\"1> |

Imposing the trace of ¥ to be e we get @ = ¢/(A — A71) # 0 and 86 = (3 —
v%)/(¥* — 4). Notice that the condition a? = —q is automatically satisfied when
working in PSU (2, q) since A? = A~! in this case.

If ¢ = 0 (mod 3), we must check that Y is not the trivial element in order
for @ to be admissible. This is equivalent to require that either B or § is not 0.
This is always the case if 3 — 2 # 0. In this situation, moreover, the solution is
also unique up to conjugation in PGL(2,q). Indeed, up to conjugation with an ,
element in the centralizer of XY, either 3 or § can be rescaled to be 1, if we are
working in PSL(2, ), or to be a fixed (g + 1)-root of (3 — 42)/(y2 — 4), if we are
working in PSU(2,q). Elements in the centralizer of XY are of the form

<§ pgl)

and we must choose those where p? belongs to Fy if we are working in PSL(2,q)
(and the centralizer is contained in PGL(2,q)) or p?t! = 1 if we are working in
PSU(2,q) (and the centralizer is contained in PSU(2, q)). If v = 0, the centralizer
contains also the element
0 1
(50)

This shows that the entries of the matrix X are completely determined up to
conjugation in PGL(2,q).
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On the other hand, if ¥ = 3 we have three different choices (up to conjugation
with an element in the centralizer of XY') according as 8 =6 =0, 8= 0,4 #0
or § # 0,0 = 0. Note, however, that the latter two cases cannot happen when
working in PSU(2,¢q). In order to have ® admissible then, we must require that
in the case ¢ = 0 (mod 3) and v = 0 we are not in PSU(2,q), i.e. g # 3™+,

Suppose now that v = £2. In this case at least one of X and Y must be
non-parabolic and can be put in diagonal form. Suppose that Y is non-parabolic.

Then
A0
Y_i(o /\“1>

with A + A™! = e. X has again the same form as above and we must impose
that the trace of the product XY is y. One gets a = v/(A — A™1) and 36 =
(=7 =€ +4)/(e — 4) = —(3—~?)/3, the same condition as in the previous case.
If Y is parabolic (i.e. v =€ =42 and ¢ =0 (mod 3)), then we can assume that

A0
xes(} 8)

with A 4+ A7! = 0. The matrix Y must now be of the form

_ a p
Y_:t(é e—a)’

The product turns out to be

L (er
XY‘i<5/\ (e—a))\‘l)'

Imposing its trace to be v we obtain v = (y — eA™1)/(A = A71) and 86 = —(3 -
v%)/4 = 1, again the same condition.

Suppose now that we want to find an admissible homomorphism & with image
contained in PGL(2, q) but not in PSL(2,q). We can assume that v € LFy or that
v = 0 when ¢ = 3?™*+1 The matrix XY is never parabolic and can be put in

diagonal form
. A1 0
XY =+ ( ; /\2>

where A; A2 is a non-square in F; and v = (A1 + A2)/v/ A1 A2, Notice that A, Ay €
Fg if the matrix is diagonalizable in PGL(2,q) or Ay = A? if the matrix is di-
agonalizable in PU(2,¢). Now we look for the element X which must be of the

form
X=x(% P
0 —a
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with a? = —a and 6 = —07 if we are working in PU(2, ¢), else all entries belong
to Fy. Remark that we can always choose X in such a way that —a? — 86 =
(A1A2)~!. Imposing that ¥ = X XY has trace ¢ we obtain o = e/(A=A"1) and
B = (3 —7%)/(Ax2(¥? — 4)). One now concludes as before. Observe that if ¥ is
parabolic (i.e. ¢ = 0 (mod 3)) and 3§ = 0 we can choose one of 3, § to be non zero.
To convince oneself that there exists an admissible homomorphism from (2,3,2)
to PGL(2,3*™*!) it is enough to observe that D3y C Sy, C PGL(2,32™+1) (see
1.3.8).

2.1.2 Theorem: Let y,7 € F, U LFy be traces of elements of order k resp. n in
PSL(2,q%) where q is odd and v # +£2. Let Qly,7) =212 —4y2 - 472412 ¢ Fx.
Then, except in the case v = 7 = 0 and ¢ = 0 (mod 3), there erists an

admissible homomorphism & from Ty, to PSL(2,¢%) such that ®(zy) has trace ~
and ®(zz)has trace 7. Such a homomorphism has image in PSL(2,q) if and only
if v, 7 € Fg and Q(v,7) is a square in F,. It has image in PGL(2,q) if and only
if one of the following conditions holds:

i) v, 7€ Fy and Q(v,7) is a square in Fy;

ii) one of v, T is in Fg, the other in JF; and Q(v,T) is a non-square in Fy;

iii) v, 7 € Fy, one is 0, and Q(v,7) is a non-square in Fy;

iv) one of v, is 0 and the other is in Uy ;

v) at least one of v, Tis in Froand Q(v,7) = 0.

In each case, up to conjugation in PSL(2,q%) resp. PGL(2,q) there are at
most two admissible homomorphisms ® from Ty to PSL(2,q?) resp. PSL(2,q)
or PGL(2,q) such that ®(zy) has trace v and ®(zz) has trace 7. In particular if
Q(v,7) = 0 there is ezactly one homomorphism ®.

Proof:

Again we shall write X := ®(z), ¥ := ®(y) and Z := ®(z). We shall exploit the
result and the proof of Lemma 2.1.1: we try to extend the admissible homomor-
phism @ defined from the vertex group (2,3,k) to the whole tetrahedral group.
Remark that XY is non-parabolic by hypothesis this time. We shall use that same
notation as in Lemma 2.1.1.

First we want to see when we have an admissible homomorphism to PSL(2, q).
For sure we must assume that ©((2,3,%k)) C PSL(2,q). Now we must find an
element Z of order 2 or equivalently trace 0 such that XY Z has trace 0 and Z.X
has trace 7. Obviously it is necessary that 7 belongs to IF,. We have that Z must

be of the form
Z=+[" 9”).
<¢ — i

_ A Ap
XYZ =+ (/\_% —/\“lu)

We find

33



which has order 2 if and only if 4 = 0 since A — A~ # 0 for the element XV is
non-trivial. Next we compute

_ vl —pa
sx=s (w2,

We have 9 = —¢~1. Let us impose the trace to be 7. Note that even if 7 — +2.
Z X is non-trivial since pa # 0. If 3 — 42 £ 0, we are led to solve a second degree
equation

§p? —Tp—B=0

in the unknown ¢ (note that since 8 # 0 we have that ¢ # 0). Since ¢ is odd by
hypothesis we can consider the discriminant of the equation (for ¢ even one must
try to solve the equation directly case by case). The discriminant is

T4yt 4?12

A
7? -4

If we are working in PSL(2,q), we need to find a solution in Fy, so A must
be a square in Fy. Since 7> —4 = (A — A~1)2 is a square in F, we obtain the given
condition with Q(v, 7) := A(y? — 4).

If we are working in PSU(2,q), again we have to solve the same equation
which always admits a solution in Fe2, but we have to check that ¢=! = 9.
This is easily seen to be verified whenever A is 0 or a non-square in F,. Indeed
one compares the two expressions for ¢ given by (7 — §¢)/8 and —¢? where
¢ = (1 £+/A)/25. Since in this case 72 — 4 is a non-square in F, (see Remark
1.1.6), we get the same condition found for PSL(2, q)-

If now 3 — 4% = 0, we have Q(v,7) = 7%(y% — 4) = —72. There are different
cases to consider.

If 7 = 0 then to find a solution we must choose X such that =06=0.In
this case any ¢ # 0 is an admissible solution. Anyway, up to conjugation with
an element in the centralizer of XY (note that this elements centralize also X )
the choice is unique (and Q(v,7) = 0 in this case). We can assume ¢ = 1 and
this solution is acceptable for both PSL(2,q) and PSU (2,9). However if g = 0
(mod 3), the homomorphism is not admissible since the element Y is trivial and
we must exclude this case.

If 7 # 0 instead, we cannot choose X in such a way that B =0 =0 and we
have exactly one solution for both possible choices of X. Indeed if v =0, the two
possible choices for X are conjugated by the extra element in the centralizer of XV
Remark that the elements Z that we find are in PSL(2, ¢) but not in PSU(2,q).
The latter case, however, happens exactly when Q(v,7) is a non-square in F,.

If we want to define an admissible homomorphism to PGL(2, q) (whose image
is not contained in PSL(2,q)), we have to consider different situations.
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In the first case we assume that the triangle group (2,3, k) is contained in
PSL(2,q). Then we must require Z to sit in PGL(2, q) — PSL(2,q) which implies
that ZX € PGL(2,q) — PSL(2,q) so 7 € .F,. Again Z has the same form as
before (in particular = 0) but now —p =: ¢ is a non-square in IF,. Remember
that ¢, o € F; if XY can be chosen in diagonal form in PSL(2,q) or 99 = —p if
XY can be chosen in diagonal form in PSU(2,q). We have to solve the following
second degree equation (assume 2 # 3) '

0p? — /o — ¢ =0
whose discriminant is A = /((y?72 —4v2 — 472 +12)/(y*> — 4). As before we have
to consider two cases according as we are working in PGL(2,q) or in PU(2,q)
and in both cases the condition turns out to be Q(v,7) a non-square in Fy or
0. Anyway if 7 = 0 we must require Q(v,7) # 0 otherwise the image would be
contained in PSL(2,q). We are in cases ii), iii), iv), v).

If we have that the vertex-group (2,3, %) maps to PGL(2,q) (second part
of Lemma 2.1.1) we have again two situations to consider: either Z belongs to
PSL(2,q) or to PGL(2,q) — PSL(2,q). The matrix has always the same form and
in the latter case we require its determinant to be A1z (i.e. the same determinant
as XY). As before we are led to solve a second degree equation when we impose
the trace of ZX to be 7. Note that if Z is in PSL(2,q) then we have to rescale
the trace since the determinant of X is not 1 (just like in the previous case).
In the other case, we have already chosen determinants in such a way that the
determinant of ZX is 1. We see that if Z is in PGL(2,q) — PSL(2,q) then ZX is
in PSL(2,q) and 7 must belong to Fy, else ZX is in PGL(2, q) — PSL(2,q) and 7
must belong to «F,. One now concludes as before, paying attention to distinguish
the case PGL(2,q) from the case PU(2,q). We have that if Z € PSL(2,q) then
Q(v, 7) must be a square in Fy (cases i),v)), else Q(v, 7) must be a non-square in
Fy or 0 (cases ii), iii), iv), v)). We only have to exclude the cases when the image
is already contained in PSL(2.q).

We omitted the case 3 — +v? = 0 since it is enough to repeat the same consid-
erations made previously.

We can now conclude that since Q(v, 7) belongs to I, we always find a solution
to our equation in Fg2, thus an admissible homomorphism to PSL(2,q%) always
exists under our hypotheses.

Note now that, if 3 — 2 # 0, up to conjugation, the entries of the generators
X and Y are completely determined and we have two possible choices for the
entries of the element Z defined by the two possible solutions of the second degree
equation. As remarked, we have at most two possible homomorphisms & even if
3 —~% = 0. This proves the last statement of the Theorem.

2.1.3 Theorem: Let v, 7 € F, U Fy be traces of elements of order k resp. n in
PSL(2,q%) where q is odd and v # +£2. Let Q(y, T) =272 —dy? — 472 £ 27 4 9.
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Then, if @(7, T) 18 a square in Fy2, there exists an admissible homomorphism
D from fk,n to PSL(2,q?) such that ®(zy) has trace vy and ®(zx) has trace . Such
a homomorphism has image in PSL(2,q) if and only if v,7 € F, and @(7,7) is
a square in Fy except for the case v = 7 = 0 when ¢ = 32™*1. It has image in
PGL(2,q) if and only if v, 7 € /F, and é('y,r) 15 0 or a non-square in F, except
for the case when all 7, T, @(7, 7) are 0 and q # 32™+1,

Proof:

In the following, as usual, we shall write X := ®(z), Y := ®(y) and Z := &(z).
We shall again exploit Lemma 2.1.1 and keep on using the notation adopted there.
In this case, however, since both ¥ and Z have order 3, we shall denote by €1
(instead of €) the trace of Y and by ¢, the trace of Z.

