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Abstract

We review the connection of Y – and Q–systems with the BPS spectra of 4D N = 2
supersymmetric QFTs. For each finite BPS chamber of a N = 2 model which is UV
superconformal, one gets a periodic Y –system, while for each finite BPS chamber of an
asymptotically–free N = 2 QFT one gets a Q–system i.e. a rational recursion all whose
solutions satisfy a linear recursion with constant coefficients (depending on the initial con-
ditions). For instance, the classical ADE Y –systems of Zamolodchikov correspond to the
ADE Argyres–Douglas N = 2 SCFTs, while the usual ADE Q-systems to pure N = 2
SYM. After having motivated the correspondence both from the QFT and the TBA sides,
and having introduced the basic tricks of the trade, we exploit the connection to construct
and solve new Y – and Q–systems.

In particular, we present the new Y –systems associated to the E6, E7, E8 Minahan–
Nemeshanski SCFTs and to theD2(G) SCFTs. We also present newQ–system corresponding
to SYM coupled to specific matter systems such that the YM β–function remains negative.
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1 Introduction and Overview

Y –systems1 [1–3] and Q–systems [5–7] are important tools in the theory of integrable sys-

tems which, rather surprisingly, turn out to unify structures fundamental for many areas of

theoretical physics2 and pure mathematics. Particularly interesting and useful is the physical

interpretation of general Y – and Q–systems in the context of QFT’s (in diverse dimensions)

having extended supersymmetry [9–11]. This interpretation puts these systems and their

‘magical’ properties in a new and broader perspective. The relation with supersymmetric

QFT has paved the way to the construction and the explicit solution of a large number of

new Y – and Q–systems whose existence was not suspected before. In this paper we review

such developments, providing also additional examples of Y – and Q–systems, not published

before, as well as outlining the method to construct and solve more general ones.

Our first basic claim [9] is that there is a (family of) periodic Y –systems for each finite

BPS chamber of a 4D N = 2 supersymmetric QFT which arises as the mass–deformation

1 For a recent review see [4].
2 An important development, not discussed in the present paper, is the role of Y –systems in the holo-

graphic computation of Wilson loop expectation values at strong coupling, see ref. [8].
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of a non–trivial N = 2 SCFT. A BPS chamber is finite if it contains only finitely many

hypermultiplets and no higher spin BPS particle. The original ADE Y –systems defined by

Zamolodchikov [1] correspond, in this N = 2 perspective, to the minimal3 BPS chambers of

the Argyres–Douglas (AD) models, which are also classified by the simply–laced Lie algebras

ADE [12, 13]. Likewise, the Y –systems associated to pairs (G,G′) of Dynkin graphs [2]

correspond to the canonical finite BPS chambers of the (G,G′) N = 2 QFT’s constructed4

in [9]. Other periodic Y –systems were constructed in [10,11], and several new examples will

be provided in the present paper.

In all these instances, the fact that the Y –system is periodic is a reflection of the fact that

the associated N = 2 QFT has a good UV scaling limit. Let us explain how this happens

from the point of view of QFT. One starts in the UV with the given N = 2 SCFT which

has an exact U(1)R symmetry part of the N = 2 superconformal algebra. Adding the mass

deformation, we break explicitly (and softly) the U(1)R symmetry. In the BPS sector this

breaking manifests itself as follows: from the susy algebra

{QA
α , Q

B
β } = ǫαβ ǫ

AB Z (1.1)

we see that the central charge Z would transform under the U(1)R rotation QA
α → eiφ QA

α

as Z → e2iφ Z; but, as its name implies, Z is central in the Lie algebra of the continuous

(unbroken) symmetries of the QFT [15], and no continuous symmetry may rotate its phase.

Since in a mass–deformed theory Z is not the zero operator, we get a contradiction unless

U(1)R is softly broken by the mass. However, a discrete subgroup of U(1)R may still survive

the deformation. A subgroup Zℓ ⊂ U(1)R survives precisely when the deforming operator

Omass commutes with exp(2πiR/ℓ), where R is the SCFT U(1)R charge normalized so that

R(QA
α ) = 1/2. The operator L ≡ exp(2πiR/ℓ) is then a symmetry of the massive QFT which

is called the 1/ℓ–fractional quantum monodromy [9]. The operator M = exp(2πiR) is always

a symmetry of the QFT (at least in the IR); it is called the (full) quantum monodromy [9].

The 1/2–fractional monodromy K is also well–defined for all N = 2 models [9], since

there always exists a symmetry inverting the sign of the susy central charge, Z ↔ −Z,

namely PCT. Whenever a 1/ℓ–fractional monodromy L exists, we have M = L ℓ, and the

largest allowed ℓ must be even by PCT. The eigenvalues of the adjoint action of the ℓ–th

fractional quantum monodromy are equal to exp(2πiqi/ℓ), where qi are the U(1)R charges

of the operators in the undeformed SCFT. Suppose — as it happens in all known N = 2

theories — that the qi’s are rational numbers of the form n/r with n ∈ N and a fixed

3 Minimal means the chamber with the smaller number of particles. For ADE AD this corresponds to
one hypermultiplet per simple root of the Lie algebra g ∈ ADE.

4 In [9] only the case with G,G′ simply–laced was discussed in detail. In general G,G′ may be non–simply
laced Dynkin graphs or even tadpole graphs [2]. These Y –systems may be obtained by folding the simply–
laced ones along a group of ‘outer automorphisms’, as in the examples of Appendix C of [9]. In this review
we shall consider only the generalization of the simply–laced Y –systems, limiting ourselves to stressing that
other non–simply–laced Y –systems may be constructed out of them by the folding procedure. We must admit
that the corresponding issue is not adequately understood for the non–simply–laced Q–systems, despite the
progresses of [14].
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denominator r. Then one has

L
rℓ = M

r = 1. (1.2)

If r is the smallest positive integer for which this equation is true, we say that the quantum

monodromy has order r. As we review in §.3.3, whenever we know the Seiberg–Witten

geometry of the N = 2 QFT to get the two integers ℓ and r is a simple exercise in geometry

[9, 10, 16].

The action of L may be computed in a different way. Each (massive) BPS state carries

a phase eiθ, namely the phase of its (non–zero) central charge Z. This phase specifies the

subalgebra of the susy algebra which leaves invariant the BPS (short) supermultiplet. In a

N = 2 theory there are also half–BPS line–operators Oγ(ζ), labelled by elements γ of the

lattice Γ of conserved charges, which are invariant under the sub–supersymmetry of twistor

parameter ζ ∈ P1 [17–20]. The theory is quantized in the Euclidean space R3 × S1
R, and

the line operators Oγ(ζ) are wrapped on the circle S1
R of length R. The vacuum expectation

values of these operators Xγ(ζ) = 〈Oγ(ζ)〉 are functions on a 4m–dimensional hyperKähler

variety T which are holomorphic in complex structure ζ [17]. Herem is the rank of the lattice

Γ of conserved charges. The Xγ(ζ)’s jump when their phase ζ/|ζ | aligns with the phase eiθ

of a BPS state [17]. The total variation of Xγ(ζ) as ζ → e2πi/ℓζ is given by the composition

of all the jumps due to BPS states with phases in the wedge α ≤ θ < θ + 2π/ℓ times a

kinematic operator L, with Lℓ = 1, which realizes the Zℓ–symmetry on the BPS spectrum

(i.e. it maps the BPS particles of phase θ into the BPS particles of phase θ+2π/ℓ) [9]. The

Kontsevich–Soibelman wall–crossing formula [21][17, 22] states that each jump is a rational

symplectic transformation of the {Xγ(ζ)}γ∈Γ. Therefore, if in the wedge α ≤ θ < α + 2π/ℓ

there are just finitely many BPS particles, the action of L on the Xγ(ζ)’s is given by a finite

composition of Kontsevich–Soibelman rational symplectomorphisms, times the linear map

associated to the kinematic operation L; in conclusion, L acts on the Xγ(ζ) as a rational

map L : Pm → Pm. The Y –system associated to the ℓ–th fractional monodromy L is then

the rational recursion

Xγ(ζ)n = L
(
Xγ′(ζ)n−1

)
γ

(
≡ Xγ(e

2πin/ℓζ)

)
n ∈ Z. (1.3)

The SCFT statement L rℓ = 1 then translates into the statement that the Y –system is

periodic in n of period rℓ

Xγ(ζ)n+rℓ = Xγ(ζ)n ∀n ∈ Z, (1.4)

where r and ℓ are the integers predicted by the Seiberg–Witten geometry. Up to diagram–

folding, all known periodic Y –systems arise in this way for some finite BPS chamber of

some N = 2 theory, and in all instances we have full agreement between the Seiberg–Witten

geometry and the properties of the solutions to the rational recursion relation [9, 10].

From the previous discussion, we see that the operators M , K (and L when defined) are

properties of the SCFT independent (up to conjugacy) of the particular mass–deformation.
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Hence two Y –systems defined by two different (finite) chambers hasing the same Zℓ symmetry

are equivalent up to conjugation in the Cremona group. This fact is equivalent to the

Kontsevich–Soibelman formula.

The idea of the quantum monodromy, and its relation with the jumps at the BPS phases

eiθi , originates from the analysis of the (2, 2) 2d theories in [23,24]. In the 2d case the quantum

monodromy H is (typically) a finite matrix whose eigenvalues are exp(2πi(qi − ĉ/2)), the qi
being the U(1)R charges of the chiral primary fields of the UV SCFT. The situation becomes

a bit subtler [23] when the (2, 2) theory is not UV conformal, but just asymptotically–

free, i.e. when we have logarithmic violations of the UV scaling. In that case H is not

diagonalizable, but has non–trivial Jordan blocks. This is natural in view of the equality

of the U(1)R charge and the scaling dimension for chiral primary operators. In the chiral

sector the scaling operator is exp[log µ(logH)/2πi] and the nilpotent part of (logH)/2πi is

responsible for producing the powers of log µ which violate the UV scaling. Equivalently,

the nilpotent part of (logH)/2πi produces a mixing along the RG flow of the various chiral

operators. The nilpotency (i.e. triangularity) of this operation corresponds to the fact that

a given operator O may mix only with operators O ′ of lower UV dimension, d(O ′) < d(O)

which have the same quantum numbers. Thus, acting on a chiral operator O of finite UV

dimension, the minimal unipotent power of the monodromy Hr produces O + · · · where

the ellipsis stands for a linear combination of chiral operators of lesser UV dimension. In a

non–degenerate theory there are only finitely many such operators of dimension ≤ d(O); let

k(O) be the number of operators O ′ with the same conserved quantum numbers of O with

UV dimension d(O ′) ≤ d(O). Then all the iterated (adjoint) actions of Hr,

(Hr)n · O ≡ On with n ∈ N, (1.5)

produce O modulo operators which belong to a vector space of dimension (at most) k− 1 =

k(O)− 1. Therefore, for all n ∈ Z the set of (k + 1) operators

{
On+k, On+k−1, On+k−2, · · · , On+1, On

}
, (1.6)

satisfy a linear relation

On+k = c1(n)On+k−1 + c2(n)On+k−2 + · · ·+ ck−1(n)On+1 + ck(n)On = 0. (1.7)

Act with Hr on both sides of this equality. We get

On+k+1 = c1(n)On+k + c2(n)On+k−1 + · · ·+ ck−1(n)On+2 + ck(n)On+1 = 0, (1.8)

that is, ci(n + 1) = ci(n) for all i and the ci’s are independent of n. We conclude that

the family of operators On satisfy a finite–length linear recursion relation with constant
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coefficients

On+k+1 = c1 On+k + c2 On+k−1 + · · ·+ ck−1 On+2 + ck On+1 = 0. (1.9)

We must also have ck = ±1; this is a consequence of CPT which implies that the operators

H and H−1 are conjugate. Of course, in 2d all these statements (with an explicit formula for

k and the ci’s) may be obtained by far more direct considerations [23]. But the argument

in eqns.(1.5)–(1.9) makes sense, at least formally, also for the four–dimensional quantum

monodromy M and its fractional powers L (if defined). The argument will apply to 4D

susy–protected local operators. It is plausible that it extends also to the protected half–BPS

line operators {Oγ(ζ)}γ∈Γ wrapped on the S1
R circle of the R3×S1

R geometry, since they look

local operators from the 3d perspective.

We are thus lead to expect that in an asymptotically–free 4D N = 2 QFT, which has a

Zℓ–symmetric finite BPS chamber, the n–th successive iterations of the action of the rational

transformation L, corresponding to the ℓ–th fractional monodromy L eqn.(1.3),

Xγ(ζ)n ≡
〈
L

n ·Oγ(ζ)
〉
= L

n
(
Xγ′(ζ)

)
γ
, n ∈ Z (1.10)

will satisfy a finite linear recursion of the form (s = rℓ)

Xγ(ζ)n+ks =
k−1∑

j=1

cj(γ, ζ)Xγ(ζ)n+js ±Xγ(ζ)n, for all n ∈ Z, (1.11)

where the coefficients cj(γ, ζ) are independent of n (but may depend on everything else).

This peculiar expectation is confirmed by several explicit examples; a number of highly

non–trivial checks are presented in section 5 of this review.

Note that, while the integers r, ℓ, and s = kℓ are universal, depending only on the N = 2

model, the degree of the linear recursion k = k(Oγ) depends on the particular operator

considered. The minimal k(Oγ) behaves roughly
5 multiplicatively

k(Oγ+γ′) = k(Oγ) · k(Oγ′). (1.12)

The numbers r and ℓ are easily extracted from the Seiberg–Witten curve; to get the minimal

k(Oγ) requires more work.

