
J
H
E
P
0
4
(
2
0
1
7
)
0
0
1

Published for SISSA by Springer

Received: January 17, 2017

Accepted: March 21, 2017

Published: April 3, 2017

Phases of planar AdS black holes with axionic charge

Marco M. Caldarelli,a Ariana Christodoulou,a Ioannis Papadimitrioub

and Kostas Skenderisa

aMathematical Sciences and STAG Research Centre, University of Southampton,

Highfield, Southampton SO17 1BJ, United Kingdom
bSISSA and INFN — Sezione di Trieste,

Via Bonomea 265, I 34136 Trieste, Italy

E-mail: M.M.Caldarelli@soton.ac.uk, misc1g13@soton.ac.uk,

Ioannis.Papadimitriou@sissa.it, K.Skenderis@soton.ac.uk

Abstract: Planar AdS black holes with axionic charge have finite DC conductivity due to

momentum relaxation. We obtain a new family of exact asymptotically AdS4 black branes

with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics

and dynamic stability of these, as well as of a number of previously known electric and

dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy

mixed boundary conditions, which lead to modified holographic Ward identities, conserved

charges and free energy, relative to those following from the more standard Dirichlet bound-

ary conditions. We show that properly accounting for the scalar boundary conditions leads

to well defined first law and other thermodynamic relations. Finally, we compute the holo-

graphic quantum effective potential for the dual scalar operator and show that dynamical

stability of the hairy black branes is equivalent to positivity of the energy density.

Keywords: AdS-CFT Correspondence, Black Holes, Black Holes in String Theory, Gauge-

gravity correspondence

ArXiv ePrint: 1612.07214

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2017)001

mailto:M.M.Caldarelli@soton.ac.uk
mailto:misc1g13@soton.ac.uk
mailto:Ioannis.Papadimitriou@sissa.it
mailto:K.Skenderis@soton.ac.uk
https://arxiv.org/abs/1612.07214
http://dx.doi.org/10.1007/JHEP04(2017)001


J
H
E
P
0
4
(
2
0
1
7
)
0
0
1

Contents

1 Introduction 1

2 The model 5

3 Scalar boundary conditions and the holographic dictionary 8

3.1 Holographic dictionary for the Dirichlet problem 9

3.2 Mixed boundary conditions and multi-trace deformations 11

4 Planar black holes and their properties 13

4.1 Exact planar solutions of Theory I 13

4.2 Exact planar solutions of Theory II 14

4.3 Black hole properties: horizons and extremality 16

5 Black hole thermodynamics 21

5.1 Conformal thermodynamics in the presence of magnetic and axionic charge 22

5.2 Thermodynamics of the bald dyonic black branes of Theory I 23

5.3 Thermodynamics of the hairy dyonic black branes of Theory I 25

5.4 Thermodynamics of the hairy black branes of Theory II 29

6 Stability and phase transitions 33

6.1 Dynamical stability and the energy density 33

6.2 Thermodynamic stability and phase transitions 34

7 Discussion 45

A Asymptotic expansions and boundary counterterms 47

B Quantum effective potential 53

1 Introduction

Planar asymptotically anti-de Sitter (AdS) supergravity solutions with non trivial scalar

profiles play an important role in the gauge/gravity duality since they describe holographic

Renormalization Group (RG) flows between conformal fixed points. Finite temperature,

i.e. black brane, AdS solutions supported by scalar fields have also attracted significant

attention, especially in applications of holography to high energy physics and condensed

matter systems.

Prominent examples include non-conformal plasmas [1–4], holographic superconduc-

tors [5, 6], where a charged scalar coupled to a U(1) gauge field condenses at low tem-

peratures providing a holographic description of the superconducting phase transition, as
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well as non-relativistic RG flows with a neutral running dilaton exhibiting hyperscaling

violation in the infrared [7–12]. A third type of solution where axion fields acquire a linear

profile along the boundary directions [13] was put forward in [14, 15] as a mechanism of

breaking translation invariance in the dual field theory, leading to finite DC conductivity.

Linear axion backgrounds were considered earlier in [16], and were proposed as a descrip-

tion of anisotropic holographic plasmas [17] and fluids [18]. In fact, such backgrounds are

a special case of the more general Q-lattices introduced in [14], or the top-down τ -lattices

discussed recently in [19].

Despite extensive work on AdS supergravity solutions with scalar fields and their phys-

ical importance in the context of holography, such backgrounds have been obtained mostly

numerically. Moreover, their holographic dictionary, asymptotic conserved charges, and

general thermodynamic properties remain somewhat opaque and are often incorrectly de-

scribed. In this paper we discuss a number of exact black brane solutions that are simul-

taneously supported by two different types of scalars: a scalar field with a running profile

φ, as well as a number of axions ψI with a linear profile in the field theory directions, but

constant in the radial coordinate as in [15]. Both types of scalars are neutral with respect

to a Maxwell field, that may carry electric or magnetic charge. We will call the scalar field

with the running profile dialton for reasons to be explained below.

More specifically, we revisit the exact axionic black holes found in [13], which do not

have a running profile for the dialton, as well as those obtained in [20] and have a running

dialton in addition to the non trivial axion background. A running dialton is also a feature

present in the electrically charged black brane solutions found analytically in [21], which

we also discuss. Finally, we obtain a new family of exact magnetically charged axionic

black holes, which may be viewed as the magnetic version of those presented in [21].

The two different types of scalar fields generically turned on in these black brane

solutions, namely the running dialton and the axion background, present two subtleties

that we address in detail. Firstly, axions with a linear profile along the spatial boundary

directions should be understood as 0-forms carrying magnetic charge proportional to the

slope of the linear profile and not as regular scalars. This distinction is fundamental: axions

with a linear profile along the spatial boundary directions are primary hair, while massive

scalars or running dialtons are secondary hair [22]. We show that linear axion backgrounds

are exactly on the same footing as standard magnetically charged black holes, thus allowing

for a straightforward understanding of their thermodynamics (see also [15, 23]). Moreover,

treating the axions as 0-forms leads to additional global Ward identities (see (3.9)) reflecting

the fact that 0-forms cannot carry electric charge. Such Ward identities are not applicable

to standard scalar operators.

In holography, the linear axion background, ψI ∼ xI corresponds to deforming the

action of the dual QFT by
∫
xIOψI . It is the presence of these couplings that explicitly

break diffeomorphisms and introduces momentum dissipation. Note that the global Ward

identity implies that the dual operators OψI are (locally) exact, so up to boundary terms

one may remove the xI dependence by partial integration. This is the counterpart of the

fact that the shift invariance in the bulk implies that there is no explicit x dependence in

the field equations. However, one cannot ignore the boundary terms as they blow up at
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Dirichlet Neumann/Mixed Primary Secondary First law

−d2

4 ≤ m
2 ≤ −d2

4 + 1 X X × X X

−d2

4 + 1 < m2 < 0 X × × X X

m2 = 0, 0-form charge= 0 X × × X X

m2 = 0, 0-form charge 6= 0 X × X × modified

Table 1. Classification of primary versus secondary scalar hair, in relation to the first law of

thermodynamics and the boundary conditions the scalar fields satisfy.

xI → ±∞. It is the presence of such boundary terms/global issues that it is ultimately

responsible for momentum dissipation.

The second subtlety concerns the massive dialton field and the boundary conditions

it satisfies. As we review in section 2, scalars with AdS mass in the window (2.8) admit

Neumann or mixed boundary conditions, in addition to Dirichlet. Of course, bald black

hole solutions are compatible with any boundary condition on the dialton field, but a

solution with running dialton is compatible only with very specific boundary conditions,

which are often unique. In particular, AdS4 black holes with running dialtons typically

satisfy mixed boundary conditions. Neumann or mixed boundary conditions on the scalars

lead to a modification of the holographic stress tensor and on-shell action [24], and hence

of the associated conserved charges and free energy [25]. We show that these modifications

are sufficient for the AdS black holes with running scalars satisfying Neumann or mixed

boundary conditions to obey the standard thermodynamic relations, including the first

law, without any ‘charges’ associated with the running scalars, contrary to what has been

claimed in a number of recent papers. In particular, running scalars in AdS black holes

are secondary hair — not primary.

In previous literature analogous scalar fields were often called dilatons. Strictly speak-

ing, dilatons are associated with spontaneous breaking of scale invariance. In our case,

scale invariance is broken explicitly by the axions1 so it is not appropriate to call the scalar

φ a dilaton. Holographically, the mixed boundary conditions obeyed by φ are associated

with a multi-trace deformation of the dual QFT. Moreover, as we will see the condensate

of the operator dual to φ governs the different phases of the theory. We can thus use φ

as a dial that can change the theory and/or move us across different phases and for this

reason we will call it dialton.

In table 1 we summarize the above discussion for a generic scalar with AdS mass

m in d + 1 dimensions, indicating when different boundary conditions are permitted, as

well as if the scalar corresponds to primary or secondary hair and whether the first law

gets modified.

Since the black hole solutions we discuss in this paper are known analytically, we are

also able to compute analytically the off-shell holographic quantum effective potential of

the scalar operator dual to the dialton field. This is given by the Legendre transform of the

1One may restore this invariance by appropriately scaling the parameters of the solutions and we will

see that this is a indeed a property of the solutions we will discuss.
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holographic generating functional with respect to the source of the scalar operator [24] and

is related to the effective potential obtained from Designer Gravity [26]. This computation

allows us to show that dynamical stability of hairy planar AdS black holes with respect to

scalar fluctuations is equivalent to positivity of the energy density.

Finally, using our results for the thermodynamics of these exact black branes, we study

their thermodynamic and dynamic stability, and the corresponding phase structure. Par-

ticularly interesting is the phase structure we observe for the electrically charged solutions

of [21] and their newly found magnetically charged versions, both of which exhibit a zeroth

order phase transition at finite (respectively electric or magnetic) charge density, which be-

comes a standard second order phase transition at zero charge density. Zeroth order phase

transitions have been predicted in the context of superfluidity and superconductivity and

are related to the presence of metastable states [27, 28].2 More recently such transitions

have also been found to occur in higher dimensional black holes [29]. In the present context,

we find that above a critical temperature and at non-zero charge density there are three

hairy black holes, two with positive energy density –a large and a small black hole– and

one with negative. For the electric solutions the black hole with negative energy density is

the largest of the three, while for magnetically charged solutions it is the smallest. As Tc
is approached from above, the two positive energy black holes converge and cease to exist

below Tc. However, at non-zero charge density the negative energy solution at the critical

temperature has a lower energy density than the other two solutions, which are therefore

metastable. However, the larger of the two black holes with positive energy density has the

smallest free energy and is therefore thermodynamically favored above Tc. Accordingly,

the free energy is discontinuous at Tc, leading to a zeroth order phase transition. As the

charge density is tuned to zero, however, the negative and positive energy solutions all

converge as Tc is approached from above, with their energy density approaching zero from

below and above respectively, which leads to a regular second order phase transition at Tc.

The paper is organized as follows. In section 2 we present the general class of Einstein-

Maxwell-Dialton-Axion models we are interested in, as well as the two specific models that

admit the exact black brane solutions we discuss later on. In section 3 we summarize the

results of holographic renormalization, which is carried out in more detail in appendix A,

and we demonstrate the effect of mixed scalar boundary conditions and axion charge on

the holographic dictionary and, in particular, the holographic Ward identities. All new

and previously known exact black brane solutions we study in this paper are presented

in section 4. Section 5 contains a detailed analysis of the thermodynamics of planar AdS

black holes, with particular emphasis on the role of mixed scalar boundary conditions and

axion charge. These results allow us to study the phase structure and thermodynamic

stability of these black branes in section 6. Dynamic stability is also addressed in section 6

using the calculation of the holographic quantum effective potential for the scalar operator

in appendix B. We conclude with few final remarks in section 7.

2However, the situation described in [27] is reversed in temperature relative to what we observe here.

Namely, the metastable states in [27] exist only below the critical temperature Tc, while here they only

exist above Tc.
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2 The model

We will consider theories of gravity in d+1 spacetime dimensions coupled to a dialton field

φ, a Maxwell field A with field strength F = dA, and d−1 free scalar fields ψI , with action

Sbulk =

∫
M
dd+1x

√
−G

(
R− 1

2
(∂φ)2 − V (φ)− 1

2

d−1∑
I=1

(∂ψI)
2 − 1

4
Z(φ)F 2

)
. (2.1)

We use units in which 16πGN = 1. The spacetime metric Gµν is used to raise/lower

Greek indices µ, ν, . . . and the capital Latin indices I, J, . . . denote the flavor of the scalars

ψI . The function V (φ) defines the potential for the dialton, and it generates an effective

cosmological constant Λ = V (0)/2 when the dialton vanishes. For convenience, we will

express it in terms of the radius ` of AdS, defined by

Λ = −d(d− 1)/2`2. (2.2)

The function Z(φ) determines the coupling of the dialton field to the Maxwell field and is

normalized such that Z(0) = 1. The equations of motion following from the action (2.1) are3

Rµν =
1

2
∂µψI∂νψI +

1

2

(
∂µφ∂νφ+

2V (φ)

d− 1
Gµν

)
+

1

2
Z(φ)

(
FµρFν

ρ − F 2

2(d− 1)
Gµν

)
,

�ψI = 0, �φ− V ′(φ) =
1

4
Z ′(φ)F 2, ∇µ(Z(φ)Fµν) = 0. (2.3)

The d − 1 scalar fields ψI enjoy a global ISO(d − 1) symmetry under which

ψI 7→ ΛJI ψJ + cI , where cI is a constant translation vector, and ΛJ
I is a constant SO(d− 1)

flavor rotation. The translation symmetry results from the fact that the scalars enter in

the action through their field strength FI = dψI only, and amounts to the gauge freedom

of 0-forms. Taken together, these symmetries imply that the axions ψI are coordinates in

a target Euclidean space Rd−1. For planar solutions of the equations of motion this target

space is isomorphic to the spatial part of the conformal boundary. Under this isomor-

phism the global ISO(d−1) symmetry is mapped to the spatial isometries of the conformal

boundary. Any solution of the equations of motion provides a particular embedding of the

spatial part of the boundary to the target space Rd−1. A generic embedding of the form

ψI = pIx
I + cI , for fixed constants (pI , cI), breaks the global ISO(d − 1) symmetry com-

pletely, resulting in complete breaking of the spatial isometries of the conformal boundary.

The solutions we are interested in correspond to special embeddings of the form ψI = pxI ,

which break only translations and preserve an SO(d− 1) symmetry. Breaking translation

invariance in this way results in momentum dissipation in the dual filed theory [15]. Since

the axion flux is non-zero, i.e. FI = p 6= 0, such solutions correspond to turning on a

topological axion charge density background in the dual field theory, analogous to turning

on a magnetic field on the boundary. These topological charges contribute to black hole

thermodynamics and play a crucial role in understanding the phase diagram.

3Our curvature conventions are as follows: Rµνρ
σ = ∂νΓσµρ+ΓσναΓαµρ− (µ↔ ν) and Rµν = Rρµρν , which

are those of Wald’s book [30], but differ by an overall sign from those of [31]. We also omit the summation

symbol over the axion flavor indices I from now on, and use the Einstein convention for them too.
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We will focus on two specific models for which planar black hole solutions with scalar

hair are known analytically. Both models are special cases of (2.1) and have d = 3.

