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170 | Nicola Gigli

1 Introduction

1.1 Aim and overview of the content

In the recent paper [24] the Cheeger-Colding-Gromoll splitting theorem has been generalized to the abstract

class of metric measure spaces with Riemannian Ricci curvature bounded from below, the analysis being

based on some de�nitions and results contained in [22]. These two papers add up to almost 200 pages and as

such they are not suitable for getting a quick idea of the techniques used to work in the non-smooth setting.

This is the aim of this note: to provide an as short as possible yet comprehensive proof of the splitting in such

abstract framework. The focus here is thus to prove:

Theorem. Let (X, d,m)beaRCD(0, N) space containing a line, i.e. such that there is amap γ̄ : R→ X satisfying

d(γ̄t , γ̄s) = |t − s|, ∀t, s ∈ R.

Then (X, d,m) is isomorphic to the product of the Euclidean line (R, d
Eucl

,L1

) and another space (X′, d′,m′),
where the product distance d′ × d

Eucl
is de�ned as

d′ × d
Eucl

(
(x′, t), (y′, s)

)
2

:= d′(x′, y′)2

+ |t − s|2, ∀x′, y′ ∈ X′, t, s ∈ R. (#)

Moreover:

• if N ≥ 2, then (X′, d′,m′) is a RCD(0, N − 1) space,
• if N ∈ [1, 2), then X′ is just a point.

Here ‘isomorphic’ means that there is a measure preserving isometry between the spaces.

Given that one of the scopes of this paper is to be reasonably short, all the necessary de�nitions and interme-

diate results are stated in the form needed to get the splitting theorem, without any aim of covering general

situations as done in [22], [24]. Also, the proof of some statements are only sketched: in these cases the main

idea for the proof is given, but technical details are only brie�y mentioned. On the other hand, the exposi-

tion here is quite self-contained in the sense that all the recently introduced tools of di�erential calculus on

metric measure spaces are recalled and discussed. The preliminary notions that are required are contained

in sections labeled as ‘things to know’. Here is their list together with relative references:

• The de�nition of Sobolev space W1,2

of real valued Sobolev functions de�ned on a metric measure

space. There is a quite large literature concerning this now classical object, see for instance [32] and

references therein. Here we recall a de�nition proposed in [8] - equivalent to the previous ones - which

best suits our discussion.

• Some knowledge of optimal transport and of the curvature dimension condition in sense of Lott-Sturm-

Villani. General references for these topics are [52] and [2].We shall alsomake use of the recently proved

([46], [23]) generalization of Brenier-McCann’s theorems about optimal maps in a way that simpli�es

the original arguments given in [24].

• The strong maximum principle for superminimizers, proved in the context of metric measure spaces

with doubling measures and supporting a weak local Poincaré inequality by Bjorn-Bjorn in [11]. Very

shortly and roughly said, the argument of the proof is based on a non-trivial generalization of DeGiorgi-

Moser-Nash techniques for regularity of solutions to elliptic PDEs.

• The Gaussian estimates for the heat kernel and the Bakry-Émery contraction rate for the heat �ow. The

Gaussian estimates have been proved by Sturm in [49], again as generalization of De Giorgi-Moser-

Nash techniques. The Bakry-Émery estimate is instead a consequence of the lower bound on the Ricci

curvature (in a smooth world the two are in fact equivalent) and has been proved in [25] on Alexandrov

spaces with an approach which has been then generalized to RCD(K, ∞) spaces in [8].

• The fact that the product of two RCD(K, ∞) spaces is again RCD(K, ∞). This natural but surprisingly

non-obvious result has been proved in [6], see also [50] for the case of CD(K, ∞) spaces.
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We now turn to the description of the statement of our main result and of the general plan for its proof.

The original version of the splitting theorem is a classical and celebrated result in Riemannian geometry

proved by Cheeger-Gromoll in [18]. Among its numerous generalizations, a crucial one has been obtained by

Cheeger-Colding in [14] which extends the splitting to spaces which are measured-Gromov-Hausdor� limits

of smooth Riemannian manifolds.

In [37] and [50],[51] Lott-Villani on one side and Sturm on the other independently proposed a de�nition

of ‘having Ricci curvature bounded from below by K and dimension bounded above by N’ for metric measure

spaces, these being called CD(K, N) spaces (in [37] only the cases K = 0 or N = ∞ were considered). Here K
is a real number and N a real number ≥ 1, the value N = ∞ being also allowed. In the technically simpler

case N = ∞ the CD(K, ∞) condition simply reads as the K-convexity w.r.t. the distance W
2
of the entropy

functional relative to the reference measure.

The crucial properties of their de�nition are the compatibility with the smooth Riemannian case and the

stability w.r.t. measured-Gromov-Hausdor� convergence. Due to such stability property and to the almost

rigidity result granted by Cheeger-Colding version of the splitting, it is natural to ask whether the splitting

theorem holds on CD(0, N) spaces. Unfortunately this is not the case: as shown by Cordero-Erasquin, Sturm

and Villani (see the last theorem in [52]), the metric measure space (Rd
, d‖·‖,Ld), where Ld is the Lebesgue

measure and d‖·‖ is the distance induced by the norm ‖ ·‖, is always a CD(0, d) space, regardless of the choice

of the norm (see also [38] for the curved Finsler case). In particular, if we take d = 2 and consider a norm not

coming from a scalar product, we see that although the space contains a line (many, in fact) the splitting

cannot hold, because “Pythagoras’ theorem" stated in formula (#) fails.

The fact that geometric properties like the splitting fail in the class of CD(K, N) spaces has been source of

some criticism, especially in the community of geometers (see e.g. [43]). The question is then whether there

exists another - more restrictive - synthetic notion of lower Ricci bound which retains the stability properties

and rules out Finsler-like geometries.

A proposal in this direction has beenmade in [6] by the author, Ambrosio and Savaré for the case N = ∞,

where the class RCD(K, ∞) has been introduced. The basic idea is to enforce the CD(K, ∞) condition with

the requirement that the heat �ow is linear (see also [3]). We brie�y recall the genesis of this de�nition. In

the celebrated paper [33], Jordan-Kinderlehrer-Otto showed that the heat �ow can be seen as gradient �ow

of the relative entropy w.r.t. the W
2
distance on probability measures. On CD(K, ∞) spaces, the information

that we have, which is in fact the only information available, is that the relative entropy is K-convex w.r.t.

the distanceW
2
and is therefore quite natural to study its gradient �ow w.r.t.W

2
. This has been done by the

author in [21], where it has been shown that such gradient �ow is unique. Notice that according to the analysis

done byOhta-Sturm in [40], despite the fact that the normed space (Rd
, d‖·‖,Ld) is CD(0,∞), the distanceW

2

never decreases along two heat �ows unless the norm comes from a scalar product, in this sense the stated

uniqueness result is non-trivial and obtainedwith a very ad-hoc argument. In [21] it has been also proved that

such gradient �ow is stable w.r.t. mGH-convergence of compact spaces (see [6] and [27] for generalizations).

On the Euclidean space, there is at least one other way of seeing the heat �ow as gradient �ow: the classical

viewpoint of gradient �ow in L2

of the Dirichlet energy. The fact that these two gradient �ows produce the

same evolution has been generalized in various directions. Among others, one important contribution to

the topic has beenmade by Ohta-Sturm in [39], where they proved that the two approaches produce the same

evolution onFinlsermanifolds, leading innon-Riemannianmanifolds to anon-linear evolution. It is therefore

reasonable to ask whether the same sort of identi�cation holds on general CD(K, ∞) spaces. In such setting,

the role of the Dirichlet form is taken by the functional f 7→ E(f ) :=

1

2

∫
|∇f |2 dm, where the object |∇f | is the

2-minimal weak upper gradient behind the de�nition of Sobolev functions, see Section 2.1. Notice that E is

in general not a quadratic form, in line with the case of Finsler geometries. Following the strategy proposed

in [25] for the case of Alexandrov spaces, in [8] it has been proved that indeed on CD(K, ∞) spaces the two

gradient �ows produce the same evolution, which we can therefore undoubtedly call heat �ow.

With this understanding of the heat �ow, the de�nition of RCD(K, ∞) spaces as CD(K, ∞) spaces where

such �ow is linear comes out quite naturally: not only in the smooth case it singles out Riemannianmanifolds

from Finsler ones, but in the non-smooth world also provides a natural bridge between optimal transport

theory and Sobolev calculus. Indeed, to require that the heat �ow is linear is equivalent to require that the
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172 | Nicola Gigli

energy functional E is a quadratic form or, which is the same, that the Sobolev spaceW1,2

built on our metric

measure space is Hilbert. Also, the fact that on RCD(K, ∞) spaces the energy E is a Dirichlet energy, allows

to make connections with the Bakry-Émery Γ
2
calculus, which furnishes a way to speak about lower Ricci

curvature bounds for di�usion operators in the abstract context of Dirichlet forms. It turns out that the two

approaches to lower Ricci curvature bounds, via optimal transport and via Γ
2
calculus, are in fact equivalent

in high generality ([25], [6], [7]).

Then the appropriate �nite dimensional notion of RCD(K, N) space can be introduced as¹:

RCD(K, N) := CD(K, N) ∩ RCD(K, ∞),

and the question becomeswhether in this new class of spaces geometric rigidity results like the splitting hold.

Let us informally notice that in principle it should be not too hard to prove the splitting (and the other

expected geometric properties) in thenon-smooth setting: it shouldbe su�cient to ‘just’ follow the arguments

giving the proof in the smooth case. In a sense, if we were able to make analysis on non-smooth spaces as we
are on smooth manifolds, then we would be able to deduce the same results.

The problem in doing so is not really, or at least not just, the fact that the setting is non-smooth, because

we already know by Cheeger-Colding that the splitting holds in non-smooth limits of Riemannianmanifolds.

The point is rather the lack of all the analytic tools available in the smooth world which allow to ‘run the

necessary computation’. Worse than this, a priori one doesn’t even have the algebraic vocabulary needed to

formulate those identities/inequalities that he needs. To give an example, recall that a �rst ingredient of the

proof of the splitting in the smooth setting is the Laplacian comparison estimate for the distance function

∆d(·, x
0

) ≤

N−1

d(·,x
0

)

valid in the weak sense (either viscosity or barrier or distribution sense) on manifolds with

non-negative Ricci curvature and dimension bounded from above by N. Hence any attempt to prove the split-

ting in the non-smooth setting should reasonably start from proving the same inequality. However, before

doing so one needs to de�ne what such inequality means in a setting where a priori di�erentiation operators

are not available. In other words the path is the following:

1) First there is algebra, i.e. we need to develop a machinery which allows us to formally manipulate

di�erential objects in the same way as we do in the smooth setting.

2) Then it comes analysis, i.e. we need to show that in presence of a curvature-dimension bound, for these

di�erential objects the same kind of estimates valid in the smooth world hold.

3) Finally there is geometry, i.e. once the analytic setup is established, we can try to mimic the arguments

valid in the smooth world to deduce the desired geometric consequences.

These notes have been written following this heuristic plan.

For what concerns the �rst ‘algebraic’ step, it is worth to underline that the di�erential calculus must

be developed without relying on any sort of analysis in charts, because lower bounds on the Ricci seem not

su�cient to directly produce existence of charts (comparewith the case ofAlexandrov spaceswherePerelman

[42], improving earlier results by Otsu and Shioya [41], proved the existence of charts with DC regularity, i.e.

coordinates are Di�erence of Convex functions). Recall that on non-smooth limits of Riemannian manifolds,

Cheeger-Colding proved in [17] (see also [15], [16]) the existence of charts with Lipschitz regularity, but their

approach is based on the fact that the spaces they consider are limit of smoothmanifolds, so that, very shortly

said, they run the necessary computations in the smooth setting, obtain estimates stable under convergence

and then pass to the limit. As such, this technique is not applicable in the RCD(K, N) class.

1 Bacher and Sturm introduced in [10] a di�erent notion of curvature-dimension bounds: the so called reduced-curvature-

dimension, denoted as CD*(K, N). This condition has better local-to-global properties but might produce slightly worse constants

in some inequalities (an issue mitigated by the work of Cavalletti-Sturm [12]). Hence, one can also de�ne the RCD*(K, N) condi-

tion as CD*(K, N) ∩ RCD(K, ∞). This has been the approach in [20] and [9], where the link between this notion, the ‘dimensional’

Γ
2
-calculus and the ‘dimensional’ Bochner inequality ∆ |∇f |2

2

≥

(∆f )2

N + ∇∆f ·∇f + K|∇f |2 has been established. In the particular

case K = 0 the two notions CD(0, N) and CD*(0, N) coincide, so for what concerns the splitting theorem this distinction does not

really matter.
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There are various approaches to di�erential calculus onmetric measure spaces, most notably by Cheeger

[13] andWeaver [53], but these frameworks do not describe how to integrate by parts in a non-smooth setting.

This topic has been investigated in [22] where it is has been shown how it leads to the notion of measure

valued Laplacian and how to get the natural Laplacian comparison estimates for the distance on CD(K, N)

spaces.

In this direction, a good example about how to implement the ‘strategy’ outlined above is the Abresch-

Gromoll inequality [1]: in [28] it has been proved how the original argument,which is based not on the smooth

structure of the manifolds, but only on the Laplacian comparison estimates, the linearity of the Laplacian

itself and the weak maximum principle, can be repeated verbatim on RCD(K, N) spaces leading to the same

result.

For the splitting things are not so easy, essentially due to the fact that currently neither the Bochner

identity nor the Hessian are available in the non-smooth worlds. Because of this, suitable modi�cations of

the original technique need to be developed, see in particular Sections 3.8 and 4.1 and comparewith the proof

in the smooth case outlined in the next section.

1.2 The proof in the smooth case

Here we brie�y recall the proof of the splitting theorem in the smooth case as given by Cheeger-Gromoll in

[18]. As the reader will notice, the proof in the non-smooth setting will have a very similar structure, although

with appropriate modi�cations and shortcuts to circumvent the lack of smoothness.

The proof recalled below is only sketched: we will not rigorously justify all the steps, given that anyway

we shall do so in the abstract framework. On the other hand, rather than conclude using the general De

Rham decomposition theorem as done in [18], we shall give some details on how to use the information on

the Hessian of the Busemann function being identically 0 to explicitly build the quotient manifold N and the

desired isometry.

Theorem (Splitting (Cheeger-Gromoll)). Let M be a smooth complete Riemannianmanifoldwithout boundary,
with non-negative Ricci curvature and containing a line, i.e. assume that γ̄ : R→ M satis�es

d(γ̄t , γ̄s) = |s − t|, ∀t, s ∈ R,

where d is the distance on M induced by the Riemannian metric tensor. Then M is isometric to the product N ×R
where N is a smooth complete Riemannian manifold without boundary and non-negative Ricci curvature.

Outline of the proof The triangle inequality ensures that the Busemann functions b

±

: M → R given by

b

+

(x) := lim

t→+∞

t − d(x, γ̄t), b

+

(x) := lim

t→+∞

t − d(x, γ̄
−t),

are well de�ned, real-valued and satisfy

b

+

(x) + b

−

(x) ≤ 0, ∀x ∈ M,

b

+

(x) + b

−

(x) = 0, if x = γ̄t for some t ∈ R.
(1.1)

Recall that for every x
0
∈ M the Laplacian comparison estimate ∆d(·, x

0
) ≤

dimM−1

d(·,x
0

)

holds in the sense of

distributions in M \ {x
0
}, so that with a limiting argument we obtain

∆b

±

≥ 0, (1.2)

in the sense of distributions on the wholeM. Therefore the function b

+

+ b

−

is continuous, subharmonic and,

by (1.1), it has a global maximum. We are therefore in the position of applying the strong maximum principle

and deduce that b

+

+ b

−

is identically 0. From (1.2) it also follows that the function b := b

+

= −b

−

is harmonic

and thus, by elliptic regularity, smooth.
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174 | Nicola Gigli

Now recall the Bochner-Weitzenböck identity/inequality

∆ |∇f |
2

2

= |Hess f |2 +∇f ·∇∆f + Ric(∇f ,∇f ) ≥ (∆f )2

dimM +∇f ·∇∆f ,

valid for every smooth function f , where |Hess f | is the Hilbert-Schmidt norm of the Hessian, and pick f := b.

Since ∆b ≡ 0 and, as it is easy to check, |∇b| ≡ 1, recalling that the Ricci curvature is non-negative gives that

Hess b ≡ 0.

Let F : R ×M → M be the gradient �ow of b, i.e. let it be de�ned by
∂tFt = −∇b(Ft)

F
0

(x) = x, ∀x ∈ M.

Then F is a smooth map and for any smooth curve [0, 1] 3 s 7→ γs ∈ M, putting γt,s := Ft(γs) we have

∂t 1

2

1∫
0

|∂sγt,s|2 ds =

1∫
0

∇t∂sγt,s · ∂sγt,s ds =

1∫
0

∇s∂tγt,s · ∂sγt,s ds =

1∫
0

Hess b(∂sγt,s , ∂sγt,s)(γt,s) ds = 0,

which shows that Ft : M → M is an isometry for every t ∈ R. Now de�ne N := {b−1

(0)} ⊂ M and notice that

since∇b never vanishes, N is a smooth submanifold. For x, y ∈ N and γ : [0, 1]→ M a geodesic connecting

them, we have

∂ssb(γs) = Hess b(γ′s , γ′s)(γs) ≡ 0, b(γ
0

) = b(γ
1

) = 0,

and therefore

b(γs) = 0 for every s ∈ [0, 1],

i.e. N is a totally geodesic submanifold and in particular it has non-negative Ricci curvature.

To conclude, we de�ne the map T : N ×R→ M by

T(x, t) := F
−t(x)

and claim that it is an isometry. It is clearly injective and, since (Ft) is a one-parameter group, also surjective.

Moreover, since Ft : M → M is an isometry for every t ∈ R, to conclude that dT is an isometry of tangent

spaces it is su�cient to consider such di�erential at points (x, 0) ∈ N ×R. But in this case the claim is obvious

by the very de�nition of N and the fact that |∇b| ≡ 1. �

1.3 Notation

In order to prove the splitting theorem we will need some intermediate constructions like the Busemann

function, its gradient �ow etc. To simplify the exposition, we collect here all the objects that we will build

and references to where they are de�ned.

These notations will be �xed throughout all the text.
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(X, d,m) our RCD(0, N) space containing a line. In Section 2.2 we introduce in�nitesimal Hilbertian-
ity (De�nition 2.5), then in Section 3.1wede�ne the curvature-dimension bound (De�nition
3.1) and �nally from Section 3.5 on we assume the existence of a line.

b

+

, b

− the two Busemann functions associated to the line in X. See the beginning of Section 3.5.
b Busemann function associated to the line in X and de�ned as b := b

+

= −b

− once it has
been proved that b

+

+ b

− ≡ 0. See Theorem 3.13 and equation (3.16).
Ft gradient flow of b de�ned m-a.e.. See Proposition 3.15 for its introduction and Theorem

3.16 for the proof of the measure preservation.
¯
Ft continuous representative of Ft. Introduced in Theorem 4.3 where it is also proved that

provides a family of isometries.
(X′, d′) quotient metric space obtained from (X, d) by identifying orbits under the action of the flow

¯
Ft. See De�nition 4.4.

π natural projection map from X to X′. See De�nition 4.4.
ι right inverse of π identi�ed by π(ι(x′)) = x′ and b(ι(x′)) = 0 for every x′ ∈ X′. See De�nition

4.4.
m′ natural ‘quotient’ measure on (X′, d′). See De�nition 4.10.
T, S natural maps from X′ × R to X and viceversa given by T(x′, t) :=

¯
F
−t(ι(x′)) and S(x) :=

(π(x), b(x)). See De�nition 4.8.

Notice that the proof of our main result is scattered along the text and the necessary intermediate con-

structions. The crucial and almost �nal step is in Theorem 4.17, where we prove that themaps T, S are isomor-

phisms of the spaces (X, d,m) and (X′ ×R, d′ ×d
Eucl

,m′ ×L1

). The fact that the quotient space (X′, d′,m′) has
non-negative Ricci curvature is proved in Corollary 4.12, while the dimension reduction is given by Theorem

4.18.

