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1 Introduction

Supersymmetric quantum field theories are rich with exactly computable quantities. These

have various degrees of complexity and carry different information about the underlying

supersymmetric theory. Recently many interesting amplitudes have been computed on Sd

or Sd−1×S1 for various dimensions and for theories with various amounts of supersymme-

try. These geometries are particularly relevant for the conformal limit of supersymmetric

theories, where conformal transformations can flatten out the spheres. Away from the
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conformal fixed point, one can still formulate and compute these supersymmetric parti-

tion functions, but this involves adding unphysical terms to the action to preserve the

supersymmetry, which in particular are not compatible with unitarity.

It is natural to ask whether away from conformal points one can compute supersymmet-

ric amplitudes without having had to add unphysical terms to the action, and in particular

study non-trivial amplitudes in flat space. A prime example of this would be studying the

geometry of the supersymmetric theory on flat toroidal geometries. In particular we can

consider T d−1 flat torus as the space, with periodic boundary conditions for supercharges.

Supersymmetric theories have a number N of vacua and in this context one can ask what is

the geometry of the Berry’s U(N) connection of the vacuum states as a function of param-

eters of the underlying theory. This question has been answered in the case of 2 dimensions

for theories with (2, 2) supersymmetry which admit deformations with mass gap [1] leading

to what is called the tt∗ geometry. The equations characterizing U(N) connection on the

k-complex dimensional parameter space are known as the tt∗ equations. In the case k = 1

these reduce to U(N) Hitchin equations, which in turn can be viewed as the reduction of

self-dual Yang-Mills equations from 4 to 2 dimensions.

It is natural to try to generalize these results to supersymmetric theories in higher

dimensions which admit mass gap. The interesting theories, by necessity, would have up to

4 supercharges: they would include in 3 dimensions the N = 2 theories and in 4 dimensions

the N = 1 supersymmetric models.1 Some evidence that such a generalization should be

possible, at least in the case of N = 2, d = 3, has been found in [2, 3]. The strategy

to determine the higher dimensional tt∗ geometries is rather simple: we can view their

toroidal compactification as a 2d theory with infinitely many fields. Therefore the tt∗

equations also apply to these theories as well. The S1 and T 2 compactifications of three

and four-dimensional gauge theories gives 2d theories analogous to (infinite dimensional)

gauged linear sigma models with twisted masses. These 2d theories have infinitely many

vacua similar to the |n〉 vacua of QCD. It is natural to consider the analog of |θ〉 vacua

which corresponds to turning on twists by flavor symmetries as we go around the tt∗

compactification circle. These extra parameters lead to tt∗ equations formulated on a

higher dimensional space.

In the case of d = 3 the equations capturing the tt∗ geometry live in the 3r dimensional

space (T 2 × R)r, where r is the rank of flavor symmetry. This space arises by choosing

2r flavor symmetry twists around the cycles of T 2 and r twisted masses associated to

flavor symmetries. In the case of r = 1 the tt∗ equations coincide with the Bogomolny

monopole equations, which can be viewed as the reduction of self-dual Yang-Mills from

4 to 3 dimensions. The more general r ≥ 1 case can be viewed as a generalization of

monopole equations to higher dimensions. The chiral operators of the 2d theory lift to line

operators of the 3d theory.

Similarly one can consider N = 1 theories in d = 4. In this case, if the flavor symmetry

has rank r, the tt∗ parameter space will be T 3r, corresponding to the 3r twist parameters

1Our considerations also apply to d-dimensional half-BPS defects in (d + 2)-dimensional field theories

with eight supercharges.
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for the flavor symmetry, where T r can be viewed as the Cartan torus of the flavor group.

In this case the tt∗ equations are again a generalization of monopole equations but now

triply periodic. If, in addition, we have m U(1) gauge symmetries2 the parameter space

has an extra factor (T 3 × R1)m corresponding to turning on 3m,
∫
Bi ∧ Fi type terms

and m FI-parameters. In the case of m = 1 the tt∗ equations are the self-dual Yang-Mills

equations. For higher m they describe hyper-holomorphic connections (or certain non-

commutative deformations of them). These are connections which are holomoprhic in any

choice of complex structure of the hyper-Kähler space T 3m × Rm. In fact the generalized

monopole equations or the original 2d tt∗ equations can be viewed as reductions of the

hyper-holomorphic structure from 4m dimensions to 3m or 2m dimensions, respectively.

Then the hyperholomorphic geometry is a unified framework for all tt∗ geometries. The

chiral operators of 2d theory lift to surface operators of the 4d theory.

There are also operations that one can do on quantum field theories. In particular, we

can gauge a flavor symmetry or ungauge a gauge symmetry. More generally, we consider

extensions of these actions on the space of field theories to Sp(2g,C) actions on 2d theories

with (2, 2) supersymmetry or Sp(2g,Z) actions on 3d theories [4] with N = 2 supersym-

metry. At the level of the tt∗ geometry, as we shall show, these turn out to correspond

to generalized Nahm transformations on the space of hyper-holomorphic connections or

their reductions.

The derivation of tt∗ equations for the vacuum geometry in 2 dimensions involved

studying topologically twisted theories on cigar or stretched S2 geometries. It is natural to

ask what is the relation of this to supersymmetric partition functions on S2. It has been

shown recently [56, 57] that in the case of conformal theories they are the same, but in the

case of the mass deformed ones, they differ, and the tt∗ amplitude is far more complicated.

We explain in this paper how one can recover the supersymmetric partition functions from

the tt∗ amplitues by taking a particular limit.

For the case of the 3 dimensional theories, one can still define and compute the ampli-

tudes on stretched S2 × S1 or S3 (depending on how we fill the T 2 on either side). These

involve some novel ideas which are not present in the case of 2d tt∗ geometry. In particu-

lar the realization of modular transformations on T 2 as gauge transformations on the tt∗

geometry plays a key role and gives rise to the S3 partition function. Moreover the line

operators inserted on the two ends of S3 give rise to a matrix which is a generalization of

the S-matrix for the τ → −1/τ modular transformation of rational conformal field theories

in 2d, while the line operator ring plays the role of the Verlinde algebra [52]. In fact in

special IR limits the 3d theory typically reduces to a product of topological Chern-Simons

theories in 3d and in this case the tt∗ S-matrix reduces to the usual S-matrix of 2d RCFT’s

as was shown in [48]. Thus the tt∗ geometry gives an interesting extension of the Verlinde

structure which includes UV degrees of freedom of the theory. We show that, just as in

the 2d case, these partition functions agree with the supersymmetric partition functions

on S3
b and S2 × S1 at the conformal point, but differ from them when we add mass terms.

2The tt∗ geometry is independent of the 4d gauge couplings, and unaffected by the Landau pole. Later

in the paper, we will also show how the Landau pole can be avoided by appropriate UV completions which

do not modify the tt∗ geometry itself.
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The tt∗ partition functions are more complicated functions but in a certain limit, these

partition functions reduce to the supersymmetric partition functions. Similarly, one can

extend these ideas to the 4d theory and compute tt∗ partition functions on the elongated

spaces S2 × T 2 and S3 × S1.

The plan of this paper is as follows: in section 2 we review the tt∗ geometry in 2

dimensions. In section 3 we show how this can be extended to the cases where flavor

symmetries give rise to infinitely many vacua, and how the monopole equations, self-dual

Yang-Mills equations, and more generally the hyper-holomorphic connections can arise. In

section 4 we introduce the notion of an Sp(2g,A) action on these QFTs, which changes the

theory, and show how this transformation acts on the tt∗ geometry as generalized Nahm

transformations. In section 5 we apply these ideas to 3 dimensional N = 2 theories. In

section 6 we give examples of the tt∗ geometry in 3 dimensions. In section 7 we study the

case of tt∗ geometry for N = 1 theories in 4d. In section 8 we give some examples in the 4d

case. In section 9 we take a preliminary step for the interpretation of the CFIV index [24]

as applied to higher dimensional theories and in particular to d = 3. Some of the technical

discussions are postponed to the appendices.

2 Review of tt∗ geometry in 2 dimensions

In this section we review tt∗ geometry in 2 dimensions [1]. We consider (2, 2) supersym-

metric theories in 2 dimensions which admit supersymmetric deformations which introduce

a mass gap and preserve an SO(2)R charge. The deformations of these theories are divided

to superspace type deformations, involving F-terms, and D-term variations.3 The D-term

variations are known not to affect the vacuum geometry, and so we will not be interested

in them. The F-term deformation space is a complex space with complex coordinates ti,

whose tangent is parameterized by chiral fields Φi and correspond to deformations of the

theory by F-terms ∫
d2θd2z δW + c.c. =

∫
d2θd2z δtiΦ

i + c.c.

The chiral operators form a commutative ring:

ΦiΦj = Cij
k Φk,

and similarly for the anti-chiral operators:

ΦiΦj = Cij
k

Φk.

The Cij
k are only a function of ti and Cij

k
are only a function of ti.

Consider the theory on a circle with supersymmetric periodic boundary conditions for

fermions. Let |α〉 denote the ground states of the theory (see figure 1). As we change

the parameters of the theory the ground states vary inside the full Hilbert space of the

3There may be twisted F-term deformations as well, but for our purposes they behave as D-term defor-

mations.
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Figure 1. 1+1 dimensional geometry with circle of length β as the space and vacuum |α〉.

quantum theory. Let us denote this by |α(t, t)〉. Then we can define Berry’s connection,

as usual, by4

∂

∂ti
|α(t, t)〉 = (Ai)

β
α |β(t, t)〉

∂

∂t
i
|α(t, t)〉 = (Ai)

β
α |β(t, t)〉.

It is convenient to define covariant derivatives Di, Di by

Di = ∂i −Ai Di = ∂i −Ai

In other words over the moduli space of the theory, parameterized by ti we naturally get a

connection of rank N bundle where N denotes the number of vacua of the (2, 2) theory.5

Note that the length of the circle where we consider the Hilbert space can be chosen to be

fixed, say 1, and the radius dependence can be obtained by the RG flow dependence of the

parameters of the theory. For (2, 2) theories this corresponds to

W → βW (2.1)

where β is the length of the circle.

The ground states of the theory form a representation of the chiral ring:

Φi|α〉 = (Ci)α
β|β〉

and similarly for Φi. It turns out that there are two natural bases for the vacua, which are

obtained as follows: since the (2, 2) theory enjoys an SO(2) R-symmetry, one can consider a

topological twisted version of this theory [5, 6]. In particular we consider a cigar geometry

with the topological twisting on the cigar. We consider a metric on the cigar which involves

a flat metric sufficiently far away from the tip of the cigar. The topologically twisted theory

4Here and in the following equations, equalities of states signify equalities up to projection onto the

ground state subsector.
5We have enough supersymmetry to guarantee that the number of vacua does not change as we change

the parameters of the theory.
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Figure 2. A holomorphic basis for states can be produced by topologically twisted path-integral

on an infinitely long cigar, with chiral fields inserted at the tip of the cigar.

is identical to the physical untwisted theory on flat space. Path-integral determines a state

in the physical Hilbert space. We next consider the limit where the length of the cigar

L → ∞. In this limit the path-integral projects the state to a ground state of theory.

Since chiral operators are among the BRST observables of the topologically twisted theory,

we can insert them anywhere in the cigar and change the state we get at the boundary.

Consider the path-integral where Φi is inserted at the tip of the cigar. The resulting ground

state will be labeled by |i〉 (see figure 2).

In particular there is a distinguished state among the ground states when we insert

no operator (or equivalently when we insert the ‘chiral field’ 1 at the tip of the cigar)

which we denote by |0〉. In this basis of vacua, the action of the Φi coincides with the ring

coefficients:

Φi|j〉 = Cij
k|k〉

In other words (Ci)j
k = Cij

k. Note that

|i〉 = Φi|0〉.

Moreover this basis for the vacuum bundle exhibits the holomorphic structure of the bundle.

Namely, in this basis (Ai)
k
j = 0. Similarly, when we topologically twist in a complex

conjugate way, we get a distinguished basis of vacua corresponding to anti-chiral fields |i〉.
These form an anti-holomorphic section of the vector bundle for which (Ai)

k
j

= 0.

Given these two distinguished bases for the ground states, it is natural to ask how they

are related to one another. One defines

ηij = 〈i|j〉 gij = 〈j|i〉

and similarly for the complex conjugate quantities. η is a symmetric pairing and it can be

formulated purely in terms of the topologically twisted theory on the sphere (see figure 3).

It only depends on holomorphic parameters. It is convenient (and possible) to choose a

basis for chiral fields such that η is a constant matrix.
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Figure 3. The topologically twisted two point function ηij can be computed by topologically

twisted path-integeral on S2, where we insert the chiral operators on the two ends of the sphere.

The path-integral respects supersymmetry for arbitrary choice of metric on S2.

�
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Figure 4. The hermitian metric, which is induced from the hermitian inner product on the Hilbert

space in the ground states of the theory can be obtained by path-integral on an infinitely elongated

S2 where on one half we have a topologically twisted theory with chiral fields inserted and on the

other the anti-topological twisted theory with anti-chiral fields inserted.

On the other hand, g is a hermitian metric depending on both t and t and is far more

complicated to compute. It can be formulated as a path integral on a sphere composed

of two cigars connected to one another, where we do topological twisting on one side and

anti-topological twisting on the other side. Furthermore we take the limit in which the

length of the cigar goes to infinity. For any finite length of the cigar the path integral

does not preserve any supersymmetry, and it is crucial to take the L → ∞ to recover a

supersymmetric amplitude (see figure 4).

Note that the holomorphic and anti-holomorphic bases span the same space so they

are related by a matrix M :

|i〉 = M j

i
|j〉.

M can be computed in terms of g, η as

M = η−1g.

Furthermore, since M represents the CTP operator acting on the ground states we must

have MM∗ = 1; this implies that

(η−1g)(η−1g)∗ = 1. (2.2)
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Since g is the usual inner product in the Hilbert space, it is easy to see that it is covariantly

constant with respect to the connections we have introduced:

Digkl = ∂igkl −A
j
ikgjl −A

j

il
gkj = 0 = Dig.

The tt∗ geometry gives a set of equations which characterize the curvature of the vacuum

bundle. They are given by

[Di, Cj ] = 0 = [Di, Cj ]

[Di, Dj ] = 0 = [Di, Dj ]

[Di, Cj ] = [Dj , Ci] [Di, Cj ] = [Dj , Ci]

Furthermore the non-vanishing curvature of the Berry’s connection is captured by

the equations

[Di, Dj ] = −[Ci, Cj ]

These equations can be summarized as the flatness condition for the following family of

connections parameterized by a phase ζ = eiα. Consider

∇i = Di + ζCi ∇i = Di + ζ−1Ci (2.3)

The tt∗ equations can be summarized by the condition of flatness of ∇α and ∇α:

[∇i,∇j ] = [∇i,∇j ] = [∇i,∇j ] = 0

for arbitrary phase α, and in fact for all complex numbers ζ ∈ C∗. Note that on top

of these equation we have to impose the reality structure given by MM∗ = 1, as an

additional constraint.

We shall refer to the flat connection (2.3) as the tt∗ Lax connection (with spectral

parameter ζ). It is also known as the tt∗ Gauss-Manin connection.

For the case of one variable, the tt∗ equations become equivalent to the Hitchin equa-

tions [7], which itself is the reduction of instanton equations from 4 dimensions to 2 dimen-

sions. In that context, if we represent the flat 4d space by two complex coordinates (t, u)

and reduce along u the system on t space will become the tt∗ system:

Au ↔ C

Au ↔ −C

in which case the two non-trivial parts of the tt∗ read as

[D,C] = Ftu = 0 = Ftu = [D,C]

Ftt = [D,D] = −[C,C] = −Fuu.

Thus tt∗ geometry with more parameters can be viewed as a dimensional reductions of a

generalization of instanton equations. As we will discuss later, and will be relevant for the
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generalizations of tt∗ geometry to higher dimensions, the more general case can be viewed

as a reduction of tri-holomorphic connections on hyperKähler manifolds.

The massive (2, 2) theories we consider will typically have a set of massive vacua in

infinitely long space,6 say corresponding to the critical points of the superpotential in a LG

theory. In the topological gauge, the matrices Ci are independent of the length β of the

compactification circle, and thus can be computed in terms of the properties of the theory

on flat space.

More precisely, the eigenvalues pi,a of the Ci matrices should correspond to the vevs

of the corresponding chiral operators Φi in the various massive vacua of the theory in flat

space. In turn, these vevs can be expressed in terms of the low energy effective superpo-

tentials W (a)[ti] in each vacuum a of the theory in flat space:

pi,a = ∂tiW
(a) (2.4)

In a LG theory, the W (a) coincide with the values of the superpotential at the critical points.

Although solving the tt∗ equations is generally hard, the solutions can be readily

labelled by holomorphic data, as will be discussed in section 4, by trading in the usual way

the [D,D] = [C,C] equation for a complexification of the gauge group. Then the solution

is labelled by the higher dimensional Higgs bundle defined by the pair Di and Ci. For

generic values of the parameters ti ∈ T we can simultaneously diagonalize the Ci, and

encode them into the Lagrangian submanifold L in T ∗T defined by the pair (ti, pi). The

corresponding eigenline defines a line bundle L on L. The pair (L, L) gives the spectral

data which labels a generic solution of the tt∗ equations. For one-dimensional parameter

spaces, this is the standard spectral data for a Hitchin system on T . We refer to section 4

for further detail and generalizations.

2.1 Brane amplitudes

The flat sections of the Lax connection over the parameter space have a physical interpre-

tation that will be important for us [1, 8, 12]. The mass-deformed (2, 2) theory may admit

supersymmetric boundary conditions (“D-branes”). Consider in particular some half-BPS

boundary conditions which also preserve SO(2)R. There is a certain amount of freedom in

picking which two supercharges will be preserved by the boundary condition. The freedom

is parameterized by a choice of a phase given by a complex number ζ with norm 1. Roughly,

if we denote the (2, 2) supercharges as Q±L,R, where L,R denote left- or right-moving, and

± the R-charge eigenvalue, a brane will preserve

Q+
L + ζ Q+

R Q−L + ζ−1Q−R. (2.5)

A given half-BPS boundary condition D in massive (2, 2) theories is typically a mem-

ber of a 1-parameter family of branes Dζ which preserve different linear combinations of

supercharges. We will usually suppress the ζ superscript.

We can use a brane D to define states |D〉 or 〈D| in the Hilbert space for the theory

on a circle, even though this state will not be normalizable, as is familiar in the context of

6Not to be confused with the states |α〉 on the circle of finite length β.
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Figure 5. The overlap of the vacuum states with the D-branes give rise to Πa
i which are flat

sections of the improved tt∗ connection.

D-brane states. We can project the states onto the supersymmetric ground states, i.e. we

consider inner products such as

Π[D, ζ] = 〈D|α〉.

Such a “brane amplitude” is a flat section of the tt∗ Lax connection with spectral param-

eter ζ [12].

It is useful to consider the brane amplitudes in the holomorphic gauge

Πi = 〈D|i〉

which can be defined by a topologically twisted partition function on the semi-infinite cigar

(see figure 5).

We can also define

Π̂i[D] = 〈i|D〉

Looking at the BPS conditions, one notices that the “same” boundary condition can be

used to define a left boundary condition of parameter ζ or a right boundary condition

of parameter −ζ. Thus Π̂i[D] is a left flat section for the tt∗ Lax connection of spectral

parameter −ζ. Using CTP, we can see

〈i|D〉 = Π†
i
[D] 〈D|i〉 = Π̂†

i
[D].

– 10 –
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Figure 6. D-branes in the LG description of (2, 2) theories are Lagrangian submanifolds which

project to straight lines in the W -plane emanating from critical points of W . These objects are

also known as ‘Lefschetz thimble branes’. The slope α determines the combination of supercharges

which the D-brane preserves. In the massive phases there is one D-brane per vacuum (and angle α).

This is consistent with the observation that if ζ is a phase, the hermitean conjugate of

standard flat section for the Lax connection of parameter ζ is a left flat section for the Lax

connection of parameter −ζ.7

For simplicity we will limit our discussion here to the case of (2, 2) Landau-Ginzburg

models, characterized by some superpotential W . The vacua are in one to one corre-

spondence with critical points of W . In the LG case there is a particularly nice class of

branes [12], represented by special mid-dimensional Lagrangian subspaces in field space

sometimes called “Lefschetz thimbles”, which are defined as contours of steepest descent

for an integral of e−ζW . They have the property that the value of the superpotential W

on that subspace is on a straight line, emanating from the critical value, with slope given

by the phase ζ (see figure 6).8

Let a denote a critical point of W . The corresponding D-brane emanating from it will

be denoted by Da. Note that the Da are piece-wise continuous as a function of ζ, with

jumps at special values of ζ which are closely related to the BPS spectrum of the theory.

We will denote the corresponding brane amplitudes as Πa
i .

The thimbles Da defined at ζ and Ua defined at −ζ form a dual basis of Lagrangian

cycles, and the inner product between the corresponding states is given by

〈Da|Ub〉 = δab

7For general ζ, that would be −ζ−1
.

8The D-branes introduced in [12] project to straight-lines on W-plane. This can be relaxed to D-branes

that at the infinity in field space approach straight lines and are more relaxed in the interior regions [14].

In this paper we will not need this extension and take the D-branes simply to project to the straight lines

in W -plane.
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Note that since there are as many |Da〉 as the ground state vacua, we can use them to

compute the ground state inner products, using the decomposition 1 =
∑

a |Ua〉〈Da|, which

is valid acting on the ground states:

ηij = 〈j|i〉 =
∑
a

〈j|Ua〉〈Da|i〉 = Π̂a
jΠ

a
i

gij = 〈j|i〉 =
∑
a

〈j|Ua〉〈Da|i〉 = Πa†
j Πa

i

(2.6)

The thimble brane amplitudes Πa = Π[Da] give a fundamental basis of flat sections

for the tt∗ Lax connection [8, 22]. Any other brane amplitude can be rewritten as a

linear combination

Π[D] =
∑
a

na[D]Πa (2.7)

with integer coefficients na which coincide with the framed BPS degeneracies defined in [22]

and can be computed as 〈D|Ua〉.
The brane amplitudes Π[D, ζ] can be analytically continued to any value of ζ in (the

universal cover of) C∗ so that Π[D, ζ] is holomorphic in ζ. The general analysis of [8, 22]

shows that Π[D, ζ] will have essential singularities at ζ = 0 and ζ = ∞, with interesting

Stokes phenomena associated to the BPS spectrum of the theory.

It is clear from the form of the Lax connection and of the eigenvalues pi,a of Ci that

the asymptotic behaviour as ζ →∞ of a flat section should be

Π[D, ζ] ∼
∑
a

e−ζW
(a)
va (2.8)

where va are simultaneous eigenvectors of the Ci.

The thimble brane amplitudes have the very special property that Πa ∼ e−ζW
(a)

for

the analytic continuation of Πa[ζ] to a whole angular sector of width π around the value

of ζ at which the thimbles are defined. This property, together with the relation between

the jumps of the basis of thimble branes as we vary the reference value of ζ and the BPS

spectrum of the theory [12] allow one to reconstruct the Πa[ζ] from their discontinuities by

the integral equations described in [8, 22].

Although a full review of these facts would bring us too far from the purpose of this

paper, these is a simplified setup which captures most of the structure and will be rather

useful to us. The tt∗ geometry has a useful “conformal limit”, β → 0. Although in this

limit one would naively expect the dependence on relevant deformation parameters ti, t̄i
to drop out, the behaviour of the brane amplitudes as a function of β, ζ is somewhat

more subtle.

More precisely, if we look at Πi[ζ] and focus our attention on the region of large ζ,

i.e. we keep ζβ finite as β → 0, only the ti dependence really drops out and we are left

with interesting functions of the holomorphic parameters ti. The converse is true for the

amplitudes Πi[ζ] = 〈D|i〉 in the anti-holomorphic gauge, for finite ζ−1β.
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In the LG case they are given by period integrals [12]

Πi =

∫
D

Φi exp
(
− ζ β W (Xα, t)

)
dX1 ∧ · · · ∧ dXn

Πi =

∫
D

Φi exp
(
− ζ−1 β W (X

α
, t)
)
dX

1 ∧ · · · ∧ dXn
,

where, for later convenience, we reintroduced the explicit dependence on the S1 length β,

see eq. (2.1). The flatness under the tt∗ Lax connection reduces to the obvious facts that

∂tjΠi + βζCkijΠk = 0 ∂tjΠi = 0 (2.9)

Due to the relation between thimble Lagrangian manifolds and steepest descent con-

tours, it is obviously true that the thimble brane amplitudes Πa
i have the expected asymp-

totic behaviour at ζ →∞. Furthermore, it is also clear that for an A-brane defined by some

Lagrangian submanifold D the integers na[D] are simply the coefficients for the expansion

of D into the thimble cycles. The Stokes phenomena for the tt∗ geometry reduce to the

standard Stokes phenomena for this class of integrals.

There is another observation which will be useful later. Let us introduce one additional

parameter Pα for each chiral field Xα, deform the superpotential W → W − XαPα, and

consider Πa for this deformed W . We can view Pα as part of the parameter space of W .

Let’s focus on Πa
0, i.e. the integral without insertion of chiral fields.

Πa
0

∣∣∣∣
β→0

=

∫
Da

exp
(
− ζ β W (Xα, t)− ζβXαPα

)
dX1 ∧ · · · ∧ dXn.

Now consider the insertion of ∂W/∂Xγ − Pγ in the above integral, and use integration by

parts to conclude its vanishing:∫
Da

dXα

(
∂W

∂Xγ
− Pγ

)
exp
(
− ζβ W (Xα, t)− ζβXαPα

)
= 0

Which can be rewritten as[
∂γW

(
−1

ζ

∂

∂Pα

)
− Pγ

] ∫
Da

dXα exp
(
− ζ β W (Xα, t)− ζ βXαPα

)
= 0.

In other words [
∂γW

(
− 1

ζβ

∂

∂Pα

)
− Pγ

]
Πa

0

∣∣∣∣
β→0

= 0. (2.10)

Note that, replacing ζβ → i/~, the above formula is suggestive of a quantum mechanical

system where (Xα, Pα) form the phase space. At this point however, it appears that they

are not on the same footing as Xα is a field but Pα is a parameter. In section 4 we will see

that we can in fact consider a dual LG system where Pα can be promoted to play the role

of fields. More generally we will see that we can have an Sp(2g,C) transformation where

one chooses a different basis in which parameters are promoted to fields. Here g denotes

the number of chiral fields. Indeed this structure also appeared for 2d (2,2) theories which

arise by Lagrangian D-brane probes of Calabi-Yau in the context of topological strings [11]

(which can be interpreted as codimension 2 defects in the resulting 4 or 5 dimensional

theories), and the choice of parameters versus fields depends on the boundary data of the

Lagrangian brane. We will see that this correspondence is not an accident.
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3 Extended tt∗ geometries and hyperholomorphic bundles

The basic assumption of the standard tt∗ analysis in the previous section is that the F-

term deformation parameters ti are dual to well defined chiral operators of the theory,

such as single-valued holomorphic functions on the target manifold M of a LG model.

This is not the only kind of deformation parameter which may appear in the F-terms of

the theory. There are more general possibilities which lead to more general tt∗ geometries

and new phenomena. In this section we discuss mostly situations which give rise to various

dimensional reductions of the equations for a hyper-holomorphic connection. We will briefly

comment at the end on a more extreme situation in which the tt∗ geometry is based on

non-commutative spaces.

The simplest extension of tt∗ is generically associated to the existence of flavor sym-

metries in the theory. In a mirror setup, where one looks at the twisted F-terms for, say,

a gauged linear sigma model, such deformation parameters are usually denoted as twisted

masses. If a flavor symmetry is present, which acts on the chiral fields of the GLSM, one

can introduce the twisted masses as the vevs of the scalar field in a background gauge mul-

tiplet coupled to that flavor symmetry. In the presence of twisted masses, the low-energy

twisted effective superpotential for the theory is a multi-valued function over the space of

vacua, defined up to integral shifts by the twisted masses.

In the context of LG theories, one can consider a non-simply connected target spaceM,

and superpotential deformations such that the holomorphic 1-form dW is closed but not

exact on M. The periods of dW over 1-cycles of M give the “twisted mass” deformation

parameters. In order to see the associated flavor symmetry, we can pull the closed 1-form

dW to space-time, and thus define a conserved current. The simplest possibility, which

occurs in the mirror of GLSM [13] and appears to be typical for the effective LG descriptions

of UV-complete 2d field theories, is modelled on a poly-cylinder: a collection of LG fields

with periodicity Ya ∼ Ya + 2πi na. A superpotential which includes the general linear term∑
a µaYa will have discontinuities

W (Ya + 2πina) = W (Ya) + 2πi
∑
a

naµa, (3.1)

with generic values for the complex twisted masses 4πiµa.
9 We will denote these models

as “periodic” (see figure 7 for the case of one periodic field).

There is a second possibility which one encounters, for example, for 2d systems which

occur as a surface defect in a 4d N = 2 gauge theory [11, 15]: the twisted mass parameters

may not be all independent. We can model this occurrence by a LG theory with coordinates

valued in an Abelian variety,10

Ya ∼ Ya + 2πi na + 2πiΩabmb. (3.2)

9To understand the normalization, remember the BPS bound M ≥ 2|∆W |.
10At this level, it suffices that the Ya’s take value in a complex torus of positive algebraic dimension.

However, we may always reduce, without loss of generality, to the Abelian variety with the same field of

meromorphic functions.
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Figure 7. In a 2d theory with one flavor symmetry each vacuum has infinitely many copies linearly

shifted in the W -plane by an amount 2πiµ.

A superpotential which includes the general linear term11
∑

a µaYa will have discontinuities

W (Ya + 2πi na + 2πiΩabmb) = W (Ya) + 2πi
∑
a

µa

(
na +

∑
b

Ωabmb

)
. (3.3)

Thus each twisted mass parameter is associated to two flavor symmetries, whose conserved

charges arise from the pull-back of dYa and dȲa. We will denote these models as “doubly-

periodic”. For surface defects in 4d systems, the relation takes the form

∆W =
1

2

∑
i

(
ni ai[u] +mi a

D
i [u]

)
(3.4)

where u are the Coulomb branch parameters in the bulk 4d theory, (ai, a
D
i ) the Seiberg-

Witten periods of the 4d theory, and the two conserved charges are the electric and magnetic

charges for the bulk 4d gauge fields.

Periodic tt∗ geometries. It was already observed in [1, 8, 22] that the tt∗ geometries

associated to a standard “twisted mass” deformation will be three-dimensional, rather

than two-dimensional. Besides the mass parameters µa and µ̄a, one has an extra angular

parameter θa = 2πxa. The angle θa has a direct physical interpretation: it is the flavor

Wilson line parameter which appears when the 2d theory is quantized on a circle.

