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two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity,

where in general one of the chiral superfields is traded for a curvature superfield. There is

a degenerate case when both matter superfields become non-dynamical and there is only a

chiral curvature superfield, pure higher derivative supergravity. Generic α-models [3] inter-
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α, in the limit when the inflaton moduli space becomes flat. They have higher derivative

duals with the same number of matter fields as the original theory or less, but at least

one matter multiplet remains. In the context of these models, the detection of primordial

gravity waves will provide information on the curvature of the inflaton submanifold of the

Kähler manifold, and we will learn if the inflaton is a fundamental matter multiplet, or can

be replaced by a higher derivative curvature excitation.
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1 Introduction

The purpose of this paper is to study the dual relation between superconformal models

underlying interesting cosmological models which are in agreement with current observa-

tions. In the past such a dual relation between the superconformal models/supergravities

which have on one side 2-derivatives and scalars and on the other side higher curvature

4-derivative models, was established in [2]. More recently various aspects of such duality

were clarified in [4–9] in the context of cosmological models.

In this paper we will study two classes of cosmological models, α = 1 attractors [1] and

α 6= 1 attractors [3]. In the class of α = 1 attractors, on one side we have supersymmetric

2-derivative models with Einstein gravity and scalars, on the other side we have supersym-

metric models with 4-derivative higher curvature actions interacting with less scalars, in

general. The other class of models, α 6= 1 attractors, may be divided in two subclasses.

For the generic case we find that the 2-derivative sugra are not dual to local actions

with higher curvature actions and less scalars. The duality transformation may be still

performed, but the resulting 4-derivative sugra has the same number of scalars as the

original theory. There are, however, special α 6= 1 models which have a 4-derivative dual

with one less chiral field.
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The bosonic α = 1 attractors were introduced in [1]

Lα=1 =
√−g

[
1

2
R− 1

2
(∂ϕ)2 − f2

(
tanh

ϕ√
6

)]
. (1.1)

where it was shown that the cosmological observables are universal and do not depend on

the choice of the function f . They predict, at large number of e-foldings inflation N , which

is between 50 and 60, the measurable tilt of the spectrum of fluctuations ns and the ratio

of tensor to scalars fluctuations r to be ns = 1− 2/N, r = 12
N2 . A special choice of f defines

the Starobinsky model model [10–14] with the potential

f(tanh) =M
2 tanh

1 + tanh
⇒ V =M2

(
1− e

−
√

2

3
ϕ

)2

. (1.2)

This model is dual to R + R2 without scalars. The superconformal version of this model

was presented in [2] for the case corresponding to (1.2), where it was shown to correspond

to a pure supergravity with 4-derivative interactions.

In fact, attractors described in (1.1) are not the most general ones, the ones in (1.1)

give a simple example of functions with the following properties, as suggested in [1]

f̃(x) = a+ bx−1 +
∑

n=2

cnx
−n (1.3)

where x = e

√

2

3
ϕ
, so that x−1 is small during inflation.

Here we will use the supersymmetric version of the models in (1.1) and more general

ones with (1.3) constructed in [1] and perform a duality transformation to a 4-derivative

supergravity. We will see that not all scalars are removed in this duality transformation,

in generic case. We will construct the relevant superconformal action with higher deriva-

tives. A degenerate case of the duality relation when all dependence on scalars disappears,

corresponding to the choice (1.2), will be part of this generic model. In terms of (1.3) this

choice is

f̃(x) = a+ bx−1 (1.4)

The generalized bosonic α-attractor models in [3]

Lα =
√−g

[
1

2
R− 1

2
(∂ϕ)2 − f2

(
tanh

ϕ√
6α

)]
. (1.5)

predict at large N , for α not far from 1, ns = 1 − 2/N , r = α 12
N2 . At large α, away from

the attractor point, the predictions are different, see eq. (5.2)-(5.4) in [3], they are not

universal and depend on the choice of the function f . A special choice of f(x) = M 2x
1+x

defines the SU(1,1)
U(1) supersymmetric model [4–7] with the potential

f(tanh) =M
2 tanh

1 + tanh
⇒ V =M2

(
1− e

−
√

2

3α
ϕ

)2

(1.6)

The meaning of the parameter α was associated in [4–7] with the Kähler manifold curva-

ture,

Rk = − 2

3α
(1.7)
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This model continuously interpolates between the prediction of the simplest chaotic infla-

tionary model [15] with V = ϕ2 for α → ∞, namely, ns = 1 − 2
N
, r = 8

N
, at large N , the

prediction of the Starobinsky model for α = 1, and the prediction ns = 1 − 2
N
, r = 0 for

α = 0, as shown in figure 1. in [3].

In case of more general functions f(tanh) = (tanh)n in (1.5) the models interpolate

between the attractor point at α = 0 and generic chaotic inflation models ϕ2n [15] at large

α, as shown in figure 2 in [3]. The corresponding prediction at large N with α→ ∞ is given

by ns = 1− n+1
N

and r = 8n
N
. For these models, as we will explain below, the holomorphic

sectional curvature in the inflaton direction is given by − 2
3α , and it vanishes at α→ ∞.

Since both r and ns are observables which will be measured with increasing precision

during the next couple of decades, we find that in this class of models the curvature of the

Kähler manifold (1.7) in [4–7] (and coinciding with its holomorphic sectional curvature

in the inflaton direction in models in [3]) is a cosmological observable. In particular, if a

detection of primordial gravity waves will take place and the value of r will be known with

high precision data on ns, one might be able to evaluate α or find some constraints on it.