2 Algebraic manipulation of basic di�erential objects

2.1 Things to know: Sobolev spaces over metric measure spaces

Given ametric space (X, d), we denote byP(X) the space of Borel probabilitymeasures on X andby C([0, 1], X)

the space of continuous curves on [0, 1] with values in X, which we endow with the sup norm. For t ∈ [0, 1]

the map et : C([0, 1], X)→ X is the evaluation at time t de�ned by

et(γ) := γt ,

Given a non-trivial closed interval I ⊂ R, a curve γ : I → X is said absolutely continuous provided there

exists f ∈ L1

(I) such that

d(γt , γs) ≤
s∫
t

f (r) dr, ∀t, s ∈ I, t < s. (2.1)

It turns out (see e.g. [4, Theorem 1.1.2]) that if γ is absolutely continuous the limit

|γ̇t| := lim

h→0

d(γt+h , γt)
|h| ,

exists for a.e. t ∈ I, de�nes an L1

function on I called metric speed and this function is the minimal f in the

a.e. sense which can be chosen in the right hand side of (2.1). In the following we will write the expression∫ b
a |γ̇t|

2

dt even for curves which are not absolutely continuous on [a, b], in this case its value is taken +∞ by

de�nition.

In this paper we shall mostly work on proper metric spaces (X, d), i.e. such that closed balls are compact.

To de�ne the notion of Sobolev function we need to add some structure to the metric space (X, d): a

Radon non-negativemeasurem. The de�nition that we shall present is taken from [8] (along the presentation
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given in [22]), where also the proof of the equivalence with the notions introduced in [13] and [47] is given.

See also [5].

De�nition 2.1 (Test Plans). Let π ∈ P(C([0, 1], X)). We say that π is a test plan provided

(et)]π ≤ Cm, ∀t ∈ [0, 1],

for some constant C > 0, and

1∫∫
0

|γ̇t|2 dt dπ(γ) < ∞.

Notice that according to the convention

∫
1

0

|γ̇t|2 dt = +∞ if γ is not absolutely continuous, any test plan must

be concentrated on absolutely continuous curves.

De�nition 2.2 (The Sobolev class S

2

(X, d,m)). The Sobolev class S

2

(X, d,m) (resp. S

2

loc

(X, d,m)) is the space

of all Borel functions f : X → R such that there exists a non-negative G ∈ L2

(X,m) (resp. G ∈ L2

loc

(X,m)) for

which it holds ∫
|f (γ

1
) − f (γ

0
)|dπ(γ) ≤

1∫∫
0

G(γt)|γ̇t|dt dπ(γ), ∀π test plan. (2.2)

It turns out that for f ∈ S

2

(X, d,m) there exists a minimal G in the m-a.e. sense for which (2.2) holds: we

will denote it by |∇f | and call it minimal weak upper gradient. Notice that in fact both the notation and the

terminology are misleading, because being this object de�ned in duality with speed of curves, it is closer to

the norm of a cotangent vector rather than a tangent one. Yet, from the next section on we are going to make

the assumption that the space is ‘in�nitesimally Hilbertian’ which in a sense allows to identify di�erential

and gradients (see in particular the symmetry relation (2.20)), so that it is quite safe to denote by |∇f | the
minimal weak upper ‘gradient’. The minimal weak upper gradient |∇f | is a local object, in the sense that for

f ∈ S

2

loc

(X, d,m) we have

|∇f | = 0, on f −1

(N), ∀N ⊂ R, Borel with L1

(N) = 0, (2.3)

|∇f | = |∇g|, m-a.e. on {f = g}, ∀f , g ∈ S

2

loc
(X, d,m). (2.4)

Also, for any π test plan and t < s ∈ [0, 1] it holds

|f (γs) − f (γt)| ≤
s∫
t

|∇f |(γr)|γ̇r|dr, π-a.e. γ. (2.5)

In particular, the de�nition of Sobolev class can be directly localized to produce the notion of Sobolev

function de�ned on an open set Ω ⊂ X:

De�nition 2.3. Let Ω ⊂ X be an open set. A Borel function f : Ω → R belongs to S

2

loc

(Ω, d,m) provided for

any Lipschitz function
χ

: X → R with supp(
χ

) ⊂ Ω it holds f χ ∈ S

2

loc

(X, d,m). In this case, the function

|∇f | : Ω → [0,∞] ism-a.e. de�ned by

|∇f | := |∇(
χf )|, m-a.e. on

χ ≡ 1,

for any
χ
as above. Notice that thanks to (2.4) this is a good de�nition. The space S

2

(Ω) ⊂ S

2

loc

(Ω) is the set of

f ’s such that |∇f | ∈ L2

(Ω,m).

Thebasic calculusproperties of Sobolev functions are collectedbelow.Ω ⊂ X is openandall the (in)equalities

are intendedm-a.e. on Ω.

Lower semicontinuity of minimal weak upper gradients. Let (fn) ⊂ S

2

(Ω, d,m) and f : Ω → R be such that

fn(x) → f (x) as n → ∞ for m-a.e. x ∈ Ω. Assume that (|∇fn|) converges to some G ∈ L2

(Ω,m) weakly in

L2

(Ω,m).
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Then

f ∈ S

2

(Ω) and |∇f | ≤ G, m-a.e.. (2.6)

Weak gradients and local Lipschitz constants. For any f : Ω → R locally Lipschitz it holds

|∇f | ≤ lip

±

(f ) ≤ lip(f ), (2.7)

where the functions lip

±

(f ), lip(f ) : Ω → R+

denote the slopes and the local Lipschitz constant de�ned by

lip

+

(f )(x) := lim

y→x
(f (y) − f (x))

+

d(y, x)

, lip

−

(f )(x) := lim

y→x
(f (y) − f (x))

−

d(y, x)

,

and lip(f ) := max{lip−(f ), lip

+

(f )} at points x ∈ Ω which are not isolated, 0 otherwise.

Vector space structure. S

2

loc

(Ω, d,m) is a vector space and

|∇(αf + βg)| ≤ |α||∇f | + |β||∇g|, for any f , g ∈ S

2

loc
(Ω, d,m), α, β ∈ R, (2.8)

similarly for S

2

(Ω, d,m).

Algebra structure. S

2

loc

(Ω, d,m) ∩ L∞
loc

(Ω,m) is an algebra and

|∇(fg)| ≤ |f ||∇g| + |g||∇f |, for any f , g ∈ S

2

loc
(Ω, d,m) ∩ L∞

loc
(Ω,m), (2.9)

and analogously for the space S

2

(Ω, d,m) ∩ L∞(Ω,m). Similarly, if f ∈ S

2

loc

(Ω, d,m) and g : Ω → R is locally

Lipschitz, then fg ∈ S

2

loc

(Ω, d,m) and the bound (2.9) holds.

Chain rule. Let f ∈ S

2

loc

(Ω, d,m) and φ : R→ R Lipschitz. Then φ ◦ f ∈ S

2

loc

(Ω, d,m) and

|∇(φ ◦ f )| = |φ′| ◦ f |∇f |,

where |φ′|◦f is de�nedarbitrarily at pointswhereφ is not di�erentiable (observe that the identity (2.3) ensures

that on f −1

(N) both |∇(φ◦ f )| and |∇f | are 0m-a.e.,N being the negligible set of points of non-di�erentiability

of φ). In particular, if f ∈ S

2

(Ω, d,m), then φ ◦ f ∈ S

2

(Ω, d,m) as well.

Finally, we remark that from the de�nition of Sobolev class it is easy to produce the one of Sobolev space

W1,2

(Ω, d,m) for Ω ⊂ X open: it is su�cient to put

W1,2

(Ω, d,m) := L2

(Ω,m) ∩ S

2

(Ω, d,m) (2.10)

the correspondingW1,2

-norm being given by

‖f‖2

W1,2

(Ω)

:= ‖f‖2

L2

(Ω)

+ ‖|∇f |‖2

L2

(Ω)

=

∫
Ω

f 2

+ |∇f |2 dm. (2.11)

It is obvious that ‖ · ‖W1,2

(Ω)
is a norm on W1,2

(Ω). The completeness of the space is then a consequence of

the lower semicontinuity property (2.6), see for instance the argument in [13]. HenceW1,2

(Ω, d,m) is always

a Banach space although in general not an Hilbert space.

To simplify the notation, in the following we will often write W1,2

(X), S

2

loc

(X), S

2

loc

(Ω) etc. in place of
W1,2

(X, d,m), S

2

loc

(X, d,m), S

2

loc

(Ω, d,m). Similarly, we will write Lp(X), Lp(Ω), Lp
loc

(Ω) in place of Lp(X,m),
Lp(Ω,m), Lp

loc

(Ω,m).

In [8] the following approximation result has been proved, previously known statements required the

measure to be doubling and the space to support a 1-2 weak local Poincaré inequality (see e.g. the argument

in Theorem 5.1 of [11] which gives a Lusin’s type approximation under this further assumptions):

Theorem 2.4 (Density in energy of Lipschitz functions inW1,2

(X)). Let (X, d,m) be a proper metric measure
space.

Then Lipschitz functions are dense in energy in W1,2

(X), i.e. for any f ∈ W1,2

(X) there exists a sequence
(fn) ⊂ W1,2

(X) of Lipschitz functions such that fn → f , |∇fn| → |∇f | in L2

(X).
Furthermore, these fn’s can be chosen with compact support for every n ∈ N and to satisfy lip(fn) → |∇f |

in L2

(X) as n →∞.
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2.2 In�nitesimally Hilbertian spaces and the object 〈∇f ,∇g〉

From this section on we will focus on those metric measure spaces which, from the Sobolev calculus’ point

of view, resemble a Riemannian structure rather than a general Finsler one. The de�nition as well as the

foregoing discussion comes from [22], which in turn is based and extends the analysis done in [6].

De�nition 2.5 (In�nitesimally Hilbertian spaces). Let (X, d,m) be a proper metric measure space. We say

that it is in�nitesimally Hilbertian providedW1,2

(X, d,m) is an Hilbert space.

We already noticed thatW1,2

(X) is always a Banach space, so to ask that it is Hilbert is equivalent to ask that

theW1,2

-norm satis�es the parallelogram rule. From the de�nition (2.11) and the fact that the L2

(X,m)-norm

certainly satis�es the parallelogram rule, we see that (X, d,m) is in�nitesimally Hilbertian if and only if

‖|∇(f + g)|‖2

L2 + ‖|∇(f − g)|‖2

L2 = 2

(
‖|∇f |‖2

L2 + ‖|∇g|‖2

L2

)
, ∀f , g ∈ S

2

(X). (2.12)

Although not obvious a priori, in�nitesimal Hilbertianity implies the following pointwise version of such

parallelogram rule, which shows the ‘in�nitesimal’ nature of this property:

|∇(f + g)|2 + |∇(f − g)|2 = 2

(
|∇f |2 + |∇g|2

)
, m-a.e., ∀f , g ∈ S

2

(X),

see Theorem 2.8.

Notice that thanks to the uniform convexity ofW1,2

(X), on in�nitesimally Hilbertian spaces Theorem 2.4

immediately yields the following statement:

Theorem 2.6 (Density inW1,2

-norm of Lipschitz functions). Let (X, d,m) be an in�nitesimally Hilbertian
space.

Then Lipschitz functions are dense in W1,2

(X), i.e. for any f ∈ W1,2

(X) there exists a sequence (fn) ⊂
W1,2

(X) of Lipschitz functions such that fn → f , |∇(fn − f )| → 0 as n →∞ in L2

(X).
Furthermore, these fn’s can be chosen with compact support for every n ∈ N and to satisfy lip(fn) → |∇f |

in L2

(X) as n →∞.

On in�nitesimally Hilbertian spaces and for given Sobolev functions f , g one can de�ne a bilinear object

〈∇f ,∇g〉which plays the role of the scalar product of their gradients. This can be donewithout really de�ning

what the gradient of a Sobolev function actually is, as inmetricmeasure spaces this notion requiresmore care

(see e.g. [53] and [22]). Thus, the spirit of the de�nition is similar to the one that leads to the de�nition of the

carré du champ Γ(f , g) in the context of Dirichlet forms. Actually, on in�nitesimally Hilbertian spaces the

map

W1,2

(X, d,m) 3 f 7→
∫
X

|∇f |2 dm,

is a regular and strongly local Dirichlet form on L2

(X,m), so that the object 〈∇f ,∇g〉 that we are going to

de�ne could actually be introduced just as the carré du champ Γ(f , g) associated to this Dirichlet form. Yet,

we are going to use a di�erent de�nition and a di�erent notation since our structure is richer than the one

available when working with abstract Dirichlet forms, because we have a metric measure space (X, d,m)

satisfying the assumption (2.12) and not only a topological space (X, τ) endowed with a measure m and a

Dirichlet form E. One of the e�ects of this additional structure is that in our context it is already given the

m-a.e. value of ‘the modulus |∇f | of the gradient of f ’, while in the context of Dirichlet forms this has to be

built. Also, it is worth to notice that the de�nition 2.7 given below makes sense even on spaces which are

not in�nitesimally Hilbertian and in this higher generality provides a reasonable de�nition of what is ‘the

di�erential of f applied to the gradient of g’ (see [22]). In this sense, the approach we propose is more general

than the one available in the ‘linear’ framework of Dirichlet form and formula (2.13) can be seen as a sort of

nonlinear variant of the polarization identity.
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De�nition 2.7 (The object 〈∇f ,∇g〉). Let (X, d,m) be an in�nitesimally Hilbertian space, Ω ⊆ X an open set

and f , g ∈ S

2

loc

(Ω). The map 〈∇f ,∇g〉 : Ω → R ism-a.e. de�ned as

〈∇f ,∇g〉 := inf

ε>0

|∇(g + εf )|2 − |∇g|2
2ε , (2.13)

the in�mum being intended asm-essential in�mum.

Notice that as a direct consequence of the locality stated in (2.4), also the object 〈∇f ,∇g〉 is local, i.e.:

〈∇f ,∇g〉 = 〈∇˜f ,∇g̃〉, m-a.e. on {f =
˜f} ∩ {g = g̃} ∩ Ω. (2.14)

In the following theorem we collect the main properties of 〈∇f ,∇g〉, showing that the expected algebraic

calculus rules hold.

Theorem 2.8. Let (X, d,m) be in�nitesimally Hilbertian and Ω ⊆ X an open set.
Then W1,2

(Ω) is an Hilbert space and the following hold.

• ‘Cauchy-Schwartz’. For any f , g ∈ S

2

loc

(Ω) it holds

〈∇f ,∇f 〉 = |∇f |2, (2.15)∣∣ 〈∇f ,∇g〉 ∣∣ ≤ |∇f ||∇g|, (2.16)

m-a.e. on Ω.
• Linearity in f . For any f

1
, f

2
, g ∈ S

2

loc

(Ω) and α, β ∈ R it holds〈
∇(αf

1
+ βf

2
),∇g

〉
= α 〈∇f

1
,∇g〉 + β 〈∇f

2
,∇g〉 , m-a.e. on Ω. (2.17)

• Chain rule in f . Let f ∈ S

2

loc

(Ω) and φ : R→ R Lipschitz. Then for any g ∈ S

2

loc

(Ω) it holds〈
∇(φ ◦ f ),∇g

〉
= φ′ ◦ f 〈∇f ,∇g〉 , m-a.e. on Ω, (2.18)

where the value of φ′ ◦ f is taken arbitrary on those x ∈ Ω such that φ is not di�erentiable at f (x).
• Leibniz rule in f . For f

1
, f

2
∈ S

2

loc

(Ω) ∩ L∞
loc

(Ω) and g ∈ S

2

loc

(Ω) the Leibniz rule〈
∇(f

1
f

2
),∇g

〉
= f

1
〈∇f

2
,∇g〉 + f

2
〈∇f

1
,∇g〉 , m-a.e. on Ω, (2.19)

holds.
• Symmetry. For any f , g ∈ S

2

loc

(Ω) it holds

〈∇f ,∇g〉 = 〈∇g,∇f 〉 , m-a.e. on Ω. (2.20)

In particular, the object 〈∇f ,∇g〉 is also linear in g and satis�es chain and Leibniz rules in g analogous
to those valid for f .

Proof. The fact thatW1,2

(Ω) is Hilbert is a direct consequence of the stated algebraic properties. Such proper-

ties are expressed asm-a.e. equalities on Ω, hence, by the very de�nition of S

2

loc

(Ω) and the locality property

(2.14), to conclude it is su�cient to deal with the case of Ω = X and functions in S

2

(X, d,m).

The identity (2.15) is a direct consequence of the de�nition. Taking into account that |∇(g + εf )| ≤ |∇g| +
ε|∇f | for any ε > 0, we get

〈∇f ,∇g〉 ≤ |∇f ||∇g|, m-a.e.. (2.21)

From the inequality (2.8) we get that the map S

2

(X, d,m) 3 f 7→ |∇f | ism-a.e. convex, in the sense that

|∇((1 − λ)f + λg)| ≤ (1 − λ)|∇f | + λ|∇g|, m-a.e. ∀f , g ∈ S

2

(X, d,m), λ ∈ [0, 1].

It follows that R 3 ε 7→ |∇(g + εf )| is also m-a.e. convex and, being non-negative, also R 3 ε 7→ |∇(g +

εf )|2/2 is m-a.e. convex in the sense of the above inequality. In particular, the infε>0
in de�nition (2.13) can

be substituted with limε↓0
in L1

(X,m), and thus we easily get that for given g ∈ S

2

(X, d,m)

the map S

2

(X, d,m) 3 f 7→ 〈∇f ,∇g〉 ism-a.e. positively 1-homogeneous and convex, (2.22)
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and that

|∇(g + εf )|2 − |∇g|2
2ε ≤

|∇(g + ε′f )|2 − |∇g|2
2ε′ , m-a.e. ∀ε, ε′ ∈ R \ {0}, ε ≤ ε′,

so that we obtainm-a.e.:

〈∇f ,∇g〉 = inf

ε>0

|∇(g + εf )|2 − |∇g|2
2ε ≥ sup

ε<0

|∇(g + εf )|2 − |∇g|2
2ε = −

〈
∇(−f ),∇g

〉
. (2.23)

Now plug εf in place of f in (2.12) to get∫
|∇(g + εf )|2 − |∇g|2

2ε dm = −

∫
|∇(g − εf )|2 − |∇g|2

2ε dm + ε
∫
|∇f |2 dm.

Letting ε ↓ 0 we obtain

∫
〈∇f ,∇g〉dm = −

∫ 〈
∇(−f ),∇g

〉
dm, which by (2.23) forces

〈∇f ,∇g〉 = −

〈
∇(−f ),∇g

〉
, m-a.e., (2.24)

and in particular, by (2.21), we deduce (2.16).

For given g ∈ S

2

(X, d,m), (2.22) yields that f 7→ −

〈
∇(−f ),∇g

〉
is m-a.e. positively 1-homogeneous and

concave, hence from (2.24) we deduce the linearity in f of 〈∇f ,∇g〉, i.e. (2.17) is proved.
We now turn to the chain rule in (2.18). Notice that the linearity in f and the inequality (2.16) immediately

yield ∣∣ 〈∇f ,∇g〉 − 〈∇˜f ,∇g
〉 ∣∣
≤ |∇(f − ˜f )||∇g|. (2.25)

Moreover, thanks to (2.17), (2.18) is obvious if φ is linear, and since (2.18) is unchanged if we add a constant to

φ, it is also true if φ is a�ne. Then, using the locality property (2.14) we also get (2.18) for φ piecewise a�ne

(notice that the property (2.3) ensures that lettingN ⊂ R be the negligible points of non-di�erentiability of φ,
both |∇(φ◦ f )| and |∇f | are 0m-a.e. on f −1

(N)). To conclude in the general case, let φ be an arbitrary Lipschitz

function and �nd a sequence (φn) of piecewise a�ne functions such that φ′n(z)→ φ′(z) as n →∞ forL1

-a.e.

z ∈ R. Let N ⊂ R be the union of the set of points of non-di�erentiability of φ and the φn’s with the set of z
such that φ′n(z) ̸→ φ′(z). ThenN is a Borel negligible set, and thus (2.3) gives

φ′n ◦ f 〈∇f ,∇g〉 → φ′ ◦ f 〈∇f ,∇g〉 , m-a.e.,

and similarly∣∣ 〈∇(φ ◦ f ),∇g
〉
−

〈
∇(φn ◦ f ),∇g

〉 ∣∣
≤ |∇((φ − φn) ◦ f )||∇g| = |φ′ − φ′n| ◦ f |∇f ||∇g| → 0,

m-a.e.. The chain rule (2.18) follows.

The Leibniz rule (2.19) is a consequence of the chain rule (2.18) and the linearity (2.17): indeed, up to

adding a constant to both f
1
and f

2
, we can assume that m-a.e. it holds f

1
, f

2
≥ c for some c > 0, then notice

that from (2.18) and (2.17) we get〈
∇(f

1
f

2
),∇g

〉
= f

1
f

2

〈
∇(log(f

1
f

2
)),∇g

〉
= f

1
f

2

〈
∇(log f

1
+ log f

2
),∇g

〉
= f

1
f

2

( 〈
∇(log f

1
),∇g

〉
+

〈
∇(log f

2
),∇g

〉 )
= f

1
f

2

(
1

f
1

〈∇f
1
,∇g〉 +

1

f
2

〈∇f
2
,∇g〉

)
= f

2
〈∇f

1
,∇g〉 + f

1
〈∇f

2
,∇g〉 .