There is an alternative point of view which is very useful in deriving the tt∗ equations

for a periodic system. We can make the superpotential single-valued by lifting it to an

universal cover M̃ of M. Thus each vacuum i of the original theory is lifted to infinitely

many copies (i, na), each associated to a sheet of the universal cover. We can define

vacuum Bloch-waves labelled by the angles θa = 2πxa (i.e. by the characters of the covering

group M̃ →M) ∣∣i;x〉 =
∑
na

e2πinaxa
∣∣i;na〉. (3.5)

11This corresponds to the case of dW a holomorphic differential on the Abelian variety. More generally,

we may take dW to be a closed meromorphic differential. If dW is a meromorphic differential of the second

kind [16], eq. (3.3) remains true with Ωab replaced by the relevant period matrix Λab.
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To describe the tt∗ geometry in the µa directions we need to compute the action of

∂µaW , which is not single-valued. This is simple, as the multi-valuedness of ∂µaW is

precisely controlled by the na. Let n be the number of vacua in a reference sheet. Let Ba
be the n× n matrix

Ba = diag

(
∂µaW (Y )

∣∣∣
Y=i–th vacuum
in reference sheet

)
. (3.6)

From eq. (3.1) we see that, acting on the |i;na〉 basis,

Cµa = 2πi · 1⊗Na +Ba ⊗ 1, (3.7)

where Na acts by multiplication by na. On the Bloch basis (3.5) this becomes the differ-

ential operator [1]

Cµa =
∂

∂xa
+Ba. (3.8)

If we focus on the dependence on a single twisted mass parameter and its angle, we get

Cµ = Dx + iΦ, C µ̄ = −Dx + iΦ, (3.9)

with Dx the anti-Hermitian part of Cµ and iΦ the Hermitian one, while, writing µ =

(z + iy)/2,

Dµ = Dz − iDy, Dµ̄ = Dz + iDy. (3.10)

The tt∗ equations become

[Dx, Dy] = [Dz,Φ], and cyclic permutations of x, y, z, (3.11)

which, seeing Φ as an (anti-Hermitian) adjoint Higgs fields, are identified with the Bogo-

molny monopole equations in R3 with coordinates x, y, z.

Finally, we can consider chiral operators which are twist fields for the flavor symmetry.

In the LG examples discussed above, they would correspond, say, to exponentials e
∑
a xaYa .

It should be clear that the action of such a chiral twist operator on a Bloch wave vacuum of

parameters x′a would give a vacuum of parameters x′a+xa. In particular, this shows that the

xa label the Hilbert space sectors Hxa in which, as we go around the circle, the fields come

back to themselves up to a phase exp(2πixaQa), where Qa are the flavor symmetry charges.

Note that, since xa are characters of a symmetry, the tt∗ metric satisfies〈
i;xa

∣∣ j; ya〉 = G(xa)i̄
∑
ka

δ(xa − ya − ka) (3.12)

Sometimes we leave the xa dependence implicit and not bother writing the subscript next

to the ket.

Doubly-periodic tt∗ geometries. In the doubly-periodic case we have two Bloch an-

gles, θa = 2πxa and θ̃a = 2πwa for every mass parameter µa. We can write

Cµa =
∂

∂xa
+ Ωab

∂

∂wb
+Ba =

∂

∂λ̄a
+Ba

xa = λa + λ̄a wa = Ω̄abλb + Ωabλ̄b

(3.13)
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where the n× n matrix Ba

Ba ≡ diag

(
∂µaW (Y )

∣∣∣∣
Y=i–th vacuum
in reference sheet

)
, (3.14)

is independent of the λb, ∂λbBa = 0.

It is useful to write

Cµa = Dxa + ΩabDwb ≡ Dλ̄a . (3.15)

Setting

D1,A =
(
Dµa ,−Dλa

)
, D2,A =

(
Dλ̄a , Dµ̄a

)
,

a = 1, . . . , g,

A = 1, . . . , 2g,
(3.16)

the full set of tt∗ equations may be packed into the single equation[
Dα,A, Dβ,B

]
= εαβ FAB where FAB = FBA, (3.17)

which are the equations of a hyperholomorphic connection on a hyperKähler manifold

(here R2g × T 2g) also called hyperKähler (or quaternionic) instanton [17–20]. Indeed,

eq. (3.17) is equivalent to the statement that the curvature of the tt∗ connection D is of

type (1, 1) in all the complex structures of the hyperKähler manifold. For g = 1 these

hyperholomorphic connections reduce to usual (anti)instantons in R2 × T 2, that is, to

doubly-periodic instantons in R4.

This may be seen more directly as follows. In complex structure ζ ∈ CP 1, the holo-

morphic coordinates on R2g × T 2g are

u(ζ)
a = µa − λ̄a/ζ, and v(ζ)

a = λa + µ̄a/ζ. (3.18)

The flat tt∗ Lax connection with spectral parameter ζ

∇(ζ)
µa = Dµa + ζ Cµa ≡ Dµa + ζ Dλ̄a

∇(ζ)
µ̄a = Dµ̄a +

Cµa
ζ
≡ Dµ̄a −

Dλa

ζ
,

(3.19)

annihilates, in this complex structure, all holomorphic coordinates (u
(ζ)
a , v

(ζ)
a ) and hence is

the (0, 1) part, in complex structure ζ, of a connection A on R2g × T 2g. The statement

that the tt∗ Lax connection is flat for all ζ is then equivalent to the fact that the (0, 2) part

of the curvature of A vanishes in all complex structures ζ.

The most general tt∗ geometry, depending on Ns of standard parameters, Nm twisted

mass parameters and Nd doubly-periodic twisted mass parameters is obtained considering

such a hyperholomorphic connections which do not depend on some of the angular variables:

we drop 2Ns + Nm angular variables and obtain a higher dimensional generalization of

Hitchin, monopole and instanton equations. However, the tt∗ geometry has an additional

requirement besides the condition that the connection is hyperholomorphic, namely the

eq. (2.2) capturing the reality structure [1].
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tt∗ geometries on Rg × T 2g. As we shall discuss in section 5, the typical tt∗ geometry

of a 3d model is a variant of the periodic one discussed above in which the complex twisted

mass parameters have the form

2µa = za + iya, (3.20)

where the za’s are real twisted mass parameters and the ya angular variables which appear

on the same physical footing as the vacuum angles xa. In fact, the S operation

S : xa → ya, ya → −xa, (3.21)

should be a symmetry of the physics. To write more symmetric equations, we add g

real variables wa, which do not enter in the Berry connection, in order to complete the

space Rg × T 2g to the flat hyperKähler space R2g × T 2g on which the tt∗ connection is

hyperholomorphic (and invariant by translation in the g directions wa). We then reduce to

a special case of the geometry described in eqs. (3.15)–(3.19) with holomorphic coordinates

in ζ =∞ complex structure

u(∞)
a ≡ µa = za + i ya, v(∞)

a ≡ λa = xa + iwa, (3.22)

(the parametrization being chosen to agree with our conventions for 3d models)

The fact that S is a symmetry of the physics means that it maps the tt∗ geometry into

itself; in view of the discussion in eqs. (3.15)–(3.19), this means that the effect of S is to

map the complex structure ζ into a complex structure ζ̃(ζ).

To find the map ζ 7→ ζ̃, we start with the S-transformed complex coordinates

µ̃a ≡ S(µa) = za − i xa, λ̃a ≡ S(µa) = ya + iwa, (3.23)

and define the S-dual holomorphic coordinates in (dual) complex structure ζ̃ as in

eq. (3.18),

ũ(ζ̃)
a = µ̃a − λ̃a/ζ̃, ṽ(ζ̃)

a = λ̃a + µ̃a/ζ̃. (3.24)

The map ζ 7→ ζ̃(ζ) is then defined by the condition that there exists two holomorphic

functions, f and g, such that

ũ(ζ̃)
a = f(u(ζ)

a , v(ζ)
a ), ṽ(ζ̃)

a = g(u(ζ)
a , v(ζ)

a ). (3.25)

f , g are necessarily linear; writing ũ
(ζ̃)
a = αau

(ζ)
a + βav

(ζ)
a and equating the coefficients of

xa, ya, wa, za, one finds

ζ̃ = C(ζ) ≡ 1 + i ζ

ζ + i
, (3.26)

which is the Cayley transform mapping the upper half-plane into the unit disk. In partic-

ular, ζ = 1 is a fixed point under this transformation, which is a rotation of π/2 of the

twistor sphere around ζ = 1.

From the discussion around eq. (3.19), we see that a flat section, Π(ζ), of the tt∗ Lax

connection at spectral parameter ζ, ∇(ζ), is a holomorphic section in complex structure ζ;

then, from the S-dual point of view Π(ζ) is holomorphic in the ζ̃ complex structure, that

is, a flat section of S∇(ζ̃). In particular, if Π(ζ)(xa, ya, za) is a flat section of ∇(ζ), then

SΠ(ζ)(xa, ya, za) ≡ Π(ζ)(ya,−xa, za), (3.27)

is a flat section of ∇(C−1(ζ)).
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General “non-flat” tt∗ geometries. As observed in [22], even for the case of surface

defects in 4d gauge theories, the tt∗ equations reduce to the equations of a hyperholo-

morphic connection on a hyperKähler manifold, which is the Coulomb branch of the four-

dimensional gauge theory compactified on a circle. In that case, though, the hyperKähler

manifold has a non-flat metric, and the tt∗ data has a more intricate dependence on the

angular coordinates. A typical example of the tt∗ geometries which arise in this non-flat

setup is associated to the moduli space M of solutions of a Hitchin system on some Rie-

mann surface C: the universal bundle on M ×C supports a hyperholomorphic connection

in the M directions and a Hitchin system on the C directions, and the two are compatible

exactly as above: the (anti)holomorphic connection on M in complex structure ζ commutes

with the Lax connection of the Hitchin system with spectral parameter ζ.

3.1 A basic example of 2d periodic tt∗ geometry

The simplest and most basic example of periodic tt∗ geometry corresponds to the Landau-

Ginzburg model

W (Y ) = µY − eY , (3.28)

which may be seen as the mirror of a 2d chiral field [13] with a twisted complex mass

mtwisted = 4πi µ. (3.29)

The exact tt∗ metric for this model is computed in appendix A of [21]. This tt∗ geometry

is also a very simple case of the general 2d-4d structures analyzed in [22].

We give a quick review of the tt∗ metric for this theory (with some extra detail) and

then we shall compute the associated amplitudes Πi
a = 〈Da|i〉.

3.1.1 tt∗ metric

Taking the periodicity into account, this theory has a single vacuum at Y = logµ, as

expected for a massive 2d chiral field. The tt∗ equations thus reduce to U(1) monopole

equations on R2×S1, which can be solved in terms of a harmonic function. We expect the

solution to be essentially independent on the phase of the mass, and the only singularities

should occur when both the mass and the flavor Wilson lines are zero, so that the 2d

chiral field has a zero-mode on the circle. Indeed, we will see momentarily that the correct

solution to the tt∗ equations corresponds to a single Dirac monopole of charge 1 placed at

µ = µ̄ = x = 0.12

12The enthusiastic reader can check this result directly from the definition of the tt∗ data, by decomposing

the 2d chiral field into KK modes on the circle and computing the contribution to the Berry’s connection

from each of these modes. The action for each KK mode is not periodic in x, and n-th KK mode gives a

single Dirac monopole at x = 2πn. Together they assemble the desired Dirac monopole solution on R2×S1.

– 19 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
5

It is interesting to describe in detail the relation between the monopole solution and

the standard tt∗ data. In an unitary gauge, we would write

Cµ = ∂x − iAx + V

−C̄µ̄ = ∂x − iAx − V
Dµ = ∂µ − iAµ
Dµ̄ = ∂µ̄ − iAµ̄ (3.30)

with V being the Harmonic function, A the associated monopole connection. Without loss

of generality, we can split V into an x-independent part and x-dependent part as

V (µ, µ̄, x) =
1

2
v(µ) +

1

2
v̄(µ̄) +

1

2
∂xL(µ, µ̄, x) (3.31)

for a periodic harmonic function L(µ, µ̄, x), and solve for the connection

iAµ = −1

2
∂µa(µ) +

1

2
∂µL

iAµ̄ = +
1

2
∂µ̄ā(µ̄)− 1

2
∂µ̄L

iAx = −1

2
v(µ) +

1

2
v̄(µ̄) (3.32)

Thus

Cµ = ∂x + v +
1

2
∂xL

−C̄µ̄ = ∂x − v̄ −
1

2
∂xL

Dµ = ∂µ +
1

2
∂µa−

1

2
∂µL

Dµ̄ = ∂µ̄ −
1

2
∂µ̄ā+

1

2
∂µ̄L (3.33)

We can then go to the “topological basis” by the complexified gauge transformation

with parameter 1
2L(µ, µ̄, x)− 1

2a(µ)− 1
2 ā(µ̄):

Cµ = ∂x + v

−C̄µ̄ = ∂x − v̄ − ∂xL
Dµ = ∂µ + ∂µa− ∂µL
Dµ̄ = ∂µ̄ (3.34)

The gauge transformation parameter is directly related to the tt∗ metric [1], which

reduces in this case to a real positive function of x and |µ|, G(x, |µ|) of period 1 in x:

G(x, |µ|) = eL(µ,µ̄,x)−a(µ)−ā(µ̄). (3.35)

Using13 the relation η = µ−1 the reality condition |µ|2G(−x, |µ|)G(x, |µ|) = 1 tells us that

L is odd in x. Also, we find a(µ) = 1
2 logµ and logG = logL− 1

2 log |µ|.
13In a vacuum basis, the pairing η is diagonal, proportional to the inverse determinant of the Hessian of

the superpotential, see [9].
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As L is harmonic,

1

|µ|
∂

∂ |µ|

(
|µ| ∂

∂ |µ|
L

)
+ 4

∂

∂x

(
∂

∂x
L

)
= 0, (3.36)

periodic and odd, it has an expansion in terms of Bessel-MacDonald functions of the form

L(x, |µ|) =

∞∑
m=1

am sin(2πmx)K0(4πm|µ|), (3.37)

for certain coefficients am which are determined by the boundary conditions. We may use

either the UV or IR boundary conditions, getting the same am [21]. For instance, in the

UV we must have the asymptotics as |µ| → 0

L(x, |µ|) = −2
(
q(x)− 1/2

)
log |µ|+ Λ(x) +O

(
|µ|
)
, (3.38)

where q(x) is the SCFT U(1) charge of the chiral primary exY (0 ≤ x < 1) at the UV fixed

point, while the function Λ(x) encodes the OPE coefficients at that fixed point [1, 8]. From

the chiral ring relations we have q(x) = x. From the expansion

K0(z) = − log(z/2)− γ +O(z2 log z) as z ∼ 0. (3.39)

we get

(1− 2x) log |µ|+ Λ(x) = −
∑
m

am sin(2πmx)
(

log |µ|+ logm+ log 2π + γ
)
. (3.40)

Comparing the coefficients of log |µ|, we see that the am’s are just the Fourier coefficients

of the first (periodic) Bernoulli polynomial, and hence

am = − 2

π

1

m
. (3.41)

Then (for 0 < x < 1)

Λ(x) = (1− 2x)
(

log 2π + γ
)

+
2

π

∑
m≥1

sin(2πmx)
logm

m

= 2 log Γ(x) + log sin(πx)− log π,

(3.42)

where the equality in the second line follows from Kummer’s formula for the Fourier co-

efficients of the Gamma-function [23]. In particular, the UV OPE coefficients have the

expected form [1, 8].

As we have v(µ) = logµ, we can recognize the periodic monopole solution

V (µ, µ̄, x) = log |µ| − 2

∞∑
m=1

cos(2πmx)K0

(
4πm|µ|

)
= −1

2

∑
n∈Z

(
1√

|2µ|2 + (x− n)2
− κn

)
− γ

(3.43)

where κn is some constant regulator (see eq. (B.5)).
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It is convenient to give a representation of the solution L(x, |µ|) in terms of a convergent

integral representation. From the equality (for Re z > 0)

K0(z) =
1

2

∞∫
0

dt

t
e−

1
2 z(t+t

−1), (3.44)

we see that for Reµ > 0

L(x, µ, µ̄) = − 1

π

∞∑
m=1

sin(2πmx)

m

∞∫
0

dt

t
e−2πm(µt+µ̄t−1)

=
1

2πi

∞∫
0

dt

t
log

(
1− e−2π(µt+µ̄t−1−ix)

1− e−2π(µt+µ̄t−1+ix)

)
.

(3.45)

For Reµ > 0 the integral is absolutely convergent. If Reµ 6> 0 (and µ 6= 0), just replace

µ→ eiαµ in such a way that Re(eiαµ) > 0 (or, equivalently, rotate the integration contour).

Notice that the expression (3.45) makes sense even for µ and µ̄ independent complex

variables (as long as Reµ > 0 and Re µ̄ > 0).

2d tt∗ computes a second interesting physical quantities besides the metric, namely

the CFIV ‘new index’ Q(x, |µ|) [24]. Several explicit expression for the CFIV index of this

model may be found in appendix A.3.

3.1.2 The amplitude 〈Da|φ(x)〉 = 〈Da|0〉x
The equations for a flat section Π of the tt∗ Lax connection look somewhat forbidding

(∂µ + ζ∂x) log Π = ∂µL− ζv − ∂µa

(−ζ∂µ̄ + ∂x) log Π = v̄ + ∂xL (3.46)

Observe that Π is defined up to multiplication by an arbitrary function of ζµ− x− ζ−1µ̄.

This is related to the fact that any D-brane has infinitely many images, produced by shifts

in the flavor grading of the Chan-Paton bundle. Starting from a single D-brane amplitude

Π0 one can produce a countable basis

Πk = e2πik(ζµ−x−ζ−1µ̄) Π0 k ∈ Z. (3.47)

for the infinite-dimensional vector space of flat sections of the tt∗ Lax connection

Writing

log Π = Φ− 1

2
logµ− ζµ

(
logµ− 1

)
− ζ−1µ̄

(
log µ̄− 1) + const., (3.48)

(we will fix the additive constant later by choosing a convenient overall normalization of

Π) we isolate the interesting part

(∂µ + ζ∂x) Φ = ∂µL

(−ζ∂µ̄ + ∂x) Φ = ∂xL (3.49)
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In view of the expression

L = − 1

2πi

∑
m6=0

e2πimx

∫ ∞
0

1

mt
e−2π|m|((µ t+µ̄ t−1) dt, (3.50)

for Reµ > 0 we look for a solution Φ of the form

Φ(x, µ, µ̄) =
∑
m 6=0

e2πimx

∫ ∞
0

fm(t) e−2π|m|(µ t+µ̄ t−1) dt, (3.51)

for some functions fm(t) to be determined. Plugging this ansatz in the equations we get

fm(t) =
i

2πm

1

t− i ζ sign(m)
. (3.52)

Then

Φ =
1

2πi

∫ ∞
0

dt

t− iζ
log
(

1− e−2π(µt+µ̄t−1−ix)
)

− 1

2πi

∫ ∞
0

dt

t+ iζ
log
(

1− e−2π(µt+µ̄t−1+ix)
)
. (3.53)

For Reµ, Re µ̄ > 0 the integrals are absolutely convergent and define an analytic function

of µ and µ̄ (seen as independent complex variables).

This expression has an important discontinuity along the imaginary ζ axis, where the

poles cross the integration contours, and is analogous to the integral equations which gives

the thimble brane amplitudes in the standard tt∗ case [8]. It is also a simple version of the

integral equations which describe general 2d-4d systems in [22]. The discontinuity along

the positive and negative imaginary axes are

± log
(

1− e±2πi(ζµ−x−ζ−1µ̄)
)
. (3.54)

The two functions Π± defined by the analytic continuation from the positive and negative

half-planes must correspond to the amplitudes for the thimble branes for the model. We

will identify these branes momentarily.

The same discontinuities appear at fixed ζ as we vary the phase of µ, as one has to

rotate the integration contours while moving µ out of the Reµ > 0 half-plane. Notice that

the composition of the two discontinuities in Φ we encounter while rotating the phase of µ

by 2π, i.e. πi + 2πi(ζµ − x − ζ−1µ̄), cancel against the extra terms in the definition 3.48

of Π, leaving only

Π(e2πiµ, e−2πiµ̄, x) = e2πixΠ(µ, µ̄, x)

which is the gauge transformation which leaves the tt∗ data invariant. This equation is

equivalent to the statement q(x) = x. Thus all the pieces conspire to make the sections

Π± single-valued as functions of µ (but not of ζ!).

The function Φ is also periodic in x, and enjoys a number of interesting properties.

First of all, it satisfies the functional equation (for Re ζµ, Re ζ−1µ̄ > 0)

Φ(−x, ζ−1µ̄, ζµ)− Φ(x, ζµ, ζ−1µ̄) = L(x, µ, µ̄) (3.55)
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which just says that the tt∗ metric can be computed out of the amplitude Π(x) in the usual

way. Second, for all integers n ∈ N it satisfies a ‘Gauss multiplication formula’ of the same

form as the one satisfied by log Γ(z)

Φ(0, nζµ, nζ−1µ̄) =
n−1∑
k=0

Φ(k/n, ζµ, ζ−1µ̄). (3.56)

Eqs. (3.55), (3.56) are shown in appendix A.1.

3.1.3 The limit µ̄→ 0 and brane identification

Seeing the amplitude Π(x, µ, µ̄) as a function of independent complex variables µ and µ̄,

it make sense to consider its form in the limit µ̄→ 0. As discussed in section 2, this is the

limit where we expect Π(x, µ, 0) to simplify, and satisfy a simple differential equation. We

will check to see how this emerges in this section (eq. (2.10)).

The asymmetric limit µ̄→ 0 is also important to identify which kind of brane amplitude

corresponds to each solution to the Lax equations, and in particular to identify the unique

solution which corresponds to a (correctly normalized) Dirichlet brane amplitude, 〈D|x〉ζ ,
and its relations with the Leftshetz thimble amplitudes. We saw that the difference between

the log of any two solutions, Π1,Π2, is a holomorphic function of ζµ− x− µ̄/ζ

log Π1 − log Π2 = f(ζµ− x− µ̄/ζ). (3.57)

In particular, two solutions which are equal at µ̄ = 0, are equal everywhere. Therefore the

identity of the corresponding boundary conditions is uniquely determined by comparing

their µ̄→ 0 limit [12], with the period integrals of exp(−ζβW ). This limit can be alterna-

tively computed (assuming the correctness of our conjecture of the equivalence of this limit

with supersymmetric partition functions [56, 57]) with a direct localization computation

for the partition function of the 2d chiral on a hemisphere [58].

We are looking at

log Π =− 1

2
logµ− ζµ

(
logµ− 1

)
+ const.

+
1

2πi

∫ ∞
0

dt

t− iζ
log
(

1− e−2π(µt−ix)
)

− 1

2πi

∫ ∞
0

dt

t+ iζ
log
(

1− e−2π(µt+ix)
)
.

(3.58)

We claim that choosing the additive constant to be 0, the branch Π− of Π in the negative

ζ half plane becomes

Π− =
1√
2π

Γ
(
− ζµ+ {x}

)
µ−{x}(−ζ)

1
2

+ζµ−{x} (3.59)

and the branch Π+ of Π in the negative ζ half plane becomes

Π+ =

√
2π

Γ
(
ζµ+ 1− {x}

)µ−{x}ζ 1
2

+ζµ−{x} (3.60)
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where {x} ≡ x − [x] is the fractional part, 0 ≤ {x} < 1. Note that these expressions are

consistent with (3.56) in view of the Gauss multiplication formula for Γ(z) [23].

A straightforward way to prove these identities is to observe that the right hand sides

have the correct asymptotic behaviour at large ζ, the correct discontinuities, and no zeroes

or poles in the region where we want to equate them to the integral formula. Thus they

must coincide with the result of the integral formula. By setting x = 0 or x = 1/2

in these identities we get well-known integral representations of log Γ(µ) or, respectively,

log Γ(µ+ 1/2)− 1
2 logµ (see appendix A.2.1). Setting µ = 0 in our identity produces a new

proof of the Kummer formula (appendix A.2.2).

Comparing with a direct localization computation for the partition function of the 2d

chiral on a hemisphere [58], we see that, for all values of ζ, the behavior (3.59) corresponds

to a brane with Neumann boundary conditions and (3.60) to Dirichlet b.c. We conclude

that the thimble brane of the LG mirror corresponds to either Neumann or Dirichlet

boundary conditions for the 2d chiral field. The match with the localization computations

is surprisingly detailed, especially if we turn off x and identify −ζβ with rΛ0 in [58].

Finally, we can compare the result to the expected integral expressions for the asym-

metric conformal limits ∫
D
exY−ζµY+ζeY dY

For example, for ζ in the negative half-plane we can do the integral on the positive real Y

axis setting t = −ζeY , i.e.

(−ζ)−x+ζµ

∫ ∞
0

tx−ζµ−1e−tdt = (−ζ)−x+ζµΓ(x− ζµ)

which is as expected.

3.2 A richer example

After discussing a model which gives rise to a single periodic U(1) Dirac monopole as a tt∗

geometry, it is naturally to seek a model associated to a single smooth SU(2) monopole

solution. It is not hard to guess the correct effective LG model:

W (Y ) = µY − e
t
2

+Y + e
t
2
−Y . (3.61)

We recognize this as the mirror of a CP 1 sigma model [13] with FI parameter t and twisted

mass 4πiµ for its SU(2) flavor symmetry. We will come back to the standard tt∗ geometry

in the t cylinder momentarily. Unlike the previous example, it is not possible to solve

this model explicitly. Nevertheless we can predict properties of the solution, based on the

previous example, as well as general physical reasoning.

The model has two vacua, with opposite values of W , and will give rise to a rank 2 bun-

dle, with SU(2) structure group. At large |µ| we get either of the vacua Y ∼ ±
(
− t

2 + logµ
)
,

and the two vacua are well-separated. The solution approaches an Abelian monopole of

charge ±1. On the other hand, Y (µ) does not have logarithmic singularities anywhere:

there are never massless particles in the spectrum, and thus no Dirac singularities in the

interior. This confirms that the tt∗ geometry for the µ parameter will be a smooth SU(2)
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monopole. The parameter t controls the constant part of the Higgs field and Wilson line

at large µ.

On the other hand, the tt∗ geometry for the t parameter is well-known: the boundary

conditions of the Hitchin system’s Higgs field Ct are controlled by

1

2
TrC2

t = (∂tW )2 =
µ2

4
− et (3.62)

Thus we have a standard regular singularity at the t → −∞ end of the cylinder, with

residues ±µ
2 in the Higgs field and ±x in the connection. We have the mildest irregular

singularity at the t→∞ end of the cylinder.

The tt∗ machinery predicts that the Lax connections for the BPS monopole connection

associated to the µ direction and for the Hitchin system in the x direction will commute

(for the same values of the spectral parameter). This fact may appear striking. It is useful

to think about it in terms of an isomonodromic problem. For example, the Hitchin system

has a unique solution for given µ, x. Furthermore, up to conjugation, the monodromy

data of the Lax connection with spectral parameter ζ only depends on the combination

µζ−x−µ̄ζ−1 and it is annihilated by the combinations of derivatives ∂µ+ζ∂x and ∂µ̄−ζ−1∂x.

These facts are what make it possible to find connections Dµ+ζDx and Dµ̄−ζ−1D̄x which

commute with the Hitchin Lax connections, and which become the Lax connection for the

BPS monopole equation.

The LG model has several interesting A-branes, which are mirror to the basic B-branes

of the CP 1 sigma model [12]: we can have either a Dirichlet brane at the north or south pole,

or a Neumann brane with n+ 1
2 units of world volume flux. The corresponding amplitudes

where identified in [22] with specific flat sections of the Hitchin system Lax connection.

The Dirichlet branes correspond to the monodromy eigenvectors at the regular singularity.

The basic Neumann brane is the unique section which decreases exponentially approaching

the irregular singularity. The whole tower of Neumann branes is obtained by transporting

the basic one n times around the cylinder. As the full BPS spectrum of the CP 1 model is

known, the actual brane amplitudes can be computed from the integral equations derived

in [8, 27], corrected by the presence of twisted masses as in [22].

3.3 Some doubly-periodic examples

As we seek examples of well-defined doubly-periodic systems, it is natural to start from a

simple, smooth doubly-periodic instanton solution [83] and work backwards to identify an

effective LG model associated to it. The simplest choice would be a doubly-periodic SU(2)

instanton of minimal charge. The identification of the LG model is rather straightforward

using the connection to the Nahm transform detailed in the next section. Here we can

anticipate the answer:

W = mb log Θ

(
X +

z

2
, τ

)
−mb log Θ

(
X − z

2
, τ

)
− aX (3.63)

Here X is the doubly-periodic LG field, a the deformation parameter whose tt∗ geometry

will reproduce the doubly-periodic instanton, Θ is the usual theta function and mb, z two

extra parameters.
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The superpotential has discontinuities of the form (n1 +τn2)a+(n3 +zn2)mb. We will

focus on the tt∗ geometry in a first, and then extend it to a,mb. The instanton is defined

over the space parameterized by a and the two angles θ1 and θ2 dual to the charges n1 and

n2. The vacua are determined by

a = mb
Θ′(X + z

2)

Θ(X + z
2)
−mb

Θ′(X − z
2)

Θ(X − z
2)

(3.64)

and Ca is controlled by the critical value of X. At large a,

X ∼ ±
(
z

2
+
mb

a
+ · · ·

)
, (3.65)

and thus z controls the large a asymptotic value of the SU(2) instanton connection on the

(θ1, θ2) torus direction and mb the first subleading coefficient.

Because of the appearance of mb in the n2 monodromy, the Cmb differential operator

must include both the usual ∂x3 expected for a standard mass parameter, and an extra z∂x2
which mixes it with the doubly-periodic instanton directions. Thus rather than a direct

product of doubly-periodic instanton equations and periodic monopole equations, we get

a slightly more general reduction of an eight-dimensional hyper-holomorphic connection

down to a system over R4 × T 3, where T 3 has a metric determined by τ and z.

We can easily describe a system which behaves a bit better:

W = mb log Θ(X + z, τ) +mb log Θ(X − z, τ)− 2mb log Θ(X, τ)− aX
= mb log (℘(X)− ℘(z))− aX

(3.66)

This superpotential has only the standard (n1 + τn2)a+n3mb discontinuities, and thus we

get three separate and compatible connections: an SU(3) doubly-periodic instanton from

the a deformation, a rank 3 periodic monopole from the mb deformation and a rank 3

Hitchin system from the z deformation.

The asymptotic form of Ca for large |a| in the three vacua is X ∼ z + mb/a, X ∼
−z +mb/a, X ∼ −2mb/a. The tt∗ geometry for a should be smooth in the interior.

In order to understand the other deformations, it is useful to massage a bit the chiral

ring relation which follows from the superpotential. We have

mb℘
′(X) = a℘(X)− a℘(z) (3.67)

Using the standard cubic relation for the Weierstrass function, we get

4℘(X)3 − g2℘(X)− g3 =
a2

m2
b

(℘(X)− ℘(z))2 (3.68)

As the Cmb eigenvalues are the values of log (℘(X)− ℘(z)), the above form of the chiral

ring relation gives the holomorphic data of the periodic monopole solution. It appears to

have logarithmic singularity, corresponding to a Dirac monopole singularity at mb = 0 of

charges 1, 1,−2 and no logarithmic growth at infinity: there must be a smooth monopole

configuration screening the Dirac singularity.
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The model has an interesting limit z → 0, with constant mbz
2:

W = c℘(X)− aX (3.69)

This is the basic building block for models considered in [28], such as

W = λ

(
N−1∑
a=1

(
℘(Ya)−ma Ya

)
+ ℘

(
−
∑N

a=1
Ya
))

. (3.70)

3.4 Non-commutative tt∗ geometries

It is natural to wonder what would happen if we took a simpler version of the doubly-

periodic examples, a superpotential involving a single θ function:

W = log Θ(X, τ)− µ (X + τ/2 + 1/2) (3.71)

This superpotential and the chiral ring relation

µ =
Θ′(X, τ)

Θ(X, τ)
(3.72)

only make sense if the parameter µ is taken to have a periodic imaginary part.