Assume that an admissible homomorphism ® is defined on the vertex-group
(2,3, k) with image in PSL(2, g). We want to extend it to the whole group in such
way that the image is still contained in PSL(2,q). Now we must find an element
Z of order 3 such that XY Z has order 2 or equivalently trace 0 and ZX has trace

7. We have
— uoop
7 =+ (1/) V)

where 41+ v = €; := %1 and all elements are in F, if working in PSL(2,q) or
v=pl, ¢ = —p? if working in PSU(2,q). For ® to be admissible, we must also
require that at least one of ¢ and 9 is not 0 if ¢ = 0 (mod 3). Computing XY Z
we see that it has order 2 if and only if p = —e2A71/(A — A™1) from which we
obtain v = esA/(A — A™1) and ¢ = (3 — 42)/(y? — 4). Next we compute

_ o [ rat+ s pB— e
ZX_I(?/)CM—FZ/(S ¢ﬁ—ya>'

Let us impose the trace to be 7:

a(p—v)+0p+ P =r.

Note that even if 7 = 2, ZX is non-trivial since if 6 — pa = 0 and Ya+vd =0

we can express ¢ and ¥ in terms of o, 3, §, u, v (being o # 0) and substitute them -

back in the expression for 7. Simplifying one gets 7 = —¢; €27y which is impossible.
If 3 — 2 #0, we are led to solve a second degree equation

€1€
Sp? — (T+A/21_2’2>g0+ﬁ

2

3—1
2_420

v

in the unknown ¢ (notice that since 8 and 3 — 42 are not 0, we have © # 0)
whose discriminant is A = (729% — 472 — 492 + 2e16297 + 9)/(7% — 4). Again
we are assuming g odd so it makes sense to consider the discriminant. If we are
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working in PSL(2, q) we need to find a solution in F,, so A must be a square in
Fq. Since v2 —4 = (A~ A~1)2 is a square in F, we obtain the given condition with
Qy,7) == A(y* - 4).

If we are working in PSU(2, ¢), again we have to solve the same equation
which always admits a solution in F,2 since @(f}/, 7) € Fy in this situation, but we
have to check that ¢~! = ¢9. This is easily seen to be verified whenever A is 0 or
a non-square in F,: just like in Theorem 2.1.2, compare the two expressions for
given by (7 + e1ea7/(v* — 4) — 6¢)/B and —p? where ¢ = (7 + e1eay/(72 — 4) +
V/A)/26. Since in this case v2 —4 is a non-square in F,, we get the same condition
found for PSL(2,q).

If 3 — 4% = 0 we have Q(v,7) = —(7 — €1627)?%. Suppose ¢ Z 0 (mod 3) so
that & = 6. If we are working in PSL(2,q) (¢ = 1 (mod 12)), we can assume
that either 8 or ¢ is not 0 and in both cases we find a solution since our second
degree equation becomes a first degree equation. We can choose 8 = § = 0 only
if T = €1e97. Anyway we see that in this case @('y, 7) is always a square in F,. If
we are working in PSU(2,q) (i.e. ¢ = —1 (mod 12)), then we are compelled to
choose 8 =6 = 0 and so the trace must satisfy 7 = e;e57 so that @(7, 7) =0 and
this is the sole case when Q (7,7) is a square. We can now conclude that, even in
this case, the condition given in Theorem holds.

Suppose now that ¢ = 0 (mod 3). In this case ¥ = 2 and @(7,7) = —72.
We must require that one of 3 and 6 is not 0. This means that we cannot have
a solution in PSU(2,q) (i.e. for all odd powers of 3). This is again the condition
stated by the Theorem if 7 # 0. Moreover, if 7 # 0 exactly one of ¢, is not 0
and @ is admissible. We must then discard just the case v = 7 = 0 and ¢ an odd
power of 3 since a homomorphism exists but it is not admissible.

It is now obvious that the given condition is necessary and sufficient.

Now we want to define an admissible homomorphism to PGL(2,q) whose
image is not contained in PSL(2,q).

We must assume that the group (2,3,k) lies in PGL(2,q) — PSL(2,q); in-
deed if it lay in PSL(2, ), the image of the whole group would be contained in
PSL(2,q). We have v € (F,. Let

— B
rms(t9).

Notice that Z € PSL(2, q). As before, we are led to solve a second degree equation
when we impose the trace of ZX to be 7. Note that since Z is in PSL(2,q) we
have to rescale the trace for the determinant of X is not 1. We see that Z is in
PGL(2,q9) — PSL(2,q) and 7 must belong to «F,. One now concludes as before,
paying attention to distinguish the case PGL(2,q) from the case PU(2,q). We
have that @(% 7) must be a non-square in F, or 0. We only have to exclude the
cases when the image is already contained in PSL(2, q).
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We omitted the case when 3 — v? = 0 since it is enough to repeat the same
considerations made previously.

We can now conclude that if Q(, 7) is a square in Fy we always find a solution
to our equation in Fy2 thus an admissible homomorphism to PSL(2, q%) always
exists under our hypotheses.

(2,3.k) k (2,3,k)

z NSy
] \

(O8]

(2,2,n) n (3,3,n)

Figure 4

Consider now the tetrahedron depicted in Figure 4. For £ = 5 and n = 2 we
obtain the only Lannér tetrahedron which does not belong to the classes studied
before. Notice that in this case the roles of k and n cannot be interchanged.
Denote by T,g,n the associated tetrahedral group whose generators z, y and z are
represented in Figure 4. Tt has presentation

(@ v,2| 2% 4%, 2%, (2y)¥, (zy2)®, (22)")

Just like in Theorems 2.1.2 and 2.1.3 and exploiting Lemma 2.1.1, we can prove
the following

2.1.4 Theorem: Lety,7 € F, U Fy be traces of elements of order k resp. n in
PSL(2,q¢*) where q is odd and v # +2. Let Q'(v,7) 1= 4272 — 4v% — 412 + 47 + 8.

Then, if Q'(7,T) is a square in F 2, there exists an admissible homomorphism
® from Ty, ,, to PSL(2,q?) such that ®(zy) has tracey and ®(zz) has trace T unless
v2 =3 and T = £2. Such a homomorphism has image in PSL(2,q) if and only
if 7,7 € Fy and Q'(v,7) is a square in F, except for the case vy=7=0 and
g = 3*"*1. It has image in PGL(2,q) if and only if v € WFy, 7 €Fy and Q' (7, 7)
is a square in Fy ory =7 =0, ¢ = 32m+1,

Remark that if 7 = 42, for ® to be admissible we must require 7 = —eq€y
where €1, €2 are the traces of the images of y and zyz respectively.
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Figure 5

Consider now the tetrahedron represented in Figure 5. We shall denote the
tetrahedral group associated to it by T'(ky, k2, ks, n). The groups T'(4,2,4, 3) and
7(3,3,3,3) are cusped hyperbolic tetrahedral groups associated to the orbifolds of
second and third smallest volumes among hyperbolic cusped 3-orbifolds (compare
Examples 1.5.8). We give the following generalization of part of the previous
Theorems (generalizing also Lemma 2.1.1) and we omit the proof. Again one has
to look for elements of the appropriate orders and check that defining relations
for T'(k1, ko, k3, n) are satisfied paying attention that no torsion element is trivial.
Generators for T'(kq, k2, k3, n) are represented in Figure 5 and a presentation for
the group is

(@y, 2| 2™y, 22, (2y)", (zy2)?, (22)")

2.1.5 Theorem: For j = 1,2,3, let v; resp. T € Fy UFy be traces of ele-
ments of orders kj resp. n in PSL(2,¢%), where q is odd and v, # +£2. Let
Q71,72 7¥3, T) 1= VT + dyryays — 4vE — 493 — 4y — 472 4 16,

If Q(v1,7v2,73,T) 18 a square in Fy2, then there exists an admissible homo-
morphism © : T'(ky, ko, k3, n) — PSL(2,q%) such that ®(zy) has trace Y1, ®(z)
has trace v2, ®(y) has trace vz and ®(zx) has trace T ezcept in the two cases
Ve=73=0,7=%2 and vy orv3 = £2, yiy2y3 — 72 — 12 =0, 7 = 0.

The wmage of ® lies inside PSL(2,q) if and only if v; and T are in Fy and
Q(71,72,73,7) is a square in F, (j =1,2,3).

Ifv; € By, j =1,2,3, while either 7 € JFy and Q(1,v2,73,T) is a NON-Square
wn Fq or 7 isin JF; and Q(v1, 72,73, 7) = 0, then the image of ® lies in PGL(2,q)
(but not in PSL(2,q)).

Note that we do not give a complete classification of admissible homomor-
phisms with image contained in PGL(2,q) as in the previous Theorems, since
there are too many cases to be considered according to where the images of the
elements x, y and z lie. In this Theorem we only consider the case when both ®(x)
and ®(y) belong to PSL(2,q) while ®(z) belongs to PGL(2, q) — PSL(2,q). Note
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moreover that for v2 = 0 and 3 = +1 we obtain part of Theorem 2.1.2, instead
for v1 = 7, 2 = %1, y3 = £1 and 7 = v we obtain part of Theorem 2.1.4 (this
can be easily seen by rotating the tetrahedron in Figure 4 upside down).

2.2. Lannér case

In this paragraph we shall apply Theorems 2.1.3 and 2.1.4 to classify the
admissible quotients of linear fractional type of some hyperbolic tetrahedral groups
associated to Lannér tetrahedra. In [20] this problem is solved for the groups Ty s
and Ts5 except for the quotients of type PSL(2,q) with q even. Here we shall
discuss the omitted cases for these two groups and give a complete classification
for the groups Tz 59 T4 3, T4 .4 and for the Lannér tetrahedral group T5 5. We shall
see that PSL(2,g) is an admissible quotient of the Lannér tetrahedral groups only
for g prime, a square of a prime or the forth power of a prime.

For the remaining three tetrahedral groups the expression for @("y, T) assumes
too many different values or is the algebraic sum of different square-roots. This
means that we are not able to decide in general whether @(7, T) is a square but
we can only establish it case by case.

Remark that if at least one between k and n is odd, we cannot have admissible
quotients of type PGL(2, q) for the groups Tvk,n. Indeed, by a symmetry matter it
Is not restrictive to assume that k is odd. In this case then, if X, Y and Z (with
the notation of Theorem 2.1.3) are in PGL(2, q), they do belong to PSL(2,q) and
thus the image of ® is contained in PSL(2,q) as well.

2.2.1 Theorem: The group PSL(2,q) is an admissible quotient of the group fk,n
ezactly the in following cases:
k=2,n=>5:
i) ¢= p, p = =1 (mod 10) and some value of 3 + 2v/5 is a square in Fy;
ii) ¢ = p?, p = £1 (mod 10) and some value of 3+ 25 is a non-square in F,
or p = =£3 (mod 10) and some value of 3 + 2/5 is a square in Fp2 orp=25;
iii) ¢ = p*, p = £3 (mod 10) and some value of 3+ 2v/5 is a non-square in Fpe
orp=2.
k=4,n=3:
i) ¢ = p, p = +1 (mod 8) and some value of —1 + 2v/2 is a square in Fy;
ii) ¢ = p? p=+1 (mod 8) and some value of ~1 4 2v/2 is a non- square in Fp
or p = £3 (mod 8) and some value of —1 + 2v/2 is a square in Fpe ;
iii) ¢ =p*, p=+£3 (mod 8) and some value of =14 2v/2 is a non-square in Fp-.
k=4,n=4:
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i) ¢ =p, p==+1 (mod 8) and (B)=1;
ii) ¢=p? p==+1 (mod 8) and (&) = —1 or p = £3 (mod 8) and (&) =1.

The group PGL(2,q) is an admissible quotient of the group ffk,n ezactly in
the following cases:

k —_— 4, n —= 4
¢=p, p==+3 (mod 8) and (B) = ~1
There are no admissible quotients of type PGL(2,q) in the other two cases.

Proof:

k=2n=5:
If p = &1 (mod 10) (resp. p = +3 (mod 10)) there exists an injection of A in
PSL(2,p) (resp. PSL(2,p?)) -compare Theorem 1.3.8. According to Theorem
2.1.3, we can extend this injection to Tv2,5 if and only if @(7,7) is a square in
F, (resp. Fp2). In our situation we have 7 = 0 and v = +(1 4+ /5)/2 so that
@(7,7) = 3+ 2v/5 and we want at least one of the two values to be a square.
Whenever the @(fy, 7) is a square we have an extension to PSL(2,q), otherwise we
are able to find a solution to our equation in F,> that is an extension to PSL(2, ¢2).