To conclude it is now su�cient to show the symmetry relation (2.20). For this we shall need some auxiliary

intermediate results. The �rst one concerns continuity in g of the map S

2

(X, d,m) 3 g 7→
∫
〈∇f ,∇g〉dm.

More precisely, we claim that

given a sequence (gn) ⊂ S

2

(X, d,m) and g ∈ S

2

(X, d,m) such that

lim

n→∞

∫
|∇(gn − g)|2 dm = 0, for any f ∈ S

2

(X, d,m) it holds

lim

n→∞

∫
〈∇f ,∇gn〉dm =

∫
〈∇f ,∇g〉dm.

(2.26)
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To see this, notice that for any ε ≠ 0 and under the same assumptions it holds

lim

n→∞

∫
|∇(gn + εf )|2 − |∇gn|2

ε dm =

∫
|∇(g + εf )|2 − |∇g|2

ε dm.

Now recall that R+ 3 ε 7→ |∇(gn+εf )|2−|∇gn|2
ε is m-a.e. increasing and converges to 〈∇f ,∇gn〉 m-a.e. as ε ↓ 0 to

get

lim

n→∞

∫
〈∇f ,∇gn〉 dm ≤ lim

n→∞

∫
|∇(gn + εf )|2 − |∇gn|2

ε dm =

∫
|∇(g + εf )|2 − |∇g|2

ε dm,

and eventually passing to the limit as ε ↓ 0 we deduce

lim

n→∞

∫
〈∇f ,∇gn〉dm ≤

∫
〈∇f ,∇g〉dm.

The lim inequality then follows replacing f with −f and using linearity in f expressed in (2.17).

We shall use (2.26) to obtain an integrated chain rule for g, i.e.:∫
φ′ ◦ g 〈∇f ,∇g〉dm =

∫ 〈
∇f ,∇(φ ◦ g)

〉
dm. (2.27)

To get this, start observing that letting ε ↓ 0 in the trivial identity

|∇(αg + εf )|2 − |∇(αg)|2

2ε = α |∇(g +

ε
α f )|2 − |∇g|2

2

ε
α

, α ≠ 0,

and recalling the linearity in f (2.17), we obtain 1-homogeneity in g, i.e.〈
∇f ,∇(αg)

〉
= α 〈∇f ,∇g〉 , ∀α ∈ R.

From the locality property (2.14) we then get that for φ : R→ R piecewise a�ne it holds〈
∇f ,∇(φ ◦ g)

〉
= φ′ ◦ g 〈∇f ,∇g〉 , m-a.e., (2.28)

where, as before, the value of φ ◦ g can be chosen arbitrary at those x such that φ is not di�erentiable in g(x).

To conclude we argue as in the proof of (2.18) using (2.26) in place of (2.25). More precisely, given φ : R→ R
Lipschitz we �nd a sequence (φn) of uniformly Lipschitz piecewise a�ne functions such that φ′n(z) → φ′(z)

for L1

-a.e. z.
From |∇(φ ◦ g − φn ◦ g)| = |φ′ − φ′n| ◦ g|∇g| → 0 m-a.e. and the fact that φ, φn, n ∈ N, are uniformly

Lipschitz we get limn→∞
∫
|∇(φ ◦ g − φn ◦ g)|2 dm→ 0. Thus from (2.26) and (2.28) we conclude∫ 〈

∇f ,∇(φ ◦ g)

〉
= lim

n→∞

∫ 〈
∇f ,∇(φn ◦ g)

〉
dm = lim

n→∞

∫
φ′n ◦ g 〈∇f ,∇g〉dm =

∫
φ′ ◦ g 〈∇f ,∇g〉dm,

having used the dominated convergence theorem in the last step.

The last ingredient we need to prove the symmetry property (2.20) is its integrated version∫
〈∇f ,∇g〉dm =

∫
〈∇g,∇f 〉dm. (2.29)

This easily follows by noticing that the assumption of in�nitesimal Hilbertianity yields∫
|∇(g + εf )|2 − |∇g|2

ε − ε|∇f |2 dm =

∫
|∇(f + εg)|2 − |∇f |2

ε − ε|∇g|2 dm, (2.30)

and then letting ε ↓ 0.

Now notice that (2.20) is equivalent to the fact that for any h ∈ L∞(X,m) it holds∫
h 〈∇f ,∇g〉dm =

∫
h 〈∇g,∇f 〉dm, ∀f , g ∈ S

2

(X, d,m). (2.31)
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Taking into account the weak

*

-density of Lipschitz and bounded functions in L∞(X,m), we easily see that

it is su�cient to check (2.31) for any h Lipschitz and bounded. Also, with the same arguments that led from

(2.30) to (2.29) and a simple truncation argument, (2.31) will follow if we show that

S

2

(X, d,m) ∩ L∞(X,m) 3 f 7→
∫
h|∇f |2 dm ∈ R is a quadratic form. (2.32)

To this aim, notice that from (2.19), (2.27) and (2.29) we get∫
h|∇f |2 dm =

∫ 〈
∇(�),∇f

〉
− f 〈∇h,∇f 〉dm

=

∫ 〈
∇(�),∇f

〉
−

〈
∇h,∇

( f 2

2

)〉
dm =

∫ 〈
∇(�),∇f

〉
−

〈
∇
( f 2

2

)
,∇h

〉
dm.

(2.33)

By (2.17) and (2.29) we know that both f 7→
∫ 〈
∇(�),∇˜f

〉
dm and f 7→

∫ 〈
∇(

˜f h),∇f
〉

dm are linear maps,

hence f 7→
∫ 〈
∇(�),∇f

〉
dm is a quadratic form. Again by (2.17) we also get that f 7→

∫ 〈
∇(

f 2

2

),∇h
〉

dm is a

quadratic form. Hence (2.33) yields (2.32) and the conclusion.

We remark that during the proof we showed that 〈∇f ,∇g〉 can be realized as limit rather than as in�mum,

i.e. it holds

〈∇f ,∇g〉 = lim

ε→0

|∇(g + εf )|2 − |∇g|2
2ε , ∀f , g ∈ S

2

(Ω), (2.34)

the limit being intended both in L1

(Ω) and in the essential-m-a.e. sense.

2.3 Horizontal and vertical derivatives, i.e. �rst order di�erentiation formula

The de�nition of 〈∇f ,∇g〉 that we just provided has all the basic expected algebraic properties one wishes.

Yet, it does not really answer the question ‘what is the derivative of f along the direction ∇g?’ The way we

de�ned it, this object is obtained by a ‘vertical’ derivative, i.e. by a perturbation in the dependent variable,

while the essence of derivation is to take ‘horizontal’ derivatives, i.e. perturbations in the independent vari-

able. Notice indeed that in a smooth Riemannian world, the value of 〈∇f ,∇g〉 (x) (more precisely: of the

di�erential of f applied to the gradient of g) is de�ned as limt↓0

f (γt)−f (γ0
)

t , where γ is any smooth curve with

γ
0

= x and γ′
0

= ∇g(x). It is therefore natural to ask whether a similar approach exists in the non-smooth

setting and if it provides the same calculus as given by Theorem 2.8. It turns out that the answer is yes, see

Theorem 2.10 below: this result, appeared �rst in [6] and then generalized in [22], should be considered as the

single most important contribution to di�erential calculus onmetric measure spaces among those presented

in such papers.

Obviously on a non-smooth structure it makes no sense to say that a curve γ satis�es γ′
0

= ∇g(x). Yet, we

can implicitly give a meaning to this expression mimicking De Giorgi’s de�nition of gradient �ow in metric

spaces (see [4]) arguing as follows. Let g ∈ S

2

loc

(X) and π a test plan such that supp((et)]π) ⊂ Ω for some

bounded open set Ω and all t’s su�ciently small. Using the fact that g ∈ S

2

(Ω), for su�ciently small t’s we

can integrate inequality (2.5) and use Young’s inequality to get

∫
g(γt) − g(γ

0
) dπ(γ) ≤

1

2

t∫∫
0

|∇g|2(γs) ds dπ(γ) +

1

2

t∫∫
0

|γ̇s|2 ds dπ(γ)

=

1

2

∫
|∇g|2 d

 t∫
0

(es)]π ds


+

1

2

t∫∫
0

|γ̇s|2 ds dπ(γ).

(2.35)

From the fact that

∫∫ t
0

|γ̇s|2 ds dπ(γ) < ∞ it is immediate to verify that (et)]π → (e
0

)]π weakly in duality with

Cb(X). Taking also into account that (et)]π ≤ Cm for every t ∈ [0, 1] and some C > 0, dividing (2.35) by t and

Brought to you by | Sissa Biblioteca
Authenticated

Download Date | 4/3/17 10:57 AM



An Overview of the Proof of the Splitting Theorem | 183

letting t ↓ 0 we deduce

lim

t↓0

∫ g(γt) − g(γ
0

)

t dπ(γ) ≤

1

2

∫
|∇g|2 d(e

0
)]π(γ) +

1

2

lim

t↓0

1

t

t∫∫
0

|γ̇s|2 ds dπ(γ). (2.36)

In a smooth Riemannian world, this inequality reads as

lim

t↓0

g(γt) − g(γ
0

)

t ≤

1

2

|∇g|2(γ
0

) +

1

2

|γ′
0
|2, (2.37)

for any smooth function g and smooth curve γ andwe know that it holds γ′
0

= ∇g(γ
0

) if and only if the equality

in (2.37) holds. We are therefore lead to the following de�nition:

De�nition 2.9 (Plan representing gradients). Let (X, d,m) be an in�nitesimally Hilbertian space, g ∈ S

2

loc

(X)

and π ∈ P(C([0, 1], X)). We say that π represents the gradient of g provided:

i) there is T > 0 such that (et)]π ≤ Cm and supp((et)]π) ⊂ Ω for every t ∈ [0, T] and some constant C > 0

and bounded open set Ω,

ii)

∫∫ T
0

|γ̇t|2 dt dπ(γ) < ∞,

iii) the inequality

lim

t↓0

∫ g(γt) − g(γ
0

)

t dπ(γ) ≥

1

2

∫
|∇g|2 d(e

0
)]π(γ) +

1

2

lim

t↓0

1

t

t∫∫
0

|γ̇s|2 ds dπ(γ), (2.38)

holds.

Notice that plans representing gradients exist in high generality (see [22]). The following simple and crucial

result shows the link between di�erentiation of a Sobolev function f along a plan representing ∇g and the

object 〈∇f ,∇g〉.

Theorem 2.10 (Horizontal and vertical derivatives). Let (X, d,m) be an in�nitesimally Hilbertian metric mea-
sure space, f , g ∈ S

2

loc

(X) and π ∈ P(C([0, 1], X)) be representing the gradient of g. Then

lim

t↓0

∫ f (γt) − f (γ0
)

t dπ(γ) =

∫
〈∇f ,∇g〉d(e

0
)]π.

Proof. Write inequality (2.36) for the function g + εf and subtract inequality (2.38) to get

lim

t↓0

ε
∫ f (γt) − f (γ0

)

t dπ(γ) ≤

∫
|∇(g + εf )|2 − |∇g|2 d(e

0
)]π.

Divide by ε > 0 (resp. ε < 0), let ε ↓ 0 (resp. ε ↑ 0) and recall (2.34) to conclude.

2.4 Measure valued Laplacian

Having understood the de�nition of 〈∇f ,∇g〉, we can now integrate by parts and give the de�nition of mea-

sure valued Laplacian.

For Ω ⊆ X open, we will denote by Test(Ω) the set of all Lipschitz functions compactly supported in Ω.

De�nition 2.11 (Measure valued Laplacian). Let (X, d,m) be an in�nitesimally Hilbertian space and Ω ⊆ X
open. Let g : Ω → R be a locally Lipschitz function. We say that g has a distributional Laplacian in Ω, and

write g ∈ D(∆, Ω), provided there exists a Radon measure µ on Ω such that

−

∫
〈∇f ,∇g〉dm =

∫
f dµ, ∀f ∈ Test(Ω). (2.39)

In this case we will say that µ (which is clearly unique) is the distributional Laplacian of g and indicate it by

∆g|Ω. In the case Ω = X we write D(∆) and ∆g in place of D(∆, Ω) and ∆g|Ω.
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Notice that the integrand in the left hand side of (2.39) is in L1

(Ω), because g, being locally Lipschitz, is Lip-

schitz on supp(f ) and thus inequalities (2.16) and (2.7) grant that the integrand is bounded. In this direction,

the restriction to locally Lipschitz g’s is quite unnatural and indeed unnecessary (see [22]), yet it is su�cient

for our purposes so that we will be satis�ed with it.

The calculus rules for ∆g are easily derived from those of 〈∇f ,∇g〉 from basic algebraic manipulation.

Start observing that since the left hand side of (2.39) is linear in g, the set D(∆, Ω) is a vector space and the

map

D(∆, Ω) 3 g 7→ ∆g|Ω ,

is linear. We also have natural chain and Leibniz rules:

Proposition 2.12 (Chain rule). Let (X, d,m) be an in�nitesimally Hilbertian space, Ω ⊆ X an open set and
g ∈ D(∆, Ω). Then for every function φ ∈ C2

(g(Ω)), the function φ ◦ g is in D(∆, Ω) and it holds

∆(φ ◦ g)|Ω = φ′ ◦ g∆g|Ω + φ′′ ◦ g|∇g|2m|Ω . (2.40)

Proof. The right hand side of (2.40) de�nes a locally �nite measure, so the statement makes sense. Now let

f ∈ Test(Ω) and notice that being φ′ ◦ g locally Lipschitz, we also have fφ′ ◦ g ∈ Test(Ω). The conclusion

comes from the calculus rules expressed in Theorem 2.8 noticing that:

−

∫ 〈
∇f ,∇(φ ◦ g)

〉
dm = −

∫
φ′ ◦ g 〈∇f ,∇g〉dm = −

∫ 〈
∇(fφ′ ◦ g),∇g

〉
− f
〈
∇(φ′ ◦ g),∇g

〉
dm

=

∫
fφ′ ◦ g d∆g|Ω +

∫
fφ′′ ◦ g|∇g|2 dm,

which is the thesis.

Proposition 2.13 (Leibniz rule). Let (X, d,m) be an in�nitesimally Hilbertian space, Ω ⊆ X an open set and
g

1
, g

2
∈ D(∆, Ω). Then g

1
g

2
∈ D(∆, Ω) and

∆(g
1
g

2
)|Ω = g

1
∆g

2|Ω + g
2
∆g

1|Ω + 2 〈∇g
1
,∇g

2
〉m|Ω . (2.41)

Proof. The right hand side of (2.41) de�nes a locally �nite measure, so the statement makes sense. For f ∈
Test(Ω) we have fg

1
, fg

2
∈ Test(Ω), hence using the Leibniz rule (2.19) and the symmetry (2.20) we get

−

∫ 〈
∇f ,∇(g

1
g

2
)

〉
dm = −

∫
g

1
〈∇f ,∇g

2
〉 + g

2
〈∇f ,∇g

1
〉dm

= −

∫ 〈
∇(fg

1
),∇g

2

〉
+

〈
∇(fg

2
),∇g

1

〉
− 2f 〈∇g

1
,∇g

2
〉dm

=

∫
fg

1
d∆g

2|Ω +

∫
fg

2
d∆g

1|Ω +

∫
2f 〈∇g

1
,∇g

2
〉dm,

which is the thesis.

We conclude with the following useful comparison property:

Proposition 2.14 (Comparison). Let (X, d,m) be an in�nitesimally Hilbertian space, Ω ⊆ X an open set, g :

Ω → R locally Lipschitz and assume that there exists a Radon measure µ on Ω such that

−

∫
〈∇f ,∇g〉dm ≤

∫
f dµ, ∀f ∈ Test(Ω), f ≥ 0.

Then g ∈ D(∆, Ω) and ∆g|Ω ≤ µ.

Proof. The map

Test(Ω) 3 f 7→ L(f ) :=

∫
f dµ +

∫
〈∇f ,∇g〉dm,
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is linear and satis�es L(f ) ≥ 0 for f ≥ 0. To conclude we need to show that there exists a non-negative Radon

measure µ̃ on Ω such that L(f ) =

∫
f dµ̃ for any f ∈ Test(Ω).

To this aim, �x a compact set K ⊂ Ω and a function
χK ∈ Test(Ω) such that 0 ≤

χK ≤ 1 everywhere and

χK = 1 on K. Let VK ⊂ Test(Ω) be the set of Lipschitz functions with support contained in K and observe that

for any f ∈ VK, the fact that (max |f |)χK − f is in Test(Ω) and non-negative yields

0 ≤ L
(

(max |f |)χK − f
)

= (max |f |)L(
χK) − L(f ).

Replacing f with −f we deduce

|L(f )| ≤ (max |f |) |L(
χK)|,

i.e. L : VK → R is continuous w.r.t. the sup norm. Hence it can be extended to a (unique, by the density

of Lipschitz functions in the uniform norm) linear bounded functional on the set CK ⊂ C(X) of continuous

functions with support contained in K. Since K was arbitrary, by the Riesz theorem we get that there exists

a Radon measure µ̃ such that L(f ) =

∫
f dµ̃ for any f ∈ Test(Ω). It is obvious that µ̃ is non-negative, thus the

thesis is achieved.

3 Analytic e�ects of the curvature assumptions

3.1 Things to know: optimal transport and RCD(0, N) condition

Let (X, d) be a proper geodesic space. By P
2

(X) we denote the space of Borel probability measures on X with

�nite second moment and byW
2
the quadratic transportation distance de�ned on it. In this settingW

2
(µ, ν)

can be de�ned as

W2

2
(µ, ν) := inf

1∫∫
0

|γ̇t|2 dt dπ(γ), (3.1)

the inf being taken among all plans π ∈ P(C([0, 1], X)) such that (e
0

)]π = µ, (e
1

)]π = ν. It turns out that a

minimum always exists and is concentrated on the set Geo(X) ⊂ C([0, 1], X) of constant speed minimizing

geodesics on X, i.e. curves γ such that d(γt , γs) = |t − s|d(γ
0
, γ

1
) for every t, s ∈ [0, 1]. In the following, when

speaking about geodesics we will always refer to constant speed minimizing geodesics.

The set of minimizers for (3.1) is denoted by OptGeo(µ, ν). For every π ∈ OptGeo(µ, ν) the map t 7→ (et)]π
is aW

2
-geodesic connecting µ to ν and viceversa for any (µt) ⊂ P

2
(X) geodesic with µ

0
= µ and µ

1
= ν there

is π ∈ OptGeo(µ, ν) (not necessarily unique) such that µt = (et)]π for every t ∈ [0, 1]. Any such π is said to

be a lifting of (µt), or to induce (µt).
A function φ : X → R ∪ {−∞} not identically −∞ is said c-concave provided there is ψ : X → R ∪ {−∞}

such that

φ(x) = inf

y∈X
d2

(x, y)

2

− ψ(y).

Given a c-concave function φ, its c-transform φc : X → R ∪ {−∞} is de�ned by

φc(y) := inf

x∈X
d2

(x, y)

2

− φ(x).

It turns out that φ is c-concave if and only if φcc = φ. The c-superdi�erential ∂cφ of a c-concave function φ is

the subset of X2

of those couples (x, y) such that φ(x) + φc(y) =

d2

(x,y)

2

, or equivalently the set of (x, y)’s such

that

φ(z) − φ(x) ≤

d2

(z, y)

2

−

d2

(x, y)

2

, ∀z ∈ X.

For x ∈ X, the set ∂cφ(x) ⊂ X is the set of those y’s such that (x, y) ∈ ∂cφ.
It can be proved that a π ∈ Geo(X) belongs to OptGeo((e

0
)]π, (e

1
)]π) if and only if there is a c-concave

functionφ such that supp((e
0
, e

1
)]π) ⊂ ∂cφ. Any suchφ is called Kantorovich potential from (e

0
)]π to (e

1
)]π
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and is said to induce π. It is then easy to check that for any Kantorovich potential φ from µ to ν, every π ∈
OptGeo(µ, ν) and every t ∈ [0, 1], the function tφ is a Kantorovich potential from µ to (et)]π, i.e. tφ is c-
concave and it holds

γ ∈ Geo(X), γ
1
∈ ∂cφ(γ

0
) ⇒ γt ∈ ∂c(tφ)(γ

0
), ∀t ∈ [0, 1]. (3.2)

Notice that Kantorovich potentials can be chosen to satisfy the following property, slightly stronger than

c-concavity:
φ(x) = inf

y∈supp(ν)

d2

(x, y)

2

− φc(y),

which shows in particular that if supp(ν) is bounded, then φ can be chosen to be locally Lipschitz.