The purpose of this note is to find a dual relation between the supersymmetric version

of the 2-derivative models with Einstein gravity interacting with 2 chiral multiplets and

the higher curvature models with less scalars. These two matter multiplets form a minimal

set, one is the inflaton, and the other is a goldstino multiplet, required for stabilization. In

α = 1 case we find a simple duality which trades, generically, one of the chiral multiplets

by a chiral curvature superfield. In particular case the model is just pure higher derivative

supergravity. In α 6= 1 models [3] duality to higher curvature models does not reduce the

original number of chiral matter multiplets, in a modified version of it, to be discussed

below, duality allows to remove one of the chiral matter superfields, which corresponds to

a scalar coupled curvature. We find that all these models do not reduce to pure higher

curvature supergravity.

2 Superconformal α = 1 attractors

The superconformal action in general is defined by an embedding Kähler potential N and

superpotential W
1√−gL

scalar−grav
sc = −1

6
N (X, X̄)R−GIJ̄DµXI DµX̄

J̄ −GIJ̄WIW̄J̄ , I, Ī = 0, 1, 2.

(2.1)

Here X0 is a conformon, X1 is an inflaton and X2 is a goldstino multiplet, see for exam-

ple [16] where this setting for our superconformal models is explained in details.

The universality class superconformal models are defined in [1] as follows:1 the em-

bedding Kähler potential for these models has an SU(1, 1) symmetry between the complex

conformon X0 and the complex inflaton X1 superfields.

N (X, X̄) = −|X0|2 + |X1|2 + |X2|2 − 3g
(X2X̄2)2

|X0|2 − |X1|2 . (2.2)

1Here we are using notation of [3] in application to the case α = 1.
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The superpotential preserves a subgroup of SU(1, 1), namely an SO(1, 1),

W =
√
3X2

(
(X0)2 − (X1)2

)
f(X1/X0) . (2.3)

Function f(X1/X0) is invariant under local conformal-R-symmetry, but if it is not a con-

stant, it breaks the SO(1, 1).

2.1 Weyl and R-symmetry gauge with Z variables

This gauge was studied for the model above in [1]

X0 = X̄0 =
√
3 , (2.4)

where we used the local conformal and U(1) R-symmetry to impose this condition. The

remaining independent variables are defined as

Z ≡ X1

X0
S =

√
3
X2

X0
(2.5)

Both Z and S have vanishing conformal weight, w = 0, and we are making this choice to

fit the definitions in earlier papers.

This gauge leads to a supergravity version of the superconformal model2

K = −3 ln

[
1− |Z|2 − |S2|

3
+ g

(SS̄)2

1− |Z|2
]
, W = S

(
1− Z2

)
f(Z) . (2.6)

The analysis of cosmology of this model was performed in [1], the term quartic in S was

necessary for the stability of the model when the scalar sgoldstino vanishes at the minimum

of the potential at S = 0. This also requires the superpotential in this class of models to

be linear in sgoldstino S. It leads to an attractor point in the ns − r plot for cosmological

observables, for sufficiently arbitrary choice of the function f(Z), up to 1/N corrections.

The simplest examples include the T-Model, f(Z) = Z2, or higher power of Z where N is

the number of e-foldings of inflation. All these models are in agreement with the current

data which are well described by a single inflaton scalar. Here we have 4 scalars from 2

superfields, but 3 of them are heavy near the inflationary trajectory, they quickly go to

their minimal values, stop evolving and do not affect the evolution of the universe.

2.2 Weyl and R-symmetry triangular gauge with T variables

Recently in [18] in the context of N=4 local superconformal model we have introduced the

triangular gauge using the following gauge conditions. We impose an SU(1, 1) invariant

gauge to fix a Weyl symmetry

|X0|2 − |X1|2 = 3 (2.7)

and for the R-symmetry gauge we take

Im (X0 −X1) = 0 (2.8)

2We absorb numerical factors in W into the arbitrariness of a function f . Moreover, the values of

observables ns and r depend only V ′/V and V ′′/V . The value of V during inflation, for example M2

in (1.1), is defined by the amplitude of perturbations.
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Our choice was motivated by the triangular decomposition of the SL(2,R) matrix, when

one switch from the SU(1, 1) matrix to the SL(2,R) basis, as shown in [18] where we used

the variable τ = χ+ ie−2ϕ. We can therefore define an independent variable T = −iτ as

T =
1 + Z

1− Z
, Z =

T − 1

T + 1
(2.9)

which parametrizes the coset space SL(2,R)
U(1) , and T = e−2ϕ − iχ. The difference between

these two gauges of the superconformal action (2.1) corresponds to a map between a disc

and a half-plane. Meanwhile, the boundary of the moduli space, in proximity of which the

inflationary evolution takes place, according to [1], for real T and Z is at Z = 1 and at

T−1 = 0. Therefore in (1.3) the choice f̃(T ) = a + bT−1 +
∑

n=2 cnT
−n shows that near

the boundary the terms with n ≥ 2 are irrelevant.