Theory I. The first model is obtained by setting Z(φ) = 1 and choosing

V (φ) = 2Λ

[
cosh4

(
φ

2
√

3

)
− α sinh4

(
φ

2
√

3

)]
, (2.4)

as potential for the dialton field. This potential can be obtained through field redefinition

from AdS gravity with cosmological constant Λ = −3/`2, conformally coupled to a scalar

field with a conformal self interaction coupling α [24, 32]. For α = 1 this potential was

discussed earlier in [33], where a black hole solution with a horizon of constant negative

curvature was obtained, and in [34], where this potential was embedded in the U(1)4

truncation of maximally supersymmetric gauge supergravity in four dimensions. In fact,

for α = 1, taking Z(φ) to be a specific exponential function of the scalar φ and setting the

axions ψI to zero, the full action (2.1) can be embedded in the U(1)4 truncation of gauged

supergravity. No embedding is known for α 6= 1, or for Z(φ) = 1. In this article we will

focus on solutions with non-trivial axion profiles, and so our action (2.1) should be treated

as a bottom up model. In the presence of the axion fields, this theory and its black brane

solutions have been studied in [20].

Defining the constants

Vk ≡ lim
r→0

V (k)(φ), Zk ≡ lim
r→0

Z(k)(φ), (2.5)

where V (k)(φ) and Z(k)(φ) denote respectively the k-th derivative of the functions V (φ)

and Z(φ), for the potential (2.4) all odd coefficients vanish since V (φ) is a manifestly even

function, while the first four even coefficients are

V0 = − 6

`2
, V2 = − 2

`2
, V4 = −5− 3α

3`2
, V6 = −17− 15α

9`2
. (2.6)

In particular, the AdS mass of the scalar φ is given by

m2
φ = V ′′(0) = − 2

`2
, (2.7)

and so it lies in the window

− d2

4
≤ `2m2

φ ≤ −
d2

4
+ 1, (2.8)

where both modes of the scalar φ are normalizable. The lower bound is the usual

Breitenlohner-Freedman bound that ensures stability of the AdS vacuum under scalar

perturbations [35]. The upper bound is not necessary for stability, but if satisfied then

both scalar modes are normalizable, which allows for non-Dirichlet boundary conditions

for the scalar [36, 37]. Recalling the relation between the AdS mass of a scalar field and

the conformal dimension of the dual operator, `2m2
φ = ∆(∆ − d), one sees that there are

two generically distinct conformal dimensions for a given mass, namely ∆− ≤ d/2 and

– 6 –
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∆+ ≥ d/2. In the standard quantization, where Dirichlet boundary conditions are im-

posed on the scalar, the dual operator has dimension ∆+. When the scalar mass lies in

the window (2.8), however, Neumann and mixed boundary conditions are also admissible,

leading to a dual operator of dimension ∆−. The upper bound in (2.8), which ensures that

both modes are normalizable, is equivalent to the condition that ∆− is above the unitarity

bound, i.e. ∆− ≥ (d−2)/2. For the scalar mass (2.7), ∆+ = 2 and ∆− = 1. The boundary

conditions we are going to impose on the scalar are dictated by the black hole solutions we

are interested in.

Theory II. Another family of theories we will be interested in is defined by

V (φ) = σ1e
(d−2)(d−1)δ2−2

2(d−1)δ
φ

+ σ2e
2φ

δ(1−d) + σ3e
(d−2)δφ, Z(φ) = e−(d−2)δφ, (2.9)

where

σ0 = −d(d− 1)

`2
= 2Λ, σ1 = σ0

8(d− 2)(d− 1)2δ2

d(2 + (d− 2)(d− 1)δ2)2
,

σ2 = σ0
(d−2)2(d−1)δ2(d(d−1)δ2−2)

d(2+(d−2)(d−1)δ2)2
, σ3 =−2σ0

(d−2)2(d−1)δ2−2d

d(2+(d−2)(d−1)δ2)2
, (2.10)

and δ is a free parameter in the potential. This action, and a corresponding family of

analytic black brane solutions, were presented in appendix C of [21]. We will be mostly

interested in the d = 3 case, and for simplicity we trade the parameter δ for a new parameter

ξ defined by

δ =

√
2− ξ
ξ

, 0 < ξ < 2. (2.11)

In terms of ξ, the potential and gauge kinetic coupling of the four-dimensional theory

simplify to

V (φ) = − 1

`2
e
−
√

ξ
2−ξφ

(
(2− ξ)(3− 2ξ) + 4ξ(2− ξ)e

φ√
ξ(2−ξ) + ξ(2ξ − 1)e

2φ√
ξ(2−ξ)

)
,

Z(φ) = e
−
√

2−ξ
ξ
φ
. (2.12)

For this potential the coefficients (2.5) read

V0 = − 6

`2
, V2 = − 2

`2
, V4 =

4− 6ξ(2− ξ)
`2ξ(2− ξ)

, V5 = −4(ξ−1)(2ξ−3)(2ξ−1)

`2[ξ(2−ξ)]3/2
. (2.13)

Notice that the potential (2.12) with ξ = 1/2 (or equivalently with ξ = 3/2) coincides

with the potential (2.4) with α = 1. In all other cases they do not match. However, the

coefficient V2 is the same for the two potentials independently of the value of ξ, and so the

AdS masses of the scalar φ, and hence the conformal dimensions of the dual operators, are

the same in the two theories. An interesting feature of the potential (2.12) is that it can

be written globally in terms of a superpotential as

U ′2(φ)− 3

4
U2(φ) = 2V (φ), (2.14)

– 7 –
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where

U(φ) = −2

`

(
(2− ξ)e

− ξ/2√
ξ(2−ξ)

φ
+ ξe

(1−ξ/2)√
ξ(2−ξ)

φ
)
. (2.15)

Moreover, for ξ = 1/2 (or equivalently with ξ = 3/2) and ξ = 1, this potential can

be embedded in the U(1)4 truncation of maximally supersymmetric gauge supergravity,

including the gauge field with Z(φ) as given in (2.12).

The limits ξ → 0 and ξ → 2 require separate treatment and correspond to special

cases of Theory I. In order to consider these limiting cases one must first rescale the fields

appropriately to ensure that the potential and couplings remain finite. In particular, to

study the ξ → 0 limit we set ξ = ε and redefine the dialton and the gauge field as

φ→ φ̃ =
φ√
ε
, A→ Ã =

A√
ε
. (2.16)

In the limit ε→ 0, the potential V (φ) becomes −6/`2 = 2Λ and the coupling of the dialton

to the Maxwell field Z(φ)→ e−2φ̃. Rewriting the action (2.1) in terms of the rescaled fields

and noting that the kinetic terms for the dialton and gauge field acquire a factor of ε, in

the limit ε→ 0, we obtain

Sbulk =

∫
M
d4x
√
−G

(
R− 2Λ− 1

2

2∑
I=1

(∂ψI)
2

)
. (2.17)

This is a consistent truncation of Theory I, obtained by setting φ and the gauge field to zero.

Similarly, the limit ξ → 2 is obtained by setting ξ = 2− ε and redefining the dialton as

above. In this case one need not rescale the gauge field, which therefore survives the limit.

Letting ε→ 0 we have V (φ)→ 2Λ and Z(φ)→ 1 and the action becomes

Sbulk =

∫
M
d4x
√
−G

(
R− 2Λ− 1

2

2∑
I=1

(∂ψI)
2 − 1

4
F 2

)
. (2.18)

Once again, this is a consistent truncation of Theory I corresponding to setting φ = 0, but

keeping the gauge field. Since both limits ξ → 0 and ξ → 2 result in truncations of Theory

I we will not consider these cases further, focusing instead in the cases 0 < ξ < 2.

3 Scalar boundary conditions and the holographic dictionary

Before discussing the specific black hole solutions of Theories I and II we are interested

in, it is instructive to consider the holographic dictionary for these theories, and how this

depends on the boundary conditions imposed on the dialton field. The solutions we are

interested in correspond to mixed boundary conditions for the scalar φ, which leads to a

modification of the holographic dictionary and of the conserved charges relative to the usual

Dirichlet problem. As we shall see, this modification is critical for correctly describing the

thermodynamics of these solutions.
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3.1 Holographic dictionary for the Dirichlet problem

The holographic dictionary is directly related to the boundary conditions imposed on the

bulk fields and consequently to the variational problem and the corresponding boundary

terms. In order to formulate the variational problem we introduce a radial cutoff ε and

define the regularized action

Sreg = Sbulk + SGH, (3.1)

where Sbulk is given by (2.1) and SGH is the standard Gibbons-Hawking term

SGH =

∫
z=ε

ddx
√
−γ 2K, (3.2)

where γij is the induced metric on the radial cutoff and K stands for the trace of the

extrinsic curvature Kij = − 1
2`z∂zγij . The regulator ε here refers to the radial coordinate

defined in (A.1) in appendix A, so that ε → 0 as the cutoff is removed. A well posed

variational problem on the conformal boundary requires that additional local and covariant

boundary terms, Sct, are introduced so that Sreg +Sct is asymptotically independent of the

radial cutoff ε, and hence the limit

Sren = lim
ε→0

(Sreg + Sct), (3.3)

exists. The counterterms Sct can be computed in a number of ways. For the action (2.1)

with d = 3 and for the scalar mass (2.7), corresponding to ∆+ = 2 and ∆− = 1, the

counterterms are a special case of those computed using the radial Hamiltonian formalism

in [38] and [39] and take the form4

Sct = −
∫
z=ε

d3x
√
−γ
(

4

`
+ `R[γ] +

1

2`
φ2 − `

2
γij∂iψI∂jψI

)
. (3.4)

In appendix A we provide an alternative derivation of these counterterms by solving asymp-

totically the second order field equations, following [40–43] (see also the review [44]).

The renormalized action Sren is identified holographically with the generating function

in the dual theory corresponding to Dirichlet boundary conditions on the bulk fields. In

particular, identifying the leading modes in the asymptotic expansions (A.4), namely g(0),

ϕ(0), ψ
(0)
I , and A(0), with the sources of the dual operators and Sren with the generat-

ing function, allows us to define the 1-point functions of the dual operators through the

variation [42],

δSren =

∫
d3x
√
−g(0)

(
1

2
〈T ij〉Dδg(0)ij+〈J i〉DδA

(0)
i +〈OψI 〉Dδψ

(0)
I +〈O∆+〉Dδϕ(0)

)
. (3.5)

4Notice that we cannot integrate by parts the axionic term to put it in the familiar ψI�γψI form, since

we will consider configurations where the axions do not falloff to zero as xi goes to infinity on the boundary.
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Imposing Dirichlet boundary conditions on the fields corresponds to keeping the leading

modes g(0), ϕ(0), ψ
(0)
I , and A(0) fixed on the boundary,5 which leads to a well posed varia-

tional problem since the boundary variation (3.5) vanishes.

The definition of the Dirichlet 1-point functions through the variation (3.5) is general,

but the expressions for these 1-point functions in terms of the coefficients of the Fefferman-

Graham expansions depend on the details of the theory. For the action (2.1) in d = 3 and

scalar mass given by (2.7), the asymptotic analysis in appendix A determines

〈OψI 〉D = 3`2ψ
(3)
I , 〈O∆+〉D = `2ϕ(1),

〈J i〉D = Z0A
i
(1), 〈T ij〉D = `2

(
3gij(3) + ϕ(0)ϕ(1)g

ij
(0)

)
, (3.6)

where recall that Z0 is defined in (2.5) and we assume through this article that Z0 > 0.

Local Ward identities. The Ward identities can be derived in general through a Noether

procedure using the invariance (up to anomalies) of Sren under boundary diffeomorphisms,

U(1) gauge transformations and Weyl rescaling of the sources. Such a derivation does

not reply on the expressions (3.6) for the 1-point functions in terms of the coefficients of

the Fefferman-Graham expansions. However, for any specific model, the Ward identities

can be verified explicitly using the asymptotic analysis in appendix A. In particular, the

relations (A.18) and (A.24) imply that the 1-point functions (3.6) satisfy the identities

−Dj
(0)〈Tij〉D + 〈O∆+〉D∂iϕ(0) + 〈OψI 〉D∂iψ

(0)
I + 〈J j〉DF

(0)
ij = 0,

D(0)i〈J i〉D = 0, (3.7)

reflecting respectively boundary diffeomorphism and U(1) gauge invariance. Moreover,

(A.16) leads to the trace Ward identity

− 〈T ii〉D + (d−∆+)〈O∆+〉Dϕ(0) = A(ϕ(0)), (3.8)

where A(ϕ(0)) is the conformal anomaly. For d = 3 the only possible contribution to the

anomaly is due to the scalar operator dual to φ, but for the particular potentials we consider

in Theories I and II this contribution is zero and so the conformal anomaly vanishes.

Global Ward identities for axions. As we saw in section 2, both the bulk La-

grangian (2.1) and the counterterms (3.4) are invariant under the global ISO(d− 1) trans-

formation ψI → ΛJI ψJ + cI , and hence so is the renormalized action Sren. Applying the

Noether procedure to these global symmetries leads to additional global Ward identities,

or selection rules, which cannot be derived from the local constraints of the bulk dynamics.

5Since the bulk fields do not induce boundary fields on a conformal boundary, but rather a conformal

class of boundary fields, the only meaningful Dirichlet boundary conditions keep the conformal class fixed

and not the conformal representative [25]. Namely, one can only demand that δg(0) = 2δσ(x), δA
(0)
i = 0,

δψ
(0)
I = 0, and δϕ(0) = −(d − ∆+)δσ(x)ϕ(0), where δσ(x) is an arbitrary infinitesimal scalar function on

the boundary. The variation (3.5) still vanishes under these generalized Dirichlet boundary conditions due

to the trace Ward identity (3.8), provided the conformal anomaly is zero.
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In particular, an infinitesimal transformation of this form in (3.5) leads to the integral

constraints ∫
∂M

ddx
√
−g(0) 〈OψI 〉 = 0,

∫
∂M

ddx
√
−g(0) ψ

(0)
[I 〈OψJ]

〉 = 0, (3.9)

where the axion indices are antisymmetrized in the second identity.

The second identity is a special feature of our model (2.1) while the first identity is

a fundamental property of axion fields — it corresponds to gauge transformations for 0-

forms. Contrary to higher rank forms, the gauge freedom of 0-forms does not correspond

to a shift by local exact form, but rather a shift by a constant. For 0-forms, therefore, the

analogue of the local current conservation is the first global constraint in (3.9).

3.2 Mixed boundary conditions and multi-trace deformations

Since the AdS mass of the scalar field φ in both Theories I and II is in the window (2.8),

both scalar modes are normalizable and one can impose more general boundary conditions

on φ, corresponding to keeping a generic function J(ϕ(0), ϕ(1)) fixed on the boundary. As

we reviewed above, Dirichlet boundary conditions correspond to choosing the source as

JD = ϕ(0), in which case the dual scalar operator has conformal dimension ∆+. Choosing

instead JN = −`2ϕ(1) as the source corresponds to Neumann boundary conditions for the

scalar and accordingly the dual operator has dimension ∆−. The choice

JF = −`2ϕ(1) −F ′(ϕ(0)), (3.10)

where F(ϕ(0)) is a polynomial of degree n with 2 ≤ n ≤ d/∆−, corresponds to a multi-trace

deformation of the Neumann theory by F(O∆−) [24, 45–47].