We define a Q–system to be a non–linear rational map Xγ,n
L
−−→ Xγ,n+1 such that its

n–fold iterations satisfy — for all variables {Xγ(ζ)}γ∈Γ and all initial conditions — a finite–

length linear recursion of the form (1.11). The classical examples of Q–systems are the ADE

ones in [7].

Then our second basic claim is that there is a (family of) Q–systems associated to each

5 Roughly means the following: if k(Oγ), k(Oγ′) are the minimal degrees of the recursion relations for
Xγ , Xγ′ , then Xγ+γ′ satisfies a recursion relation of degree k(Oγ) · k(Oγ′) which generically is minimal but
not always so. Then k(Oγ+γ′) ≤ k(Oγ) · k(Oγ′). For instance, (generically) k(O2γ) = k(Oγ)

2 − k(Oγ) + 1.

5



finite BPS chamber of an asymptotically–free 4D N = 2 theory. In particular, the ADE

Q–systems of ref. [7] correspond to the minimal (strongly coupled) chamber of pure N = 2

SYM with gauge group equal to the ADE group in question. In this paper we present several

new examples of Q–systems, and prove that their solutions satisfy linear recursion relations

of the expected form (1.11).

The rest of the paper is organized as follows: in section 2 we review the connection of

N = 2 QFT and Y –/Q–systems from the point of view of the TBA integral equations. In

section 3 we review the quiver approach to the N = 2 theories and their relations with the

cluster algebras. We also review the results of [9] we need. In section 4 the Y –systems are

discussed from the QFT perspective. As an illustration of the power of the susy viewpoint,

we present the new Y –systems associated to some non–trivial N = 2 SCFT namely the

Minahan–Nemeschansky theories [25,26] and the D2(G) model [16]. In section 5 we consider

the Q–systems and present new examples. In appendix A the Y –systems associated toN = 2

models obtained by geometric engenering on a Arnol’d singularity [10, 11] are described.

2 TBA, N = 2 supersymmetry, Y – and Q–systems

The notion of Y –system was introduced by Zamolodchikov in his analysis of the thermo-

dynamical Bethe ansatz (TBA) for reflectionless ADE scattering theories [1]. There is one

such theory for each simply–laced Lie algebra g; it contains r = rank g particles species with

masses ma, a = 1, . . . , r. The pseudoenergies εa(β) of the various species are determined, as

a function of the rapidy β, by the TBA integral equations [1]

εa(β) = Rma φ(β) +
h

2π

∑

b

lab

∫ +∞

−∞

dβ ′

2 cosh
(
h(β ′ − β)/2

) log
(
1 + exp

[
εb(β

′)
])

, (2.1)

where R is the spatial size of the system, h is the Coxeter number of g, and lab is expressed in

terms of its Cartan matrix Cab as lab = −Cab +2 δab. φ(β) is some known universal function,

and the masses satisfy labmb = 2ma cos(π/h). The identity [4]

1

4 cosh
(
π
2
(u− v + i− iǫ)

) + 1

4 cosh
(
π
2
(u− v − i+ iǫ)

) = δ(u− v) (2.2)

then implies that Ya(β) ≡ exp[εa(β)] satisfy the equations

Ya(β + iπ/h) Ya(β − iπ/h) =
∏

b

(
1 + Yb(β)

)lab, (2.3)

so that the solutions to the TBA equations give particular solutions of the recursion relations

Ya(n + 1) Ya(n− 1) =
∏

b

(
1 + Yb(n)

)lab , n ∈ Z, (2.4)
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which define the associated Y –system. Zamolodchikov conjectured, and Frenkel–Szenes [27]

and, independently, Gliozzi–Tateo [28] proved that the solution to this recursion relation is

periodic for all initial conditions, the period being (a divisor of) 2(h+ 2)

Ya(n+ 2h+ 4) = Ya(n) for all n ∈ Z. (2.5)

Since the work of Zamolodchikov, many other periodic Y –systems have being constructed.

For instance we have the Y –systems specified by a pair (g, g′) of ADE Lie algebras [2]

Ya,a′n+1 Ya,a′,n−1 =

∏
b∈S

(
1 + Yb,a′,n

)lab
∏

b′∈S′

(
1 + Y −1

a,b′,n

)l′
a′b′

, (2.6)

where S (resp. S ′) is the set of simple roots of g (resp. g′) a, b ∈ S, a′, b′ ∈ S ′, and

lab = 2δab − Cab, l
′
a′b′ = 2δa′b′ − C ′

a′b′ in terms of the Cartan matrices C,C ′ of g, g′. The

solutions Ya,a′,n are periodic in n of period a divisor of 2(h + h′) [29]. For a recent review

see [4].

On the other hand, Gaiotto, Moore and Neitzke, in their work [17] to understand the

Kontsevich–Soibelman wall–crossing formula [21] from the viewpoint of the hyperKähler

geometry of the effective 3d sigma–model, found that the holomorphic Darboux coordinates

Xγ(ζ) satisfy, as a function of the twistor coordinate ζ ∈ P1, the TBA–like system of integral

equations [17, 30]

logXγ(ζ) =
R

ζ
Zγ+iθγ+Rζ Zγ+

∑

γ′

Ω(γ′)
〈γ′, γ〉

4πi

∫

ℓγ′

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log
(
1−σ(γ′)Xγ′(ζ ′)

)
(2.7)

where the sum is over the stable BPS states of charge γ′ ∈ Γ, Ω(γ′) is the net number (index)

of BPS states with charge γ′, 〈·, ·〉 : Γ⊗ Γ→ Z is the Dirac electro–magnetic antisymmetric

pairing, and σ(γ′) assumes the values ±1 (see §.3 below for details on the QFT notations).

These equations resemble very much Zamolodchikov equations (2.1). The relation between

the two becomes more transparent if, in some chamber, we have a bi–partite BPS spectrum,

that is, we can split the set of the charge vectors {γ} of stable BPS particles in two disjoint

subsets

{γ} = {γ}odd ∪ {γ}even (2.8)

so that the odd (resp. even) BPS particles are mutually local (that is, the Dirac pairing 〈·, ·〉

vanishes when restricted to either subset of definite parity). Then setting

Yγ(ζ) =

{
−σ(γ)Xγ(ζ) γ odd

−σ(γ)Xγ(−iζ) γ even,
(2.9)
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working on the locus θγ = 0. where we have the additional symmetry [30]

Yγ(−ζ) = Y−γ(ζ) ≡ Yγ(ζ)
−1, (2.10)

and combining together the contribution from the BPS state of charge γ′ with the one from

its PCT conjugate of charge −γ, we get [30]

log Yγ(β) = Rφγ(β) +
h

2π

∑

γ′>0

Aγ,γ′

+∞∫

−∞

dβ ′

2 cosh
(
h(β ′ − β)/2

) log
(
1 + Yγ′(β ′)

)
(2.11)

where ζ = ehβ/2. Eqn.(2.9) is formally identical to (2.1) provided: (i) the integral matrices lab
and Aγ,γ′ are equal, and (ii) the functions φγ form an eigenvector of Aγ′,γ with the eigenvalue

2 cos(π/h).

In 4d N = 2 theory, the matrix Aγ,γ′ depends on the BPS spectrum, hence on both

the particular QFT model and the BPS chamber. The simplest N = 2 theories are the

Argyres–Douglas (AD) models [31] which are classified by the simply–laced Lie algebras

ADE [12, 13]. The charge lattice of the model associated with the algebra g is identified

with the root lattice of g, Γ =
⊕

a Zαa, and the Dirac pairing is 〈αa, αb〉 = (−1)alab (up to

mutation, see §.3). In its minimal BPS chamber (the one with less stable BPS particles) the

type g AD theory has precisely one BPS hypermultiplet per simple root αa (plus their PCT

conjugates with charge −αa) [9, 32]; in particular, the spectrum is bi–partite. Then Aγ,γ′

reduces to the lab matrix, and condition (i) is satisfied. Condition (ii) then selects the usual

symmetric locus in the parameter space (the one studied in, say, [33]).

In particular, in the AD models the Darboux coordinates Ya(ζ) satisfy the ADE Y –

system (2.4). What is the physical motivation for this? The shift n → n + 1 in Ya,n is

equivalent to β → β + iπ/h in rapidity, or ζ → eiπ/2ζ , which is a U(1)R rotation by π/2.

The half–monodromy K acts on the central charge as Z ↔ −Z equivalent to ζ ↔ −ζ , or

β → β + 2iπ/h. From eqns.(2.10)(2.9) we see that the kinematical operator L associated to

the 1/2–fractional monodromy K is just the inversion I : Yγ ↔ Y −1
γ [9], while the rhs of

(??) is the Kontsevich–Soibelman jump at the phase θ = θ(αa)+iπ/2 where sit all αb–charge

BPS particles which are not mutually local with respect to the αa–charge one. Therefore, in

the AD case the action of the half–monodromy K is simply

Ya,n 7−→ K · Ya,n ≡ Ya,n+2. (2.12)

The periodicity result just says that the quantum monodromy M has finite order, and in

particular M h+2 = 1, which is in agreement with the Seiberg–Witten geometry of the AD

models [9]. In particular, it is well known that the U(1)R charges have the form n/(h+2) [34].

However, not all consistent 4d N = 2 theories have a non–trivial UV SCFT fixed point.

The other possibility, for a consistent QFT, is to be just asymptotically–free (AF). In the UV

the theory approaches its limiting theory with logarithmic violation of scaling and M cannot
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be expected to have finite order. As argued in the previous section, we expect finite–linear

recursions to replace periodicity (that is, we expect Q–systems instead of Y –systems). Let

us see how this happens by comparing the two simplest (non–trivial) examples of the two

possibilities: UV SCFT and AF. These models are given by, respectively, type A2 AD and

pure N = 2 SYM with gauge group G = SU(2) whose integral TBA equations have the same

form as the ones for the AD models except that the Cartan matrix of a finite–dimensional

Lie algebra is replaced by the one of the affine Kac–Moody algebra A
(1)
1 [13, 17, 30]. In

particular, the integral equations for the second model are obatined from those of the first

one (2.9) by the simple replacement Aγ,γ′ → 2Aγ,γ′. Using the existence (in both cases) of

a quarter–monodromy, we may rewrite the equations in the form [30]

log Y (β) = Rφ(β) +
1

2π

∫ ∞

−∞

dβ ′

cosh(β ′ − β)
log
(
1 + Y (β ′)

)
for A2 AD (2.13)

log Y (β) = R φ̃(β) +
1

π

∫ ∞

−∞

dβ ′

cosh(β ′ − β)
log
(
1 + Y (β ′)

)
for SU(2) SYM. (2.14)

The UV limit is just R → 0. If the theory has a good UV scaling limit, we expect that

log Y (β) has a smooth R → 0 limit. Moreover, in the UV SCFT the U(1)R symmetry is

exact and unbroken, which means that v.e.v. Y (β) must be independent of the phase of ζ ,

that is, independent of Im β. By analyticity of the solution, we get the implication

UV SCFT =⇒ lim
R→0

Y (β) = Y a constant independent of β. (2.15)

Knowing that the solution Y must be a constant, it is elementary to solve the R → 0 limit

of equation (2.13). Performing the integral we get 2 log Y = log(1+Y ), that is, the algebraic

equation

Y 2 = Y + 1 (2.16)

which was interpreted in terms of RCFT characters and Verlinde algebras in [9]. The splitting

field of (2.16) is the maximal totally real subfield of Q(e2πi/5), confirming the fact that the

A2 Y –system is periodic of period 3 + 2 = 5.

On the other hand, a constant solution to (2.14) would have to satisfy

Y = Y + 1, (2.17)

which has no solutions. Hence, inverting the implication in (2.15), we conclude that the

corresponding N = 2 QFT has to be AF, which is of course correct, since the β–function

coefficient of pure SU(2) N = 2 SYM is −4 6= 0. Indeed, the would–be Y system of the

SU(2) SYM is

Yn+1 Yn−1 = (1 + Yn)
2. (2.18)

Writing Yn = X2
n this reduces to the recursion relation for the Chebyshev polynomials (the
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characters of SU(2)), which is the basic example of a Q–system [7]

Xn+1Xn−1 = 1 +X2
n ⇐⇒

∣∣∣∣∣
Xn+1 Xn

Xn Xn−1

∣∣∣∣∣ = 1, (2.19)

which implies

0 =

∣∣∣∣∣
Xn+2 Xn+1

Xn+1 Xn

∣∣∣∣∣−
∣∣∣∣∣
Xn+1 Xn

Xn Xn−1

∣∣∣∣∣ =
∣∣∣∣∣
Xn+2 +Xn Xn+1

Xn+1 +Xn−1 Xn

∣∣∣∣∣ (2.20)

which is equivalent to a 3–terms linear recursion relation (with constant coefficients) of the

form

Xn+2 = cXn+1 −Xn, ∀n ∈ Z, (2.21)

where the constant c depends on the initial conditions of the recursion. The physical variables

Yn then satisfy the 4–term linear recursion

Yn+3 = (c2 − 1)Yn+2 − (c2 − 1)Yn+1 + Yn, (2.22)

as expected from the general arguments of the previous section. Those arguments suggest

that this is the general pattern for all asymptotically–free N = 2 QFT. In this paper we

shall corroborate these QFT predictions by checking the existence of a linear recursion for

several new Q–systems arising from AF N = 2 QFT’s.