We observe that, since (3 + 2v/5)(3 — 2v/5) = —11, if ¢ = p and (&) =-1
then exactly one of the two values of é(’y, 7) is a square (this means that we find
admissible homomorphisms to both PSL(2,p) and PSL(2,p%)), else if ¢ = p and
(%) =1 or ¢ = p? either both possible values are squares or neither (see section
1.1).

Notice that if p = 5, @(’7,7’) = 3 is a non-square and we do not have an
admissible homomorphism to PSL(2,5). '

If ¢ is even we can work with CI~"572. We need to solve the following second
degree equation (compare the proof of Theorem 2.1.2 and note that Bo # 0)

5p® + (1 + ;ly*)w+ﬁ(

where <y satisfies the relation y2 + v+ 1 and 7 = 0 (see Examples 1.3.7). Notice
that Fy2 = {0,1,v,~v?}. Using these relations the equation becomes

(60)* +7v*(5) +v = 0.

Substituting to dp all elements Fy: we see if we have a non trivial solution. Re-
member that we always have a solution to the equation in PSL(2,2%).

It remains to prove that such extensions are surjective. This is trivial if we
have an extension to PSL(2,p) since Az is a maximal subgroup and T3 5 does
not have an admissible extension on Aj itself. By the classification of subgroups
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of PSL(2,q) (Theorem 1.3.8), we see that the only possible images of our exten-
sions are either PSL(2,q) or PGL(2,q) since they must contain As as a proper
subgroup.

Uniqueness depends on the fact that all immersions of A into PSL(2, ) are
conjugate to an immersion in PSL(2,p) -if p = £1 (mod 10)- or in PSL(2,p?) -if
p = %3 (mod 10).

k=4,n=3:
This is proved exactly as in the previous case.
k=4,n=4:

This case is slightly different since we always have a trivial extension onto S, &
PGL(2,3) C PSL(2,q). Computing @(7, 7) by substituting v = +v/2 and 7 =
++/2 one finds two values: 1 which is always a square and —7. The first gives the
trivial solutions while the other does not. To see this, one has to check that the
two solutions relative to the first value (call them ¢y and ) are not the solutions
obtained with the second (call them ¢} and ¢}) or their opposites. Considering the
equation for ¢, we note that the product of the two solutions is the same in both
cases. This means that we could have ¢; = +¢; and ¢p = +¢},; (indices (mod
2)) but not ¢, = +¢} and @ = Fj11 (indices (mod 2)). An easy computation
shows that the sums of the two pairs of solutions cannot be equal or opposite.

2.2.2 Theorem: The admissible quotients of type PSL(2,q) of Ts 5 are ezactly
the following:
i) ¢ =p, p=1,9 (mod 20) and some value of 2 + 2v/5 is a square in F, or
p = 11,19 (mod 20);
i) ¢ =p% p=1,9 (mod 20) and some value of 2+ 2v/5 is a non-square in F,
orp =5,11,19 (mod 20) or p = £3 (mod 10) and some value of 2 + 2v/5 is
a square in Fp2 ;
iii) ¢ =p*, p= 43 (mod 10) and some value of 2+ 2v/5 is a non-square in Fy2 .
There are no admissible quotients of type PGL(2,q) of T5 5

Proof:

Apply Theorem 2.1.4. Here Q’(v, 7) = 24+2+/5. The case when q is even is checked
directly as in the proof of Theorem 2.2.1; it turns out that a homomorphism to
PSL(2,2%) exists but it is not admissible. For ¢ = 0 (mod 5), one can apply
Theorem 2.1.5 with k1 = 2, ky = k3 = 3 and n = 5. Else one can work with
matrices and start with the element XY of order 5 in upper triangular form

1 A
xr=s(1 1)

with A # 0 and seek elements X and Z of the needed orders satisfying the given
relations.
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For completeness we give the classification also for the groups Ty 5 and T 5.
The result, apart from the case ¢ = 0 (mod 2), can be found in [19] where the two
groups are denoted by T and 7" respectively.

2.2.3 Theorem: The group PSL(2,q) is an admissible quotient of the group Ty, s
exactly in the following cases:

=4:

i) ¢g=p,p=1,9 (mod 40) and some value of 1 + /5 is a square in I, or
p = 31,19 (mod 40);

ii) ¢ =p2 p=1,9 (mod 40) and some value of 1+ /5 is a non-square in F, or
P =5,31,19 (mod 20) or p = 21,29 (mod 40) and some value of 1 + /5 is
a square in Iy, or p = £3 (mod 10) and some value of 1 + /5 is a square in
F

p?/

iii) ¢ =p*, p=+3 (mod 10) and some value of 1 + /5 is a non-square in Fy: .

kE=5:

1) ¢=p, p==+1 (mod 10) and some value of (7+5v/5)/2 is a square in F, or
p=35;

ii) ¢ =p* p= %1 (mod 10) and some value of (7T+ 5v5)/2 is a non-square in
Fp orp=+3 (mod 10) and some value of (7 + 5v/5)/2 is a square in Fp2 or
p=2;

iii) ¢ = p*, p = £3 (mod 10) and some value of (T+ 5v/5)/2 is a non-square in
Fpe orp=2.

The group PGL(2,q) is an admissible quotient of the group Ty 5 ezactly in
the following cases:
k=4:
q=p, p = 21,29 (mod 40) and some value of (7+5v5)/2 is a non-square in
Fp orp=11,19 (mod 40)
There are no admissible quotients of type PGL(2,q) of the group Ts 5.

Proof:

For the case ¢ even just note that there cannot be admissible quotients of type
PSL(2,2™)if k = 4 (see Theorem 1.3.8), while for & = 5 one reasons as in Theorem
2.2.1.

The Theorems of this and the previous paragraph allow us to list all the
Lannér tetrahedral groups -if any- which have PSL(2,q) as an admissible quo-
tient for all ¢ < 16. For the groups fg,’g f5,4 and f5,5 the conditions given in
Theorem 2.1.3 are checked case by case, moreover we cannot apply Theorem 2.1.3
to determine the quotients of Tvsrs if ¢ = 0 (mod 5). In this case computations

are made directly as well as for the case ¢ even. Note that PSL(2,q) may be an
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admissible quotient of some tetrahedral group only if ¢ is a prime, a square of a
prime or a fourth power of a prime.

2.2.4 Corollary: The group PSL(2,q), g < 16 is an admissible quotient of exactly
the following Lannér tetrahedral groups:

PSL(2,2) = Dg:
PSL(2,3) = Ay :
PSL(2,2%) 2 PSL(2,5) = Ay : Ts 5, Ts.5, Ts s
PSL(2,7): T4,3,f4,4
PSL(2,2%):
PSL(2,3%) = Ag: Ts 5, T5 4, Ts 5
PSL(2,11) : fs,z,fs,&fs,&Té,z
PSL(2,13):
PSL(2,2%: fs,z,Ts,s

2.3. Cusped case

The next Theorem gives the classification of all finite admissible quotients of
linear fractional type of the three tetrahedral groups T}, , associated to three of the
nine Coxeter tetrahedra with exactly one cusp, and in particular of the tetrahedral
group T3¢ uniformizing the smallest orientable cusped hyperbolic 3-orbifold (see
Examples 1.5.8).

2.3.1 Theorem: The group PSL(2,q) is an admissible quotient of the tetrahedral
group Ty 6 ezactly in the following cases:
k=3:

i) ¢=p,p=1 (mod 12);

ii) ¢=p* p= -1 (mod 6).
k= 4:

1) ¢=p, p=1 (mod 24);

i) ¢=p? p=13,17,19,23 (mod 24).
k=5:

1) ¢=p, p=1,49 (mod 60);

i) ¢=p,p#1,2,3,19 (mod 30).
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The group PGL(2,q) is an admissible quotient of the tetrahedral group Ty ¢
exactly in the following cases:

k=3:

g=p,p=7 (mod 12).
k=4:

¢=p,p=5,7,11 (mod 24).
k=5:

¢ =p, p=19,31 (mod 60).

Up to conjugation in PGL(2,q) resp. in PSL(2,q?) there are at most two
admissible surjections of Tre if k= 2,4 and at most four admissible surjections if
k=5.

Proof:
k=3:
Since we can find elements of order 3 in PSL(2,q) for all g, up to conjugation.
we can assume that the image of the element zy sits in PSL(2, p) (g =p™). For
n =6 we have 7% = 3 and Q(v,7) = —1 for v = %1. We can apply Theorem 2.1.2
with ¢ := p to see where the images of the admissible homomorphisms lie.
Surjectivity follows from the fact that an element of order 6 cannot belong to

S4 or to Ajs the only other possible subgroups in PSL(2, p) containing the vertex
group A4 (compare Theorem 1.3.8). Note that up to conjugation there are no
other admissible homomorphisms.

= 4:
Note that an element of order 4 exists in PSL(2, q) if and only if ¢ = +1 (mod 8).
Thus if p = 1 (mod 8) we can assume that the image of the element zy sits in
PSL(2,p) and as before we can apply Theorem 2.1.2 to the case v2 =2 72=3
and Q(y,7) = —2 with ¢ :== p. If p # +1 (mod 8), we can find an element of
order 4 in PGL(2,p) — PSL(2,p). Applying again Theorem 2.1.2 we are again
able to say when the image contained in PGL(2,p) itself. To proof surjectivity
one exploits the maximality of the vertex group Sy in PSL(2,p) if p= +1 (mod
8) or in PGL(2,p) if p = +3 (mod 8).
k=5:
We can find elements of order 5 in PSL(2, q) if and only if g(¢?—1) = +1 (mod 5).
Moreover elements of odd order cannot lie in PGL(2, q) — PSL(2,q). This means
that we can apply Theorem 2.1.2 to the case ¢:=pif p==41 (mod 5) or q := p?
if p = £3 (mod 5) with 4 = (3£ v5)/2, 72 = 3 and Q(v,7) = —(£(1 £ v/5)/2)2
The only case that must be considered aside is when g =95" and k£ = 5, since in
this situation the element of order % is parabolic. This can be done, for instance,
exchanging the roles of 7 and k.
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Surjectivity follows from the maximality of the vertex group As. Note that
in this case we can have four possible quotients because we find two differents
values for Q (v, 7) associated to the two different traces of non conjugate elements
of order 5.

This finishes the proof of Theorem.

Remark that we do not consider the tetrahedral group Ts,6 associated to a
hyperbolic tetrahedron with two cusps since in this case it is not easy to estab-
lish the surjectivity of an admissible homomorphism with image in PSL(2,q) or
PGL(2, q) since we cannot exploit the maximality of vertex-groups of exceptional
type (compare Theorem 1.3.8).

Up to conjugation, the tetrahedral group T3 6 uniformizing the smallest cusped
3-orbifold is equal to the extended Bianchi group PGL(2,Z[w]), considered as a
subgroup of the isometry group PSL(2,C) of hyperbolic 3-space (see Examples
1.4.4 ii) and 1.5.8), where w is a primitive cubic root of unity and thus satisfies
wtw+1=0. Suppose p # 3. We have the two group homomorphisms @; :
13,6 = PGL(2,Z[w]) — PGL(2,p?) obtained by reduction of coefficients mod 2
(compare Example 1.3.3 iv) for definition and notation). Remark that if 3 divides
p — 1 the image of ®; is in PGL(2, q).

2.3.2 Theorem: Let p be a prime dif ferent from 2,3. Then, by reduction of
coef ficients mod p, we obtain two admissible surjections @, 7 = 1,2, from Tz ¢ =
PGL(2,Z[w]) onto one of the following groups:

i) p=1 (mod 12) : PSL(2,p);
ii) p =7 (mod 12) : PGL(2,p);
iii) p=5,11 (mod 12) : PSL(2,p?).

Up to conjugation, all admissible homomorphisms from Ts ¢ to a linear fractional
group PSL(2,q) or PGL(2,q) are obtained by reduction of coef ficients mod p
and, for each p, there are exactly two such homomorphisms. For each of the
above finite groups, the kernels of the corresponding surjections are the universal
covering groups of the cusped hyperbolic 3-manifolds of minimal volume admitting
an action of the group.