3 From generic α = 1 attractors to Cecotti’s-type higher derivative

model

We start with the Kähler potential and superpotential (2.6) with arbitrary function f(Z)

and compare it with the simplest model of Cecotti [2] which corresponds to a supersym-

metric version of the R + R2 model. For this purpose we substitute Z as a function of T

from (2.9) into (2.6). We take into account that

1− |Z|2 − |S2|
3

+
g

3

(SS̄)2

1− |Z|2 =
2(T + T̄ )

(T + 1)(T̄ + 1)
− |S2|

3
+
g

3

(T + 1)(T̄ + 1)(SS̄)2

2(T + T̄ )
(3.1)

We perform a holomorphic change of variables

S =
√
6

C

T + 1
(3.2)

and find, ignoring numerical factors in front of the superpotential

W = S
(
1− Z2

)
f(Z) ⇒ C

T

(T + 1)3
f

(
T − 1

T + 1

)
. (3.3)

This leads to

− 3 ln

[
2(T + T̄ − CC̄)

(T + 1)(T̄ + 1)
+ 6g

(CC̄)2

(T + 1)(T̄ + 1)(T + T̄ )

]
=

= 3 ln(T + 1)(T̄ + 1)− 3 ln

(
T + T̄ − C̄C + 3g

(CC̄)2

(T + T̄ )

)
(3.4)

We use the Kähler symmetry in K and W so that the equivalent theory is

K = −3 ln

(
T + T̄ − C̄C + 3g

(CC̄)2

(T + T̄ )

)
, W = C T f̃(T ) = CF (T ) (3.5)

Here

f(Z) = f

(
Z =

T − 1

T + 1

)
= f̃(T ), F (T ) ≡ T f̃(T ) (3.6)
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When f(Z) = 2Z
1+Z

it means that f̃(T ) = f
(
Z = T−1

T+1

)
= T−1

2T and at g = 0, in absence of

a stabilization term, we recover Cecotti’s model [2] with

K = −3 ln(T + T̄ − C̄C) W = C(T − 1). (3.7)

This is eq. (19) in [2] which is a supersymmetric generalization of the R + R2 model. In

case of arbitrary function f(Z) we have a more general class, in which Cecotti’s model [2]

is one particular case. This is in agreement with [17] where it was shown that Starobinski

model [10–14] is associated with the potential
(

2 tanh
1+tanh

)2
, whereas a generic attractor model

depends on f(tanh(ϕ/
√
6)). In [17] a stabilization term was added to (3.7) in the form

(C̄C)2 without the T dependence. The one in (3.5) was used for more general models

in [1, 3]. We will discuss this important difference below, in sections 4.1, 4.2.

3.1 Equivalence with higher derivative supergravity for general superpotential

Here we consider the dual relation between the superconformal cosmological attractor

model (2.2), (2.3) (and its supergravity version (2.6)) and higher curvature model. An

intermediate version of the supergravity, which corresponds to a map between a disc and a

half-plane and leads to (3.5) is used to establish this duality. First we simplify the problem

neglecting the stabilization terms, i.e. we assume g = 0. The cosmological model will be

unstable at g = 0, will not lead to a successful inflation, therefore later we will study the

effect of stabilization terms on duality.

Claim. The model in (2.2), (2.3) is equivalent to a higher curvature supergravity with

less matter fields for g = 0.

Notes: 1) ‘equivalent’ means equivalence of the classical equations of motion to the full

non-linear level. 2) the equivalent higher-curvature supergravity may be written in different

ways, with different field contents, and here we present just an example.

Proof. We write the superconformal form of the model (without bothering with O(1)

normalization coefficients)

−
[
X̄0X0[(T + T̄ )− C̄C]

]
D
+
([
CF (T )(X0)3

]
F
+ h.c.

)
, (3.8)

X0 is a chiral superconformal compensator field of weight w = 1 whereas T and C have

w = 0. We define the curvature superconformal field as in [2]

R = (X0)−1Σ(X̄0). (3.9)

Then (3.8) may be rewritten as

[
X̄0X0C̄C

]
D
+
([

(X0)2(X0CF (T )− TR)
]
F
+ h.c.

)
. (3.10)

Since T does not enter in the D-terms, its equation of motion is algebraic

X0C F ′(T ) = R (3.11)

– 6 –
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and may be solved for either C or T ; for the particular form in eq. (3.8) it is simpler to

solve for C (but the other one is classically legitimate too!)

X0C = R
/
F ′(T ) (3.12)

Plugging (3.12) in (3.10) we get

[
h(Q)h(Q) R̄R

]
D
+
([
Q (X0)2R

]
F
+ h.c.

)
(3.13)

where the zero weight chiral superfield Q ≡ y(T ) and the holomorphic function h(y) are

implicitly defined by




Q ≡ y(T ) = T − F (T )

F ′(T )

h(T ) =
1

F ′(T )

(3.14)

Using (3.9) the lagrangian (3.13) becomes (up to O(1) normalization factors which are not

keeping)

−
[(
Q+ Q̄

)
X̄0X0

]

D
+
[
h(Q)h(Q) R̄R

]

D
(3.15)

which is a model with just one chiral superfield Q instead of 2 living on the standard

hyperbolic line SU(1, 1)/U(1) ≡ SL(2,R)/SO(2) coupled with R2 terms with a non-trivial

field dependent coefficient |h(Q)|2 and No superpotential. Of course, this last fact is just

an artifact of the simplicity of the initial model and of the particular duality with higher

curvature supergravity here chosen for elegance sake.