The choice of source J(ϕ(0), ϕ(1)) that we want to keep fixed on the boundary dictates

the additional finite boundary term that we must add to the renormalized on-shell action

for the Dirichlet problem, Sren. For JF = −`2ϕ(1)−F ′(ϕ(0)) the required additional term is

SF =

∫
r=ε
d3x
√
−g(0)

(
JFϕ(0) + F(ϕ(0))

)
, (3.11)

since

δφ(Sreg + Sct + SF ) =

∫
r=ε

d3x
√
−g(0)

(
−`2ϕ(0)δϕ(1) − ϕ(0)F ′′(ϕ(0))δϕ(0)

)
+O(ε)

=

∫
r=ε

d3x
√
−g(0) ϕ(0) δJF +O(ε). (3.12)

This variation also allows us to read off the corresponding scalar 1-point function in the

theory where JF is the source, namely6

〈O∆−〉 = ϕ(0). (3.13)

6Correlation functions with subscript D or N denote respectively observables computed in the theories

defined by Dirichlet and Neumann boundary conditions for the scalar φ. Correlation functions without

any suffix denote observables in the theory where JF = −`2ϕ(1) − F ′(ϕ(0)) is the source of the dual scalar

operator, which is the theory relevant for the black hole solutions we are interested in. The function F is

uniquely determined by these black hole solutions.
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Besides the 1-point function of the scalar operator dual to φ, changing the boundary

conditions also affects the expression for the renormalized stress tensor since the extra

boundary term (3.11) depends on the boundary metric g(0) [24]. In particular, a general

variation of

S′ren = lim
ε→0

(Sreg + Sct + SF ), (3.14)

takes the form

δS′ren =

∫
d3x
√
−g(0)

(
1

2
〈T ij〉δg(0)ij + 〈J i〉δA(0)

i + 〈OψI 〉δψ
(0)
I + 〈O∆−〉δJF

)
, (3.15)

where now

〈OψI 〉 = 3`2ψ
(3)
I , 〈O∆−〉 = ϕ(0),

〈J i〉 = Z0A
i
(1), 〈T ij〉 = 3`2gij(3) +

(
F(ϕ(0))− ϕ(0)F ′(ϕ(0))

)
gij(0). (3.16)

Note that the 1-point functions for the current J i and the scalar operators OψI are un-

changed relative to (3.6), but the stress tensor and the operator dual to the scalar φ have

been modified.

Local Ward identities. Using the relation between the 1-point functions (3.6) and (3.16),

as well as the expression for the new scalar source JF , it is straightforward to rewrite the

Ward identities (3.7) and (3.8) in terms of the variables relevant for the new boundary

conditions. This leads to the new Ward identities

−Dj
(0)〈Tij〉+ 〈O∆−〉∂iJF + 〈OψI 〉∂iψ

(0)
I + 〈J j〉F (0)

ij = 0,

D(0)i〈J i〉 = 0, (3.17)

and

− 〈T ii〉+ (d−∆−)ϕ(0)JF + dF(ϕ(0))−∆−ϕ(0)F ′(ϕ(0)) = 0, (3.18)

where we have assumed that the conformal anomaly A vanishes in (3.8), as is the case for

the examples we are interested in here. Note that the trace of the stress tensor gets a new

contribution due to the multi-trace deformation F(O∆−). As expected, this contribution

vanishes if and only if the multitrace deformation is marginal, i.e. F(ϕ(0)) ∝ ϕ
d/∆−
(0) . The

black hole solutions we are going to discuss turn out to satisfy precisely such marginal

triple-trace boundary conditions with d = 3 and ∆− = 1, which we parameterize in terms

of a marginal coupling ϑ as

F(ϕ(0)) =
1

3
ϑϕ3

(0). (3.19)

We are going to specify the value of the coupling ϑ for the solutions of Theories I and II

later on.
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4 Planar black holes and their properties

In this section we present a number of black hole solutions of both Theories I and II

and study their properties. Using the holographic dictionary discussed in section 3, we

identify the boundary conditions that they are compatible with and interpret these solutions

holographically. The solutions we discuss are not new, except for a new magnetic black

hole solution for Theory II.

4.1 Exact planar solutions of Theory I

Bald solution. When φ = 0 the theory reduces to AdS gravity coupled to a gauge

field F and the two free scalars ψi. Electrically charged planar black solutions of this

theory, with an axion profile breaking translational invariance, were found in [13] and take

the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2
(
dx2 + dy2

)
,

f(r) = −p
2

2
− m

r
+

q2

4r2
+
r2

`2
, ψ1 = px, ψ2 = py,

A = µ
(

1− r0

r

)
dt, F = dA = −q

2

r2
dt ∧ dr, with q = µr0. (4.1)

The parameters m, p, and q are related to the mass, axion charge, and U(1) charge densi-

ties respectively. The event horizon is located at r0, the largest zero of f(r), and we have

chosen a gauge in which A vanishes on the horizon; µ is then interpreted as the chemical

potential in the dual field theory. This metric was used in [15] as a simple holographic

model of momentum relaxation. It should be noted that this metric can be easily extended

to include a magnetic field, by taking q2 = q2
e + q2

m in the above metric, and the gauge field

to be of the form

A = µ
(

1− r0

r

)
dt+ qmx dy, F = dA =

qe
r2

dt ∧ dr + qm dx ∧ dy, with qe = µr0. (4.2)

Electric hairy solution. The electrically charged hairy black brane solution found

in [20] can be transformed into a solution of Theory I by rewriting it in the Einstein

frame, where it becomes

ds2 = Ω(r)
(
−f(r)dt2+f−1(r)dr2+r2(dx2+dy2)

)
,

Ω(r) = 1− v2

(r +
√
α v)2

, f(r) =
r2

`2
− p2

2

(
1+

√
α v

r

)2

,

φ(r) = 2
√

3 tanh−1

(
v

r +
√
α v

)
, ψ1 = px, ψ2 = py,

A = µ
(

1− r0

r

)
dt, F = dA =

q

r2
dt ∧ dr, with q = µr0. (4.3)

As for the bald solution (4.1), the axion profile breaks translational invariance in the

spatial boundary directions, but in this case the dialton φ also has a non-trivial profile.

The parameters p, and q are again related respectively to the axion and electric charge
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densities, but importantly, v (originally denoted by m in [20]) is in fact not an independent

parameter. The equations of motion require that it is related to the charge densities p, q

and the parameter α in the scalar potential as q2 = 2p2v2(1 − α), which in turn implies

that the solution (4.3) only exists for 0 ≤ α ≤ 1. As we shall see later on, v is related to

the vacuum expectation value (vev) of the scalar operator dual to φ. The event horizon

of these solutions is located at r0, the largest zero of f(r), and we again choose a gauge

in which A vanishes on the horizon so that µ corresponds to the chemical potential in the

dual field theory.

Dyonic hairy solution. In analogy with the bald solution, the hairy solution (4.3)

can be easily extended to include a constant magnetic field since we are in four dimen-

sions. The main difference is that for the dyonic solution the parameter v is related to

the the electromagnetic duality invariant quantity q2
e + q2

m instead of the electric charge

alone, i.e.

q2
e + q2

m = 2p2v2(1− α). (4.4)

The metric, dialton, and axion fields are the same as in the purely electric solution (4.3),

but the electromagnetic field picks up an extra magnetic contribution, as given in equa-

tion (4.2). The resulting planar black hole is dyonic, and carries both an electric charge

density qe and a magnetic charge density qm. When the magnetic field is turned on, the

parameter space changes slightly, but the blackening function f(r), the conformal factor

Ω(r), and the dialton profile remain unchanged, and therefore the geometric and thermo-

dynamic properties of these dyonic branes can be derived in a straightforward way from

those of the electrically charges branes.

4.2 Exact planar solutions of Theory II

Bald solutions. In Theory II with 0 < ξ < 2, the gauge field A sources the dialton via

the coupling Z(φ)F 2. Hence, bald solutions of this theory are necessarily neutral and take

the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2d~x2 , ψI = pxI ,

f(r) =
r2

`2
− r3

0

r`2
− p2

2

(
1− r0

r

)
, φ = 0, A = 0. (4.5)

This solution depends on the two parameters r0 and p, and, since for φ = 0 and A = 0

Theory I and Theory II coincide, is the same as the bald solution (4.1) of Theory I, with

appropriate identification of the parameters. The only case where Theory II admits charged

bald solutions is in the limit ξ → 2 so that Z(φ) → 1. However, as we saw in (2.18), this

leads to a truncation of Theory I and so we need not consider this case further.
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Electric hairy solution. A family of electrically charged hairy black hole solutions of

Theory II was presented in [21] and reads7

ds2 = −f(r)h(r)
−4

2+(d−2)(d−1)δ2 dt2 + h(r)
4

(d−2)(2+(d−2)(d−1)δ2)
(
f−1(r)dr2 + r2d~x2

)
,

f(r) =
r2

`2

(
h(r)

4(d−1)

(d−2)(2+(d−2)(d−1)δ2) −
rdh
rd
h(rh)

4(d−1)

(d−2)(2+(d−2)(d−1)δ2)

)
− p2

2(d− 2)

(
1−

rd−2
h

rd−2

)
,

φ =
−2(d− 1)δ

2 + (d− 2)(d− 1)δ2
log h(r), h(r) = 1 +

ve
rd−2

, ψI = pxI ,

A =

√
4(d− 1)ve

(
(d− 2)

rd+2
h
`2
h(rh)

2(2−(d−2)2(d−1)δ2)

(d−2)(2+(d−1)(d−2)δ2) − p2rdh
2h(rh)

)
(d− 2)rd−1

h h(r)
√

2 + (d− 2)(d− 1)δ2

(
1−

rd−2
h

rd−2

)
dt. (4.6)

This family of solutions is valid for arbitrary boundary dimension d and depends on the

three parameters rh, p, and ve (called Q in [21]). However, this parameterization of the

solution treats the electric charge density as a dependent parameter, expressed in terms of

the radius of the horizon rh and the parameter ve, which, as we will see, is proportional

to the vev of the scalar operator dual to φ. This not only obscures the limiting process of

taking the charge density to zero, but also does not reflect the change of the sign of the

gauge potential when the charge density changes sign.

Focusing on the four-dimensional case, i.e. d = 3, from now on, we will therefore adopt

an alternative parameterization of the solution (4.6), by introducing explicitly the charge

density qe as an independent parameter, in addition to replacing δ with ξ as in (2.11).

With these modifications the solution takes the form

ds2 = −f(r)h−ξ(r)dt2 + hξ(r)
(
f−1(r)dr2 + r2d~x2

)
,

f(r) =
r2

`2
h2ξ(r)− p2

2
h(r)− q2

e

2ξver
,

φ = −
√
ξ(2− ξ) log h(r) , h(r) = 1 +

ve
r
,

A = qe

(
1

r0h(r0)
− 1

rh(r)

)
dt , ψI = pxI . (4.7)

Here r0 is the largest zero of f(r) and we are in a gauge in which A vanishes on the horizon.

Notice that the expression for the blackening factor f(r) implies that as long as qe 6= 0 we

must necessarily have ve 6= 0, and hence the scalar field must have a non-trivial profile. In

summary, qe 6= 0 implies that ve 6= 0, but the converse is not true.

7This fixes a typo in equation (C.5) of reference [21].
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New magnetic hairy solution. We have been able to find in addition an analytical

black brane solution that is purely magnetically charged and takes the form

ds2 = −f(r)h−(2−ξ)(r)dt2 + h2−ξ(r)

(
dr2

f(r)
+ r2d~x2

)
,

f(r) = h(r)

(
r2

`2
+

(3− 2ξ)vmr

`2

(
1 +

(1− ξ)vm
r

)
− p2

2
+

q2
m

2ξvmr

)
,

φ = −
√
ξ(2− ξ) log h(r), h(r) = 1 +

vm
r
,

A = qm xdy, ψI = pxI . (4.8)

In addition to the axion charge density p, this solution is parameterized by the magnetic

charge density qm as well as the independent parameter vm, which as we will see later, is

again related to the vev of the scalar operator dual to φ.

4.3 Black hole properties: horizons and extremality

Bald black branes. Let us consider first the bald dyonic solution (4.1)–(4.2) of Theory I.

This analysis also covers the bald solutions (4.5) of Theory II, since the latter can be

embedded in the former as the neutral qe = qm = 0 subfamily. For these bald solutions

the mass parameter can be expressed in terms of (r0, p, µ, qm) by solving f(r0) = 0 for m,

namely

m =
r3

0

`2

(
1 +

`2

4r2
0

(
µ2 − 2p2

)
+

`2

4r4
0

q2
m

)
. (4.9)

The temperature of the black brane is then given by

T =
f ′(r0)

4π
=

3r0

4π`2

(
1− `2

12r2
0

(
µ2 + 2p2

)
− `2

12r4
0

q2
m

)
. (4.10)

The solution becomes extremal when r0 is a double zero of f(r), or equivalently, when its

temperature T vanishes. The location of the extremal horizon is at

r2
0,extr =

`2

24

(
µ2 + 2p2

)(
1 +

√
1 +

48q2
m

`2(µ2 + 2p2)2

)
. (4.11)

The entropy density — defined as s = ah/4GN, with ah = r2
0 the area density of the horizon

and using our convention that 16πGN = 1 — is given by

s =
r2

0

4GN
= 4πr2

0, (4.12)

and remains finite in the extremal T = 0 case. The near horizon geometry can be obtained

by defining r = r0 + ερ, t = τ/ε, and taking the ε → 0 limit, resulting in the AdS2 × R2

geometry

ds2
IR = − ρ

2

`2IR
dτ2 +

`2IR
ρ2
dρ2 + r2

0

(
dx2 + dy2

)
, (4.13)
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where the radius of the AdS2 factor is given by

`2IR =
2

f ′′(r0,extr)
=

2r4
0,extr

(p2 + µ2)r2
0,extr + q2

m

. (4.14)

When qm = 0, this expression reduces to [15]

`2IR =
`2

6

µ2 + 2p2

µ2 + p2
. (4.15)

The full geometry, therefore, interpolates between AdS4 (in Poincaré coordinates) in the

UV and a near horizon AdS2 × R2 geometry in the IR.

Symmetry enhancement. As shown by Davison and Goutéraux [48], for particular values

of the parameters the bald solution becomes exactly conformal to AdS2 × R2, and so

it possesses an enhanced SL(2,R) × SL(2,R) symmetry. In that case one can solve the

linearized perturbation equations exactly in terms of hypergeometric functions.8 This

happens precisely when the form of the lapse function simplifies to

f(r) = −p
2

2
+
r2

`2
, (4.16)

i.e. when m and q both vanish. The crucial point is that the metric becomes conformal to

a patch of AdS2×R2, which also happens for the hairy solution (4.3) when α = 0 (besides

the case v = 0 that coincides with the bald solution). It is however unlikely that in the case

of the hairy solution with α = 0 the coupled linearized perturbation equations for the fields

gµν , Aµ, φ, and ψI remain exactly solvable as a consequence of the enhanced symmetry.

This is left for further exploration.

Hairy black branes of Theory I. We first need to find the range of parameters for

which the solution supports a regular event horizon. Without loss of generality, we take

p ≥ 0. Then f(r0) = 0 can be solved for its largest real root, determining the location of

the horizon to be

r0 =


`p

2
√

2

(
1 +

√
1 + 4

√
2α

v

`p

)
for v ≥ − `p

4
√

2α
(case A),

− `p

2
√

2

(
1−

√
1− 4

√
2α

v

`p

)
for v < − `p

4
√

2α
(case B).

(4.17)

However, not all of these are genuine black branes. If the conformal factor Ω(r) vanishes

outside the horizon, the geometry suffers from a naked singularity. As long as the largest

8Notice that such a symmetry is also enjoyed by the scalar wave equation in the nonextremal Kerr black

hole background, in the low frequency limit [49] (see [50] for the Schwarschild black hole case). This hidden

conformal symmetry is not derived from an underlying symmetry of the spacetime itself, but is rather related

to the fact that black hole scattering amplitudes are given in terms of hypergeometric functions, which are

well-known to form representations of the conformal group SL(2,R). What is notable in the bald black

hole case is that this symmetry becomes an exact symmetry of the linearized gravitational perturbation

equations for those values of the parameters.
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zero of Ω(r), namely rΩ = |v| −
√
α v, is smaller than r0, there is an event horizon hiding

the singularity. This condition translates to9

− `p√
2(1 +

√
α)2

< v <
`p√

2(1−
√
α)2

, (4.18)

and restricts us to a subset of case A only; all case B geometries display a naked singularity.