Let m be a non-negative Radon measure on our proper geodesic metric space (X, d). For N ∈ [1,∞) we

de�ne the functional UN : P
2

(X)→ [−∞, 0] as

UN(µ) := −

∫
ρ1−

1

N
dm, µ = ρm + µs , µs ⊥ m,

if N > 1 and

U
1

(µ) := m({ρ > 0}), µ = ρm + µs , µs ⊥ m.

Notice that if µ is concentrated on a bounded set, then UN(µ) > −∞ and for every B ⊂ X Borel and bounded

the restriction of UN to the measures concentrated on B is lower semicontinuous w.r.t. weak convergence.

In the limiting case N = ∞ we consider the relative entropy functional U
∞

de�ned on the space of mea-

sures with bounded support given by

U
∞

(µ) :=


∫
ρ log ρ dm, if µ = ρm,

+∞, if µ is not absolutely continuous w.r.t.m.

De�nition 3.1 (CD(0, N) and RCD(0, N) conditions). Let N ∈ [1,∞]. A proper geodesic metric measure space

(X, d,m) is said a CD(0, N) space provided for any couple of measures µ
0
, µ

1
∈ P

2
(X) with bounded support

there exists a geodesic (µt) ⊂ P
2

(X) connecting them such that

UN′ (µt) ≤ (1 − t)UN′ (µ
0

) + tUN′ (µ
1

), ∀t ∈ [0, 1], (3.3)

for every N′ ∈ [N, ∞].

A CD(0, N) space which is also in�nitesimally Hilbertian will be called RCD(0, N) space.

Notice that the de�nition given in this way (i.e. with the measures µ
0
, µ

1
with bounded support instead of

bounded and contained in supp(m) as in [51]) forces the support ofm to be thewhole X. This is a bit dangerous

onlywhendiscussing stability issues in the in�nite dimensional case, but in fact irrelevant for our discussion.

The restriction to proper geodesic spaceswhendealingwith theCD(0,∞) condition is not natural (see e.g.

[50], [52], [8]) but for our purposes it does not really matter, given that our space is CD(0, N). In this direction,

notice that choosing µ
0

= δx
0

and µ
1

= m(BR(x
0

))

−1m|BR(x
0

)

, a direct application of inequality (3.3) and of

Jensen’s inequality yields the sharp Bishop-Gromov volume comparison estimate ([37], [51]), valid on general

CD(0, N) spaces:

m(Br(x0
))

m(BR(x
0

))

≥

rN
RN , ∀x

0
∈ X, 0 ≤ r ≤ R, (3.4)

which in particular yields that m is doubling and henceforth gives an estimate on the total boundedness of

bounded sets (see e.g. the last part of the proof of Theorem 4.18), so that we have a precise quanti�cation of

‘how compact’ bounded sets are.

An important andnon-trivial fact aboutRCD(0,∞) spaces is the followinggeneralizationof the celebrated

Brenier-McCann theorem proved in [46] and [23]:

Brought to you by | Sissa Biblioteca
Authenticated

Download Date | 4/3/17 10:57 AM



An Overview of the Proof of the Splitting Theorem | 187

Theorem 3.2 (Optimal maps in RCD(0,∞) spaces). Let (X, d,m) be a RCD(0,∞) space and µ, ν ∈ P
2

(X) two
measures absolutely continuous w.r.t. m. Then there exists a unique π ∈ OptGeo(µ, ν). Moreover, such plan is
induced by a map and concentrated on a set of non-branching geodesics, i.e. for every t ∈ [0, 1] there exists a
Borel map invπ-et : X → Geo(X) such that

π = (invπ-et)](et)]π. (3.5)

3.2 Improved geodesic regularity in the case N < ∞

From now on the space (X, d,m) will always be assumed to be a RCD(0, N) space.

Herewe showhow�nite dimensionality can improve the result of Theorem3.2 byweakening the assumptions

in ‘just one of µ, ν is absolutely continuous’, rather then asking for both of them to be so. The discussion is

taken from [29].

Proposition 3.3. Let µi = ρim ∈ P
2

(X), i = 0, 1, two given measures, π ∈ OptGeo(µ
0
, µ

1
) the unique optimal

geodesic plan from µ
0
to µ

1
given by Theorem 3.2 and put µt := (et)]π. Then µt � m for every t ∈ [0, 1] and

writing µt = ρtm we have

ρt(γt)−
1

N
≥ (1 − t)ρ

0
(γ

0
)

−

1

N
+ tρ

1
(γ

1
)

−

1

N
, π-a.e. γ. (3.6)

Proof. We start proving that µt � m for every t ∈ [0, 1]. Fix x̄ ∈ X and for M > 0 let GM ⊂ Geo(X) be de�ned

by

GM :=

{
γ ∈ Geo(X) : ρ

0
(γ

0
), ρ

1
(γ

1
), d(γ

0
, x̄), d(γ

1
, x̄) ≤ M

}
.

For M large enough we have π(GM) > 0, thus the plan πM := cMπ|GM is well de�ned, cM := π(GM)

−1

being

the normalization constant. Put µM
0

:= (e
0

)]πM, µM1 := (e
1

)]πM and notice that µM
0
, µM

1
� m and that by

construction and since optimality is stable by restrictionwe get πM ∈ OptGeo(µM
0
, µM

1
). Hence the uniqueness

part of Theorem 3.2 yields that πM is the only optimal plan from µM
0
to µM

1
. Being (X, d,m) a CD(0, N) space it

is also a CD(0,∞) space and thus fact that U
∞

(µM
0

),U
∞

(µM
1

) < ∞ (because both have bounded densities and

support) gives U
∞

((et)]πM) < ∞ for every t ∈ [0, 1]. In particular, (et)]πM � m for every t ∈ [0, 1]. Since

c−1

M (et)]πM ↑ (et)]π = µt as M →∞, we deduce µt � m for every t ∈ [0, 1].

We turn to (3.6). Notice that to prove it is equivalent to prove that for any bounded Borel set G ⊂ Geo(X)

it holds

−

∫
G

ρ−
1

N
t (γt) dπ(γ) ≤ −

∫
G

(1 − t)ρ
0

(γ
0

)

−

1

N
+ tρ

1
(γ

1
)

−

1

N
dπ(γ).

(3.7)

Fix such G ⊂ Geo(X), assume without loss of generality that π(G) > 0 and de�ne πG := π(G)

−1π|G. Notice

that since G is bounded, (et)]πG has bounded support for every t ∈ [0, 1]. Let invπ-et : X → Geo(X) be the

maps given by Theorem 3.2 and notice that the identity (3.5) ensures that (et)]πG = π(G)

−1χG ◦ invπ-et (et)]π.
In other words, letting ρG,tm = (et)]πG we have ρG,t(γt) = π(G)

−1ρt(γt) for π-a.e. γ ∈ G and therefore

−

∫
G

ρ−
1

N
t (γt) dπ(γ) = π(G)

−

1

N UN((et)]πG), ∀t ∈ [0, 1]. (3.8)

By construction, πG is optimal from ρG,0m to ρG,1m and by the uniqueness part of Theorem 3.2 we know that

it is the only optimal plan, hence (3.7) follows from the CD(0, N) condition and (3.8).

Lemma 3.4. Let µ, ν ∈ P
2

(X) such that µ ≤ Cm for some C > 0. Then there exists a geodesic (µt) from µ to ν
such that µt ≤ C

(1−t)Nm for every t ∈ [0, 1).

Proof. Let (νn) ⊂ P
2

(X) be a sequence of absolutely continuous measures weakly converging to ν and πn ∈
OptGeo(µ, νn) the unique optimal plan given by Theorem 3.2. By Proposition 3.3 we know that (et)]πn � m
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and that denoting by ρn,t its density we have

ρn,t(γt) ≤ ρn,0(γ
0

)(1 − t)−N , πn-a.e. γ,

having dropped the term involving ρn,1 in the bound (3.6). By the assumption µ ≤ Cm we thus deduce

(et)]πn ≤
C

(1 − t)Nm, ∀t ∈ [0, 1), n ∈ N.

This bound is independent on n ∈ N, hencewith a simple compactness argument based on the fact that (X, d)

is proper we get the conclusion by letting n →∞.

Theorem 3.5 (Exponentiation and optimal maps). Let φ : X → R a locally Lipschitz c-concave function. Then
for m-a.e. x ∈ X there exists a unique geodesic T(x) ∈ Geo(X) with T(x)

0
= x and T(x)

1
∈ ∂cφ(x). For any

t ∈ [0, 1) the map Tt : X → X sending x to T(x)t is Borel and satis�es

(Tt)]m� m. (3.9)

In particular, for every µ, ν ∈ P
2

(X) with µ � m, there exists a unique geodesic (µt) connecting them, a unique
lifting π ∈ OptGeo(µ, ν) of it and this plan is induced by a map and concentrated on a set of non-branching
geodesics.

Proof. We start with existence. Let x ∈ X and (yn) ⊂ X a sequence such that φ(x) = limn→∞
d2

(x,yn)

2

− φc(yn).

Assume by contradiction that limn→∞ d(x, yn) = ∞, let γn : [0, d(x, yn)] → X be a unit speed geodesic con-

necting x to yn and put zn := γn
1
. Then the sequence (zn) ⊂ X is bounded and passing to the limit in the

inequality

φ(zn) − φ(x) ≤

d2

(zn , yn)

2

−

d2

(x, yn)

2

= −d(x, yn) +

1

2

,

we get that limn→∞ φ(zn) = −∞, contradicting the fact that φ is locally Lipschitz. Hence (yn) ⊂ X must be

bounded and a simple compactness-continuity argument shows that any limit point y belongs to ∂cφ(x).

Since (X, d) is geodesic and x ∈ X was arbitrary, this is su�cient to get existence of geodesics as in the

statement.

For uniqueness we argue by contradiction as well. For x ∈ X let G(x) ⊂ Geo(X) be the set of γ’s such that

γ
0

= x and γ
1
∈ ∂cφ(x) and assume that there is a compact set E

1
⊂ X such thatm(E

1
) > 0 and #G(x) ≥ 2 for

every x ∈ E
1
.

For some a > 0 there is a compact set E
2
⊂ E

1
with m(E

2
) > 0 such that diamG(x) ≥ a for every x ∈ E

2
.

Pick such a and E
2
. For t ∈ [0, 1] put Gt(x) := {γt : γ ∈ G(x)} ⊂ X and consider the set B ⊂ E

2
× [0, 1] of

(x, t)’s such that diamGt(x) ≥

a
2

. It is easy to check that B is compact and the continuity of geodesics grants

that for any x ∈ E
2
the set of t’s such that (x, t) ∈ B has positive L1

-measure. By Fubini’s theorem, there

is t
0
∈ [0, 1] such that the compact set E

3
⊂ E

2
of x’s such that diamGt

0

(x) ≥

a
2

has positive m-measure.

Notice that necessarily t
0
> 0. With a Borel selection argument we can �nd a Borel map T : E

3
→ X such that

T(x) ∈ Gt
0

(x) for every x ∈ E
3
. Let x

0
∈ X be such that T](m|E

3

)(B a
6

(x
0

)) > 0 and put E
4

:= T−1

(B a
6

(x
0

)), so

that m(E
4

) > 0. By construction, the map E
4
3 x 7→ Gt

0

(x) \ B a
5

(x
0

) is Borel and has non-empty values, thus

again with a Borel selection argument we can �nd Borel map S : E
4
→ X such that S(x) ∈ Gt

0

(x) \ B a
5

(x
0

) for

every x ∈ A.
Let µ := m(E

4
)

−1m|E
4

, ν
1

:= T]µ and ν
2

:= S]µ. By construction ν
1
and ν

2
have disjoint support, and

in particular ν
1

≠ ν
2
. Furthermore, recalling property (3.2), the function t

0
φ is a Kantorovich potential both

from µ to ν
1
and from µ to ν

2
. Apply Lemma 3.4 to both (µ, ν

1
) and (µ, ν

2
) to �nd geodesics (µit), i = 1, 2,

from µ to ν
1
, ν

2
respectively such that µit � m for every t ∈ [0, 1), i = 1, 2. By construction, for t su�ciently

close to 1 we have µ1

t ≠ µ2

t . Fix such t, let π i ∈ OptGeo(µ, µit), i = 1, 2 and notice that π1

≠ π2

and that

supp((e
0
, e

1
)]π i) ⊂ ∂c(tt0φ), i = 1, 2.

Thus for the plan π :=

1

2

(π1

+ π2

) it also holds supp((e
0
, e

1
)]π) ⊂ ∂c(tt

0
φ), so that π is optimal as

well. Moreover it satis�es (e
0

)]π, (e
1

)]π � m and, by construction, is not induced by amap. This contradicts

Theorem 3.2, concluding the proof of the �rst part of the statement.
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For the last part, notice that if the optimal geodesic plan is not unique or not inducedby amap, theremust

be π ∈ OptGeo(µ, ν) which is not induced by a map. With a restriction argument we can then assume that

µ := (e
0

)]π, and ν := (e
1

)]π have bounded support, with µ � m. But in this case there is a locally Lipschitz

Kantorovich potential from µ to ν and the �rst part of the statement gives the conclusion. This argument

shows not only uniqueness of π, but also that of the geodesic (µt).
Finally, the property (3.9) is now a simple consequence of the uniqueness we just proved and Lemma

3.4

We conclude with the following result which puts in relation optimal plans and Sobolev calculus. Notice that

it is in fact a restatement of the metric Brenier theorem proved in [8].

Corollary 3.6. Let µ, ν ∈ P
2

(X) with bounded support, assume that µ ≤ Cm for some C > 0, let π ∈
OptGeo(µ, ν) be the optimal geodesic plan given by Theorem 3.5 and let φ be a locally Lipschitz Kantorovich
potential from µ to ν.

Then π represents the gradient of −φ in the sense of De�nition 2.9.

Proof. It is trivial that ∪t∈[0,1]
supp(µt) is bounded, so the existence of Ω as in (i) of De�nition 2.9 follows.

Lemma 3.4 and the uniqueness granted by Theorem 3.5 ensure that (et)]π ≤ C
(1−t)Nm for every t ∈ [0, 1) and so

property (i) in De�nition 2.9 holds. Given that

∫∫
1

0

|γ̇t|2 dt dπ(γ) = W2

2
(µ, ν) < ∞, property (ii) holds as well,

so we need only to check (iii). By construction, we have γ
1
∈ ∂cφ(γ

0
) for π-a.e. γ, therefore for π-a.e. γ and

every z ∈ X we have

φ(z) − φ(γ
0

) ≤

d2

(z, γ
1

)

2

−

d2

(γ
0
, γ

1
)

2

≤

d(γ
0
, z)

2

(d(z, γ
1

) + d(γ
0
, γ

1
)).

Dividing by d(γ
0
, z) and letting z → γ

0
we deduce lip

+

(φ)(γ
0

) ≤ d(γ
0
, γ

1
), while choosing z = γt after little

manipulation we get

lim

t↓0

∫ φ(γ
0

) − φ(γt)
t dπ(γ)≥

∫
d2

(γ
0
, γ

1
) dπ(γ) ≥

1

2

∫ (
lip

+

(φ)

)
2

d(e
0

)]π +

1

2

∫
d2

(γ
0
, γ

1
) dπ(γ).

Since π is concentrated on Geo(X) we have

∫
d2

(γ
0
, γ

1
) dπ(γ) =

∫∫
1

0

|γ̇t|2 dt dπ(γ), hence recalling the bound

(2.7) we conclude.

3.3 Laplacian comparison estimates

In this section we prove the sharp Laplacian comparison estimate for the distance on RCD(0, N) spaces.

The idea of the proof, which relies only on the curvature-dimension condition and not, as in the smooth

case, on Jacobi �elds calculus or on the Bochner inequality, is the following. Fix a c-concave function φ, a
measure µ = ρm and consider the geodesic t 7→ µt := (Tt)]m, Tt being given by Theorem 3.5. Then combine

the inequality

UN(µt) − UN(µ
0

)

t ≤ UN(µ
1

) − UN(µ
0

),

which follows directly from (3.3), with the bound

lim

t↓0

UN(µt) − UN(µ
0

)

t ≥ −

1

N

∫ 〈
∇ρ1−

1

N
,∇φ

〉
dm,

which follows from the �rst order di�erentiation formula, to obtain

−UN(µ
0

) ≥ −

1

N

∫ 〈
∇ρ1−

1

N
,∇φ

〉
dm,

having recalled that UN(µ
1

) ≤ 0. Given that UN(µ
0

) = −

∫
ρ1−

1

N
dm and using the fact that ρ was chosen

independently on φ, we get the conclusion from Proposition 2.14.

We turn to the details.
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Proposition 3.7 (Lower bound on the derivative of UN). Let Ω ⊂ X be a bounded open set and π ∈ P(Geo(X))

an optimal geodesic plan such that:

• for every t ∈ [0, 1] the measure µt := (et)]π is concentrated on Ω,
• themeasure µ

0
is absolutely continuousw.r.t.m and for its density ρ we have that ρ|Ω : Ω → R is Lipschitz

and bounded from below by a positive constant.

Then we have
lim

t↓0

UN(µt) − UN(µ
0

)

t ≥ −

1

N

∫
Ω

〈∇(ρ1−

1

N
),∇φ〉dm, (3.10)

where φ : X → R is any locally Lipschitz Kantorovich potential inducing π.

Proof. Notice that since ρ, ρ−1

are Lipschitz and bounded on Ω, the function ρ1−

1

N
is Lipschitz and bounded

on Ω as well, in particular the right hand side of (3.10) is well de�ned and the statement makes sense. For

every ν ∈ P
2

(X) concentrated on Ω and absolutely continuous w.r.t. m, the convexity of uN(z) = −z1−

1

N
gives

UN(ν) − UN(µ
0

) ≥

∫
Ω u
′
N(ρ)(

dν
dm − ρ) dm. Then a simple approximation argument based on the continuity of ρ

gives

UN(ν) − UN(µ
0

) ≥

∫
Ω

u′N(ρ) dν −
∫
Ω

u′N(ρ) dµ, ∀ν ∈ P
2

(X) concentrated on Ω.

Plugging ν := µt, dividing by t and letting t ↓ 0 we get

lim

t↓0

UN(µt) − UN(µ
0

)

t ≥ lim

t↓0

∫ u′N(ρ) ◦ et − u′N(ρ) ◦ e
0

t dπ. (3.11)

Now recall that by Corollary 3.6 the plan π represents ∇(−φ) and that by the assumptions on ρ we have

u′N ◦ρ ∈ S

2

(Ω). Thus by the �rst order di�erentiation formula given in Theorem 2.10 we can compute the right

hand side of (3.11) and get

lim

t↓0

UN((et)]π) − UN((e
0

)]π)

t ≥ −

∫
Ω

〈
∇(u′N ◦ ρ),∇φ

〉
ρ dm.

To conclude, notice that u′N(z) = (−1 +

1

N )z− 1

N
and apply twice the chain rule (2.18):(

1

N − 1

)∫
Ω

〈
∇(ρ− 1

N
),∇φ

〉
ρ dm =

(
1

N −
1

N2

)∫
Ω

ρ− 1

N 〈∇ρ,∇φ〉dm =

1

N

∫
Ω

〈
∇(ρ1−

1

N
),∇φ

〉
dm.

Lemma 3.8. Let φ be a locally Lipschitz Kantorovich potential and Ω ⊂ X an open bounded set. Then there
exists another open bounded set ˜Ω and another locally Lipschitz Kantorovich potential φ̃ such that the following
holds:

i) φ̃ = φ on Ω,
ii) for every x ∈ Ω and y ∈ ∂cφ(x) it holds y ∈ ∂cφ̃(x),
iii) for every x ∈ ˜Ω the set ∂cφ̃(x) is non-empty and for every geodesic γ such that γ

0
= x and γ

1
∈ ∂cφ̃(x) it

holds γt ∈ ˜Ω for every t ∈ [0, 1].

Proof. Arguing as in the beginning of the proof of Theorem 3.5 we see that the set

B := {y ∈ X : y ∈ ∂cφ(x) for some x ∈ Ω},

is bounded. De�ne φ̃ : X → R by

φ̃(x) := inf

y∈B
d2

(x, y)

2

− φc(y),

Brought to you by | Sissa Biblioteca
Authenticated

Download Date | 4/3/17 10:57 AM



An Overview of the Proof of the Splitting Theorem | 191

and notice that by construction φ̃ is a Kantorovich potential satisfying (i) and (ii) of the statement. Let s :=

supΩ φ and de�ne

˜Ω := {φ̃ < s + 1}.