In terms of the original fields we find

−
[(
T − F (T )

F ′(T )
+ h.c

)
X̄0X0

]

D

+

[
1

F ′(T )F ′(T )
R̄R

]

D

(3.16)

It means that the bosonic R-curvature dependent terms are of the following form: the

term linear in curvature enters as in Jordan frame, interacting with scalars, from the first

superfield expression in (3.16)

(
T − F (T )

F ′(T )
+ h.c

)
R (3.17)

The term quadratic in R also interacts with scalars, as we see from the second superfield

expression in (3.16)

1

F ′(T )F ′(T )
R2 (3.18)

Only when F (T ) is a linear function of T , both couplings disappear, see next subsection

for a detailed discussion.
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3.2 Relation with the 1987 paper [2]

In that paper the model with F (T ) = aT + b, a, b constants, was shown to be equivalent

to pure supergravity with R2 couplings. In that case both chiral superfields, T and C were

integrated out, leaving a local Lagrangian. This choice corresponds to cn = 0 for n ≥ 2

in (1.3), or equivalently, to f(tanh) = 2 tanh
1+tanh in (1.1)

F (T ) = aT + b f̃(T ) = a+ bT−1. (3.19)

That result is recovered by specializing the more general one above. Indeed, above we

assumed that the relation y = y(T ) was invertible, as it is (locally) for generic functions

F (x). However, for the special function of the old paper this invertibility fails. From

eq. (3.14) we get

T = −b/a ≡ a constant (3.20)

so the would-be chiral field Q is actually a coupling constant and not a dynamical field.

Then one gets

2Re

(
2b

a

) [
X̄0X0

]

D
+

1

|a|2
[
R̄R
]

D
, (3.21)

which is the result of the 1987 paper [2]. In components it means that there is a term

Re
(
2b
a

)
R and a term R2

|a|2 are present in the action, so that it is reduced to [10–14]. For

generic F (T ), however, one may integrate out only one chiral superfield while preserving

locality of the Lagrangian. One ends up with a model (3.16) which in components has a

curvature terms R in Jordan frame with non-trivial coupling to scalars shown in (3.17) as

well as the terms R2 coupled to scalars, shown in (3.18), it is no longer pure 4-derivative

supergravity.

4 Including stabilization terms in the duality relation

4.1 T -independent stabilization term [17]

Start with a standard sugra with the following form (in superconformal notation)

−
[
X̄0X0

(
T + T̄ − k(C, C̄

)]

D
+
([
C F (T ) (X0)3

]

F
+ h.c.

)
(4.1)

where the notations are as before. k(z, z̄) is any real function, and F (x) any holomorphic

function. The tachyon-free model is the particular choice

k(z, z̄) = zz̄ − ζ

3
(z z̄)2, F (x) = 3M(x− 1). (4.2)

It corresponds to a choice of stabilization made in [17]

K = −3 ln

(
T + T̄ − C̄C +

ζ

3
(CC̄)2

)
W = λC (T − 1) (4.3)

By the same gymnastics as before, (4.1) is rewritten as

[
k(C, C̄)X0 X̄0

]

D
+
([

(X0)2X0C F (T ) − TR
]

F
+ h.c.

)
, (4.4)
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and again T does not enter in the kinetic (i.e. D–) terms and is an ‘auxiliary’ field which

may be eliminated by its ‘algebraic’ equations of motion without spoiling locality. The

equations of motion of T have the same form as before, eqs.(3.11)(3.12), X0C = R
/
F ′(T )

and are solved by the same field Q = T − F (T )
F ′(T ) as before.

Finally, we get

−
[(
Q+ Q̄

)
X̄0X0

]

D
+
[
k
(
h(Q) R̄/X̄0, h(Q)R/X0

)
X̄0X0

]

D
(4.5)

where h(Q) is the same function as before (eq. (3.14)).

This is again a good sugra model with R2 couplings, and in fact a model of the class

(B) of the 1987 paper. Again, for F (x) = ax + b the chiral superfield Q becomes non

dynamical (a coupling constant) and we recover the special case of eq. (23a) of that paper

with no Zα fields. In the general case we may use the duality of that old paper to get a

standard sugra model with three chiral fields Q, T and C. But a linear combination of Q

and T decouples and we get back the original model with two fields T and C we started

with, eq. (4.1).

Remark. The duality discussed above for general superpotentials (X0)3CF (T ) may be

seen as a particular case of eqs. (23a), (23b) of the 1987 paper where we take just one

superfield Z and choose

Ψ(z, z̄, w, w̄) = z + z̄ − k(w, w̄). (4.6)

This gives an alternative proof of the result.eq. (4.5) is a local sugra with a higher cur-

vature coupling of the form ΦR2, where now Φ is a non-trivial function of the scalars of

the chiral superfield Q and of the auxiliary fields of the (Poincaré) graviton supermultiplet

(which propagate degrees of freedom in the higher curvature theory).

4.2 Stabilization with T -independent masses of extra scalars, [1, 3]

For more general attractor models in [1] and later in [3] the following stabilization terms

were used

K = −3 ln

(
T + T̄ − C̄C + 3g

(CC̄)2

(T + T̄ )

)
, W = C F (T ). (4.7)

In such case, the mass formula for all 4 scalars is given by the following expression [3] for

α = 1

m2
Re(Φ) = ηϕV , m2

Im(Φ) =

(
4

3
+ 2ǫϕ − ηϕ

)
V , m2

C =

(
12g − 2

3
+ ǫϕ

)
V , (4.8)

where ǫϕ and ηϕ are the slow-roll parameters of the effective single-field model (1.1). In

order to achieve stability, up to slow-roll suppressed corrections, one needs g > 1/6. When

we compare this class of stabilization with the previous one, for some values of T , we

find that the mass of the C field depends on T . This makes the stabilization with g(CC̄)2

(T+T̄ )

preferable to the one with ζ(CC̄)2 since the mass of the C field depends on

3g = (T + T̄ )
ζ

3
(4.9)
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For constant g there is a simple and a universal limit on g, which stabilizes any such model.