In conclusion, for parameters (p, v;α) satisfying the relation (4.18) we get a regular black

brane with

r0 =
`p

2
√

2

(
1 +

√
1 + 4

√
2α

v

`p

)
. (4.19)

Alternatively, we can invert this relation, and express all quantities in terms of the param-

eters (p, r0;α) using

v =

√
2

α

r2
0

`p
− r0√

α
. (4.20)

The regularity condition (4.18) then becomes

`p√
2(1 +

√
α)

< r0 <
`p√

2(1−
√
α)
. (4.21)

The stability condition v > 0 (see section 6) then further restricts

`p√
2
< r0 <

`p√
2(1−

√
α)
. (4.22)

Absence of extremal horizons. The largest zero of f(r) becomes a double zero located at

r0 = `p/2
√

2 when v = −`p/4
√

2α, and so extremal solutions would be dynamically unsta-

ble, if they existed. However, when v = −`p/4
√

2α the conformal factor Ω(r) vanishes at

rΩ =
1 +
√
α

4
√

2α
`p > r0, (4.23)

and, hence, extremal solutions are singular: there is no extremal limit of the hairy black

brane.10

Temperature and entropy density. The temperature of the hairy branes is not affected by

the presence of the conformal factor Ω(r) and takes the form

T =
f ′(r0)

4π
=

1

π`2

(
r0 −

p`

2
√

2

)
. (4.24)

Given that for regular hairy black branes the range of r0 is limited by (4.22), we see that the

temperature of the hairy black branes is bounded both from below and above according to

p

2
√

2π`
< T <

1 +
√
α

1−
√
α

p

2
√

2π`
. (4.25)

9We will see below, however, that only solutions with v > 0 are dynamically stable.
10When α = 1 we have rΩ = r0 and so Ω vanishes on the horizon. However, the entropy vanishes too in

that case.
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Hence, the temperature of the brane can never vanish, as expected since the hairy solu-

tion (4.3) becomes singular in the extremal limit.

The fact that the temperature is a fixed function of the charge densities, as follows

by combining the expressions (4.24), (4.19) and (4.4), as well as that this temperature has

a lower non-zero bound, are some of the puzzling features of the hairy solutions (4.3) of

Theory I. A related property, reminiscent of extremal solutions, is that the entropy density

of these black branes is also uniquely determined in terms of the charge densities and is

given by

s =
r2

0 Ω(r0)

4GN
= 4πr2

0 Ω(r0). (4.26)

However, as we have seen, the solution cannot be extremal. We believe that the reason

behind these unusual properties is that in fact the analytic solution (4.3) is a single member

of a continuous family of solutions, where the temperature, or the mass, is a free parameter.

It would be interesting to find these solutions.

Hairy black branes of Theory II. Starting with the electric solution (4.7), we again

need to know the range of parameters for which these solutions describe regular black

branes, and to find the location of their event horizon. The solution has singularities at

both r = 0 and r = −ve (where h(r) vanishes). To be regular, the solution must thus have

an event horizon at a location r0 such that r0 > 0 and r0 > −ve. Horizons correspond to the

zeros of the function f(r) and can be determined in terms of the electric and axion charge

densities, respectively p and qe, as well as the parameter ve, by solving the (generically

transcendental) equation

r2
0

`2
h2ξ(r0)− p2

2
h(r0)− q2

e

2ξver0
= 0, h(r0) = 1 +

ve
r0
. (4.27)

For ξ = 1, 1/2, 3/2, this equation is cubic in r0 and the roots can be found explicitly,

although they are still highly involved expressions.

The temperature of these black branes can be computed as usual by requiring that

there is no conical singularity in the Euclidean section of the metric, giving

T =
1

4π

d

dr

(
f(r; qe, ve, p)

hξ(r)

)∣∣∣∣
r=r0

(4.28)

=
1

4π`2hξ(r0)

(
2r0h

2ξ(r0)− veξh2ξ−1(r0) +
p2`2ve(1− ξ)

2r2
0

+
q2
e`

2(r + (1− ξ)ve)
2ξver3h(r0)

)
.

Moreover, the entropy density is given by the area density of the event horizon,

s =
r2

0 h
ξ(r0)

4GN
= 4πr2

0 h
ξ(r0). (4.29)

In contrast to the hairy solutions of Theory I, these solutions admit extremal limits,

corresponding to the cases where the temperature (4.28) vanishes. Combining this condi-

tion with the defining equation f(r0) = 0 for the horizon determines the location of the

extremal horizon to be

rex0 =
ξ(2ξ − 5)p2v2

e − 3q2
e + sgn(ve)

√
9q4

e + ξ2(2ξ − 1)2p4v4
e + 2ξ(2ξ + 3)p2q2

ev
2
e

4ξp2ve
. (4.30)
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Requiring in addition that f(rex0 ) = 0 gives the extremality condition, which can be ex-

pressed in the form vexe (qe, p). It is not possible to obtain this extremality condition ana-

lytically for generic ξ, but it can be done for specific values.11 The simplest case is

ξ = 1, ve = −

√
`
(
9`p2q2

e − `3p6 + (`2p4 − 6q2
e)

3/2
)

`2p4 − 8q2
e

, (4.31)

in which case the extremal horizon simplifies to (see (6.15))

rex0 = −ve +
(6q2

e − `2p4)ve
9q2

e + p2v2
e

. (4.32)

However, as we shall see, the energy density for this solution, given in equation (5.53), is

negative and so it is dynamically unstable (see section 6).

The magnetically charged solutions (4.8) can be studied similarly. The location r0 of

the horizon is determined by the equation

r2
0

`2
+

(3− 2ξ)vmr0

`2

(
1 +

(1− ξ)vm
r0

)
− p2

2
+

q2
m

2ξvmr0
= 0, (4.33)

which in this case is cubic for arbitrary ξ. The generic expression for r0, however, is still

too lengthy to usefully reproduce here. The same applies to the temperature and entropy

density, which are given by

T =
1

4π

d

dr

(
f(r; qm, vm, p)

h2−ξ(r)

)∣∣∣∣
r=r0

=
hξ−1(r0)

8π`2r0

(
−`2p2+6r2

0h
2(r0)−8vmr0ξ+2v2

mξ(2ξ−5)
)
,

s =
r2

0 h
2−ξ(r0)

4GN
= 4πr2

0 h
2−ξ(r0). (4.34)

As for the electrically charged solutions, extremal solutions can be found, even analytically

for specific values of the parameters. The simplest case is again

ξ = 1, vm =

√
`
(
9`p2q2

m − `3p6 + (`2p4 − 6q2
m)3/2

)
`2p4 − 8q2

m

, (4.35)

with the extremal horizon given by (see (6.23))

rex0 =
9`2q2

m + `2p2v2
m

2vm(3`2p2 + 2v2
m)
. (4.36)

Again, the energy density (5.65) is negative for this solution, and so it is also dynamically

unstable.

Scaling symmetry. Finally, all the families of solutions presented above enjoy a scaling

symmetry: they are left invariant by the scaling (t, ~x, r) → (λt, λ~x, λ−1r) of the coordi-

nates, when accompanied by the rescaling (p, ve/m, qe/m) → (λ−1p, λ−1ve/m, λ
−2qe/m) of

the parameters. Under such a rescaling, the temperature and entropy transform according

to T → λ−1T and s→ λ−2s. This invariance will simplify the study of the phases of these

black branes, since it allows us to scale away one of the parameters such as the axion charge

density p, as long as it is non vanishing.

11The extremality condition can also be determined by requiring that the discriminant of the polynomial

f(r) vanishes, in which case the horizon becomes a multiple root.
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5 Black hole thermodynamics

We now turn to the thermodynamics of the black holes presented in section 4. Here

we will define only some of the thermodynamic variables from first principles, such as

the temperature, entropy density and free energy, but other variables –in particular the

thermodynamic potentials conjugate to the magnetic and axionic charge densities– will be

obtained through general thermodynamic relations. This means that the analysis below

does not provide an independent confirmation of thermodynamic relations such as the

first law. A first principles definition of all the thermodynamic variables for planar black

holes with axionic charge, and correspondingly a general derivation of the first law without

relying on specific solutions, will appear elsewhere [51].

The renormalized Euclidean generating function, when evaluated on black hole solu-

tions, gives the Gibbs free energy, or the grand canonical potential, where all intensive

variables are kept fixed [52]. Since the black holes we are interested in correspond to im-

posing mixed boundary conditions on the scalars specified by the parameter ϑ in (3.19),

the generating function is given by S′ren, defined in (3.14). The grand canonical potential,

W, is therefore related to the Euclidean generating function S′Eren as

S′Eren = −S′ren = βW(T,V, µ,B,Π), (5.1)

and is a function of the temperature T = 1/β, spatial volume V, chemical potential µ,

magnetic field B, and axionic strength Π, which for an isotropic collection of axionic fields

ψI is defined as

Π =
1

`

√
1

d− 1

∑
I

(∂ψI)2 . (5.2)

An important simplification for spatially homogeneous systems, like the planar black

holes we are interested in here, is that the renormalized on-shell action is simply pro-

portional to the (formally infinite) spatial volume V, while the corresponding free energy

density

w(T, µ,B,Π) =W(T,V, µ,B,Π)/V, (5.3)

is independent of V. Variations of the free energy, therefore, satisfy

dw = −s dT − ρ dµ−M dB −$ dΠ, (5.4)

where we have defined the entropy density s, the charge density ρ, the magnetization M
and the axionic magnetization $ as the conjugate variable to T , µ, B, and Π respectively,(

∂w

∂T

)
µ,B,Π

= −s,
(
∂w

∂µ

)
T,B,Π

= −ρ,
(
∂w

∂B

)
T,µ,Π

= −M,

(
∂w

∂Π

)
T,µ,B

= −$. (5.5)

Performing a Legendre transformation with respect to the temperature and the chemical

potential, we obtain a description of the system in terms of its internal energy density ε,

ε(s, ρ,B,Π) = w + Ts+ µρ, (5.6)
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whose variation expresses the first law of thermodynamics for an infinitesimal volume,

dε = T ds+ µ dρ−$ dΠ−M dB. (5.7)

The total energy

E(S,V, Qe,B,Π) = V ε
(
S

V
,
Qe

V
,B,Π

)
, (5.8)

depends naturally on the total entropy S = sV, charge Qe = ρV, and volume V of the

system. Allowing for volume variations, we obtain the first law of thermodynamics in its

usual form,

dE = T dS − P dV + µ dQe − ($V)dΠ− (MV) dB, (5.9)

where the pressure of the system has been defined as the conjugate variable to the

volume, i.e.

P = −
(
∂E
∂V

)
S,Qe,B,Π

. (5.10)

Combining (5.9) with (5.4) and (5.6), we find that the pressure is related to the free

energy as

w = −P , (5.11)

and satisfies the Gibbs-Duhem relation

ε+ P = Ts+ µρ. (5.12)

This general thermodynamic analysis is valid for any planar black hole. To apply it

to specific systems one needs in addition an equation of state, relating the thermodynamic

variables. This is strongly constrained by symmetries, such as conformal invariance. As we

shall see, the boundary conditions that the dialton satisfies in the black holes of Theories I

and II discussed above do not explicitly break conformal invariance and hence, conformal

invariance is only broken explicitly by the background magnetic field and axion charge. A

simple scaling argument allows us to generalize the equation of state for conformal theories

to theories where conformal symmetry is explicitly broken by magnetic and axionic charges,

and we explicitly confirm that all planar black holes discussed in section 4 satisfy such an

equation of state. Interestingly, the constraint (4.4) between the parameters of the hairy

black hole of Theory I endows the system with a linear structure evoking the structure of

supersymmetric black holes.

5.1 Conformal thermodynamics in the presence of magnetic and axionic

charge

In a d-dimensional theory with no explicit breaking of conformal symmetry the stress tensor

is traceless in any state. This implies that in a state of thermal equilibrium the system is

governed by the equation of state P = ε/(d − 1). As we now show, in the presence of a

magnetic field B, a chemical potential µ for the electric charge, and an isotropic collection

of axionic fields with charge density Π as defined by (5.2), this equation of state gets
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modified. These are all intensive quantities, and we can thus rewrite the grand-canonical

potential, using (5.1) and (5.6), as

W(T,V, µ,B,Π) = (ε− Ts− µρ)V. (5.13)

Conformal invariance and extensivity restrict thus the form of the state function W to

W(T,V, µ,B,Π) = −VT d h
(
µ

T
,
B
T 2
,
Π

T

)
, (5.14)

where the function h depends only on the dimensionless ratios µ/T , B/T 2 and Π/T . We

should stress that in writing this relation we assume that there are no dimensionful cou-

plings, either single- or multi-trace, for the scalar operator dual to φ. This assumption is

justified for the planar black holes we consider here, but in general dimensionful scalar cou-

plings must be included in the scaling argument (see e.g. [4]). As a consequence of (5.14),

W possesses the scaling property

W(λT, λ1−dV, λµ, λ2B, λΠ) = λW(T,V, µ,B,Π). (5.15)

Differentiating this relation with respect to λ and setting λ = 1 we obtain

− sT − (1− d)P − ρµ− 2MB−$Π =W/V, (5.16)

where we have used the conjugate variables introduced in (5.5) and (5.10). Equivalently,

∂W
∂T

= −sV, ∂W
∂V

= −P , ∂W
∂µ

= −ρV, ∂W
∂B

= −MV , ∂W
∂Π

= −$V. (5.17)

Combining equation (5.16) with the defining relation (5.13) finally gives the equation

of state

ε = (d− 1)P − 2MB−$Π. (5.18)

We will see that all black holes under consideration indeed have an equation of state of

this form.

5.2 Thermodynamics of the bald dyonic black branes of Theory I

Let us start with the bald, dyonic black hole solution given by equations (4.1)–(4.2). For

that metric, the Fefferman-Graham radial coordinate z is related to r by

r =
`2

z
+

1

8
p2z +

m

6`2
z2 − q2

e + q2
m

32`4
z3 +O(z4), (5.19)

and the Fefferman-Graham expansions of the fields are (see appendix A)

gij =

−1 0 0

0 `2 0

0 0 `2

+ z2

 p2/4`2 0 0

0 p2/4 0

0 0 p2/4

+ z3

 2m/3`4 0 0

0 m/3`2 0

0 0 m/3`2

+O(z4),

ψI = pxI , Ai =

(
qe
r0
, 0, qmx

)
+ z
(
−qe
`2
, 0, 0

)
+O(z3). (5.20)
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In order to evaluate the bulk integral of the on-shell action we integrate over the radial

coordinate r from the horizon at r0 to a UV cutoff r̄ in the r coordinate. At the end of

the calculation we express r̄(ε) in terms a cutoff ε in the z coordinate using the asymptotic

expansion (5.19). This gives

Sbulk =

∫ r̄(ε)

r0

dr

∫
d3x
√
−G
(
V (φ)− 1

4
F 2

)
= −2`4

ε3
− 3`2p2

4ε
+

(
2r3

0

`2
−m+

q2
e − q2

m

2r0

)
+O(ε).

(5.21)

The bald black hole solutions are clearly compatible with any boundary condition

imposed on the dialton φ. However, we want to consider these black holes as solutions of the

same theory that admits the hairy solutions and hence we should impose the same boundary

conditions on φ as those the hairy solutions satisfy. It follows that the renormalized action

is given by (3.14) instead of (3.3), even though the two numerically coincide for bald

solutions. The Euclidean renormalized action, therefore, takes the form

S′Eren = −S′ren = βV
(
m− 2r3

0

`2
− q2

e − q2
m

2r0

)
. (5.22)

The corresponding one-point functions for the stress tensor and the conserved electric

current are given by (3.16) and, for the bald solutions, take the values

〈Tij〉 =

 2m/`2 0 0

0 m 0

0 0 m

, 〈J i〉 =
(qe
`2
, 0, 0

)
. (5.23)

Note that this stress tensor is traceless, as it should. Moreover, the one-point functions of

the scalar operators vanish identically, i.e. 〈O∆−〉 = 〈OψI 〉 = 0.