This makes sense ifX is actually part of a 2d gauge multiplet and µ is the corresponding

FI parameter. Indeed, in 2d the field strength of an U(1) vector supermultiplet is a twisted

chiral field Σ with the real part of the F -term equal to the field strength 2-form. Hence

the F -terms roughly take the form

i

∫
F a Im ∂ΣaW +

∫
d2z Da Re ∂ΣaW, (3.73)

and the Im ∂ΣaW are field-dependent θ-angles which need to be well-defined only up to

shifts by integers. Indeed, the flux
∫
F is quantized in multiples of 2π, and the action is

still well-defined mod 2πi. Thus we may allow a (twisted) superpotential W (Σa) such that

∂ΣaW is defined up to integral multiples of 2πi.

Naively, one may thus expect the tt∗ geometry to be an instanton solution in R× T 3.

The situation, though, is more complex than that. The images of a vacuum under the two

translations of X by 1 or τ are associated to different values for µ, as translations of X

by τ require a shift of µ by 2πi. Thus if we try to form Bloch wave vacua with angles

θ1,2 as before, we cannot treat µ and θ2 as commuting variables. Rather, we need some

Heisenberg commutation relation such that einθ2 acts on µ by a shift of 2πin.

The natural guess is that, in situations such as this, the tt∗ equations may define

a hyperholomorphic connection on a non-commutative version of, say, R × T 3 where at

least two torus directions do not commute among themselves. It turns out that such non-

commutative tt∗ geometries are very common for 4 supercharge models arising from 4d

gauge theories, as we shall see later in section 8. In particular, the 4d theory with spectral

curve (8.11) may be modelled by a 2d theory with a superpotential W such that

exp
(
∂XW (X)

)
=

Θ(X + µ′/2, τ)

Θ(X − µ′/2, τ)
. (3.74)
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For µ′ small this gives

W (X) = µ′ log Θ(X, τ) +O(µ′
2
), (3.75)

whose tt∗ geometry may be meaningful only in the non-commutative framework.

Another situation where a non-commutative tt∗ geometry may appear is a 2d-4d sys-

tem in the presence of Nekrasov deformation in the transverse plane to the defect and/or

a supersymmetric Melvin twist in the tt∗ compactification. The two are related because

the Nekrasov deformation parameter behaves as a 2d twisted mass for the rotation (plus

R-charge rotation) in the plane transverse to the defect, which is used to define the Melvin

twist. In such a situation, the electric and magnetic Wilson lines cease to be commuta-

tive variables. The corresponding non-commutative version of the tt∗ geometry should be

related to the motivic Kontsevich-Soibelman wall-crossing formula.

A full discussion of the non-commutative tt∗ geometries is outside the scope of the

present paper. Here we limit ourselves to a general discussion of how non-commutative

structures could possibly emerge from the standard tt∗ machinery.

3.4.1 tt∗ geometry for the models (3.71), (3.75)

In these examples the chiral field X takes values in a complex torus E of periods (1, τ),

that is, we periodically identify

X ∼ X + k + τm, k, m ∈ Z. (3.76)

For definiteness, we choose Θ ≡ θ3 which vanishes at the point Xcr = (1 + τ)/2. Since the

superpotential is not univalued in E, to defined the tt∗ geometry we must lift the model to

a cover where W is well defined; in the process we get infinitely many copies of the single

vacuum. However in this case there are more copies of the vacuum than just the lattice

translates X0 + (k+mτ), k,m ∈ Z. For instance for the model (3.71), since µ is a periodic

variable, the actual equation defining the classical vacua is [26]

exp
[
∂XW (X)

]
= 1. (3.77)

The lhs is a holomorphic function in E \(1+τ)/2 with an essential singularity at the point

Xcr. = (1 + τ)/2. By the Big Picard theorem, the equation equation (3.77) has infinitely

many solutions in any open neighborhood of the point (1 + τ)/2. These solutions may be

interpreted as cover copies of the vacuum due to the non-trivial monodromy around the

point Xcr..

The monodromy action. To be systematic, we consider X as a field taking value in

the Kähler manifold K = E \Xcr. and go to its universal cover K̃ on which W is defined

as a univalued function by analytic continuation. Let M be the monodromy group of the

cover K̃ → K, which is identified with π1(K); we need to know how it is represented on the

vacuum bundle V → K. Indeed, the monodromy group acts by symmetries just as in the

ordinary periodic case. For definiteness we choose X = 0 as the base point, and consider

the homotopy group of paths based at the origin, π1(K, 0). This group is generated by

three loops u1, u2, ` subject to a single relation

` = u−1
2 u−1

1 u2u1, (3.78)
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where

u1 = t mod Z + Zτ, u2 = tτ mod Z + Zτ, 0 ≤ t ≤ 1, (3.79)

and ` is a loop which starts from the origin, go to the point (1 + τ)/2 along the segment

connecting the two points, make a counter-clockwise loop around the point (1 + τ)/2 and

then returns back to the origin along the segment.

One consequence of eq. (3.78) is that — if the monodromy along the loop `, M`, acts

non-trivially on the vacuum bundle V — the two basic lattice translations X → X + 1

and X → X + τ do not commute. In the simplest periodic models we set the spectrum

of the lattice translation operators to be exp(2πixi); in the present case, M` 6= 1 implies

that the two translations cannot be diagonalized simultaneously on the vacua and hence

the vacuum angles x1 and xτ cannot be simultaneously defined.

As in the standard periodic case, the action of the monodromy on the vacuum bundle

is induced by the action of the monodromy on the superpotential W . Hence, let us con-

sider the monodromy action on W . To encompass both models (3.71),(3.75) in a single

computation, we consider the superpotential

W (X) = µ′ log Θ(X, τ)− µX. (3.80)

On K̃ we introduce the meromorphic sl(3,C) connection (we set θ(x) ≡ θ3(πx))

A =

 0 d
(
µ′ θ

′

θ − µ
)

0

0 0 dx

0 0 0


and look for solutions to

dΨ = ΨA. (3.81)

A fundamental solution is

Ψ =

1
(
µ′θ′(x)
θ(x) − µ

)
W

0 1 x

0 0 1

 (3.82)

with W is as in eq. (3.80). The general solution is then given by MΨ with M a constant

matrix. Let γ ∈ π1(K, 0) be a closed loop. The analytic continuaion of the solution Ψ along

γ, Ψγ , is also a solution to the above linear problem, and hence there exists a constant

3× 3 matrix Mγ such that

Ψγ = MγΨ. (3.83)

The matrices Mγ are upper triangular with 1’s on the main diagonal. The map π1(K, 0)→
SL(3,C) given by γ 7→ Mγ is the monodromy representation we are interested in. Let us

compute the monodromy representation of the generators u1, u2, `

Mu1 =

1 0 −µ
0 1 1

0 0 1

 Mu2 =

1 −2πiµ′ −(µ+ iπµ′)τ

0 1 τ

0 0 1

 M` =

1 0 −2πi µ′

0 1 0

0 0 1

 . (3.84)
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One checks that these matrices satisfy the group relation (3.78), and hence give a rep-

resentation of the group π1(K). The matrix M` is a central element of the monodromy

group-algebra generated by Mu1 , Mu2 . Hence we may diagonalize its action on the vacuum

bundle introducing the q-vacua

M`|q〉 = q |q〉 (3.85)

(we use the same symbol to denote a monodromy matrix and the operator implementing it

on V). Then in the q sector the cover group-algebra becomes identified with the quantum

torus algebra (Mi ≡ Mui)

M2M1 = qM1M2. (3.86)

The vacuum bundle V over (the universal cover of) coupling constant space may be

decomposed into M`-eigenbundles

V =
⊕
q

Vq. (3.87)

Since the tt∗ geometry is described by equations written in terms of commutators, and M`

is central and a symmetry, the tt∗ equations do not couple eigenbundles Vq with different

q. Hence we may fix q and discuss the geometry in that sector. In other words, we get

a family of tt∗ geometries labelled by the value of q. In the vacuum eigenbundle with

q = 1 (if it exists at all), we see from eq. (3.86) that we may diagonalize simultaneously

the lattice translation operators M1 and M2. Calling, as before, exp(2πixi) their respective

eigenvalues, we get the standard commutative tt∗ geometry (triply-periodic instantons). If

we deform the parameter q away from its ‘classical’ value q 6= 1, the lattice translation

operators, M1 and M2, do not commute any longer, and we get triply-periodic instanton on

a non-commutative deformation of the previous geometry, namely on the quantum torus

obtained by deformation á la Moyal of the usual commutative torus

e2πix2 e2πix1 = q e2πix1 e2πix2 .

The value of q. The obvious question at this point is what is the physically natural

value of the non-commutativity parameter q. Although geometrically it makes sense to

speak of generic q ∈ C∗, we expect that the physical problem selects a definite value for q.

Leaving a more complete analysis for future work, here we focus on the simplest thimble

amplitudes for the 4d theories modelled by the effective superpotential (3.75), in the UV

asymmetric limit defined at the end of section 2. In this limit the vacuum wave functions

may be identified with exp(−ζW ) ξa where ξa are closed forms dual to the Lefschetz thimble

cycles Da. If we define the branes Da so that the corresponding cycles are invariant under

the monodromy along the path `, then the action of M` on these vacua will be given by its

action on the factor exp(−ζW ) and hence

q e−ζW = M` e
−ζW ≡ e2πiζµ′ e−ζW . (3.88)

In particular, at ζ = 1 we get

q = e2πiµ′ . (3.89)

As we will mention in section 8 this result is in agreement with what one finds for the tt∗

geometry arising in 4d models.
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4 Spectral Lagrangian manifolds

To the tt∗ geometry of any (2, 2) system there is associated a spectral Lagrangian manifold.

The details vary slightly in the various cases so we treat them one at a time.

4.1 Ordinary models

For an ordinary (2, 2) model (finitely many vacua, globally defined superpotential) the tt∗

equations for one complex coupling t reduce to the Hitchin equations

Dt̄Ct = [Dt, Dt̄] + [Ct, C t̄] = 0, (4.1)

which, in particular, imply that the eigenvalues λ(t)j of the matrix Ct are holomorphic

functions of t. The spectral curve encodes the holomorphic functions λ(t)j ; it is simply the

curve in C2

det
(
Ct(t)− s

)
= 0. (4.2)

In the case of several couplings ti (i = 1, 2, . . . , g), the tt∗ equations say that the

various Ci’s commute and are covariantly holomorphic, DjCi = 0. Then the Ci’s may be

simultaneously diagonalized (more generally, simultaneously set in the Jordan canonical

form) and moreover the corresponding eigenvalues depend holomorphically on the tj ’s.

The spectral manifold L encodes the g-tuples of eigenvalues of the Ci’s associated to a

common eigenvector ψ, that is,

L =
{

(s1, . . . , sg, t1, . . . , tg) ∈ C2m
∣∣∣ ∃ψ 6= 0 s.t.

(
si − Ci(tj)

)
ψ = 0

}
. (4.3)

Clearly L ⊂ C2g is a complex submanifold. It is also a Lagrangian submanifold with respect

to the holomorphic symplectic form

ω =
∑
i

dsi ∧ dti. (4.4)

To see this, notice that the spectral manifold is purely a property of the underlying holo-

morphic TFT. We may assume to be at a generic point in parameter space where the chiral

ring R is semisimple. Then the eigenvalue of Ci associated to the k-th indecomposable

idempotent of R is simply ∂Ckk/∂ti where C is the tt∗ matrix introduced in ref. [28]. (In

the particular case of a LG model, Ckk is just W (k), the superpotential evaluated on the

k-th classical vacuum configuration). Hence, locally on the k-th sheet, the equations of L
take the form

si =
∂

∂ti
Ckk, (4.5)

and L is a Lagrangian submanifold. For a LG model it may be simply written as

si = ∂W (Ya, ti)/∂ti ∂W (Ya, ti)/∂Ya = 0. (4.6)

The spectral manifold gives half of the spectral data which labels uniquely a solution

of Hitchin’s equations or of the higher-dimensional generalizations. The other half is a

holomorphic line bundle on L. The line bundle can be defined as the eigenline associated

to each point of the spectral manifold.
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4.2 Periodic models

Let us consider first the case in which we have a single triplet of parameters (a complex t

together with a vacuum angle x). Just an in the ordinary case, the spectral curve L encodes

the spectrum of the linear operator Ct(t) which depends holomorphically on t. Hence the

spectral curve is given by the same Hitchin formula as before, eq. (4.2)

L : Det
[
Ct(t)− s

]
= 0. (4.7)

The only novelty is that now Ct(t) is not a finite matrix, but rather a linear differential

operator of the form
∂

∂x
+Bt(t), (4.8)

and the matrix determinant gets replaced by a functional determinant in the Hilbert space

L2(S1, dx)⊗ Cn of vector functions of period 1. The expression

Det
[
Ct(t)− s

]
≡ Det

[
∂x +Bt(t)− s

]
(4.9)

is simply the partition function, twisted by (−1)F , of a system of one-dimensional free

Dirac fermions with mass matrix Bt(t)− s. Hence the spectral curve has equation

Det
[
∂x +Bt(t)− s

]
=
∏
j

(
e(λj(t)−s)/2 − e(s−λj(t))/2

)
= 0, (4.10)

where λj(t) are the eigenvalues of Bt(t). Usually one writes this equation in the form

det
[
es − eBt(t)

]
= 0. (4.11)

Since Bt(t) (say for a periodic LG model) is a diagonal matrix whose kk-entry is ∂tW eval-

uated on the k-th (reference) classical vacuum (cfr. eq. (3.6)), eq. (4.11) has the same form

as the ordinary Hitchin curve (4.2) but with all quantities exponentiated. This ‘exponen-

tiation’ is no mystery: the two formulae (4.2) and (4.11) are identical provided one keeps

into proper account the role of the Hilbert space L2(S1, dx). Thus the spectral manifold is

a Lagrangian sub manifold in C× C∗.
The case of several triplets of couplings ti, xi, (i = 1, . . . , g) is similar. The spectral

manifold L is again given by the usual tt∗ equation (4.3), with the only specification that

the Ci are differential operators and ψ is a non-zero eigenvector in

Cn ⊗ L2
(
(S1)g, dx1 ∧ · · · ∧ dxg

)
, (4.12)

(n being the number of vacua in a reference sheet). The eigenvector equations for ψ have

the form (
∂xr +Br(t)− sr

)
ψ = 0, r = 1, . . . , g, (4.13)

whose non-zero solutions are

ψ = exp

(∑
r
xr
(
sr −Br)

)
ψ0, 0 6= ψ0 ∈ Cn, (4.14)
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(we have used the fact that the matrices Br commute). The condition that ψ belongs to

the Hilbert space (4.12) may be written in the form{
(es1 , . . . , esg , t1, . . . , tg) ∈ (C∗)g × Cg

∣∣∣ ∃ 0 6= ψ0 ∈ Cn s.t.
(
esi − eBi(tj)

)
ψ0 = 0

}
(4.15)

which is the same as the ‘exponentiation’ of the spectral manifold equations.

eq. (4.15) gives the spectral manifold equations for the general periodic case. Again,

L ⊂ (C∗)m × Cm is a complex submanifold which is also Lagrangian for the symplectic

structure (Si ≡ esi) ∑
i

dSi
Si
∧ dti. (4.16)

In view of the definition of the matrices Br, eq. (3.6), the proof is the same as in the

ordinary case, and will be omitted.

In particular, for a periodic LG model (with periodic couplings), eq. (4.6) gets replaced

by its ‘exponentiated’ version

exp
(
si
)

= exp
(
∂W (Ya, ti)/∂ti

)
∂W (Ya, ti)/∂Ya = 0. (4.17)

In later sections we will encounter special periodic models which arise from the com-

pactification of 3d gauge theories, for which the couplings ti are also periodic. In that case,

the spectral manifold is naturally defined in (C∗)2g rather than (C∗)g×Cg, with symplectic

form (Si ≡ esi ,Ti ≡ eti) ∑
i

dSi
Si
∧ dTi
Ti
. (4.18)

We will denote these models as “3d periodic models”.

4.3 Doubly-periodic models

The doubly-periodic case is similar, except that the Ci’s are now differential operators of

the form

Ci = ∂x1,i + ρi ∂x2,i +Bi. (4.19)

We consider first the case of just four parameters (a complex t and two vacuum angles x1

and x2). Assuming Im ρ > 0, we introduce a complex coordinate ζ such that

(ρ− ρ̄) ∂ζ = ∂x1 + ρ ∂x2 , (4.20)

which takes values in a torus of periods 1 and τ ≡ −ρ̄. The spectral curve takes the form

Det

[
∂ζ +

B − s
ρ− ρ̄

]
= 0. (4.21)

The lhs is now the partition function of a system of 2d chiral fermions on a torus of

modulus τ coupled to a background gauge connection Aζ = (B − s)/(ρ− ρ̄). The spectral

curve may be then written as

det θ1

(
s−B
ρ− ρ̄

∣∣∣∣− ρ̄) = 0, (4.22)

where θ1(z | τ) is the usual theta function.
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In the general case the spectral manifold is

L ≡
{

(si, ti) ∈ A× Cg
∣∣∣ ∃ 0 6= ψ0 ∈ Cn s.t. Θ(si −Bi)ψ0 = 0

}
(4.23)

where A is the Abelian variety where the angular variables are valued in, and Θ is the

basic theta-function for A. All other cases (non-periodic, single periodic) may be obtained

as degenerate limits of this expression. For instance, eq. (4.11) corresponds to A being an

elliptic curve with an ordinary node, while (4.2) to an elliptic curve with a cusp.

4.4 Action of Sp(2m,A) on the spectral manifolds

In all cases the spectral manifold L is a (holomorphic) Lagrangian submanifold14 of a holo-

morphic symplectic manifold S which is also an Abelian group. It makes sense to consider

the action on L of ambient symplectomorphisms U : S → S. In order for the transformed

manifold U(L) to have a spectral interpretation,15 U must be a group homomorphism of S
as well as a symplectomorphism.

In the case of non-periodic models, S is the additive group C2g, and the group of

symplectic homomorphisms is Sp(2g,C) acting on (ti, sj) in the obvious linear way. For

periodic models, the group of transformations compatible with the periodicities is much re-

duced. An important exception are 3d periodic models, for which we can consider Sp(2g,Z)

transformations, which preserve the periodicities of the si and ti variables.

For other periodic models, beyond the boring transformations of the form t→ gt, s→
g−1s, we only have dualities between different types of spectral manifolds. For example,

an S transformation s→ t, t→ −s may relate the spectral curves for a Hitchin system on

a cylinder and the spectral curve of a periodic monopole: the former has a periodic t and

non-periodic s, the latter has a periodic s and a non-periodic t.

The symplectic transformations will act both on the spectral manifold L and on the

associated line bundle. Because of the one-to-one correspondence between the spectral

data and the tt∗ geometry, one may suspect the symplectic action should lift to an action

over the tt∗ geometries, and hence on the corresponding supersymmetric physical theories.

Indeed, the lift coincides with the well-known notion of Nahm transform. We will discuss

the Nahm transform and its relation to the tt∗ geometry in the next section. For now, we

would like to examine a more direct physical interpretation of the symplectic action.

Let’s start with a standard (2, 2) LG model, defined by some superpotential W (Ya, ti).

We can promote the parameters ti to chiral fields Pi, and consider a new LG model with

superpotential

W (Ya, Pi, t̃i) = W (Ya, Pi) +
∑
i

t̃iPi (4.24)

14To avoid misunderstandings, we stress that L is defined as a submanifold, that is, as an abstract

manifold together with a Lagrangian embedding L ι−→ S; in particular, this means a definite choice of which

coordinates we call ti’s (i.e. which coordinates are interpreted as couplings of the QFT).
15More precisely, we mean the following: when U is a group homomorphism, besides a symplectomor-

phism, one canonically identifies the Lagrangian submanifold U(L) as the spectral manifold of the tt∗

geometry of another supersymmetric QFT, thus inducing a group action on the field theories themselves.

It would be interesting to see whether one can interpret in a similar way the action of more general sym-

plectomorphism.
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The F-term equations give us

t̃i + ∂PiW (Ya, Pi) = 0 ∂YaW (Ya, Pi) = 0 s̃i = Pi (4.25)

Thus the spectral manifold of the new model is related to the spectral manifold of the old

model by the basic symplectic transformation s̃i = ti, t̃i = −si.
This can be thought of as a functional Fourier transform at the level of chiral super-

fields, acting on path integrals as

Z[ti]→ Z̃[t̃i] =

∫
DP ge

∫
d2θ

∑
i t̃iPiZ[Pi] (4.26)

It is not hard to check that repeating this step, brings us back to the original theory, so

this is an order 2 operation.

More generally, we can consider a model with superpotential

W (Ya, Pi, t̃i) = W (Ya, Pi) +
∑
ij

Aij t̃it̃j +Bij t̃iPj + CijPiPj (4.27)

to obtain more general symplectic transformations.

Inspired by the Fourier transform, we can describe the action of Sp(2g,C) on the

(2, 2) theories in the following way. Let ωs ≡ (q1, q2, · · · , qg, p1, · · · , pg) be usual canonical

operators acting in the Hilbert space L2(Rg), and let

U =

(
A B

C D

)
∈ Sp(2g,C). (4.28)

Since Sp(2g,C) is the complexification of USp(2g), the linear transformation

ωs 7−→ Ust ωt, (4.29)

is the complexification of an unitary transformation of L2(Rg), and it is implemented by

an invertible operator U . Consider its kernel in the Schroedinger representation

exp
[
κ(q′i, qj ;U)

]
= 〈q′i |U | qj〉. (4.30)

Then the action of U ∈ Sp(2g,C) on the space of (2, 2) theories (modulo D-terms) is

given in terms of effective superpotentials as

W (ti) 7−→WU (t′i), (4.31)

where

exp

(
−
∫
d2z d2θWU (t′i)

)
=

=

∫
TFT path
integral

[dPj ] exp

(
−
∫
d2z d2θ

[
W (Pj)− κ(t′i, Pj ;U)

])
. (4.32)
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We claim that the spectral manifold LU of the transformed (2, 2) model WU (t′i), as

defined is precisely U(L), where U : C2g → C2g is the linear map

t′i = Aijtj +Bijsj ,

s′i = Cijtj +Dijsj .
(4.33)

In this definition we do not specify the precise form of the D-terms for the new theory.

Rather, we consider the action of the symplectic transformation on the space of (2, 2) QFTs

modulo D-term deformations, including possibly integrating away some of the degrees of

freedom if possible. In fact, the detailed form of the D-terms is irrelevant for tt∗, and we

are interested not in the full effective action S[P i] but only in its topologically non-trivial

part16
∫
d2θW (P i)dual.

It is not hard to extend this type of construction to the other types of theories with four

super-charges we consider in this paper, by seeking transformations which reduce to the

above symplectic transformations at the level of a low-energy (2, 2) LG description. The

most important example are the periodic theories associated to Abelian flavor symmetries.

If we gauge some flavor symmetries, we end up promoting the twisted masses µa to (twisted)

chiral super fields σa with linear (twisted) F-term couplings
∑

a taσa to the FI terms.

Thus we recover the symplectic transformation relating periodic monopole geometries and

Hitchin systems on cylinders.

In the special case of 3d periodic geometries, which arise from 3d N = 2 gauge

theories compactified on a circle of finite size to a 2d theory with (2, 2) symmetry, the

Sp(2g,Z) action on the spectral curve lifts all the way to Witten’s Sp(2g,Z) [81] action on

3d SCFTs equipped with a U(1)g flavor symmetry, generated by the operations of gauging

a flavor symmetry and of adding a background CS couplings. See [50] for a review and

further references.

4.5 A higher dimensional perspective

The example of the 3dN = 2 gauge theories is actually very instructive. Although Witten’s

Sp(2g,Z) [81] action can be defined directly in 3d terms, it is more elegantly described as

the action of four-dimensional electric-magnetic duality on half-BPS boundary conditions

for a free Abelian gauge theory with eight supercharges [82].

It is simple and instructive to pursue this analogy here. Let’s go back again to the

2d (2, 2) LG models with some parameters ti which enter linearly in the superpotential

W (Ya, Pi). This time, instead of promoting the ti to 2d chiral super fields, we can promote

them to the boundary values of some free 3d hypermultiplets.

More precisely, consider a set of free 3d hypermultiplets, decomposed into pairs of com-

plex scalars (Pi, P̃i), rotated into each other by an Sp(2g) flavor symmetry. The simplest

half-BPS boundary condition B for free hypers sets Dirichlet b.c. for the P̃i and Neumann

for the Pi. The boundary value Pi|∂ of the Pi behaves as a 2d chiral multiplet. If we

add the 2d LG theory at the boundary and couple it to the 3d system through a super-

potential W (Ya, Pi|∂) we obtain a deformed half-BPS boundary condition, which roughly

16We write the non-trivial part of the action as an F -term. Of course, it may be a twisted F -term as

well. The examples in appendix A of [8] have actually twisted dual superpotentials.
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sets P̃i = ∂tiW . In other words, the boundary condition forces the hypermultiplet scalars

(Pi, P̃i)|∂ at the boundary to lie on the spectral Lagrangian manifold L, with the identifi-

cation (Pi, P̃i)|∂ = (ti, si) (see [49] for an higher-dimensional version of this construction).

Up to D-terms, the map from 2d theories to half-BPS boundary conditions is invert-

ible. Define a boundary condition B̃ by Dirichlet b.c. for the Pi and Neumann for the

P̃i. If we put the 3d theory on a segment, with our boundary condition at one end and B̃

at the other end, we recover the original 2d theory. At this point, the symplectic action

on 2d theories has an obvious interpretation in the language of half-BPS boundary condi-

tions: it is the action of the (complexified) hypermultiplet flavor symmetries on half-BPS

boundary conditions.

It is easy to extend this to other situations:

• A 2d (2, 2) theory with Abelian flavor symmetry U(1)g can be transformed into a

boundary condition for a free N = 4 3d gauge theory: start with Neumann b.c.

for the gauge fields and couple them to the 2d degrees of freedom at the boundary.

The inverse operation involves a segment with Dirichlet b.c. for the gauge field. If

we dualize the 3d gauge field we obtain an hypermultiplet valued in C × C∗ and

proceed as before. The duality transformation acts on boundary conditions as a

gauging/ungauging of the Abelian flavor symmetry. This is related to the Nahm

transform relating periodic monopoles and periodic Hitchin systems.

• A 3d N = 2 theory with Abelian flavor symmetry U(1)g can be transformed

into a boundary condition for a free N = 2 4d gauge theory. The bulk theory

has an Sp(2g,Z) group of electric-magnetic duality transformations which acts on

boundary conditions. This is related to the Nahm transform relating doubly peri-

odic monopoles.

• A 4d N = 1 theory with Abelian flavor symmetry U(1)g can be transformed into

a boundary condition for a free N = 1 5d gauge theory. The 5d gauge theory can

be dualized into a self-dual two-form. The duality transformation acts on boundary

conditions as a gauging/ungauging of the Abelian flavor symmetry. This is related to

the Nahm transform relating triply periodic monopoles and triply periodic instantons.

Some of these examples we already encountered. Some we will encounter in the next

sections. It is useful to point out that in this setup the bulk theory is always free and thus

well-defined even in 5d.

4.6 Generalized Nahm’s transform and the tt∗ geometry

In the previous two sections we have seen that the tt∗ equations for ordinary, periodic, and

doubly-periodic systems are the higher dimensional generalizations of, respectively, Hitchin,

monopole, and self-dual Yang-Mills equations. All these geometries get unified in the

concept of hyperholomorphic connections on U(N)-bundles over a hyperKähler manifold

M [17–20], which is possibly invariant under a suitable group of continuous isometries ofM,

which reduces the number of coordinates (parameters) on which the geometry effectively

depends, as well as of discrete isometries which lead to periodicities of various kinds.
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An important tool in the theory of hyperholomorphic bundles and connections is the

generalized Nahm transform [29–36], which relates hyperholomorphic bundles on certain

dual pairs of hyperKähler manifolds (M,X ). The duality typically proceeds by defining a

family of Dirac operators /Dx onM parameterized by a point x ∈ X and then constructing

an hyperholomorphic connection on X from the kernel of the Dirac operators. A prototyp-

ical example of generalized Nahm transform is the Fourier-Mukai transform [36, 37] where

M and X are a dual pair of Abelian varieties.

Well known simple examples of the Nahm transformation relate monopole solutions

on R3 to solutions of Nahm equations, periodic monopole solutions to solutions of Hitchin

systems on a cylinder, instantons on R4 to solutions of algebraic equations, etc. In all

cases where the spectral data can be defined, the generalized Nahm transform acts as a

symplectic transformation on the spectral manifold.

It is not hard to produce a long list of pairs of physical systems (TM, TX ) with four

supercharges with the property that the corresponding tt∗ geometries are hyperholomorphic

connections related by a Nahm transformation. This is particularly easy because many

examples of Nahm transformations arise in well-known systems of intersecting D-branes in

string theory. In all cases the two theories (TM, TX ) are always related as we described

above, by promoting some background couplings in one theory to dynamical degrees of

freedom in the other theory. For example, if a periodic monopole geometry is associated to

a U(1) flavor symmetry of TM, then TX will be obtained by gauging that flavor symmetry,

and the tt∗ geometry associated to the corresponding FI parameter gives the dual solution

of a Hitchin system on a cylinder.

We would like to explain now briefly that the generalized Nahm transformation always

coincides with the calculation of the tt∗ geometry for a certain physical system and that

the relation with a Fourier-Mukai transform also has a natural physical interpretation in

the language of half-BPS boundary conditions for theories with eight supercharges.

Much of the structure of the tt∗ geometry follows directly from general considerations

about supersymmetric quantum mechanics (SQM) with four supercharges. In general, we

have a Z2-graded Hilbert space H, with grading operator (−1)F , and a family of four odd

Hermitian supercharges {Qa(t)}t∈X , a = 1, . . . , 4, depending on F-term-type parameters t

taking value in some space X . The Qa(t)’s satisfy the susy algebra

{Qa(t), Qb(t)} = δabH(t). (4.34)

The tt∗ geometry computes the Berry connection on the bundle over X of the zero-

eigenvectors of H(t), which, as reviewed in the previous sections, is a hyperholomorphic

connection (or a dimensional reduction thereof).

There is a simple interpretation of the Berry connection on the bundle of vacua. If

we promote the parameters t to dynamical superfields, with a very slow dynamics, the

Berry connection encodes the effect of integrating away the original degrees of freedom

in a Born-Oppenheimer approximation protected by supersymmetry. Remember that a

massless Euclidean Dirac operator /D, coupled to a gauge/gravitational background, in

even space-time dimensions D = 2m, defines a SQM system with two supercharges Q1, Q2
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under the dictionary

γ5 ↔ (−1)F , /D ↔ Q1, iγ5 /D ↔ Q2, /D2 ↔ H. (4.35)

The supersymmetry of this SQM system enhances to 4 supercharges precisely if D = 4n, the

gravitational background is hyperKähler, and the gauge connection is hyperholomorphic (in

the particular case of D = 4 this means (anti)self-dual). Indeed, under these conditions the

Hamiltonian /D2 is invariant under a Sp(2) R-symmetry, which geometrically corresponds to

the centralizer of the holonomy group in SO(D). Thus the tt∗ geometry encodes precisely

the data required to define a low-energy supersymmetric dynamics on the parameter space

X of the original theory.