When we take the choice with constant ζ, the mass of C becomes a function of T which

needs to be studied and may or may not have problems, depending on the choice of a model

and the specific values of T .

In case of generic stabilization with T -independent masses of non-inflaton fields, the

dependence on T remains in the D-term in the equation which generalizes (4.4)
[
k(C, C̄, T, T̄ )X0 X̄0

]

D
+
([

(X0)2
(
X0C F (T ) − TR

)]

F
+ h.c.

)
. (4.10)

In this case our earlier duality transformation needs another generalization. We start with

the superconformal model

−
[
X0X̄0

(
T + T̄ − C̄C + 3g

(C̄C)2

T + T̄

)]

D

+
([

(X0)3C F (T )
]

F
+ h.c.

)
. (4.11)

For g 6= 0 this model is no longer equivalent to a higher derivative supergravity with a local

Lagrangian (having at most 4-derivatives) and less chiral superfields, as it was the case

for g = 0. However, the theory is still classically dual to R2 sugra coupled to the same

number (i.e., in the simplest model, 2) of chiral superfields.

To see this, let us introduce two new weight zero superconformal chiral fields S and Z

and rewrite (4.11) in the form

−
[
X0X̄0

(
T + T̄ − C̄C + 3g

Z̄Z

T + T̄

)]

D

+
([

(X0)3
(
C F (T ) + S(Z − C2

)]

F
+ h.c.

)
.

(4.12)

Integrating away S produces a functional delta-function enforcing Z = C2, which gives

back (4.11). Now the equations of motion of T and Z read

e.o.m. T : Σ(X̄0)− 3g Z Σ

(
X̄0Z̄

(T + T̄ )2

)
= (X0)2C F ′(T ) (4.13)

e.o.m. Z : 3gΣ

(
X̄0Z̄

T + T̄

)
= (X0)2 S. (4.14)

They may be solved for C and S, respectively,

C = (X0)−2 1

F ′(T )
Σ

(
X̄0

(
1− 3g

Z̄Z

(T + T̄ )2

))
≡ (X0)−1 1

F ′(T )
R̃ (4.15)

S = 3g (X0)−2Σ

(
X̄0Z̄

T + T̄

)
, (4.16)

where the last equality in eq. (4.15) is the definition of the (local) superconformal chiral

superfield R̃ which is equal to the usual scalar curvature multiplet R, eq. (3.9), plus field-

dependent corrections proportional to g. Plugging back the expressions (4.15), (4.16) in in

eq. (4.12), we get the ‘dual’ higher derivative sugra coupled to the two chiral superfields

T and Z. We have

[
(X0)3CF (T )

]

F
+ h.c. =

[
X̄0X0

(
1− 3g

ZZ̄

(T + T̄ )2

)(
F (T )

F ′(T )
+
F (T )

F ′(T )

)]

D

(4.17)
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[
(X0)3SZ

]

F
+ h.c. = 6g

[
X̄0X0 Z̄Z

T + T̄

]

D

(4.18)

[
(X0)3SC2

]

F
= 3g

[
X̄0Z̄

X0(T + T̄ )(F ′(T ))2
R̃2

]

D

. (4.19)

In conclusion, the dual Lagrangian may be written in the form L = Lordinary +

Lhigher derivative where

Lordinary=−
[
X̄0X0

{
T+T̄−3g

Z̄Z

T+T̄
+

(
1−3g

Z̄Z

(T+T̄ )2

)(
F (T )

F ′(T )
+
F (T )

F ′(T )

)}]

D

(4.20)

Lhigher derivative=


 R̃R̃
F ′(T )F ′(T )

− 3g

X̄0X0(T + T̄ )


(X̄0)2Z̄R̃2

(F ′(T ))2
+

(X0)2ZR̃
2

(F ′(T ))2






D

. (4.21)

Note that all Z depend terms cancel as g → 0, and we remain with the previous result, see

section 3.1.

The lesson we learn here is that switching to a dual version with higher derivatives

supergravity coupled to a number of scalars ≤ the original one is still possible; however, in

most cases the models are not getting simpler, with exception of the case in which we limit

to deform the elegant model corresponding to pure higher derivative supergravity without

scalars by T -independent stabilization terms as in section 4.1.

5 Superconformal α-attractors

The supersymmetric α-attractor model was proposed in [3], following the first supersym-

metric cosmological model in this class with α 6= 1, which was suggested in [4–7], see

eq. (1.6) there. The superconformal model in [3, 16], after the map of the disk to the

half-plane as we described above, is

−
[
X̄0X0

(
T + T̄ − CC̄ + 3g

(CC̄)2

T + T̄

)α ]

D

+
([
CF (T )(X0)3

]
F
+ h.c.

)
(5.1)

which coincides with the previous one at α = 1. The model on the disk is given in eqs.