One may wonder what happens in the third case, that is, in presence of UV Landau

poles (i.e. positive β–function). In this case the theory is not UV complete, and hence

not a consistent QFT on its own grounds. It may still be formally studied as a low–energy

effective theory of some UV completion. The simplest example is the would–be N = 2

theory associated to the hyperbolic Kac–Moody algebra of Cartan matrix

C =

(
2 −3

−3 2

)
(2.23)

(corresponding to the 3–Kronecker quiver). As all formal N = 2 models based on hyperbolic

KM Lie algebras, this theory is not UV complete [9, 35], but it has UV completions in

the form of Minahan–Nemeshanski QFT’s. In this case the only modification in the TBA

equation would be to put a factor 3 in front of the integral in eqn.(2.13). A constant solution

Y would then satisfy the algebraic equation

Y 2 = (1 + Y )3, (2.24)

which is not consistent with any periodicity of the associated would–be Y –system since its

Galois group is non–Abelian (its discriminant −23 is not a square in Q). The modified
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integral equation is also not consistent with any finite–degree linear recursion of the form

(1.11). Indeed, a necessary condition for a non–periodic sequence Yn to satisfy a finite–

degree linear recursion with constant coefficients, the last one being ±1, is the existence of

the following limit

lim
n→∞

Yn+1

Yn
= ̺ > 1, (2.25)

while the would–be Q–system gives

Yn+1

Yn
·
Yn−1

Yn
=

1

Y 2
n

(
1 + Yn

)3
. (2.26)

Eqn.(2.25) would give 1 as the n → ∞ limit of the lhs, while the rhs will go like C̺n for

large n, giving a contradiction. This is hardly a surprise: in section 1 we argued for a linear

relation using the properties of the RG flow in the extreme UV of the QFT, and this flow

ought to be pathological in a UV non–complete theory.

3 BPS spectral problem and cluster algebras

3.1 A lightning review of the BPS quiver approach

Quiver representations and stability. A quiver is a quadruple Q ≡ (Q0, Q1, s, t) where

Q0 and Q1 are two discrete sets (Q0 is the set of nodes, Q1 is the set of arrows) and

s, t : Q1 → Q0 are two maps that associate to an arrow its starting (resp. ending) node. A

path of the quiver is a concatenation of arrows, composed as were functions. The set of all

paths generates as a C vector space the path algebra of CQ, the product of two path being

their concatenation or zero (when concatenation is impossible). A complex representation of

a quiver is a functor X : CQ→ VectC, where VectC is the category of complex vector spaces.

X associates to each node i ∈ Q0 a vector space Xi and to each arrow α ∈ Q1 a linear

map Xα : Xs(α) → Xt(α). The set of all complex quiver representations is itself an abelian

category, rep(Q). A morphism in this category F : X → Y is a collection of linear maps

(Fi)i∈Q0 such that Ft(α)Xα = YαFs(α) for all α ∈ Q1. A morphism F is injective if all linear

maps Fi are injective. As usual, subrepresentations and injective morphism are in bijection.

Let n be the number of nodes of Q. To each representation X is associated a vector in

Zn
+, the dimension vector of X , dimX ≡ (dimC X1, . . . , dimC Xn). Let us denote by h the

complex upper half plane. A stability condition for rep(Q) is a linear map ζ : Zn → C that

associates to each dimension vector an element of h. By abuse of notation we are going to

denote ζ(X) the quantity ζ(dimX). A representation X of Q is said to be stable iff

0 ≤ arg ζ(Y ) < arg ζ(X) < π ∀ 0 6= Y ⊂ X. (3.1)

Whenever a quiver has cycles, i.e. whenever Q contains a set of arrows (α1, . . . , αℓ) such

that s(αi+1) = t(αi), i mod ℓ, one can define a superpotential W for Q as a formal linear
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combination of such cycles. The jacobian ideal ∂W is the set of cyclic derivatives ofW with

respect to all the arrows α ∈ Q1. Given a pair (Q,W), a representation of the quiver Q

with superpotential W is a representation X of Q such that X(∂W) = 0. All the above

definitions can be carried over replacing rep(Q) with the abelian category of representations

of (Q,W).

BPS quivers of 4D N = 2 gauge theories. [35–42] Consider a 4D N = 2 gauge theory

with a simply–laced gauge group G of rank r. Let such system flow to its infrared Coulomb

branch: the gauge group breaks to U(1)r. The system may also have a global flavor symme-

try group of rank f that for generic values of the mass deformations is U(1)f . The electric,

magnetic and flavor charges of the system being quantized are valued into an integer sym-

plectic lattice Γ of rank n ≡ 2r + f . The antisymmetric pairing on Γ is the Dirac pairing

in between electric and magnetic charges 〈· , ·〉 : Γ × Γ → Z. The central charge of the 4D

N = 2 superalgebra Z ≡ ǫαβǫAB{QA
α , Q

B
β } gives a linear map Z : Γ → C that depends on

all parameters of the theory (Coulomb branch moduli, mass deformations, UV couplings,

...) [43]. Any given state of charge γ ∈ Γ has mass greater than or equal to |Z(γ)| (BPS

bond). States that saturate this bond are called BPS. A 4D N = 2 model has a BPS quiver

iff there exist a set of generators {ei} of Γ such that all charges of BPS states γ ∈ Γ satisfy

γ ∈ Γ+ or γ ∈ −Γ+, (3.2)

where Γ+ ≡ ⊕Z+ ei is the (convex) cone of particles. The BPS quiver is encoded in the

antisymmetric matrix Bij ≡ 〈ei , ej〉. Its nodes are in one to one correspondence with the

generators {ei} of Γ. If Bij ≥ 0 one draws Bij arrows from node i to node j. The dynamics

on the worldline of a BPS state of charge γ =
∑

mi ei ∈ Γ+ is encoded in a N = 4

SQM of quiver type. [40] The underlying quiver of this SQM is generically much more

complicated than the BPS quiver. It is however a gauge theory with gauge group
∏

U(mi)

and arrows corresponding to bifundamental hypermultiplets. In particular, it can have loops

(i.e. adjoint hypers) or 2 cycles (e.g. mass or mixing terms). If Q has cycles, the SQM has a

superpotential obtained as a linear combination of single trace operators built out of the set

of bifundamental hypers. If one studies the Higgs branch of this SQM, however, all adjoint

hypers (loops) gets vev’s and all loops in the quiver decouple. In the deep infrared moreover

one expects to be able to integrate out all fields entering quadratically in the superpotential.

The reduced quiver with the effective superpotentialW describing this regime of the SQM is

the BPS quiver. The effective F terms give the Jacobian ideal we discussed in the previous

paragraph, while the D terms can be traded for the stability condition and complexification

of gauge groups by standard GIT arguments. Thus, any solution of the effective F term

equations for the SQM associated to a BPS particle of charge γ ∈ Γ+ is a representation

of the BPS quiver (Q,W) with dimension vector dimX = γ. The stability condition is

obtained from Z(·) as follows: for a generic Z(·) by the BPS quiver property we can always

choose a phase θ ∈ [0, 2π) such that Z(Γ+) lie in a positive convex cone inside ei θh. Given a

representation X of (Q,W), we define its stability conditions as ζ(X) ≡ e−iθZ(X) ∈ h. The
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SQM Higgs branch moduli space for a BPS particle with charge γ =
∑

mi ei ∈ Γ+ is the

Kähler variety

Mγ ≡

{
X ∈ rep(Q,W) stable

and such that dimX = γ

}/∏
GL(mi,C) (3.3)

The SU(2)R×Spin(2) dof’s of the Clifford vacuum of our BPS state of charge γ are encoded

in the Dolbeault cohomology ofMγ. In particular, if d = dimCMγ, the spin is (0, 1
2
)⊗ d

2
. For

example a given charge corresponds to a (half) hypermultiplet if the corresponding moduli

space is a point, e.g. the representation is rigid. Of course, the splitting in between particles

and antiparticles in eqn.(3.2) is artificial: pct symmetry acts on the charge lattice Γ as a

Z2 involution γ 7→ −γ. As we are going to describe below, the BPS quiver associated to a

4D N = 2 model with quiver property is not unique. The same non–uniqueness is mirrored

by the 1d Seiberg–like duality groupoid of the 1d N = 4 SQM.6

Mutations. [42,44–46] The choice of the (convex) cone of particles Γ+ in the charge lattice

Γ fixes the BPS quiver of the model. Correspondingly there exists a θ ∈ [0, 2π) such that

Z(Γ+) ⊂ eiθh. Consider tilting the half plane eiθh clockwise. At θ = θ∗, the leftmost

Z(ei) crosses the image of the negative real axis and for θ > θ∗ exits the half plane eiθh.

Correspondingly Z(−ei) will enter from the right side crossing the positive real axis. Notice

that since Γ+ is convex, it is always a generator of Γ that exits the half plane eiθh in this

way. Let us proceed a little bit further in the tilting and stop at a phase θ′ before any other

such crossings occurs. The intersection of Z(Γ) with eiθ
′

h defines implicitly a new convex

cone of particles Γ′
+ and a new set of generators {e′i} with the quiver property. The two sets

are related by a change of basis, the right charge lattice mutation at i-th node of the quiver:

µi(ek) ≡

{
−ei for k = i

ek + [Bik]+ ei else
(3.4)

where [x]+ ≡ max(x, 0). The BPS quiver has to be changed according to the Dirac pairing

of the new set of generators. The B matrix undergoes an elementary quiver mutation at

node i ∈ Q0:

µi(Bk j) =

{
−Bkj if k = i or j = i

Bk j + sign(Bk i)[Bk i Bi j ]+ otherwise
(3.5)

For a generic superpotential W this mutation rule is obtained from 1d SQM Seiberg like

dualities.7 Tilting anti clockwise the plane, one obtains the left mutation, differing from the

6 Here for simplicity of the discussion we are neglecting all the crucial subtleties related with the 1d SQM
superpotential. In particular, we are implicitly assuming that all BPS quivers are 2 acyclic: While this is
true for all the examples that we are going to discuss in the text, we stress here that this is not necessarily
the case.

7 With the same caveat of footnote 6.
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right mutation by a twist

µ̃i(ek) ≡

{
−ei for k = i

ek + [−Bik]+ ei else
(3.6)

Notice that the induced elementary quiver mutation at i ∈ Q0 is the same in the two cases

µ̃i(B) ≡ µi(B). (3.7)

In particular the square of a right mutation is not an involution, but a non trivial trans-

formation of the charge lattice, known as a Seidel Thomas twist: µi ◦ µi = ti 6= id. While

the inverse of a right mutation is the corresponding left mutation µi ◦ µ̃i = id = µ̃i ◦ µi.

Below, when we loosely speak about a mutation of the charge lattice, we always mean a

right mutation.

Since physics is pct symmetric, the different choices of cones of particles Γ+ leading to

different quiver descriptions of the same physical system are all equivalent. To a given 4D

N = 2 model with quiver property is associated the whole mutation class of its BPS quivers.

3.2 Wall crossing and quantum cluster algebras

Wall crossing and the spectral problem. The central charge of the 4D N = 2 superal-

gebra depends on all parameters of the system. As we vary them it changes and so does the

corresponding stability condition. In the process it might happen that the set of stable BPS

particles changes. More precisely this happens whenever the central charges Z of mutually

non local BPS particles align. Let us describe this in more detail. Pairs of central charges

of non local BPS states align along real codimension one loci in the space of all possible

central charges Cn = (Γ ⊗ C)∨. These loci are called walls of the first kind as opposed to

walls of the second kind where a quiver mutation occurs. Walls of the first kind divide the

space of central charges in domains {Da}a. In the interior of each such domain, the theory

is in a different phase, characterized by a given spectrum of stable BPS states. The set of

charges of such stable states is a BPS chamber in the charge lattice Ca ⊂ Γ. Going across

a wall of marginal stability a phase transition occurs and the BPS spectrum jumps from

a BPS chamber to another: this is a wall crossing transition. The BPS spectral problem

consist of finding the allowed pairs {Da,Ca}. The problem is simplified by the existence

of a wall crossing invariant, the quantum monodromy or Kontsevich Soibelman operator,

that encodes the spectrum. [21] In order to solve the BPS spectral problem it is enough to

compute the invariant in one BPS chamber and its corresponding domain of the first kind,

and this determines implicitly all other such pairs via wall crossing identities.8

8 Here we are neglecting a crucial physical fact: the whole of (Γ⊗ C)∨ is not physical. Let us denote by
P the space of physical parameters of a given model. The map P → (Γ⊗C)∨ that associates to a given set
of values of the parameters of the theory {λ} a central charge function Z{λ} defines a subvariety of (Γ⊗C)∨
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Quantum monodromy. [9] Since the lattice Γ is symplectic, it is canonically associated

to a quantum torus algebra with elements Yγ for γ ∈ Γ. Let q be a formal variable (the

quantization parameter). The product of TΓ(q) is defined by

Yγ Yγ′ ≡ q〈γ,γ
′〉 Yγ′ Yγ (3.8)

The additive structure of the charge lattice can be lifted to the quantum torus via normal

ordering, namely

Yγ+γ′ ≡ N [YγYγ′] ≡ q−〈γ,γ′〉/2Yγ Yγ′ (3.9)

that is associative and commutative. The 4D N = 2 monodromy we have mentioned in the

previous section is the inner automorphism of the quantum torus algebra:9

Yγ −→M
−1
q Yγ Mq ≡ Ad′(Mq) Yγ (3.10)

Let us proceed, following [9], to the construction of Mq in terms of the spectral data asso-

ciated to a domain of the first kind Da. Let Ca be the BPS chamber associated to Da. For

each γ ∈ Ca, let jγ denote the higher spin of the corresponding Clifford vacuum. To any

BPS particle (γ , jγ) corresponds an element of TΓ(q),

O(γ , jγ ; q) ≡

jγ∏

s=−jγ

Ψ(−qs Yγ; q)
(−1)2s (3.11)

where the function Ψ(x; q) is the quantum dilogarithm.10 The quantum dilogarithm [48] is

uniquely characterized by the two properties

{
functional eqn : Ψ(qx; q) = (1− q1/2x)−1Ψ(x; q)

normalization : Ψ(0; q) = 1
(3.12)

Notice that

Ψ(q−1x; q) = (1 + q1/2x)Ψ(x; q) Ψ(x; q−1) = (Ψ(x; q))−1 (3.13)

If q = exp(2πiτ) with τ in the upper half plane, we can solve eqn.(3.12) in terms of a

convergent infinite product

Ψ(x; q) ≡
∞∏

n=0

(
1− qn+1/2x

)
. (3.14)

that for a generic model has positive codimension.
9 Here and below Ad′(x)a ≡ x−1 a x.