These expressions for the renormalized on-shell action and one-point functions allow

us to evaluate all thermodynamic variables and to confirm the general identities derived

above. Firstly, the Gibbs free energy W is immediately obtained from (5.1) and (5.22).

Recalling the expressions for the temperature and entropy density of these black holes

obtained in section 4.3, namely

T =
f ′(r0)

4π
=

3r0

4π`2
− 1

16πr0

(
2p2 +

q2
e + q2

m

r2
0

)
, s = 4πr2

0, (5.24)

and defining the energy density, chemical potential, and charge density respectively as

ε = `2〈T tt〉 = 2m, µ = lim
r→∞

At =
qe
r0
, ρ = `2〈J t〉 = qe, (5.25)

we can then confirm that the relation (5.6) is indeed satisfied. As a consistency check, one

can also check that12

s = −
(
∂w

∂T

)
µ,B,Π

, ρ = −
(
∂w

∂µ

)
T,B,Π

. (5.27)

12This can be done parameterizing w = w(r0, qe, p), T = T (r0, qe, p), and µ = µ(r0, qe, p), in terms of r0,

qe, and p, and using the implicit function theorem, leading for example to(
∂w

∂T

)
µ,p

=

∂w
∂r0

∣∣∣
qe,p
− ∂w

∂qe

∣∣∣
r0,p

∂µ/∂r0|qe,p
∂µ/∂qe|r0,p

∂T
∂r0

∣∣∣
qe,p
− ∂T

∂qe

∣∣∣
r0,p

∂µ/∂r0|qe,p
∂µ/∂qe|r0,p

, etc. (5.26)
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Moreover, given that the total energy, electric charge and entropy are obtained from the

corresponding densities by multiplying by the (regularized version of the infinite) spatial

volume V, i.e. E = εV, Qe = ρV, and S = sV, the thermodynamic identity (5.10) determines

the pressure to be

P = −
(
∂E
∂V

)
S,Qe,B,Π

= 〈Txx〉 −
q2
m

r0
+ p2r0. (5.28)

From (5.22) and (5.23) then follows that P = −w, in agreement with the general re-

sult (5.11). Finally, (5.28) and (5.6) give the Gibbs-Duhem relation (5.12).

The thermodynamic relations we checked so far for the bald solutions of Theory I do not

involve the magnetic and axion charges, or their conjugate potentials. However, these vari-

ables are required in order to verify the first law (5.7) and the equation of state (5.18). As we

argued above, for homogeneous systems the Gibbs free energy density (5.3) is a function of

the magnetic and axionic charge densities, respectively B and Π (defined in (5.2)), namely

B =
1

`3
F(0)xy =

qm
`3
, Π =

|p|
`
, (5.29)

and not of the corresponding total charges.13 The conjugate thermodynamic potentials,

namely the magnetization M and the axionic charge potential $, are then defined as

in (5.5) and take the values

M = −
(
∂w

∂B

)
T,µ,Π

= −`3 qm
r0
, $ = −

(
∂w

∂Π

)
T,µ,B

= 2`pr0. (5.30)

Using these results it is straightforward to confirm that both the equation of state (5.18)

and the first law (5.7) are satisfied. The extra contribution to the pressure (5.28) is thus

due to the pressure BM+ 1
2Π$ exerted by the magnetization.

5.3 Thermodynamics of the hairy dyonic black branes of Theory I

Next we turn to the hairy dyonic black hole solution (4.3) with the gauge field given in (4.2).

In studying the thermodynamics of these solutions it is crucial to recall that the parameter

v is not independent and it is determined in terms of the rest of the parameters of the

solution via the condition (4.4). As we shall see below, v corresponds to the vev of the

scalar operator O∆− dual to the dialton φ.

The relation between the Fefferman-Graham radial coordinate z and r for the

metric (4.3) is

r =
`2

z
+

1

8

(
p2− 2v2

`2

)
z +

v
√
α

6`2

(
p2 +

2v2

`2

)
z2 +

(1+α)v2

16`4

(
p2 − 2(1 + 3α)v2

(1 + α)`2

)
z3 +O(z4),

(5.31)

13This property of homogeneous systems is directly related to the fact that P 6= 〈Txx〉 for such systems.

If, instead, one kept fixed the total charges ΠV and BV, one would have found the pressure to be equal to

〈Txx〉 [15].
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while the Fefferman-Graham expansions now take the form (see appendix A)

gij =

−1 0 0

0 `2 0

0 0 `2

+ z2


p2

4`2
− 3v2

2`4
0 0

0 p2

4 −
3v2

2`2
0

0 0 p2

4 −
3v2

2`2



+ z3


√
α 2v

3`4

(
p2 − 4v2

`2

)
0 0

0
√
α v

3`2

(
p2 + 8v2

`2

)
0

0 0
√
α m

3`2

(
p2 + 8v2

`2

)
+O(z4),

φ = 2
√

3
v

`2
z − 2

√
3α
v2

`4
z2 +O(z3), ψI = pxI ,

Ai =

(
qe
r0
, 0, qmx

)
+ z
(
−qe
`2
, 0, 0

)
+O(z3). (5.32)

From the asymptotic expansion for the scalar φ we can immediately deduce the bound-

ary conditions that these black holes are compatible with. Comparing the relation

ϕ(1) = −
√
αϕ2

(0)/2
√

3 between the two modes in (5.32) with the condition that the sin-

gle trace source for the dual scalar operator vanishes, i.e. JF = −`2ϕ(1) − F ′(ϕ(0)) = 0,

determines that the multi-trace deformation function F(ϕ(0)) is of the form (3.19) with

ϑI =
`2
√
α

2
√

3
. (5.33)

Introducing again a UV cutoff at z = ε, the integral of the bulk part of the on-shell

action is

Sbulk =

∫ r̄(ε)

r0

dr

∫
d3x
√
−G
(
V (φ)− 1

4
F 2

)
= −2`4

ε3
− 3`2

4ε

(
p2 − 2v2

`2

)
+

(
2r3

0

`2
−v
√
α

(
p2+

2v2

`2

)
+
q2
e−q2

m

2r0
+

2v4α

`2
3r2

0 +3vr0
√
α+v2α

(r0+v
√
α)3

)
+O(ε). (5.34)

Taking into account the value (5.33) for the parameter ϑ that determines the scalar bound-

ary conditions, we find that the renormalized on-shell action (3.14) is

S′Eren = −S′ren = −βV
(

2r3
0

`2
+
q2
e − q2

m

2r0
− p2v

√
α− 2v3

`2
r3

0

√
α

(r0 + v
√
α)3

)
. (5.35)

Finally, inserting the expansions (5.32) in the expressions (3.16) for the renormalized one-

point functions we get

〈Tij〉 =

 2p2v
√
α/`2 0 0

0 p2v
√
α 0

0 0 p2v
√
α

, 〈J i〉 =
(qe
`2
, 0, 0

)
, 〈O∆−〉 = ϕ(0) = 2

√
3
v

`2
,

(5.36)

while again the expectation value of the scalar operator dual to the axions vanishes, i.e.

〈OψI 〉 = 0. Notice that the stress tensor is indeed traceless, in agreement with (3.18) for
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the boundary condition (3.19). Moreover, these holographic relations allows us to identify

the parameter v with the expectation value of the scalar operator O∆− .

Using the above expressions for the renormalized Euclidean action and one-point func-

tions we can determine the remaining thermodynamic variables for these black holes and

verify the general thermodynamic relations derived at the beginning of this section. We al-

ready obtained the temperature and entropy density for these black holes in equations (4.24)

and (4.26), respectively. The energy density is defined as for the bald solutions and is

given by

ε = `2〈T tt〉 = 2vp2√α. (5.37)

Moreover, the chemical potential, the electric charge density, as well as the magnetic and

axion charge densities are identical to those of the bald solution, namely

µ = lim
r→∞

At =
qe
r0
, ρ = `2〈J t〉 = qe, B =

1

`3
F(0)xy =

qm
`3
, Π =

|p|
`
. (5.38)

An important property of the hairy solutions of Theory I is that, as a direct consequence of

the condition (4.4), the variables (T, µ,B,Π) are not independent and satisfy the constraint

B2 +

(
πT +

Π

2
√

2

)2
[
µ2

`2
− 4

α
(1− α)

(
πT − Π

2
√

2

)2
]

= 0. (5.39)

Since all the variables T, µ,B,Π are a priori external tunable parameters, we conclude

that these black holes exist only when these external parameters lie on the constraint

submanifold defined by (5.39).

The Gibbs free energy is obtained from the renormalized Euclidean on-shell action

through the definition (5.1) and can be expressed in the form

w(T, µ,B,Π) = −
√

2 `4Π

[(
πT+

Π

2
√

2

)2

+
µ2

4`2(1−α)

]
+`4B2

πT−α
(
πT+ Π

2
√

2

)
(1−α)

(
πT+ Π

2
√

2

)2 , (5.40)

where again all the variables T, µ,B,Π lie on the constraint submanifold (5.39). Using the

above expressions for the energy density, temperature, entropy, electric charge density and

chemical potential, one can verify that the free energy density satisfies the thermodynamic

relation (5.6), provided the constraint (5.39) is taken into account. For zero magnetic

field (5.40) simplifies to

w = − `
2

[
(Ξ + 1)2 +

1

α
(Ξ− 1)2

](
p√
2

)3

, (5.41)

where Ξ = 2
√

2 π`T/p, in complete agreement with the free energy obtained in eq. (5.6)

of [20] using a (real time) Hamiltonian approach to the thermodynamics. This means that

we can use the thermodynamic analysis of [20] and, in particular, the results on the phase

structure of the system obtained there.

If the variables T, µ,B,Π were all independent, the expression (5.40) for the free energy

density could be used to determine the thermodynamic potentials conjugate to the magnetic
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and axion charge densities through the relations (5.5). However, these variables are not

independent, due to the constraint (5.39). Nevertheless, since we know already the values

for the entropy and electric charge densities, we can use a Lagrange multiplier for the

constraint (5.39) to obtain the potentials conjugate to the magnetic and axion charge

densities. Considering the variation of w + λC, where λ is a Lagrange multiplier and C is

the constraint (5.39), and identifying the coefficient of dT with −s fixes the value of the

Lagrange multiplier to

λ =
4`2(
√

2 `2µΠ− 2(1− α)qe)

(1− α)µ(4πT +
√

2 Π)2
. (5.42)

This allows us to read off the potentials

M = −`3 qm
r0
, $ = 2p`

(
r0 +

v2

r0 + v
√
α

)
. (5.43)

Using these results one can verify that the first law (5.7) and the equation of state (5.18)

hold.

BPS-like structure. Intriguingly, all thermodynamic variables of these solutions, in-

cluding the temperature, are completely fixed by the charges. In particular, the energy

density is given by

ε(ρ,B,Π) =

(
2α

1− α

) 1
2

`Π
√
ρ2 + B2`6 . (5.44)

Similarly the entropy density is also completely determined in terms of ρ,B and Π, but the

corresponding expression is too complicated to usefully reproduce it here.

This evokes the analogous property of extremal black holes, and despite having a non-

vanishing temperature, the hairy black holes of Theory I behave along the constraint (4.4)

as extremal black holes. The energy density itself is linear in the charges, and we can

think of the black hole as composed of elementary blocks carrying unit axionic and electric

charges, (Π, ρ,B) = (1, 1, 0), and magnetic elementary blocks with charges (1, 0, 1) (in suit-

able units). We can thus investigate the stability of such black holes towards fragmentation

of the charges by comparing the entropies of the system before and after fragmentation.

We find

s(Π, ρ1, 0) + s(Π, ρ2, 0) ≥ s(Π, ρ1 + ρ2, 0),

s(Π, 0,B1) + s(Π, 0,B2) ≥ s(Π, 0,B1 + B2),

s(Π1, ρ, 0) + s(Π2, ρ, 0) ≤ s(Π1 + Π2, ρ, 0),

s(Π1, 0,B) + s(Π2, 0,B) ≤ s(Π1 + Π2, 0,B). (5.45)

It is thus entropically favorable for these black holes to decay to a bound state of smaller

black holes carrying a smaller electric charge/magnetic field. On the other hand, the axionic

charge is stable against fragmentation.
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5.4 Thermodynamics of the hairy black branes of Theory II

Electrically charged solutions. Finally, we consider the thermodynamics of the hairy

black holes of Theory II. Starting with the magnetically neutral solutions in (4.7), the

Fefferman-Graham radial coordinate z is related to r by

r =
`2

z
− ξve

2
+

1

8

(
p2 +

v2
e

2`2
ξ(2− ξ)

)
z

+
1

12`4

(
2r3

0h(r0)2ξ − `2p2(r0 + ξve)−
1

3
ξ(1− ξ)(2− ξ)v3

e

)
z2

− ξve
16`6

(
r3

0h(r0)2ξ − 1

2
`2p2r0h(r0)− 1

4
(1− ξ)2(2− ξ)v3

e

)
z3 +O(z4), (5.46)

and the corresponding Fefferman-Graham expansions are (see appendix A)

gij =

−1 0 0

0 `2 0

0 0 `2

+ z2


p2

4`2
+ ξ(2−ξ)v2

e
8`4

0 0

0 p2

4 −
ξ(2−ξ)v2

e
8`2

0

0 0 p2

4 −
ξ(2−ξ)v2

e
8`2



+ z3


2r3

0
3`6
h2ξ(r0)− p2

3`4
(r0 + ξve)− ξ(1−ξ)(2−ξ)v3

e
9`6

0 0

0
r3
0

3`4
h2ξ(r0)− p2

6`2
(r0 + ξve) + ξ(1−ξ)(2−ξ)v3

e
9`4

0

0 0
r3
0

3`4
h2ξ(r0)− p2

6`2
(r0 + ξve) + ξ(1−ξ)(2−ξ)v3

e
9`4

+O(z4),

φ = −
√
ξ(2− ξ)ve

`2
z + (1− ξ)

√
ξ(2− ξ) v

2
e

2`4
z2 +O(z3), ψI = pxI , (5.47)

At =
qe

r0h(r0)
− qe
`2
z +O(z2). (5.48)

As for the hairy black holes of Theory I, the asymptotic expansion for the scalar φ de-

termines the boundary conditions these black holes are compatible with. Comparing the

relation ϕ(1) = 1−ξ
2
√
ξ(2−ξ)

ϕ2
(0) between the two scalar modes with the condition that the

single trace source for the dual scalar operator vanishes, i.e. JF = −`2ϕ(1) −F ′(ϕ(0)) = 0,

determines that the multi-trace deformation function F(ϕ(0)) is of the form (3.19) with

ϑeII = − (1− ξ)`2

2
√
ξ(2− ξ)

. (5.49)

Introducing a radial cutoff at z = ε, the bulk integration of the on-shell action gives

Sbulk =

∫ r̄(ε)

r0

dr

∫
d3x
√
−G
(
V − 1

4
F 2

)
= −2`4

ε3
− 6`2p2 − ξ(2− ξ)v2

e

8ε
+ r0

(
p2

2
+
r2

0

`2
h2ξ(r0)

)
+O(ε). (5.50)

We then find that the renormalized generating function (3.14) is

S′Eren = −S′ren = −βV
(
r3

0h
2ξ(r0)

`2
+
r0p

2

2

)
. (5.51)
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Moreover, the renormalized one-point functions (3.16) are given by

〈Tij〉 =


1

`4
2r3

0h
2ξ(r0)− 1

`2
p2(r0 + ξve) 0 0

0
1

`2
r3

0h
2ξ(r0)− 1

2
p2(r0 + ξve) 0

0 0
1

`2
r3

0h
2ξ(r0)− 1

2
p2(r0 + ξve)

, 〈J i〉 =
(
qe/`

2, 0, 0
)
,

〈O∆−〉 = ϕ(0) = −
√
ξ(2− ξ) ve/`2, 〈OψI 〉 = 0. (5.52)

Again, the stress tensor is traceless, in agreement with (3.18) for the boundary condi-

tion (3.19). Note that in the limit ve → 0, qe → 0, the d = 3 solution (4.7) reduces to

the bald, uncharged solution (4.1) (with qe = 0 and qm = 0). One can easily check that

in that limit both the renormalized on-shell action and the holographic stress tensor of

these solutions nicely agree, with the identification m = r3
0/`

2−p2r0/2 of their parameters.