Parsing through the definitions of the generalized Nahm transform (or even of the

standard Nahm transform) makes it clear that the basic steps involving the Dirac operators

/Dx simply coincides with the calculation of the Berry connection for the N = 4 SQM

associated to these Dirac operators. In other words, the Nahm transform emerges as

expected from making the parameters of an N = 4 SQM dynamical.

At this point, we can mimic our previous discussion by making the parameters t

dynamical not as 1d degrees of freedom, but as boundary values of 2d degrees of freedom.

We can add a direction to our system, and promote our 1d system with four supercharges

to an half-BPS boundary of a 2d system with eight supercharges. We can consider a 2d

(4, 4) non-linear sigma model with target space X defined on a half-space, and couple the

boundary values of the 2d degrees of freedom Ti to the original 1d N = 4 SQM in the

obvious way. This produces a half-BPS17 brane B for the 2d (4, 4) non-linear sigma model.

This brane obviously captures the same protected information as the original 1d SQM.

For example, we can consider the 2d theory on a segment, with B boundary conditions at

one end and a D0 brane at the other end, i.e. Dirichlet boundary conditions Ti = ti at

the other end. This quantum mechanical system has the same ground states and Berry

connection as the original system.

On the other hand, we can pick a different D-brane D at the other end of the segment,

and thus find a different low energy N = 4 quantum-mechanical system and a different tt∗

geometry associated to the pair (B,D). For example, we could pick D to be a space-filling

brane in X . Then the 1d system is simply the SQM on X . If X has a mirror M, we can

pick a family of branes Dm dual to D0 branes in M and thus obtain a family of SQM

whose Berry connection is a hyperholomorphic connection on M.

This is just the action of mirror symmetry on half-BPS branes in the (4, 4) non-linear

sigma model. Mirror symmetry can be interpreted as a Fourier-Mukai transformation, with

a kernel which defines a special BPS “duality interface” between the X and M non-linear

sigma models.

4.7 An explicit example

The above structures may be elementarily illustrated in a 1d N = 4 Landau-Ginzburg

model which, as discussed above, may be identified with a Dirac operator coupled to a

17More precisely a (B,B,B) brane, a brane which is type B in each complex structure for the target.
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hyperholomorphic connection. For simplicity we assume there is just one chiral field Y .

Identifying the SQM Hilbert space with the space of square-integrable differential forms

on C, the supercharges in the Schroedinger representation are [38]

Q̄ = ∂̄ + ∂W∧, Q = ∂ + ∂̄W̄∧ (4.36)

together with their Hermitian conjugates. The vacuum wave-functions are 1-forms

ψj1 dY + ψj2 dȲ , (4.37)

and the solutions to the zero-energy Schroedinger equation HΨ = 0 may be identified with

solutions of the negative-chirality Euclidean Dirac equation in R4 ' C2,

1

2
(1− γ5) /DΨ = 0, (4.38)

or, more explicitly, (
∂Ȳ ∂Z̄ − ∂YW

∂Z + ∂Ȳ W̄ −∂Y

)(
ψj1
ψj2

)
= 0, (4.39)

which are invariant under the translations in the additional complex coordinate Z (which

may be assumed to take value in a compact torus). The Dirac operator in eq. (4.39) is

coupled to a U(1) connection on C2

AZ = ∂Ȳ W̄ , AY = 0. (4.40)

which is self-dual. Indeed,18

/D− /D+ ≡

(
∂Ȳ ∂Z̄ − ∂YW

∂Z + ∂Ȳ W̄ −∂Y

)(
−∂Y −∂Z̄ + ∂YW

−∂Z − ∂Ȳ W̄ ∂Ȳ

)

=
(
− ∂Z̄∂Z − ∂Ȳ ∂Y + |∂YW |2

)
12.

(4.41)

Given a family Aµ(t) of self-dual U(N) connections depending on parameters ti, the

Nahm procedure requires to solve the chiral Dirac equation

(1− γ5)γµ
(
∂µ +Aµ(t)

)
Ψj = 0. (4.42)

In the present LG example the connection is Abelian, N = 1, and the ti’s are the couplings

in the superpotential W . The normalizable zero-modes Ψj ,which are automatically invari-

ant by translation in the dumb coordinate Z, define a bundle over parameter space which is

endowed with the natural induced connection. By definition, this is the Nahm transformed

connection of the LG one (4.40). Since the zero-modes Ψj are precisely the susy vacua,

the (translationally invariant) Nahm bundle is the susy vacuum bundle, whose rank k is

the Witten index of the LG model. Thus the Nahm connection coincides with the tt∗ one.

By general tt∗ theory, the connection is hyperholomorphic and invariant by translation in

half the directions.
18 Here /D± = (1− γ5) /D/2.
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Now we take this tt∗ geometry as the definition of a new N = 4 SQM system, by

viewing the Dirac operators coupled to the tt∗ Berry connection as the new supercharges.

For instance, for the one-dimensional family of LG models W (Y ) = W0(Y ) − PY ,

parametrized by the coupling P , the supercharge corresponding to /D− is

/D−
∣∣∣
tt∗
dual

=

(
DP −CP + Y

CP − Y −DP

)
, (4.43)

where now Y is a free parameter (a dual coupling). Note that the connection in eq. (4.43)

satisfies the tt∗ equations (with the same tt∗ metric) for all values of Y . The equation for

the susy vacua of the dual theory

Q
∣∣∣
tt∗
dual

Ψ ≡ /D−
∣∣∣
tt∗
dual

Ψ = 0 (4.44)

has a single normalizable solution which defines the vacuum line bundle L over the space

CY ×CZ which is invariant by translation in the fictitious Z direction. The tt∗ connection

on L is just JdW , where J is the quaternionic imaginary unit in H ' C2. We have thus

recovered the original LG model.

We close this subsection noticing that while eq. (4.44) has (for any given value of

Y ) a single normalizable solution, it has several physically interesting non-normalizable

solutions. Indeed, let Π be a D-brane amplitude of the original LG model with phase

ζ = eiθ. It is easy to check that the ‘right spinor’

Ψ =

(
Dt Π

Ct Π

)
≡ −ζ

(
Ct Π

Dt Π

)
, (4.45)

satisfies the tt∗-dual chiral Dirac equation at Y = 0

/D−
∣∣∣
tt∗ dual

Ψ = 0. (4.46)

4.8 Review of the flat Nahm transform in R4n−k × T k

The Nahm transform was originally introduced as a generalization of the ADHM con-

struction of U(N) self-dual connections in R4 [39]. One looks for instantons in the flat

hyperKähler space R4 which are invariant under a group of translations Λ ⊂ R4 [35]. As a

group, Λ is isomorphic to Rk × Zl for some k, l with k + l ≤ 4; the Λ-invariant instantons

may be seen as field configurations of a (4− k)-dimensional theory which are periodic in l

directions, or equivalently theories defined on the quotient (4−k)-fold M ≡ R4/Λ . It is well

known that for k = 1, 2, 3 and 4, the self-dual Yang Mills equations reduce, respectively,

to monopole [40], Hitchin [7], Nahm [29–31], and the ADHM algebraic equations [39]. The

monopoles (resp. Hitchin, or Nahm fields) are then taken to be periodic in l directions.

Let Λ∨ ⊂ (R4)∨ be the dual group of Λ, i.e.

Λ∨ = {α ∈ (R4)∨ | α(λ) ∈ Z ∀λ ∈ Λ} ' R4−k−l × Zl. (4.47)

The (flat) Nahm transform maps a U(N) instanton on R4 invariant under Λ into a U(K)

instanton on the dual (R4)∨ invariant under the dual group Λ∨ [35], which for k = 0, 1, 2, 3, 4
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concretely means a l-fold periodic solution to, respectively, the ADHM, Nahm, Hitchin,

monopole, and YM self-dual equations. The dual solutions are allowed to have singularities

of the appropriate kind [35].

Comparing with section 3, we see that the one coupling tt∗ geometry corresponds to

this R4/Λ setting with

• Λ = R2 for ordinary (2, 2) models;

• Λ = R× Z for periodic models [41];

• Λ = R× Z2 for 3d version of periodic models [42]

• Λ = Z2 for doubly periodic models [43–45].

We review the R4/Λ construction for Λ a rank 4 lattice, so that M is a torus T 4. All

other cases, including the ones relevant for this paper, may be obtained from the T 4 one by

sending some periods of the torus to either zero or infinity. The dual torus will be denoted

as T̃ 4 and its coordinates as t̃µ. By definition, the dual torus T̃ 4, which can be viewed

as T-dual of T 4, parametrizes the family of flat Abelian connections on the original T 4.

Given a self-dual U(N) connection A on T 4 we may twist it by the flat U(1) connections,

forming the family of Dirac operators

/Dt̃ = γµ
(
∂µ +Aµ + 2πi t̃µ) (4.48)

parametrized by points t̃ ∈ T̃ 4. The twisted connection is still self-dual, and /Dt̃ may be seen

as a supercharge of a N = 4 SQM system to which tt∗ geometry applies. Assuming all susy

vacua have the same (−1)F grading, over the ‘coupling constant space’ T̃ 4 we have a vacuum

bundle, of rank K equal to the Witten index (≡ ind /Dt̃) and whose Berry connection

is hyperholomorphic, as we reviewed in the previous sections. This Berry connection is

precisely the Nahm transform of Aµ.

From the SQM interpretation, it is clear that the Nahm transformed connection has

singularities of a rather standard form: the singularities appear at the loci in coupling

constant space T̃ 4 where the energy gap vanishes and the SQM vacuum states mix with

the continuum. tt∗ is an IR description, and as all IR descriptions, should get in trouble

at points where new light degrees of freedom appear.

All the above may be generalized to the higher dimensional case. We have a pair of

dual even-dimensional Abelian varieties A and A∨ each one parametrizing the flat U(1)

connections of the other one. A, A∨ are flat hyperKähler manifolds. A hyperholomorphic

connection on A may be twisted by the flat Abelian family parametrized by A∨, giving a

family of N = 4 SQM models whose tt∗ geometry defines a hyperholomorphic connection

on A∨ which is the Nahm transformed one. At the level of the correspondent coherent

sheaves, it coincides with the Fourier-Mukai transform [36, 37].

4.9 Some examples from D-branes

As highlighted in this section, much of the tt∗ structure only relies on an N = 4 super

quantum mechanics. Some structure, of course, hinges on having a (2, 2) 2d theory: for
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example the spectral Lagrangian is tied to the twisted effective superpotential of the 2d

theory in flat space. The notion of topological gauge for the tt∗ connection is also closely

related to the existence of a 2d cigar geometry which maps chiral operators to states on

the circle. Still, the structure which remains in a 1d setup is rather interesting, especially

if we consider the generalization to 1d-3d systems, i.e. to half-BPS line defects in 3d N = 4

theories. Such defects preserve the same supersymmetry of an N = 4 SQM and may have

flavor symmetries or parameters which give rise to a tt∗ geometry. This is essentially a

dimensional reduction of the 2d-4d systems reviewed in a previous section.

The first obvious example is a massive 1d chiral field. There are three real mass

parameters mi and the 2d calculations make it clear that the tt∗ geometry is a charge 1

U(1) Dirac monopole in R3
m. Notice that the Higgs field in the tt∗ monopole geometry is

essentially the moment map for the flavor symmetry. This is why it diverges at ~m = 0,

where the chiral field is massless.

In order to obtain a smooth SU(2) monopole solution we can look at a SQM with CP 1

target, study the dependence on the SU(2)m flavor mass parameters ~m. The theory has

two vacua which when the mass parameter is turned on roughly corresponding to the north

and south pole of CP 1. At large |~m|, the dynamics in the two vacua is well approximated

by a single free chiral of charge ±1. The theory has no non-compact directions at any

value of ~m. Thus the tt∗ geometry for ~m is a smooth SU(2) monopole with Abelian charge

(1,−1) at large ~m, i.e. a single smooth SU(2) monopole. Notice that the asymptotic values

of the Higgs field are given by the value of the moment map for (the Cartan sub algebra

of) the SU(2) flavor symmetry, which are ±t, where t is the FI/Kähler parameter for the

CP 1 theory. Thus t controls the asymptotic values of the monopole geometry.

Conversely, the tt∗ geometry for the FI/Kähler parameter t is given by a solution of

SU(2) Nahm equations on R+, which are the Nahm transform of a pair of U(1) Dirac

monopoles of charge 1, at positions ±1
2 ~m. At large t the two vacua again correspond

roughly to the north and south poles of CP 1. If we use a GLSM description, the two vacua

require the three scalar fields in the gauge multiplet to be equal to ±1
2 ~m. We expect to

find a solution of Nahm equations with a Nahm pole at the origin of R+, and constant

diagonal vevs (1
2 ~m,−

1
2 ~m) at infinity.

In order to generate more examples, we can look at the standard Hanany-Witten

brane setup, with D3 branes stretched between NS5 branes, probed by a transverse D1

brane. Indeed, this setup gives 3d N = 4 field theories probed by 1d line defects, which

can be interpreted as coupling the 3d theories to some 1d GLSMs or as the 1d version of

Gukov-Witten monodromy defects.

Depending on the choice of boundary conditions on the D1 brane, which may be

realized concretely by having it end on a separate NS5 brane or D3 brane on a plane

parallel to the system, one can get 1d defects with mass parameters corresponding to a

motion parallel to the NS5 branes, of FI parameters corresponding to a motion along the

D3 branes. For example, the 1d chiral can be engineered through a single semi-infinite D3

ending on a single NS5 brane, with a D1 brane with fixed position ~m along the NS5 brane

transverse directions. The t geometry for the 1d CP 1 model can be engineered by two

semi-infinite D3 branes ending on a single NS5 brane, with a D1 of fixed position t along

the D3 branes. Then ~m is the separation between the D3 branes.
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In order to engineer the ~m tt∗ monopole geometry directly, we could look at a single

D3 brane stretched between two NS5 branes, with a D1 probe of fixed position ~m along the

NS5 brane transverse directions. Then t is the separation between the NS5 branes. This

setup realizes the smooth SU(2) monopole geometry, but not through a CP 1 1d model.

Instead, the physical interpretation of the brane system seems to be that of a single 1d chiral

coupled to a 3d U(1) gauge field. It would be interesting to study this simple field theory

model further: the prediction that such model should have two vacua, corresponding to

the D1 ending on either NS5 brane, is reminiscent to a somewhat mysterious phenomenon

which occur for certain surface defects [15].

In general, the tt∗ geometry for the brane systems is recovered by S-duality: the

D1 brane becomes an F1 string, whose endpoint explores the supersymmetric gauge

fields on a system of intersecting D3 and D5 branes: the gauge fields on the D3 branes

give the solutions of Nahm equations, the gauge fields on the D5 branes give the BPS

monopole solutions.

The world volume theory of the D1 brane could be interpreted as the 2d (4, 4) theory

coupled to the 1d system as in section 4.5, with the choice of boundary conditions on the

other end deciding which Nahm dual description emerges at the end.

The brane construction reviewed in this section has obvious generalizations which are

commonly used to describe higher-dimensional theories and defects:

• A D2 probe of a D4-NS5 system engineers 2d theories or 2d-4d systems. The bound-

ary conditions on the other end of the D2 probe correspond to gauging/ungauging a

2d flavor symmetry. The D2 probe theory is exactly the 3d free YM theory discussed

in section 4.5. Lift to M-theory gives the spectral data of the system.

• A D3 probe of a D5-NS5 system (or a more general (p, q) fivebrane web) engineers

3d theories or 3d-5d systems. The D3 probe theory is exactly the 4d free YM theory

discussed in section 4.5. T-duality together with a lift to M-theory produces the

spectral data of the system. We will discuss this in detail in section 6.3.

• A D4 probe of a D6-NS5 system (the Hanany-Zaffaroni setup [84]) engineers 4d

theories or 4d-6d systems. The D4 probe theory is exactly the 5d free YM theory

discussed in section 4.5. Double T-duality together with a lift to M-theory produces

the spectral data of the system. Single T-duality gives a periodic (p, q) fivebrane web.

We will discuss this in detail in section 8.

5 tt∗ geometry in 3 dimensions

In this section we would like to characterize the geometry of vacuum bundles in theories

in 3 dimensions, with N = 2 supersymmetry. More precisely we are interested in studying

the vacuum geometry when the space is taken to be a flat T 2 with periodic boundary

conditions for fermions, so as to preserve all supersymmetries. Our strategy will be as

follows. We first clarify the structure of the parameter space taking into account that the

space is T 2. We then view the 3d theory as a special case of 2d N = (2, 2) theories with
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Figure 8. In the 2+1 dimensional theory we take the space to be T 2 comprised of two circles

(S1
a, S

1
b ) of lengths (R, β) where we turn twisted by flavor symmetry by y, x respectively (by turning

on background field A′ coupling to the flavor current).

infinitely many fields, and use this relation to find the tt∗ geometry in 3 dimensions. We

shall see that they correspond to generalized monopole equations. We then show how this

data can be used to compute the partition function of the theory on infinitely elongated

S3 and S2 × S1 composed of two semi-infinite cigars joined in two different ways.

5.1 The parameter space

Consider a 3d theory with a global U(1) symmetry. Furthermore we consider the space

to be a flat T 2. In such a case we can associate a three parameter deformations of the

theory (x, y, z) where z ∈ R denotes the twisted mass associated to the U(1) symmetry

and (x, y) ∈ T 2 denote the fugacities for the U(1) symmetries around the cycles of the T 2.

Another way of saying this is to imagine weakly gauging this U(1) symmetry. In the N = 2

U(1) vector multiplet we have a U(1) gauge field A′ and a scalar φ . Then

〈φ〉 = z∫
S1
a

A′ = x,

∫
S1
b

A′ = y,

where S1
a,b denote a basis for the two 1-cycles of T 2. In the limit we turn off the gauge

coupling constant, we can view (x, y, z) as parameters in the deformation space of the

theory (see figure 8).

If we have a rank r flavor symmetry, the same argument, i.e., weak gauging and giving

vev to the adjoint φ in the Cartan subalgebra of the flavor group and to Wilson lines in

the Cartan torus, shows that we have a parameter space

(T 2 × R)r.
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Taking into account the full symmetry of the problem amounts to dividing the above space

by the action of the Weyl group of the flavor symmetry.

Note that in presence of a U(1) gauge symmetry we have, associated with it, a global

U(1) symmetry (related to monopole number) where the U(1) current is J = ∗F . The

twisted mass in this case corresponds to FI-term for the U(1) gauge symmetry, while the

coupling constant corresponds to coupling the U(1) gauge field A to a background U(1)

gauge field A′ with a Chern-Simons interaction∫
A′ ∧ F

and the vevs of A′ along the two S1’s give the (x, y) parameters. The FI parameter plays

the role of m. At any rate, applying the logic of the previous discussion (as a special case)

to a theory which includes a gauge symmetry U(1)r will lead again to a parameter space

(T 2 × R)r.

5.2 Derivation of 3d tt∗ geometry from 2d perspective

In this section we show how to derive the equations for tt∗ geometry for 3d by viewing it

from the 2d perspective. What we will show is that from the 2d perspective for each U(1)

symmetry the fundamental group of the parameter space receives an extra Z, since the 2d

superpotential restricted to that sector will pick up an extra term nt where n ∈ Z and t is

a 2d coupling associated to U(1). Once we show this, the structure of the 3d tt∗ falls in

the class discussed in sections 3 where we obtained the generalized monopole equations.

The argument for this is as follows: suppose we have a U(1) global symmetry in 3d.

Consider compactifying the theory from 3d to 2d on S1
a with fugacity y around the circle

for the U(1). Then we obtain a N = (2, 2) theory in 2 dimensions, which includes a chiral

deformation parameter given by

t = z + iy.

Note that t takes values on a cylinder because y is periodic. On a space R, this 2d theory

will in addition have sectors Hn corresponding to U(1) charge n. The supersymmetry

algebra has a central term in this sector given by nt. To see this, note that for a theory

in 3 dimensions, if we take the space to be R × R and consider a sector with flavor U(1)

charge n, the fact that we have turned on the twisted mass parameter would have implied

the central charge to be nz. Upon compactification of R to a circle S1
a turning on fugacity

y, given the holomorphic dependence of W on t, the central charge in the supersymmetry

algebra, which is the value of the superpotential in this sector, must be completed to nt, as

was to be shown. Therefore we are in the category of 2d theories where the vacua have a

shift symmetry along which W changes by an integer times a complex parameter and, as we

have already discussed, this leads to generalized monopole equations for the tt∗ geometry.

Note, in particular, that turning on the fugacity x around the second circle S1
b corresponds

to weighing the n vacua by

|α, n〉 → exp(2πixn)|α, n〉.

– 47 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
5

�
�� �

�

�

Figure 9. Vacuum states in the 3d theory |i〉a can be obtained by doing a path-integral on an

infinitely long solid torus, which is equivalent to an infinitely long cigar times a circle. The chiral

fields in 2d are obtained by wrapping the line operator along the circle S1
a, i.e. the circle in the solid

torus which is not contracted.

In other words

|α, x〉 =
∑
n

exp(2πinx)|α, n〉,

which is consistent with the definition of x-vacua discussed in section 3. We therefore see

that the tt∗ geometry for 3dN = 2 theories corresponds to generalized monopole equations.

5.3 Chiral algebra and line operators

Consider the 3d theory compactified on S1
a, on a circle of size Ra. This leads to an

N = (2, 2) theory in 2d. Let us take a generic case where we will have n vacua with

mass gap where n is the Witten index of the theory. From the 2d perspective we expect

to have a chiral algebra with n elements. These chiral fields should correspond to line

operators from the 3d perspective wrapped around S1
a. Clearly they are localized over a

point in 2d, so they could be in principle either point operators in 3d or line operators.

The fact that their coupling involves
∫
d2θ tiΦi, and the imaginary part of t is a global

parameter y having to do with the holonomy around the S1
a, shows that the operator must

be a loop operator wrapping S1
a and coupled to this global holonomy (see figure 9). Note

that the algebra they form will depend on the radius Ra.

In the case of supersymmetric gauge theories, these line operators correspond to su-

persymmetric Wilson lines. See a nice discussion of them in [47]. In particular in the case

– 48 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
5

of pure N = 2 Chern-Simons gauge theory, where the theory is equivalent to a topological

theory, this algebra is isomorphic to the Verlinde algebra. We will return to this discussion

after considering the partition functions of these theories on spheres which we now turn to.

5.4 Geometry of T 2 and partition functions on elongated S2 × S1 and S3

In this section we discuss the global interpretation of the partition functions computable

using tt∗ geometry in 3d. The geometry of the space is captured by the two-torus S1
a ×S1

b .

For most of the discussion we would be interested in a rectangular torus. In particular

if τ is the complex structure parameter for the torus, we take τ1 = 0, τ2 = Ra/Rb, in

other words τ = iRa/Rb. The reason for the choice of rectangular torus is that if we set

the τ1 6= 0 we would not have a reduction to a Lorentz-invariant 2d theory. One can in

principle also study this extension (which will induce some non-commutativity structure

from the 2d perspective if we are discussing any amplitude other than vacuum amplitudes),

but for simplicity we limit our discussion mainly to the rectangular case. In addition to

τ the geometry of the torus is characterized by its area A = RaRb. Clearly there is an

isomorphism of the theory which takes

(τ,A)→ (−1/τ,A),

by simply switching the role of the two circles.

There are two inequivalent ways we can view this theory as a 2d theory, depending on

whether we take S1
a or S1

b as part of the spatial direction of the 2d theory. Of course, the

geometry of the vacuum bundle does not depend on this choice. However, the tt∗ has more

information than just the vacuum geometry: it has also a choice of preferred sections for

the vacuum bundle given by semi-infinite cigar cappings of the theory. Let us take S1
b as

part of the 2d spatial directions which are taken to form a semi-infinite cigar inside which

the cycle S1
b shrinks. Then the preferred choice of the vacuum bundles are labeled by chiral

operators on the cigar:

|i〉a

as discussed before for the general case in 2d (see figure 9). The label a in the above state is

to remind us that this is the circle we have chosen not to shrink. Moreover this corresponds

to the fact that the line operators are wrapping the a-cycle S1
a. Similarly, we can consider

the 2d theory obtained by viewing S1
a as part of the 2d spatial dimensions and obtain the

states (see figure 10):

|j〉b.

If we change τ → −1/τ we come back to the same theory. In other words |i(τ)〉a should

be a linear combination of |j(−1/τ)〉b:

|i(τ)〉a = Si
j(τ)|j(−1/τ)〉b

More precisely we have, restoring the x, y-dependence

|i(τ), t = z + iy, x〉a = Si
j(τ)|j(−1/τ), t′ = z − ix, y〉b.
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Figure 10. The 3d vacuum states can be obtained by filling either of the two circles, leading to

two different bases for the vacua. In this figure |j〉b denotes the state obtained by inserting a line

operator wrapped around the b-cycle.

Si
j depends on all parameters, but here we are just exhibiting its dependence on τ . Note

that Si
j satisfies

Si
j(τ)Sj

k(−1/τ) = δi
k,

because this operation corresponds to π rotation in 3d (and in particular takes (x, y) →
(−x,−y)), and this acts trivially on the vacua (as can be seen by taking the large area limit

of a square torus and noting that this reflection can be generated by continuous rotations

for which the vacua are neutral). We can also consider the D-brane boundary conditions,

which are in 1-1 correspondence with the number of vacua (in a massive phase). Let Dc

denote one of the boundary states. We then have

Π
c(bb)
i = b〈Dc|i〉b.

Note that from the 3d perspective Π
c(bb)
i is given by a path-integral in a space with the

topology of a solid torus, whose boundary is a T 2 given by the D-brane state Dc. It is

useful to rewrite the boundary states |Dd(−1/τ)〉b in terms of |Dc(τ)〉a. First we have

to recall that Dc depends on ζ which determines which combination of supercharges it

preserves. In going from τ to −1/τ the values of ζ also changes, as discussed in eq. (3.26):

ζ̃ = C(ζ) ≡ 1+i ζ
ζ+i . Since the theories are the same, the boundary state should be a linear

combination of one another. In fact as we have already noted these boundary states satisfy
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Figure 11. The inner product on the Hilbert space restricted to the vacuum states can be repre-

sented by the path-integral on S2×S1 with infinitely elongated S2, where the chiral and anti-chiral

line operators are inserted at the two ends.

are sections of the Lax connection and therefore there must exist a constant matrix Ec
d

such that

|Dζ
c (τ), t = z + iy, x〉a = Ec

d |Dζ̃
d(−1/τ), t = z − ix, y〉b (5.1)

Note that repeating this operation is equivalent to a Z2 spatial reflection. This implies

that E4 = 1 (using the fact that the ground states all have even fermion number). In-

deed with a suitable choice of basis (adapted from the point basis in the IR) it can be

taken to be a diagonal matrix. For simplicity of notation we will not explicitly write he

corresponding phases. Also, we will not explicitly write the ζ in the definition of states.

Sometimes we choose one of the two preferred values ζ = ±1 which are the fixed points of

the transformation ζ 7→ C(ζ). We will return to the significance of this choice later.

We can then compute, as in the general 2d case, the 2d topological metric η and

Hermitian metric g:

η
(aa)
ij = a〈j|i〉a g

(aa)

ij
= a〈j|i〉a.

The topology of the space for both of these computations correspond to S2 × S1
a, where

S2 is a sphere with an infinitely elongated cylindrical neck. The computation of η, which

is a topological invariant, can also be done for a finite size sphere. For the computation of

the Hermitian metric the infinite size sphere is crucial. We can also consider the partition

function on S2 × S1
b where the role of a, b are exchanged. Just as in the general 2d case,

eq. (2.6), we have (see e.g. figure 11 for the metric g)

η
(aa)
ij = Π̂

c(aa)
j Π

c(aa)
i

g
(aa)

ij
= Π̂

c(aa)†
j Π

c(aa)
i .

We can also consider capping different circles on the two sides, producing the 3d

topology of S3. Notice that now there is no purely topological version, because S3 does

not admit an SO(2) holonomy metric, and thus the amplitude only makes sense when we
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consider a S3 with an infinitely long flat neck. Moreover, whether we choose the topological

or the anti-topological theory on either side, the computation is hard. Let us then consider

the inner product of the vacua thus obtained. We define

Sji(τ) = a〈j(τ)|i(−1/τ)〉b = Sj
k(τ) b〈k(−1/τ)|i(−1/τ)〉b = Sj

k(τ) η
(bb)
ki .

The expressions of Sij and Sij can be obtained from Sij using the reality matrix Mk
i

discussed in the 2d context, so we will restrict our attention to Sij . Note that Sij can be

viewed, from the 3d perspective, as the result of gluing two solid tori, each with infinitely

long necks, one of which has line operator i inserted along its center corresponding to the a-

cycle, and the other one with the line operator j inserted along the b-cycle. In other words,

topologically the two line operators are Hopf linked. This is familiar from the structure of

Chern-Simons theory [48]. Of course this is not accidental: in the case of N = 2 Chern-

Simons theory with no matter, the theory is equivalent to N = 0 Chern-Simons theory,

for which the line operators are the Wilson loop observables. In that context Sij is the

Hopf link invariant associated to loops indexed by the representations i and j. This in

turn is the modular transformation matrix of the conformal blocks of the associated 2d

RCFT. Unlike the topological case, where Sij does not depend on any parameters, in the

more general case we are considering Sij does depend on parameters of the theory and in

particular on τ (see figure 12).

In order to compute Sij we use the fact that we can compute Π
c(aa)
i as discussed before.

Therefore it suffices to write Sij in terms of them. We have

Π
c(aa)
i (τ) = a〈Dc(τ)|i〉a = Si

j(τ) 〈Dc(−1/τ)|j〉b = Si
j(τ) Π

c(aa)
j (−1/τ). (5.2)

In other words, we have

Si
j(τ) = Π

c(aa)
i (τ)[Π(aa)−1

(−1/τ)]cj , (5.3)

leading to

Sij = Π
c(aa)
i (τ)[Π(aa)−1

(−1/τ)]ck η
(bb)
kj .

The vacuum amplitude is given by

S00 = Π
c(aa)
0 (τ)[Π(aa)−1

(−1/τ)]c0̂ (5.4)

where 0̂ denotes the spectral flow operator dual to the identity. Note that for the case of

a single vacuum theory we get

S00 = Π(aa)(τ)Π(aa)−1
(−1/τ).

This expression is similar to the expression of the partition functions for supersymmetric

amplitudes on ellipsoid S3
b for a theory of, say, free chiral theory, where instead of Π(aa)(τ)

one has the quantum dilog with τ = b2 where b is the squashing parameter. As we will

discuss later, this is not accidental: in a partial UV limit (similar to the β → 0 limit in 2d)

the Π(aa) reduces to quantum dilog. More generally we will argue in a later section that

eq. (5.4) is consistent with the results of [2] in their computation of the partition functions

on S3
b in terms of sums over chiral blocks, which in the formula above is the sum over c.
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Figure 12. The Sij can be viewed as the partition function on S3 with line operators inserted

at the two ends. This can be viewed as the Heegard decomposition of the S3: the gluing two

solid tori each with a line operator inserted and whose boundaries are identified by the τ → −1/τ

transformation, exchanging the two cycles of T 2.