10 The definition the we use here differs slightly from all other definitions in the litterature. Cfr. footnote
7 of [9]. In the meantime yet another definition of quantum dilog appeared, the E(Y ) of [47] related to the
one used here by Ψ(Y ; q) = E(−Y )−1.
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In what follows we assume that q is not a root of unity. The reader interested in the quantum

Frobenius property is warmly advised to consult [9]. For each charge γ ∈ Γ, let us define

its ‘time’ as tγ ≡ argZ(γ) ∈ S1. The quantum monodromy operator is the time ordered

product

Mq ≡ T
∏

γ∈Ca

O(γ, jγ; q). (3.15)

The KS wall–crossing formula is the statement that the conjugacy class of this operator does

not depend on the particular Da nor on the particular Ca we use to compute it: Mq is a

wall–crossing invariant.

Notice that if a chamber Ca has a Zm involution,i.e. a linear transformation V : Ca → Ca

such that Vm = id, by linearity of the central charges, the corresponding domain of the

first kind inherits such a symmetry. Ca splits into m (identical) subchambers Sa: Ca =∐m−1
k=0 VkSa. Lifting the action of V to an adjoint action on the quantum torus TΓ(q) yields

the involution

V Yγ V
−1 ≡ YV γ. (3.16)

In this case, the quantum monodromy Mq has a 1/m root

Mq ≡ Y
m
q (3.17)

where

Yq ≡ V
−1 ◦ T

∏

γ∈Sa

O(γ , jγ ; q) (3.18)

is the 1/m fractional quantum monodromy operator [9, 10]. Notice that by wall crossing

identities the splitting in eqn.(3.17) is always true, even in other chambers where the original

symmetry might be broken. Since physics is pct symmetric, the 1/2 fractional monodromy

Kq is always well defined.

If one can find a representation H of TΓ(q), the statement that the conjugacy class of

Mq is wall–crossing invariant implies the invariance of the trace TrH(Mq). A very nice

representation of TΓ(q) was found in [22] that allows to interpret TrHMq as a topological

partition function. Here we closely follow [49]. Assume the model has a nontrivial UV

superconformal point where its global U(1)R symmetry is restored, let R be the corresponding

charge. A Melvin cigar is a 3-manifold MCq defined as a quotient of C × S1 with respect

to the relation (z, θ) ∼ (qz, θ + 2π). Now, let HR denote the generator of the Cartan of the

SU(2)R symmetry of the 4D N = 2 model. Consider the topologically twisted theory on

the background MCq ×R S1, where the R-twist is given by the identification of the R−HR

charge with the holonomy around this second S1. Notice that by doing this we are breaking

4 of the 8 supercharges of 4D N = 2 susy. Let us define

Z(t, q) ≡ TrMCq×RS1(−1)F tR−HR ≡ 〈(−1)F tR−HR〉MCq×RS1 (3.19)
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In this background one obtains a representation of TΓ(q) from the reduction of the BPS–line

operators of the 4D N = 2 theory down to the 1d theory on the S1 R–circle.11 Moreover,

TrH [Mq]
k = Z(t = e2πik, q) = 〈(−1)F exp(2πkR)〉MCq×RS1 (3.20)

If the SCFT has R–charges of the form N/ℓ, we predict via (3.20), that Ad[
(
Mq

)ℓ
] = idTΓ(q).

This fact can be used to give a very non trivial check of all of these ideas, through the duality

in between 4D N = 2 SCFT and periodic TBA Y –systems discussed in section §.2.

The construction of the wall crossing invariants is simplified for the models that have

a finite chamber of hypermultiplets via the quantum cluster algebra associated to the pair

(Q,W).

Quantum mutations. [50–53] Choose a set of generators {ei} with the BPS quiver property:

to each generator corresponds a generator Yi ≡ Yei of the quantum torus TΓ(q). In particular,

by eqn.(3.8),

Yi Yj ≡ qBijYj Yi, (3.21)

and Y−ei ≡ (Yi)
−1. As previously, while the expression in eqn.(3.8) is a mutation invariant,

the one in eqn.(3.21) is not. The mutations we have introduced in the previous section are

lifted via the normal ordering (3.9) to the generators of the quantum torus algebra

µi(Yk) ≡ Yµi(ek) µ̃i(Yk) ≡ Yµ̃i(ek) (3.22)

An elementary quantum mutation Qi at the node i ∈ Q0 is

Qi · Yk ≡ Ad′(Ψ(−Yi; q)) ◦ µi(Yk) ≡ Ψ(−Yi; q)
−1 µi(Yk) Ψ(−Yi; q) (3.23)

Or, more explicitly:

Qi · Yj =





∏Bij−1
n=0 (1 + qn+1/2Yi)

−1q−(Bij)
2/2 Yj Y

Bij

i if Bij ≥ 1
∏|Bij |−1

n=0 (1 + q−n−1/2Yi) Yj if Bij ≤ −1

(Yi)
−1 if i = j

Yj else

(3.24)

by eqns.(3.9), (3.14) and (3.23). Let us remark that

Ψ(−Yi; q)
−1 µi(Yk) Ψ(−Yi; q) = µ̃i

(
Ψ(−Yi; q) Yk Ψ(−Yi; q)

−1
)

(3.25)

by explicitly evaluating the RHS and comparison with eqn.(3.24). Thus

Qi ≡ Ad′(Ψ(−Yi; q)) ◦ µi ≡ µ̃i ◦ Ad(Ψ(−Yi; q)) (3.26)

11 For a more detailed and intriguing description of this story we refer to the original paper [9]
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is an involution of TΓ(q), namely: Qi ◦ Qi = idT.

The mutation method. The mutation method of [42] is a very convenient algorithm to

compute K(q). Let Λ ≡ {i1, i2, . . . , ip−1, ip} be an ordered sequence of nodes in Q0. Let us

denote mΛ the sequence of mutations

mΛ ≡ µip ◦ µip−1 ◦ · · · ◦ µi2 ◦ µi1. (3.27)

A sequence of mutations is said to be admissible iff ik 6= ik+1 for all k = 1, ..., p−1. Consider

a 4D N = 2 model with BPS quiver. Assume that it has a finite chamber of hypermultiplets

Cfin. Let {ei} ⊂ Cfin be a set of generators of the charge lattice satisfying the quiver property.

As discussed above, this choice defines a cone of particles Γ+ inside Γ, and an angle θ such

that Z(Γ+) ⊂ eiθh. Consider rotating eiθh clockwise. Each time the image Z(eik) of a

generator exits from the rotating half plane, the basis of the charge lattice has to be changed

accordingly, by the right mutation µik at the ik-th node of Q. Let us continue to vary θ and

to mutate the quiver accordingly. By pct symmetry, ei(θ±π)h ∩ Z(Γ) = −Z(Γ+). Therefore

we obtain back the original quiver Q: A finite BPS chamber consisting of p hypermultiplets

defines a finite ordered sequence of nodes Λ ≡ {i1, . . . , ip} such that

• ik 6= ik+1 for all k = 1, ..., p− 1 (admissible);

• mΛ(Q) = π(Q) where π ∈ Sn is a permutation of the labels of the nodes (automor-

phism of TΓ(q));

• mΛ(ek) ≡ −eπ(k) (pct symmetry) ;

The corresponding p charge vectors of particles in Cfin are

γm = m{i1,i2,...,im−1}(eim) ∈ Γ+ m = 1, . . . , p (3.28)

ordered in decreasing phase: argZ(γm) > argZ(γm+1).
12 Notice that by mΛ(Q) = Q, the

corresponding mutation sequence is lifted to an automorphism of the quantum torus algebra:

this is precisely the pct transformation −idΓ twisted by the permutation π:

mΛ(Yi) = Y−π(ei) ≡ Ad(Vpct Iπ) Yi (3.29)

Obviously, [Iπ,Vpct] = 0. Reversing the logic of the construction, each admissible ordered

sequence of nodes Λ satisfying

mΛ(ek) = −eπ(k) (3.30)

gives a solution of the BPS spectral problem. As we are going to discuss below, the method

can be refined if the finite chamber has more symmetries. Notice that if we ‘quantize’ the

12 We choose conventions in such a way that BPS time flows clockwise in the definition of M .
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above sequence of mutations we obtain

QΛ ≡ Qip ◦ Qip−1 ◦ · · · ◦ Qi2 ◦ Qi1

= Ad′(Ψ(−Yip; q)) ◦ µip ◦ Ad
′(Ψ(−Yip−1 ; q)) ◦ µip−1 ◦ · · ·

· · · ◦ Ad′(Ψ(−Yi2 ; q)) ◦ µi2 ◦ Ad
′(Ψ(−Yi1 ; q)) ◦ µi1

= Ad′
(
Ψ(−Yei1

; q)Ψ(−Yµi1
(ei2 )

; q) · · ·

· · ·Ψ(−Ymi1,...,ip−3
(eip−2

); q)Ψ(−Ymi1,...,ip−2
(eip−1

); q)
)
◦mΛ

= Ad′(Iπ−1 ◦Kq).

(3.31)

We have just showed that the quantization of the mutation sequence given by the mutation

method computes the adjoint action of the half–monodromy on TΓ(q).

The same method can be generalized easily to compute the fractional monodromy. Since

in this case we have a Zm involution V : C → C , the image Z(C ) can be divided into

m distinct angular sectors (and compatibility with pct entails that m is even). If C is a

finite BPS chamber is sufficient to rotate eiθh clockwise till ei(θ−2π/m)h to capture a mutation

sequence that, once quantized, computes the adjoint action of the 1/m fractional monodromy

on TΓ(q). In other words we obtain a sequence of nodes Ξ = {k1, . . . , ks} ⊂ Q0 that satisfies

• kj 6= kj+1 for all j = 1, ..., s− 1 (admissible);

• mΞ(Q) = σ(Q) where σ ∈ Sn ;

• For compatibility with pct symmetry, ∃ kΞ ∈ Z≥0 such that mΞ satisfies

mσkΞ (Ξ) ◦ · · · ◦mσ2(Ξ) ◦mσ(Ξ) ◦mΞ(ei) = −eπ(i) (3.32)

Again, reversing the logic, any admissible sequence of nodes Ξ that maps the quiver into

itself up to a permutation of the nodes σ ∈ Sn such that eqn.(3.32) holds corresponds to a

quantum fractional monodromy of order 2(kΞ + 1). The same steps as above yields

QΞ = Qks ◦ Qks−1 ◦ · · · ◦ Qk1 = Ad′(Iσ−1 ◦ Yq). (3.33)

Here we have used the fact that since mΞ(Q) = Q up to a permutation, mΞ lifts to an

automorphism of TΓ(q), that is precisely V twisted by σ:

mΞ(Yi) = Ad(V Iσ) Yi. (3.34)

Of course, [V ,Iσ] = 0.

Factorized–sequences of mutations. [10, 29, 54] A node of a quiver i ∈ Q0 is called a

source (resp.sink) if there is no arrow α ∈ Q1 such that t(α) = i (resp.s(α) = i). Let us

notice here that with our conventions a right (resp.left) mutation on a node i that is a sink
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(resp.source) have the only effect of reversing the sign of the generator ei leaving all the other

generators unchanged. A sequence of nodes Λ = {i1, i2, · · · , ik} of a quiver Q is called a sink

sequence (resp. a source sequence) it the is node is a sink (resp. a source) in the mutated

quiver µis−1µis−2 · · ·µi1(Q) for all 1 ≤ s ≤ k. A sink (resp. source) sequence Λ is called full

if contains each node of Q exactly once. If Q is acyclic, and Λ is a full source sequence, the

corresponding right mutation sequence acts on the generators of the charge lattice as the

Coxeter element ΦQ : Γ → Γ, while Λ−1 is a full sink sequence and the corresponding right

mutation sequence acts as the inversion.

Given a subset S of the set of nodes Q0, we introduce the notation Q|S to denote the full

subquiver of Q over the nodes S. Consider the node set Q0 as the disjoint union of a family

of sets {qα}α∈A:

Q0 =
∐

α∈A

qα (3.35)

To each subset of nodes qα we associate the full subquiver Q|qα of Q. Given a node i ∈ Q0,

we will denote qα(i) the unique element in the family that contains node i.

Now, consider an admissible finite sequence of nodes Λ such that mΛ satisfies eqn.(3.30).

Λ is said to be source-factorized of type {Q|qα}α∈A if

i) For all ℓ = 1, 2, ..., m, the ℓ-th node in the sequence iℓ is a sink in

µiℓ−1
◦ · · · ◦ µi1(Q)

∣∣
{iℓ}∪Q0\qα(iℓ))

(3.36)

ii) For all ℓ = 1, 2, ..., m the ℓ-th node in the sequence iℓ is a source in

µiℓ−1
◦ · · · ◦ µi1(Q)

∣∣
qα(iℓ))

(3.37)

In our conventions source factorized sequences of mutations are appropriate for right muta-

tions. For the dual left mutations one shall invert sources with sinks in i) and ii) above.13

A source factorized sequence is in particular Coxeter-factorized of type (Q|qα)α, provided

all Q|qα are Dynkin ADE quivers with alternating orientation. If this is the case, let us

denote by Gα the alternating quiver Q|qα. A sequence of right mutations that is Coxeter–

factorized is automatically a solution of (3.30). In particular, if all the alternating ADE

subquivers of the family are ALL equal to a given G, one has a 1/m fractional monodromy

of order m = lcm(2, h(G)).