However, the solution (4.7) also admits a neutral hairy limit, where qe → 0, but ve 6= 0.

The temperature and entropy density of these black holes were given respectively

in (4.28) and (4.29). The energy density, chemical potential, and the electric and axionic

charge densities are defined as for Theory I and take the values

ε = `2〈T tt〉 = (1− ξ)p2ve +
q2
e

ξve
, (5.53)

and

µ = lim
r→∞

At =
ρ

r0h(r0)
, ρ = `2〈J t〉 = qe, Π =

|p|
`
. (5.54)

The Gibbs free energy is again obtained from the renormalized Euclidean action (5.51)

by invoking the definition (5.1), and it is straightforward to check that the resulting w

satisfies the thermodynamic relation (5.6), as well as

s = −
(
∂w

∂T

)
µ,Π

, ρ = −
(
∂w

∂µ

)
T,Π

. (5.55)

Moreover, the free energy density allows us to obtain the thermodynamic potential conju-

gate to the axion charge density as

$ = −
(
∂w

∂Π

)
T,µ

= 2p`

(
rh +

veξ

2

)
, (5.56)

while the pressure (5.10) is given by

P = −
(
∂E
∂V2

)
S,Qe,Π

= 〈Txx〉+ p2

(
r0 +

veξ

2

)
= 〈Txx〉+

1

2
Π$, (5.57)

where again we have introduced the total energy E = εV, electric charge Qe = ρV, entropy

S = sV. This satisfies both (5.11) and the Gibbs-Duhem relation (5.12). Finally, it is

straightforward to verify that the first law (5.7) and the equation of state (5.18) (with

B = 0) hold.
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Magnetically charged solutions. Let us turn to the magnetically charged hairy black

holes of Theory II. Starting with the magnetically neutral solutions in (4.8), the Fefferman-

Graham radial coordinate z is related to r by

r =
`2

z
− 2− ξ

2
vm +

1

8

(
p2 +

v2
m

2`2
ξ(2− ξ)

)
z

− 1

12`2ξvm

(
q2
m + p2v2

mξ(1− ξ)−
v4
m

3L2
ξ(1− ξ)(6− 14ξ + 7ξ2)

)
z2

− 1

32`4

(
q2
m −

v4
m

2`2
ξ(1− ξ)2(2− ξ)

)
z3 +O(z4), (5.58)

and the corresponding Fefferman-Graham expansions are (see appendix A)

gij =

−1 0 0

0 `2 0

0 0 `2

+ z2


p2

4`2
+ ξ(2−ξ)v2

m
8`4

0 0

0 p2

4 −
ξ(2−ξ)v2

m
8`2

0

0 0 p2

4 −
ξ(2−ξ)v2

m
8`2



+ z3


(1−ξ)(6−14ξ+7ξ2)v3

m
9`6

− q2
m

3`4ξvm
− (1−ξ)p2vm

3`4
0 0

0 (1−ξ)(3−10ξ+5ξ2)v3
m

9`4
− q2

m
6`2ξvm

− (1−ξ)p2vm
6`2

0

0 0 (1−ξ)(3−10ξ+5ξ2)v3
m

9`4
− q2

m
6`2ξvm

− (1−ξ)p2vm
6`2

+O(z4),

φ = −
√
ξ(2− ξ)vm

`2
z − (1− ξ)

√
ξ(2− ξ) v

2
m

2`4
z2 +O(z3), (5.59)

ψI = pxI , Ai = (0, 0, qmx). (5.60)

Once more, the asymptotic expansion for the scalar φ determines the boundary conditions

these black holes are compatible with. Comparing the relation ϕ(1) = 1−ξ
2
√
ξ(2−ξ)

ϕ2
(0) between

the two scalar modes with the condition that the single trace source for the dual scalar

operator vanishes, i.e. JF = −`2ϕ(1) − F ′(ϕ(0)) = 0, determines that the multi-trace

deformation function F(ϕ(0)) is of the form (3.19) with

ϑmII =
(1− ξ)`2

2
√
ξ(2− ξ)

. (5.61)

Notice that this is the same as the boundary condition (5.49) for the electrically charged

solutions, except for the sign.

Introducing a radial cutoff at z = ε, the bulk integration of the on-shell action gives

Sbulk =

∫ r̄(ε)

r0

dr

∫
d3x
√
−G
(
V − 1

4
F 2

)
= −2`4

ε3
− 6`2p2 − ξ(2− ξ)v2

m

8ε

+
1

6`2ξvmr0

(
3`2(p2v2

mr0ξ(1− ξ) + q2
m(r0 − vmξ)) + 2vmr0ξ(6r

3
0 + 9vmr

2
0(2− ξ)

+ 3v2
mr0(6− 7ξ + 2ξ2) + v3

m(3− 2ξ − 3ξ2 + 2ξ3))
)

+O(ε), (5.62)
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where r0 is the largest zero of f(r). The renormalized generating function (3.14) then is

given by

S′Eren =−S′ren = −βV
[

1

`2

(
2r3

0 +3vmr
2
0(2−ξ)+3v2

mr0(2−ξ)
(

1− 2

3
ξ

)
+v3

m(1−ξ2)

(
1− 2

3
ξ

))
+

q2
m

2ξvm

(
1− ξvm

r0

)
+

1

2
(1− ξ)p2vm

]
. (5.63)

Moreover, the renormalized one-point functions (3.16) are given by

〈Tij〉 =


2

3`4
(1− ξ)(1− 2ξ)(3− 2ξ)v3

m −
q2
m

`2ξvm
− 1

`2
(1− ξ)p2vm 0 0

0
2

6`2
(1− ξ)(1− 2ξ)(3− 2ξ)v3

m −
q2
m

2ξvm
− 1

2
(1− ξ)p2vm 0

0 0
2

6`2
(1− ξ)(1− 2ξ)(3− 2ξ)v3

m −
q2
m

2ξvm
− 1

2
(1− ξ)p2vm

,

〈O∆−〉 = ϕ(0) = −
√
ξ(2− ξ) vm/`2, 〈J i〉 = (0, 0, 0), 〈OψI 〉 = 0. (5.64)

Again, the stress tensor is traceless, in agreement with (3.18) for the boundary condi-

tion (3.19).

The temperature and entropy density of these black holes were given in (4.34). The

energy density and the magnetic and axionic charge densities are defined as for Theory I

and take the values

ε =
2

3
(1− ξ)(2ξ − 3)(2ξ − 1)

v3
m

`2
− (1− ξ)p2vm −

q2
m

ξvm
, (5.65)

B =
1

`3
F(0)xy =

qm
`3
, Π =

|p|
`
. (5.66)

The Gibbs free energy is again obtained from the renormalized Euclidean action (5.51)

by invoking the definition (5.1). It is straightforward to check that the resulting w satisfies

the thermodynamic relation (5.6), as well as the density first law (5.7), with the U(1) and

axionic magnetizations M and $ given by

M = −
(
∂w

∂B

)
T,Π

= −qm`
3

r0
, $ = −

(
∂w

∂Π

)
T,µ

= 2p`

(
r0 +

(2− ξ)vm
2

)
. (5.67)

Finally, introducing the total energy E = εV and entropy S = sV, we obtain that the

pressure (5.10) is again related to the transverse components of the stress tensor by

P = −
(
∂E
∂V2

)
S,B,Π

= 〈Txx〉+
1

2
Π$ +MB , (5.68)

with both magnetizations contributing. The resulting pressure satisfies both (5.11) and

the Gibbs-Duhem relation (5.12) and it is straightforward to verify that the first law (5.9)

and the equation of state (5.18) hold.
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6 Stability and phase transitions

Having analyzed the thermodynamics of the black brane solutions of Theories I and II, we

can now address the stability of these solutions. Besides thermodynamic stability and the

corresponding phase structure, we will compute the holographic effective potential for the

vev of the scalar operator dual to the dialton, which will tell us whether these solutions

correspond to stable (thermal) vacua of the dual theory.

6.1 Dynamical stability and the energy density

The quantum effective action for the scalar vev σ = 〈O∆−〉 = ϕ(0) is given by the Legendre

transform of the generating function (3.14) with respect to the scalar source (we fix all

other sources to their values in the solutions), namely

Γ[σ] = S′ren − `2
∫
d3xσJF = `2

∫
d3x

(
VQFT(σ) + derivatives

)
, (6.1)

where we used the fact that the QFT is on Minkowski (with metric g(0) = diag (−1, `2, `2))

and VQFT(σ) is the quantum effective potential for σ and we will not be interested in the

derivative terms since we are focusing on homogeneous solutions. From (3.15) and (6.1)

follows that the source of O∆− is then given by

JF = −δΓ[σ]

δσ
, (6.2)

and, hence, vacua of the theory are extrema of the effective action:

δΓ[σ]

δσ

∣∣∣∣
σ=σ∗

= 0. (6.3)

To compute the effective action we observe that from (3.11) and (3.14) follows that [24]

Γ[σ] = Sren + `2
∫
d3xF(σ), (6.4)

where Sren is the generating function of the Dirichlet theory in (3.3), or equivalently the

effective action of the Neumann theory. As for Poincaré domain walls [31, 53–55], for the

homogeneous solutions we are interested in here Sren can be expressed in terms of a fake

superpotential that governs non-relativistic flows [39]. The details of this calculation are

presented in appendix B.

It turns out that the result of this calculation can be cast in a rather universal form,

that applies to all hairy black holes we have been studying here. In particular, the effective

potential for the scalar vev σ in all cases takes the form

VQFT(σ) = V0 +
µqe
`2

+
ε

2`2σ3
∗

(
σ3 − 3σ2

∗σ
)

= V0 +
µqe
`2

+
ε

2`2σ3
∗

(
−2σ3

∗ + 3σ∗(σ − σ∗)2 + (σ − σ∗)3
)
, (6.5)

where V0 is a constant (see appendix B) and σ∗ is the value of the vev at the extremum,

i.e. the value corresponding to the specific background solution, and ε is the corresponding
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energy density. Dynamical stability is now determined by the sign of the effective mass

term, i.e. the coefficient of the quadratic term, and we see that it is equivalent to the

positivity of the energy density, as one may have expected. This result also provides an

alternative method for computing the energy density. Using the specific expressions for

the energy density in each of the solutions, therefore, determines the range of parameters

for which they are dynamically stable.

6.2 Thermodynamic stability and phase transitions

We finally turn to the thermodynamic stability of the various solutions discussed above,

and the study of the phase structure of the corresponding theories. To do so we need to

compare solutions that have the same asymptotic charges and satisfy the same boundary

conditions, including the boundary conditions of the dialton φ. Since bald solutions are

compatible with any boundary condition for the scalar φ, they can potentially compete

with any hairy solutions with the same asymptotic charges. In addition, there may exist

small and large black hole solutions that have the same charges and temperature.

As we have seen in section 5, the Gibbs free energy density w defined in (5.3) is a

function of the variables T , µ, B and Π. In order to compare solutions with the same

charge densities, therefore, we need to Legendre transform w with respect to the chemical

potential µ to obtain the Helmholtz free energy density

f = w + µρ = ε− Ts. (6.6)

The thermodynamic identity (5.4) implies that

df = −s dT + µ dρ−M dB −$ dΠ, (6.7)

and so f is indeed a function of the variables T, ρ,B,Π, as desired.

Phases of theory I. The Helmholtz free energy density for the bald solutions of Theory

I can be deduced from the on-shell action (5.22) and is given by

f = m− 2r3
0

`2
+
q2
e + q2

m

2r0
. (6.8)

Notice that the magnetic and electric charges enter the same way in the Helmholtz free

energy and so the thermodynamic stability properties of the dyonic solutions are qualita-

tively equivalent to those of the corresponding purely electric solutions. Moreover, as it

was pointed out in [20], planar black holes with axion charge are equivalent to black holes

with horizons of constant negative curvature and no axion charge. As a result, the stability

properties of the planar bald solutions of Theory I are analogous to those of bald black

holes with hyperbolic horizons, which have been studied for example in [56–59].

For the hairy solutions of Theory I the Helmholtz free energy density can be read

off (5.35) and takes the form

f = p2v
√
α+

2v3

`2
r3

0

√
α

(r0 + v
√
α)3
− 2r3

0

`2
+
q2
e + q2

m

2r0
. (6.9)
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As for the bald solutions, the dependence of the Helmholtz free energy on the magnetic

and electric charges is identical and so the thermodynamic stability properties of the hairy

dyonic solutions of Theory I are identical to those of the purely electric solutions studied

in [20]. However, the constraint (4.4) implies that the temperature is not an independent

thermodynamic variable for the hairy solutions of Theory I, but rather a fixed function of

the charge densities, namely

T (ρ,B,Π) =
Π

2π
√

2

√
1 + 4

√
α

1− α

√
ρ2 + B2`6

Π2`3
. (6.10)

This means that, for given charge densities, one can only compare the free energy of the

hairy solutions with that of the bald ones at a fixed temperature, which considerably

restricts the useful information one can extract from such an analysis. Nevertheless, this

analysis was performed in [20] and reveals that at large temperatures the unbroken phase

of bald black holes dominates, and as we lower the temperature (together with the charge

densities according to (6.10)), the system undergoes a second order phase transition towards

a phase of hairy black holes. As the temperature is lowered further, below the lower

bound in (4.25), the hairy solution becomes dynamically unstable, while at an even lower

temperature it ceases to exist.

As we mentioned above, we believe that there exist more general hairy solutions of

Theory I whose temperature is not determined by the charge densities. Such solutions

would allow one to explore the full phase diagram of Theory I. However, we have been

unable to find this more general class analytically. It would be interesting to see if this

more general class of hairy solutions can be found numerically.

Phases of electric solutions of Theory II. For the hairy solutions of Theory II,

both electrically and magnetically charged, the temperature is an independent variable

and so we can explore the full phase diagram. However, due to the coupling between the

dialton and the gauge field, bald solutions of Theory II are necessarily electrically and

magnetically neutral, and so they do not compete with the hairy solutions at non zero

charge density. Nevertheless, for a given non zero charge density and temperature, there

are up to three hairy solutions with different horizon radii and scalar vevs that compete

thermodynamically. This leads to an intricate phase diagram that we now describe.

We will only discuss the phase structure of the electric and magnetic solutions of Theory

II for the case ξ = 1, since in that case the analysis can be done analytically. Other values

of ξ can be addressed in an analogous way, but generically require solving transcendental

equations numerically. It may be useful to point out that the case ξ = 1 leads to vanishing

coupling for the multi-trace deformation in (5.49) and (5.61), corresponding to Neumann

boundary conditions on the scalar φ.14

14Note that the case ξ = 1 is also the only case for which the electric and magnetic solutions of Theory

II satisfy the same boundary conditions, and hence may possess dyonic solutions.
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One way to understand the structure of the electric solutions of Theory II analytically

is to use the horizon equation f(r0) = 0 in (4.27),

r2
0

`2
h2(r0)− p2

2
h(r0)− q2

e

2ver0
= 0, (6.11)

in order to obtain two different expressions for the temperature. The two different ex-

pressions for T correspond to using the equation f(r0) = 0 in two different ways. The

first expression is obtained by solving (6.11) for q2
e

2ver0
and substituting the result in (4.28)

with ξ = 1,

T =
1

4π`2

(
2r0 + ve +

q2
e`

2

2ver2
0h

2(r0)

)
, (6.12)

This yields

τ = 3r0 + ve −
p2`2

2(r0 + ve)
, (6.13)

where we have defined τ ≡ 4π`2T . Alternatively, we can solve (6.11) for
r2
0
`2
h2(r0) and

substitute in (6.12), finding

τ = 2r0 + ve +
q2
er0

q2
e + p2ve(r0 + ve)

. (6.14)

Eliminating the quadratic terms in r0 we obtain an explicit formula for the radius of the

horizon as a function of the charge densities, the temperature and the scalar vev parameter

ve, namely

r0 = −ve +
(6q2

e − `2p4)ve + 3q2
eτ

9q2
e + p2ve(ve − τ)

. (6.15)

Finally, inserting this result in either (6.13) or (6.14) we obtain the characteristic curve

(`2p4−8q2
e)v

4
e+(2`4p6 − `2p4τ2 − 18`2p2q2

e + 6q2
eτ

2)v2
e + 2q2

eτ
3ve − 27`2q4

e = 0, (6.16)

which is an equation relating physical observables only.