Obviously
˜Ω is open, bounded and contains Ω. Now let x ∈ ˜Ω and y ∈ ∂cφ̃(x). The inequality

φ̃(z) − φ̃(x) ≤

d2

(z, y)

2

−

d2

(x, y)

2

,

shows that if d(z, y) ≤ d(x, y), then φ̃(z) ≤ φ̃(x) and thus z ∈ ˜Ω. This applies in particular to the choice z = γt,
where γ ∈ Geo(X) is a geodesic from x to y, hence (iii) is ful�lled as well.

Proposition 3.9 (Key inequality). Let µ, ν ∈ P
2

(X) be two measures with bounded support, φ a locally Lips-
chitz Kantorovich potential from µ to ν and assume that µ � m with density ρ such that ρ1−

1

N is Lipschitz.
Then

UN(ν) − UN(µ) ≥ −

1

N

∫
〈∇(ρ1−

1

N
),∇φ〉dm.

Proof. Let Ω ⊂ X be an open bounded set containing supp(µ) and use Lemma 3.8 above to �nd φ̃ and
˜Ω

ful�lling (i), (ii), (iii) of the statement. For ε > 0 de�ne ρε : X → R+

as 0 on X \ ˜Ω and as cε(ε + ρ1−

1

N
)

N
N−1

on
˜Ω,

cε ↑ 1 being chosen so that ρε is a probability density. Let Tt : X → X, t ∈ [0, 1], be the optimal maps induced

by φ̃ as in Theorem 3.5 and put µε := ρεm and µt,ε := (Tt)]µε. Notice that by (iii) of Lemma 3.8 we know that

µt,ε is concentrated on
˜Ω for every ε > 0, t ∈ [0, 1] and that by (i), (ii) of Lemma 3.8 and the uniqueness given

by Theorem 3.5 we have (T
1

)]µ = ν.
By construction we know that µε → µ as ε ↓ 0 in the total variation distance which in particular implies

that µ
1,ε → ν as ε ↓ 0 in the total variation distance as well. Using the sublinearity of uN(z) = −z1−

1

N
and the

fact that all the consideredmeasures are concentrated on the bounded set
˜Ω, it is then immediate to see that

UN(µ
1,ε) − UN(µε) → UN(ν) − UN(µ), as ε ↓ 0. (3.12)

For given ε > 0, the assumptions of Proposition 3.7 are ful�lled with µt,ε := (Tt)]µε in place of µt and ˜Ω in

place of Ω. Thus recalling the de�nition of ρε we have

lim

t↓0

UN(µt,ε) − UN(µε)
t ≥ −

cε
N

∫
˜Ω

〈
∇(ρ1−

1

N
),∇φ̃

〉
dm = −

cε
N

∫
Ω

〈∇(ρ1−

1

N
),∇φ〉dm, (3.13)

where in the equality we used the fact that ρ is concentrated on Ω, the locality of the object 〈∇f ,∇g〉 and the

fact that φ̃ = φ on Ω.

Now observe that the curve t 7→ µt,ε is a geodesic from µε to νε and that by Theorem 3.5 it is the only one.

Hence the CD(0, N) condition (3.3) yields

UN(µt,ε) ≤ (1 − t)UN(µε) + tUN(νε), ∀t ∈ [0, 1],

and thus

UN(µt,ε) − UN(µε)
t ≤ UN(νε) − UN(µε), ∀t ∈ (0, 1].

This bound, (3.13) and (3.12) yield the thesis.

Theorem 3.10 (Laplacian comparison). Let φ : X → R be a locally Lipschitz c-concave function.
Then φ ∈ D(∆, X) and

∆φ ≤ Nm. (3.14)

Proof. By Proposition 2.14 it is su�cient to show that

−

∫
X

〈∇f ,∇φ〉dm ≤ N
∫
X

f dm, ∀f ∈ Test(X), f ≥ 0. (3.15)
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Thus, �x a non-negative f ∈ Test(X), f not identically 0 and letΩ be an open bounded set containing supp(f ).
De�ne ρ := cf N

N−1
, c := (

∫
f N
N−1

)

−1

being the normalization constant, let T = T
1
be the optimal map induced

by φ given by Theorem 3.5 and put ν := T](ρm). Then by Proposition 3.9 we get

UN(ν) − UN(ρm) ≥ −

1

N

∫
〈∇(ρ1−

1

N
),∇φ〉dm.

Now notice that UN(ν) ≤ 0 and recall the de�nition of ρ to get (3.15) and the conclusion.

3.4 Things to know: strong maximum principle

In order to prove that the Busemann function is harmonic, we need some form of the strongmaximumprinci-

ple. The following statementhasbeenproved in [11], notice that it doesnot require anynotionof distributional

Laplacian, being based on the variational formulation of sub-harmonicity. The simple link between such for-

mulation and the measure valued Laplacian has been established in [22], [26], see the proof of Theorem 3.13.

Theorem 3.11. Let (
˜X, ˜d, m̃) be a metric measure space supporting a 1-2 weak local Poincaré inequality with m̃

doubling and let g ∈ C(
˜X) ∩ S

2

loc

(
˜X) be with the following property: for any non-positive f ∈ Test(

˜X) it holds∫
Ω

|∇g|2 dm̃ ≤

∫
Ω

|∇(g + f )|2 dm̃,

where Ω ⊂ ˜X is any bounded open set containing supp(f ). Assume that g has a maximum. Then g is constant.

Weshall not discuss themeaning of 1-2weak local Poincaré inequality (see for instance [11] and the discussion

therein). For our purposes it is su�cient to know that our RCD(0, N) space (X, d,m) ful�lls the assumptions

of the above theorem (see [36], [45] and [44]).

3.5 The Busemann function is harmonic and c-concave
From now on the space (X, d,m) will always be assumed to be a RCD(0, N) space and it will be assumed that there is a line

γ̄ : R → X, i.e. a curve satisfying

d(γ̄t , γ̄s) = |t − s|, ∀t, s ∈ R.

This completes our set of assumptions on X to get the splitting theorem. It is a classical and easy to prove fact

that in presence of the line γ̄ the two functions b

±

: X → R, called Busemann functions, are well de�ned by:

b

+

(x) := lim

t→+∞

t − d(x, γ̄t), b

−

(x) := lim

t→+∞

t − d(x, γ̄
−t).

Indeed, the triangle inequality gives that the limits exist and are real valued for any x ∈ X.
In this section we �rst prove, following the original arguments of Cheeger-Gromoll [18], that it holds

b

+

+ b

− ≡ 0 and that these functions are harmonic, i.e. ∆b

± ≡ 0. Thenwe show the technically useful fact that

for any t ∈ R the functions tb± are c-concave. In particular, this property iswhat links the geometric condition

of existence of a line with the theory of optimal transport on which the de�nition of the curvature-dimension

condition is based.

We start with the following statement, which is a simple consequence of the Laplacian comparison esti-

mates for the distance.

Proposition 3.12 (Subharmonicity of the Busemann function). With the same notation as above, we have
b

± ∈ D(∆) and ∆b

±

≥ 0.

Proof. We shall prove the result for b

+

only, the proof for b

−

being similar. According to Proposition 2.14 it is

su�cient to show that

−

∫ 〈
∇f ,∇b

+

〉
dm ≥ 0, ∀f ∈ Test(X), f ≥ 0.
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Fix such f , let Ω ⊂ X be a bounded open set such that supp(f ) ⊂ Ω and notice that the functions bt(x) :=

t − d(x, γ̄t) are 1-Lipschitz and uniformly converge to b

+

on Ω as t →∞. For t big enough we have d(γ̄t , Ω) > 0

and therefore applying the chain rule (2.40) to the Kantorovich potential g :=

1

2

d2

(·, γ̄t) and the function

ψ(z) :=

√
2z and taking into account the comparison estimate (3.14) we deduce that for t big enough it holds

d(·, γ̄t) ∈ D(∆, Ω), ∆d(·, γ̄t) ≤ N
d(·, γ̄t)

m,

having also used the trivial bound |∇d(·, γ̄t)| ≥ 0 m-a.e.. It directly follows that for t � 1 we have bt ∈ D(∆, Ω)

with ∆bt|Ω ≥
N

d(·,γ̄t)m|Ω ≥
N

d(γ̄t ,Ω)

m|Ω and therefore

−

∫
X

〈∇f ,∇bt〉 dm =

∫
Ω

f d∆bt|Ω ≥ −
N

d(γ̄t , Ω)

∫
Ω

f dm→ 0, as t → +∞.

To conclude it is therefore su�cient to show that

lim

t→+∞

∫
X

〈∇f ,∇bt〉 dm =

∫
X

〈
∇f ,∇b

+

〉
dm.

To see this, notice that {bt}t≥0 is a bounded family in W1,2

(Ω) and therefore, since W1,2

(Ω) is Hilbert by

Theorem 2.8, weakly relatively compact in W1,2

(Ω). The uniform convergence of (bt) to b

+

when t → +∞

grants in particular the convergence in L2

(Ω) and therefore (bt) weakly converges to b

+

as t → +∞ inW1,2

(Ω).

Conclude observing that the inequality∫
X

〈∇f ,∇g〉 dm ≤

∫
Ω

|∇f ||∇g|dm ≤
√√√√∫

Ω

|∇f |2 dm

√√√√∫
Ω

|∇g|2 dm ≤ ‖f‖W1,2

(Ω)
‖g‖W1,2

(Ω)
,

shows that the linear mapW1,2

(Ω) 3 g 7→
∫
X 〈∇f ,∇g〉 dm is continuous.

We now use the strong maximum principle to deduce that b

+

+ b

− ≡ 0 and that ∆b

±

= 0.

Theorem 3.13 (Harmonicity of the Busemann function). We have b

+

+ b

− ≡ 0 and ∆b

+

= ∆b

−

= 0.

Proof. Put g := b

+

+ b

−

and notice that by the linearity of the Laplacian we have g ∈ D(∆) with ∆g ≥ 0. It

is obvious that g is Lipschitz, that g ≤ 0 (by the triangle inequality) and that g(γ̄t) = 0 for any t ∈ R. Thus

according to the strong maximum principle (Theorem 3.11) to conclude it is su�cient to show that for any

non-positive f ∈ Test(X) it holds ∫
Ω

|∇g|2 dm ≤

∫
Ω

|∇(g + f )|2 dm,

where Ω ⊂ X is any bounded open set containing supp(f ). This is an obvious consequence of the convexity

of ε 7→
∫
Ω |∇(g + εf )|2 dm and the inequality ∆g ≥ 0:∫

Ω

|∇(g + f )|2 dm −

∫
Ω

|∇g|2 dm ≥ lim

ε↓0

∫
Ω

|∇(g + εf )|2 − |∇g|2
ε dm = 2

∫
Ω

〈∇g,∇f 〉 dm = −2

∫
f d∆g ≥ 0,

and the proof is completed.

From now on, to simplify the notation we shall consider the Busemann function b : X → R de�ned as

b := b

+

= −b

−

. (3.16)

Theorem 3.14 (Multiples of b are Kantorovich potentials). For every a ∈ R the function ab is c-concave and
ful�lls

(ab)

c
= −ab −

a2

2

,

(−ab)

c
= ab −

a2

2

.

(3.17)

In particular, (x, y) ∈ ∂c(ab) if and only if (y, x) ∈ ∂c(−ab).
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Proof. Fix a ∈ R and notice that since ab is |a|-Lipschitz we have

ab(x) − ab(y) ≤ |a|d(x, y) ≤

d2

(x, y)

2

+

a2

2

, ∀x, y ∈ X,

which yields

d2

(x,y)

2

− ab(x) ≥ −ab(y) −

a2

2

for any x, y ∈ X, and thus

(ab)

c
(y) ≥ −ab(y) −

a2

2

, ∀y ∈ X.

To prove the opposite inequality, �x y ∈ X and assume for the moment a ≥ 0. Let γt,y : [0, d(y, γ̄t)]→ X be a

unit speed geodesic connecting y to γ̄t and notice that since (X, d) is proper, for some sequence tn ↑ +∞ the

sequence n 7→ γtn ,ya converges to some point ya ∈ X which clearly has distance a from y.
Letting n →∞ in

tn − d(ya , γ̄tn ) ≥ tn − d(γtn ,ya , γ̄tn ) − d(ya , γtn ,ya ) = tn − d(y, γ̄tn ) + a − d(ya , γtn ,ya ),

and recalling that b = b

+

= limn→∞ tn − d(·, γ̄tn ) we deduce

b(ya) ≥ b(y) + a. (3.18)

Choosing ya as competitor in the de�nition of (ab)

c
(y) we obtain

(ab)

c
(y) = inf

x
d2

(x, y)

2

− ab(x) ≤

d2

(ya , y)

2

− ab(ya)

(3.18)

≤ −ab(y) −

a2

2

,

as desired. The case a ≤ 0 is handled analogously by letting ya be any limit of γ−t,y|a| as t → +∞ and using the

fact that b = −b

−

= limt→+∞
d(·, γ̄

−t) − t.
This proves the �rst identity in (3.17). The second follows from the �rst choosing −a in place of a. Finally,

the c-concavity of ab is obtained by direct algebraic manipulation:

(ab)

cc
=

(
−ab −

a2

2

)c
= (−ab)

c
+

a2

2

= ab.

The last assertion follows from the fact that (x, y) ∈ ∂c(ab) if and only if (y, x) ∈ ∂c(ab)

c
and identities

(3.17).

3.6 The gradient flow of b preserves the measure

Proposition 3.15. There exists a Borel map R × X 3 (t, x) 7→ Ft(x) ∈ X such that for m-a.e. x ∈ X the curve
t 7→ Ft(x) is continuous and ful�lls Ft(x) ∈ ∂c(tb)(x). Such curve is unique up tom-a.e. equality. Furthermore we
have

m� (Ft)]m� m, ∀t ∈ R, (3.19)

Ft+s(x) = Ft(Fs(x)), m-a.e. x ∈ X, t, s ∈ R, (3.20)

and form-a.e. x ∈ X the curve R 3 t 7→ Ft(x) is a unit speed geodesic, i.e. a line.

Proof. By Theorem 3.5 and the fact that tb is a Kantorovich potential for every t ∈ R we deduce that there is

a Borel negligible setN ⊂ X such that for x ∈ X \N and t
0
∈ Q the set ∂c(t

0
b)(x) is a singleton and there is a

unique geodesic [0, 1] 3 t 7→ Tt(t0, x) ∈ X such that T
0

(t
0
, x) = x and T

1
(t

0
, x) ∈ ∂c(t

0
b)(x). By the property

(3.2) we have that

Tt(t0, x) = T
1

(tt
0
, x), ∀t ∈ [0, 1], t

0
∈ Q, x ∈ X \N.

It follows that for any t ∈ R and x ∈ X \N the de�nition

Ft(x) := T t
t
0

(t
0
, x), ∀t

0
∈ Q such that

t
t

0

∈ [0, 1],
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is well posed and de�nes a curve which is a geodesic when restricted to [0, +∞) and (−∞, 0]. The uniqueness

of such F follows by the construction and a simple continuity argument gives Ft(x) ∈ ∂c(tb)(x) for every t ∈ R
and x ∈ X \N. Notice also that by the property (3.9) we deduce that (Ft)]m� m for every t ∈ R.

For the group property (3.20), start assuming that t, s ≥ 0 and pick x ∈ X \ (N ∪ F

−1

s (N) ∪ F

−1

t+s(N)) (notice

thatN∪F

−1

s (N)∪F

−1

t+s(N) is Borel andm-negligible) and observe that from Fs(x) ∈ ∂c(sb)(x) and the relations

(3.17) we get

sb(x) − sb(Fs(x)) =

d2

(x, Fs(x))

2

+

s2

2

,

which, due to the fact that b is 1-Lipschitz, forces

d(x, Fs(x)) = s, and b(x) − b(Fs(x)) = s. (3.21)

Similarly, from x ∈ ̸ F−1

s (N) we have Ft(Fs(x)) ∈ ∂c(tb)(Fs(x)) which forces

d
(

Ft(Fs(x)), Fs(x)

)
= t, and b(Fs(x)) − b

(
Ft(Fs(x))

)
= t. (3.22)

From (3.21) and (3.22) we get b(x)−b(Ft(Fs(x))) = t+s and d(x, Ft(Fs(x))) ≤ t+s and thus recalling the relations

(3.17) again, we get

d2

(x, Ft(Fs(x)))

2

≤ (t + s)b(x) +

(
(t + s)b

)c(
Ft(Fs(x))

)
,

which means Ft(Fs(x)) ∈ ∂c((t + s)b)(x). Given that x ∈ ̸ F−1

t+s(N), this forces Ft(Fs(x)) = Ft+s(x), as desired.

To get the full group property it is now su�cient to show that for t ∈ Q and x ∈ X \ (N∪ F

−1

t (N)∪ F

−1

−t (N))

it holds

F
−t(Ft(x)) = x, and Ft(F−t(x)) = x. (3.23)

To check the �rst notice that we have Ft(x) ∈ ∂c(tb)(x) and thus by the last assertion in Theorem 3.14 that

x ∈ ∂c(−tb)(Ft(x)). Since x ∈ ̸ F−1

t (N) we know that ∂c(−tb)(Ft(x)) contains only the point F
−t(Ft(x)), we deduce

that the �rst equality in (3.23) indeed holds. The second is proved analogously.

To prove that R 3 t 7→ Ft(x) is a geodesic for m-a.e. x ∈ X it su�cient to prove that [−T, T] 3 t 7→ Ft(x)

is a geodesic for m-a.e. x ∈ X and every T > 0. This follows from the group property, which grants that

Ft(x) = Ft+T(F
−T(x)) for m-a.e. x ∈ X, and the fact that [0, 2T] 3 t 7→ Ft(x) is a geodesic, as pointed out in the

�rst part of the proof.

Finally, the �rst in (3.19) follows from the second one and the group property.

We shall refer to the map (t, x) 7→ Ft(x) as the gradient �ow of b although in fact we characterized it by the

property Ft(x) ∈ ∂c(tb)(x). It is indeed easy to see that in the smooth setting this is really the gradient �ow of

b in the sense that it satis�es ∂tFt = −∇b(Ft). In our context, this property is expressed by the derivation rule

(3.27) given below and the group law (3.20).

Theorem 3.16 (The gradient �ow of b preserves the measure). The map R × X 3 (t, x) 7→ Ft(x) ∈ X given by
Proposition 3.15 satis�es

(Ft)]m = m, ∀t ∈ R. (3.24)

Proof. Pick t ∈ R, µ ∈ P
2

(X) absolutely continuous w.r.t.m and with bounded support and notice that since

Ft(x) ∈ ∂c(tb) for µ-a.e. x, tb is a Kantorovich potential from µ to (Ft)]µ. It is trivial that (Ft)]µ has bounded

support, hence by Proposition 3.9 and the fact that ∆b = 0 we deduce UN((Ft)]µ) ≥ UN(µ). Proposition 3.15

grants that (Ft)]µ � m and (F
−t)](Ft)]µ = µ, hence the same argument applied to the couple ((Ft)]µ, µ) in

place of (µ, (Ft)]µ) and with −t in place of t yields the reverse inequality and thus that

UN(µ) = UN((Ft)]µ), ∀t ∈ R, µ ∈ P
2

(X), µ � m. (3.25)

From this identity the conclusion follows easily. Indeed, recalling the �rst in (3.19), for t ∈ R we de�ne the

map |dFt| : X → R+ m-a.e. by

|dFt| :=

dm

d(Ft)]m
◦ F

−t .
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Then for µ = ρm the equalities∫
f d(Ft)]µ =

∫
f ◦ Ftρ dm =

∫
fρ ◦ F

−t d(Ft)]m =

∫
f ρ
|dFt|

◦ F
−t dm,

valid for any Borel f : X → R+

show that

d(Ft)]µ
dm =

ρ
|dFt| ◦ F

−t and in particular

UN((Ft)]µ) = −

∫ ( ρ
|dFt|

)
−

1

N
◦ F

−t d(Ft)]µ = −

∫ ( ρ
|dFt|

)
−

1

N
dµ = −

∫ ρ1−

1

N

|dFt|−
1

N
dm.

Taking into account (3.25) and the arbitrariness of µ = ρm, the latter identity forces |dFt| = 1 m-a.e., which is

the thesis.