For a Coxeter–factorized source–sequence, by the right mutation rule combined with

i), ii), each element of the sequence acts as the simple Weyl reflection

siℓ ∈Weyl(Q
∣∣
qα(iℓ))

) (3.38)

13 For saving time and print in view of the applications that we have in mind, here we give just a simplified
version of the story: the interested reader is referred to the original paper [10] for the whole beautiful story.
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on the charges on nodes i ∈ qα(iℓ)), and as the identity operation on all other charges. By the

standard properties of Weyl reflections of simply–laced root systems,14 a Coxeter factorized

sequence of mutations corresponds to a very peculiar finite BPS–chamber CΛ:

CΛ ≃
⊕

α∈A

∆(Gα) (3.39)

where by ∆(G) is meant the set of roots of G. In other words such a chamber contains one

hypermultiplet per positive root of Gα. For a choice of generators compatible with CΛ

Γ ≃
⊕

α∈A

Γ(Gα), (3.40)

where we denote with Γ(Gα) the root lattice of the Lie algebra of type Gα. It is useful to

remark that any quiver that admits in its mutation class a square product form of type Q�G

admits Coxeter-factorized sequences of type

G
∐

G
∐
· · ·
∐

G
︸ ︷︷ ︸

#(Q0) times

(3.41)

Many examples of these sequences can be found in the next sections.

3.3 2d/4D and properties of the quantum monodromy

The 2d/4D worldsheet/target correspondence of [9] is the statement that any 4D N = 2

model with BPS quiver corresponds to a 2d N = (2, 2) model with ĉuv < 2 that has the

same BPS quiver. The correspondence is motivated by the geometric engineering of these

models in Type II B superstrings. Consider the 3 CY hypersurface of C4 defined by the

equation

H : W (X1, X2, X3, X4) = 0 ⊂ C4. (3.42)

The function W is interpreted as the superpotential of a LG 2d (2, 2) system. If W is an

isolated quasi homogeneous singularity, namely if

λr ·W (Xi) ≡W (λwiXi) r, wi ∈ N | gcd[r, w1, w2, w3, w4] = 1 (3.43)

the 2d model is conformal and the 3 CY is singular. The singularity is at finite distance in CY

moduli space provided ĉ < 2 [56], and in this case we obtain a 4D N = 2 SCFT. Whenever

W is not quasi homogeneous and ĉuv < 2, both the 4D and the 2d models are asymptotically

free. Many of the non perturbative aspects are described by the corresponding geometry. A

14 See, for example, proposition VI.§. 1.33 of [55]
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crucial rôle is played by the Calabi Yau homolorphic top form, the Poincaré residue

Ω = Res

(
dX1 ∧ dX2 ∧ dX3 ∧ dX4

W (X1, X2, X3, X4)

)
, (3.44)

known also as the Seiberg Witten form. Consider the case of a superconformal theory. In

the LG case, the 2d chiral ring of chiral primary operators corresponds to the Jacobian ideal

associated to the superpotential:

R ≡ C[X1, X2, X3, X4]/〈∂iW 〉 (3.45)

For an element Φ ∈ R, let us denote by qΦ its 2d U(1)R charge. Notice that if we identify

the scaling symmetry of W with the R symmetry of the 2d model, requiring that R[W ] = 1

we obtain
q(Xi) ≡ wi/r

ĉ ≡ 4− 2
∑

wi/r
(3.46)

In particular, the 2d quantum monodromy has order lcm(2, r). The scaling symmetry Xi →

λwiXi acts on Ω as follows

Ω −→ λwΩ · Ω wΩ ≡ −r +
∑

i

wi = (2− ĉ)r/2 (3.47)

The 4D scaling dimensions are fixed by requiring that the holomorphic top form has dimen-

sion one. Hence the 4D monodromy corresponds to the transformation

Xi → exp

(
2πi

wi

wΩ

)
Xi (3.48)

and the order ℓ of the 4D monodromy is

ℓ =
wΩ

gcd(wΩ, w1, w2, w3, w4)
(3.49)

In the case W (X1, X2, X3, X4) = w(X1, X2) +X2
3 +X2

4 , the order reduces, corresponding to

the fact that the model admits an engineering in terms of the 6d (2, 0) theory. The reduced

order is obtained from the above formula replacing w3 = d, w4 = 0. The various chiral

primary deformations of W define a family of 3 CY hypersurfaces:

H{uΦ} : W +
∑

Φ∈R

uΦΦ = 0 uΦ ∈ C (3.50)

Let us denote by Ω{uΦ} the corresponding family of Seiberg Witten forms. Deforming the CY

geometry induce a massive deformation of corresponding 4D SCFT with primary operators

OΦ with dual parameters uΦ. The scaling dimensions of the OΦ are determined by the
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requirement that D[OΦ] = 2 − D[uΦ], and the dimensions D[uΦ] are fixed requiring that

D[Ω{uΦ}] = 1, namely

D[Ω{uΦ}] ≡ 1 =⇒

{
D[Φ] = wΦ/wΩ

D[uΦ] = (1− wΦ)/wΩ

(3.51)

The elements of the family H{uΦ} that corresponds to physical deformations that parametrizes

the IR Coulomb branch of the system are in correspondence with the uΦ such thatD[uΦ] > 1.

From now on let us consider only these deformations of the geometry. The BPS particles

are in correspondence with the vanishing special lagrangian 3 cycles arg(Ω{uΦ})|L = const.

Given a basis of such 3 cycles {Li} in H3(H{uΦ},Z), it corresponds to a basis for the charge

lattice {ei} with the BPS quiver property. The central charge is then captured by

Zi ≡

∫

Li

Ω{uΦ} (3.52)

The BPS quiver computed out of the tt∗ Stokes matrix S of the corresponding 2d model

B ≡ St − S (3.53)

coincides with the intersection pairing in between the vanishing 3 cycles (and mutation

gets related with the usual Picard–Lefschetz transformations). Let A{uΦ} denote the set

of automorphisms of the geometry H{uΦ}. Let A0 denote the subgroup of A{uΦ} that acts

trivially on Ω{uΦ}. The BPS chamber corresponding to the stability condition encoded in

eqn.(3.52) has a 1/m fractional monodromy precisely when there is a deformations H{uΦ}

such that Card A{uΦ}/A0 = m ∈ 2Z>1. Notice that for generic values of the deformations

A{uΦ}/A0 = Z2, in correspondence with pct symmetry (orientation reversal). However, due

to the wall crossing invariance of Yq, if Mq = Y m
q in one chamber (E.g. for one specific

value of the deformations {u∗
Φ}), the same factorization holds everywhere in the moduli. In

particular, if the LG is quasi homogeneous, it is sufficient to choose the deformation of W

induced by the identity operator of R, to see that the finest 1/m fractional monodromy has

order equal to the 2d monodromy

m ≡ lcm(2, r). (3.54)
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4 The Y system of a 4D N = 2 model

4.1 From Yq to Yi,s

The action of a quantum mutation on TΓ(q) is described in eqn.(3.24). Let us consider the

classical limit q → 1 of eqn.(3.24):

Qi · Yj

∣∣∣
q→1

=





Y −1
i if i = j

Yj (1 + Y −1
i )−Bij if Bij ≥ 0

Yj (1 + Yi)
|Bij | if Bij ≤ 0

(4.1)

That is precisely the Y seed mutation of [29]. The classical limit of a quantum mutation Qi

defines n rational functions in the n variables {Yi},

R
(i)
k (Y1, . . . , Yn) ≡ Qi · Yk

∣∣
q→1

k = 1, ..., n. (4.2)

In particular, if the quiver is simply laced, i.e. if |Bij| ≤ 1,

Qi · Yj = N [R
(i)
j (Y1, . . . , Yn)]. (4.3)

Consider a 4D N = 2 model with BPS quiver that have a finite chamber made only

of hypermultiplets. Let Ξ ≡ {k1, . . . , ks} be the sequence of nodes associated to its finer

1/m fractional quantum monodromy via the mutation method discussed in section 3.2. The

classical limit of the quantum mutation seqence corresponding to the fractional monodromy

Yq is a rational map

R : Cn → Cn Yj 7→ Rj(Y1, . . . , Yn) (4.4)

where Rj is given by

Rj(Y1, . . . , Yn) ≡ Iσ
−1 ◦R(ks)

j ◦R(ks−1)
j ◦ · · · ◦R(k2)

j ◦R(k1)
j (Y1, . . . , Yn) (4.5)

The Y system associated to a finite chamber of a N = 2 model is defined as the recursion

relation generated by the iteration of the rational map (4.5), namely

Yj,s+1 ≡ Rj

(
Y1,s, . . . , Yn,s

)
, s ∈ Z. (4.6)

Log symplectic property. The rational map corresponding to the full quantum mon-

odromy

Mi(Y1, . . . , Yn) ≡ Ri ◦Ri ◦ · · · ◦Ri(Y1, . . . , Yn), (4.7)

where Ri is composed m times, has the log–symplectic property

〈ei , ej〉 d log Yi ∧ d log Yj = 〈ei , ej〉 d logMi ∧ d logMj . (4.8)
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Notice that for simply laced quivers, the action of Mq on the quantum torus algebra is fully

determined by its classical counterpart:

Ad′(Mq) · Yj ≡ N [Mj(Y1, ..., Yn)]. (4.9)

In particular, the periodicity of the latter, entails the periodicity of the former: if the quiver

is simply laced the periodicity of the quantum Y system follows from the periodicity of the

classical one.

4.2 SCFT and periodic Y systems.

The above construction shows that the quantum monodromy inner automorphism of TΓ(q)

has finite order ℓ iff the rational map of eqn.(4.5) has order m× ℓ, i.e the corresponding Y

system is periodic with period m× ℓ. As we have remarked above, in the simply laced case

one can show that also the converse is true, that is:

Ad′(Mq)
ℓ = IdTΓ

⇐⇒ Yj,s+mℓ = Yj,s, ∀ j ∈ Q0, s ∈ Z. (4.10)

Remark. It might happen that the smallest period of the Y system actually is k × ℓ for

a positive integer k | m. Examples of this reduction are presented below, as well as an

example, the Y system associated to D2(SU(5)), in which the minimal period is precisely

m× ℓ and no reduction occurs.

Zamolodchikov’s Y systems. The definition of the Y system in eqn.(4.6) is motivated

by the reconstruction of the Zamolodchikov TBA periodic Y systems for the integrable 2d

(G,G′) models. The proof of the periodicity of these systems was achieved using precisely the

formalism of cluster algebras in [9,29]. In our setup, periodicity of the Y system is predicted

by the physical properties of a model, and, in a sense, explained in terms of superconformal

symmetry. As an interesting motivating example, let us review here the details of the original

construction of [9].

The ADE singularities are listed in table 1 together with some of their fundamental

properties. The 4D N = 2 SCFT’s of type (G,G′) is obtained, for example, by geometric

engineering the Type II B superstring on the direct sum singular hypersurface of C4

WG(X1, X2) +WG′(X3, X4) = 0. (4.11)

By 2d/4D worldsheet/target correspondence the LHS of eqn.(4.11) can be interpreted as

the superpotential of a 2d N = (2, 2) SCFT. The 2d model is the direct sum of two non

interacting 2d SCFT’s: the Hilbert space of the system is simply the tensor product of the

two Hilbert spaces of the factors. The central charge ĉ of the (G,G′) 2d model is

ĉ ≡ ĉG + ĉG′ < 2. (4.12)
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Figure 1: UP: The quiver ~A3 ⊠ ~E6. DOWN: The quiver A3�E6. The Coxeter factorized
sequence of mutation of type E6

∐
E6

∐
E6 is simply obtained mutating first all ◦’s then

all •’s and iterating. The one of type A3

∐
· · ·
∐

A3 mutating first all •’s then all ◦’s and
iterating.
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Recall that the tt∗ Stokes matrix of the minimal LG model of type G is the upper triangular

matrix with unit diagonal

(SG)ij ≡ δij +

{
(CG)ij if i < j

0 else
(4.13)

The quiver one obtains is:
~G ≡ St

G − SG. (4.14)

The quiver ~G is obtained from the Dynkin graph of type G by giving the same orientation

to all edges. Since the Hilbert space of the 2d (G,G′) model is a tensor product HG ⊗HG′ ,

the tt∗ Stokes matrix is simply

S ≡ SG ⊗ SG′ . (4.15)

The BPS quiver of the system is then obtained by 2d/4D correspondence. It is encoded by

B ≡ (SG ⊗ SG′)t − SG ⊗ SG′. (4.16)

The quiver (with superpotential) associated to this intersection matrix is the triangular

tensor product quiver ~G ⊠ ~G′, an interesting element of the quiver mutation class associated

to the systems of type (G,G′). For an example see figure 1. However, this is not the

representative we are after. By a small abuse of notation, let us denote with the letter

G the quiver obtained giving to the simply laced Dynkin graph of type G an alternating

orientation, i.e. each vertex of G is a source or a sink. By mutating only on sinks of the

G vertical subquivers and on sources of the G′ ones, it is very easy to construct mutation

sequences that connects the quiver ~G ⊠ ~G′ to the square tensor product quiver G�G′. The

latter is obtained from ~G ⊠ ~G′ by setting to zero all the ‘diagonal’ arrows, replacing all ~G

vertical subquivers and all ~G′ horizontal subquivers with their alternating versions G and

G′, and reversing all arrows in the full subquivers of the form {i} ×G′ and G× {i′}, where

i is a sink of G and i′ a source of G′. For an example see figure 1. The latter is clearly the

better option for searching Coxeter factorized sequences of mutations.