Proof:

First we show that, for every p different from 2 and 3, the group homomorphisms
®;, j = 1,2, are admissible, that is have torsion-free kernel. An element of finite
order in T35 = PGL(2,Z[w]) has order 2, 3 or 6. An element of order 2 in
PGL(2,Z[w]) has trace zero, so also its image has trace zero. Because p # 2, it
cannot lie in the kernel of ®;. An element of order 3 is in PSL(2,Z[w]), and the
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square of its trace is equal to one. Again, because p # 3, it does not lie in the
kernel of ®; which is therefore torsion-free.

We determine the image of ®; in PGL(2,p?). Note that the determinants
of elements of PGL(2,Z[w]) are 1, +w and #w? (these are the units in Z[w])),
therefore all elements have representatives with determinant 1 or —1. Now -1
is a square in F,, if and only if p = 1 (mod 4), otherwise it is a square in F2.
It follows that the image of ®; lies in the groups listed in the three cases of the
Theorem, and it remains to prove surjectivity. This follows from Theorem 1.3.10
putting § := ¢7. Remark that the matrices belong to the image of ®;, and @,
results surjective in each of the three cases.

The two homomorphisms ®; and ®; are not conjugate since the images of

the element
0 1
-1 w)/’

of determinant one, have different traces o and o2 and thus are not conjugate.
Now, by Theorem 2.3.1, each admissible homomorphism is obtained by reduction
mod p.

Now we shall apply Theorem 2.1.5 to the hyperbolic cusped tetrahedral groups
T(4,2,4,3)and T(3,3,3,n) with n = 3,4, 5. First of all we shall consider the group
T'(4,2,4,3) which is the extended Picard group PGL(2,7Z[i]) (see [9] and Example
1.4.4 1))

2.3.3 Theorem: The group PSL(2,q) is an admissible quotient of the group
T(4,2,4,3) ezactly in the following cases:
i) ¢g=p,p=1 (mod 8);
ii) ¢ =p% p=—1 (mod 4).
The group PGL(2, q) is an admissible quotient of the group T'(4,2,4, 3) ezactly
in the following cases:
g=p,p=5 (mod 8).
All admissible quotients of type PSL(2,q) and PGL(2,q) of T(4,2,4, 3) =
PGL(2,Z[4]) are obtained by reduction of coef ficients mod p.

Proof:
If an element of order 4 exists in PSL(2, p) (which is the case if and only if p = 41
(mod 8)) then we can apply Theorem 2.1.5. We obtain Qv 72,73, 7) = —2.

Since 2 is a square under our hypotheses, we must check when —1 is a square. If
p = 1 (mod 8) it is a square and we have a solution in PSL(2,p). Surjectivity
follows because of the maximality of S4. If p = —1 (mod 8), we have a solution in
PSL(2,p?) -the image is not PGL(2,q) because 7 = +1 is in Fp.

47



If p = 43 (mod 8), an element of order 4 exists in PGL(2,p). With the
notation of Figure 5, we have that the images of the elements y and zy belong to
PGL(2,p)-PSL(2,p) and we can repeat the same reasoning as in the second part
of the proofs of Theorems 2.1.2 and 2.1.3. Note that ZX is in PSL(2,p) since it
has order 3 forcing also Z to sit in PSL(2,p). Up to conjugation in PSL(2,p?),

we can assume that
1+ 0
YX= < 0 1- 7,>

with i> = —1. Once more we are led to solve a second degree equation whose
discriminant is 1. We must require it to be a square (resp. a non-square) if —1 is a
square (resp. a non-square) in I, (in this case we are working in PU(2,p)). Since
1 is always a square, we have a solution in PGL(2,p) if p=5 (mod 8). Otherwise
the solution lies in PSL(2, p?).

Note that there are no admissible quotients of type PSL(2,q) when q is even,
since these groups do not contain elements of order 4.

The last statement of the Theorem is proved analogously to the case of
PGL(2,Z{w]) in Theorem 2.3.2.

The group T'(3,3,3,3) is isomorphic to PSL(2, Z[w]) (see [9]). We have the
following

2.3.4 Theorem: The group PSL(2,q) is an admissible quotient of the group
T(3,3,3,n) exactly in the following cases:
n=3:
i) ¢g=p,p=1 (mod6) orp=5;
i) ¢ =p° p#1,3 (mod 6).
n=4:

1) ¢=p, p=1,7 (mod 24);
i) ¢=p?% p=13,17,19,23 (mod 24).

n=25:

i) ¢g=p,p=1,519 (mod 30);
il) ¢ =p% p#1,19 (mod 30).

The group PGL(2,q) is an admissible quotient of the group T'(3,3,3,n) exactly
in the following cases:

n =4
g=p,p=3,511 (mod 24).
There are no admissible quotients of type PGL(2,q) of the groups 7(3,3,3,n)

ifn=3orn=>5.
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In the case n = 3, all admissible quotients of T(3,3,3,3) are obtained by
reduction of coef ficients mod p, with the exception of the group As corresponding
to the case p =5 in case i) and p = 2 in case ii).

Proof:

We begin with the case n = 3. Since the elements = and y have order 3, their
images must belong to PSL(2, ¢) and so we do not have to consider an analogue to
the situation described in the last part of the proofs of Theorems 2.1.2 and 2.1.3;
applying Theorem 2.1.5 we are able to classify also the admissible quotients of type
PGL(2,q). Moreover since 72 = 1 is always a square we cannot have solutions in
PGL(2,q) but only in PSL(2,q).

Computing (71, 2,73, T) one finds the values —3 and 5. Note that all admis-
sible quotients found in Theorem 2.3.1 case k = 3 restrict to admissible quotients
of 7'(3,3,3,3) C 136 -this follows because of Theorem 1.3.2. These are exactly
the solutions obtained when Q(v1,v2, 73, 7) = —3.

At this point one can prove directly that there is an admissible surjection from
T(3,3,3,3) to As simply by considering an immersion of one of the two vertex
groups of type A4 and extending it to the whole of T'(3, 3, 3, 3).

For Q(v1,72,7s,7) = 5 we do not have any new solution apart from Ay =
PSL(2,5). In fact this condition gives an admissible homomorphism whose image
is As. Remark that the condition obtained is exactly the condition to have a
subgroup of type Ajs inside PSL(2,q).

The exceptional case when the element of order k = 3 is parabolic must be
checked aside working with permutations in As.

The cases n = 4 and 5 are again an easy application of Theorem 2.1.5. Just
observe that for n = 4 resp. n = 5, the values 2 resp. (7 + 3/5)/2 = (3«
V'5)/2)? for Q(71,72, 73, T) give the trivial solutions S, = PGL(2,3) resp. A =
PSL(2,2%) = PSL(2,5). We remark once more that for n = 5 we do not have
solutions of type PG L(2, ¢) because an element of odd order (in this case 5) cannot
belong to PGL(2,q) — PSL(2,q).

1“
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3. SOME OTHER APPLICATIONS

Exploiting again the techniques used in paragraph 2.1, we study admissible
quotients for some other interesting groups. In paragraph 3.1 we consider the
orbifold fundamental group of the hyperbolic 3-orbifold of minimal known volume.
In paragraph 3.2 we study admissible quotients of type PSL(2,q) x Z, for the
Coxeter groups associated to the tetrahedral groups considered in chapter 2.

3.1. An extension of j:;572

3
bl

Figure 6

Consider now the graph drawn in Figure 6. It represents the singular set of
a hyperbolic orbifold which is topologically the sphere S2. Moreover this is the
hyperbolic 3-orbifold of minimal known volume (see [35])

It is not difficult to see that this orbifold is double-covered by the orbifold
HB/TVE))Q (i.e. the quotient of the hyperbolic space by the action of one of the
tetrahedral groups we considered before). The latter admits a rotational Symmetry
of order 2, as shown again in F igure 6.

As before we intend to study admissible PSL(2,q) quotients of its orbifold
fundamental group. We start with a presentation for the fundamental group that
we shall denote by T. Such presentation is derived in the same way as the presen-
tations of the tetrahedral groups (see paragraph 1.5). We have

T=(z.y2]2%9° 2 (29)°, (z29)?, (v w2m22)?)
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where the generators are shown in Figure 6. Note that the group is an extension
of the group T5 2 and so we have an exact sequence of groups

1——+1~15,2——>1~“->Z2—+1

where the group Z, is generated by the > rotation r shown in Figure 6. From the
above exact sequence we deduce that T = (Ts2,7) and in terms of r and the
generators of T5 2 shown in Figure 6 T has presentation

(t,v,w,r | £, 0%, w, (00)°, (tvw)?, (wt)?, v, rorw ™, (rtv)?)

(the last two relations tell us how 7 acts on the generators of T .2 Dy conjugation).
Eliminating the generator w in the previous presentation one obtains

{t,v,7 | £2,0°, (tv)®, (turvr)?, (rurt)?, r 2 (rtv)?).

The following Tietze substitutions give the connection between the latter presen-
tation and the first one given for 7"

t—z

vy
T Y TITZ.

We have

T = Asxz, D5 /((y ‘z2z21)?) = Gs/{(y twzzzzi)?).

This will ensure us injectivity on finite subgroups of T whenever we find in
PSL(2,q) generators for two subgroups As and Ds satisfying the given relations.

Suppose that an admissible homomorphism of T to PSL(2,q) is given. Such
homomorphism must restrict to an admissible homomorphism defined on T5 9 and
PSL(2,q) must contain one of the groups listed in Theorem 2.2.1 case &k — 2,n =
5. With the same technique used for the tetrahedral groups, we find necessary
and sufficient conditions for the existence of an admissible homomorphism 7' —
PSL(2,q). We shall restrict our attention to the case g—1=0 (mod 10) since
the case ¢ +1 = 0 (mod 10) presents some difficulty. The cases g = 0 (mod 5)
and q = 0 (mod 2) will be treated aside.

3.1.1 Lemma: Let q be odd and such that ¢ = 1 (mod 5). Let A € F; be a
primative fifth root of unity (which ezists thanks to the previous assumptwn and
Theorem 1.1.8) so that v := X + A~! is the trace of an element of order 5 in
PSL(2,q).
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Then there exists an admissible homomorphism from T to PSL(2,q) if and
only if the following two values are squares in Fy:

Q=9 — 442

=Y+ /4yt + 2592 - 36
- 5 .

p:

Proof:

Under our assumptions, we see that the element of order 9, which is non-parabolic,
can be chosen in the following diagonal form

A0
XY_i(O A_1>.

As in Theorem 2.1.3 we search for matrices X and Z of the form

_ (o B
X—i<5 —a)

— Ho®
z=x(4 *)

and impose that the traces of Y = X XY and ZXY are e := -1 and 0 respectively
thus obtaining the relations o = ¢/(A — A™1), 86 = (3 — Y/ (v* = 4), p = 0,
¢y = —1. Computing Y 'XZXZX = (XY)"1(ZX)? and requiring that its
trace is 0, we are led to solve a second degree equation in the unknown ¢2. To
have a solution ¢, both the discriminant of this equation and one of the two
solutions must be squares in F,. The equation is

A—152¢4+ 2’7’ <p2+/\52:0
¥4 —4
and has the same discriminant found in Theorem 2.1.3 when 7 — 0 so it is a
square if and only if @ is (compare Theorem 2.1.3). We thus find the same
condition of Theorem 2.1.3 and this is what we expected since the existence of
an admissible homomorphism from T to PSL(2,q) implies the existence of an
admissible homomorphism from Tvsyz to the same group.
The product of the two solutions of the equation is A242 /62 which is always a
square. So we deduce that either both solutions are squares or neither. Since the
solutions are

2 _ v E v/ —47v* + 252 — 36
P12 20-15%(72 — 4)
observing that trivially 62 is a square, that \ is a square -it is a primitive fifth root

of unity so it must be the square of A>- and that v2 — 4 is a square (see the proof
of Theorem 2.1.3), we get the condition given in the statement of the Lemma.
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For ¢ = 0 (mod 5), we can rephrase the proof of Lemma 3.1.1 exchanging
the roles of the elements of order 2 and 5 exploiting the symmetry of the singular
set as usual. We obtain an equation that admits a solution which guarantees the
existence of an admissible surjection of 7' onto PSL(2,5%).

Note that if ¢ is even, we still have to solve the same equation. By a direct
check we see that we have two solutions ¢ = VA=1§~1, VA=16-192 and we can
conclude that there is an admissible surjection T —» PSL(2,2%).