Themeasure preservation property just proved has the following important consequences about the behavior

of Sobolev functions along the �ow:

Proposition 3.17. For f ∈ S

2

(X) we have∫
|f (Ft(x)) − f (x)|2 dm(x) ≤ t2

∫
|∇f |2(x) dm(x), ∀t ∈ R, (3.26)

and
lim

t→0

f ◦ Ft − f
t = − 〈∇f ,∇b〉 , weakly in L2

(X). (3.27)

Proof. Let f ∈ S

2

(X). We claim that for every t ∈ R it holds

|f (Ft(x)) − f (x)| ≤
t∫

0

|∇f |(Fs(x)) ds, m-a.e. x ∈ X, (3.28)

with the obvious interpretation of the right hand side for t < 0. Indeed, �x t
0
∈ R, and let T : X → C([0, 1], X)

be m-a.e. de�ned by (T(x))t := Ftt
0

(x), let m̃ ∈ P(X) be such that m̃ ≤ m and m � m̃ and put π := T]m̃ ∈
P(C([0, 1], X)). Then by Proposition 3.15, π is concentrated on geodesics of speed |t

0
| and (et)]π = (Ftt

0

)]m̃ ≤

(Ftt
0

)]m = m for every t ∈ [0, 1]. Thus π is a test plan and inequality (2.5) yields

|f (γ
1

) − f (γ
0

)| ≤
1∫

0

|∇f |(γs)|γ̇s|ds = |t
0
|

1∫
0

|∇f |(γs) ds, π-a.e. γ,

which by de�nition of π is equivalent to the claim (3.28). Now square and integrate (3.28) to get

∫
|f (Ft(x)) − f (x)|2 dm(x) ≤

∫ ∣∣∣∣∣∣
t∫

0

|∇f |(Fs(x)) ds

∣∣∣∣∣∣
2

dm(x) ≤ |t|
t∫∫
0

|∇f |2(Fs(x)) ds dm(x)

= |t|
∫
|∇f |2(x) d

 t∫
0

(Fs)]mds


(x) = t2

∫
|∇f |2(x) dm(x),

which is (3.26). Finally, observe that (3.26) grants that the L2

-norm of

f◦Ft−f
t is uniformly bounded, thus with

a trivial density argument to conclude is su�cient to show that for any non-negative g ∈ L1 ∩ L∞(X) with

bounded support it holds

lim

t↓0

∫ f ◦ Ft − f
t g dm = −

∫
〈∇f ,∇b〉 g dm,

the proof of the limiting property as t ↑ 0 being analogous. Pick such g, assume g is not identically 0 (other-

wise there is nothing to prove) and up to scaling assume also that

∫
g dm = 1. Then de�ne µ := gm ∈ P(X)

and π := S]µ ∈ P((C([0, 1], X))), where S : X → C([0, 1], X) is given by (S(x))t := Ft(x). By construction, for

some bounded open set Ω it holds supp((et)]π) ⊂ Ω for any t ∈ [0, 1] and thus Proposition 3.15 and Corollary
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3.6 grant that π represents the gradient of −b. By the �rst order di�erentiation formula given by Theorem 2.10

we deduce

lim

t↓0

∫ f ◦ Ft − f
t g dm = lim

t↓0

∫ f (γt) − f (γ0
)

t dπ(γ) = −

∫
〈∇f ,∇b〉 g dm,

which is the thesis.

Notice that the bound (3.28) applied to (a cut-o� of) b gives, taking into account that b is 1-Lipschitz:

|∇b| = 1, m-a.e.. (3.29)

In fact, this could also be deduced by the �ne results of Cheeger [13], but we pointed out this argument in

order to give an exposition independent on Cheeger’s analysis.

3.7 Things to know: heat flow and Bakry-Émery contraction estimate

In the following we will need to work with the heat �ow on our RCD(0, N) space (X, d,m): on one side as

regularizing �ow in a setting where standard convolution techniques are unavailable (see the proof of Theo-

rem 3.19), and on the other as tool to get the hands on - under minimal regularity assumptions - the Bochner

inequality (see (3.33) below and its consequences in Proposition 3.18).

Start noticing that being (X, d,m) in�nitesimally Hilbertian, the map

L2

(X) 3 f 7→ E(f ) :=

1

2

∫
|∇f |2 dm,

set to +∞ if f ∈ ̸ W1,2

(X) is aDirichlet form. Bypolarization, it de�nes a bilinearmapW1,2 3 f , g 7→ E(f , g) ∈ R
so that E(f , f ) = E(f ) and from Theorem 2.8 and its proof it is immediate to see that

E(f , g) =

1

2

∫
〈∇f ,∇g〉dm.

We can then consider the evolution semigroup associated to E in L2

(X) or, which is equivalent, its gradient

�ow in L2

(X). This means that we de�ne D(∆) ⊂ W1,2

(X) and ∆ : D(∆) → L2

(X) by declaring that f ∈ D(∆)

with ∆f = h provided for every g ∈ W1,2

(X) it holds∫
gh dm = −

∫
〈∇f ,∇g〉dm.

Notice that in fact this de�nition is nothing but a particular case of the one ofmeasure valued Laplacian given

in De�nition 2.11. Indeed, it is immediate to verify that

f ∈ D(∆)

is equivalent to

f ∈ W1,2

(X, d,m) ∩ D(∆) and ∆f = hm for some h ∈ L2

(X,m),

and that if these holds we also have h = ∆f : one implication is obvious, and the other one follows from the

approximation result in Theorem 2.4. Yet, to single out the de�nition of ∆ is useful because it allows us to

directly use the regularization properties of the heat �ow classical in the context of linear semigroups, see in

particular the proof of Theorem 3.19.

Then the heat �ow ht : L2

(X)→ L2

(X), t ≥ 0 is the unique family of maps such that for any f ∈ L2

(X) the

curve [0,∞) 3 t 7→ ht(f ) ∈ L2

(X) is continuous, locally absolutely continuous on (0, +∞), ful�lls h
0

(f ) = f ,
ht(f ) ∈ D(∆) for t > 0 and solves

d

dtht(f ) = ∆ht(f ), L1

-a.e. t > 0.
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Notice that by direct computation we have

d

dt‖ht(f )‖
2

L2
= −4E(ht(f )), and using the fact that E is decreasing

along the �ow, after little algebraic manipulation we get the simple yet useful bound:

‖ht(f )‖W1,2 ≤

1√
2t
‖f‖L2 , ∀t ∈ (0,

1

2

). (3.30)

The fact that the measure m is doubling (see (3.4)) and (X, d,m) supports a 1-2 weak local Poincaré in-

equality (see [36], [45] and [44]) already grant important properties of this �ow. In particular, from the gen-

eral results obtained by Sturm in [48], [49], we get the existence of a mass preserving heat kernel satis-
fying Gaussian estimates, i.e. there is a map (0, +∞) × X2 3 (t, x, y) 7→ ρt[x](y) = ρt[y](x) ∈ R such that∫
ρt[x] dm = 1 and

0 < ρt[x](y) ≤

C

m(B√t(x))

e
−

d2

(x, y)

5t ,

for some constant C depending only on (X, d,m) (in particular thanks to the polynomial volume growth (3.4)

this grants ρt[x] ∈ L2

(X) for every t > 0, x ∈ X) and

ht(f )(x) =

∫
fρt[x] dm, (3.31)

for every f ∈ L2

(X) andm-a.e. x ∈ X. Very shortly and roughly said, the Gaussian bounds are a consequence

of a generalization to non-smooth spaces of De Giorgi-Moser-Nash type arguments for regularity theory for

parabolic equations, see [49] and references therein for more details. The mass preservation follows instead

from the volume growth estimate along techniques that in the smooth setting are due to Grigoryan [30], see

also the recent generalization to non-linear heat �ow in Finsler-type geometries given in [8].

Later on wewill want to evaluate the heat �ow starting from the Busemann function b, which certainly is

not in L2

(X). Yet, this is not a big issue, because the Gaussian estimates and the polynomial volume growth

allow to extend the domain of the de�nition of the heat �ow far beyond the space L2

(X,m).Wewill be satis�ed

in considering as Domain of the Heat �ow the (non maximal) space DH(X) = DH(X, d,m, x̄) de�ned by

DH(X) :=

{
f : X → R Borel :

∫
|f |(x)e−d(x,x̄)

dm(x) < ∞

}
,

where x̄ ∈ X is a point that we shall consider as �xed from now on. It is immediate to check that ‖f‖
DH

:=∫
|f |e−d(·,x̄)

dm is a norm on DH(X), that (DH(X), ‖ · ‖
DH

) is a Banach space, that the right hand side of formula

(3.31) makes sense for general f ∈ DH(X) and that the bound

‖ht(f )‖DH
≤ C(t)‖f‖

DH
, (3.32)

holds for some constants C(t) depending only on t and the space (X, d,m). We omit the simple details.

The Riemannian curvature dimension condition RCD(0, N) ensures further regularizing properties of the

heat �ow, in particular we have the Bakry-Émery contraction estimate

|∇ht(f )|2 ≤ ht(|∇f |2), m-a.e., ∀t ≥ 0, (3.33)

valid for any f ∈ W1,2

(X). We recall that in the smooth Riemannian case this inequality is equivalent to the

dimension free Bochner inequality

∆ |∇f |
2

2

≥ 〈∇∆f ,∇f 〉 , (3.34)

indeed to get (3.34) from (3.33) to just di�erentiate at time t = 0, while for the other way around di�erentiate

in s the map hs(|∇(ht−s f )|2), use (3.34) and integrate from s = 0 to s = t. In the non-smooth setting, (3.33) has

been proved at �rst in [25] in the context of �nite dimensional Alexandrov spaces with curvature bounded

from below with a technique which, as shown in [6], generalizes to RCD(0,∞) spaces (see also [7], [20], [9]

for more recent progresses). The argument of the proof uses in a crucial way the identi�cation of the gradient

�ow of the Dirichlet energy in L2

with the one of the relative entropy in (P
2

(X),W
2

) ([25], [8]) together with a

very general duality argument due to Kuwada [35].
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3.8 The gradient flow of b preserves the Dirichlet energy

In this section we prove that the right composition with Ft preserves the Dirichlet energy E.

Notice that being b Lipschitz, it certainly belongs to DH(X), so that ht(b) is well de�ned. Then the fact

that ∆b = 0 strongly suggests that b is invariant under the heat �ow, i.e.:

ht(b)(x) = b(x), m-a.e. x ∈ X. (3.35)

This is indeed the case, the proof being based on the consistency of the notion of Laplacian ∆ in L2

with that

of distributional Laplacian ∆ pointed out at the beginning of section 3.7 and an approximation argument. We

omit the uninspiring technical details.

This invariance property and the Bakry-Émery condition (3.33) are the ingredient needed to obtain the

following crucial Euler’s equation of b:

Proposition 3.18 (Euler’s equation of b). For any f ∈ W1,2

(X) it holds

ht(〈∇b,∇f 〉) =

〈
∇b,∇ht(f )

〉
, m-a.e., (3.36)

and for every f ∈ D(∆) with ∆f ∈ W1,2

(X) and every g ∈ D(∆) it holds∫
∆g 〈∇b,∇f 〉dm =

∫
g 〈∇b,∇∆f 〉dm. (3.37)

Proof. Pick f ∈ W1,2

(X), ε ∈ R, put bε := b+εf and observe that bε ∈ DH∩S

2

loc

(X). Our �rst task is to write the

Bakry-Émery contraction estimate (3.33) for bε. Let (Bn) be an increasing sequence of bounded sets covering

X and for every n ∈ N let
χn : X → [0, 1] be a 1-Lipschitz function with compact support identically 1 on Bn.

Obviously,
χnbε ∈ W1,2

(X) so that (3.33) yields

|∇(ht(χnbε))|2 ≤ ht(|∇(
χnbε)|2), m-a.e., ∀t ≥ 0. (3.38)

Since
χn is 1-Lipschitz with values in [0, 1] we have |∇(

χnbε)|2 ≤ 2|∇bε|2 + 2|bε|2 and it is easy to see that the

right hand side belongs to DH(X). Given that trivially |∇(
χnbε)| → |∇bε| m-a.e. as n → ∞, by the dominate

convergence theorem we deduce ‖|∇(
χnbε)|2 − |∇bε|2‖DH

→ 0 as n → ∞. Hence inequality (3.32) grants that

ht(|∇(
χnbε)|2)→ ht(|∇bε|2) in DH(X) and thus, up to pass to a non-relabeled subsequence we get that

ht(|∇(
χnbε)|2)→ ht(|∇bε|2) m-a.e. as n →∞ for any t ≥ 0. (3.39)

A similar argument gives that ht(χnbε)→ ht(bε) in DH(X) andm-a.e. as n →∞so that taking into account the

lower semicontinuity of minimal weak upper gradients (2.6), the limiting property (3.39) and letting n → ∞

in (3.38) we deduce

|∇ht(bε)|2 ≤ ht(|∇bε|2), m-a.e., ∀t ≥ 0, (3.40)

as desired. Expanding both sides of this inequality using the linearity of the heat �ow we get

|∇ht(b + εf )|2 = |∇ht(b)|2 + 2ε
〈
∇(ht(b)),∇ht(f )

〉
+ ε2|∇ht(f )|2,

ht(|∇b + εf |2) = ht(|∇b|2) + 2εht(〈∇b,∇f 〉) + ε2ht(|∇f |2),

hence using (3.35), the fact that |∇b| ≡ 1 (recall (3.29)) and the mass preservation which grants ht(1) ≡ 1,

from (3.40)we obtain (3.36). Then (3.37) followsmultiplying (3.36) by g ∈ D(∆), integrating anddi�erentiating

at t = 0.

From these Euler’s equations we can now deduce that the right composition with Ft preserves the Dirichlet

energy. We shall need the identity∫
〈∇g,∇b〉 f dm = −

∫
〈∇f ,∇b〉 g dm, ∀f , g ∈ W1,2

(X), (3.41)
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which canbe proved by �rst choosing sequences (fn), (gn) ⊂ Test(X) converging to f , g respectively inW1,2

(X)

(Theorem 2.6), then noticing that ∆b = 0 yields

∫ 〈
∇(fngn),∇b

〉
dm = 0 and thus∫

〈∇gn ,∇b〉 fn dm = −

∫
〈∇fn ,∇b〉 gn dm, ∀n ∈ N, (3.42)

then observing that 〈∇fn ,∇b〉 (resp. 〈∇gn ,∇b〉) converge to 〈∇f ,∇b〉 (resp. to 〈∇g,∇b〉) in L2

(X) as n →∞
and �nally passing to the limit in (3.42).

Theorem 3.19 (Right compositions with Ft preserve the Dirichlet energy). For any f ∈ L2

(X) and t ∈ R we
have

E(f ◦ Ft) = E(f ). (3.43)

Proof. We claim that (3.43) holds for f ∈ W1,2

(X). This will be su�cient to conclude by applying such claim

also to F
−t and recalling the group property (3.20).

Fix such f and recall inequality (3.26) to get∫
|f ◦ Fs − f ◦ Ft|2 dm =

∫
|f ◦ Fs−t − f |2 dm ≤ |s − t|2

∫
|∇f |2 dm,

which shows that the map R 3 t 7→ ft := f ◦ Ft ∈ L2

(X) is Lipschitz with Lipschitz constant bounded by

‖|∇f |‖L2 . Now notice that inequality (3.30) grants that

the map R 3 t 7→ hε(ft) ∈ W1,2

(X) is Lipschitz for every ε ∈ (0,

1

2

), (3.44)

its Lipschitz constant being bounded by

1√
2ε‖|∇f |‖L2 .

In particular, the map t 7→ 1

2

∫
|∇hε(ft)|2 dm is Lipschitz; our aim is to show that it is constant. Start from∫

|∇hε(ft+h)|2 − |∇hε(ft)|2 dm =

∫
2

〈
∇hε(ft),∇hε(ft+h − ft)

〉
+ |∇(hε(ft+h − ft))|2 dm,

and notice that (3.30) yields the bound

∫
|∇(hε(ft+h − ft))|2 dm ≤ 1

2ε‖|∇f |‖2

L2
|h|2 and thus for any t ∈ R it holds

lim

h→0

∫
|∇hε(ft+h)|2 − |∇hε(ft)|2

2h dm = lim

h→0

∫ 〈
∇hε(ft),∇hε(ft+h) − hε(ft)

h

〉
dm.

We compute the limit in the right-hand-side of this expression:

lim

h→0

∫ 〈
∇hε(ft),∇hε(ft+h) − hε(ft)

h

〉
dm = − lim

h→0

∫
∆hε(ft)

hε
(
ft+h − ft

)
h dm

= − lim

h→0

∫
∆h

2ε(ft)
ft ◦ Fh − ft

h dm

= − lim

h→0

∫ (
∆h

2ε(ft)
)
◦ F

−h − ∆h2ε(ft)
h ft dm

= −

∫ 〈
∇
(
∆h

2ε(ft)
)
,∇b

〉
ft dm,

(3.45)

having used the measure preservation property in the third equality and the di�erentiation formula (3.27) in

the last one. We claim that ∫ 〈
∇
(
∆h

2ε(g)

)
,∇b

〉
g dm = 0, ∀g ∈ L2

(X). (3.46)

Notice that the map L2

(X) 3 g 7→ ∆h
2ε(g) ∈ W1,2

(X) is continuous, thus from the fact that b is Lipschitz we

get

L2

(X) 3 g 7→
〈
∇
(
∆h

2ε(g)

)
,∇b

〉
∈ L2

(X) is continuous.
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Hence it is su�cient to check (3.46) for g ∈ D(∆) such that ∆g ∈ W1,2

(X), because - by regularization with

the heat �ow - the set of such g’s is dense in L2

(X). With this choice of g, recalling the integration by parts

formula (3.41) and the Euler equation (3.37) we have∫ 〈
∇
(
∆h

2ε(g)

)
,∇b

〉
g dm = −

∫
∆h

2ε(g) 〈∇g,∇b〉 dm = −

∫
h

2ε(g) 〈∇∆g,∇b〉 dm. (3.47)

On the other hand, the Euler equation (3.36) applied with ∆g in place of f yields∫ 〈
∇
(
∆h

2ε(g)

)
,∇b

〉
g dm =

∫ 〈
∇
(
h

2ε(∆g)

)
,∇b

〉
g dm =

∫
h

2ε(〈∇∆g,∇b〉)g dm,

which together with (3.47) gives (3.46). According to (3.44) and (3.45) we thus obtained that

R 3 t 7→ 1

2

∫
|∇hε(ft)|2 dm, is constant for every ε > 0.

Letting ε ↓ 0 and recalling that from the very de�nition of heat �ow we have E(g) = limε↓0

1

2

∫
|∇hε(g)|2 dm

for any g ∈ L2

(X), we deduce that t 7→ E(ft) is constant, as desired.

4 Geometric consequences and conclusion

4.1 Isometries by duality with Sobolev functions

We just proved that the right composition with Ft preserves the Dirichlet energy. In order to translate this

Sobolev information into a metric one we shall make use of the following result, coming from [6]. Notice that

we simpli�ed the statement below by asking the measure to be doubling, but this is actually unnecessary.

Proposition 4.1. Let (
˜X, ˜d, m̃) be an RCD(0,∞) space and such that m̃ is doubling. Then every f ∈ W1,2

(
˜X)

with |∇f | ≤ 1 m̃-a.e. has a 1-Lipschitz representative, i.e. there exists ˜f : X → R 1-Lipschitz such that f =
˜f

m̃-a.e..

Sketch of the proof Let x, y ∈ ˜X, ε > 0, put µεx :=

1

m̃(Bε(x))

m̃|Bε(x)

, µεy =

1

m̃(Bε(y))

m̃|Bε(y)

and let π ∈ OptGeo(µεx , µεy)
be the unique optimal geodesic plan given by Theorem 3.2. Arguing as in the proof of Proposition 3.3 and

Lemma 3.4, we see that since both µεx and µεy have bounded supports and densities, it holds (et)]π ≤ Cm̃ for

every t ∈ [0, 1]where C := max{ 1

m̃(Bε(x))

,

1

m̃(Bε(y))

}. Thus the planπ is a test plan and for f as in the assumptions

we get

∣∣∣∣∫ f dµεx −
∫
f dµεy

∣∣∣∣ ≤ ∫ |f (γ1
) − f (γ

0
)|dπ(γ) ≤

1∫∫
0

|γ̇t|dt dπ(γ) ≤

√√√√√ 1∫∫
0

|γ̇t|2 dt dπ(γ).