5.5 Partition functions as gauge transformations

There is a different (but equivalent) interpretation of the partition functions on infinitely

elongated S2 × S1 and S3 which is more convenient in actual computations.

Let us consider first elongated S2 × S1
a. The elongated partition function is just the

component of the tt∗ metric

g
(aa)

00̄
.

There are two natural trivializations of the vacuum bundle over S1
a × S1

b namely the ones

given, respectively, by the topological and the anti-topological twisting on a cigar which

caps the circle S1
b . The vacuum bundle Berry connections in these two natural trivializa-

tions read {
D = ∂ + g∂g−1

D = ∂
and respectively

{
D = ∂

D = ∂ + g−1∂g
(5.5)

where g = g(aa) is the tt∗ metric. We see that the tt∗ metric g(aa) is nothing else than the

complexified gauge transformation mapping the Berry connection in the topological gauge

to the one in the anti-topological gauge.

The same kind of identification holds for the quantity Si
j defined in eq. (5.3), and hence

for the elongated S3 partition function. Again we have two preferred trivialization of the
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same vacuum bundle given by the states |i, τ〉a and |j,−1/τ〉b. In the first trivialization

the Berry connection A has the form in the left part of eq. (5.5) with g = g(aa), while in

the second one it is given by SA, where S is the π/2 rotation acting as

S : x→ y, y → −x, τ → −1/τ,

that is,

SAy(x, y, z, β,R) = Ax(y,−x, z,R, β),

SAx(x, y, z, β,R) = −Ay(y,−x, z,R, β),

SAz(x, y, z, β,R) = Az(y,−x, z,R, β).

Since the connections A and SA describe the same physical monopole in x, y, z space, they

are gauge equivalent, i.e. there is a complex gauge transformation S such that

SA = S AS−1 + S dS−1, (5.6)

This matrix S clearly coincides with the matrix Sj
i defined in eq. (5.3).

Another way to see this identification, is to consider the brane amplitude Πc at ζ = ±1.

As discussed around eq. (3.27), Πc and SΠc satisfy the same Lax equations ∇Πc = ∇̄Πc =

0, and in fact both form a fundamental system of solutions of these linear equations. Then

they are linear combinations of one another with constant coefficients. More precisely, since

they are written in different gauges, we must have

Πi
c = Ui

j SΠj
c (5.7)

where U is the (complexified) gauge transformation relating these two gauges. Comparing

with eq. (5.2), we get

Ui
j = Si

j , (5.8)

which is our identification.

This identifications allows us to compute the partition function from the Berry con-

nection without having to solve the Lax linear problem. In other words, we may read the

partition function on the infinitely elongated S3 directly from the tt∗ monopole configura-

tion in x, y, z space, without solving any additional partial differential equation.

The gauge viewpoint gives an alternative argument for the independence of the matrix

E mapping D-branes at τ to −1/τ , from all parameters, and how it can be set to be the

identity matrix. A priori, the Lax equations imply eq. (5.7) in the weaker form

Πa
i = Si

j SΠb
j Eb

a,

where E is a non-degenerate constant numerical matrix. In a theory with a mass-gap,

rescaling the masses to infinity both connections A and SA go to zero, hence S → 1, while,

using the point basis for the line operators and the corresponding thimble basis for branes,

both Π and SΠ approach the identity matrix. Then we remain with a diagonal E matrix,

which as discussed before satisfies

E4 = 1 diagonal in point/thimble basis, ζ = ±1. (5.9)
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5.6 Massive limits and topological line operator algebra

Consider 3d, N = 2 theories, which have a mass gap. Such theories in the IR flow to

trivial theories with no non-trivial local correlation functions. However, this does not

mean the theory is trivial: it could still hold interesting topological non-local observables.

The simplest examples of this kind are N = 2 pure Chern-Simons theories with no matter.

In such cases the theory in the IR is locally trivial and the only non-trivial observables are

the line operators associated with Wilson loops. Supersymmetric Wilson loops are rigid in

shape, but since this theory is equivalent to N = 0 Chern-Simons theory, we can dispense

with the condition of preserving supersymmetry and consider general Wilson loops, and

use the topological invariance of the theory to solve it, as was done by Witten [48].

We would like to study this same phenomenon in the general case, and consider in

addition the process of flow to the IR as well. In fact, if we consider the Hilbert space of

such a theory quantized in T 2, the flow to the IR corresponds to changing the area of T 2,

while preserving its shape, given by the complex modulus τ . In other words, we would be

studying the flow

(τ,A)→ (τ, etA).

It is natural to conjecture that, for all such theories with mass gap, we always end up with a

purely topological theory in the IR, for which the line operators we have been studying play

the role of non-trivial observables. In particular it is natural to conjecture that in this limit

Sij will become independent of τ and satisfies the usual properties familiar from the Verlinde

algebra theory. Moreover we conjecture that, as in the case of the Verlinde algebra [52],

the chiral ring becomes, in a suitable basis, an integral algebra whose multiplication table

is given by positive integers

Cjk
i = Njk

i ∈ Z+,

and that Sij diagonalizes the algebra which is equivalent to the statement that

λli =
Sil
S0l

satisfy the ring algebra

λliλ
l
j = Nij

k λlk,

where there is no sum in l in the above formula, but there is a sum in k in the r.h.s. .

Let us try to see to what extent we can recover these structures in our context. Consider

the N = 2 theory on T 2, and consider the set of line operators Φi. More specifically, we

will consider these line operators wrapped around the a or the b cycle of T 2 and denote

the corresponding operators by Φ
(a)
i , Φ

(b)
i . These two sets of operators act on the ground

states. In general they have different spectrum, because the radii are not equal. Moreover

the (x, y) are not zero. Let us therefore restrict attention to the case R1 = R2 = R, i.e.,

τ = i, and A = R2. Furthermore let us take x = y = 0. For this particular case the

spectrum of the two sets of operators is the same, because spatial rotation by π/2 is a

symmetry of this square torus, and represented by a unitary operator. Let us denote this

operator by U . Note that on the ground states:

U |i〉a = |i〉b
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which implies that

Sij = a〈i|j〉b = a〈i|U |j〉a

In other words the matrix elements of U can be identified with the matrix S. We will

thus denote U by S from now on.

From the fact that U acts on line operators taking the line operators around the a-cycle

to that on the b-cycle, we learn

SΦ
(a)
i S−1 = Φ

(b)
i .

Thus finding the S matrix, for τ = i amounts to finding the change of basis involved in

going from the basis of vacua for the a-cycle to that for the b-cycle. In particular, if we

know how Φ
(b)
i acts on the |j〉a we can compute the S-matrix (since the action of Φ

(a)
i on

|j〉a is known to be given by Cij
k|j〉a).

For the case where we are dealing with U(1) gauge theories, the Φ
(b)
i corresponding to

the line operator in the fundamental representation can be identified as the supersymmetric

version of

exp

(
i

∫
b
A

)
.

The insertion of this operator in the cigar geometry C, for the topologically twisted theory,

is equivalent to the insertion of the supersymmetrization of exp(i
∫
C F ). This operator

corresponds to changing the θ-angle of the 2d theory by

θ → θ + 2π.

In other words

Φ(b) ←→ O∆θ=2π

where O∆θ=2π is the operator changing the vacua by shifting θ by 2π. In other words, it is

the holonomy of the tt∗ connection acting on the vacua as we go around one of the cycles

of T 2 in the parameter space. We do know the eigenvalues of the O∆θ=2π, but that turns

out not to be enough to fix the action of it on the vacua. In particular, in principle this is

a complicated operator, which depends on solving the tt∗-geometry. However, it turns out

that in the A → ∞ limit, i.e. in the IR limit, it is easy to fix this operator: in this limit

the classical vacua corresponding to point vacua do not mix with each other, and so in the

point basis, the action of θ → θ + 2π is easy to find, as we will see in the example section.

In particular we will find that in the IR limit we get the explicit form of S. In this way it

is easy to check if the S diagonalizes the ring algebra, and we shall see that this is indeed

the case in the examples we will consider.

Before going to that, we make some preliminary comment on the 3d brane amplitudes

in general.

5.7 Generalities of 3d brane amplitudes

We have already discussed the structure of the D-brane amplitudes in the 2d context and

their singularity structure as a function of the spectral parameter ζ. We can now describe

how this structure changes in the 3d context. The standard essential singularity at ζ = 0,∞
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is intimately connected to the presence of a compact direction in the 2d tt∗. If one were

to look at a “1d” version of the tt∗ geometry, i.e. say at solutions of Nahm equations or

non-periodic monopoles, flat sections of the Lax connections would extend smoothly over

the whole twistor sphere parameterized by ζ.

Conversely, suppose we want to study the 3d tt∗ geometry with a standard, BPS,

Lorentz-invariant 3d boundary condition B3d and analyze the amplitude Π[B3d] in the usual

2d language. What is the 2d phase ζ associated to this problem? The 3d supercharges

can be collected into complex 3d spinors of specific R-charge ±1, which we denote as

Q±α . A BPS boundary condition preserves a chiral half of the 3d supercharges, of specific

eigenvalue for the 3d gamma-matrix σ1 in the direction orthogonal to the boundary. This

corresponds to a specific value of ζ. This is in agreement with the analysis in section 3.

Indeed, consider a brane wrapped on a square torus T 2: under a π/2 rotation of T 2 a

Lorentz-invariant brane amplitude should go to a brane amplitude of the same kind, and

this is possible only if ζ is a fixed point of the Cayley transform ζ 7→ C(ζ) in eq. (3.26). In

the conventions of section 3, where the periodic parameters xa, ya are the imaginary parts

of the holomorphic coordinates in the ζ = ∞ complex structure, cfr. eq. (3.18), the two

fixed points are ζ = ±1. Equivalently, the specific values of ζ corresponding to Lorentz-

invariant branes may be obtained by requiring that the Stokes discontinuities, eq. (3.54),

which are holomorphic functions of

x− i ζ+ζ
−1

2 y

behaves correctly under π/2 rotations and hence are functions of x+ iy (resp. x− iy). This

restriction on the values of ζ is also consistent with the analysis of the partition function

on an infinitely elongated S3 in the previous subsections which was based on ζ = ±1 brane

amplitudes. The special properties of the ζ = ±1 amplitudes will be checked in an explicit

example in section 6.1.3 below.

Upon compactification of the theory on a circle, it is probably possible to deform a

Lorentz-invariant 3d boundary condition to a non-Lorentz invariant version which preserves

a more general combination of the supercharges, and gives a flat connection for the spectral

connection at general ζ. This we expect, based on the fact that once we decompose the 3d

theory, in terms of 2d data, such a generic parameter ζ emerges as a possibility in defining

the brane amplitude. As we may look at the 3d geometry as a 2d geometry in infinitely

many ways, depending on which cycle of the torus we take as “internal” and which one as

2d Euclidean time, we expect the essential singularities we encountered in 2d to appear at

infinitely many locations. If we identify ζ = ±1 as the poles of the sphere, the essential

singularities should appear at the equator, that is, for ζ on the imaginary axis (which, as

already noted, is a fixed line for the Cayley transform (3.26)).

On the other hand, from the point of view of the 2d theory which arises from com-

pactification on a circle, the compactification of the 3d theory on a cigar geometry also

appears as a “brane”, which preserves the supersymmetry corresponding to ζ = i. There

is actually a family of such “branes” which arise from a cigar with a line defect at the tip.

Clearly, the amplitudes for such “branes” are closely related to the S matrix defined above.

We will illustrate this fact in simple examples.
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5.8 Comparison with susy partition functions on S2 × S1 and S3
b

Supersymmetric partition functions on S2 × S1 and S3
b have been computed recently [2,

53, 54] in a variety of contexts. Given that we have also been computing supersymmetric

partition functions on the same topoogies it is natural to ask the comparison between

the two.

The first point to notice is that they do not look to be the same: the partition func-

tion computed using tt∗ becomes supersymmetric only in the limit of infinitely elongated

geometries. This is not so for the supersymmetric partition functions on S3
b or S2 × S1

where for finite metric the path-integral is supersymmetric.

Indeed a similar question arises for 2d theories recently studied in [55]. In that context

it was found that at the conformal limit the tt∗ partition function for elongated S2 [56, 57],

i.e., the amplitude g00 = 〈0|0〉, coincides with the supersymmetric partition function on

S2. However, it was also found that away from the conformal point the partition func-

tion on S2 does not agree with the tt∗ partition function. In that case, as we will argue,

there is a limit of the tt∗ partition function which reproduces the simpler supersymmetric

partition function on S2. The same result works in the 3d case as well leading to the state-

ment that an asymmetric limit of the tt∗ partition functions lead to the supersymmetric

partition functions.

Let us first discuss the case of 2d. As discussed in section 2 eq. (2.6) the tt∗ partition

function on S2, i.e. g00, is given by

Ztt
∗

S2 = Πa(ti, ti)Π
a∗(ti, ti).

However the supersymmetric partition function on S2 is made of blocks which are holomor-

phic Π’s times anti-holomorphic Π’s. This structure is true for S2
tt∗ only at the conformal

point. Aways from it, the answer is far more complicated. However, we can consider the

asymmetric limit where we take the UV limit, corresponding to β → 0, with fixed β. In

this limit

lim
β→0

Πa(ti, ti) = Π̃a(ti).

Moreover, as already discussed in section 2, in this limit Πa are given by period integral with

non-homogeneous W (satisfying simple differential equations). In this limit the partition

function of the tt∗ agrees with the supersymmetric partition function on S2:

ZS2 = Π̃a(ti)Π̃
a∗(ti)

Given this, it is natural to expect the same to work in the case of 3d. Indeed, as has

been found in [2], the partition function of supersymmetric theories in 3d decomposes into

blocks, exactly as in eq. (5.4).19

Indeed, as noted in [2], the chiral blocks are solutions to the difference equations arising

from the ring relations satisfied by the line operators. This is also the case for us, in the

19The appearance of inverse power in the S3 partition function and its absence in [2] has to do with the

choice of analytic continuations used there versus what we have here. In our case |q| < 1 whereas the two

blocks used in [2] used |q| < 1 for one block and |q| > 1 for the other block.
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β → 0, as follows from eq. (2.10). Therefore in the same limit as in the 2d case the 3d tt∗

geometry should reduce to the supersymmetric partition functions on S3
b and S2×S1. We

will verify this expectation for the partition function of free chiral theory in section 6.

6 Examples of tt∗ geometry in 3 dimensions

The 3d tt∗ geometries should correspond to doubly-periodic solutions of the monopole

equations, or their higher-dimensional generalizations. In this section we illustrate the

correspondence in a number of examples.

6.1 Free 3d chiral multiplet

The simplest example, of course, is a free 3d chiral multiplet of real twisted mass m, whose

tt∗ geometry should give a U(1) monopole solution on the space parameterized by m and

the flavor Wilson lines on the two cycles of T 2. If one of the two circles in the compact

geometry is very small, we expect to recover the results for the 2d chiral field. This identifies

the monopole solution as a doubly-periodic Dirac monopole of charge 1. Indeed, the 3d

free chiral field compactified on a circle of length Ry (which in the previous section we had

simply called R) may be expanded in KK modes having 2d complex masses

mn = m+
2πi

Ry
(n+ y) n ∈ Z, (6.1)

where y is the flavor Wilson like along the circle, which is a periodic variable of period 1.

The 2d mirror is then described by the (twisted) superpotential of the form [13]

W (Yn) =
∑
n∈Z

(
1

2

(
m

2π
+ i

n+ y

Ry

)
Yn − eYn

)
. (6.2)

Since the modes Yn are decoupled from each other, the tt∗ metric is simply the product

of the metrics for each mode which, as described in section 3.1, correspond to periodic

monopole solutions. The doubly-periodic monopole solution associated to the 3d free chiral

is then the superposition of an infinite array of periodic Abelian monopole solutions, each

corresponding to the contribution from a 2d KK mode. Thus the harmonic function giving

the Higgs field in the monopole solution is

Vchiral(m,x, y) = −π
∑
n,k

 1√
m2 + 4π2

R2
x

(x+ k)2 + 4π2

R2
y

(y + n)2
− κk,n

+ Λ (6.3)

where Rx ≡ β is the length of the tt∗ circle, κk,n some constant regulator, and Λ a constant

(see appendix B.1 for full details). In a natural basis (which in the Ry → 0 limit reduces

to the standard 2d ‘point’ basis), the tt∗ metric is simply

Gchiral(m,x, y) = exp

 2

Rx

x∫
0

Vchiral(m,x
′, y) dx′

 . (6.4)
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As discussed in section 5, Gchiral(m,x, y) may be interpreted as the partition function on

the infinitely elongated S2 × S1 geometry with flavor twist parameters x, y around the

equator of S2 and the S1, respectively

ZS2×S1 = Gchiral(m,x, y). (6.5)

At large |m|, the harmonic function Vchiral has a linear growth:

Vchiral =
RxRy

2
|m|+O

(
exp
[
−min(Rx, Ry) |m|

])
. (6.6)

This is slightly inconsistent: it corresponds to ±1
2 units of flux for the gauge bundle on

the x-y torus. This is closely related to the Z2 anomaly for a 3d free chiral: depending on

the sign of the mass m, integrating away a 3d chiral leaves a background Chern-Simons

coupling of ±1
2 for the flavor U(1) symmetry. In general, we expect the slope of the Higgs

field at large values of the masses, or the units of flux on the flavor Wilson line tori,

to coincide with the effective low energy background CS couplings for the corresponding

flavor symmetries.

Notice that the spectral data computed from Dx + iDy and −Dm + V involves a

holomorphic connection on the torus, which is covariantly constant in the m direction.

Thus the topological data of the holomorphic bundle, i.e. the Chern class on T 2, is m-

independent, and can only jump at the location of Dirac monopoles, by an amount equal

to the Dirac monopole charge. This explains the slopes we find at large |m|.
A better defined choice (the “tetrahedron theory” in [49]) is a theory ∆ of a 3d chiral

together with an additional background CS level of −1
2 . This corresponds to the har-

monic function

V∆(m,x, y) = −RxRy
2

m− π
∑
n,k

 1√
m2 + 4π2

R2
x

(x+ k)2 + 4π2

R2
y

(y + n)2
− κk,n

+ Λ (6.7)

which has coefficients −1 or 0 for the linear growth at m→ −∞ and m→∞ respectively,

and corresponding effective CS couplings.

The harmonic function V∆ has alternative representations which converge more rapidly

than (6.7) and are convenient to study particular limits (see appendix B.1). For instance,

we have the Fourier representation

V∆(m,x, y) =−RxRymΘ(−m)

− 1

2

∑
(k,`) 6=(0,0)

RxRy√
R2
y `

2 +R2
x k

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m|. (6.8)

If we treat the y direction as “internal” and the other two as the standard directions

of 2d tt∗, we can assemble the monopole connection and Higgs field into the usual tt∗
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quantities.20 Comparing wit eq. (3.30) we have

Cµ = Rx

(
∂x − iAx

)
+ V

−C̄µ̄ = Rx

(
∂x − iAx

)
− V

Dµ = ∂µ − iAµ

Dµ̄ = ∂µ̄ − iAµ̄,

(6.9)

where

µ =
1

4π
(m+ 2πi y/Ry). (6.10)

As for the 2d chiral model in section 3.1, we perform the complex gauge transformation to

the standard ‘point basis’ topological gauge. From the definition

V (µ, µ̄, x) =
Rx
2
v(µ) +

Rx
2
v̄(µ̄) +

Rx
2
∂xL(µ, µ̄, x) (6.11)

we find

L∆(m,x, y) = − 1

2πi

∑
k,`∈Z
k 6=0

Ry

k
√
R2
x k

2 +R2
y `

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m| (6.12)

and

v∆(µ) = log
(
1− e−4πRyµ

)
. (6.13)

This is a natural regularization of the
∑

n log
(
µ + i n

2Ry

)
arising from the KK tower. By

the same token, we propose

a∆(µ) =
1

2
log
(
1− e−4πRyµ

)
. (6.14)

We can then go to the “point topological basis” by the complexified gauge transfor-

mation with parameter 1
2L(µ, µ̄, x)− 1

2a−
1
2 ā (cfr. eq. (3.34)):

1

Rx
Cµ = ∂x + v(µ)

− 1

Rx
C̄µ̄ = ∂x − v̄(µ̄)− ∂xL(µ, µ̄, x)

Dµ = ∂µ + ∂µa(µ)− ∂µL

Dµ̄ = ∂µ̄

(6.15)

We recognize that v∆(µ) = ∂µW∆(µ), where

W∆ ∝ Li2(e−mRy−2πiy) (6.16)

is the twisted effective superpotential for a compactified 3d chiral multiplet with a −1/2

CS level.
20For convenience, we absorb the overall dependence of the tt∗ geometry on the length Rx in the defini-

tion of Cµ.
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6.1.1 Evaluation of the elongated S3 partition function ZS3 = S00

In this example with a single vacuum, the S0
0, or equivalently the partition function

on the infinitely elongated S3 should reduce, as discussed in section 5.5, to the gauge

transformation which relates the Abelian monopole fields in the topological gauge (6.15)

to the same fields written in the S-dual topological gauge based on the 2d tt∗ geometry for

the opposite choice of “internal” circle, in which the parameter µ is replaced by its dual

µx = S(µ) ≡ 1

4π

(
m− 2πi x

Rx

)
. (6.17)

To simplify the notation, we shall denote the effect of the action of S on any quantity by

a tilde, that is, for all quantities f we set

f̃(x, y,m,Rx, Ry) = Sf(x, y,m,Rx, Ry) ≡ f(y,−x,m,Ry, Rx). (6.18)

Gauge invariant scalar quantities s satisfy s̃ = s; in particular, Ṽ ≡ V .

To compare the topological gauge with its S-dual it is convenient to preliminary trans-

form these two complex gauges in the corresponding unitary gauges by the inverse of the

gauge transformation in eq. (6.15) of imaginary parameter

1

2
K ≡ 1

2
(L− a− ā), resp.

1

2
K̃ ≡ 1

2
(L̃− ã− ¯̃a). (6.19)

The two dual unitary connections A and Ã are, respectively,

Am = −Ry
4π
∂yK

Ay =
π

Ry
∂mK

Ax =
i

2
(v − v̄)

V =
Rx
2

(v + v̄) +
Rx
2
∂xK,

resp.

Ãm =
Rx
4π
∂xK̃

Ãy =
i

2
(ṽ − ¯̃v)

Ãx = − π

Rx
∂mK̃

V =
1

2
(ṽ + ¯̃v) +

Ry
2
∂yK̃,

(6.20)

which satisfy the monopole equations

F = F̃ =
1

2π
∗ dV. (6.21)

These two U(1) connections are gauge equivalent. Hence there is a real function Λ such that

A− Ã = dΛ. (6.22)

The complete gauge transformation between the S-dual topological gauge and the original

one, which by the analysis in section 5.5 is the infinitely elongated S3 partition function,

is then the composition of the above three complex gauge transformations, that is,

S = exp

(
−1

2
K + iΛ +

1

2
K̃

)
. (6.23)
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To compute Λ one starts from the known Fourier series for K

K = L− a− ā =
∑
k,`

K(k, `;Rx, Ry) e
2πi(kx+`y) =

= − 1

2πi

∑
k,`∈Z
k 6=0

Ry

k
√
R2
x k

2 +R2
y `

2
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2 |m|

+
1

2

∑
`≥1

e−`Rym

`

(
e2πi`y + e−2πi`y

)
,

(6.24)

and the corresponding one for K̃ with coefficients

K̃(k, `;Rx, Ry) ≡ K(−`, k;Ry, Rx). (6.25)

Inserting these Fourier expansions in eq. (6.20) one gets the expansions of the unitary

connections A and Ã, and then we may read the Fourier series for Λ from eq. (6.22). One

gets

Λ = − 1

4π

∑
k, 6̀=0

1

k`
e2πikx+2πi`y−

√
R2
y`

2+R2
xk

2m−

− i

4

(
log(1− e−Rym+2πiy)− log(1− e−Rym−2πiy)+

+ log(1− e−Rxm−2πix)− log(1− e−Rxm+2πix)
)
, (6.26)

(in writing this equation we assumed m > 0).

As discussed in section 5.5, the partition function S given by (6.23) should also be

equal to Π̃ Π−1 where Π are the ζ = ±1 brane amplitudes. We shall check the validity of

this relation after the computation of the amplitude Π.

6.1.2 Branes for the 3d free chiral theory

As we saw in section 3.1.3, the function Φ defined in eq. (3.53) corresponds in 2d to either

the Neumann or Dirichlet brane amplitude depending on the value of ζ. That analysis is

important for the 3d free chiral theory with real twisted mass m, compactified on a circle of

length Ry, which may be seen as a 2d (2, 2) model with an infinite collection of decoupled

KK modes as in eq. (6.2). Again, since the modes do not interact, the brane amplitudes

are given by an infinite product of the single mode amplitudes of section 3.1.2 with 2d

twisted masses

4πµn = m+
2πi

Ry
(n+ y), n ∈ Z. (6.27)

To select a reasonable boundary condition for the 3d chiral field, we need to choose the

boundary conditions of the individual 2d KK modes Yn in a coherent way. The most

obvious choice is to seek either Dirichlet or Neumann b.c. for the 3d chiral field. This

means selecting either Dirichlet b.c. for all the KK modes Yn, or Neumann for all the Yn.
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The complete 3d “Dirichlet”/“Neumann” amplitudes are

log〈x|D; ζ〉
log〈x|N ; ζ〉

=− Rx
4π Ry

(
ζ Li2(e−mRy−2πi y)− ζ−1 Li2(e−mRy+2πi y)

)
− RxRy

16π

[
ζ

(
m+

2πi y

Ry

)2

+ ζ−1

(
m− 2πi y

Ry

)2
]

− 1

2
log

[
2 sinh

(
1

2

(
mRy + 2πi y

))]
+

ΦD(m,x, y,Rx, Ry; ζ)

ΦN (m,x, y,Rx, Ry; ζ).

(6.28)

where ΦD, ΦN are the sums over all KK modes of the 2d functions Φ with, respectively,

Dirichlet and Neumann b.c. However, from section 5.7 we know that the physically inter-

esting amplitudes, corresponding to proper Neumann/Dirichlet branes in the 3d sense, are

the ones at fixed points of the Cayley transform C, namely ζ = ±1.

In order to write a sum over the KK modes having better convergence properties, it is

convenient to rewrite the integral representation of the 2d thimble amplitude function Φ

in a slightly more general form

Φ =
1

2πi

∫
L

dt

t− iζ
log
(

1− e−2π(µt+µ̄t−1−ix)
)
−

− 1

2πi

∫
L

dt

t+ iζ
log
(

1− e−2π(µt+µ̄t−1+ix)
)
,

(6.29)

where L = eiφR+ is a ray in the complex plane such that: i) Re[t µ] > 0 for t ∈ L and ii)

the integrand has no pole in the angular sector 0 ≤ arg t ≤ φ.

Assuming the real mass m in eq. (6.27) to be positive, and setting

z = mRx + 2πi
Rx
Ry

y, (6.30)

we write the 3d function Φ[ζ] in the form

Φ[ζ] =
1

2πi

∫
L−

dt

t− i ζ
log
∏
n<0

(
1− e2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
+

1

2πi

∫
L+

dt

t− i ζ
log
∏
n≥0

(
1− e2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
− 1

2πi

∫
L−

dt

t+ i ζ
log
∏
n<0

(
1− e−2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
− 1

2πi

∫
L+

dt

t+ i ζ
log
∏
n≥0

(
1− e−2πix−zt/2−z̄t−1/2−πinRx

Ry
(t−t−1)

)
(6.31)

where L− is a ray in the upper-right quadrant and L+ in the lower-right quadrant, and we

assume that the poles at t = ±i ζ are not in the angular sector bounded by L+, L− and

containing the positive real axis. Note that for the physical values, ζ = ±1, the rays L±

may be chosen arbitrarily in the respective quadrants.
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From the discussion in section 3.1.3, we know that this expression corresponds to a

“Dirichlet” amplitude for Re ζ < 0 and a “Neumann”; amplitude for Re ζ > 0

Φ[ζ] =

{
ΦN [ζ] for Re ζ > 0

ΦD[ζ] for Re ζ < 0.
(6.32)

To get the “Neumann” (resp. “Dirichlet”) amplitude in the opposite half-plane one has to

analytically continue the above expression, by deforming the contours while compensating

the discontinuity each time one crosses a pole of the integrand. The physical amplitudes

are then obtained by specializing the result to ζ = ±1.

The expression (6.31) may be written in a more suggestive form by introducing the

compact quantum dilog function

Ψ(z, q) ≡ (z q1/2; q)∞ =

∞∏
n=0

(1− zqn+1/2), (6.33)

the product being convergent for |q| < 1. Then

Φ[ζ] =
1

2πi

∫
L−

dt

t− i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e

iπRx
Ry

(t−t−1)
)

+
1

2πi

∫
L+

dt

t− i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
−iπRx

Ry
(t−t−1)

)

− 1

2πi

∫
L−

dt

t+ i ζ
log Ψ(e

2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
iπRx
Ry

(t−t−1)
)

− 1

2πi

∫
L+

dt

t+ i ζ
log Ψ(e

−2πix−zt/2−z̄t−1/2−iπRx
2Ry

(t−t−1)
, e
−iπRx

Ry
(t−t−1)

),

(6.34)

all integrals being absolutely convergent for L± as above.

The asymmetric UV limit. The asymmetric limit of the amplitudes 〈x|N, ζ〉, 〈x|D, ζ〉
as ‘β̄ → 0’ is given by a regularized sum of the asymmetric limit for each KK mode, and

is computed in appendix B.2. Not surprisingly, the limit is a quantum dilogarithms

log Π3d(ζ = −1) = − log Ψ
(
e−mRy−2πiy−4πx−2πRy/Rx ; e−4πRy/Rx

)
− Ry

4Rx

(
m+

2πiRx
Ry

y

)
− x log sinh

[
1

2
(mRy + 2πiy)

]
+ const.,

(6.35)

Indeed, by the same argument as in section 3.1.3 in this limit the amplitude is holo-

morphic in z = mRx + 2πiRxy/Ry and it satisfies a difference equation of the form

Π3d(z + 4π) =

(∏
n∈Z

(
z

4π
+
iRxn

2Ry

))
Π3d(z)

=
(

1− e−mRy−2πiy
)
e(mRy+2πiy)/2 Π3d(z),

(6.36)

where the factor e(mRy+2πiy)/2 may be understood as arising from the Z2 anomaly of the

free chiral at CS level zero. Not only this result confirms that in this asymmetric limit we
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obtain the result for the partition function of free chiral theory on S3
b and S2 × S1 which

are made of quantum dilogs, when the twist parameters x, y = 0, but it also predicts when

x, y 6= 0 the result for these partition functions with twist line operators inserted at the

two ends of the sphere.

6.1.3 The ζ = ±1 amplitudes and the S-gauge transformation

In this subsection we check that the explicit expression (6.34) for the brane amplitudes

Π[ζ = ±1] satisfies the expected relation with the elongated S3 partition function, that is,

the equality

log Π[ζ = ±1]− log Π̃[ζ = ±1] = logS, (6.37)

where S is the gauge transformation which, as described in section 5.5, gives the partition

function on the elongated S3.