3.1.2 Remark: If 5 divides ¢+1 instead, the condition becomes ©? = ¢~ ! because
now we work in PSU(2,q). In particular (¢?)? = ¢~ 2 and as in Theorem 2.1.3
we have that the discriminant of the equation must be a non-square in F; or 0.
Equivalently Q must be a square in F,;. Note that (? PR always a square in Fp
(smce the cyclic multiplicative group of this field has order q? — 1 while the order
of gol’z divides ¢ + 1) but it is not easy to exclude the case when 0l =—p L

For the group T, however, we cannot exhibit a complete classification since
we cannot decide whether p is a square in Fy. This is due to the presence of square
roots of quantities which contain square roots in their expression.

3.1.3 Corollary: If ¢ = 1 (mod 10) then every admissible surjection of T5 5
onto PSL(2,q) extends to an admissible surjection from T onto PSL(2,q) or
PGL(2,q).

Proof:

If there is an admissible surjection from ff5 2 onto PSL(2 ¢) and ¢? is a square in
F, then we have a solution to our problem. If ©* is not a square then we have a
surjective extension to T onto PGL(2,q). This is easily seen since T5,2 has index
2 in T and the i image of the subgroup must be normal in the image of the group.

Using GAP (see [17]) we are able to list all solutions of type PSL(2, p) and
PGL(2,p) for the primes p = 1 (mod 10) lesser then 1000.

3.1.4 Corollary: Let p =1 (mod 10) be a prime lesser than 1000.
i) PSL(2,p) is an admissible quotient of T exactly for p = 71, 101, 131, 151,
211, 251, 271, 311, 461, 541, 631, 691, 751, 761, 941.
ii) PGL(2,p) is an admissible quotient of T exactly for p = 11, 31, 41, 61, 71
241, 251, 281, 311, 431, 491, 571, 601, 631, 661, 691, 701, 751, 811, 821, 881.

Since there are two possible values for the trace 7, there are two possible values
for Q If only one of the two values of Q 1s a square in Fy, we have an admlssﬂ)le
surjection from T onto either PSL(2,q) or PGL(2,q) (since both solutions ¢? are
squares or neither). If both values of Q are squares, we might have both types
of admissible quotients at the same time. Indeed all situations happen: both
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quotients are of type PSL(2,q) (e.g. ¢ = 1061), both are of type PGL(2,q) (e.g.
g = 661,821) or one is of type PSL(2,q) and the other of type PGL(2,q) (e.g.
g =171,251,311,631, 691, 751).

3.2. The Coxeter case

At this point we wish to consider the problem to find admissible quotients for
the Coxeter groups whose subgroups of index 2 of orientation preserving elements
are the tetrahedral groups we discussed in chapter 1. We shall denote by Ck.ns
5’1”“ C’(n, k), resp. C(k1, ks, k3,n) the Coxeter groups whose tetrahedral groups
are Ty n fk,n, T},  vesp. T'(k1, ks, ks, n). The presentations are as follows:

Chn = (a,b,c,d | a®, 0%, 2, d%, (ab)F, (ac)?, (ad)?, (be)?, (bd)3, (cd)™)

Crn = (a,b,c,d | a®,b%, ¢, d?, (ab)F, (ac)®, (ad)?, (be)?, (bd)?, (cd)™)
Cin = (a:b,c,d | a? 6%, 2, d°, (ab)*, (ac)?, (ad)?, (bc)®, (bd)®, (cd)™)
C(k, ko, ks, n) = (a,b,¢c,d | a®, 8%, c2, d, (ab)*, (ac)?, (ad)*2, (be)?, (bd)*2, (cd)™).

By means of Tietze substitutions we derive a presentation for these groups in terms
of the generators of the tetrahedral subgroup and just one reflection (compare
paragraph 1.4). Let z :=ad, y := db, z := ca and a = a and substitute obtaining

Cen = (a,2,y,2] 2%, 9%, 2%, (2)F, (2y2)?, (22)", 0%, (azy)?, (2a)?, (az)?)

)

Qin = (a,2,y,2 ] 2%, 9%, 22, (29)", (3y2)?, (22)", 0, (azy)?, (za)?, (az)?)
Crn = (0,3,9,2 | 22,5°, 22, (zy)F, (22)?, (22)", 0°, (azp)?, (20)?, (az)?)

C(k17k27k37n> -
<(1, z,Yy,z l ‘,Ekza yksy 227 (my)kla (37975)2, (zx)na 0,2, (a$y)27 (ZG,)Z, (a$)2> .

We shall work with groups PSL(2,¢) which are images (always with torsion-free
kernel) of the tetrahedral group of index 2 in the Coxeter group we are considering.
Working as usual with matrices we shall try to find under which conditions there
exist extensions to the Coxeter group.

3.2.1 Lemma:
i) Assume that the hypotheses of Theorem 2.1.2 are satisfied and that there
exists an admissible surjection from the group Ty onto the group PSL(2, q).
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Then such surjection extends to Cy n if and only if either 3 — 2 is a square
in By and the following equation is identically satisfied:

Q(y,7) =~ —4y* — 472 +12=0

or v =0.

ii) Assume that the hypotheses of Theorem 2.1.8 are satisfied and that there
exists an admissible surjection from the group Ty, onto the group PSL(2,q).
Then such surjection extends to Ck, if and only if either 3 — % # 0 is a
square in Fy and the following equation is identically satisfied:

@(”y, T) = 4*1% —4y? — 472 £ 297+ 9 =0

ory*=1712=3 and ¢ #Z 0 (mod 3).

iii) Assume that the hypotheses of Theorem 2.1.4 are satisfied and that there
exists an admissible surjection from the group T,g’n onto the group PSL(2,q).
Then such surjection extends to C’,’c’n if and only if either 3 — v? is a square
in Fy and the following equation is identically satisfied:

Q'(v,7) =72 —4y? — 472 £ 47+ 8 =0

orv=20.

iv) Assume that the hypotheses of Theorem 2.1.5 are satisfied and that there
exists an admissible surjection from the group T(ki, ks, ks, n) to the group
PSL(2,q). Then such surjection exstends to C(ki, ks, ks, n) if and only if
either y1v2y3 — Y% — v5 — v2 + 4 is a square in F, and the following equation
18 identically satisfied:

Q(v1, 72,73, T) = YiT? + dy1y2y3 — dy? — 4y — 42 — 472 4 16 =0

or y1 = vz = 0.
Proof:

We shall discuss in detail only case i), the remaining being proved in the same
fashion.
By assumption we can find three matrices

A0
XY—i(O xl)

a p
x=x(5 8
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Zzi(f’; ‘g\)

satisfying v := A+ A71 a = ¢/(A - A71), 86 = (3 — )/ (v? = 4), Yo = —1
0@ + 1) = 7 where € = +1 and we must remember that if k divides (g — 1)/2 we
are working in PSL(2,q) else we are working in PSU(2,q). We now look for a
matrix A of order 2 such that AXY, ZA and AX have order 2 or are trivial (we
are no more looking for an admissible homomorphism). Since A is of order 2 it

must be of the form
_ [/
A=+ (9 —77>

where —n? — k6 = 1. Indeed we can allow A to be the trivial element. From the
group presentation one deduces that this can be the case if -and only if & = 2.
Assume now that A is non trivial of the above form. Computing AXY we find

LA kATE
“\6x —pat

and since the trace must be 0 while A — A~ # 0 we must have n = 0. We have

0 &
s (00)

AX:i<ms —na)

Next we compute

fa 60
. wd 0
zas (% 9)

from which we obtain the relations 6 + 88 = 0 and either w0l + Yk = 0 or
8 + 1Kk = £2 (this latter case happens when ZA is the trivial element; note that
since ka # 0 AX cannot be the trivial element). We must thus solve a system of

equations
B =(3-7%)/(v*-4)

Yo =0k = -1
Sp+ 0B =71
k6 + 08 =0

0l + YK = 0,42
Remember that all elements belong to F, when working with PS L(2,q), while,
when working with PSU(2,¢), we have k% = k™! (in this case 89 = —0, 9 =1t
and A7 = \71),
Assume first that 42 = 3 then, from the fourth equation, we deduce that both
B and ¢ must be 0, so 7 = 0 and a solution always exists kK = ¢ = 41 -choose
the second possibility for the last equation.
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Assume now that v2 # 3. From the fourth equation one can express 2 =
(3—%2)/(7v*—4) and thus 3 —~2 must be a square in Fy. Remark that one obtains
the same condition even when working with PSU(2,q). Just express 6 = —0k/f
and ¢ = —x? with K = £+/66/6 and reason as in the proofs of Theorems 2.1.2 and
2.1.3. Remark also that in the previous case 3—+2% = 0 is a square and Q(y,7) = 0.
From the last equation we can find an expression for ¢ = +§~1 V(2 =3)/(v2 - 4)
(or ¢ = £671/(3—+%)/(v2 — 4)). If we substitute this expression in the third
equation we must get an identity. This gives exactly the condition Q(y,7) =0
after squaring and simplifying the term 2 — 4 # 0 (the second possibility gives
7 = 0, again the same condition of Lemma).

Remark that we never exploit the fact that ¢ is odd here. In fact for q even
again we need to find a solution to the above system of equations. For completeness
we give also the systems obtained in the other three cases.

Bo=vpp=(3-7%)/(r*~4)

Yo =0k = —1

ii) Sp+ By +y/(¥—4)=r
KO+ 068=0
e+ =0

Bs=vp=(3-7%)/(v*-4)

Ok = —1

i) Sp+ P+ (y2—4) =1
KO+600=0
wd +9Yr =10

Bo = (17213 =71 — 73 — 72 +4)/(vF — 4)

Yo =0k = —1
iv) Sp+ Py =1
KO +68 =0

w0+ 1K =0,+£2

Note that for all groups considered in sections 2.2 and 2.3 the associated
Coxeter groups have the extended tetrahedral group Ay X Z o, the extended octa-
hedral group S4 X Z or the extended dodecahedral group As X Z, as subgroups.
However these groups are not subgroups of PSL(2,q) (see Theorem 1.3.8), so the
extensions we are going to find will not be admissible. Once we have found an
extension onto PSL(2, g) we can conclude that there is an admissible surjection of
the Coxeter group onto PSL(2,q) x Z 5 where the element of order 2 commuting
with Ay, S4 or As is mapped to the generator of Z ,.
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On the other hand, assume that an admissible surjection of a Coxeter group
onto PSL(2,q) x Z 4 is given, consider the intersection of the image of the tetra-
hedral group with PSL(2,q). This is a normal subgroup and so it must coincide
with PSL(2,q) itself if ¢ # 2,3 (see Theorem 1.3.2). Yet we cannot be sure that
the surjection obtained by restricting our map to the tetrahedral group and then
projecting onto PSL(2,q) has torsion-free kernel. Any torsion elements in the
kernel must be of order 2. One can see that if any of the elements of order 2 in
the groups considered in sections 2.2 and 2.3 (apart from Tg ,) are mapped to the
identity, the whole group itself is mapped to the identity. For Ts’,z we can map the
element zz of order 2 to the trivial element, but in this case the image of the group
would be As and this homomorphism does not extend to an admissible surjection
from Ty , to PSL(2,5) X Zy. This means that the only possible admissible surjec-
tions from a Coxeter group associated to any of the tetrahedral groups studied in
paragraphs 2.2 and 2.3 onto PSL(2,q) x Z4 restrict to an admissible surjections
of the tetrahedral group to PSL(2,q). Thanks to these remarks we can prove

3.2.2 Theorem: N
i) There is an admissible surjection Cs,2 — PSL(2,q) X Z 4 ezactly for g = 11.
ii) There is an admissible surjection 54,3 — PSL(2,q) X Z 4 exactly for g = 7.
ili) There are no admissible surjections 5’4,4 — PSL(2,q) X Z».
iv) There are no admissible surjections Cs o — PSL(2,q) X Z».
v) There are no admissible surjections Cy s — PSL(2,q) x Z .
vi) There is an admissible surjection Cs,5 — PSL(2,q) X Z 5 exactly for ¢ = 19.
vi) There are no admissible surjections Cs,6 — PSL(2,q) X Z».
vii) There are no admissible surjections Cy6 — PSL(2,q9) X Z 5.
viii) There are no admissible surjections Cs6 — PSL(2,q9) x Z 5.
ix) There are no admissible surjections C(4,2,4,3) — PSL(2,q) X Z 5.

x) There are is an admissible surjection C(3,3,3,3) — PSL(2,q) X Z, ezactly
forqg=25.
xi) There are no admissible surjections C(3,3,3,4) — PSL(2,q) X Z5.
xil) There are no admissible surjections C(3,3,3, 5) — PSL(2,q) X Z .