Let us label the nodes as follows: black nodes • are sources (resp. sinks) of the vertical

G (resp. horizontal G′) subquivers, white nodes ◦ are sinks (resp. sources) of the vertical G

(resp. horizontal G′) subquivers. Clearly the (G,G′) model admit fractional monodromies

associated to Coxeter factorized sequences of mutations. Let us define

Ξ• ≡ {sequence of all •i nodes} Ξ◦ ≡ {sequence of all ◦j nodes} (4.17)

The ordering in the sub–sequences {•i} and {◦j} is irrelevant: since, by construction, dis-

tinct •i nodes (resp. ◦j nodes) are not connected in the quiver G�G′, the corresponding
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WG(X, Y ) (qX , qY ) ĉ h(G)

An−1 Xn + Y 2 (1/n, 1/2) n−2
n

n

Dn+1 Xn +XY 2 (1/n, (n− 1)/2n) (2−n2)(n−1)
n

2n

E6 X3 + Y 4 (1/3, 1/4) 5
6

12

E7 X3 +XY 3 (1/3, 2/9) 8
9

18

E8 X3 + Y 5 (1/3, 1/5) 14
15

30

Table 1: List of the ADE simple singularities, and some of the corresponding properties.

elementary mutations commutes, e.g. µ•aµ•b = µ•bµ•a . Then we define

Ξ ≡ {Ξ•,Ξ◦} Ξ′ ≡ {Ξ◦,Ξ•}. (4.18)

Notice that Ξ (resp. Ξ′) correspond to the action of the Coxeter element c of Weyl(G) (resp.

Weyl(G′)) on the charge lattice Γ, and the corresponding finite BPS chambers are of type

G
∐

G
∐
· · ·
∐

︸ ︷︷ ︸
rank G′ times

G
and

G′
∐

G′
∐
· · ·
∐

︸ ︷︷ ︸
rank G times

G′

(4.19)

The BPS chambers we have just constructed correspond via eqns.(4.5)–(4.6) to the Zamolod-

chikov Y system of type (G,G′). More precisely, the Zamolochikov’s Y system of eqn.(2.6)

corresponds to the rational maps associated with the sequences Ξ• and Ξ◦. One has

Yi,i′,n+1 ≡

{
RΞ•

({Yi,i′,n}) n odd

RΞ◦
({Yi,i′,n}) n even

(4.20)

Thus a shift s → s + 1 in the discrete time of the Y –system associated with the fractional

monodromy we have constructed corresponds to a shift n→ n+2 in the original discrete time

of the Zamolodchikov Y systems. This is true with a small caveat. In favorable circumstances

it might happen that Ξ• (or, equivalently, Ξ◦) itself corresponds to a fractional monodromy.

In that case, there is a redundancy in the corresponding Y system that reduces precisely the

Zamolodchikov’s one. Let us see an instance of this phenomenon in the following example:
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Example 1: The Y system of type (A1, A2). The quiver is A1�A2 ≃ A2. Set

• −→ ◦ (4.21)

In this case Ξ◦ is clearly the fractional monodromy, associated with the permutation (◦, •).

We obtain {
Y•,s+1 = Y −1

◦,s

Y◦,s+1 = Y•,s(1 + Y◦,s).
(4.22)

Eliminating the redundant Y• we are left with the Zamolodchikov Y-system of A2 type:

Y◦,s+1Y◦,s−1 = 1 + Y◦,s. (4.23)

Remark. We can anticipate that this type of reduction will be possible for all those pair of

G and G′ that are such that

(G�G′)op = σ(G�G′), (4.24)

where σ is a permutation of the labels of the nodes. Indeed, both sequences of mutations

mΞ◦
and mΞ•

map G�G′ to (G�G′)op.

We stress here that the sequences of mutations Ξ and Ξ′ solve the Y system recursion.

Example 2: The Y system of type (A1, A3). Let us consider the next case: A3 ≃ A1�A3.

In this case, nor Ξ• nor Ξ◦ have the right properties for being interpreted as fractional

monodromies, and the minimal choice is given by either Ξ or Ξ′. Let us label the nodes as

follows:

•1 −→ ◦ ←− •2 (4.25)

The Y system associated with the fractional monodromy Ξ = {•1, •2, ◦}, for example, is

Y•1,s+1 =
Y◦,sY•2,s

1 + Y•1,s + (1 + Y•1,s + Y•1,sY◦,s)Y•2,s)

Y◦,s+1 =
(1 + Y•1,s)(1 + Y•2,s)

Y•1,sY◦,sY•2,s

Y•2,s+1 =
Y•1,sY◦,s

1 + Y•1,s + (1 + Y•1,s + Y•1,sY◦,s)Y•2,s

(4.26)

And one can easily check that the above has period 6.

Remark. Besides the models of class (G,G′), many other models with R charges in N/ℓ

and finite BPS chambers of hypers can be constructed from singularity theory along the lines

of section 3.3. In particular in [10, 11] the models corresponding to unimodal and bimodal

Arnol’d singularities have been analyzed according to the principles we have discussed above.

In appendix A we report the relevant tables from [10, 11].

Remark 2. It would be interesting to give an interpretation of the new periodic Y systems
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Figure 2: The quivers in the family Q(r, s).

corresponding to N = 2 SCFT’s in terms of exactly solvable 2d theories in analogy with the

(G,G′) ones [1–3, 57].

Unexpected relation with Cremona groups. At the mathematical level, we get an

unexpected relation between singularity theory and cyclic subgroups of the Cremona groups

Cr(n) of birational automorphisms Pn → Pn, both interesting subjects in Algebraic Geometry

(the second one being notoriously hard for n ≥ 3 [58]). We stress that, although the explicit

form of the Y system depends on the particular finite BPS chamber we use to write the map

(4.5), two Y systems corresponding to different chambers of the same N = 2 theory are

equivalent, in the sense that they are related by a rational change of variables Yj → Y ′
j (Yk).

Indeed, the monodromies are independent of the chambers up to conjugacy, and so is its

classical limit map Yj → Rj . Hence the rational maps Rj obtained in different chambers are

conjugate in the Cremona group.

4.3 A detailed example: Minahan–Nemeschansky theories

The 4D N = 2 rank 1 SCFT’s in correspondence with Kodaira’s list of singular fibers have

specially simple BPS quivers, Q(r, s) drawn in figure 2. We have the following identification:

SCFT H2 H3 D4 E6 E7 E8

quiver Q(1, 0) Q(1, 1) Q(2, 2) Q(3, 3) Q(4, 3) Q(5, 3)
(4.27)

This can be motivated as follows: the flavor group F of any of the above N = 2 rank 1 SCFT

is a star shaped Dynkin with arms of length [r, s, 2]. We assign the BPS quiver Q(r, s) to the

model with flavor group corresponding to the Dynkin graph [r, s, 2].15 The models H2 and H3

corresponds to the Argyres–Douglas theories of type A3 and D4. The model labeled by the

D4 fiber corresponds to the lagrangian superconformal theory SU(2) Nf = 4. The models

labeled by exceptional flavor groups, instead, corresponds to the strongly interacting non

lagrangian exceptional Minahan–Nemeschansky SCFT’s. The two Argyres–Douglas models

15 For example D4 is the star [2, 2, 2] and corresponds to Q(2, 2).
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above are mapped to the Zamolodchikov’s Y systems of type (A3, A1) and (D4, A1). Here

we focus on the Y systems that are not of Zamolodchikov type.

Fractional monodromies and SW curves. The SW curves for these systems (turning

off all possible mass deformations) are the following elliptic curves

E8 : y
2 = x3 + 2u5 E6 : y

2 = x3 + u4

E7 : y
2 = x3 + u3 x D4 : y

2 = x3 + 3τ u2 x+ 2u3
(4.28)

Where u denotes the Coulomb branch parameter, and for the case of D4, τ is the exactly

marginal UV SU(2) coupling. The Seiberg Witten differential in this case satisfies

∂uλSW =
dx

y
+

d

dx
( somewhat ) (4.29)

According to our general principles outlined in section §.3.3, deforming eqn.(4.30) with a

constant mass term to flow in the IR Coulomb branch, the discrete subgroup of the group

of autmorphisms of the SW curves that acts non trivially on λSW is

E8 : Z2 × Z3 × Z5 E6 : Z3 × Z4

E7 : Z2 × Z9 D4 : Z2 × Z3

(4.30)

All these groups have order h(F ). Therefore we predict these systems have a 1/h(F ) frac-

tional monodromy. Since these models have quantum monodromies of order ℓ = 1, the

period of the corresponding Y systems is h(F ).

The SU(2) Nf = 4 Y system. Let us relabel the nodes of the quiver Q(2, 2) as follows:

1

2

3 4 5 6

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
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❄❄
❄❄

❄❄
❄❄

❄
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❖❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

__❄❄❄❄❄❄❄❄❄❄❄
��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦♦
(4.31)

With this notation we have

Ξ ≡ {1, 2, 3, 5} σ ≡ {(1, 2), (3, 4, 5, 6)} (4.32)

This is a sequence associated to a fractional monodromy because

mσ2(Ξ) ◦mσ(Ξ) ◦mΞ(ei) = −eπ(i). (4.33)
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Where, of course,

π = {(1, 2), (3, 4, 5, 6)}. (4.34)

This shows that the mutation sequence we have found is a 1/6 fractional monodromy. The

corresponding Y system is encoded by the following birational map C6 → C6

Y1,s+1 =
Y3,s(1 + Y1,s + Y1,s(1 + Y2,s)Y5,s)

1 + Y2,s + (1 + Y1,s)Y2,sY3,s
Y4,s+1 =

1 + Y1,s

Y1,sY5,s + Y1,sY2,sY5,s

Y2,s+1 =
(1 + Y2,s + (1 + Y1,s)Y2,sY3,s)Y5,s

1 + Y1,s + Y1,s(1 + Y2,s)Y5,s
Y5,s+1 =

Y1,s(1 + Y2,s)Y6,s

1 + Y1,s

Y3,s+1 =
(1 + Y1,s)Y2,sY4,s

1 + Y2,s
Y6,s+1 =

1 + Y2,s

Y2,sY3,s + Y1,sY2,sY3,s

(4.35)

One can easily check numerically that the above map is periodic of period 6: Yi,s+6 ≡ Yi,s.

The other Y systems. The sequence of nodes that corresponds to the minimal fractional

monodromy for the quivers Q(3, 3), Q(4, 3), and Q(5, 3) have always the form

Ξ ≡ {c1, c2, a1, b1} (4.36)

The mutation sequence mΞ acts as the identity on Q(r, s) up to a cyclic permutation of its

nodes of order lcm(2, r + s), namely

σ ≡ {(c1, c2), (a1, a2, . . . , ar−1, ar, b1, b2, . . . , bs−1, bs)} ∈ S2+r+s (4.37)

The explicit form of the Y system recursion Cn → Cn for the pairs (r, s) = (3, 3), (4, 3), (5, 3)

takes the form

Yc1,n+1 =
(1 + Yc1,n(1 + (1 + Yc2,n)Yb1,n))Ya1,n

1 + Yc2,n(1 + (1 + Yc1,n)Ya1,n)

Yc2,n+1 =
1 + Yc2,n(1 + (1 + Yc1,n)Ya1,n)Yb1,n

(1 + Yc1,n(1 + (1 + Yc2,n)Yb1,n))

Yai,n+1 =
(1 + Yc1,n)Yc2,nYai+1,n

1 + Yc2,n

i = 1, ..., r − 1

Ybj ,n+1 =
(1 + Yc2,n)Yc1,nYbj+1,n

1 + Yc1,n
j = 1, ..., s− 1

Yar,n+1 =
1 + Yc1,n

(1 + Yc2,n)Yc1,nYb1,n

Ybs,n+1 =
1 + Yc2,n

(1 + Yc1,n)Yc2,nYa1,n

.

(4.38)

We have checked numerically the desired minimal periodicity of the above expressions is

precisely h(F ).
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4.4 Y systems of D2(G) theories.

Another intriguing example of periodic Y systems that are not of Zamolodchikov type is

given by the theories of type D2(G). Even though a rigorous construction of these models

is possible only via a categorical tinkertoy, one can treat them as if were engineered in type

II B from the Z →∞ limit of the geometry

e−Z + e2Z +WG(X, Y ) + U2 = 0. (4.39)

Consider deforming eqn.(4.39) with a constant term. The transformation

(X, Y, Z, U) 7→ (ωX X,ωY Y, Z + log ωZ , ωU U) (4.40)

leaves the Z →∞ limit of eqn.(4.39) invariant iff

ω2
Z = ω2

U = 1 and WG(ωX X,ωY Y ) = WG(X, Y ). (4.41)

The SW holomorphic top form is mapped in

Ω 7→ (ωX ωY ωZ ωU) · Ω (4.42)

A quick look at table 1 is sufficient to establish that the system has a 1/m fractional mon-

odromy of order m = lcm(2, h). The BPS quiver of D2(G)’s and their BPS spectrum was

computed in [16]. Let us review here the details, and add the explicit expression of the

corresponding Y system. With the arguments of section 3.3 applied to the chiral ring of the

LG in eqn.(4.39), one can show that the quantum monodromy of these systems has order

ℓ(2, G) ≡
2

gcd(2, h(G))
(4.43)

where h(G) is the Coxeter number of the ADE Dynkin graph G. The systems of type D2(G)

have a DWZ reduced BPS quiver that we have denoted D(G). For instance, the quiver

D(An) is

D(An) ≡

1̂ // 2̂ //

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

· · ·

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

// n̂− 1 //

}}④④
④④
④④
④④
④④
④④
④④
④④
④④

n̂

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

1 // 2 //

^^❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

· · · //

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄
n− 1 //

aa❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈

n

``❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇

(4.44)

The D(G)’s for the other simply laced Lie algebras being represented in figure 3.