We know explicitly the rhs of eq. (6.37) in the form of a double Fourier series

logS =
∑
k,`∈Z

c(m; k, `) e2πi(kx+`y), (6.38)

while the lhs is known in the form of the integral representations (6.31),(6.34). The easiest

way to check the validity of the equality (6.37) is to compute the Fourier coefficients of

the lhs, which is known to be a periodic function of x, y, and compare them with the

c(m; k, `)’s. The Fourier coefficients c(m; k, `) may be read from eqs. (6.37), (6.24) and

(6.26); for21 k` 6= 0 they are

−4πi c(m; k, `) =

 Rx

`
√
R2
xk

2 +R2
y`

2
− 1

k`
+

Ry

k
√
R2
xk

2 +R2
y`

2

×
× exp

(
−
√
R2
xk

2 +R2
y`

2 |m|
)
.

(6.39)

The k` 6= 0 coefficients in the Fourier expansion of log Π[ζ = ±1] coincide with the

coefficients in the Fourier series of the non-trivial part of the amplitude

Φ[ζ = ±1] =
∑
k,`∈Z

Φ±(k, `) e2πi(kx+`y). (6.40)

We compute the coefficients Φ±(k, `) for k > 0; the ones for k < 0 are similar. The

terms with k > 0 arise from the first two integrals in eq. (6.31). Expanding in series the

integrands, they become

− 1

2πi

∑
k≥1

e2πikx

k

∑
n≥0

∫
L+

dt

t− iζ
e
−kz t/2−kz̄ t−1/2−πiRx

Ry
(t−t−1)kn

− 1

2πi

∑
k≥1

e2πikx

k

∑
n<0

∫
L−

dt

t− iζ
e
−kz t/2−kz̄ t−1/2−πiRx

Ry
(t−t−1)kn

, (6.41)

21The terms with k` = 0 correspond to purely holomorphic gauge transformations which just change the

holomorphic basis in the chiral ring R and hence are convention dependent.
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which is already in the Fourier series form with respect to x. To get the double Fourier

series one has to Poisson re-sum the KK modes. To do that, we deform the contours L±

to their original position on the positive real axis. For ζ = ±1 we get

− 1

2πi

∑
k≥1

e2πikx

k

∫ ∞
0

dt

t∓ i
e−kz t/2−kz̄ t

−1/2
∑
n∈Z

e
−iπRx

Ry
(t−t−1)kn

= − 1

2πi

∑
k≥1

e2πikx

k

∑
`∈Z

∫ ∞
0

dt

t∓ i
e−kz t/2−kz̄ t

−1/2 δ

(
Rx

2Ry
k(t− t−1)− `

)

= − 1

2πi

∑
k≥1

e2πikx

k

∑
`∈Z

∫ ∞
0

2Ry(t± i) dt
Rxk(t+ t−1)2

e−kz t/2−kz̄ t
−1/2 δ

t− Ry`

Rxk
−

√
1 +

R2
y`

2

R2
xk

2

 .

Using eq. (6.30), and recalling that we are assuming m > 0, the above expression becomes

− 1

4πi

∑
k≥1

∑
`∈Z

Ry[`Ry ± ikRx +
√
k2R2

x + `2R2
y]

k(k2R2
x + `2R2

y)
e2πikx−2πi`y−|m|

√
k2R2

x+`2R2
y , (6.42)

so the k` 6= 0, k > 0 Fourier coefficients are

Φ±(k, `;Rx, Ry) = − 1

4πi

Ry[±ikRx − `Ry +
√
k2R2

x + `2R2
y]

k(k2R2
x + `2R2

y)
e−|m|

√
k2R2

x+`2R2
y . (6.43)

For k > 0, ` < 0 one has

Φ±(k, `;Ry, Rx)−Φ±(−`, k;Rx, Ry)

= − 1

4πi

− 1

k`
+

Ry

k
√
k2R2

x + `2R2
y

+
Rx

`
√
k2R2

x + `2R2
y

 e−|m|
√
k2R2

x+`2R2
y ,

(6.44)

which, comparing with eq. (6.39), gives the equality (6.37).

6.2 The CP 1
0 sigma model

The next obvious step would be to seek a model which gives a smooth SU(2) doubly-

periodic monopole as the 3d tt∗ geometry. In 2d we used the mirror to the CP 1 gauged

linear sigma model for a similar purpose. It is natural to look at the 3d version of the same

theory: a 3d U(1) gauge theory coupled to two chiral multiplets of charge 1. This theory

has two flavor symmetries: an SU(2)m flavor symmetry with mass m, which rotates the

chiral doublet, and an U(1)t “topological” flavor symmetry with mass parameter equal to

the FI parameter t for the theory. In order to define the theory fully, we need to select a

Chern-Simons level for the theory. We select level 0 for now.

This theory happens to enjoy surprising mirror symmetry properties. These mirror

symmetries are manifest in the branches of vacua which appear for special choices of the

mass parameters. If we turn on a positive FI parameter and no SU(2) mass m, the theory

has a standard CP 1 moduli space of vacua, where the chiral fields receive a vev controlled
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by the FI parameter. If we turn on a mass parameter m, we can integrate out the chirals

and seek for a Coulomb branch for the theory. As long as the Coulomb branch scalar σ

is in the interval 2|σ| < m, integrating away the chirals of opposite flavor charge gives no

net Chern-Simons coupling for the U(1) gauge field, but produces a mixed CS coupling

between the gauge and flavor symmetry, which shifts the effective FI parameter to t+ |m|.
If we tune the mass parameters so that t = −|m|, we find a Coulomb branch with the

topology of CP 1 XXX [refs?]. In conclusion, the theory has three CP 1 branches of vacua,

which appear along the rays

m = 0 t > 0

t+m = 0 m > 0

t−m = 0 m < 0 (6.45)

The mirror symmetries of the theory coincide with the permutation group of the three

branches, and act on the mass parameters as the Weyl group of SU(3) acts on the Cartan

generators (2
3 t,

1
2m−

1
3 t,−

1
2m−

1
3 t). Indeed, the mirror symmetries imply that the U(1)t×

SU(2)m flavor group in the UV is promoted to an SU(3) flavor group in the IR.

The full tt∗ geometry should thus enjoy the same S3 Weyl symmetry acting over the

combined parameter space R3
m × R3

t . It is thus more natural to describe the tt∗ geometry

as a bundle over R3 ⊗ sl(3). The theory has two vacua, and thus the bundle will be of

rank two. Inspection of the spectral data computed in the previous section shows that the

bundle has structure group SU(2). The S3 symmetry of the spectral data can be checked

with some patience.

At fixed t, we can look at the bundle on R3
m: the asymptotic behaviour of the Higgs

field at large |m| is diag(|m|/2 − t/2,−|m|/2 + t/2), which is compatible with a single

smooth doubly-periodic SU(2) monopole. The t parameter controls the constant subleading

asymptotics of the Higgs field. The half-integral slope at large |m| is consistent for an SU(2)

bundle: it corresponds to the minimal possible Chern class of an SU(2) bundle on T 2.

At fixed m, we can look at the bundle on R3
t : the asymptotic behaviour of the Higgs

field at large positive t is diag(t,−t), at large negative t (where the theory approaches a

CP 1 sigma model) is diag(m/2,−m/2). Thus at large negative t the Higgs field goes to a

constant diagonal vev, controlled by the parameter m. If m is set to zero, one finds instead

a more complicated non-Abelian asymptotic behaviour, which is presumably associated to

the low energy massless degrees of freedom of the CP 1 sigma model. The asymptotics

are again compatible with a single smooth doubly-periodic SU(2) monopole. The m and t

monopole geometries differ by the choices of Chern classes for the T 2 bundle at infinity.

It is also interesting to consider generalizations of this model with other Chern-Simons

levels. We will do so in a later section, after we acquire some extra tools.

6.3 Main example: codimension 2 defects

It turns out that the tt∗ geometries in 2, 3 and 4 dimensions, can all be exemplified in the

context codimension 2 defects of 4, 5 and 6 dimensional theories supporting 4 supercharges,

which arise in the context of geometric engineering [10, 59, 60]. There are two equivalent
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Figure 13. A web of (p, q) 5-branes engineers a 5d theory. D3 branes (red line) suspended between

the web and a spectator brane (dashed line) gives rise to a 3d theory which can be viewed as a

defect of the 5d theory. Changing the slope of the spectator brane corresponds to the SL(2,Z)

action on the 3d theory.

descriptions of this class of theories. One starts either with M-theory on a local Calabi-Yau

threefold, or equivalently [61], with a network of (p, q) 5-branes of type IIB [62]. This gives

a theory in 5 dimensions. One then considers codimension 2 defects of this theory. In the

M-theory setup, this corresponds to wrapping M5 branes over Lagrangian 3-cycles of CY,

leading to a 3d ⊂ 5d defect, or in the (p, q) web description it can be viewed as D3 brane

ending on the web.

This can lead to codimension 2 defects in 6 and 4 dimensions, and in particular to

4 dimensional defect probes of (2, 0) and (1, 0) supersymmetric theories in 6d as follows:

using M-theory/F-theory duality, by restricting to elliptic CY, this would correspond to

4d ⊂ 6d defects [66–68]. This is equivalent, in the (p, q) 5-brane web, to requiring the space

to be periodic in one of the directions that the 5-branes wrap. To obtain the 4 dimensional

theories, one simply considers type IIA on the corresponding Calabi-Yau, by compactifying

the M-theory on the circle. In this context the (p, q) web becomes the skeleton of the

associated Seiberg-Witten curve of the theory, and the 2d defects are associated to surface

defects parameterized by points on the curve [10, 11]. This can also be described in purely

gauge theoretic terms [15].

In this section we focus on the 3d ⊂ 5d defects, and use the (p, q) 5-brane web descrip-

tion, which is particularly convenient for our purposes (see figure 13).

The slope of the (p, q) 5-brane is p/q due to supersymmetry (at type IIB coupling

constant τ = i). We consider the 3d theory obtained by having an extra D3 brane ending
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Figure 14. The suspended D3 brane gives rise to a U(1) Chern-Simons theory at level v ∧ w = q.

Moving the spectator brane by t corresponds to changing the FI term by t.

on the web. To make the theory dynamical we need a finite length D3 brane and for this

purpose we need an extra spectator brane (these were originally introduced in [11] in the

M-theory context and was related to framing of the associate knot invariants). In particular

if we have a v = (1, 0) brane and a w = (p, q) brane with a D3 brane stretched between

them we get an N = 2 supersymmetric Chern-Simons theory in 3d with CS level v∧w = q

with the associated monopole flavor symmetry with CS level at level p [51] (see figure 14).

In particular the SL(2,Z) action of Witten [4] on the space of 3d theories with U(1)

flavor symmetry corresponds to SL(2,Z) action on the spectator brane, where the T opera-

tion adds a unit background CS coupling and the S operation gauges the flavor symmetry.

For definiteness we will take the spectator brane to be a (1, 0), and act by SL(2,Z) on the

rest of the web.

Consider the case of (p, q) = (1, k). This is a pure U(1)k Chern-Simons theory. The

3d theory is massive and the σ field is frozen at kσ = t. The changing of t corresponds

to moving the spectator brane (see figure 14). In this context the above relation gets

interpreted as follows: (t, s) can be viewed as the (x, y) component of the D3-brane, which

is at the intersection of the projection of the two 5-branes on the plane.

We can also consider compactifications of these theories on a circle. The corresponding

web geometry becomes the Seiberg-Witten curve which generically takes the form

f(s, t) =
∑

cn,m e
nt+ms =

∑
cmn T

nSm = 0

where S = es, T = et. In particular the points (n,m) ∈ Z2 such that cm,n 6= 0 form a

convex polygon. Moreover the semi-infinite 5-branes correspond to pairs of adjacent points

on the edges of the polygon. If (n1,m1) and (n2,m2) are two adjacent points on the edge
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of the polygon, there is a (p, q) 5-brane with

(p, q) ∧ (n1 − n2,m1 −m2) = p(m1 −m2)− q(n1 − n2) = 0

(for a recent discussion see [63]). Moreover, from the 3d probe theory we get a 2d theory

with (2, 2) supersymmetry. As was shown in [10] the corresponding Seiberg-Witten curve

can be interpreted as the spectral curve of the 2d theory in the following sense: the 2d

theory has t as a parameter and has a field Σ. Moreover f(s, t) = 0 corresponds to the

spectrum of Σ = s for the fixed value of t. In other words there is a superpotential

W (Σ, t) = W0(Σ) + tΣ which satisfies

Σ = −∂tW

and

∂ΣW0 + t = 0 ⇐⇒ f(s, t) = 0.

Another way of saying this is that locally solving t(s) using f(s, t) = 0 leads to solving for

a branch of W

W (Σ) =

∫ Σ

t(s) ds− tΣ.

In other words, the spectral geometry of the line operators of the 3d theory wrapped around

the circle is the SW curve. Note that there are in general multiple vacua. For example,

considering the U(1)k theory discussed above, upon compactification on a circle we find k

vacua, where the spectral curve becomes

eks = et. (6.46)

In other words the 3d loop operator S satisfies the relation Sk = T . Defining S̃ = S/(T 1/k)

we see that

S̃k = 1

We recognize this as the Verlinde algebra of U(1)k [52]. Indeed this is the familiar result

for the loop operator of a U(1) Chern-Simons theory at level k [48], where S̃ is equivalent

to the Wilson loop operator wrapped around the circle, in the fundamental representation

of U(1).

In fact we can do more: we can suspend N D3 branes between the 5-branes. In this

case we would get an N = 2 U(N) Chern-Simons gauge theory at level k. In this context

the field S̃ should be viewed as an N×N matrix valued loop operator. The relation S̃k = 1

still holds. This means that we choose N eigenvalues at k-th roots of unity. Using the

fact that gauge symmetry acts as permutation of the eigenvalues we see that the number

of inequivalent vacua are now given by

k(k + 1) . . . (k +N − 1)

N !

which is the same as the dimension of the Verlinde algebra for U(N) conformal theory at

level k. Indeed the resulting ring of the line operators is isomorphic to the Verlinde ring.
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We now wish to study the tt∗ geometry of these 3d systems. Having a single probe

will lead to 3d monopole systems on T 2×R, i.e. doubly periodic monopole SU(n) systems

if we have n vacua.22 Indeed such a system was already studied in [42] and in particular

it was noted there that the spectral curve associated to the doubly-periodic monopole

equations are captured by the SW curve of the above physical system. Here we are finding

a physical explanation of why the corresponding web appeared as part of a solution to the

monopole equations. We now give a brief review of their results. We refer to reference [42]

for more details.

The basic idea is that the moduli spaces of doubly-periodic monopoles on
(
R× T 2

)
t

are labelled by the coefficients Q± of the linear growth of the Higgs field at large |t|,
by the constant subleading coefficients M± in the Higgs field at large |t|, and by two

sets of angles p± and q± which from our point of view combine with M± to give other

doubly-periodic deformation directions of the tt∗ geometry. Other parameters are the

locations ti in
(
R× T 2

)
t

of the Dirac monopole singularities. These give other doubly-

periodic deformation directions of the tt∗ geometry. A certain linear combination of these

parameters is redundant: a translation of
(
R× T 2

)
t

will in general shift the ri and possibly

the (M,p, q) by multiples of the Q.

The spectral curve for the doubly-periodic geometry is then given by an equation of

the general form ∑
cn,me

ntems = 0 (6.47)

where the (n,m) integer points for non-zero cn,m form a convex Newton polygon in the

plane. The shape of the polygon encodes the Q± coefficients and the coefficients on the

boundary of the polygon encode the (complexified) M± and ti data. The coefficients of the

interior coefficients are moduli of the periodic monopole configuration. More precisely, the

monopole moduli space is parameterized by a choice of spectral curve with given (M,p, q, ti)

and of a line bundle on it. Each interior point of the Newton polygon gives two complex

parameters: a coefficient in the spectral curve and a modulus for the line bundle. Indeed,

the monopole moduli space is an hyperKäler manifold.

It is now clear that the same geometry is describing the tt∗ solutions of 3d theory on

the probes of our 5-brane web system compactified on T 2, where the real Coulomb branch

moduli of the bulk 5d theory combine with the gauge Wilson lines and the dual photons to

give the hyperKähler geometry of the doubly-periodic monopole moduli space. The mass

deformation parameters correspond to the M± and ti parameters. As already noted, the

probes are a D3 brane segment stretched from the (p, q) brane web to a separate (1, 0) brane

lying on a plane parallel to the plane of the web and the position of the (1, 0) brane the

D3 brane ends on becomes the (FI) mass parameter t and the tt∗ geometry corresponding

to the t deformation becomes the doubly-periodic monopole geometry.

We can now reinterpret our previous examples as brane webs, and then add a few more.

A single 3d chiral multiplet, or better the T∆ theory, can be engineered by a web

including a (−1, 0), a (0, 1) and a (1,−1) fivebranes coming together to a point [51]. This

configuration is rigid. The obvious Z3 symmetry generated by the ST SL(2,Z) duality

22The construction can probably be generalized to other classical groups by a judicious use of orbifolds.
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transformation corresponds to the basic mirror symmetries of the T∆ theory [49]. To be

precise, if the D3 brane probe ends on an (1, 0) brane parallel to the web we get the

description of the theory as an U(1) CS theory at level 1/2, coupled to a single chiral of

charge 1.

The slopes of the fivebranes, −1 for negative t and 0 for positive tmatch the background

CS couplings for the U(1)t flavor symmetry and the asymptotic values of the Higgs field

in the monopole solution. The spectral curve is

es = 1− e−t (6.48)

This is also consistent with the relation we found for the loop operator associated with a

chiral field with mass parameter t, which we obtain by ungauging the U(1), by converting

the spectator (1, 0) brane to a (0, 1) brane.

Next, we can look at an U(1)k− 1
2

Chern-Simons theory coupled to a chiral of charge

1. For large negative t we have two branches of vacua in flat space: either σ = 0 and the

chiral gets a vev or we integrate away the chiral and we have an effective CS level k − 1

and (k−1)σ = t. For large positive t we have one branch of vacua only: we integrate away

the chiral and have an effective CS level k, with kσ = t. Thus we expect a brane system

with a (1, k) fivebrane, a (0, 1) fivebrane and a (1, k − 1) fivebranes.

As our next example we consider the brane description for the 3d CP 1 gauge theory

with twisted mass. In order to describe the algebra of the wrapped loop operators when

we compactly the theory to 2d on S1 we view the 3d model as a 2d model with infinite

towers of KK modes. The (twisted) superpotential is

W =
∑
n∈Z

[
eY

+
n + eY

−
n −

(
i n+ t2 + Σ

)
Y +
n −

(
i n− t2 + Σ

)
Y −n

]
+ 2π t1Σ. (6.49)

There are two distinct vacua satisfying
cosh(2πΣ0) = cosh(2πt2) +

1

2
e2πt1

Y ±n = log(Σ0 + i n± t2).

(6.50)

One has

C1 =
∂

∂x1
+ 2πΣ0 S1 = e−2πΣ0 (6.51)

C2 =
∂

∂x2
+ log

sinhπ(Σ0 − t2)

sinhπ(Σ0 + t2)
S2 =

sinhπ(Σ0 + t2)

sinhπ(Σ0 − t2)
, (6.52)

from which we get the equations for the spectral curve L

S1 + S−1
1 = T2 + T−1

2 + T1 (1− S1T2)S2 = T2 − S1. (6.53)

It is easy to check that L is indeed a Lagrangian submanifold of (C∗)4, as expected.

For the t geometry for the CP 1 gauge theory, where we fix the mass parameter but

vary t by moving the spectator brane, the first equation would need to be the spectral
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Figure 15. The web geometry which leads to CP 1 gauge theory at CS level 0. The separation of

the horizontal lines is controlled by the mass parameter associated to flavor symmetry rotating the

two flavors in opposite directions. The movement of the spectator brane corresponds to changing

the FI-parameter t.

curve, where S1, T1 define the curve and T2 is a parameter. In other words, the Newton

polygon can be taken to include (0,−1), (0, 0), (0, 1) and a (−1, 0). Thus we need a (1, 1)

brane, a (−1, 1) brane and two (0,−1) branes (see figure 15).

The parallel (0,−1) branes give rise to the SU(2)m flavor symmetry, and their separa-

tion is the parameter m. The spectral curve is the expected (where t2 = m/2 + iπ, t1 = t).

es + e−s = c0,0 + et (6.54)

where c0,0 = −em/2 − e−m/2.23

23We could also seek a five-brane geometry which would reproduce directly the m geometry for the CP 1

gauge theory with zero CS level. Although it is straightforward put the spectral data in the correct form,

up to a small redefinition m→ 2tm, the spectral curve

esm + e−sm = −e2tm−t + etm + 2e−t + e−tm − e−2tm−t (6.55)

is non-generic: the corresponding brane system has normalizable moduli, and really engineers a more

complex 3d-5d system. This is an important cautionary tale, which was encountered before in the context

of 2d-4d systems. A given 3d theory may not have enough deformations to reproduce all moduli of a

doubly-periodic monopole geometry, but rather it may produce some (usually somewhat special) slice of

that moduli space. In 2d-4d examples, that slice is often a singular locus in the full moduli space. The

physical interpretation is that the brane construction produces a larger theory. If we restrict the Coulomb

branch moduli to the values which correspond to the original system’s spectral curve, a Higgs branch may

open up and an RG flow to the original system may become available by moving along the Higgs branch.

It would be interesting to verify if the same picture holds in the 3d-5d setup. It is also interesting to see

if one can embed the D-model setup in [64] into string theory. If so, one can engineers arbitrary spectral

geometries in higher dimensions in that way.
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Figure 16. The web geometry which leads to CP 1 gauge theory at CS level 1. Depending on

the sign of the FI parameter t the 3d theory has 1 or 2 vacua. The one corresponding to 1 has

degeneracy 2, in the sense that if we compactify the theory it splits into two distinct vacua. Having

a vacuum geometry which splits upon compactification is a signature of non-trivial topological

structure in the IR.

A final example is a CP 1 theory with an extra CS coupling of 1. At large negative t

we still have a CP 1 sigma model, but for large positive t we now have a single branch with

effective CS coupling 2. At t = 0 a semi-infinite Coulomb branch opens up. The brane

system involves the same two (0, 1) fivebranes, a (1, 0) brane and an (1, 2) fivebrane. For

this case, it is more convenient to rotate the spectator brane to achieve the CS coupling 1,

and not rotate the entire web. In particular we take the spectator brane to be a (1,−1)

brane instead of (1, 1) brane, and use the same brane as the one for CS level 0 (see figure 16).

6.4 Loop operator algebras as deformed Verlinde algebra

As discussed in section 5.6, we expect that for the massive 3d theories, in the infrared limit

the theory become topological. In this section we give some examples of this and point

out that these give a mass deformation structure to the Verlinde algebra, which would be

potentially interesting for topological phases of matter.

Let us go back to the two 5brane system with branes (1, 0), (1, k). This has k vacua

in 2d, given by Sk = et. As already noted, suspending a D3 brane between them leads to

a U(1)k Chern-Simons theory, and the N = 2 loop algebra is isomorphic to the Verlinde

algebra. Let us check how the S matrix computed in the N = 2 context match up with that

of the S-matrix of the Verlinde algebra. The S-matrix intertwines loop operators wrapping

each of the two cycles of T 2. Let us denote the generators of the two loop operators by Sa
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and Sb:

SSaS
−1 = Sb

Let us use a basis of vacua adapted to the Sa, where it acts (after suitably normalizing

it) as

Sa|n〉 = ωn|n〉

where ω is a primitive k-th root of unity. As discussed in section 5.6, the action of Sb for

a U(1) gauge theory is the same as the action of the holonomy of tt∗ by going through a

path where θ → θ + 2π, with θ the imaginary part of t. In the IR, this holonomy can be

computed easily in the point basis, and it corresponds to the permutation of the k vacua.

In other words

Sb|n〉 = |n+ 1〉.

Since the S-matrix intertwines between them we learn that

Sij =
1√
k
ωij .

which agrees with the expected form of the S matrix for the Verlinde algebra of U(1)k. This

analysis can be extended to the case in which, instead of just one suspended D3 brane, we

have N of them, giving the S-matrix for U(N)k CS theory. We leave checking the details

to the reader.

Instead, we will focus on asking how such a structure gets realized in our models. Con-

sider in particular the CP 1 gauge theory at level 1 (see figure 16). This is a particularly

interesting case, and is a special instance of the theories studied in [47], involving U(N)k/2
coupled to k fundamental chiral fields, to explain the relation observed by Gepner [69] be-

tween the Verlinde algebra for U(N)k and the quantum cohomology ring for Grassmannian

Gr(N, k) [70, 71]. As already discussed, for t� 0 we expect to get a pure U(1) CS theory

at level 2, and thus the considerations of the previous discussion applies; in particular, in

the IR we get the same structure as the 2d Verlinde algebra. On the other hand, one may

ask what S-matrix structure do we get for t� 0. In this case the theory is the CP 1 sigma

model. Let us also assume that in addition we have a mass parameter, and ask how the

S-matrix behaves in this regime. Let us go to a basis in which the Sa operator is diagonal,

and given by the intersection of the 5-brane with the brane web. This corresponds to two

points on the 3d web, which become infinitely far away in the IR. Moreover, it is also clear

that Sb which corresponds to the θ → θ + 2π is also diagonal in this basis, because the 3d

vacua do not get permuted. This implies that in this regime of parameters the S matrix

becomes trivial, i.e. the identity operator. This suggest that there is no non-trivial topo-

logical degrees of freedom in this regime of parameters. The tt∗ geometry for the doubly

periodic system thus interpolates between a trivial S-matrix in one regime of parameters,

to the non-trivial S-matrix (corresponding to that of the Verlinde algebra) in a different

regime. This is indeed exciting and is worth studying further.

The general structure which emerges from this discussion is that by looking at the 3d

vacua we can determine if in the IR, upon compactification on an S1, we get a topologically

non-trivial theory or not. In particular, if the 3d vacua reflect the degeneracy of the
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compactified theory, then the theory becomes trivial. This is the case when the projection

of the spectator 5-brane with (p, q) type v to the 5-brane plane intersects the web in as

many points as the vacua, which in turn is the case if the product of v ∧ wi = ±1 for

each 5-brane wi it intersects. Otherwise at each intersection point we get the structure of

a U(1)v∧w Verlinde algebra. Moreover if we consider having N suspended D3 branes the

S-matrix in the IR will have the structure of the Verlinde algebra for∏
i

U(N)v∧wi .

Clearly we have found a beautiful interplay between deformations of 2d RCFT’s and ge-

ometry, captured by doubly periodic monopole equations, which should be further studied,

especially in view of application to topological phases of matter.

6.5 Class R three-dimensional theories associated to three-manifolds

There is a rich class of three dimensional Abelian Chern-Simons matter theories which

can be obtained from a product of m T∆ theories, by acting with an arbitrary Sp(2m,Z)

transformation and adding certain superpotential couplings described in [49, 51, 65]. The

main point of interest of this class of theories is that there is a large network of mirror

symmetries relating different UV theories in the class, and the space of equivalence classes

of IR SCFTs, dubbed “class R” in [49], seems to have a rich structure.

The spectral data for the tt∗ geometry of a class R theory T , which coincides with

the parameter space of supersymmetric vacua L[T ] discussed in [49], is invariant under

the mirror symmetries and is presented as the image of the product L[T∆]m of param-

eter spaces of the individual chiral multiplets under the Sp(2m,Z) transformation and

a toric symplectic quotient of (C∗)2m determined by the choices of super-potentials. At

the level of the tt∗ doubly-periodic geometry itself, the Sp(2m,Z) transformation is the

Nahm transform discussed in a previous section. The symplectic quotient is simply the

restriction of the monopole data to a linear subspace in R3m, the locus where one sets to

zero the mass parameters and flavor Wilson lines for the flavor symmetries broken by the

superpotential terms.

There is a subset of class R theories TM which are associated to certain decorated

three-manifolds M : the data of the theory is constructed from a triangulation of the three

manifold M , and the mirror symmetries insure invariance under 2-3 moves which relate

different triangulations of the same manifold. Thus the final 3d SCFT only depends on

the choice of manifold M , and so will the corresponding tt∗ geometry. The construction

is designed in such a way that the parameter space L[TM ] coincides with the space of flat

SL(2,C) connections on M . A typical example of M could be a knot complement in S3.

It would be interesting to find a similar geometric relation between the three-dimensional

geometry M and the tt∗ geometry of TM .

7 tt∗ geometry in 4 dimensions

In this section we discuss the tt∗ in 4 dimensions. The structure of the argument is very

similar to that of the 3d case, except that in this case we have 2 distinct possibilities:
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we can discuss either flavor symmetries, which correspond to line operators, or 2-form

symmetries which couple to conserved anti-symmetric 2-form. These arise in particular in

theories with U(1) gauge factors where we consider B ∧ F terms as well as the FI term.

We will see that in the case of flavor symmetries the parameter space is (T 3)r where r is

the rank of the flavor symmetry group. In the case of 2-form symmetries, we find that the

parameter space is (T 3 × R)r where r is the number of 2-form symmetries. Furthermore

the derivation of the 4d tt∗ geometries proceed as in 3d case. We see that for the case of

flavor symmetries the theory has sectors indexed by an integer n where W has a central

charge nµ for a complex parameter µ. In the case of 2-form symmetries we see that there

are sectors labeled by a pair of integers (n1, n2) for which W shifts by (n1 + n2ρ)µ.

7.1 The case of flavor symmetries

Consider a theory in 4d where we take the space to be a flat torus T 3 with periodic

boundary condition for fermions, preserving all supersymmetry. Let us assume this theory

has a flavor symmetry of rank r. We can turn on fugacities for the rank r flavor group in

the Cartan of the flavor group along each circle. Therefore the parameter space is

T 3r,

modulo the action of the Weyl group.24 In order to develop the tt∗ geometry for this theory,

consider the first step, where we compactify the theory on a circle down to 3 dimensions.

Then we get a theory with a flavor group of rank r. Moreover the twisted mass parameters

of this 3d theory is identified with the fugacity of the flavor group around the circle. So,

unlike the generic flavor group in 3d where the corresponding twisted mass parameter is

parameterized by R, the fugacities are periodic. This is the only difference from a generic

3d theory with flavor symmetry. Therefore the tt∗ geometry is the same as in the generic

case, namely the generalized monopole equations in 3r dimensions. Here the parameter

space is the compact T 3r. The chiral operators of the 2d case now correspond to surface

operators in the internal geometry (to see this note that the twist operators are codimension

2-operators, which is a surface operator in 4 dimension).

7.2 The case of 2-form symmetries

This is the case where the theory has a conserved anti-symmetric 2-form ‘current’ Jµν :

∂µJµν = d ∗ J = 0.

This couples to a background 2-form tensor field Bµν :∫
d4x B ∧ ∗J

24This is the most general flavor twisting in T 3 whenever the flavor group is an Abelian group times a

product of simple groups of isotype AN−1 and Cn which have all dual Coxeter labels equal 1. For more

general flavor groups GF , the space T 3r/Weyl gets replaced by the moduli spaceM3 of communing triples

in GF which is a disconnected space (see [79, 80]). Restricting ourselves to the tt∗ geometry of the largest

connected component of M3, we reduce back to the situation discussed in the text.
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which we take to be flat. In the N = 1 supersymmetric case the background tensor field

is part of an N = 1 tensor multiplet, which includes in addition a real scalar field φ whose

constant vev deforms the theory. A generic way this structure appears is when we have a

U(1) gauge symmetry. In that case J = ∗F , which is conserved because d ∗ J = dF = 0.