Proof:

This is proved by applying Lemma 3.2.1 and exploiting the results found in para-
graphs 2.2 and 2.3. Just note that one must fix the values for the traces and then
verify that the conditions are satisfied altogether. The cases when Lemma 3.2.1
does not apply (e.g. C(3,3,3,n) and ¢ = 0 (mod 3)) are checked directly. For g
even one uses the remark made at the end of the proof of Lemma 3.2.1.
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According to the cases listed in [25], there are other admissible surjections,

precisely
ini) q=2% 52
in i) g =72,

in iv) ¢ = 52,
in vi) ¢ =2%
It is important to point out that if the Coxeter groups have admissible quo-
tients of type PSL(2,q) they must be in finite number.
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4. POLYHEDRAL CASE

In the following we shall classify admissible quotients of type PSL(2, q) for the
Picard group and another polyhedral group (paragraph 4.2). Even if we rely on the
results of section 2.1, the classification here is carried out adopting a method which
differs from that used in paragraphs 2.2 and 2.3. This method will allow us to
study also some infinite series of tetrahedral groups (paragraph 4.1). We conclude
the chapter with some considerations on the construction of closed hyperbolic
3-manifolds with large group actions.

4.1. Some infinite series of tetrahedral groups T% ,

In this section, for a fixed 2 < k < 5 we shall consider the series of tetrahedral
groups Ty , for arbitrary n. For n > 6 these tetrahedral groups have exactly one
hyperbolic vertex group which is the triangle group (2, 3,n). For any single n > 6
1t is rather difficult to give a complete classification of the finite quotients of T, ,,
of linear fractional type (see [21] for the “Hurwitz-case” n = 7), so we will discuss
simultaneously the whole series of groups. As noted in paragraph 2.1, the groups
15,5, are isomorphic to the extended triangle groups [2, 3,n]. The groups T3 5, have
been considered in detail in [12]. Both the groups T and T3, will be used in
the next section to determine the finite quotients of the Picard group.

Another reason for considering these series is that, for a fixed % and arbitrary
n, the finite admissible quotients of the groups Tk, are exactly the Gy-groups.
We refer to paragraph 1.6 for definition and general properties of Gy-groups.

The group Gy = D *z, D3 is isomorphic to the extended modular group
PGL(2,Z) (see Example 1.3.3 iii)), and its finite quotients of linear fractional
type have been classified in [43]. This is the case k = 2 of the following Theorem
whose proof, like that in [43], relies on the result of Macbeath stated in Theorem
1.3.9.

4.1.1 Theorem: Let 2 < k < 5 be fized. Then PSL(2, q) is an admissible
quotient of Ty r,, for some n, exactly in the following cases; equivalently, PSL(2,q)
15 a Gg-group ezactly in the following cases:

k=2: q#2,7,32 11,32m+1.
k=3: q#2,7,3% 11, 32m+1.
k=4: g = £1 (mod 8) but g # 7,32;
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k=5 g{g® — 1) =0 (mod 5) but q # 32.
Proof:

Assume first that ¢ = p™ is odd. From Theorem 2.1.2 we know that, if ~ # +2, an
admissible homomorphism from T ,, to PSL(2, q) exists if and only if we can find
traces v, 7 € Fy of elements of order & resp. n in PSL(2,q) such that Q(v,7) is a
square in F,. If we want a solution for some 7 all we need to check is that, fixed
an appropriate v according to the cases k = 2,3,4 resp. 5, there exists 7 € I,
such that Q(v,7) is a square in F,. The trace  of an element of order k = 2, 3.4
resp. 5 satisfies v = 0, v* = 1, 42 = 2 resp. 72+ — 1 = 0 (see Examples
1.3.7). In particular, there are always elements of order k = 2 and 3 in PSL(2,q),
and there are elements of order 4 (resp. 5) if and only if ¢ = +1 (mod 8) (resp.
q(¢> — 1) = 0 (mod 5)) (compare Theorem 1.3.8). In the following assume that
v # %2 and that, fixed k, PSL(2, q) contains elements of order k. In the different
cases Q(v, T) is given by:

k=2 —472 + 12, which is a square in Fy if and only if 3 — 72 is, since
4 is always a square;

k=3: 8 — 372

k=4: —272+4, which is a square in F, if and only if 2— 72 is a square,

since in this case 2 = 42 is a square;
k= 5: (=5 ++5/2)7% 7 21/5.
By Theorem 2.1.2, there exists an admissible homomorphism from Ty to
PSL(2,q) if and only if the affine conic defined over F,

k=2 a?+ 71?2 =3;
k=3: a’® + 372 = §;
k=4 a?+72=2;
k=5: a?+ ((5FV5)/2)m% = 72/5;

has got Fy-rational points (see paragraph 1.2). We can apply Theorem 1.2.12 once
we assume g Z 0 (mod 3) if £ = 2 so that no coefficient is 0.
However we want to know when this solution is surjective. This will always
be the case if the elements of order 2 and 3 whose product has order n are a
generating pair. All we must do is discard the cases when they generate a proper
subgroup, in particular we shall assume q # 32. Using Theorem 1.3.8, we see that
if the elements of order 2 and 3 generate a proper subgroup then we are in one of
the following situations:
i) 72=0,1,2,3 or 72 + 7 — 1 = 0 where they generate an exceptional subgroup
or an affine subgroup;
ii) 7 € Fy C F, where they generate a subgroup contained in PSL(2,¢") C
PSL(2,q);
iii) 72 € F s (this condition makes sense only if ¢ is an even power of p) where
the image is a group inside PGL(2, /q).
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Following [43], we shall call 7 admissible if it is not of one of the forms in i),
ii) and iii). The idea now is to count all solutions T and see when their number is
larger than the number of non-admissible solutions.

The number of solutions 7 is at least (¢ — 1)/2 (see Theorem 1.2.12) because
with (@, 7) also (—a, 7) is on the conic, while the number of 7's satisfying 1), ii) or
iii) is at most 11+ V4 +¢€./q where € is 0 if ¢ is an odd power of p and 1 otherwise.
Note that if ¢ = p is a prime there are at most 11 non-admissible 7’s belonging all
to case i). Now as in [42] we see that there is a solution for all g > 25, q # 7%, Just
consider the function f(q) := ¢ — 2(1 +€),/g — 23 (resp. g(q) := q — 23 when g is
prime). We want the function to be positive. Redefining ¢ := | /g in the first case
and studying the functions for all positive real numbers, it is not difficult to see
that they are non-positive only for the given values. This means that for qg> 25
but ¢ # 72 PSL(2,q) is an admissible quotient of Tin, k= 2,3,4,5, for some n.
In the cases ¢ < 25, ¢ = 72 as well as ¢ = 32, an admissible 7 is looked for directly.
We shall discuss some cases as an example at the end.

Note that if £ = 2 the condition that the elements of order 2 and 3 are a
generating pair is not only sufficient but also necessary since (2, 3, n) has index 2
in T, » and the linear fractional groups are simple (apart from PSL(2,2),PSL(2,3)
-see Theorem 1.3.2).

Let us now study the case £ = 2, p = 3. The conic becomes: a2 = —72,
There is only the point (0,0) on it if —1 is a non-square (i.e. ¢ is an odd power
of 3), while there are 2¢ — 1 points if —1 is a square (see again Theorem 1.2.12).
If ¢ =1 (mod 4) we can repeat the same estimate as above and conclude that
we always find an admissible 7 apart from ¢ = 32 (this last case must be treated
aside anyway). If ¢ = —1 instead, there is no admissible homomorphism from 75 »
to PSL(2,3™) (see Theorem 2.1.2).

Suppose now that v = £2. If we require 7 # £2 then we can exchange the
roles of v and 7. We obtain Q(v,7) = —4 which is a square if and only if —1 is,
independently of 7. We conclude that there are always admissible homomorphism
for all 7 # £2. To ensure surjectivity it is enough to see if g—2 > (1+€)/g+11 and
this is always the case for ¢ # 3, 5. In these two cases the existence of an admissible
homomorphism is sufficient to ensure surjectivity since we are mapping T} , to
one of its vertex groups.

We still have to study the cases when ¢ = 2™. We do not need to consider
the case k = 4 since there are no elements of order 4 in PSL(2,2™).

Suppose £ = 3,5 first. To see if there is an admissible homomorphism to
PSL(2,2™) we can repeat the same considerations made in the proof of Theorem
2.1.2. Again we need to solve the following second degree equation

§p* —Tp—B=0.
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Observe that if £ = 5, 6 # 0 and we can put ¢ := d¢ after multiplying by § both
sides of the equation thus obtaining

+rt+y2=0

(recall that v2++1 = 0 in this case). Dividing up by 72 we obtain the following
equation (where the new ¢ stands for t/~)

2rlir1=0
v

whose roots are tg € I, q such that o +tg e 7/7v. We thus see that there are at
least (¢ — 1)/2 possible 7’s obtained varying tg in F;.

If kK = 3 we have 36 = 0 but anyway all 7 € F; are solutions to our equation.
We have only to discard the case ¢ = 2 since in this case the vertex group Ay is
not contained in PSL(2,2).

Now again one concludes checking that there exist admissible solutions 7.
Note that here we have only 4 values in i) and case ili) is meaningless so the
conditions become ¢ —1 >4+ ,/gif k=3 and (¢—1)/2> 4+ Vq if k= 5. They
are satisfied for all ¢ > 4 resp. ¢ > 16. The only situation that we must check
aside is for k =5 ¢ = 2% but in this case PSL(2,2%) = PSL(2,5).

If k = 2 the element XY is parabolic. In any case it must be of the form

/1
=5 1)

where A € Iy -note that 2 = 0 (mod 2). Repeating the same type of procedure
used in Theorem 2.1.2, we see that we always have a solution for any 7 # 0,1 (if
7 = 0 there are no homomorphisms, if 7 =1 a homomorphism exists but it is not
admissible). This is enough to ensure existence of admissible quotients of T5 ,, of
type PSL(2,2™) for every m > 1.

4.1.2 Example: For completeness we show now how one can reason in the cases
when g < 25, ¢ = 72.

First of all, it will be useful to consider in detail the groups Ty, for k and n
varying in the set {2,3,4,5} and their admissible quotients of spherical type. We
have (see [59])

i) T3 2 = Dg but it cannot have an admissible homomorphism onto any of the
groups D3 = PSL(2,2) or to Dy which are its vertex groups.
ii) T35 = S4 = PGL(2,3) but it does not have an admissible homomorphism to

A4 = PSL(2,3); one can check this applying Theorem 2.1.2 to vy=0,7==+1

and g = 3.

i) T35 & A5 = PSL(2,2?) = PSL(2,5) but it does not have an admissible
homomorphism to A4 or Sy; this can be seen by a direct computation with
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permutations. Indeed, consider T3 the element XY would be parabolic.
Working with permutations instead, up to conjugation in S4 we can fix XY =
(1,2,3). Since the upper-right vertex group is A4, X must be the product
of two disjoint transpositions. The possible X’s are: (1,2)(3,4), (1,3)(2,4)
and (1,4)(2,3); they all have products of order 3 with XY. Now we choose
Z. Since XY Z must have order 2, Z cannot be of one of the forms above
and so must lie in Sy (we thus see that A4 is not an admissible quotient of
T3,n). The possible choices for Z are: (1,2), (1,3), (2,3). The element ZX
has order 2, 4 and 4 respectively.
iv) Ty = S4 X Z 5 and it has an admissible surjection onto Sy.
v) T4y3 is an extension of (Z3)® by S4 and it has an admissible surjection onto
S4.
vi) T4.4 is Euclidean and it has an admissible surjection onto Sy.
vii) T5 2 = A5 X Z 5 and it has an admissible surjection onto As.
viii) T5 3 is an extension of Z 4 by (As)? and it has an admissible surjection onto
A5.
ix) Ts4 is closed hyperbolic and does not have any admissible surjection onto
spherical groups of linear fractional type (see Theorem 2.2.3).
x) Ts5 is closed hyperbolic and has an admissible surjection onto Ajs (see The-
orem 2.2.3).
Now let us fix k and g. We shall consider all 7’s for which we have a solution to
our equation and then check if the homomorphism is surjective. We only consider
the cases for k£ = 3,4, 5 since the case for k = 2 can be found in [43].

k=3

Let ¢ = 5. An admissible solution exists according to case iii) above: it
corresponds to 72 = 1 and a? = 0.