The expression (6.15) for the horizon radius and the characteristic curve are valid

everywhere except in the regime where qe → 0 and ve → 0 simultaneously, in which case

the manipulations that lead to (6.15) and (6.16) starting from (6.13) and (6.14) break

down. This limit must be taken so that ve/q
2
e is kept fixed and corresponds to the bald

solutions that only exist for Theory II at zero charge density. Being a quartic equation

in ve, the characteristic equation admits four roots at fixed temperature and fixed electric

and axionic charge densities. At most three of these roots are real and have r0 ≥ 0: we

checked numerically that there is always either a root corresponding to a singular metric

with r0 < 0, or at least two complex conjugate roots. From the two expressions (6.13)

and (6.14) we find that for small qe there are three physical black hole solutions, which

we will refer to as ‘red’, ‘blue’ and ‘orange’, and whose scalar vev parameter and horizon
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radius are given by

Red: ve =
√
τ2−τ2

c +O(q2
e), r0 =

1

2

(
τ−
√
τ2−τ2

c

)
+O(q2

e), τ > τc,

(6.17a)

Blue: ve =
q2
e`

2

r0(2r2
0−p2`2)

+O(q4
e), r0 =

1

6

(
τ+
√
τ2+3τ2

c

)
+O(q2

e), τ > τc,

(6.17b)

Orange: ve =

{
q2
e `

2

r0(2r2
0−p2`2)

+O(q4
e),

−
√
τ2−τ2

c +O(q2
e),

r0 =


1
6

(
τ+
√
τ2+3τ2

c

)
+O(q2

e),

1
2

(
τ+
√
τ2−τ2

c

)
+O(q2

e),

τ < τc,

τ > τc.

(6.17c)

Here

τc = 4π`2Tc =
√

2p`, (6.18)

denotes the critical temperature at zero charge density. The true critical temperature

increases slightly with increasing charge density, but we find it convenient to use τc as

a reference temperature at arbitrary charge density. The solutions (6.17) are plotted in

figure 1, together with the corresponding energy density (5.53) and Helmholtz free energy

(see (5.51))

f =
q2
e

r0h(r0)
− r3

0h
2(r0)

`2
− r0p

2

2
. (6.19)

Several features of these solutions persist at higher charge densities, but there are

also qualitative changes as the charge density is increased, as can be seen in figures 3, 4

and 5. An important observation regarding the perturbative solutions (6.17) that is clear

from the plots in figure 1 is that perturbation theory for small qe breaks down near the

critical temperature τc. The corner in the orange curve as well as the apparent pole in ve
at τc for the orange and blue solutions in (6.17) are indications that perturbation theory

breaks down at τc. However, at small but non zero qe one can zoom in near the critical

temperature using the analytical solutions of the characteristic curve (6.16) as is done in

figure 2, which shows that all curves are in fact smooth. The corners exist only in the strict

qe = 0 limit, or as an artifact of perturbation theory at small qe.

The general structure of the physical solutions that emerges from the plots in

figures 1, 3, 4 and 5 is as follows. Below the critical charge density

|ρ| < ρc =
`3

2
√

2
Π2 =

p2`

2
√

2
, (6.20)

there always exists one solution for all temperatures (orange), while two additional solutions

appear above a (charge density dependent) critical temperature that equals Tc at zero

charge density. For |ρ| > ρc the orange solution disappears, leaving only the other two

branches above the critical temperature. There are no solutions above the critical charge

density and below the critical temperature. This is depicted in the left plot in figure 6.

The right plot in figure 6 shows the number of solutions as a function of temperature and
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Figure 1. Plot of the perturbative solutions (6.17) for ρ = 0.003ρc, together with the corresponding

energy ε and Helmholtz free energy f densities.

electric chemical potential, instead of charge density. Notice that there is no critical value

for the chemical potential, which reflects the fact that |qe(µ, p, T )| for the orange solution

is bounded by ρc.

The dynamic and thermodynamic stability properties of the solutions can be read off

respectively the energy density and Helmholtz free energy density plots in figures 1, 3, 4

and 5. From the energy density plots we deduce that the orange solution is always

dynamically unstable, while the blue and red solutions are always dynamically stable.

Above Tc, however, in the limit of vanishing charge density the red solution becomes

marginally stable while the orange one becomes marginally unstable. Moreover, from

the free energy plots follows that when they coexist, the blue solution is thermodynami-

cally stable, while both the red and the orange solutions are thermodynamically unstable.

Nevertheless, the orange solution has the largest radius, while the red solution has the

smallest radius. We will see below that this last property is reversed in the magnetically

charged solutions.

Putting everything together, we conclude that the electric solutions of theory II de-

scribe in general two distinct phases, as shown in figure 7. Phase I corresponds to the

orange solutions and is the only possible phase below the critical temperature and critical

charge density. Phase II corresponds to the blue solutions and it dominates above the

critical temperature, for any value of the charge density. There is no regime of parameters

where the red solutions are thermodynamically dominant. At non zero charge density the

Helmholtz free energy jumps at the critical temperature and so this is a zeroth order phase
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Figure 2. Plot of the solutions of (6.16) for ρ = 0.003ρc, together with the corresponding energy ε

and Helmholtz free energy f densities. Notice that the solutions look identical to the perturbative

ones in figure 2 for the same charge density, but zooming in near the critical temperature shows

that the exact solutions are in fact smooth.

transition. Zeroth order phase transitions have been predicted in the context of superflu-

idity and superconductivity and are related to the presence of metastable states [27, 28],

as well as in higher dimensional black holes [29]. As the charge density approaches zero,

however, the jump of the free energy across the critical temperature goes to zero, but at

the same time its derivative is continuous across Tc and, hence, the transition becomes

second order. However, since the solutions of phase I are dynamically unstable, this phase

diagram is presumably not the complete picture. There are probably other solutions that

are thermodynamically and dynamically stable below the critical temperature, that also

continue to exist above the critical charge density. It would be interesting to identify

these solutions.

Phases of magnetic solutions of Theory II. The structure of the magnetic solutions

of Theory II is very similar to that of the electric ones, except for a few minor features that

we are going to highlight. As for the electric solutions, we can process the temperature in

two different ways leading to

τ = 3r0 + 2vm −
`2p2

2r0
, (6.21)

and

τ = 2vm −
3`2q2

m + `2p2vm(vm − 2r0)

2r0vm(vm + r0)
, (6.22)
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Figure 3. Plot of the solutions of (6.24) for ρ = 0.314ρc, together with the corresponding energy

ε and Helmholtz free energy f densities.
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Figure 4. Plot of the solutions of (6.24) for ρ = 0.786ρc, together with the corresponding energy

ε and Helmholtz free energy f densities.
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Figure 5. Plot of the solutions of (6.24) for ρ = 1.1ρc, together with the corresponding energy ε

and Helmholtz free energy f densities.
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T
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0
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Three Solutions

Two Solutions

ξ = 1

Increasing ε, scalar vev and s

Decreasing scalar vev, increasing ε and s

T

|µ|

Tc
0

One Solution

Three Solutions

Figure 6. Number of electric solutions of Theory II with ξ = 1 as a function of charge density ρ

and temperature T (left plot), or chemical potential µ and temperature T (right plot). The plots

apply to any fixed |p| > 0. There are three distinct solutions, indicated respectively by horizontal

orange lines, red vertical lines, and blue diagonal lines. We refer to these solutions as ‘orange’,

‘red’ and ‘blue’, respectively. The orange solution exists for all temperatures provided the (absolute

value of the) charge density is below the critical value ρc = `p2/2
√

2. However, this solution is

dynamically unstable since it always has negative energy density. Moreover, where it coexists with

the red and blue solutions it has the largest radius, but it is thermodynamically unstable. The

red and blue solutions appear simultaneously above a critical temperature Tc ≥ |p|/2
√

2π` and are

always dynamically stable, since they have positive energy density. The blue solutions have larger

radius than the red ones and are thermodynamically preferred.
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Figure 7. Phase diagram for the electric solutions of Theory II with ξ = 1 as a function of charge

density ρ and temperature T . Below a critical charge density ρc and a critical temperature Tc there is

only one, dynamically unstable, black hole solution. This solution exists for arbitrary temperature,

but it disappears above ρc. Above the critical temperature Tc there are either two or three solutions

depending on whether |ρ| > ρc or |ρ| < ρc respectively. The two solutions that exist only above

Tc are both dynamically stable and the one with larger radius is thermodynamically preferred. At

the critical temperature Tc, therefore, there is a phase transition from a dynamically stable black

hole with negative scalar vev above Tc, to a dynamically unstable solution with positive scalar vev.

At non-zero charge density the Helmholtz free energy jumps at Tc and so this is a zeroth order

transition. At zero charge density the free energy is continuous across Tc, as is its first derivative,

and so the phase transition becomes second order at ρ = 0.

for the rescaled temperature τ = 4π`2T . At generic values of the parameters these again

correspond to two quadratic equations for r0. Eliminating the quadratic term in r0 by a

suitable linear combination of these expressions, we obtain the general expression for the

horizon radius

r0 =
9`2q2

m + `2p2vm(vm + τ)

2vm(3`2p2 + (2vm − τ)(vm + τ))
. (6.23)

Inserting this back in either (6.21) or (6.22) gives the characteristic curve

(`2p4−8q2
m)v4

m+(2`4p6−`2p4τ2−18`2p2q2
m+6q2

mτ
2)v2

m−2q2
mτ

3vm−27`2q4
m = 0. (6.24)

Notice that although the expression for the horizon (6.23) is different from the correspond-

ing expression for the electric solutions in (6.15), the characteristic curves are identical

under the map qe → qm, ve → −vm. It follows that the solutions for the scalar vev are

identical to those for the electric solutions, except for an overall sign change.
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Figure 8. Plot of the perturbative solutions (6.25) for B = 0.003Bc, together with the corresponding

energy ε and Helmholtz free energy f densities.

In particular, for small qm the perturbative solutions take the form

Red: vm = −
√
τ2 − τ2

c +O(q2
m), r0 =

1

2

(
τ +

√
τ2 − τ2

c

)
+O(q2

m), τ > τc,

(6.25a)

Blue: vm =
−q2

m`
2

r0(2r2
0 − p2`2)

+O(q4
m), r0 =

1

6

(
τ +

√
τ2 + 3τ2

c

)
+O(q2

m), τ > τc,

(6.25b)

Orange: vm =

{
−q2

m`
2

r0(2r2
0−p2`2)

+O(q4
m),√

τ2 − τ2
c +O(q2

m),
r0 =


1
6

(
τ +

√
τ2 + 3τ2

c

)
+O(q2

m),

1
2

(
τ −

√
τ2 − τ2

c

)
+O(q2

m),

τ < τc,

τ > τc,

(6.25c)

where again τc = 4π`2Tc =
√

2p`. As for the electric solutions, perturbation theory breaks

down near τc, as can be seen from the plots in figure 8. Comparing with the corresponding

plots for the electric solutions in figure 1 we see that at small charge densities the electric

and magnetic solutions look identical, except that the orange and red branches of the

solution are switched above the critical temperature. At higher charge densities the corners

are again smoothened out as is shown in figures 9, 10 and 11.

As for the electric solutions, the orange branch exists for all temperatures but disap-

pears above the critical magnetic field

|B| < Bc =
Π2

2
√

2
=

p2

2
√

2`2
. (6.26)
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Figure 9. Plot of the solutions of (6.24) for B = 0.314Bc, together with the corresponding energy

ε and Helmholtz free energy f densities.
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Figure 10. Plot of the solutions of (6.24) for B = 0.786Bc, together with the corresponding energy

ε and Helmholtz free energy f densities.
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Figure 11. Plot of the solutions of (6.24) for B = 1.1Bc, together with the corresponding energy

ε and Helmholtz free energy f densities.

Above the critical temperature again there are two additional branches for any value of the

magnetic field, while above the critical magnetic field and below the critical temperature

there are no solutions. The number of solutions as a function of the temperature and the

magnetic charge density matches the number of electric solutions as a function of of the

temperature and the electric charge density depicted in figure 6. Moreover, the dynamic

and thermodynamic stability properties of the three branches of solutions are identical to

those of the electric solutions and hence the phase diagram in figure 7 applies equally well

to the magnetic solutions upon replacing the charge density ρ with the magnetic field B.

As can be seen from the plots of the solutions, the only difference between the electric

and magnetic ones is that the value of the scalar vev is opposite, while above the critical

temperature the red branch of the electric solutions has the smallest radius and the orange

has the largest, while the reverse holds for the magnetic solutions.

7 Discussion

In this paper we have explored the holographic dictionary and the thermodynamics of AdS

black branes with axion charge and secondary scalar hair. We have focused on a number

of concrete exact solutions, but our holographic and thermodynamics analysis is applicable

more generally, including, in particular, AdS black holes with non-planar horizons.
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Three of the general conclusions our analysis allows us to draw are the following:

• Axion fields with a linear profile in the boundary coordinates, such as those discussed

in the context of momentum relaxation [15], anisotropic plasmas [17] or τ -lattices [19],

should be understood as 0-forms carrying magnetic charge. In particular, such axions

correspond to primary hair and their holographic description includes global Ward

identities, which are not present for standard scalar operators.

• Mixed and Neumann boundary conditions on running scalar hair modify the ex-

pressions for the asymptotic conserved charges and free energy, but do not lead to

independent charges associated with the scalars themselves. Hence, such scalars

correspond to secondary hair. Correctly taking into account the scalar boundary

conditions one recovers the standard first law and other thermodynamic relations,

despite claims to the contrary in part of the recent literature.

• The local dynamic stability of hairy black branes with respect to scalar perturbations

is equivalent to the positivity of the energy density. This can be demonstrated by

computing the holographic off-shell quantum effective potential for the dual scalar

operator, as is described in appendix B. However, this result provides a general

stability criterion based only on the energy density, without the need to compute the

full effective potential.

A number of open questions and future directions remain. Firstly, we have seen that

the phase structure of Theory I remains partially understood due to the fact that the

known hairy solutions must satisfy the constraint (4.4), which fixes the temperature and

the entropy as functions of the charge densities. This property resembles extremal solutions,

yet the black branes we discuss have finite temperature. This leads us to believe that there

is a more general family of hairy solutions that allows one to relax the constraint (4.4). It

would be interesting to find this wider class of solutions analytically or numerically.

Another potentially interesting class of exact solutions to seek is dyonic solutions of

Theory II. However, it seems likely that such solutions can only exist for the special case

ξ = 1, since only in that case the scalar boundary condition (5.49) and (5.61) coincide.

Moreover, since the relative size of the radii of the orange and red branches of the solutions

are opposite for the electric and magnetic solutions, one expects that only the blue branch

of black hole solutions will exist for a dyonic black brane of Theory II above the critical

temperature. Below the critical temperature, however, the orange solutions should continue

to exist even for a dyonic black brane. For p = 0 dyonic solutions of Theory II have been

found in [60]. It would be interesting to generalize these solutions to non-zero axion charge.