The coupling to the background B field corresponds to a
∫
d4xB ∧ F term and the vev

of the scalar field φ corresponds to the FI parameter for the U(1) field. For each such

2-form symmetry, we have, in addition to the choice of the vev of φ which is generically

parameterized by25 R, we choose a 2-form B on T 3 which is periodic (assuming, as is

typically the case, that the integrals of ∗J = F are quantized), which then is parametrized

again by a T 3. Thus, altogether, we get the parameter space T 3 × R. If we have r such

2-form symmetries this gives the parameter space becomes

(T 3 × R)r.

The 4 dimensional N = 1 supersymmetric theories do admit BPS strings, with the central

term being controlled by the scalar vev (which in the U(1) gauge theory case corresponds

to FI-term) in the tensor multiplet. Let us call this real parameter µ, which denotes the

tension of the string. Now consider compactifying the theory on T 2 to 2-dimensions with

a complex structure ρ. The parameter µ gets complexified by the component of the B12

along the T 2. Let us call this x12, i.e.

µ→ µ+ i x12.

In particular the strings will have a BPS tension proportional to µ. However now we have

in addition a more refined sector in the 2d theory which will be labeled by a pair of integers

n1, n2 depending on wrapping number of the string around the two cycles. Then the norm

of the central term in this sector will be the length of the string times the tension, i.e.,

Wn1,n2 = µ(n1R1 + in2R2)

where we have taken the T 2 to be a rectangular torus of radius R1, R2. Redefining µ̂ = R1µ,

we have

Wn1,n2 = µ̂(n1 + ρn2)

where ρ denotes the complex structure parameter for T 2. We are thus in the same situation

as doubly periodic W ’s discussed in section 3. As discussed there, the tt∗ geometry in that

case become that of self-dual Yang-Mills and its generalizations to higher dimensions,

corresponding to hyper-holomorphic connections.

The chiral operators of the 2d theory will now correspond to surface operators wrapped

around the T 2 fiber over each point in the 2d theory. The fact that they are surface

operators follows from the fact that they couple to µ whose imaginary part includes the

expectation value of B along the T 2 which can be gauged away locally, and is only accessed

by operators wrapping the entire T 2.

25We will discuss some examples where the 4d theory is a probe in a 6d (1, 0) theory where the vev is

parameterized by an S1, instead of R. In such a case we get T 4 as the parameter space.
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Figure 17. The states of the 4d theory on T 3 can be obtained by doing the path integral on an

infinite cigar times T 2, with surface operator, wrapping T 2 being inserted at the tip of the cigar.

7.3 Partition functions on elongated S3 × S1 and S2 × T 2

Just as in the 3d case, we recall that the tt∗ geometry has more information than just

the vacuum bundle and in particular it has a preferred basis of vacua corresponding to

chiral operators, coming from the topologically twisted path integral on semi-infinite cigar.

Consider a rectangular T 3 geometry and choose one of the circles to be the circle we was

to contract inside the cigar (see figure 17):

We can consider D-brane boundary conditions and we can compute this, as before, in

terms of Πa
i . Or we can consider capping another circle obtaining a compact geometry.

Moreover we have three inequivalent choices to cap the other circle. If we choose the

same circle to contract on the other cigar as well, we would be computing the usual gij
metric and ηij of the 2d theory depending on whether both cigars are topological, or one

is topological and the other anti-topological. The path-integral for this configuration will

have the topology of infinitely elongated T 2 × S2. On the other hand if we contract one

of the other circles on the second cigar, we will get something which has the topology of

infinitely elongated S1 × S3. As explained in the context of the 3d problem these can all

be computed. In this case the analog of S-transformation will be played by a non-abelian

discrete subgroup of SO(3,Z) ⊂ SL(3,Z), generated by π/2 rotations of 12, 23, 31 planes.

7.4 Gauging and ungauging

As discussed in the context of Nahm transformation, we expect that making the flavor

symmetry dynamical has the effect of mapping the tt∗ geometry to its Nahm transform. In

the context of a 4d theory with a U(1) flavor symmetry, as already discussed, we expect to

get monopole equations on T 3. On the other hand for a gauge U(1) symmetry we expect to
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get self-dual connections on R× T 3. Indeed the two are Nahm transforms of one another.

In particular, if we consider the Fourier-Mukai transform of the self-dual connection on

R × T 3 we expect a T-dual geometry, which gets rid of one dimension (given by R) and

maps T 3 to the dual T 3, which is indeed the expected geometry for the dual system.

8 Examples of tt∗ geometry in 4 dimensions

In this section we would like to discuss some examples of tt∗ geometries which arise from

four-dimensional N = 1 theories compactified to 2d (2, 2) on a torus of complex structure

τ and area A. Although the analysis is not conceptually different from the 3d and 2d

examples which appeared in the previous sections, the existence of various anomalies in

four dimensions field theories complicate our work.

The basic example of a single free chiral multiplet in four dimensions illustrates well the

situation. The KK reduction on a 2-torus gives us a double tower of 2d chiral multiplets,

of masses µk,n = µ+ 2π
Rz

(k + τn), where k, n are the KK momenta and Rzµ = θ3 + τθ2 is

the complex combination of the two flavor Wilson lines on T 2
τ , which behaves as a twisted

mass parameter for the theory reduced to two dimensions. Correspondingly, we should

expect the tt∗ geometry to be a triply-periodic U(1) BPS Dirac monopole solution, defined

on the T 3 parameterized by the three flavor Wilson lines θ1,2,3, the standard θ1 = 2πx and

the internal θ2 = 2πy and θ3 = 2πz.

There is an obvious problem with that: there are no (non-trivial) single-valued har-

monic functions on a compact space. In other words, we can assemble the triply-periodic

array of Dirac monopoles, but we cannot make the solution fully periodic in the three

Wilson lines. For simplicity, let’s take momentarily τ = iRzRy and assemble a periodic ar-

ray of the doubly-periodic monopole solutions we encountered in 3d. Formally this will

correspond to a harmonic function of the form

V4d(x, y, z) = v(z) +
∑

(k,`) 6=(0,0)

V (k, `) e2πikx+2πi`y cosh

[
2π

Rz

√
R2
xk

2 +R2
y`

2

(
z − 1

2

)]
(8.1)

where

V (k, `) = − RxRy

2
√
R2
xk

2 +R2
y`

2 sinh
[
π
Rz

√
R2
xk

2 +R2
y`

2
] . (8.2)

The harmonic function V4d(x, y, z) has a source which corresponds to the periodic array of

doubly-periodic Dirac monopoles if and only if the first derivative of the zero-mode v(z)

has discontinuity
2πRxRy
Rz

at all integer z. This is impossible for a function which is both

harmonic and periodic; indeed harmonicity requires something like

v(z) =
2π

Rz

((
k +

1

2

)
z − 1

2
k(k + 1)

)
k < z < k + 1. (8.3)

Thus the Higgs field fails to be periodic by V (z+ 1)−V (z) = 2π
Rz

(z+ 1
2). Correspondingly,

the field strength of the gauge connection on the x–y torus will not be periodic in the
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z direction, but rather the total flux will increase by one as z → z + 1. Of course, we

can make slightly different choices to sacrifice periodicity, say, in the y direction and keep

periodicity in the z direction.

The lack of periodicity is also visible from the twisted effective superpotential for a 4d

chiral multiplet compactified to 2d, or better its first derivative. Indeed, the contribution of

tt∗ B-matrix (3.6), written as a sum of the corresponding matrices Bn,m for the decoupled

Yn,m KK modes, is26

B =
∑
n,m∈Z

log

[
z + n

2Rz
+ i

y +m

Ry

]
regularization−−−−−−−−−→ log Θ

(
z + yτ, τ = i

Rz
Ry

)
, (8.4)

where

Θ(w, τ) ≡ θ1(πw | τ) = 2

∞∑
n=0

(−1)n q
1
2

(n+ 1
2

)2 sin
(
(2n+ 1)πw

)
, q = exp(2πiτ). (8.5)

Under a translation y → y + 1, the log Θ(z + yτ, τ) shifts by

iπ − 2πi(z + yτ)− πiτ.

This corresponds to the choice of V which fails to be periodic in the y direction.

Finally, we can express the problem in terms of the spectral curve

ep = Θ(z + yτ, τ) (8.6)

which is not a well-defined curve in C∗ × T 2.

The relation to the anomaly in the 4d flavor symmetry of a single chiral field becomes

a bit more obvious if we imagine a collection of 4d chiral multiplets, having charges qi ∈
Z under the flavor symmetry. The Bµ matrix (equal to the value of the derivative of

the effective superpotential with respect to µ ≡ z + yτ on the reference vacuum, cfr.

section 4 satisfies

Bµ =
∑
i

qi log Θ
(
qi(z + yτ), τ

)
. (8.7)

Under a translation y → y + 1 it shifts by

− πi(2µ+ τ)
∑
i

q3
i + iπ

∑
i

q2
i (8.8)

Thus the coefficient of the dangerous shift linear in µ = z+yτ is the coefficient of the total

U(1)3 anomaly. eq. (8.8) is equivalent to the statement that

expBµ ≡ exp
(
∂µW |vacuum

)
26The sum is not absolutely convergent, and hence the order of summation matters (in particular, different

orders lead to functions which fail to be periodic in different directions). Here the symmetric Eisenstein

order convention is implied.
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is a section of a line bundle L over the elliptic curve of period τ with Chern class

c1(L) =
∑
i

q3
i . (8.9)

In particular, the U(1)3 anomaly coefficient measures the failure to commute of the two

translations Tz : z → z + 1 and Ty : y → y + 1.

More generally, if we look at multiple U(1) flavor symmetries, with 4d chirals of charges

qi,a under the a-th flavor symmetry, the coefficient of µc in the discontinuity of Bµa ≡
∂µaW

∣∣
vacuum

under µb → µb + τ equal to

− 2πi
∑
i

qi,aqi,bqi,c. (8.10)

Thus any mixed anomaly between the U(1) flavor symmetries will cause trouble with the

periodicity of the tt∗ geometry. We will encounter similar statements for non-Abelian flavor

symmetries, by considering their Cartan subgroup.

For example, consider a theory of two 4d chirals. The theory has a non-anomalous

“vector” flavor symmetry which rotates a chiral in one direction, and the other chiral in the

opposite direction and an anomalous “axial” symmetry which rotates them in the same

direction. If we do not turn on a Wilson line for the axial symmetry, the tt∗ geometry

for the vector symmetry is well defined, but trivial, as the contribution of the two chirals

essentially cancels out. On the other hand, if we allow a generic fixed flavor Wilson line

µ′ for the “axial” flavor symmetry and study the tt∗ geometry for the vector symmetry we

still have some trouble, although less serious: the harmonic function V is not periodic, but

it shifts by a constant (i.e. e∂µW |vacuum is a section of a topologically trivial line bundle).

Now the tt∗ connection has a curvature F = ∗dV which is strictly periodic, and hence

well-defined (up to gauge transformations).

Correspondingly, the spectral curve

ep =
Θ(µ+ µ′, τ)

Θ(−µ+ µ′, τ)
(8.11)

is not a well-defined curve in C∗ × T 2, as p is multi-valued by 4πiµ′. Unlike the case with

a single chiral field, this spectral curve can still make sense as a curve in a non-trivial C∗

bundle over T 2, and the tt∗ monopole geometry can make sense if we think about the Higgs

field as a periodic scalar field whose profile is a section of an affine bundle over T 3.

To gain more insight into this case it is useful to consider the 5-brane construction of

the last section associated with this geometry by viewing the 4d theories as probes of 6d

(2,0) or (1,0) theories. As discussed in [66] the 5-brane geometries which are on a cylinder,

instead of a plane, are equivalent to 6d theories. Moreover as noted in [67, 68, 76] the 6d

theories can be viewed either as circle compactification of 6d gauge theories or (1,0) SCFT’s

theories. For example consider the brane geometry given by figure 18. This corresponds to

an M5 brane geometry compactified on a circle with a twist around the circle corresponding

to a mass m = 2µ′, which in 5d becomes the U(1), N = 2∗ theory where µ′ is the mass

parameter for the adjoint field. Note that the plane geometry is twisted, in that as we
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Figure 18. A Single M5 brane in the presence of a Taub-NUT, is dual, after compactification

on a circle, to this 5-brane web diagram on a cylinder with circumference τ . The mass parameter

m = 2µ′ is induced from the R-twist around the compactified circle leading to N = 2∗ theory in 5d

with adjoint mass m.

go around the vertical direction, we shift along the horizontal direction by an amount µ′.

Indeed, upon compactification on another circle, this gives rise to an N = 2 theory in d = 4

with the Seiberg-Witten curve given by [66]

ep Θ(−x+ µ′, τ)−Θ(x+ µ′, τ) = 0

where this is an equation for x and p.

The 4d probe of M5 brane, upon compactification on a circle, corresponds to 3d theories

corresponding to the suspended branes, where the suspended brane ends on the web at

x = µ. This gives rise to a theory with two chiral fields of masses µ+ µ′ and −µ+ µ′. See

figure 19.

In fact this geometry gives rise to the spectral curve eq. (8.11), and this is because

the brane probe theory supports two chiral fields (reflected in this case by the two 1-

branes stretched between the web and the D3 brane). The fact that the µ parameter is

periodic (while in the 3d case it took values in R) is simply a reflection of the fact that

the vertical direction is periodic, and as the spectator goes around the vertical direction

by τ it comes back to the original position, thus giving a parameter space T 3. The lack

of periodicity of the Higgs field, i.e. the shift in the horizontal direction as we go around

the vertical direction, will give rise to a generalized tt∗ geometry which as discussed in

section 3 corresponds to the Nahm transform of hyperholomorphic connections on a non-

commutative space. Moreover as found for this model in eq. (3.89) the non-commutativity

parameter is proportional to µ′. The non-commutativity would disappear, and we get the

ordinary tt∗ commutative geometry, if we set µ′ = 0 and avoid turning on Wilson lines for
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Figure 19. This web diagram is dual to 4d theory with two chiral fields of masses µ′+µ and µ′−µ.

The variable µ which changes with the position of the spectator brane is a periodic variable.

anomalous flavor symmetries. We can also consider more chiral fields which corresponds

to a 4d probe of the (1, 0) theory given by an M5 brane probing an An−1 singularity. See

figure 20. If we use n chirals of charge 1, n of charge −1 we get a spectral curve:

ep =
∏
a

Θ(µ− µa, τ)

Θ(−µ+ µ′a, τ)
(8.12)

Again, if we want to avoid the anomalous flavor symmetry we can turn off the axial

flavor Wilson lines and set
∑

a µa −
∑

a µ
′
a = 0. Without loss of generality we can set∑

a µa =
∑

a µ
′
a = 0 by shifting µ if necessary. This is a sensible spectral curve, and

corresponds to a triply-periodic collection of U(1) Dirac monopoles n of charge 1 and n of

charge −1, at positions ~θa and ~θ′a on T 3 constrained to satisfy
∑

a
~θa =

∑
a
~θ′a = 0.

The obvious next step is to gauge the U(1) flavor symmetry, to get N = 1 SQED with

n flavors. Although the theory has a Landau pole, the tt∗ geometry is oblivious to the

4d gauge coupling, and should thus be relatively well-defined. As this is simply a Nahm

transform of the previous problem, the spectral curve is

et =
∏
a

Θ(σ − µa, τ)

Θ(−σ + µ′a, τ)
(8.13)

where t is the (complexified) FI parameter. We can better write the equation as

et
∏
a

Θ(−σ + µ′a, τ)−
∏
a

Θ(σ − µa, τ) = 0 (8.14)

This equation is a degree n theta function on the torus, and has n zeroes σ∗i , which represent

the gauge Wilson lines in the n vacua of the theory compactified on T 2. In terms of brane

diagrams, the spectator brane is now oriented vertically. See figure 21.
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Figure 20. This web diagram includes a 4d subsector with 2n = 8 chiral fields of charges (+14,−14)

under the U(1) flavor symmetry.

Geometrically, the tt∗ geometry is a triply-periodic instanton geometry, i.e. an instan-

ton in Rt × T 3. The complexified FI parameter t is a coordinate on Rt × S1, while by

definition the zeroes σ∗i characterize the holomorphic SU(n) bundle on the remaining T 2

directions. Thus the µ′a and µa parameters label the holomorphic SU(n) bundle at large

positive and large negative t respectively. This instanton solution appears to be rigid. The

spectral curve, for example, has no moduli.

8.1 SQCD

Much as it happens for the Grassmanian GLSM [8] (see also the review in [15]), the twisted

chiral ring relations for an U(nc) four-dimensional gauge theory with nf flavors are closely

related to the ones for a U(1) theory, and can be engineered as in the case of U(1) SQED

discussed above, by taking nc suspended D-branes. In this case each of the Wilson lines σi
in the Cartan of U(nc) must solve

et
∏
a

Θ(−σi + µ′a, τ)−
∏
a

Θ(σi − µa, τ) = 0 (8.15)

with the extra constraints that they should be distinct solutions.
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Figure 21. This web diagram together with the probe engineers SQCD with 4 flavors. The theory

has 4 vacua. The FI parameter of the U(1) theory is controlled by t, the position of the spectator

brane. The rank of the group depends on how many branes we suspend between the spectator

brane and the web. For U(nc) we need nc suspended branes.

Thus the
(
nf
nc

)
vacua of the system coincide with the possible choices of nc distinct

roots of the above degree nf theta function.27 It is pretty clear that the tt∗ geometry

should thus be the rank
(
nf
nc

)
triply-periodic instanton obtained as the nc-th exterior power

of the rank nf bundle described above.

In order to describe the tt∗ geometry for the true SQCD theory, i.e. a SU(nc) gauge

theory with nf flavors, we need to “ungauge” the diagonal U(1) gauge symmetry, i.e.

do a Nahm transform of the rank
(
nf
nc

)
triply-periodic instanton to some triply-periodic

monopole geometry for the vector U(1) flavor symmetry.

8.2 4d probes of more general 6d (1,0) SCFT’s

It is natural to consider more general singly periodic web diagrams. See figure 22. In this

case we have n horizontal directions on the web broken by m vertical directions. This 5d

theory corresponds to compactifications of the 6d (1, 0) SCFT, given by m parallel M5

branes probing an An−1 singularity, on a circle [68, 76]. The distance between the vertical

27The remaining n− nc roots are nothing else but the Wilson lines of the Seiberg-dual gauge group.
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Figure 22. This web diagram is a circle compactification of the 6d (1,0) SCFT of m M5 branes in

the presence of An−1 singularity.

lines relate to the separation of M5 branes. Taking the spectator 5-brane in the vertical

direction and suspending a D3 brane, gives rise in 6d, to a 4d theory with N = 1. The

corresponding theory will have n vacua, giving rise to tt∗ geometry of SU(n) instantons on

R× T 3 with instanton number m. The corresponding spectral curve would be given by

m∑
k=0

ak e
kt

n∏
a=1

Θ(−σ + µka, τ) = 0, (8.16)

which gives us a more-general SU(n) instanton geometry on Rt × T 3, with boundary con-

ditions at large |t| still controlled by the µ0
a and µna parameters.28

Strictly speaking, it is not obvious that the U(1) gauge group associated to the FI

parameter t will survive the field-theory limit. It is more-likely that a well-defined co-

dimension two defect in the (1, 0) 6d theories would support an U(1) flavor symmetry

in its world volume, and that the triply-periodic instanton tt∗ geometry is the result of

gauging that U(1) flavor symmetry. In order to describe the tt∗ geometry of the original

defect, we should do a Nahm transform back to a triply-periodic monopole geometry, and

re-interprete the spectral curve

m∑
k=0

ak e
kp

n∏
a=1

Θ(−σ + µka, τ) = 0 (8.17)

28The (n− 1)m+ (m+ 1)− 1 = nm complex normalizable moduli coming from the choices of the other

µia, the ak, and getting rid of one overall normalization for the equation, combine with the moduli of the

line bundle over the spectral curve to give a moduli space of solutions of hyperKähler dimension mn.
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Figure 23. This web diagram is a circle compactification of the little 6d string theory of m M5

branes in the presence of An−1 singularity with one transverse circular geometry. Adding a spectator

brane and a probe to this geometry realizes the tt∗ geometry associated to SU(n) instantons with

instanton number m on (non-commutative) T 4.

as the spectral curve for a U(N) triply-periodic monopole solution on T 3
m, in the presence

of n Dirac monopoles of charge 1 and n of charge −1.

It is also natural to ask if we can get instantons on T 4, by having a ‘periodic’ version

of FI parameter t. This is indeed possible, because we can consider the doubly periodic

brane geometry, i.e. 5-branes not on a cylinder but on a T 2. See figure 23.

As noted in [67] this geometry will engineer the little string theories. More specifically

this corresponds to m M5-branes probing an An−1 singularity where one transverse dimen-

sion to the M5 branes has been compactified on the circle. This would then lead to the

parameter space being T 4 and the tt∗ geometry would correspond to SU(n) instantons of

instanton number m on T 4.29 The corresponding spectral curves will involve level (n,m)

genus 2 Θ functions as discussed in [66].

As already discussed, to obtain the conventional tt∗ geometry we had to turn off

anomalous flavor Wilson lines. Moreover we have argued that when we turn them on

the tt∗ geometry becomes non-commutative. Given the unusual nature of this result it is

interesting to note that we can get a confirmation of our results from a different perspective

from the elegant work [77, 78]. In particular they show that the moduli space of non-

commutative instantons on T 4 is given by the moduli space of the (1, 0) superconformal

29Exchanging the vertical and the horizontal direction will map this to SU(m) instantons of instanton

number n, which is an instance of Fourier-Mukai/Nahm transformation.
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theories we have discussed. Moreover they show that the spectral curve for such instantons

are precisely the associated Seiberg-Witten curves. The non-commutativity is mapped to

horizontal and vertical shifts as we go around the cycles of the plane of the 5-branes. This

agrees with what we expected in that when we have 4d flavor symmetries which would

have anomalies (if gauged) we get non-commutative versions of tt∗ geometry. Note that in

these contexts the value of non-commutative parameters are not part of the moduli space

of the tt∗ geometry. They are fixed background values. Moreover turning on the angular

parts of the mass parameters, we expect to get 3 non-commutativity parameter for each

periodic direction of the 5brane plane in agreement with the results of [77, 78].

There is a further modification of this setup, which is worth mentioning. On the peri-

odic fivebrane web picture, it corresponds to having the bundles of semi-infinite fivebranes

end on groups of D7 branes, as in [85].

Alternatively, if we T-dualize to a system of D6 branes crossing NS5 branes [84], we can

consider the full Hanany-Zaffaroni setup which includes D8 branes, to describe a somewhat

larger class of (1, 0) theories which can be interpreted, as in lower dimensional cases, as

“Higgs branch descendants” of the 6d theories described above, i.e. sit at the bottom of an

RG flow initiated by turning on some special Higgs branch vevs. The spectral curve is a

slight generalization of the above:

e(N+1)τ
∏
a

Θ(−σ + µ′a, τ)n
′
a

+
N∑
k=1

e(N+1−k)τ
∏
a

Θ(−σ + µ′a, τ)max(n′a−k,0)Θ(σ − µa, τ)max(na+k−N−1,0)Θ(k)
n (σ, τ)

+
∏
a

Θ(σ − µa, τ)na = 0 (8.18)

which is constructed in such a way to describe U(N) triply-periodic monopole solution on

T 3
m, in the presence of Dirac monopoles of charge na and −n′a.

9 Line operators and the CFIV index

The tt∗ geometry in 2 dimensions led, in particular, to the calculation of a new supersym-

metric index, the CFIV index [24], given by30

Qab = lim
L→∞

iβ

2L
Trab(−1)FF e−βH (9.1)

where the space is taken to be a segment of length L with boundary conditions a, b at the

two ends, and we take the infinite volume limit L→∞. Qab can be identified with the tt∗

connection in the direction of RG flow, in a suitable gauge.

30The peculiar overall factor 1/2 in the rhs is an artifact of the choices of normalization of the charges.

The Fermi number F is normalized in such a way that the supercharges have Fermi number ±1. Then the

odd superspace coordinates θ also have charges ±1. Instead the Qab is normalized in such a way that, at

criticality, the difference between its maximal and minimal eigenvalues is ĉ. Effectively, this is the same as

assigning axial charge 1 to the superpotential W , and hence charges ±1/2 to the θ’s. Therefore Qab is 1/2

the CFIV index.
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Qab is an index in the sense that it depends only on a finite number of parameters in the

theory (F-terms) and is insensitive to all the others. In the limit β →∞ it becomes an index

in the ordinary sense, which counts the net number of short supersymmetry representations

in the Hilbert space sector specified by the boundary conditions a, b. Furthermore, one

can exchange space and Euclidean time and relate Qab to the expectation value of the axial

R-symmetry charge Q5 (using the 2d fact that j5
µ = ∗jFµ ), which is broken away from the

conformal point:

Qab =
1

2
〈a|Q5|b〉.

This can be interpreted as the action of the operator

Q5 =

∫
S1
β

(
jFβ +Q–exact

)
on the ground states:

Qab =
1

2

〈
a
∣∣∣ ∮

S1
β

jFβ

∣∣∣ b〉 (9.2)

where by jFβ we mean the component of the Fermion number R-current jF in the direction

of S1
β. At the conformal point, this corresponds to the spectrum of the R-charges of the

Ramond ground states, which by spectral flow, gives the spectrum of chiral operators in

the theory. Twice the highest eigenvalue of Q5 corresponds to ĉ, the central charge of the

N = 2 theory. Away from the conformal point, even though Q5 is no longer conserved, one

can still compute its spectrum restricted to the ground states, and it was shown [24] that

the entire spectrum of Qij is monotonically decreasing as we flow to the infrared. Applied

to the highest eigenvalue of Q5 as one flows from one fixed point to another, this leads to

the statement that along RG flow ĉ decreases.

It is natural to ask what are the physical implications of the CFIV index, applied to

theories which arise from 3 or 4 dimensions. In this section we take some preliminary steps

in this direction trying to find the physical meaning of this quantity. Moreover we compute

it explicitly for the case of free chiral fields in 3 dimensions with a twisted mass.

9.1 CFIV index and 3d theories

Consider a 3d theory, compactified on a rectangular torus with periods R, β. We can view

this as a 2d theory on a spatial circle of length β, by viewing the 3d fields as an infinite

tower of KK modes arising from compactification on a circle of length R. The conserved

2d R-symmetry which corresponds to the fermion number F will lift in the 3d context to

the conserved 3d R-symmetry which is present for all 3d theories with N = 2. We can

thus interpret the expression (9.1) as computing the same quantity, except that the space

is now two dimensional, comprising of R1 × S1, where the length of R1 is taken to be L

and we take L→∞, and the length of S1 is R. Moreover the answer can now depend on

xi, yi, where the yi’s correspond to the imaginary part of the 2d coupling parameters, and

xi’s can be viewed as an additional insertion of flavor fugacities around the β circle:

Qab(xi, yi,mi, ρ) = lim
L→∞

iβ

2L
Trab

[
(−1)FF e−βH+2πixifi

]
(9.3)
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where we have separated out the imaginary piece yi from the real part mi of the twisted

mass parameters, and set ρ = β/R = −iτ ; fi denote the i-th flavor charge. We will

compute this quantity for the case of the 3d free chiral model and verify this Hilbert

space interpretation.

Moreover, we can also look at this quantity from the perspective of the dual channel.

Namely we can consider the Hilbert space of the 3d theory on a T 2 with periods (β,R)

and flavor Wilson lines (xi, yi) around the two cycles. In this context we have

2Qab(xi, yi, µi, ρ) =
〈
a
∣∣∣ ∮

S1
β

∮
S1
R

jFβ

∣∣∣ b〉
(βxi ,Ryi )

≡ βR
〈
a
∣∣ jFβ ∣∣ b〉(βxi ,Ryi )

. (9.4)

Of course, by interchanging the role of the two circles, the CFIV index also computes the

vacuum matrix elements of the other component of the current jFR (the third component,

jFL , has vanishing matrix elements between vacua).

9.2 Possible interpretations of Q in terms of line operators

In the case of 2d, at the conformal fixed point the (differences) in the spectrum of Q

determine the dimension of chiral fields. In particular in that case we have

Φi(0)Φi(z) ∼
A

|z|2Qi
, z ∼ 0,

where Qi denote the charge of the chiral field Φi, and A can be read from the β → 0

behavior of the tt∗ metric [1]. It is natural to ask if a similar statement holds for the case

of 3d theories at their conformal limit where mi = 0. In this case, as already mentioned, the

chiral fields are replaced by line operators, and so the question would be: how the partition

function of the theory depends on separation |z| of a line operator and its conjugate?

Consider the line operators wrapping the S1
R. From another perspective, this can be

interpreted as a particle defect. A natural question in this context would be how the energy

of the system depends on the separation between a line operator and it conjugate, i.e. the

Casimir energy of line operator/ anti-line operator system. If Q is related to such an energy,

as we increase R → ∞ for a fixed β, i.e. as we take ρ → 0, Q should grow linearly in R

since the energy E(R, |z|) should be proportional to the spatial size R of the system, up to

finite size corrections. So we would expect Q/R to have a finite limit as R → ∞. As we

shall see in the explicit example below, this is indeed the case. It would be interesting to

see if Q/R in this limit is related to the Casimir energy of pairs of conjugate line operators.

It would also be interesting to connect the conformal limit of this computation to the cusp

anomalous dimension for line operators (see e.g. [86]).

9.3 On the CFIV index for the 3d chiral model

We consider the free chiral model in 3d with twisted mass m which upon reduction on a

circle of radius R is equivalent to the 2d (2,2) LG model (6.2) with

W (Yn) =
∑
n∈Z

(
1

2

(
m

2π
+ i

n+ y

R

)
Yn − eYn

)
.
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We further consider putting the theory on a tt∗ circle of length β. We set ρ = β/R = −iτ .

We write x for the vacuum angle with period 1, y for the second angle (also with period

1) associated with the imaginary part of the 2d twisted mass, and set z = β m/2π; then

the 3d real mass (made dimensionless by multiplying it by β) is 2πz.

The CFIV index for this model is the sum over the KK modes of the CFIV index for

the 2d single-mode theory. In appendix A.3 we present several convenient expressions of

this last index. From, say, eq. (A.35) we have

Q(x, y, z, ρ) = − 1

π

∑
n∈Z

∑
k≥1

sin(2πkx)

k

(
2πk

∣∣z + i(y + n)ρ
∣∣) K1

(
2πk

∣∣z + i(y + n)ρ
∣∣). (9.5)

See eq. (9.24) below for the Poisson-resummed expression of Q(x, y, z, ρ) as a double Fourier

series in the two periodic variables x, y.

Q(x, y, z, ρ) has two interesting limits. One is R→ 0 at β fixed, that is, ρ→∞, while

keeping yρ fixed. In this case all terms in the sum over the KK modes n, except for the

zero mode n = 0, vanish exponentially, and we get back the 2d expression with complex

twisted mass m+ 2πiy/R.

The second one is the opposite limit R → ∞. Before computing it, let us list the

physical properties we expect the answer to have.