By construction the rightmost side is equal toW
2

(µεx , µεy), which converges to
˜d(x, y) as ε ↓ 0. Nowuse the fact

that m̃ is doubling to deduce that m̃-a.e. x is a Lebesgue point for f (see for instance [31]), so that

∫
f dµεx →

f (x) for m̃-a.e. x. The conclusion follows by considering x, y Lebesgue points and letting ε ↓ 0 in the above

inequality. �

It is worth noticing that the same conclusion of the above proposition fails if (
˜X, ˜d, m̃) is only assumed to

support a weak local 1-1 Poincaré inequality with m̃ being doubling. Indeed, these assumptions are invariant

under a bi-Lipschitz change of metric but it can be shown that any proper space ful�lling the thesis of Propo-

sition 4.1 must be a geodesic space. The argument is the following. De�ne an ε-chain connecting x to y as a

�nite sequence {xi}i=0,...,n, n ∈ N, such that x
0

= x, xn = y and
˜d(xi , xi+1

) ≤ ε for every i, then consider the

function fε(y) := inf

∑
i d(xi , xi+1

), the inf being taken among all ε-chains connecting x to y and notice that fε
is locally 1-Lipschitz and thus, if the thesis of the above proposition holds, globally 1-Lipschitz. Then let ε ↓ 0

and use the assumption that the space is proper to �nd a geodesic connecting x to y as limit of minimizing

ε-chains. Notice the analogy of this argument with the one providing Semmes’ Lemma as given in [34].
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Theorem 4.2. Let (X
1
, d

1
,m

1
), (X

2
, d

2
,m

2
) be two RCD(0,∞) spaces such that m

1
and m

2
are doubling and

T : X
1
→ X

2
an invertible map such that

T]m1
= m

2
,

E
1

(f ◦ T) = E
2

(f ), ∀f ∈ L2

(X
2

),

(4.1)

whereEi is the natural Dirichlet energy on the space Xi, i = 1, 2. Then T is, up to a rede�nition on am
1
-negligible

set, an isometry from (X
1
, d

1
) to (X

2
, d

2
).

Proof. It is su�cient to prove that T has a 1-Lipschitz representative, as then the same arguments can be

carried out for the inverse.

Notice that from the assumptions (4.1) it directly follows that for f ∈ W1,2

(X
2

) we have f ◦ T ∈ W1,2

(X
1

).

We further claim that it holds

|∇(f ◦ T)| = |∇f | ◦ T, m
1
-a.e., ∀f ∈ W1,2 ∩ L∞(X

2
). (4.2)

Fix such f and let g : X
2
→ R be Lipschitz with bounded support. Then f 2

, gf ∈ W1,2

(X
2

) and from the

Leibniz and chain rules we get∫
X

2

g|∇f |2 dm
2

=

∫
X

2

〈
∇(gf ),∇f

〉
− f 〈∇g,∇f 〉 dm

2
=

∫
X

2

〈
∇(gf ),∇f

〉
−

〈
∇g,∇(f 2

/2)

〉
dm

2
.

(4.3)

Now notice that the second in (4.1) yields, by polarization, the identity∫
X

2

〈∇f
1
,∇f

2
〉 dm

2
=

∫
X

1

〈
∇(f

1
◦ T),∇(f

2
◦ T)

〉
dm

1
, ∀f

1
, f

2
∈ W1,2

(X
2

).

Using this equality in (4.3), putting for brevity
˜f := f ◦ T, g̃ := g ◦ T and using again the Leibniz and chain

rules we get ∫
X

2

g|∇f |2 dm
2

=

∫
X

1

〈
∇(g̃˜f ),∇˜f

〉
−

〈
∇g̃,∇(

˜f 2

/2)

〉
dm

1
=

∫
X

1

g̃|∇˜f |2 dm
1
.

(4.4)

By the �rst in (4.1) we also have

∫
X

2

g|∇f |2 dm
2

=

∫
X

1

g̃|∇f |2 ◦ T dm
1
, hence (4.4), the arbitrariness of g, the

fact that T is invertible and that |∇f |2 ∈ L1

(X
2

) give∫
X

2

h|∇f |2 ◦ T dm
1

=

∫
h|∇(f ◦ T)|2 dm

1
, ∀h ∈ L∞(X

1
),

which implies our claim (4.2).

Now let {xn}n∈N be a countable dense subset of X
2
and for k, n ∈ N consider the functions fk,n :=

max{0, min{d(·, xn), k − d(·, xn)}}. These are 1-Lipschitz and satisfy

d
2

(x, y) = sup

k,n
|fk,n(x) − fk,n(y)|, ∀x, y ∈ X

2
.

Given that they also have bounded support, we have fk,n ∈ W1,2∩L∞(X
2

) for any k, n ∈ N and the 1-Lipschitz

property grants |∇fk,n| ≤ 1 m
2
-a.e..

By (4.2) we deduce that fk,n ◦ T also belongs to W1,2

(X
1

) with |∇(fk,n ◦ T)| ≤ 1 m
1
-a.e.. Now we use

Proposition 4.1 to deduce that for every k, n ∈ N there exists a Borel m
1
-negligible set Nk,n such that the

restriction of fk,n ◦ T to X
1
\Nk,n is 1-Lipschitz. Hence for any x, y ∈ X \ ∪k,nNk,n we have

d
1

(x, y) ≥ sup

k,n
|(fk,n ◦ T)(x) − (fk,n ◦ T)(y)| = sup

k,n
|fk,n(T(x)) − fk,n(T(y))| = d

2
(T(x), T(y)).

Given that∪k,nNk,n is Borel and negligiblewe conclude that T has a 1-Lipschitz representative, as desired.
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4.2 The gradient flow of b preserves the distance

The duality statement proved in the previous section and Theorem 3.19 quickly gives that there is a unique

continuous representative of the gradient �ow Ft of b which is a family of isometries.

Theorem 4.3 (The gradient �ow of b preserves the distance). The following holds:

i) There exists a unique continuous map ¯
F : X ×R→ X coincidingm × L1-a.e. with F .

ii) For every t
0
∈ R and x

0
∈ X the maps X 3 x 7→ ¯

Ft
0

(x) and R 3 t 7→ ¯
Ft(x0

) are isometries of X into itself
and of R into X respectively.

iii) It holds ¯
Ft(¯

Fs(x)) =
¯
Ft+s(x), for any x ∈ X and t, s ∈ R.

Proof.
(i), (ii) Uniqueness is obvious. By Theorems 3.16 and 3.19 we know that the assumptions of Theorem 4.2 are

ful�lled with X
1

= X
2

= X and T = Ft (recall (3.4) to get thatm is doubling). Hence by Theorem 4.2 we get the

existence of an isometry
¯
Ft of (supp(m), d) into itself m-a.e. coinciding with Ft. Since t 7→ Ft(x) is a line for

m-a.e. x, it is immediate to verify that d(
¯
Ft(x),

¯
Fs(x)) = |t − s| for every x ∈ X and t, s ∈ R, which gives the

continuity of
¯
F jointly in t, x.

(iii) Direct consequence of the group property (3.20), the measure preservation property (3.24) and what we

just proved.

4.3 The quotient space isometrically embeds

We are now ready to introduce the quotient metric space:

De�nition 4.4 (The quotient metric space). We de�ne X′ := X/ ∼ where x ∼ y if
¯
Ft(x) = y for some t ∈ R

and denote by π : X → X′ the natural projection. We endow X′ with the distance d′ given by d′(π(x), π(y)) :=

inf t∈R d(
¯
Ft(x), y).

Also, we denote by ι : X′ → X the right inverse of π given by ι(x′) = x provided π(x) = x′ and b(x) = 0.

From the fact that (
¯
Ft) is a one-parameter group of isometries it is immediate to see that the de�nition of d′ is

well posed, i.e. that d′(π(x), π(y)) depends only on π(x), π(y). Also, it is easy to see that (X′, d′) is a complete,

separable and geodesic metric space, and that the topology induced by d′ is the quotient topology. We omit

the simple proof of these facts.

What is a priori non trivial, and the focus of this section, is that ι is an isometric embedding or, which

is the same, that the minimum of the function t 7→ d2

(x,¯Ft(y))

2

is attained at that t
0
such that b(x) = b(

¯
Ft

0

(y)).

The lack of smoothness of the space prevents a direct proof of the fact that such map is C1

, thus creating

problems when trying to write down the Euler equation of the minimum. To overcome this di�culty, we �rst

lift analysis from points to probability measures with bounded densities in order to get the C1

regularity

expressed by Proposition 4.5 below, and then come back to points in the space with a limiting argument.

Proposition 4.5 (A result about C1

regularity). Let x
0
∈ X, µ ∈ P

2
(X) be with bounded support and such that

µ ≤ Cm for some C > 0 and put µt := (
¯
Ft)]µ. Then the map R 3 t 7→ 1

2

∫
d2

(·, x
0

) dµt is C1 and its derivative is
given by

d

dt
1

2

∫
d2

(·, x
0

) dµt = −

1

2

∫ 〈
∇(d2

(·, x
0

)),∇b

〉
dµt . (4.5)

Proof. It is obvious that R 3 t 7→ 1

2

∫
d2

(·, x
0

) dµt is locally Lipschitz. For given t ∈ R we know by Propo-

sition 3.15 that b is a Kantorovich potential inducing the geodesic [0, 1] 3 s 7→ µt+s = (
¯
Fs)]µt, hence by the

di�erentiation formula (3.27) (applied to f := d2

(·, x
0

)
χ ∈ S

2

(X), where
χ
is a Lipschitz compactly supported

function identically 1 on ∪t∈[0,1]
supp(µt)) and the identity

∫
d2

(·, x
0

) dµt+h =

∫
d2

(·, x
0

) ◦ ¯
Fh dµt we deduce

Brought to you by | Sissa Biblioteca
Authenticated

Download Date | 4/3/17 10:57 AM



204 | Nicola Gigli

that for any t ∈ R it holds

lim

h↓0

∫
d2

(·, x
0

) dµt+h −
∫
d2

(·, x
0

) dµt
2h = −

1

2

∫ 〈
∇(d2

(·, x
0

)),∇b

〉
dµt .

To conclude it is therefore su�cient to show that the right hand side of (4.5) is continuous. But this is obvious,

because

〈
∇(d2

(·, x
0

)),∇b

〉
∈ L1

loc

(X) and the curve t 7→ µt is weakly continuous in duality with Cb(X), made

of measures with uniformly bounded densities (by the measure preservation property (3.24)) and, locally in

t, the supports of µt are contained in a bounded set.

Corollary 4.6. Let µ ∈ P
2

(X) be with bounded support and such that µ ≤ Cm for some C > 0 and put µt :=

(
¯
Ft)]µ.

Then for every x
0
∈ X the map t 7→

∫
d2

(·, x
0

) dµt has a unique minimum and such minimum is the only
t ∈ R for which

∫
b dµt = b(x

0
).

Proof. It is clear that the map t 7→
∫
d2

(·, x
0

) dµt = W2

2
(µt , δx

0

) has at least a minimum t
0
. Fix it, let π ∈

OptGeo(µt
0

, δx
0

) be the unique optimal geodesic plan (Theorem 3.5) and put νs := (es)]π. We claim that for

each s ∈ [0, 1] the map t 7→ W2

2
(δx

0

, (
¯
Ft)]νs) has a minimum for t = 0. Indeed, if by reductio ad absurdum for

some t ∈ R it holdsW
2

(δx
0

, (
¯
Ft)]νs) < W2

(δx
0

, νs), the fact that
¯
Ft : X → X is an isometry would give

W
2

(δx
0

, (
¯
Ft)]µt0 ) ≤ W

2
(δx

0

, (
¯
Ft)]νs) + W

2
((

¯
Ft)]νs , (

¯
Ft)]µt0 ) < W

2
(δx

0

, νs) + W
2

(νs , µt
0

) = W
2

(δx
0

, µt
0

),

thus contradicting the minimality of t
0
.

Put φ :=

d2

(·,x
0

)

2

and notice that

1

2

W2

2
(ν, δx

0

) =

∫
φ dν for every ν ∈ P

2
(X). Hence Proposition 4.5 and the

minimality of νs gives

0 =

d

dt
1

2

W2

2
(δx

0

, (Ft)]νs)|t=0

= −

∫
〈∇φ,∇b〉 dνs , ∀s ∈ [0, 1]. (4.6)

Now notice that s 7→
∫

b dνs is Lipschitz and compute its right derivative. Given that, trivially, φ is a Kan-

torovich potential for the geodesic [0, 1] 3 r 7→ νs(1−r)+r, Corollary 3.6 and the �rst order di�erentiation for-

mula in Theorem 2.10 ensure that for any s ∈ [0, 1) it holds:

lim

h↓0

∫
b dνs+h −

∫
b dνs

h = lim

h↓0

∫
b dνs(1−h)+h −

∫
b dνs

(1 − s)h = −

1

1 − s

∫
〈∇φ,∇b〉 dνs (4.6)

= 0.

Hence s 7→
∫

b dνs is constant, i.e. for any minimum t
0
of t 7→

∫
d2

(·, x
0

) dµt it holds
∫

b dµt
0

= b(x
0

). It is

now obvious that such t
0
must be unique, hence the proof is completed.

Corollary 4.6 allows us to prove the main result of this section:

Theorem 4.7 (The quotient space isometrically embeds into the original one). ι is an isometric embedding of
(X′, d′) into (X, d).

Proof. Let x′, y′ ∈ X′ and x := ι(x′), y := ι(y′). By de�nition of d′ and ι it certainly holds d′(x′, y′) ≤ d(x, y). To

prove the converse inequality amounts to prove that theminimumof the function f (t) := d(x, Ft(y)) is attained

at t = 0. For ε > 0 let µε ∈ P
2

(X) be given by µε := m(Bε(y))

−1m|Bε(y)

and de�ne fε(t) := W
2

(δx , (
¯
Ft)]µε). Notice

that fε is 1-Lipschitz and that it holds

|fε(t) − f (t)| = |W
2

(δx , (
¯
Ft)]µε) −W2

(δx , (
¯
Ft)]δy)| ≤ W2

((
¯
Ft)]µε , (

¯
Ft)]δy) = W

2
(µε , δy) ≤ ε.

By de�nition, we have |
∫

b dµε| ≤ ε, thus letting tε be the minimizer of fε, Corollary 4.6 and the trivial

identity

∫
b d(

¯
Ft)]µε =

∫
b dµε − t valid for any t ∈ R yield |tε| = |

∫
b dµε| ≤ ε.

Thus for any t ∈ R we have

f (0) ≤ ε + fε(0) ≤ ε + fε(tε) + |tε| ≤ 2ε + fε(t) ≤ 3ε + f (t)

so that letting ε ↓ 0 we conclude f (0) ≤ f (t) for any t ∈ R, as desired.
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4.4 The quotient measurem′ and basic properties of (X′, d′,m′)

Theorem 4.7 has a number of simple consequences about the structure of X′. We start de�ning the natural

maps from X′ ×R to X and viceversa.

De�nition 4.8 (From X′ ×R to X and viceversa). The maps T : X′ ×R→ X and S : X → X′ ×R are de�ned by

T(x′, t) :=
¯
F
−t(ι(x′)),

S(x) := (π(x), b(x)).

Proposition 4.9 (T and S are homeomorphisms). Themaps T, S are homeomorphisms each one inverse of the
other. Furthermore it holds

1√
2

√
d′(x′

1

, x′
2

)
2

+ |t
1
− t

2
|2 ≤ d

(
T(x′

1
, t

1
), T(x′

2
, t

2
)

)
≤

√
2

√
d′(x′

1

, x′
2

)
2

+ |t
1
− t

2
|2, (4.7)

for any x′
1
, x′

2
∈ X′, t

1
, t

2
∈ R.

Proof. It is clear that T ◦ S = IdX and S ◦ T = IdX′×R, thus we only need to prove (4.7).

For the �rst inequality notice that since both π : (X, d) → (X′, d′) and b : (X, d) → (R, d
Eucl

) are 1-

Lipschitz, it holds

d
(
T(x′

1
, t

1
), T(x′

2
, t

2
)

)
2

≥ max{d′(x′
1
, x′

2
)

2

, |t
1
− t

2
|2} ≥ 1

2

(
d′(x′

1
, x′

2
)

2

+ |t
1
− t

2
|2
)
.

The second follows from:

d
(
T(x′

1
, t

1
), T(x′

2
, t

2
)

)
= d
(

F
−t

1

(ι(x′
1

)), F
−t

2

(ι(x′
2

))

)
= d
(

Ft
2
−t

1

(ι(x′
1

)), ι(x′
2

)

)
≤ d
(

Ft
2
−t

1

(ι(x′
1

)), ι(x′
1

)

)
+ d
(
ι(x′

1
), ι(x′

2
)

)
= |t

2
− t

1
| + d′(x′

1
, x′

2
)

≤

√
2

√
d′(x′

1

, x′
2

)
2

+ |t
1
− t

2
|2.

We can now introduce the natural measure on X′ as follows:

De�nition 4.10 (The measurem′). We de�ne the measurem′ on (X′, d′) as:

m′(E) := m
(
π−1

(E) ∩ b

−1

([0, 1])

)
, ∀E ⊂ X′ Borel.

Notice that the de�nition is well posed because from Proposition 4.9 we know that for E ⊂ X′ Borel the set

π−1

(E) ⊂ X is also Borel. Also, the de�nition is made in such a way that the identity

S]m(E × I) = m′(E)L1

(I), (4.8)

holds for every E ⊂ X′ Borel and every interval I of the form I = [a, a + 1), a ∈ R. Then a simple dichotomy

argument based on the measure preservation property of
¯
Ft shows that (4.8) also holds for I of the form

[a, a +

1

2
n ), a ∈ R, n ∈ N. Thus, by density, it holds for any interval I ⊂ R and since the class of sets of

the form E × I, with E ⊂ X′ Borel and I ⊂ R interval, is closed under �nite intersection and generates the

σ-algebra of X′ ×R, by general results of measure theory (see e.g. Corollary 1.6.3 in [19]) we deduce that

S]m = m′ × L1

and T](m′ × L1

) = m. (4.9)

The metric information given by Theorem 4.7 and the measure theoretic one which we just proved grant

natural relations between Sobolev functions on X and X′. To emphasize the fact that theminimal weak upper

gradients depend on the space and to help keeping track of spaces themselves, we write |∇f |X (resp. |∇f |X′ )
for functions f ∈ S

2

loc

(X) (resp. in S

2

loc

(X′)).
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Proposition 4.11. The following holds.

i) Let f ∈ S

2

loc

(X) and for t ∈ R let f (t)
: X′ → R be given by f (t)

(x′) := f (T(x′, t)). Then for L1-a.e. t it holds
f (t) ∈ S

2

loc

(X′) and

|∇f (t)|X′ (x′) ≤ |∇f |X(T(x′, t)), m′ × L1

-a.e. (x′, t) ∈ X′ ×R.

ii) Let g ∈ S

2

loc

(X′) and de�ne f : X → R by f (x) := g ◦ π. Then f ∈ S

2

loc

(X) and

|∇f |X(x) = |∇g|X′ (π(x)), m-a.e. x ∈ X.

Sketch of the proof Denote by lipX(f ) (resp. lipX′ (g)) the local Lipschitz constant in the space (X, d) (resp.

(X′, d′)) of a real valued function f on X (resp. g on X′).
For point (i) observe that we have the simple inequality

lipX(f )(x) = lim

y→x
|f (x) − f (y)|
d(x, y)

≥ lim

y→x
b(y)=b(x)

|f (b(x))

(π(x)) − f (b(x))

(π(y))|
d′(π(x), π(y))

= lipX′ (f (b(x))

)(π(x)),

then approximate a generic f ∈ W1,2

(X) with Lipschitz functions as in Theorem 2.4, apply the inequality

above to the approximating sequence and observe that by construction the leftmost side converges to |∇f |X
in L2

(X), while themeasure preservation property (4.9) and the semicontinuity property (2.6) ensure that any

weak limit of the rightmost side bounds m′-a.e. from above |∇f (t)|X′ for L1

-a.e. t, where t = b(x). The case of

general f ∈ S

2

loc

is then obtained with a cut-o� argument using the locality of minimal weak upper gradients.

Similarly, point (ii) follows from point (i) and from the relaxation of the inequality

lipX(g ◦ π)(x) = lim

y→x
|g(π(y)) − g(π(x))|

d(x, y)

≤ lim

y→x
|g(π(y)) − g(π(x))|
d′(π(x), π(y))

= lipX′ (g)(π(x)).

�

It is now easy to prove the following:

Corollary 4.12. (X′, d′,m′) is an RCD(0, N) space.

Sketch of the proof
In�nitesimal Hilbertianity Let f ′, g′ ∈ S

2

loc

(X′) and de�ne f , g : X → R as f (x) := f ′(π(x)), g(x) := g′(π(x)).

By Proposition 4.11 above we know that f , g ∈ S

2

loc

(X), hence, since (X, d,m) is in�nitesimally Hilbertian, we

have

|∇(f + g)|2X + |∇(f − g)|2X = 2

(
|∇f |2X + |∇g|2X

)
, m-a.e..