(4.1), (4.2) in [3] and it becomes more elegant when transformed to half-plane as we see

in (5.1). Since the Kähler metric is just rescaled by a factor α, the scalar curvature Rk of

the Kähler manifold for these sugra models is rescaled by 1/α, and then at C = 0 is

Rk

∣∣∣
C=0

= −2(1− 2g)

α
. (5.2)

However, since the field C is massive, the relevant curvature for classifying universality

classes of inflation is not the scalar curvature of the Kähler manifold Rk but rather the

holomorphic sectional curvature in the ∂T direction along the half-plane C = 0 defined

by the vev of the massive chiral multiplet C. For the models (5.1) the relevant sectional

curvature is

holomorphic sectional curvature ≡ RT T̄T T̄

(GT T̄ )
2

∣∣∣∣
C=0

= − 2

3α
, (5.3)
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which agrees with the scalar curvature computed using the induced metric on the half-plane

C = 0,

Gind
T T̄

= −3α∂T∂T̄ ln(T + T̄ ), (5.4)

since the half-plane C = 0 is a totally geodesic submanifold of the full Kähler space. Note

that the sectional curvature is g independent. This result is quite general: if our sugra

model contains a number of chiral superfields T , Ci, (i = 1, . . . ,m) with Kähler potential

K(T, T̄ , Ci, C̄i) and all the scalars in Ci are massive, the Kähler submanifold Ci = 〈Ci〉, is
totally geodesic and the sectional curvature along ∂T , restricted on that submanifold, may

be computed as the scalar curvature of the one-dimensional Kähler manifold with induced

Kähler potential

K ind(T, T̄ ) = K
(
T, T̄ , 〈Ci〉, 〈C̄i〉

)
. (5.5)

If, as in the models (5.1), the induced metric has a SU(1, 1) symmetry, and hence is iso-

metric to the standard Poincaré metric up to an overall rescaling by a factor α, we get

eq. (5.3) in full generality.

However, the above is not the only possible construction. Indeed, supersymmetry is

broken and, in particular, the two scalars of the T multiplet have different masses: ImT

is much heavier than ReT and it makes sense to fix to its vacuum value, ImT = 0.

Then the submanifold of the Kähler space spanned by the light scalars is just a real curve

parametrized by ReT which happens to be a geodesic of the full Kähler geometry. In this

real sense the universality classes are defined by the geometry along the geodesic. Two

models, with different Kähler metrics, which are isometric along the respective geodesics

ImT = 0, Ci = 〈Ci〉 belong to the same universality class. Note that the sectional curva-

ture along the geodesic — which may still be defined — is not a universality class invariant

any longer (since a one-dimensional space has no intrinsic curvature). The role of the cur-

vature as an invariant is specific to the class of models with an effective SU(1, 1) isometry

of the reduced Kähler space Ci = 〈Ci〉.
An example of a supersymmetric α-attractor model, which is isometric to (5.1) only

when restricted to the real curve ImT = 0, C = 0, leading to the same inflationary

cosmology action in (1.5), is described in [19]. It corresponds to the superconformal model

−
[
X̄0X0

(
T+T̄+

α−1

2

(T−T̄ )2
T+T̄

−CC̄+3g
(CC̄)2

T+T̄

)]

D

+
([
CF (T )(X0)3

]
F
+h.c.

)
(5.6)

which coincides with the previous one at α = 1. Although, in this case, the curvatures are

not useful to characterize the universality class, for the sake of comparison we list them

(along the light scalar curve T = T̄ and C = 0)

scalar curvature : Rk

∣∣∣
T=T̄

C=0

= − 2

3α
+ α−2 − 7

3
+ 4g (5.7)

sectional curvature :
RT T̄T T̄

(gT T̄ )
2

∣∣∣∣
T=T̄

C=0

= − 2

3α
+ α−2 − 1 (5.8)

Note that eqs.(5.2), (5.7) and eqs.(5.3), (5.8) agree at α = 1.
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For the purpose of duality, it is convenient to divide the α-attractor models in two

classes having different properties. The second class correspond to the generic α-attractor

models, while the first one contains special models which have better duality properties

than the generic ones. We shall refer to the two classes as special and generic α-attractor

models, respectively. Note that at α → ∞ the sectional curvature of generic α-attractor

models in (5.3) vanishes, but the one in (5.8) for special models has the value−1 in the limit.

5.1 Special α-attractor models

The prototypical special α-attractor model is the one in eq. (5.6) where we ignore the

stabilization term and take g = 0. However, general T -independent stabilization terms, as

the ones considered in section 4.1, are still allowed.

It is convenient to study the duality properties of a larger class of N = 1 supergravities.

Then suppose we have a N = 1 sugra whose Lagrangian has (in superconformal notation)

one of the following two forms:

I) −
[
X̄0X0

(
G(T, T̄ , Zi, Z̄i) +H(C, C̄, Zi, Z̄i)

)]

D
+

+
([

(X0)3
(
CF (T, Zi) + L(T, Zi) + V (C,Zi)

)]

F
+ h.c.

)
, (5.9)

II) −
[
X̄0X0

(
G(T, T̄ , Zi, Z̄i) +H(C, C̄, Zi, Z̄i)

)]

D
+

+
([

(X0)3
(
log
[
CF (T, Zi) +D(T, Zi)

]
+ L(T, Zi) + V (C,Zi)

)]

F
+ h.c.

)
, (5.10)

where T,C, Zi (i = 1, 2 . . . , n) are w = 0 superconformal chiral multiplets, and G, H,

F , L, V , D are arbitrary functions of their arguments (G, H being real and the others

holomorphic). For instance, we may consider the I) model with n = 0, L = V = 0, and

G(T, T̄ , Zi, Z̄i) = T + T̄ +
α− 1

2

(T − T̄ )2

T + T̄
(5.11)

H(C, C̄, Zi, Z̄i) = −C̄C̄ +
ζ

3
(CC̄)2 (5.12)

which corresponds to the α-attractor model (5.6) with the stabilizing term of section 4.1.

Other interesting models may be set in one of the forms I), II) by an appropriate field

redefinition.