Physical expectations as R→∞. The tt∗ amplitudes in this limit are correlators of

line operators wrapped on a cycle of large length R. Since the CFIV index is believed to

give the values of some kind of extensive quantity, like the Casimir energy of the vacuum

states on T 2 created by the line operators, we expect that, asymptotically for large R and

fixed β, Q becomes proportional to R

Q(x, y, z, β/R)

∣∣∣∣
R→∞

=
R

β
· f(x, y, z) + finite-size corrections, (9.6)

where f(x, y, z)/β is the finite linear density of the said extensive quantity, which should

scale with the temperature β−1 by dimensional considerations. We also expect the function

f(x, y, z) to be y-independent, since a finite flavor twist over a circle of infinite length should

not affect the value of the local density of an extensive quantity. Moreover, as a function of

x, f(x, y, z) should be periodic of period 1 and odd (this last condition reflects consistency

with CPT). Finally, since the mass of the physical particle in 3d is 2π|z|/β, and the CFIV

index is a Hilbert space trace of the form (9.3), for large values of the mass m = 2π|z|/β
the density Q/R should have the standard thermodynamical expression

1

β
f(x, y, z) ∼ iβ

2

(
e2πix − e−2πix

)∫ d2p

(2π)2
e−β
√
p2+m2

=
i

4π

(
e2πix − e−2πix

)( 1

β
+m

)
e−βm,

(9.7)

where the factors e±2πix arise from the role of e2πix as particle number fugacity, and their

relative combination is fixed by PCT and reality of f(x, y, z). In fact, the rhs turns out

to be the exact expression of the terms proportional to e±2πix in the Fourier expansion of
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f(x, y, z). This means that multiparticle states of total flavor charge ±1 do not contribute

to Q. This last statement is exact for all R, not just for R large. Indeed, the term

proportional to e2πix in eq. (9.5) is

iβ

2π
e2πix

∑
n∈Z

(∣∣m+ 2πi(y + n)/R
∣∣) K1

(
β
∣∣m+ 2πi(y + n)/R

∣∣)

≡ iβ

2
e2πix

∑
n∈Z

+∞∫
−∞

dp

2π
e−β
√
p2+(2π)2(n+y)2/R2+m2

,

(9.8)

which is the partition function of a particle of massm in an infinite cylinder of circumference

R and holonomy exp(2πiy).

More generally, given that this theory has only one physically distinct vacuum, we may

think of computing the trace in eq. (9.1) by inserting a complete set of intermediate states,

which may be taken to be free particle states; this implies that the coefficient of e2πikx in

the Fourier expansion of Q (and hence of f) should be O(e−β|k| |m|) for large |m|. Again,

this is manifestly true for the expression (9.5).

The function f(x, y, z). Before showing that these expectations are correct, and giving

an explicit formula for f(x, y, z), we rewrite the expression (9.5) in a more compact and

illuminating form. We start form the following integral representation of K1(w)

K1(w) =
1

w

∫ ∞
0

dt e−t−w
2/4t |argw| < π/4. (9.9)

Plugging this formula into (9.5) we get

Q(x, y, z, ρ) = − 1

π

∑
k≥1

sin(2πkx)

k

∞∫
0

dt e−t

( ∑
n∈Z

e−4π2k2(z2+(y+n)2ρ2)/4t

)
. (9.10)

The expression inside the big parenthesis is a θ3 function. To get a rapidly convergent

expression for ρ small we have just to express this function in terms of the θ-function for

the inverse period using its modular transformation properties. More precisely, we have∑
n∈Z

e−4π2k2(z2+(y+n)2ρ2)/4t = e−π
2k2(z2+y2ρ2)/t

∑
n∈Z

(
e−2π2k2ρ2/t

)n2/2 (
e−2π2k2ρ2y/t

)n
= e−π

2k2(z2+y2ρ2)/t θ3

(
iπ2k2ρ2 y/t | iπk2ρ2/t

)
,

(9.11)

where

θ3(w|σ) =
∑
n∈Z

qn
2/2 e2inw, q = e2πiσ. (9.12)

Thus

Q(x, y, z, ρ) = − 1

π

∑
k≥1

sin(2πkx)

k

∞∫
0

dt e−t e−π
2k2(z2+y2ρ2)/t θ3

(
iπ2k2ρ2 y/t | iπk2ρ2/t

)
.

(9.13)
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The simplest way to compute the ρ→ 0 (i.e. the R→∞) limit is to replace the theta

function by its S-modular transform

θ3

(
w |σ

)
= (−iσ)−1/2 exp

(
− iw2/πσ

)
θ3

(
− w/σ | − 1/σ

)
, (9.14)

which gives

Q(x, y, z, ρ) = − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t θ3

(
−πy

∣∣∣ it

πk2ρ2

)
. (9.15)

The function f(x, y, z) is defined by taking first the infinite size limit R→∞ at fixed

x, y, z. In the limit ρ → 0 (R → ∞) the theta function in the integrand of (9.15) may be

replaced by its asymptotic expression, which is just 1. Thus, since ρ = β/R, for large R

Q(x, y, z, β/R) ≈ − R

(π)3/2 β

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t, (9.16)

Now,
∞∫

0

exp

(
− t− w2

4t

)√
t dt =

1√
2
w3/2 K3/2(w) ≡

√
π

2
e−w (1 + w) (9.17)

and

Q(x, y, z, β/R) ≈ −R
β

1

2π

∑
k≥1

sin(2πkx)

k2
e−2πk|z|

(
1 + 2πk|z|

)
, (9.18)

which is of the expected form with

f(x, y, z) =
1

4πi

(
Li2
(
e−2π(|z|+ix)

)
− Li2

(
e−2π(|z|−ix)

))
+
|z|
2i

[
log
(
1− e−2π(|z|−ix)

)
− log

(
1− e−2π(|z|+ix)

)]
.

(9.19)

This expression exactly matches the physical predictions (9.7). In particular, f(x, y, z)

is independent of y, periodic and odd in x, and has a leading behavior for large |m| as

expected, eq. (9.7). As already mentioned, the coefficient of e±2πix in the Fourier expansion

of f(x, y, z) are exactly given by eq. (9.7).

In particular, at z = 0 we have

f(x, y, 0) = − 1

2π
Π(x), (9.20)

where Π(x) is the Lobachevsky function (a.k.a. the Clausen integral), which expresses inter

alia the volume of the ideal tetrahedra in hyperbolic 3-space. One has

Π(x) =
∑
m≥1

sin(2πmx)

m2
=

Li2(e2πix)− Li2(e−2πix)

2i
= −

2πx∫
0

log
(

2 sin
(
s/2
))
ds. (9.21)

– 95 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
5

The double Fourier series for Q. We can write alternative expressions for the 3d

chiral CFIV index which are more convenient for computing sub-leading corrections to the

large R behaviour (9.18). We start from eq. (9.15)

Q(x, y, z, ρ) == − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t θ3

(
−πy

∣∣∣ it

πk2ρ2

)

= − 1

(π)3/2 ρ

∑
k≥1

sin(2πkx)

k2

∞∫
0

dt
√
t e−t−π

2k2z2/t
∑
n∈Z

e−tn
2/k2ρ2 e−2πiny.

(9.22)

The integral in t may be computed using

∞∫
0

dt
√
t e−at−b/t =

√
π

2 a3/2

(
1 + 2

√
ab
)
e−2
√
ab Re a, Re b > 0. (9.23)

This allows us to rewrite the CFIV index explicitly as a double Fourier series in x and y:

Q(x, y, z, ρ) =
1

ρ
f(x, 0, z)− ρ

π

∑
k≥1
n≥1

k sin(2πkx) cos(2πny)

(n2 + k2ρ2)3/2

[
ρ+ 2π|z|

√
k2ρ2 + n2

]
×

× exp
(
− 2π|z|

√
n2/ρ2 + k2

)
,

(9.24)

which, of course, matches with the result one would obtain starting with the known double

Fourier series for the tt∗ metric of the 3d chiral field.

Finite-size corrections. The first term in the rhs of the exact equation (9.24) is the

previous asymptotic behavior as ρ → 0 (keeping fixed 2π|z|/ρ ≡ |m|R). One may go on

and compute the corrections in powers of ρ2. The first correction is O(ρ2)

Q− 1

ρ
f(x, y, z) =− ρ2

2π

[
Li3(e−|m|R+2πy) + Li3(e−|m|R−2πy)

+ |m|RLi2(e−|m|R+2πy) + |m|RLi2(e−|m|R−2πy)
]

+O(ρ4).

(9.25)

9.4 General 3d N = 2 models: large mass asymptotics

From the previous physical discussion, we expect that the limit

lim
R→∞

1

R
Q(R) (9.26)

exists for all 3d N = 2 models compactified to 2d on a circle of length R. This will

correspond to the energy per unit length of the system described at the beginning of

the section. This fact may be checked explicitly for large twisted masses/FI parameters.
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Indeed, in this limit the tt∗ equations linearize (this being just the statement that a non-

Abelian monopole looks Abelian far away from its sources) and we get

Qab ≈
iR

2

(
∆ab

∫
d2p

(2π)2
e−β
√
p2+m2

ab

+
∑
k∈Zr

primitive

∆(k)ab e
2πik·x

∫
d2p

(2π)2
e−β
√
p2+mab(k)2

+
∑
`≥2

∑
k∈Zr

primitive

c(`,k) e−`βmab(k) e2πi`k·x + sub-leading

) (9.27)

where x = (x1, . . . , xr) are the flavor chemical potentials, mab(k) (resp. mab) is the mass of

the lightest particle in the 3d Hilbert space sector Hab having flavor charges k (resp. being

flavor neutral); the coefficients c(`,k) are polynomially bounded in terms of the masses,

and hence the terms in the last line are to be thought of as ‘subleading’. The coefficients

∆ab and ∆(k)ab are integers which satisfy the PCT conditions

∆ba = −∆ab, ∆(k)ba = −∆(−k)ab, (9.28)

and count the net multiplicities, in the sense of the CFIV susy index, of 3d BPS particles

having the corresponding quantum numbers. Note that the sum in eq. (9.27) is over the

primitive flavor charge vectors only. In writing the above equation we made use of a

genericity assumption, namely that there are no accidental alignments in the 2d effective

central charge complex plane.

The bottom line is that is we may read the 3d BPS spectrum of a N = 2 theory from

the asymptotical behavior at infinity of the associated (higher dimensional) tt∗ monopole

fields. In turn this spectrum may be related, through the CFIV index, with the scaling

behavior with the separation ∆ of an extensive energy-like quantity associated with a

configuration of two parallel line operators placed at the distance ∆.
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A Proofs of identities used in section 3.1

A.1 Eqs. (3.55) and (3.56)

We set ζ = 1 by rescaling µ and µ̄. Then from eq. (3.53)

Φ(x, µ, µ̄) =
1

2πi

∫ ∞
0

dt

t− i
∑
m≥1

e−2πm(µt+µ̄t−1+ix)

m
−
(
i↔ −i

) , (A.1)
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and perform the change of variables t = s−1

Φ(x, µ, µ̄) =
1

2πi

∫ ∞
0

i ds

s(s+ i)

∞∑
m≥1

e−2πm(µ̄s+µs−1+ix)

m
−
(
i↔ −i

)
=

1

2πi

 ∞∫
0

ds

(
1

s
− 1

s+ i

) ∑
m≥1

e−2πm(µ̄s+µs−1+ix)

m
−
(
i↔ −i

)
=

1

2πi

∫ ∞
0

ds

s− i
∑
m≥1

e−2πm(µ̄s+µs−1−ix)

m
−
(
i↔ −i

)
+

1

2πi

∑
m≥1

2i sin(2πmx)

m

∫ ∞
0

ds

s
e−2πm(µ̄s+µs−1)

 .

(A.2)

Comparing with eq. (3.50) we get the desired functional equation for Φ

Φ(x, µ, µ̄)− Φ(−x, µ̄, µ) = L(x, µ, µ̄). (A.3)

As stated in the main body of the text, this is equivalent to the equation for the tt∗ metric

in terms of the amplitudes Π (at, say, ζ = 1)

log Πcan − log Π∗can = logG− log |η| ≡ L, (A.4)

where Πcan are the amplitudes in the canonical base (in which η = 1), that is,

log Πcan = log Π +
1

2
logµ. (A.5)

Then, in view of eq. (3.48), eq. (A.4) reduces to (A.3) since Φ(x, µ, µ̄)∗ = Φ(−x, µ̄, µ) on

the physical slice where µ̄ = µ∗.

In view of eq. (3.53), eq. (3.56) follows from the obvious identity, valid for all natural

numbers n,

log
(

1− e−2πn(µt+µ̄t−1+ix)
)

=

n−1∑
k=0

log
(

1− e−2π(µt+µ̄t−1+ix+ik/n)
)
. (A.6)

A.2 The asymmetric UV limit µ̄→ 0

Again we set ζ = 1 by a redefinition of the µ, µ̄, and we assume first the redefined µ, µ̄ to

satisfy Reµ, Re µ̄ > 0. From eq. (3.48) we have(
∂µ − ∂x

)
log Π(x, µ, µ̄) = logµ− 1

2µ
+
(
∂µ − ∂x

)
Φ(x, µ, 0), (A.7)

while from eq. (3.53),

2πiΦ(x, µ, 0) =

∫ ∞
0

dt

t− i
log
(

1− e−2π(µt+ix)
)
−
(
i↔ −i

)
, (A.8)
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from which we get(
∂µ − ∂x

)
Φ(x, µ, 0) = −i

∫ ∞
0

dt

1− e−2π(µt+ix)
−
(
i↔ −i

)
= 2

∑
n≥1

sin(2πnx)

∫ ∞
0

dt e−2πnµt

=
1

πµ

∑
m≥1

sin(2πnx)

n
=

1

µ

(
1

2
− x
)
.

(A.9)

Plugging this result in (A.7), we get(
∂µ − ∂x

)
log Π(x, µ, 0) = log µ− x

µ
. (A.10)

This equation has the general solution

log Π(x, µ, 0) = −x logµ+ f(x+ µ), (A.11)

for some function f(w). To fix f(w) it is enough to compute log Π(x, µ, 0) for a fixed value

of x (and all µ). We shall compute it for x a half-integer.

A.2.1 log Π(x, µ, 0) for x ∈ 1
2
Z

For x ∈ Z we have

Φ(x ∈ Z, µ, µ̄ = 0) =
1

2πi

∫ ∞
0

dt

t− i
∑
m≥1

e−2πmµt

m
−
(
i↔ −i

)
=

1

π

∫ ∞
0

dt

t2 + 1

∞∑
m=1

e−2πmµt

m

=
1

π

∫ ∞
0

dt

( ∞∑
m=1

e−2πmµt

m

)
d

dt
arctan(t)

= − 1

π

∫ ∞
0

arctan(t) dt
d

dt

∞∑
m=1

e−2πmµt

m

= 2µ

∫ ∞
0

dt
arctan(t)

e2πµt − 1
.

(A.12)

By a change of variables, we rewrite the last expression in the form

2

∫ ∞
0

dt
arctan(t/µ)

e2πt − 1
. (A.13)

Then from eq. (3.58), we have

log Π(x ∈ Z, µ, 0) =

(
µ− 1

2

)
logµ− µ+ const.+ 2

∫ ∞
0

dt
arctan(t/µ)

e2πt − 1
. (A.14)

Now we invoke Binet’s formula

log Γ(z) = (z − 1/2) log z − z +
1

2
log(2π) + 2

∫ ∞
0

arctan(t/z)

e2πt − 1
dt, (A.15)
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to conclude that, choosing the constant in (A.15) to be zero, for all µ with Reµ > 0, we

have

Π(x ∈ Z, µ, µ̄ = 0) =
Γ(µ)√

2π
, (A.16)

as claimed.

For x ∈ 1
2 + Z,

log Π(x = 1/2, µ, 0) =

(
µ− 1

2

)
logµ− µ+ Φ(1/2, µ, 0), (A.17)

while, from identity (3.56)

Φ(1/2, µ, 0) = Φ(0, 2µ, 0)− Φ(0, µ, 0) (A.18)

which in view of eqs. (3.58), (A.16) is equivalent to

log Π(x = 1/2, µ, 0) = log Γ(2µ)− log Γ(µ)− 1

2
logµ− (2µ− 1/2) log 2. (A.19)

Using the Gamma function identity

Γ(2z) = π−1/2 22z−1 Γ(z) Γ(z + 1/2), (A.20)

this becomes

log Π(x = 1/2, µ, 0) = log Γ(µ+ 1/2)− 1

2
logµ− log

√
2π, (A.21)

as claimed.

A.2.2 Kummer formula

For ε ∼ 0, one has

log Π(x, ε, 0) + x log ε = log
√

2π +

(
x− 1

2

)
log ε+

1

π

∑
m≥1

cos(2πmx)

m

∫ ∞
0

dt

t2 + 1

− 1

π

∑
m≥1

sin(2πmx)

m

∫ ∞
0

t dt

t2 + 1
e−2πmεt

(A.22)

One has ∫ ∞
0

t dt

t2 + 1
e−2πmε t = − log(2πmε)− γ +O(ε) (A.23)∑

m≥1

cos(2πmx)

m
= − log(2 sinπx) (A.24)

∑
m≥1

sin(2πmx)

m
=
π

2
(1− 2x), (A.25)
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and eq. (A.22) becomes

log Π(x, ε, 0) + x log ε = log
√

2π − 1

2
log(2 sinπx) +

(
1

2
− x
)(

log 2π + γ
)

+
1

π

∑
m≥1

sin(2πmx)

m
logm+O(ε)

(A.26)

According to our results, the limit as ε → 0 of the lhs is log Γ(x) (for 0 < x < 1). The

resulting expression for log Γ(x) is the celebrated Kummer formula.

A.2.3 The ζ = 1 thimble brane function Φ(x, µ, µ̄) for Reµ ≷ 0

In section 3.1.2 we have saw that, for Reµ > 0, the solution to the tt∗ brane amplitude for

the model W = µY − eY , which corresponds to the basic Lefshetz thimble brane, may be

written in the form

Φ(x, µ, µ̄) =

∫
R

ds f(s) ≡−
∫
R

ds

2π

(
log
[
1− exp(−2πµ es − 2πµ̄ e−s − 2πi x)

]
e−s + i

+
log
[
1− exp(−2πµ es − 2πµ̄ e−s + 2πi x)

]
e−s − i

)
,

(A.27)

the integral being evaluated along the real axis R ⊂ C. The integrand f(s) has poles at

s = sk ≡
iπ

2
+ k iπ. (A.28)

In section 6.1.2, we need the expression for the function Φ(x, µ, µ̄) valid in the region

Reµ < 0, where eq. (A.27) does not apply since the integral does not converge.

The integral of the meromorphic function f(s) along a contour γ ⊂ C, produces a

solution Φ(x, µ, µ̄)γ to the tt∗ brane amplitude equations provided:

• the integral
∫
γ f(s) ds is convergent;

• in the physical region µ̄ = (µ)∗, the function Φ(x, µ, µ̄)γ satisfies the reality condition

Φ(x, µ, µ̄)γ − Φ(−x, µ, µ̄)∗γ = L(x, µ, µ̄). (A.29)

For Reµ > 0 the function Φ(x, µ, µ̄)R defined by the rhs of (A.27) satisfies both require-

ments by the functional equation (A.3), together with the identity Φ(x, µ, µ̄)∗R = Φ(x, µ̄, µ)R
valid in the physical region.

The Lefshetz thimble amplitude for Reµ < 0 is given by the integral along the line

Imπ parallel to the real axis. This contour defines the function Φ(x, µ, µ̄)R+iπ. From the

symmetry of the integrand one see that

Φ(x, µ, µ̄)R+iπ = −Φ(1− x,−µ,−µ̄)R, (A.30)

where both sides are well-defined for Reµ < 0 and satisfy the reality condition (A.29).

However, ΦR+iπ is related to some amplitude of the form 〈x|D′〉, whereas we need to

compute for Reµ < 0 the amplitude Π ≡ 〈x|D〉 for the same basic brane |D〉 which is

associated to the function ΦR for Reµ > 0.
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A.2.4 The limit µ̄→ 0 of Π in the negative half-plane

We already know that the µ̄ = 0 limit of the ζ = 1 Lefschetz thimble amplitude in the

positive half-plane Reµ > 0 is

log Π(x, µ, 0)R = log Γ(µ+ x)− x logµ− log
√

2π, 0 ≤ x ≤ 1 (A.31)

i.e. Φ(x, µ, 0)R = log Γ(µ+ x)− (µ+ x− 1/2) logµ+ µ− log
√

2π. (A.32)

While, from eq. (A.30),

log Π(x, µ, 0) negative
half-plane

= −Φ(1− x,−µ, 0)R +

(
µ− 1

2

)
logµ− µ. (A.33)

Inserting eq. (A.31), we get

log Π(x, µ, 0) negative
half-plane

= − log Γ(1− x− µ)− x logµ+ iπ(x+ µ− 1/2) + log
√

2π, (A.34)

which is the expression used in the text.

A.3 Explicit expressions for the CFIV new susy index

From the tt∗ metric, we can read the ‘new susy index’ which in the present case reads (we

set M = 2β|µ|)

Q(x,M) ≡ −M
2

∂L

∂M
= − 1

π

∑
m≥1

sin(2πmx)

m
(2πmM)K1(2πmM), (A.35)

where K1(z) is the Bessel-MacDonald function of index 1. This expression in particularly

useful for large M (IR limit), where the terms in the sum after the first one are negligible.

Alternatively we have the Poisson re-summed expressions in terms of a sum over monopole

contributions, see eq. (3.43).

The Poisson re-summed expression for L(x,M) ≡ logG(x,M) + log |µ| reads

L(x,M) = (1− 2x)
(

logM + γ
)

−
∑
k∈Z

log

( √
M2 + (x− k)2 + x− k√

M2 + (k − 1/2)2 + (1/2− k)
exp
[
−(x− 1/2)|k|

])
.

(A.36)

Then

Q(x,M) =

(
x− 1

2

)
+

1

2

∑
k≥1

[
(k − x)√

M2 + (k − x)2
+

(1− k − x)√
M2 + (1− k − x)2

]
(A.37)

from which we recover the UV result Q(x, 0) = x− 1/2. From the periodic U(1) monopole

point of view, Q(x,M) is the component r Aθ of the Abelian connection A in cylindric

coordinates (r = M, θ, x) in a suitable gauge.

Besides the two series representations of Q(x,M), (A.35) and (A.37), we give two

convenient integral representations. The first one, for 0 < x < 1, is

Q(x,M) =

(
x− 1

2

)
− M2

4

+∞∫
−∞

dξ

(ξ2 +M2)3/2

([
x+ ξ

]
+
[
x− ξ

])
, (A.38)
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where [z] is the integral part of the real variable z. This formula may be obtained replacing

in the integrand M2(ξ2 +M2)−3/2 with d[ξ(ξ2 +M2)−1/2]/dξ and integrating by parts: one

gets the series (A.37); instead writing [z] = z − {z} and plugging in the Fourier series

expansion of {z} one gets the Bessel series (A.35).

The second one is particularly convenient for checking monotonicity properties

Q(x,M) = − sin(2πx)M

∫ ∞
0

e−πM(t+t−1) dt

1− 2 cos(2πx) e−πM(t+t−1) + e−2πM(t+t−1)
. (A.39)

B Technicalities for the 3d chiral (section 6.1)

B.1 Details on the tt∗ metric for the 3d free chiral multiplet

As in section , we identify the 3d free chiral multiplet with twisted real massm, compactified

on a circle of length Ry, as the 2d (2, 2) model with superpotential

W (Yn) =
∑
n∈Z

(
eYn − i

2

(m
2π

+ i
n+ y

Ry

)
Yn

)
. (B.1)

The length of the tt∗ circle is Rx, and we set ρ = Rx/Ry. x is the tt∗ vacuum angle with

period 1 and y is also a periodic variable of period 1. We write z = mRx/2π ∈ R. The tt∗

quantities for the model (B.1) will be denoted by the boldface version of the symbols used

in section 3.1.2 and appendix A to denote the corresponding quantity for the 2d model

obtained by neglecting all non-zero KK modes.

Since the various KK modes do not interact, formally we have

logG(x, y, z, ρ) = “
∑
n∈Z

logG
(
x, |iz − (n+ y)ρ|/2

)′′
, (B.2)

and we have to give a precise meaning to this expression. The 2d tt∗ metric G depends

on the chosen basis for the chiral ring R. In section 3.1.2 the metric was written in the

so-called ‘point’ basis; in the chiral operator basis would read

G(x) operator
basis

≡ 〈exY | exY 〉 = ex log |µ|2 G(x)point
basis

. (B.3)

Instead of summing the series for logG, it is convenient to sum the series for its derivative

with respect to x; still at the pure formal level, we have

∂

∂x
logG(x, y, z, ρ)

=
∑
n∈Z

∂

∂x
logG(x, |iz + (y − n)ρ|/2)

=
∑
n∈Z

(
log
|iz + (y − n)ρ|2

4
− 4

∑
m≥1

cos(2πmx)K0

(
2πm|iz + (y − n)ρ|

))
,

(B.4)
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where the first term in the large parenthesis in the rhs is the effect of the change of

basis (B.3) and the other terms are as in eq. (3.37). One has the identity [72, 73]

log
z2 + y2

4
− 4

∞∑
k=1

cos(2πkx) K0(2πk
√
z2 + y2) =

= − 1√
z2 + y2 + x2

−
∑
k∈Z
k 6=0

(
1√

z2 + y2 + (x− k)2
− 1

|k|

)
− 2γ,

(B.5)

and hence the rhs of eq. (B.4) may be seen as a regularized version of the formal expression

−
∑
n∈Z2

∑
k∈Z

1√
z2 + (y − n)2ρ2 + (x− k)2

+ const, (B.6)

that is, literally, the potential V for a doubly-periodic array of U(1) monopoles located at

(x, yρ, z) = (k, nρ, 0)(k,n)∈Z2 ⊂ R3. For a convenient choice of the additive constant, the

regularized version is [73]

V (x, y, z, ρ) = Λ− 1√
z2 + y2ρ2 + x2

−
∑

(k,`)∈Z2
(k, 6̀=(0,0)

(
1√

z2 + (y − `)2ρ2 + (x− k)2
− 1√

`2ρ2 + k2

)
,

(B.7)

where the constant Λ is

Λ = 2

(
log

4π

ρ
− γ
)
− 8

∞∑
k=1

∞∑
`=1

K0(2πmnρ). (B.8)

The function V in eq. (B.7) is harmonic and doubly periodic, hence solves the tt∗

equations. In order to identify it with the correctly normalized tt∗ metric, we send the KK

radius Ry to zero. In this limit we should recover the 2d answer of section 3.1.2; indeed,

we claim that

lim
ρ→∞

V =
∂

∂x
logG2d, (B.9)

where G2d is the 2d tt∗ metric but in the original point basis. This follows from the Newman

expression for the function V [73, 74]

V (x, y, z, ρ) =
2

ρ
log
(
2| sinπ(y + ix/ρ)|

)
− 4

∑
`∈Z

∞∑
k=1

cos(2πkx)K0

(
2πk

√
z2 + (y − `)2ρ2

)
,

(B.10)

As ρ→∞ (keeping yρ fixed) the first term vanishes as do all terms with ` 6= 0; we remain

with the 2d expression.

Besides (B.7), (B.10) there is a third equivalent expression of the function V (x, y, z, ρ)

which is useful (for additional representations of V in terms of Ewald sums and heat kernels
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see [73])

V (x, y, z, ρ) = 2π
|z|
ρ
−

∑
(a,b)∈Z2

(a,b)6=(0,0)

1√
a2ρ2 + b2

exp
(
2πi ax+ 2πi by − 2π

√
a2 + b2/ρ2|z|

)
(B.11)

To get the expressions used in section 6.1, one has to use z = Rxm/2π, ρ = Rx/Ry and

perform an overall rescaling to get the standard normalization of the monopole potential

V (x, y,m,Rx, Ry)

=
Rx
2
V (x, y,Rxm/2π,Rx/Ry)

=
2Λ

Rx
− π

∑
(k,`)∈Z2
(k, 6̀=(0,0)

 1√
m2 + 4π2

Ry
(y − `)2 + 4π2

Rx

2
(x− k)2

− 1√
4π2

R2
y
`2 + 4π2

R2
x
k2


=
RxRy

2
|m| −

∑
(a,b)∈Z2

(a,b)6=(0,0)

RxRy

2
√
a2R2

x + b2R2
y

exp
(
2πi ax+ 2πi by −

√
a2R2

x + b2R2
y |m|

)
.

(B.12)

From the above computations we get for the 3d tt∗ metric (in a basis which reduces

to the 2d point basis as Ry → 0) we get

G(x, y,m,Rx, Ry) = exp

 2

Rx

x∫
0

V (x′, y,m,Rx, Ry) dx
′

 , (B.13)

which is eq. (6.4).

To get the analogue expressions for tetrahedron theory we have just to shift V by a

term linear in m, as explained in the main body of the paper.

B.2 The asymmetric UV limit for the 3d brane amplitudes

The amplitudes for the 3d chiral model may be written as a product on the KK modes:

log Π3d(m,x, y; ζ) =
∑
n∈Z

log Π2d

(
µ =

mRx
4π

+
iRx
2Ry

(y + n); ζ

)
. (B.14)

The asymmetric limit of the 3d amplitudes are then the product of the 2d asymmetric

limit. Here we limit ourselves to the case ζ = −1 corresponding to Neumann b.c., the

extension to ζ = +1 being straightforward. From eq. (3.59), we have (for 0 ≤ x ≤ 1)

log Π3d(m; ζ = −1)
∣∣∣
asymmetric
UV limit

=
∑
n∈Z

log Γ

(
m

4π
+ x+

iRx
2Ry

n

)
− x

∑
n∈Z

log

(
m

4π
+
iRx
2Ry

n

)
, (B.15)

– 105 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
5

where

m = mRx +
2πiRx
Ry

y, (B.16)

is the complexified twisted mass measured in units of the inverse radius R−1
x .

We insert in the expression (B.15) the Weierstrass representation of the Gamma func-

tion

log Γ(z) = −γ z − log z −
∞∑
m=1

[
log
(

1 +
z

m

)
− z

m

]
. (B.17)

The idea is to invert the order of summation in m and n; unfortunately, the expression is not

absolutely convergent (recall that in the asymmetric limit we have infinitely many massless

2d fields), and this inversion is not legitimate. However, if we take three derivatives with

respect to m or x the double series becomes absolutely convergent and the inversion of the

summations will be allowed. Hence the result is well-defined, without further prescriptions,

up to a quadratic polynomial in and x (related with the specification of the background

field CS level).

With this warning, we perform the inverted-order sum formally, using the symmetric

ζ-regularized sums∑
n∈Z

1 = 1 + 2ζ(0) = 0
∑
n∈Z

n = ζ(−1)− ζ(−1) = 0, (B.18)∑
n6=0

log n = iπ ζ(0)− 2 ζ ′(0) = −iπ/2 + log 2π, (B.19)

as well the identity

log s+
∞∑
n=1

log

(
1 +

s2

n2

)
= log sinh(πs)− log π. (B.20)

We get

log Π3d(ζ = −1) =− log Ψ
(
e−mRy−2πiy−4πx−2πRy/Rx ; e−4πRy/Rx

)
− Ry

4Rx

(
m+

2πiRx
Ry

y

)
− x log sinh

[
1

2
(mRy + 2πiy)

]
+ const.,

(B.21)

where the constant is independent of m, y.
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