Then noticing that (f ± g)(x) = (f ′ ± g′)(π(x)), using the measure preservation property (4.9) and Fubini’s

theorem we deduce

|∇(f ′ + g′)|2X′ + |∇(f ′ − g′)|2X′ = 2

(
|∇f ′|2X′ + |∇g′|2X′

)
, m′-a.e.,

which, by the arbitrariness of f ′, g′ ∈ S

2

loc

(X), yields the claim.

Curvature Dimension condition De�ne I : P
2

(X′)→ P
2

(X) by putting

I(µ′) := T](µ′ × L1

|
[0,1]

), ∀µ′ ∈ P
2

(X′).

Recalling that d′(x′, y′) = d(T(x′, t), T(y′, t)) ≤ d(T(x′, t), T(y′, s)) for any x′, y′ ∈ X′ and t, s ∈ R, it is easy

to see that I is an isometry of (P
2

(X′),W
2

) with its image in (P
2

(X),W
2

). Denoting by UN′ (·|m) and UN′ (·|m′)
the Rényi entropies functional on P(X), P(X′) respectively, it is also immediate to check that UN′ (I(µ′)|m) =

UN′ (µ′|m′) for any µ′ ∈ P
2

(X′). Furthermore, by the uniqueness part of Theorem 3.5 we also get that the only

geodesic connecting absolutely continuous measures in I(P
2

(X′)) completely lies in I(P
2

(X′)).
The conclusion then follows by reading the CD(0, N)-inequality on X′ as an inequality on X via the map

I and then recalling that the latter is a CD(0, N) space by assumption. �
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4.5 Things to know: Sobolev spaces and Ricci bounds over product spaces

It is a simple exercise to check that the standard de�nition of Sobolev space W1,2

(R) coincides with the one

given by the formula (2.10) in the metric measure space (R, d
Eucl

,L1

), d
Eucl

being the Euclidean distance,

and that for f ∈ W1,2

(R) its minimal weak upper gradient coincides with the modulus of its distributional

derivative. To keep consistency of the notation we shall denote this object by |∇f |R.
We endow the set X′ ×Rwith the product measurem′ ×L1

and the product distance d′ × d
Eucl

de�ned by

d′ × d
Eucl

(
(x′, t), (y′, s)

)
:=

√
d′(x′, y′)2

+ |t − s|2

Our next goal is to show that (X′ ×R, d′ × d
Eucl

,m′ × L1

) is isomorphic to (X, d,m). To this aim, it is of course

necessary to know how the structures of X′ and R re�ect in the one of X′ ×R.

We shall use the following result, proved in [6], which we restate to match the current setting.

Theorem 4.13. The space (X′ ×R, d′ × d
Eucl

,m′ × L1

) is RCD(0,∞). Furthermore, the following holds:

i) Let f ∈ S

2

loc

(X′ × R) and for t ∈ R denote by f (t)
: X′ → R the function f (t)

(x′) := f (x′, t) and similarly for
x′ ∈ X′ let f (x′)

: R→ R be given by f (x′)

(t) := f (x′, t). Then:

– for L1-a.e. t we have f (t) ∈ S

2

loc

(X′),
– form′-a.e. x′ we have f (x′) ∈ S

2

loc

(R),
– the formula

|∇f |2X′×R(x′, t) = |∇f (t)|2X′ (x′) + |∇f (x′)|2R(t), (4.10)

holdsm′ × L1-a.e..

ii) Let g ∈ S

2

loc

(X′) and de�ne f : X′ × R→ R by f (x′, t) := g(x′). Then f ∈ S

2

loc

(X′ × R) and |∇f |X′×R(x′, t) =

|∇g|X′ (x′) form′ × L1-a.e. (x′, t).
iii) Let h ∈ S

2

loc

(R) and de�ne f : X′ × R → R by f (x′, t) := h(t). Then f ∈ S

2

loc

(X′ × R) and |∇f |X′×R(x′, t) =

|∇h|R(t) form′ × L1-a.e. (x′, t).

We remark that the proof of the curvature bound is quite simple to obtain once Theorem 3.2 is at disposal,

following the original argument given in [50]. On the other hand the structure of minimal weak upper gra-

dients in the product space provided by formula (4.10) (which is the one granting that the product space is

in�nitesimally Hilbertian) seems surprisingly di�cult to obtain and currently relies on some �ne regularizing

properties of the heat �ow.

4.6 The space splits

Aim of this section is to prove that (X, d) and (X′ × R, d′ × d
Eucl

) are isometric and we will prove this with a

duality argument based on Theorem 4.2. Our goal is therefore to put in relation the Sobolev norm in X with

the one in X′ ×R. We start with the following statement, analogous to Proposition 4.11:

Proposition 4.14. The following holds.

i) Let f ∈ S

2

loc

(X) and for x′ ∈ X′ let f (x′)

: R → R be given by f (x′)

(t) := f (T(x′, t)). Then for m′-a.e. x′ it
holds f (x′) ∈ S

2

loc

(R) and

|∇f (x′)|R(t) ≤ |∇f |X(T(x′, t)), m′ × L1

-a.e. (x′, t) ∈ X′ ×R.

ii) Let h ∈ S

2

loc

(R) and de�ne f : X → R by f (x) := h ◦ b. Then f ∈ S

2

loc

(X) and

|∇f |X(x) = |∇h|R(b(x)), m-a.e. x ∈ X.

Sketch of the proof The same arguments used in the proof of Proposition 4.11 can be applied also in this case

recalling that the following are true:
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- for any t, s ∈ R it holds |t − s| = minx∈b
−1

(t), y∈b
−1

(s) d(x, y),

- for any x ∈ X the map t 7→ ¯
Ft(x) provides an isometric embedding of R in X,

- it holds T](m′ × L1

) = m and S]m = m′ × L1

.

We omit the details. �

Now we introduce the following class of functions:

G :=

{
g : X′ ×R→ R : g(x′, t) = g̃(x′) for some g̃ ∈ S

2 ∩ L∞(X′)
}
,

H :=

{
h : X′ ×R→ R : h(x′, t) =

˜h(t) for some
˜h ∈ S

2 ∩ L∞(R)

}
.

Notice that both G andH are algebras, i.e. are closed w.r.t. linear combinations and products.

Using Theorem 4.13 and Proposition 4.11 we get

g ∈ G ⇒


g ∈ S

2

loc

(X′ ×R), g ◦ S ∈ S

2

loc

(X) and

|∇g|X′×R ◦ S = |∇(g ◦ S)|X m-a.e..

(4.11)

Similarly, Theorem 4.13 and Proposition 4.14 give

h ∈ H ⇒


h ∈ S

2

loc

(X′ ×R), h ◦ S ∈ S

2

loc

(X) and

|∇h|X′×R ◦ S = |∇(h ◦ S)|X m-a.e..

(4.12)

Now we introduce the algebra of functionsA as:

A := algebra generated by G ∪H.

Notice thatA ⊂ S

2

loc

(X′×R).A has two crucial properties whichwill allowus to prove that the Dirichlet energy

of a function f on X′ ×R is the same as the energy of f ◦ S in X:

i) such invariance property is easy to establish for functions inA once we realize that functions in G and

H have ‘orthogonal gradients’ in W1,2

(X′ × R) (by formula (4.10)) and - after a right composition with

S - also inW1,2

(X) (by the di�erentiation formula (3.27)).

ii) A ∩W1,2

(X′ × R) is dense in W1,2

(X′ × R) and similarly A ◦ S ∩W1,2

(X) is dense in W1,2

(X). The case

of X′ × R follows by a simple approximation arguments, then the one of X makes use of the measure

preservation property (4.9) and fact that the distances on X′ ×R and X are, after a composition with S,
equivalent (recall Proposition 4.9).

We shall denote by EX : L2

(X)→ [0, +∞] the Dirichlet energy on (X, d,m) and by EX′×R the one on (X′ ×R, d′ ×
d

Eucl
,m′ × L1

).

Proposition 4.15. With the same notation as above, we have

EX′×R(f ) = EX(f ◦ S), ∀f ∈ A ∩ L2

(X′ ×R).

Proof. A generic element f ofA can be written as f =

∑
i∈I gihi for some �nite set I of indexes and functions

gi ∈ G, hi ∈ H, i ∈ I. The fact that f ◦S ∈ S

2

loc

(X) is a direct consequence of (4.11) and (4.12). The in�nitesimal

Hilbertianity of X′ ×R (Theorem 4.13) gives

|∇f |2X′×R =

∑
i,j∈I

gigj
〈
∇hi ,∇hj

〉
X′×R + gihj

〈
∇hi ,∇gj

〉
X′×R + higj

〈
∇gi ,∇hj

〉
X′×R + hihj

〈
∇gi ,∇gj

〉
X′×R ,

similarly, writing
¯f , ḡi , ¯hi in place of f ◦S, gi ◦S, hi ◦S for simplicity, from the in�nitesimal Hilbertianity of X

we have

|∇¯f |2X =

∑
i,j∈I

ḡi ḡj
〈
∇¯hi ,∇¯hj

〉
X + ḡi ¯hj

〈
∇¯hi ,∇ḡj

〉
X +

¯hi ḡj
〈
∇ḡi ,∇¯hj

〉
X +

¯hi ¯hj
〈
∇ḡi ,∇ḡj

〉
X .

Brought to you by | Sissa Biblioteca
Authenticated

Download Date | 4/3/17 10:57 AM



An Overview of the Proof of the Splitting Theorem | 209

Taking into account the relations (4.11) and (4.12), we see that to conclude it is su�cient to show that for any

g ∈ G and h ∈ H it holds

〈∇g,∇h〉X′×R = 0, m′ × L1

-a.e., (4.13)

and 〈
∇(g ◦ S),∇(h ◦ S)

〉
X = 0, m-a.e.. (4.14)

To check (4.13) let g̃ ∈ S

2 ∩ L∞(X′) and ˜h ∈ S

2 ∩ L∞(R) be such that g(x′, t) = g̃(x′) and h(x′, t) =
˜h(t). Then

apply point (i) of Theorem 4.13 to the function g + h and points (ii), (iii) to g̃, ˜h to get

2 〈g, h〉X′×R = |∇(g + h)|2X′×R(x′, t) − |∇g̃|2X′ (x′) − |∇˜h|2R(t) = 0, m′ × L1

-a.e. (x′, t).

To get (4.14), notice that the chain rule (2.18) (and the symmetry relation (2.20)) and the trivial identity h ◦S =

˜h ◦ b grants that

〈
∇(g ◦ S),∇(h ◦ S)

〉
X =

˜h′ ◦ b

〈
∇(g ◦ S),∇b

〉
X m-a.e.. Hence to conclude it is su�cient to

show that

〈
∇(g ◦ S),∇b

〉
X = 0 m-a.e.. If g ◦ S ∈ S

2

(X) then the result follows from the derivation rule (3.27)

applied to f := g ◦ S, indeed in this case the left hand side of (3.27) is identically 0. The general case follows

by a simple cut-o� argument based on the local nature of the claim, we omit the details.

Proposition 4.16. With the same notation as above, the setA ∩W1,2

(X′ ×R) is dense in W1,2

(X′ ×R) and the
setA◦S∩W1,2

(X) is dense in W1,2

(X), where byA◦Swe intend the set of functions of the kind f ◦Swith f ∈ A.

Sketch of the proof We start with the �rst claim. With a diagonalization argument it is su�cient to prove that

for f ∈ W1,2

(X′×R) boundedwith compact support there exists a sequence (fn) ⊂ A∩W1,2

(X′×R) converging

to f inW1,2

(X′ ×R). Fix such f and for n ∈ N and i ∈ Z de�ne

gi,n(x′) := n
(i+1)/n∫
i/n

f (x′, s) ds, and hi,n(t) :=
χn(t − i/n),

where
χn : R→ R is given by

χn(t) :=


0, if t < −1/n,
nt + 1, if − 1/n ≤ t < 0,

1 − nt, if 0 ≤ t < 1/n,
0, if 1/n < t.

Then de�ne fn : X′ × R → R by fn(x′, t) :=

∑
i∈Z hi,n(t)gi,n(x′). It is obvious that fn ∈ A ∩ W1,2

(X′ × R) and

with simple computations we also see that

‖fn‖L2

(X′×R)
≤ ‖f‖L2

(X′×R)
, ∀n ∈ N

lim

n→∞

∫
φfn dm′ dL1

=

∫
φf dm′ dL1

, ∀φ : X′ ×R→ R Lipschitz with compact support,

which ensures that fn → f in L2

(X′ ×R).

Also, some algebraic manipulation - we omit the details - shows that∫
X′×R

|∇f (t)
n |2X′ (x′) d(m′ × L1

)(x′, t) ≤
∫

X′×R

|∇f (t)|2X′ (x′) d(m′ × L1

)(x′, t),

and ∫
X′×R

|∇f (x′)

n |2R(t) d(m′ × L1

)(x′, t) ≤
∫

X′×R

|∇f (x′)|2R(t) d(m′ × L1

)(x′, t).

Taking into account the characterization of the Sobolev space W1,2

(X′ × R) given in Theorem 4.13 and the

L2

-lower semicontinuity of the W1,2

-norm we deduce that ‖fn‖W1,2 → ‖f‖W1,2 . Since W1,2

(X′ × R) is Hilbert,

L2

-convergence plus convergence of the Sobolev norm yieldW1,2

-convergence.
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For the second part of the proof notice that directly from the de�nition of Sobolev space we have that if

(Y , dY ,mY ) is a metric measure space and d′Y ≤ dY is another distance on Y inducing the same topology of

dY , then for every f ∈ W1,2

(Y , d′Y ,mY ) it holds f ∈ W1,2

(Y , dY ,mY ) with |∇f |
(Y ,dY ,mY )

≤ |∇f |
(Y ,d′Y ,mY )

mY -a.e..

Similarly, if a distance is scaled by a factor λ > 0, the corresponding gradient part of the Sobolev norm is

scaled by

1

λ . The conclusion then comes from the �rst part of the proof, the identity T](m′ × L1

) = m and the

inequalities (4.7). �

The main theorem of this section now follows easily.

Theorem 4.17 (“Pythagoras’ theorem” holds). The maps T, S are isomorphisms of the spaces (X, d,m) and
(X′ ×R, d′ × d

Eucl
,m′ × L1

), i.e. they are measure preserving isometries.

Proof. We already know that

T](m′ × L1

) = m, and S]m = m′ × L1

, (4.15)

and by Proposition 4.15 we know that the equality

EX′×R(f ) = EX(f ◦ S), (4.16)

holds for every f ∈ A ∩ L2

(X′ × R). Hence using (4.15) and Proposition 4.16 we deduce that (4.16) holds for

every f ∈ L2

(X′ ×R).

Now recall that (X, d,m) is an RCD(0, N) space and thus RCD(0,∞) with the measure m being doubling.

Similarly, we know by Theorem 4.13 that (X′ × R, d′ × d
Eucl

,m′ × L1

) is RCD(0,∞) and from the fact that both

m′ and L1

are doubling measures it is easy to get thatm′ × L1

is doubling as well.

Hence we can apply Theorem 4.2 to deduce that T, S have 1-Lipschitz representatives. Given that we al-

ready know that they are continuous (Proposition 4.9), the proof is complete.

4.7 The quotient space has dimension N − 1

It remains to prove that the quotient space (X′, d′,m′) has ‘1 dimension less’ than (X, d,m). This, of course,

should be interpreted in terms of the synthetic treatment of curvature-dimension bounds, the precise state-

ment being given below. Notice that our argument for such dimension reduction is in fact the same used by

Cavalletti-Sturm in [12].

Theorem 4.18 (The quotient space has dimension N − 1). The following holds.

i) If N ≥ 2, then (X′, d′,m′) is an RCD(0, N − 1) space.
ii) If N ∈ [1, 2), then X′ contains exactly one point.

Proof.
(i) We already know by Corollary 4.12 that (X′, d′,m′) is an RCD(0, N) space and a simple approximation ar-

gument ensures that to conclude it is su�cient to check the CD(0, N − 1) condition for given µ
0
, µ

1
∈ P

2
(X′)

with bounded support and absolutely continuousw.r.t.m′, say µi = ρim′, i = 0, 1. By Proposition 3.3 we know

that there exists a unique π ∈ OptGeo(µ
0
, µ

1
), and that the measures µt := (et)]π are absolutely continuous

w.r.t.m′, say µt = ρtm′, for every t ∈ [0, 1].

Let α, β > 0 be arbitrary, put ν
0

:=

1

αL
1

|
[0,α]

, ν
1

:=

1

βL
1

|
[0,β]

so that ν
0
, ν

1
∈ P

2
(R), let t 7→ νt =

1

(1−t)α+tβL
1

|
[0,(1−t)α+tβ]

be the unique geodesic connecting ν
0
to ν

1
and π̃ the unique element of OptGeo(ν

0
, ν

1
).

De�ne J : C([0, 1], X′) × C([0, 1],R)→ C([0, 1], X′ ×R) by

J(γ
1
, γ

2
)t := (γ

1,t , γ2,t),
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and the plan π⊗ π̃ ∈ P(C([0, 1], X′ ×R)) as J](π × π̃). It is then immediate to verify that π⊗ π̃ ∈ OptGeo(µ
0
×

ν
0
, µ

1
× ν

1
) and that it satis�es (et)](π ⊗ π′) = µt × νt. Thus

d(et)](π ⊗ π′)
d(m′ × L1

)

(γt , γ̃t) =

ρt(γt)
(1 − t)α + tβ , π × π′-a.e. (γ, γ̃). (4.17)

By assumption we know that (X, d,m) is an RCD(0, N) space and by Theorem 4.17 that it is isomorphic to

(X′ × R, d′ × d
Eucl

,m′ × L1

). Thus the latter is an RCD(0, N) space and by (4.17) and Proposition 3.3 applied to

the plan π ⊗ π̃ we get that for every t ∈ [0, 1], α, β > 0 and π-a.e. γ it holds(
ρt(γt)

(1 − t)α + tβ

)
−

1

N′

≥ (1 − t)
(
ρ

0
(γ

0
)

α

)
−

1

N′

+ t
(
ρ

1
(γ

1
)

β

)
−

1

N′

, ∀N′ ≥ N . (4.18)

In particular, for every t ∈ [0, 1] the inequality (4.18) holds for π-a.e. γ and every α, β ∈ Q, α, β > 0. Being

the terms in (4.18) continuous on α, β ∈ Q, α, β > 0, (4.18) also holds for π-a.e. γ and every α, β ∈ R, α, β > 0.

Choosing α := (ρ
0

(γ
0

))

−

1

N′−1 and β := (ρ
1

(γ
1

))

−

1

N′−1 , after little algebraic manipulation we obtain

ρt(γt)−
1

N′−1
≥ (1 − t)ρ

0
(γ

0
)

−

1

N′−1
+ tρ

1
(γ

1
)

−

1

N′−1
, π-a.e. γ,

which integrated w.r.t. π yields UN′
−1

(µt) ≤ (1 − t)UN′
−1

(µ
0

) + tUN′
−1

(µ
1

) for every N′ ≥ N, as desired.
(ii) It is clear that X′ is non empty. Assume by contradiction that it contains more than one point. Then,

since (X′, d′) is geodesic, it contains an isometric copy I ⊂ X′ of some non-trivial interval in R. Given that

X′ × R ⊃ I × R, the Hausdor� dimension of X′ × R is at least 2 and since by Theorem 4.17 we know that

(X′ × R, d′ × d
Eucl

) is isometric to (X, d), to conclude it is su�cient to show that for any R > 0 and N′ ∈ (N, 2)

we have HN′
(BR(x

0
)) = 0, where HN′

is the N′-dimensional Hausdor� measure and x
0
∈ X a �xed point. As

pointed out in [51], this is a standard consequence of the doubling condition (3.4). We sketch the argument.

We have

HN′

δ (BR(x
0

)) = inf

{∑
i∈N

(
diam(Ei)

)N′
: diam(Ei) ≤ δ, ∀i ∈ N and BR(x

0
) ⊂

⋃
i∈N

Ei
}

≤ δN
′

inf

{
k ∈ N : ∃ x

1
, . . . , xk ∈ X with BR(x

0
) ⊂

k⋃
j∈1

Bδ/2
(xj)
}
.

Inequality (3.4) grants that there are atmost (8R/δ)

N
disjoint balls of radius δ/4with center in BR(x

0
). Fixing a

maximal package of such disjoint balls, the ballswith same centers and radius δ/2 cover BR(x
0

) and therefore

HN′

δ (BR(x
0

)) ≤ δN′
−N

(8R)

N
. The conclusion follows recalling thatHN′

(BR(x
0

)) = limδ↓0
HN′

δ (BR(x
0

)).
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