The T equations of motion read

I) : X0Σ[X̄0∂TG] = (X0)3
(
C ∂TF (T, Zi) + ∂TL(T, Zi)

)
(5.13)

II) : X0Σ[X̄0∂TG] = (X0)3
(
C ∂TF (T, Zi) + ∂TD(T, Zi)

CF (T, Zi) +D(T, Zi)
+ ∂TL(T, Zi)

)
(5.14)

which have the property that they may be explicitly solved for C. In case I) we get

C = (X0)−2 1

∂TF (T, Zi)
Σ[X̄0∂TG]−

∂TL(T, Zi)

∂TF (T, Zi)
≡ (X0)−1RG

∂TF (T, Zi)
− ∂TL(T, Zi)

∂TF (T, Zi)
, (5.15)

where the second equality is the definition of the higher curvature chiral superfield RG

(which reduces to the standard one for G linear in T as in the α = 1 models)

RG = (X0)−1Σ[X̄0∂TG]. (5.16)
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In case II) eq. (5.15) get replaced by

C =
D (X0)−1RG + ∂TD +D∂TL

F (X0)−1RG − ∂TF − F∂TL
. (5.17)

Replacing back eq. (5.15) (resp. eq. (5.17)) into eq. (5.9) (resp. eq. (5.10)) we get a standard

form higher derivative sugra with a local Lagrangian with one less chiral field (namely C

which was integrated away using the T equations). Of course, the equivalence of the two

theories is purely classical.

Thus special α-attractor models are dual to a 4-derivative sugra with one less chiral

superfield.

For instance, for I) models with n = L = V = 0, we get the Lagrangian

−
[
X̄0X0

(
G(T, T̄ )− F (T )

F ′(T )
∂TG− F (T )

F ′(T )
∂T̄G

)]

D

+

[
H

(
(X0)−1RG

F ′(T )
,
(X̄0)−1RG

F ′(T )

)]

D

, (5.18)

so that the dual Kähler potential is

K = −3 ln

(
G(T, T̄ )− F (T )

F ′(T )
∂TG− F (T )

F ′(T )
∂T̄G

)
. (5.19)

If F (T ) = aT is a linear function and, as in eq. (5.11), G(T, T̄ ) is homogeneous of

degree 1 in T, T̄ so that T∂TG+ T̄ ∂TG ≡ G, the first term in (5.18) vanishes, leaving only

the higher curvature coupling.

This system reduces to pure higher derivative supergravity only if the function G is

chosen so that the Kahler metric is isometric to SU(1, 2)/U(2) with standard (α = 1)

curvature, as it is easy to see from the above expressions. In general we have ordinary

higher derivative supergravity coupled to T and the spectator fields Zi, if any. The La-

grangian (5.18) contains the generalized curvature chiral superfield RG, eq. (5.16). To

gain some physical intuition on the 4-derivative supergravities with Lagrangians in the

form (5.18), we rewrite RG in a more suggestive fashion. After, possibly, a redefinition

T → T + const. to make T = 0 a point at which G is analytic, we may write with no loss

of generality G =
∑

n,m an,m T
nT̄m, where the coefficients an,m may depend on the chiral

fields Zi but not on T or C. For simplicity, we assume no Zi field to be present. Then

∂TG =
∑

n,m nan,m T
n−1T̄m, and we may write

RG =
∑

n,m

nan,m T
n+m−1(X0Tm)−1Σ[X̄0T̄m] =

∑

n,m

nan,m T
n+m−1Rm (5.20)

where we defined

Rm = (X0Tm)−1Σ[X̄0T̄m]. (5.21)

Note that for a fixed m the redefinition X0 → X0Tm makes Rm into the ordinary scalar

curvature supermultiplet R ≡ R0, eq. (3.9). Thus Rm is, roughly speaking, the susy com-

pletion of the scalar curvature as redefined by the conformal/axial transformation given

by multiplication by the first component of Tm; that is, it is the susy completion of an ex-

pression of the form e−2fm(R−6∂µfm∂
µfm) for a certain function fm (R being the bosonic
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scalar curvature). Of course f0 = 0. RG may then be seen as the supermultiplet which

gives the appropriate susy completion of, roughly,

∑

n,m

nan,m(ReTn+m−1)e−2fm(R− 6 ∂µfm∂
µfm). (5.22)

Thus the difference between the ordinary curvature multiplet R0 and RG is that the

second one is the susy completion not just of the scalar curvature R but rather of a

generalized scalar curvature (ψR+ gT T̄∂
µT∂µT̄ ) for some gT T̄ and some function ψ of the

scalars. For instance, ifH is quadratic in C, i.e. the Lagrangian contains terms [CC̄]D+. . . .,

and ∂TF = const, the resulting supergravity is, roughly speaking, the susy completion of

R+ kT T̄∂µT∂
µT̄ + (ψR+ gT T̄∂

µT∂µT̄ )
2 (5.23)

for some KT T̄ , φ and gT T̄ . This is what can be qualified as higher derivative sugra coupled

to T . Note that, by a conformal rescaling, we may always reduce to the (susy completion

of the) simpler form

φR+KT T̄∂µT∂
µT̄ + ρR2, (5.24)

for some functions φ, ρ of the scalars and some Kähler, metric KTT∗. The dependence on

α is hidden in these functions. Writing down the full component form of the Lagrangian

is totally straightforward, but rather tedious.

5.2 Generic α-attractor models

Generic α-attractor models have the same duality properties as the α = 1 ones with

stabilization terms as in section 4.2, namely, they are dual to 4-derivative sugra’s with a

local Lagrangian containing the same number of chiral superfields.