Let ¢ = 7. We have 72 = 0, 1, 4, 2 corresponding to a? = 1, 5, 3, 2. We must
discard the first and last cases because they give the trivial solution Sy (cases ii)
and v) above) and the second and third because the image cannot be in PS L(2,7)
by Theorem 2.1.2. ~

Let ¢ = 11. We have 7% = 0, 1, 4, 9, 5 corresponding to a? = 8, 5, 7, 3, 4.
We must discard the first and the third case because they do not give a solution
in PSL(2,11) (the image is S; and is contained in PGL(2,11) -by case ii) and
Theorem 2.1.2) and the remaining cases because they correspond to n = 3,5 and
the image is A5 (cases iii) and viii)).

Let ¢ = 13. We have 72 =10, 1, 4, 9, 3, 12, 10 corresponding to a? = 8, 5, 9,
7,12, 11, 4. Observe that 72 = 4, 9, 12, 10 are admissible and the first and last
value give a solution.

For ¢ = 17,19, 23 one reasons as in case g = 13: a direct computation shows
that there are admissible 7’s which are solutions.
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We now discuss case ¢ = 5%. Case ¢ = 7° follows the same pattern. We must
discard the cases when the image is contained in PGL(2,q). Let £ a generator of
the extension Fs2 of Fs, such that £2 = 2. The possibilities for 72 are 0, 1, 2 = £2,
3=0(20%4,1+26 = (E+2)% 2+4€, 3+€, 44+ 36, 34+26 = (€+2)2, 1+ 4¢,
44 €, 2+ 3¢ corresponding to a? = 3,0, 2, 4, 1, 46, 2+ 3¢, 44+ 2¢, 1+ €, 4 + 4¢,
3¢, 14 2¢, 2+ & The last eight 72°s are admissible and the seventh and twelfth
values for a? are indeed squares in Fs2.

If ¢ = 32, the possible values for n are 2,3,4 and 5. From the above discussion
we see that T3 2 and T3 4 map to Sy = PGL(2,3) while T3 3 and T3 5 map to As.

k=4

We have to consider only the cases ¢ = 7 and 32.

If ¢ = 7, the solutions to our equation are 72 = 0,1,2 corresponding to
n = 2,3,4. Comparing the given list we see that the admissible homomorphisms
are not surjective.

If ¢ = 32, we can reason as in the case k = 3.
k=25

The only case to consider is for ¢ = 3% and we can proceed as before.

4.1.3 Remark: Note that by reduction of coefficients mod p for the extended
modular group PSL(2,7Z) = G, we obtain admissible quotients of type PGL(2, p)
if p= -1 (mod 4), i.e. —1 is a non-square in F,, and of type PSL(2,p) if p = 1
(mod 4). Now the case k = 2 of Theorem 4.1.1 implies that most admissible quo-
tients of the extended modular group are not obtained by reduction of coefficients
mod p.

4.1.4 Corollary: PSL(2,q) is a mazimal handlebody group (see paragraph 1.6)
of order 12(g — 1) exactly for all q dif ferent from 2, 7, 3% and 32™+1,

4.2. The Picard group

In the next Theorem we shall classify the groups PSL(2,q) which are ad-
missible quotients of the Picard group PSL(2,0;) = PSL(2,Z[i]). The Picard
group is a polygonal product (see Figure 7) isomorphic to the free product with
amalgamation

Go *(2,x25) G3 = (D2 *z, D3) *(z,:2,) (D3 %z, As),
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where the amalgam (Zy = (w)) * (Z3 = (y)), isomorphic to the modular group
PSL(2,Z), identifies the generators called w and y in the above presentation of
G and Gg3 (actually, of Gy), see [52], [15] and [16).

(2,2,2,2) 2

12
N
y

Figure 7

Given a homomorphism of the Picard group Ga#(z,+2,)G3 onto a finite group,
the image of the element wy ™! has a certain order n, and then the homomorphism
factors through the free product with amalgamation

Ton *2,3m) T3,n

over the triangle group (2,3,n) = (w,y | w?, 43, (wy=1)") (note that, in the above
generators of both G and Gg, one has wy™! = 2z, and that Ty, ,, = Gr/{(zz)™)).
Thus we are in a situation where we can apply Theorems 2.1.2 and 4.1.1 to the
factors Ty ,, and T3 ,, of the product. The result is as follows.

4.2.1 Theorem: The group PSL(2,q) is an admissible quotient of the Picard
group ezactly for the values of q dif ferent from 2,7,3%,11 and 32m+!,

Proof:

We assume for the moment that ¢ is not a power of 2 or 3.

Suppose there exists an admissible homomorphism from the Picard group to
PSL(2,q). As noted above, the homomorphism factors through T, *(2,3,n) T3,n
and induces admissible homomorphisms from both T2n and T3, to PSL(2,q). By
Theorem 2.1.2 resp. the proof of Theorem 4.1.1, we find a solution of the following
system of equations

a?=3— 72

b2 = 8 — 372
where 7 is the trace of the element of order n in PSL(2,q) which is the image of
2T.
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Conversely, suppose we have a solution of this system. By Theorem 2.1.2,
there exist admissible homomorphisms from both T ,, and T3, to PSL(2,q) such
that the image of the element zz has trace 7. By Lemma 2.1.1 the restrictions
of these homomorphisms to the common triangle subgroup (2,3,n) generated by
z and z are the same up to conjugation whenever 72 % 3. Then the two homo-
morphisms combine giving an admissible homomorphism from Tom *(2,3,n) T3,n toO
PSL(2,q), and thus also from the Picard group G, *(ZyxZ3) G 3. So we want to
find a solution of the above system which implies also surjectivity (as in the proof
of Theorem 4.1.1).

The solutions of the system are the F,-rational points of an affine variety in
A‘%q defined over Fy. According to paragraph 1.2, it is easy to see that this variety
is a curve of degree 4 and genus 1.

-The Jacobian associated to the polynomials defining the variety is

20 0 27
( 0 2b 67’)

and it is straightforward to verify that if g is not a power of 2 or 3 the Jacobian for
any point (a,b,7) of the variety has rank 2, so that the variety is a smooth curve.

-The intersection of the curve with a general 2-plane (take for instance the
planes defined by a = 0, b= 0 or 7 = 0) consists of four points

-The genus can be computed considering the projection of the curve on the
plane a = 0 and using Riemann-Hurwitz formula (see Theorem 1.2.11). The image
of the projection, which has degree 2, is a smooth conic and thus has genus 0. Then
there are four points where the fibre has cardinality 1 instead of 2: these are the
points of intersection of the curve with the 2-plane defined by a = 0.

Applying Theorem 1.2.13, the number N of [Fy-rational points on the projec-
tive closure of our curve can be estimated by the following inequality:

IN —¢q| <2g+1.

The number of solutions to our system is then grater or equal to q—2,/q—75 (here
we are excluding the points at infinity which are four at the most) and since the
curve has degree 4, the number of possible 7’s is not less than (g—2\/q—5)/4: fix 7
(that is, intersect the curve with the 2-plane 7 =const.) there are at the most four
possible (a, b) such that (7, a,b) is on the curve. We want this number to be larger
than (1 +¢€),/g + 11 (equivalently ¢ — (6 + 4€),/g — 49 > 0) or 11 (equivalently
g—2q—49 > 0) if ¢ = p is a prime, just like in Theorem 4.1.1. Studying
the functions f(q) := ¢ — 6,/ — 49 (for ¢ an odd, non-trivial power of a prime),
(@) == f(q) — 4,/q (for ¢ an even power of a prime) and 9(q) == q—2/g—49
(¢ prime) defined over the positive real numbers (one can replace ¢ := \/q for
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simplicity), we see that they are positive for all ¢ > 67 but q # 112,132 and in
these cases an admissible 7 does exist.

We want now to see what happens when the functions are non-positive. First
we remark some facts. First of all, by reduction of coefficients mod p we find
admissible quotients of the Picard group of type PSL(2,p) if p = 1 (mod 4) and
of type PSL(2,p?) if p= —1 (mod 4) (compare Theorem 2.3.3).

Secondarily it is easy to see that our system of equations is equivalent to

2 =3 - qa?
{ 3a2 —-b2 =1
and we are able to solve the second equation and give an explicit expression for a
and b (as in the proof of Theorem 1.2.12). Substituting a in the first equation we
obtain 7% = (34 — o? — @~2)/12 where a € F," if 3 is a square in Fy or o € F 3
isa(¢g+ 1) root of umty otherwise. Note that in both cases we can put o = 1
obtaining 72 = 8/3 which is a square if and only if 2 and 3 are both either squares
or non-squares (i.e. ¢ = +1,%5 (mod 24)). Assume now that ¢ is a prime. We
have to discard the possibility for 72 to be non-admissible, i.e. one of those given
in case i). We see that we have an admissible solution 7 (i.e. 72#£0,1,2,3 and
72+ 7 —1+0) for all prime numbers p # 5, p = &1, +5 (mod 24).

At this point we only need to check if PSL(2,q) is an admissible quotient of
the Picard group for ¢ = 7,11, 5%, 31, 59, 132 and this is done by direct computation
as in Example 4.1.2. Here one must remember that there might be admissible sur-
Jections from the Picard group onto PSL(2, q) which do not restrict to surjections
from any of the two factor groups T>p and T3 ,. We do not find an admissible 7
only when ¢ =7, 11.

For the cases when ¢ is a power of 2 or 3, we just make the same sort of
considerations of Theorem 4.1.1. We conclude that we can find an ng such that
PSL(2,q) is an admissible quotient of both T, ng and T3, if and only if ¢ # 2 or
q is an even power of 3 but g # 32.

This finishes the proof of Theorem.

The proof of Theorem 4.2.1 works for different amalgams of the groups Gy,
generalizing the Picard group (some of the corresponding orbifolds and their vol-
umes occur in [12, pages 169-170]). For example the following Theorem deals with
the admissible quotients of the hyperbolic polyhedral group uniformizing the orb-
ifold represented in Figure 8. Observe that this group is also an extended Bianchi

group.
4.2.2 Theorem: The group PSL(2,q) is an admissible quotient of the extended
Bianchi group PGL(2,0z) = PGL(2,Z[iv2]) & Gg %(z,.z,) G4 exactly for all
q = £1 (mod 8) dif ferent from 7, 32.
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Proof:

We only make some considerations. The system of equations now is

and since one of the vertex-groups is S4 we must require ¢ = +1 (mod 8). The
system defines again a smooth curve of degree 4 and genus 1 (if ¢ is not a power
of 3) and the same estimate as in the previous Theorem holds, giving a solution
for all ¢ > 67, ¢ # 112,132,

Reduction mod p again gives the following admissible quotients:

p=1 (mod 8) : PSL(2,p)
p=—1 (mod 8) : PGL(2,p)
p = +3 (mod 8) : PSL(2,p?).

The system is equivalent to

2 =3 —a?
a’>—b*=(a+b)(a—b)=1

and one can express 7° = (10 — o — a~?) /4 with o € F. Substituting o = 3 one
gets 72 = 2/9 which is always a square (since 2 is) and one has to exclude only the
case when 2/9 is a non-admissible value for 72. This consideration proves that we
have a surjection also for ¢ = 23,47. The only cases that must be verified directly
are ¢ = 31, 7.

For ¢ = 0 (mod 3) one reasons as in the previous Theorem.

4.2.3 Remark: As a corollary to Theorem 4.2.2 we see that PSL(2,q) is an
admissible quotient of PSL(2, O5) for all ¢ = +1 (mod 8) different from 7 and 32.
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The Picard group has various torsion-free subgroups of small index uniformiz-
ing the complements of hyperbolic links in the 3-sphere, for example the Whitehead
link and the Borromean rings (see [8] and Figure 9). Recall that the group of a
link is defined as the fundamental group of its complement (see [40]). The group
of the Whitehead link is a subgroup of index 12 in the Picard group. By restricting
the surjections from Theorem 4.2.1 to this subgroup we get

4.2.4 Corollary: The group PSL(2,q) is a quotient of the group of the Whitehead
link for all values ¢ > 11 dif ferent from 32m+1,

Proof:

Surjectivity of the restrictions follows from the fact that, for g > 11, a proper
subgroup of PSL(2,¢) has index at least ¢ + 1 (see Theorem 1.3.8).