The quivers D(G) contain two full Dynkin G subquivers with alternating orientation and

non–overlapping support. E.g. the two alternating An subquivers of D(An) in (4.44) are the
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full subquivers over the nodes

{
1, 2, 3̂, 4̂, 5, 6, . . .

}
and

{
1̂, 2̂, 3, 4, 5̂, 6̂, . . .

}
. (4.45)

With reference to this example, let us define the following mutation sequence:

m2,An
≡

(
∏

a even

µa ◦ µâ

)
◦

(
∏

a odd

µa ◦ µâ

)
(4.46)

For systems with h = n + 1 even, this is the seqence corresponding to the finest fractional

monodromy compatible with the chamber An

∐
An. For systems with h = n + 1 odd, the

minimal fractional monodromy is associated to the odd part of eqn.(4.46). Indeed, the

mutation sequence corresponding to the full quantum monodromy associated to the An⊕An

chamber is symply

(m2,An
)n+1 = m2,An

◦ · · · ◦m2,An︸ ︷︷ ︸
n+1 times

. (4.47)

We draw the BPS-quivers of the other D2(G) models in figure 3. From their structure it

is clear that they all admit Coxeter–factorized sequences of type G
∐

G constructed analo-

gously. Then we expect that the finer Y systems corresponding to the fractional monodromy

of these systems have orders

lcm(2, h)× ℓ(2, G) = 2×
lcm(2, h)

gcd(2, h)
. (4.48)

We have numerically checked this prediction for the corresponding 2d solvable models getting

perfect agreement. Let us give here an example.

An explicit example: D2(SU(5)). Let us label the nodes of the BPS quiver for D(SU(5))

as follows

1 2 3 4

5 6 7 8
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// // //

(4.49)

We have chosen this model because it has a such a small fractional monodromy that gener-

ating the corresponding Y system is really trivial. Indeed, we have

Ξ ≡ {1, 5, 3, 7} σ ≡ {(1, 4), (2, 3), (5, 8), (6, 7)} (4.50)
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D(Dn+1) :
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~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦

5̂ //

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

6̂ //

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

7̂

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

1 // 2 //

^^❂❂❂❂❂❂❂❂❂❂❂❂❂
3 //

^^❂❂❂❂❂❂❂❂❂❂❂❂❂

��
❂❂

❂❂
❂❂

4 //

``❅❅❅❅❅❅❅❅❅❅❅❅❅❅
5 //

^^❂❂❂❂❂❂❂❂❂❂❂❂❂
6 //

^^❂❂❂❂❂❂❂❂❂❂❂❂❂
7

^^❂❂❂❂❂❂❂❂❂❂❂❂❂

8

TT✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

Figure 3: The DWZ–reduced quivers D(G) for the D2(G) SCFT’s.
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The corresponding Y system recursion is

Y1,s+1 ≡
(1 + Y7,s)Y3,sY4,s

1 + Y3,s
Y2,s+1 ≡

1

Y3,s

Y3,s+1 ≡
Y1,sY2,sY7,s(1 + Y3,s)(1 + Y5,s)

(1 + Y1,s)(1 + Y7,s)
Y4,s+1 ≡

1

Y1,s

Y5,s+1 ≡
(1 + Y3,s)Y7,sY8,s

1 + Y7,s
Y6,s+1 ≡

1

Y7,s

Y7,s+1 ≡
Y3,sY5,sY6,s(1 + Y1,s)(1 + Y7,s)

(1 + Y3,s)(1 + Y5,s)
Y8,s+1 ≡

1

Y5,s

(4.51)

And one can numerically check that its minimal period is 20 = 2× lcm(2, 5):

Yi,s+20 = Yi,s (4.52)

as predicted from eqn.(4.48).

Remark. Even more (new) periodic Y systems can be obtained from the other systems of

type Dp(G) of [16, 59].

5 Asymptotically free models, friezes, and Q systems

5.1 Fractional monodromy and frieze pattern

In the previous section we have discussed the Y system canonically associated to the BPS

spectral problem of 4D N = 2 systems. In the special case of SCFT’s such Y system is

periodic. The purpose of this section is to illustrate the special properties of the Y system

in case the model is asymptotically free. For this purpose, instead of working directly with

it, is more convenient to introduce the frieze pattern {Xi,s} with i ∈ Q0, s ∈ Z associated

to Q. This is related to the Y system by

Yi,s =
n∏

i=1

X
Bij

j,s . (5.1)

In practice, instead of using the above relation, it is more convenient to exploit yet another

relation with cluster algebra. Indeed, eqn.(5.1) is the famous relation in between the Y

seed and the X seed of the cluster algebra associated with Q. Let Ξ ≡ {k1, . . . , ks} be the

sequence of nodes associated with the finest fractional monodromy of the system. The frieze

pattern associated to a 4D N = 2 system is defined via Ξ by applying eqn.(4.5) to the X

seed. In other words, the rational functions R
(i)
j get replaced by the corresponding X seed
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mutations

G
(i)
j (X1, . . . , Xn) =





1
Xi

(∏n
k=1X

[Bik]+
k +

∏n
k=1X

[Bki]+
k

)
if i = j

Xi else
(5.2)

and the frieze pattern is obtained from the recursion

Xj,s+1 ≡ Gj(X1,s, . . . , Xn,s) (5.3)

where Gj is the following rational map

Gj(X1, . . . , Xn) ≡ Iσ−1 ◦G(ks)
j ◦G(ks−1)

j ◦ · · · ◦G(k2)
j ◦G(k1)

j (X1, . . . , Xn). (5.4)

From eqn.(5.2) we see that the X seed frieze pattern is redundant whenever the finest 1/m

fractional monodromy corresponds to an admissible sequence of nodes Ξ that is supported

on a strict subset of Q0. Whenever this happens, typically, one can extract a finer frieze

pattern out of the original one, we call this finer pattern the Q system. The reason for this

definition comes from the frieze pattern associated to pure SU(n) SYM: the refined frieze

pattern in this case is the well known An−1 type Kirillov–Reshetikin Q system [5] (up to

a twist of sign [6]). Notice that, from eqn.(5.2), it follows that, whenever it exists, the Q

system depends only on card(Ξ) < n variables.

Remark. In the math literature about cluster algebras, the frieze pattern is typically defined

in terms of the mutation sequence that correspond, in our language, to the half monodromy.

Let us denote it by X̃i,t. For the cluster algebras associated with 4D N = 2 models, there is

a finer frieze pattern, the Xi,s, corresponding to the minimal fractional monodromy. From

eqn.(3.32), the two are related by X̃i,t ≡ Xi,t(kΞ+1).

From the discussion in the introduction follows that, if defined, the frieze pattern of an

asymptotically free 4D N = 2 system should satisfy linear recurrence relations. The form of

these linear recurrences is going to depend on the specific charges of the various susy line

defects involved. In particular, we expect to have different recursions associated to different

generators of Γ, that are one to one with the nodes of the quiver.

The presence of linear recurrence relations is indeed a leitmotif in the context of frieze

patterns [60, 61]. One of the biggest confirmations of the general theory that we have dis-

cussed above is given by the SU(2) asymptotically free models. The recurrence relations,

for this case, have been worked out in the math literature about frieze patterns. [62] An-

other important example is given by the pure SU(N) SYM theories. Indeed, for all the Q

systems of A type there is a further reduction yielding precisely to a finite linear recurrence

relation [7]. In what follows, after reviewing the known results in the literature using the

language that we have introduced so far, we perform a further test of our general ideas. As

a byproduct of this fact, we construct infinitely many new families of Q systems of A type.
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quiver non canonical matter b

Â(p, q) Dp ⊕Dq 2 (1
p
+ 1

q
)

D̂2+r D2 ⊕D2 ⊕Dr
2
r

Ê3+r D2 ⊕D3 ⊕Dr
6−r
6r

Table 2: SU(2) asymptotically free theories. We denote by D2 the free theory of two non–
interacting N = 2 hypers, while D3 ≃ A3 Argyres–Douglas.

5.2 The case of asymptotically free SU(2) gauge theories

Asymptotically free SU(2) gauge theories are classified by the BPS quivers of affine ADE

type. The elements of low rank in the affine ADE series correspond lagrangian asymptoti-

cally free models, increasing the ranks, we find SU(2) SYM coupled to non canonical mat-

ter. More precisely the theories SU(2) Nf = 0, 1, 2, 3 have BPS quivers equal respectively to

Â(1, 1), Â(2, 1), Â(2, 2), and D̂4. Higher rank affine models correspond to SU(2) SYM weakly

gauging the diagonal flavor symmetry of a system of non–interacting Dp Argyres–Douglas

systems — see table 2.

Let us label the nodes of the affine quivers as in figure 4. Each of these model has a

minimal BPS chamber corresponding to a stability condition that kills all but the simple

objects in rep Ĥ. This stability condition has a half–monodromy given by the following

sequence of nodes (n ≡ rank Ĥ):16

ΛÂ(p,q) ≡ {0, 1, . . . , q − 1, p+ q − 1, p+ q − 2, . . . , q + 2, q + 1, q}

ΛD̂r+2
≡ {0, 1, 2, . . . , r − 1, r, r + 1} ΛÊ6

≡ {7, 6, 4, 2, 5, 3, 1}

ΛÊ7
≡ {8, 7, 6, 3, 5, 4, 1} ΛÊ8

≡ {9, 8, 6, 5, 7, 4, 3, 2, 1}

(5.10)

The corresponding frieze pattern is elegantly written as follows:

Xi,s+1 ≡
1

Xi,s

(
1 +

∏

k→i

Xk,s

∏

i→k

Xk,s+1

)
(5.11)

We have the following

Theorem. [62] : If Q is an affine quiver, then every frieze sequence {Xi,s}s satisfies a linear

recurrence relation.

16 This weird choice for the labelings of the nodes is motivated by the simplicity of the recursion relations
one gets.
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A(p, q) :

q − 1 // q − 2 // . . . // 1

%%▲
▲▲▲

▲▲▲

q

<<②②②②

""❊
❊❊

❊ 0

q + 1 // q + 2 // . . . // p+ q − 1

99rrrrrr

(5.5)

D̂r+2 :

?>=<89:;r
$$■

■■
■■

■■
■■

■ ?>=<89:;1

r − 1 // r − 2 // . . . // 3 // 2

@@✁✁✁✁✁✁✁✁

��
❂❂

❂❂
❂❂

❂❂

WVUTPQRSr + 1

::✈✈✈✈✈✈✈✈✈✈ ?>=<89:;0

(5.6)

Ê6 :

?>=<89:;1
��

2

��?>=<89:;5 // 6 // 7 4oo ?>=<89:;3oo

(5.7)

Ê7 :

7

��?>=<89:;1 // 2 // 3 // 8 6oo 5oo 4oo

(5.8)

Ê8 :

6

��?>=<89:;1 // 2 // 3 // 4 // 5 // 9 8oo 7oo

(5.9)

Figure 4: Our conventions on the nodes of the affine quivers. For Â(p, q) each node is an
extending one, for the other affine quivers above the extending nodes are circled.
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In particular, setting 



ui ≡ i− q 0 ≤ i ≤ q

ui ≡ max(q − i,−q) q < i

vi ≡ −ui+q

(5.12)

the frieze sequence of type Â(p, q) satisfies

Xi+q,s+ui
− c ·Xi,s +Xi−q,s+vi = 0 (5.13)

where the i index is taken mod p + q. In particular, if p = q, as i + q = i − q mod 2q, by

iterating once the above, one obtains

Xi,s−q − (c2 − 2)Xi,s +Xi,s+q = 0. (5.14)

Moreover, let i be an extending vertex of Ĥ:

• The D̂r+2 frieze pattern satisfies:

{
Xi,s+r − c ·Xi,s +Xi,s−r = 0 r even

Xi,s+2r − c ·Xi,s +Xi,s−2r = 0 r odd
(5.15)

• The Êr+3 frieze pattern satisfies:

Xi,s−dr+3 − c ·Xi,s +Xi,s−dr+3 = 0 (d6, d7, d8) ≡ (6, 12, 30) (5.16)

Remark. It is intriguing to notice that in all of the eqns.(5.15),(5.16), and (5.14), the shift

in the linear recursion is always given by the denominator db of the coefficient b of the beta

function listed in table 2. In the appendix of [62] one can find conjectural values for the order

of the recursion relations corresponding to the non extending vertices for systems of type D̂

and Ê. While a relation with db is manifest for the D̂r+2 series (one finds only multiples of

db), the same is not true for the three exceptional affine systems.

5.3 The case of SU(N + 1) SYM

All 4D N = 2 pure SYM theories with simple lie group G admit a BPS quiver description

[9, 14, 35]. The IR Coulomb branch of the system is captured by the SW geometry

e−Z + eZ +WG(X, Y ) + U2 = 0 ⊂ C4. (5.17)

This model is a direct sum of the 2d (2, 2) Â(1, 1) system with a minimal model of type G.