The generic α-attractor models belong to the class of N = 1 supergravities of the form3

−
[
X̄0X0Φ(T, T̄ , C, C̄, Zi, Z̄i)

]

D
+
([

(X0)3
(
CF (T, Zi) + L(T, Zi) + V (C,Zi)

)]

F
+ h.c.

)

(5.25)

for a suitable choice of the arbitrary functions Φ, F , L, V (Φ being real, F , L, V holomor-

phic). For instance, the model (5.1) corresponds to no extra chiral fields Zi and

Φ(T, T̄ , C, C̄) =

(
T + T̄ − CC̄ + 3g

(CC̄)2

T + T̄

)α
(5.26)

L(T ) = V (C) = 0. (5.27)

To show the duality, one goes through the same steps as in section 4.2. First one introduces

two new w = 0 superconformal chiral fields, S and Y , and rewrites the Lagrangian in the

form

−
[
X̄0X0Φ(T, T̄ , Y, Ȳ , Zi, Z̄i)

]

D
+

+
([

(X0)3
(
CF (T, Zi) + L(T, Zi) + V (Y, Zi) + S(Y − C)

)]

F
+ h.c.

)
. (5.28)

3Of course, we have a second class of allowed superpotentials having the form II) of eq. (5.10).
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Again, integrating away the Lagrangian multiplier superfield S we get Y ≡ C reducing

back to the model (5.25). The T and Y equations of motion give

e.o.m. T : Σ
(
X̄0∂TΦ

)
= (X0)2

(
C ∂TF + ∂TL

)
(5.29)

e.o.m. Y : Σ
(
X̄0∂Y Φ

)
= (X0)2 S, (5.30)

which may be solved for C and S, respectively

C = (X0)−2 1

∂TF
Σ
(
X̄0∂TΦ

)
− ∂TL

∂TF
, S = (X0)−2Σ

(
X̄0∂Y Φ

)
. (5.31)

Plugging these expressions back into eq. (5.28) we get the desired dual 4-derivative super-

gravity.

Let us specialize to the α-attractor models where L = V = 0. Then the Lagrangian is

the sum of an ordinary (i.e. 2-derivative) term Lordinary plus a higher derivative coupling

L4-der.. One has

Lordinary = −
[
X̄0X0

(
Φ− F

∂TF
∂TΦ− F

∂TF
∂T̄Φ− Y ∂Y Φ− Ȳ ∂Ȳ Φ

)]

D

(5.32)

L4-der. = −
[
∂TΦ

∂TF
X̄0R(Y ) +

∂T̄Φ

∂TF
X0R(Y )

]

D

(5.33)

where the curvature chiral multiplet R(Y ) is defined as

R(Y ) = (X0)−1Σ
(
X̄0∂Y Φ

)
. (5.34)

6 Discussion

Current cosmological observations have tested models of inflation in supergravity. One of

the elegant models in the bosonic case is Starobinsky R+R2 model [10–13] which was shown

to be equivalent at the classical level to a model with one scalar field in [14]. In supergravity

the corresponding dual relation between the 2-derivative supergravity interacting with two

chiral matter multiplets and pure higher curvature 4-derivative models without matter, was

established in [2]. It was shown there that the duality transformation to a higher derivative

model allows to eliminate both chiral matter multiplets. An elegant higher curvature pure

supergravity model remains after duality transformation.

In this note we have established the corresponding duality relation for a large class of

more general cosmological models based on superconformal/supergravity models. We have

found that it is possible to establish a dual relation between the 2-derivative supergrav-

ity interacting with two chiral matter multiplets and the model with higher 4-derivative

curvatures. However, in all cases, besides the so-called α = 1 attractors models with a

particular choice of the function F (T ) in the superpotential, corresponding to [10–13], and

with specific stabilization, it is not possible to avoid interaction with scalars. The more

we go away from the 1987 model [2], the less elegant (and interesting) is the R2 dual su-

pergravity. However, ignoring the issue of elegance, the higher derivative models presented

above are perfectly sound (and ordinary) R2 supergravities interacting with scalars.
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In expectation of the future cosmological data one may try to interpret our findings as

follows. First, consider the α = 1 attractors with the potential f2
(
tanh ϕ√

6

)
[1], including

the one in
(
1− e

−
√

2

3
ϕ)2

, [10–13]. We have found the dual higher supergravity underlying

all these models: all models but the one corresponding to [10–13] have higher curvature

supergravities interacting with a scalar. Therefore for all of these models there is no

simplification or elegance acquired from involving higher powers of the curvature superfield.

If the B-modes will be detected at r ≈ 3 · 10−3 it will give a support to all models with

f2
(
tanh ϕ√

6

)
[1]. But only one of them corresponds to a pure higher curvature supergravity,

all others still have scalars. If the B-modes are detected at r > 3 · 10−3, we will have to

switch to α 6= 1 superconformal/supergravity cosmological models [3], which interpolate

between chaotic inflation models [15] at large α and [10–13] at α = 1. The corresponding

supergravities with higher curvature always have some interactions with scalars at α 6= 1.

In this case, the idea that the inflaton is not a fundamental scalar but rather an excitation

in a higher derivative gravity will be ruled out. In view of the recent discovery of the scalar

Higgs particle, it will not be the first example of the existence of scalar fields in nature.

Thus, the level of primordial gravity waves from inflation will clarify the relation

between models of ordinary supergravity with the inflaton as a matter multiplet and a

possibility to replace it by a higher derivative supergravity with or without scalars. In the

context of supersymmetric models described above we will learn from the B-modes if the

inflaton is a fundamental scalar superfield or not.
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