A similar result holds for the group of the Borromean rings which has index
24 in the Picard group. However here one can say much more. The group of
the Borromean rings has the free group of rank 2 as a quotient (see the proof of
Theorem 4.3.1), and hence also every 2-generator group is a quotient, in particular
every finite simple group. Note that the group of the 2-bridge Whitehead link is
2-generated and does not have the free group of rank 2 as a quotient. The group of
the figure-8-knot (see Figure 9) is a subgroup of index 12 in the tetrahedral Bianchi
group PSL(2,03) which we studied in section 2.3. As for the group PGL(2,03)
considered always in section 2.3, all finite admissible quotients of linear fractional
type of this tetrahedral group are obtained by reduction mod p, so one obtains
quite a restricted set of quotients in this way. It would be interesting to know
which finite simple groups are quotients of the group of the figure-8-knot (see also
[46]).

D =0 &

Figure-8-knot Whitehead-link Borromean rings

Figure 9



4.3. Some geometrical remarks

By [2] the Picard orbifold H?/PSL(2, ;) is the smallest hyperbolic 3-orbifold
whose volume is a limit of other volumes or, equivalently, the smallest hyperbolic
3-orbifold with a non-rigid cusp on which Dehn surgery can be performed (see also
[14] for the notion of Dehn surgery on orbifolds). Thus hyperbolic Dehn surgery
on the Picard orbifold can be used to construct small hyperbolic 3-manifolds ad-
mitting PSL(2, g)-actions, i.e. the quotient of the volume of the manifold by the
order |PSL(2,q)| of the group is small.

The Picard group PSL(2, Z[t]) has the following presentation (generators are
represented in Figure 10 a))

(z,y,z,w | 2°,9°, 2%, w?, (yz)?, (27 w)?, (w2)?, (2y™1)?)
whose generators (see [52]) as elements of PSL(2,C) are
x:<0 z) y:(1 4) z:<0 z> :<0 —1>.
1 —1 1 0 0 1 0
As we know, reduction of coefficients mod p of the Picard group gives admissible
quotients of type PSL(2,p) resp. PSL(2,p?) if p = 1 resp. —1 (mod 4) (see
Theorems 2.3.3 and 4.2.1).

If we compactify the Picard orbifold by means of Dehn surgery along its cusp
we obtain for almost all surgery coefficients (n, k) a new hyperbolic orbifold of
smaller volume O(n, k) (compare Theorem 1.6.10). Denote by (¢, m) a longitude-
meridian pair of generators for the fundamental group of the border of the Picard
orbifold truncated along its cusp. If we glue in a solid torus in such a way that
the element £*m™ (with n and k coprime) becomes trivial, we perform an (n, k)-
surgery (see paragraph 1.6 for definitions). The fundamental group of the new
orbifold is a quotient of the Picard group by the extra relation £Fm™ = 1.

We want to see when the admissible surjections defined as reductions mod p
from the Picard group to PSL(2, ¢) factor through the fundamental groups of the

orbifolds obtained by Dehn surgery.
In our case we can choose £ = yw and m = zz. The element £*m™ is given by

(—1)e+n <(1) k J; m)

and we have the required factorization if and only if the image of this matrix is
trivial in PSL(2,q). This is equivalent to ask £ +in = 0 in F,. Notice that if
q = p, for every given n we are able to find an infinite number of k’s such that a
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factorization exists. On the other hand, if ¢ = p? we must choose k,n = 0 (mod
p) since both k,n have image in F, while 7 belongs to F,2 — IF,.

3
3 Ix
Y <
i n
Wi Y. 2| 3
2 3 /
2
|z 2 o)
2 2
a) b)

Figure 10

In the case of (n, 1)-surgery the orbifold obtained has singular set represented
in Figure 10 b). Using the Wirtinger method for orbifolds, we see that the relation
in this case becomes

w=z""1

wl3
w3

(yw) 2 (2w) (yw)

if n is even or
n—1 n+1
(yw) = (zw) " (yw) 2 w=2z""

if 7 is odd. In terms of matrices the relation reads

mo1y (1 —i
i 0) \—-i 0
giving the condition n = ¢, which can be satisfied by infinite values of n if and

only if ¢ = 1 (mod 4) is a prime number. What we have said can be summarized
in the following

4.3.1 Theorem: Let m7"(O(n,k)) denote the fundamental group of the orbifold
O(n, k), obtained by hyperbolic Dehn surgery along the cusp of the Picard orb-
ifold with surgery coef ficients (n,k). An admissible surjection PSL(2,Z[i]) —
PSL(2,q) obtained by reduction of coef ficients mod p factors through (O (n, k))
if and only if k+1in = 0 in F, (here i denotes the image of the mmaginary unity in
F,).

As we have already stressed, closed hyperbolic 3-orbifolds of minimal volumes
are not known. The probable candidates in the orientable case are the tetrahedral
orbifolds associated to some of the nine Lannér tetrahedra resp. quotients of
these by involutions. Finite quotients of type PSL(2,q) and PGL(2,q) of the
corresponding tetrahedral groups have been studied in [20] and in paragraph 2.2.
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As in the case of cusped tetrahedral groups only a restricted set of values of
q occurs. So, similar as in section 4.1 it seems reasonable to consider infinite
series of small volume hyperbolic 3-orbifolds simultaneously. As the smallest limit
volume is that of the Picard orbifold we shall consider closed hyperbolic 3-orbifolds
obtained by generalized hyperbolic Dehn surgery (see paragraph 1.6) on the cusp
of the Picard orbifold. The volumes of these closed orbifolds are smaller than
the volume of the Picard orbifold which they have as a limit value. Also, the
closed hyperbolic 3-orbifolds of smallest known volumes are obtained in this way.
We denote by V' = 0,30532... the volume of the Picard orbifold. We shall also
consider 3-orbifolds obtained by surgery on the Borromean rings (see Figure 9).

The next result should be compared with [46, Theorem 5] where surgery on
the complement of the figure-8 knot is considered.

4.3.2 Theorem:

1) Forq dif ferent from 2,7,3% and 3*™+1, the minimal volume of a closed hyper-
bolic PSL(2, q)-manifold (see Def inition 1.5.1) is smaller than V|PSL(2, q)|.
Moreover, for each fized q this is the smallest value which is a limit of volumes
of hyperbolic PSL(2, q)-manifolds.

ii) For any finite r-generator group G, there exist hyperbolic G-manifolds of
volume smaller than and arbitrarily close to 24V (r — 1)|G|. Given any real
constant c, there exist finite groups G such that the volume of any hyperbolic
G-manifold is larger than c|G].

Proof:

We start with the proof of part ii) of the Theorem.

The group of the Borromean rings is a subgroup of index 24 in the Pi-
card group (see [8]), and so their complement has volume 24V. Computing the
Wirtinger presentation from the standard projection of the link one obtains a group
presentation with six generators and six defining relations (one of which may be
deleted). Three of the relations can be used to eliminate three of the generators.
Setting one of the remaining three generators equal to 1, one obtains a free group
of rank two which is therefore a quotient of the group of the Borromean rings.
Hence every 2-generator group is a quotient of the group of the Borromean rings.

Consider a surjection ¢ of the group of the Borromean rings onto a 2-generator
group G. We perform generalized hyperbolic surgeries of the following types on
the three components of the Borromean rings. If £ and m denote a preferred frame
for a component of the link, and if $ maps £Fm™, with (k,m) =1, to an element of
order n in G then we may perform (np, nqg)-surgery on that component, i.e. £**mnm
becomes trivial after the surgery. The result is a 3-orbifold where the central curve
of the added solid torus has branching order n. By Thurston’s hyperbolic surgery
theorem (Theorem 1.6.10), excluding finitely many surgeries for each component,
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the resulting closed 3-orbifolds are hyperbolic, and their volumes are smaller than
the volume 24V of the complement of the Borromean rings which they have as a
limit value. By construction, the surjection ¢ induces admissible surjections of the
fundamental groups of these closed 3-orbifolds onto the group GG. The G-manifolds
of the Theorem are now the regular coverings of the orbifolds corresponding to the
kernels of these surjections.

For arbitrary r, we note that the free group of rank r is a subgroup of index
7 — 1 in the free group of rank 2 (see [54]). Thus the free group of rank r is a
quotient of the fundamental group of an r-fold covering of the complement of the
Borromean rings. This covering is a hyperbolic 3-manifold with a finite number
of cusps, and the proof is now similar as in the case r = 2.

For any hyperbolic G-manifold M, the quotient M /G is a hyperbolic 3-orbifold
O of volume vol(M)/|G| and M is the covering of O corresponding to the kernel
of an admissible surjection of 71(O) onto G. By [14, Prop.5.5], all hyperbolic
3-orbifolds whose volumes are smaller than a constant ¢ are obtained by Dehn
surgery on one of a finite set of hyperbolic 3-orbifolds. If r denotes the maximal
rank of the fundamental groups of these finitely many 3-orbifolds, then also the
fundamental group of any 3-orbifold obtained by surgery on one of these has rank
less or equal to r. Hence, if the finite group G has rank larger than r, any
hyperbolic G-manifold has volume at least c|G|.

This finishes the proof of part ii) of the Theorem.

The proof of part i) is similar using surgery on the cusp of the Picard orbifold.
Such a surgery is indicated in Figure 11 a) where a 3-ball orbifold is glued along its
boundary to the boundary-horosphere of the compactified Picard orbifold. Denote
by C the curve on the horosphere to which the meridional curve ¢’ on the boundary
of the 3-ball orbifold is glued. The result is a closed 3-orbifold O(C,n). Excluding
finitely many isotopy classes of curves C, these 3-orbifold are hyperbolic, and their
volumes are smaller than the volume of the Picard orbifold which they have as a
limit (see [14]).

By Theorem 4.2.1, for the above values of ¢ there exists an admissible surjec-
tion @ of the Picard group onto PSL(2,q). If ® maps the curve C to an element of
order n then it induces an admissible surjection of the fundamental group of the
hyperbolic 3-orbifold (C,n) onto PSL(2,q). Part i) of the Theorem is proved now
by considering the closed hyperbolic PSL(2, ¢)-manifolds which are the coverings
of the orbifolds O(C, n) corresponding to the kernels of these induced surjections.

This finishes the proof of the Theorem.

The simplest of the orbifolds D(C, n) in the proof of the previous Theorem are
the polyhedral orbifolds shown in Figure 11 b) which are hyperbolic for n > 6. In
this case the curve C of the surgery is represented by the element zz in the Picard
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group, and ¢ induces an admissible surjection of the corresponding hyperbolic
polyhedral group onto PSL(2,¢) if and only if ¢(2z) has order n. The volumes of
these polyhedra are equal to those of the truncated tetrahedra associated to the
groups T3, and can be found in [12].

2 2
(E)c
R=Na
N

3
2 2
2 n 3
2 2
2
b)
Figure 11

We believe that, at least asymptotically, the orbifolds in the proof of Theorem
4.3.2 i) obtained by surgery on the Picard orbifold give the best realizability results
for PSL(2,¢)-manifolds with respect to minimal volume, in the sense that the
supremuin

sup {vol(M)/|PSL(2,q)|: M is a minimal volume hyperbolic PSL(2, ¢)-manifold,
for some g # 32, 32m+1}

is equal to the volume V' of the Picard orbifold. By the above it is certainly
not larger than V but at present we do not have a proof of the equality. Also,
we think that the Picard orbifold plays a similar role for other classes of finite
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groups. In particular, it would be interesting to know which finite simple groups
are admissible quotients of the Picard group (for some classes of alternating groups
see [30, page 153]). In view of the proof of Theorem 4.3.2 ii), also the following
question is of interest: which is the smallest volume hyperbolic 3-manifold or 3-
orbifold whose fundamental group has the free group of rank 2 as a quotient (or a
free product of two finite cyclic groups, most interestingly Z g x Z 3)? Also, what
is

sup {vol(M)/|G|: G is a finite 2-generator group and M a minimal volume hy-
perbolic G-manifold }?
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