The SYM models have an interesting square tensor product quiver representative in their
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mutation class. For SU(N + 1) SYM such quiver is

Â(1, 1)�AN :

◦1

�� ��

◦2

�� ��

◦3

�� ��

◦N−1

�� ��

◦N

�� ��

· · ·

•1

@@�����������������
•2

^^❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃

@@�����������������
•3

^^❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃❃
•N−1

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
•N

``❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇

(5.18)

This quiver admit factorized sequences of the form AN

∐
AN , and therefore has a fractional

1/2(N + 1) monodromy: its sequence of nodes is

Ξ ≡ {•1, •2, . . . , •N−1, •N} (5.19)

while the corresponding permutation is

σ ≡ {(•1, ◦1), (•2, ◦2), . . . , (•N−1, ◦N−1), (•N , ◦N)} ∈ S2N . (5.20)

The full Coxeter factorized sequence the computes the half monodromy is

mσN (Ξ) ◦mσN−1(Ξ) ◦ · · · ◦mσ2(Ξ) ◦mσ(Ξ) ◦mΞ. (5.21)

and corresponds to a finte BPS chamber of the form An

∐
AN . The frieze pattern associated

with (Ξ, σ) is





X•i,s+1 = X◦i,s i = 1, . . . , N

X◦i,s+1 = (X2
◦i,s

+X◦i−1,sX◦i+1,s)/X•i,s s ∈ Z

with the convention: X◦0,s ≡ X◦N+1,s ≡ 1.

(5.22)

The Q system is the sequence of N variables

Qi,s ≡ X◦i,s i = 1, .., N s ∈ Z (5.23)

underlying the frieze pattern. The recursion relations inherited from eqn.(5.22) reads:

{
Qi,s+1Qi,s−1 = Q2

i,s +Qi−1,sQi+1,s

Q0,s ≡ QN+1,s ≡ 1
(5.24)

a sign–twisted version the Kirillov Reshtikin Q system of type AN [6]. Below we review the

argument of [7] that shows that the above Q system can be solved entirely in terms of Q1,s.

Let us define N matricies i× i:

(Mi,s)ab ≡ Q1,s+a+b−i−1 a, b = 1, . . . , i. (5.25)
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Let us denote Wi,s ≡ |Mi,s| ≡ det(Mi,s). From the Desnanot Jacobi formula about deter-

minants and minors

|M | |M1,n
1,n | = |M

n
1 | |M

1
n| − |M

1
1 | |M

n
n | (5.26)

applied to the (i+ 1)× (i+ 1) matrix

(M)ab ≡ Q1,s+a+b−i−2 a, b = 1, . . . , i+ 1 (5.27)

One obtains that

Wi,s+1Wi,s−1 = W 2
i,s +Wi+1,sWi−1,s, (5.28)

with the convention Wi,0 ≡ 1. Since Wi,1 = Qi,1, this shows that

Wi,s ≡ Qi,s. (5.29)

In other words, also the Q system is redundant: it can be solved entirely in terms of only

one of its variables, namely Q1,s. Let us define

Fs ≡ Q1,s s ∈ Z (5.30)

The identification in eqn.(5.29) entails that Wi,s satisfy the other boundary condition for the

Q system: in other words, the (N + 1)× (N + 1) matrixMN+1,s satisfies

WN+1,s = 1 ∀ s ∈ Z (5.31)

In particular,

0 = WN+1,s −WN+1,s+1

=

∣∣∣∣∣∣∣∣∣∣∣

Fs−N Fs−N+1 · · · Fs

Fs−N+1 Fs−N+2 · · · Fs+1

...
...

...

Fs Fs+1 · · · Fs+N

∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣

Fs−N+1 Fs−N+2 · · · Fs+1

Fs−N+2 Fs−N+3 · · · Fs+2

...
...

...

Fs+1 Fs+2 · · · Fs+N+1

∣∣∣∣∣∣∣∣∣∣∣

(5.32)

and since the two matrices above share N identical rows, the two determinants can be

combined by multilinearity. The resulting matrix has vanishing determinant: its columns

have to be linearly dependent. Each row contributes essentially the same relation, namely

Fs + (−1)N+1Fs+N+1 + c1 Fs+1 + c2 Fs+2 + · · ·+ cN−1 Fs+N−1 + cN Fs+N = 0. (5.33)

In conclusion in this way we obtain a linear recurrence relation for the sequence Fs with

N + 2 terms.
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◦1,1

•1,1

◦1,2

•1,2

◦1,3

•1,3

•2,1

◦2,1

◦2,3

•2,2

•2,3

◦2,2

◦3,1

•3,1

•3,3

◦3,2

◦3,3

•3,2

WW✴✴✴✴✴✴✴✴✴
>>⑤⑤⑤⑤⑤

oo

��
//

FF✌✌✌✌✌✌✌✌
oo

WW✴✴✴✴✴✴✴✴✴✴✴✴

//

��

oo

//

��
✴✴
✴✴
✴✴
✴✴
✴

��✂✂
✂✂
✂

//

OO

oo

OO

oo

��✌✌
✌✌
✌✌
✌✌

//

��
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱

//

oo

WW✴✴✴✴✴✴✴✴✴
>>⑤⑤⑤⑤⑤

��

��

FF✌✌✌✌✌✌✌✌

WW✴✴✴✴✴✴✴✴✴✴✴✴

Figure 5: The quiver of the system A(3, 3)⊠ A3.

5.4 The case of Â(p, p) ⊠ AN

Paralleling the analogy in between the SU(2) example we have discussed in the introduction

and the affine models, that represent SU(2) coupled in a UV asymptotically free fashion with

some non canonical matter system, one expect the same type of behavior by coupling G SYM

to some non canonical ‘nice’ matter system, where ‘nice’ means that the central charge kG
associated to the two point function of the G flavor current is such that kG ≤ 2h(G). A large

variety of models of this kind were introduced in reference [59]. In between these systems,

the ones that have a combinatorics that more closely resembles the one of G SYM is obtained

by Type II B engineering on the following geometry

e−pZ + epZ +WG(X, Y ) + U2 = 0. (5.34)

The BPS quiver of these system is Â(p, p)�AN . We draw in figure 5 an example. It is

clear for example that the 1/m fractional monodromy of order m = lcm(2, h) of the system

is obtained from the mutation sequence on the •i,a nodes with permutation σ ≡ {(•i, ◦i)}.

Notice that each X•i,a has only 4 neighbors, but for the boundary elements X•i,1 and X•i,N

that have 3. Mutation of the X seed is a local operation, therefore the effect of mΞ is easily

decoded. We obtain the following frieze pattern:





X•i,a,s+1 = X◦i,a,s a = 1, ..., N

X◦i,a,s+1 =
1

X•i,a,s
(X◦i−1,a,sX◦i+1,a,s +X◦i,a−1,sX◦i,a+1,s) i = 1, ..., p

X◦i,0,s ≡ X◦i,N+1,s ≡ 1 s ∈ Z

X◦i+p,a,s ≡ X◦i,a,s

(5.35)

The corresponding Q system is

Qi,a,s ≡ X◦i,a,s (5.36)
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and we obtain




Qi,a,s+1Qi,a,s−1 = Qi−1,a,sQi+1,a,s +Qi,a−1,sQi,a+1,s a = 1, ..., N

Qi,0,s ≡ Qi,N+1,s ≡ 1 i = 1, ..., p

Qi+p,a,s ≡ Qi,a,s s ∈ Z

(5.37)

Notice the compatibility with the N = 1 case: Indeed, in this case we obtain precisely the

Q system of type Â(p, p). Also in this case the Q system can be solved in terms of a subset

of its variables as in the previous section. Let us define

F i
s ≡ Qi,1,s thus F i+p

s = F i
s (5.38)

Then, construct the following a× a matricies:

(Mi,a,s)mn ≡ F i−m+n
s+m+n−a−1 m,n = 1, ..., a i = 1, ..., p (5.39)

again by the Desnanot–Jacobi formula applied to the (a+ 1)× (a+ 1) matrix

(M (i))mn ≡ F i−m+n
s+m+n−a−2 m,n = 1, . . . , a+ 1 (5.40)

we see that the Wi,a,s ≡ det(Mi,a,s) obey the Q system. Set Wi,0,s ≡ 1. Notice that

Wi,1,s = F i
s . Therefore the Wi,a,s obey the Q system of eqn.(5.37). In particular, it follows

that Wi,N+1,s = 1 for all i’s:

Wi,N+1,s =

∣∣∣∣∣∣∣∣∣∣∣

F i
s−N F i+1

s−N+1 · · · F i+N+1
s

F i−1
s−N+1 F i

s−N+2 · · · F i+N
s+1

...
...

...

F i−N
s F i−N+1

s+1 · · · F i
s+N

∣∣∣∣∣∣∣∣∣∣∣

= 1 (5.41)

By the same mechanism as above, the whole family

{F 1
s , F

2
s , · · · , F

p
s } (5.42)

obeys a linear recursion relation of a form similar to eqn.(5.33), obtained using the identities

i = 1, . . . , p

Wi−1,N+1,s −Wi,N+1,s+1 = 0. (5.43)

Exploiting the fact that the corresponding (N + 1)× (N + 1) matrices share N columns we

infer the linear relation, namely

F i
s+N+1 + (−1)N+1 F i−N−1

s =

N∑

a=1

ca F
i−N+a
s+a . (5.44)
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A Arnol’d Y systems

Arnol’d 4D N = 2 SCFT’s are superconformal systems obtained by Type II B superstring

engineering on singular Calabi Yau hypersurfaces of C4 of the form W (X, Y, Z, V ) ≡ 0

where W is a quasi homogenous singularity such that the corresponding LG model has

central charge ĉ < 2, as required by 2d/4D correspondence. In this appendix we draw

from [10, 11] the tables about quasi homogenous unimodal and bimodal singularities that

meet the criterion of [56]. The BPS quiver for all of these models can be obtained by 2d/4D

correspondence from the Coxeter–Dynkin diagram associated to the singularity [10]: the

latter encodes the stokes matrix S of the corresponding 2d tt∗ structure. In particular we

list all our predictions about the order of the quantum monodromy operator ℓ. All these

models admit Coxeter factorized sequences of mutations that can be used to extract the

corresponding BPS spectrum and periodic Y systems [10, 11].
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name polynomial W (x, y, z) weights qi ℓ Coxeter–Dynkin diagram

E13 x3 + xy5 + z2 1/3, 2/15, 1/2 7

• • • • • •

• • • • • • •

Z11 x3y + y5 + z2 4/15, 1/5, 1/2 7

• • •

• • • •

• • • •

Z12 x3y + xy4 + z2 3/11, 2/11, 1/2 5

• • •

• • • •

• • • • •

Z13 x3y + y6 + z2 5/18, 1/6, 1/2 8

• • •

• • • • •

• • • • •

W13 x4 + xy4 + z2 1/4, 3/16, 1/2 7

• • • •

• • • •

• • • • •

Q11 x2z + y3 + yz3 7/18, 1/3, 2/9 8

• •

• •

• • •

• • • •

Table 3: Arnol’d’s 14 exceptional singularities that are not of the form WG +WG′
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name polynomial W (x, y, z) weights qi ℓ Coxeter–Dynkin diagram

S11 x2z + yz2 + y4 5/16, 1/4, 3/8 7

• •

• • •

• • •

• • •

S12 xy3 + x2z + yz2 4/13, 3/13, 5/13 11

• •

• • •

• • •

• • • •

Table 4: Arnol’d’s 14 exceptional singularities that are not of the form WG +WG′ — con-
tinued.
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name W (x, y, z) Coxeter–Dynkin diagram

E19 x3 + xy7 + z2
• • • • • • • • •

• • • • • • • • • •

Z17 x3y + y8 + z2

• • •

• • • • • • •

• • • • • • •

Z18 x3y + xy6 + z2

• • •

• • • • • • •

• • • • • • • •

Z19 x3y + y9 + z2

• • •

• • • • • • • •

• • • • • • • •

W17 x4 + xy5 + z2

• • • • •

• • • • • •

• • • • • •

Table 5: Exceptional bimodal singularities that are not of the form WG +WG′ .
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Q17 x3 + yz2 + xy5

• •

• •

• • • • • •

• • • • • • •

S16 x2z + yz2 + xy4

• •

• • • •

• • • • •

• • • • •

S17 x2z + yz2 + y6

• •

• • • • •

• • • • •

• • • • •

Table 6: Exceptional bimodal singularities that are not of the form WG +WG′ — continued.
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name W (x, y, z) Coxeter–Dynkin diagram

Z1,0 (15) x3y + y7 + z2

• • •

• • • • • •

• • • • • •

S1,0 (14) x2z + yz2 + y5

• •

• • • •

• • • •

• • • •

U1,0 (14) x3 + xz2 + xy3

• • •

• • •

• • • •

• • • •

Table 7: Quasi–homogeneous elements of the 8 infinite series of bimodal singularities that
are not of the formWG+WG′ . We indicate the corresponding Milnor numbers in parenthesis.

qx, qy, qz ĉ ℓ

E19 1/3 , 1/7 , 1/2 8/7 18

Z17 7/24, 1/8, 1/2 7/6 10

Z18 5/17, 2/17, 1/2 20/17 14

Z19 8/27, 1/9, 1/2 32/27 22

W17 1/4, 3/20, 1/2 6/5 8

Q17 1/3, 2/15, 13/30 6/5 12

S16 5/17, 3/17, 7/17 21/17 13

S17 7/24, 1/6, 5/12 5/4 9

Z1,0 2/7, 1/7, 1/2 8/7 6

S1,0 3/10, 1/5, 2/5 6/5 4

U1,0 1/3, 2/9, 1/3 11/9 9

Table 8: Chiral charges qi, central charges ĉ and orders ℓ of the quantum monodromy Mq

for the quasi–homogeneous bimodal singularities listed in the tables above.
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