Finally, in the present paper we have focused only on properties of the background

solutions, without discussing fluctuations around them. It would be very interesting, for

example, to compute the thermoelectric and Hall conductivities for these black branes. We

hope to address some of these questions in the near future.
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A Asymptotic expansions and boundary counterterms

In this appendix we derive the Fefferman-Graham expansions for asymptotically AdS solu-

tions of theory (2.1), and derive the relevant boundary counterterms in the case d = 3 and

∆− = 1, following [40–43] (see also the review [44]). These counterterms are a special case of

those obtained using a radial Hamiltonian approach in [38, 39]. For a recent review see [61].

Fefferman-Graham gauge. To construct the general asymptotic expansions in AdSd+1,

we gauge-fix the bulk metric to be of the form

ds2 =
`2

z2

(
dz2 + gij(x, z)dxidxj

)
, (A.1)

where gij(x, z) is a d-dimensional metric. We denote derivatives with respect to the

Fefferman-Graham radial coordinate z with a prime. Latin indices i, j, . . . , are reserved

for the d-dimensional spacetime coordinates, which are raised/lowered with the metric

gij .
15 Moreover, Di stands for the covariant derivative with respect to the metric gij (or

equivalently the induced metric γij), and we denote the corresponding Laplace operator by

�g ≡ gijDiDj (and �γ = γijDiDj for the covariant Laplacian). Similarly, for the Maxwell

field we choose the radial gauge Az = 0, so that

Fzi = A′i, Fij = 2∂[iAj], (A.2)

and for later convenience we introduce the shorthand notation

A′2 ≡ gijA′iA′j , F̂ 2 ≡ gijgklFikFjl. (A.3)

15This preserves diffeomorphism covariance on the boundary but breaks bulk covariance. To preserve the

latter one should work instead with the induced metric γij = `2gij/z
2.
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Asymptotic expansions. The Fefferman-Graham expansions take the form,

gij(x, z) = g(0)ij + zg(1)ij + z2g(2)ij + · · · , (A.4a)

Ai(x, z) = A
(0)
i + zA

(1)
i + z2A

(2)
i + · · · , (A.4b)

ψI(x, z) = ψ
(0)
I + zψ

(1)
I + z2ψ

(2)
I + · · · , (A.4c)

φ(x, z) = z∆−ϕ(x, z) = z∆−(ϕ(0) + zϕ(1) + z2ϕ(2) + · · · ), (A.4d)

where all coefficients are yet undetermined functions of the transverse coordinates xi. It

should be emphasized that these are not the most general asymptotic expansions for the

fields in the action (2.1), but they suffice for the purposes of this article. In particular, we

are not covering cases where logarithmic terms appear in the Fefferman-Graham expansions

(e.g. when d is even or when ∆± = d/2). Moreover, the fact that only integer powers of

z appear in the expansions (A.4) is a consequence of our assumption that ∆± are non

negative integers. All solutions we study in this article have d = 3 and ∆− = 1 and so both

assumptions are justified. However, our analysis in this appendix is slightly more general

and applies to any boundary dimension of the form d = 2n+ 1, with n = 1, 2, . . ., and for

∆− < d/2, d/2 < ∆+ ≤ d. Note that imposing in addition the unitarity bound for ∆−,

which is equivalent to the condition that the scalar mass lies in the window (2.8), would

uniquely determine ∆− = n and ∆+ = n+ 1. However, we need not impose the unitarity

bound on ∆− in general.

Equations of motion. Given the gauge-fixed form (A.1) of the bulk metric, the field

equations following from the action (2.1) can be decomposed into radial and transverse

directions. In particular, we obtain the following set of equations.

Einstein equations.

− 1

2
Tr (g−1g′′) +

1

4
Tr (g−1g′g−1g′) +

1

2z
Tr (g−1g′) =

1

2
ψ′Iψ

′
I +

1

2

(
φ′2 +

2`2

(d− 1)z2
(V (φ)− 2Λ)

)
− z2

4(d− 1)`2

(
F̂ 2 − 2(d− 2)A′2

)
,

(A.5a)

1

2
gjk
(
Djg

′
ki −Dig

′
jk

)
=

1

2
ψ′I∂iψI +

1

2
φ′∂iφ+

z2

2`2
Z(φ)gjkFijA

′
k, (A.5b)

Rij [g]− 1

2
g′′ij +

1

2z

(
(d− 1)g′ij + Tr (g−1g′) gij

)
− 1

4
Tr (g−1g′) g′ij +

1

2
(g′g−1g′)ij

=
1

2
∂iψI∂jψI +

1

2

(
∂iφ∂jφ+

2`2

(d− 1)z2
(V (φ)− 2Λ)gij

)
+

z2

2`2
Z(φ)

(
gklFikFjl +A′iA

′
j −

1

2(d− 1)
(F̂ 2 + 2A′2)gij

)
. (A.5c)

Scalar equations.

ψ′′I −
d− 1

z
ψ′I + ∂z(log

√
−g)ψ′I +�gψI = 0, (A.6a)

φ′′ − d− 1

z
φ′ + ∂z(log

√
−g)φ′ +�gφ−

`2

z2
V ′(φ) =

z2

4`2
Z ′(φ)

(
F̂ 2 + 2A′2

)
. (A.6b)
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Maxwell equations.

Di
(
Z(φ)A′i

)
= 0, (A.7a)

Dj(Z(φ)Fji)+∂z
(
Z(φ)A′i

)
−Z(φ)

(
d−3

z
A′i−

1

2
Tr (g−1g′)A′i + g′ijg

jkA′k

)
= 0. (A.7b)

Recursive solution of the field equations. These equations can be solved iteratively

up to the desired order by inserting the formal expansions (A.4). Requiring that the

equations of motion admit an AdS solution with φ = 0 implies that the linear term V1 in

the Taylor expansion of the potential V (φ) vanishes. We therefore need to set V1 = 0 from

the outset in order to obtain the correct values for the coefficients of the expansions (A.4).

Einstein equations. Multiplying equation (A.5a) by z and taking the z → 0 limit we obtain

Tr (g−1
(0)g(1)) = 0. (A.8)

Moreover, to keep the limit z → 0 of the tensor equation (A.5c) multiplied by 2z finite, we

have to impose limz→0 V (φ) = V0 = 2Λ. This leads to

(d− 1)g(1)ij + Tr (g−1
(0)g(1))g(0)ij = 0, (A.9)

which, in combination with (A.8), implies

g(1)ij = 0. (A.10)

Next, taking the derivative of equation (A.5a) with respect to z and evaluating the limit

z → 0, we find that the metric dependence cancels out and the equation requires that16

ψ
(1)
I = 0, (A.11)

as well as

V2ϕ
2
(1) = 0 for ∆− = 0, (A.12a)(

1 +
`2V2

d− 1

)
ϕ2

(0) = 0 for ∆− = 1. (A.12b)

Hence, for ∆− = 1, to keep the dialton source unconstrained we need

V2 = −d− 1

`2
, (A.13)

in agreement with (2.7) for d = 3. Moreover, when ∆− = 0, or equivalently ∆+ = d, the

scalar is massless (i.e. V2 = 0 as we confirm below) and so the first condition is automat-

ically satisfied.

Taking the derivative of equation (A.5c) with respect to z gives in the limit z → 0

(d− 2)g(2)ij = −
(
R

(0)
ij −

1

2(d− 1)
R(0)g(0)ij

)
− d− 2

4(d− 1)
δ∆−,1ϕ

2
(0)g(0)ij

+
1

2

(
∂iψ

(0)
I ∂jψ

(0)
I −

1

2(d− 1)
gkl(0)∂kψ

(0)
I ∂lψ

(0)
I g(0)ij

)
, (A.14)

16The vanishing of ψ
(1)
I can alternatively be obtained from the equation of motion �ψI = 0.
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where δk,l is the Kronecker delta.17 Similarly, taking the derivative of equation (A.5b) with

respect to z and setting z = 0 we find the divergence condition

gjk(0)

(
D(0)jg(2)ki −D(0)ig(2)jk

)
= ψ

(2)
I ∂iψ

(0)
I +

1

2
ϕ(0)∂iϕ(0)δ∆−,1

+

(
ϕ(2)∂iϕ(0) +

1

2
ϕ(1)∂iϕ(1)

)
δ∆−,0, (A.15)

where D(0)i denotes the covariant derivative with respect to the metric g(0)ij .

For d = 3, which is the case we are mostly interested in here, the recursive procedure

for equation (A.5c) breaks down at the next order and it does not determine g(3)ij . When

d = 3, g(3)ij is related to the stress tensor of the dual theory (see eq. (3.6) or (3.16)), and so

it can only be determined by infrared data. However, the trace of g(3) can be determined

by multiplying the scalar equation by z, taking two derivatives with respect to z, and the

setting z = 0. The result is

− 3 Tr (g−1
(0)g(3)) =

(
2ϕ(0)ϕ(1) +

`2V3

3(d− 1)
ϕ3

(0)

)
δ∆−,1 + 4ϕ(1)ϕ(2)δ∆−,0. (A.16)

Moreover, evaluating the second derivative of equation (A.5b) with respect to z at z = 0

we obtain the divergence condition

gjk(0)

(
D(0)jg(3)ki−D(0)ig(3)jk

)
= ψ

(3)
I ∂iψ

(0)
I +

Z0

3`2
gjk(0)F

(0)
ij A

(1)
k +

1

3

(
2ϕ(1)∂iϕ(0)+ϕ(0)∂iϕ(1)

)
δ∆−,1

+

(
ϕ(3)∂iϕ(0) +

2

3
ϕ(2)∂iϕ(1) +

1

3
ϕ(1)∂iϕ(2)

)
δ∆−,0. (A.17)

For ∆− = 1 and using (A.16) for the trace of g(3) this simplifies to

Dk
(0)g(3)ki = ψ

(3)
I ∂iψ

(0)
I +

Z0

3`2
gjk(0)F

(0)
ij A

(1)
k −

1

3
ϕ(0)∂iϕ(1) −

`2V3

3(d− 1)
ϕ2

(0)∂iϕ(0). (A.18)

For d = 3 this condition corresponds to the diffeomorphism Ward identity in (3.8) or (3.18).

Axion equations. Multiplying equation (A.6a) by z and setting z = 0 requires ψ
(1)
I = 0,

in agreement with (A.11). Taking a derivative with respect to z leads to the condition

ψ
(2)
I =

1

2(d− 2)
�(0)ψ

(0)
I , (A.19)

while at the next order we find

(d− 3)ψ
(3)
I = 0. (A.20)

17As we mentioned above, the form (A.4) of the asymptotic expansions is not the most general possible.

A concrete demonstration of this is provided by the expression (A.14) when applied to the case d = 2. The

first line on the right hand side automatically vanishes for d = 2, but the second line seems to impose a

constraint on the sources for the axions. However, this conclusion is incorrect. It simply indicates that in the

case d = 2 there are additional logarithmic terms in the asymptotic expansions, which we have not included.

We will encounter additional instances of this phenomenon below. For d > 2, however, (A.14) is correct.
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Hence, for d 6= 3 we have ψ
(3)
I = 0, but when d = 3 ψ

(3)
I is left unconstrained and

it corresponds to the one-point of the scalar operator dual to the axions (see eq. (3.6)

or (3.16)). Going one order higher gives

4(d− 4)ψ
(4)
I =

1

2(d− 2)
�2

(0)ψ
(0)
I +

1

d− 2
Tr (g−1

(0)g(2))�(0)ψ
(0)
I +�(2)ψ

(0)
I , (A.21)

where

�(2)ψ
(0)
I =

1

2
gij(0)∂i Tr (g−1

(0)g(2))∂jψ
(0)
I −

1√
−g(0)

∂i

(√
−g(0)(g

−1
(0)g(2)g

−1
(0))

ij∂jψ
(0)
I

)
. (A.22)

This expression for ψ
(4)
I provides another instance of the phenomenon pointed out in foot-

note 17. Namely, this equation is not correct for the case d = 4, since additional logarithmic

terms in the asymptotic expansions must be included in that case.

Maxwell equations. Multiplying equation (A.7b) by z and taking the limit z → 0 gives

(d− 3)Z0A
(1)
i = 0. (A.23)

Hence, assuming Z0 > 0, we have A
(1)
i = 0 unless d = 3. When d = 3 A

(1)
i corresponds

to the one-point function of the global U(1) current in the dual theory (see eq. (3.6)

or (3.16)) and so it is left undetermined by the asymptotic analysis. The z → 0 limit of

equation (A.7a) gives the divergence constraint

Z0D
i
(0)A

(1)
i = −Z1g

ij
(0)∂iϕ(0)A

(1)
j δ∆−,0, (A.24)

which in turn leads to the U(1) Ward identity in (3.8) or (3.18).

As long as d ≤ 3 we need not go to higher order in the expansion for the Maxwell field.

However, for d > 3 at the next order (A.7b) yields

2(d− 4)Z0A
(2)
i = Z0D

j
(0)F

(0)
ji + Z1

(
Dj

(0)ϕ(0)F
(0)
ji − (d− 4)ϕ(1)A

(1)
i

)
δ∆−,0

− (d− 4)Z1ϕ(0)A
(1)
i δ∆−,1. (A.25)

This determines A
(2)
i in terms of the lower order coefficients, except when d = 4, in which

case A
(2)
i corresponds to the undetermined current one-point function. Again, this equation

cannot be applied to the case d = 4, since it requires additional logarithmic terms in the

asymptotic expansions (see e.g. eqs. (6.69) and (6.70) in [43]).

Dialton equations. Multiplying the dialton equation (A.6b) by z2−∆− and taking the limit

z → 0 we obtain (
(d−∆+)∆+ + `2V2

)
ϕ(0) = 0. (A.26)

To keep the mode ϕ(0) unconstrained, therefore, we need to set V2 = −(d−∆+)∆+/`
2, in

agreement with the result (A.13) from the gravitational equations in the case ∆− = 1, or

equivalently ∆+ = d− 1. We recall from (2.7) that V2 = m2
φ corresponds to the AdS mass

of the scalar φ and so this result for V2 is the standard relation between the AdS mass of

a scalar field and the scaling dimension of the dual operator.
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Evaluating the derivative of the product of equation (A.6b) and z2−∆− at z = 0 gives

the next order equation

(d− 2∆+ + 1)ϕ(1) =
1

2
`2V3ϕ

2
(0)δ∆−,1. (A.27)

If ∆− = 1, then (d− 3)ϕ(1) = −1
2`

2V3ϕ
2
(0), and hence

ϕ(1) = − 1

2(d− 3)
`2V3ϕ

2
(0), (d 6= 3, ∆+ = d− 1). (A.28)

Applied to d = 3 (again for ∆− = 1), this equation leads to the erroneous conclusion that

V3 = 0. However, as we have seen by now a number of times, this simply reflects the

fact that the asymptotic expansions we have assumed do not in general apply to this case,

unless extra logarithmic terms are included (see e.g. eqs. (2.18) and (2.19) in [62]). However,

both the potential for Theory I given in (2.4) and the potential for Theory II in (2.12) have

V3 = 0, and so no logarithmic terms arise in the asymptotic expansions for the specific

models we consider. This equation is then trivially satisfied, leaving ϕ(1) undetermined. As

we discuss in the main body of the paper, for Dirichlet boundary conditions ϕ(1) corresponds

to the vev of the dual scalar operator, while for Neumann and mixed boundary conditions

it is related to the arbitrary source of the dual operator.

Taking a further derivative with respect to z and setting z = 0 gives the next order

equation

2(∆− −∆+ + 2)ϕ(2) = −�(0)ϕ(0) −∆−Tr (g−1
(0)g(2))ϕ(0) +

1

2
`2V3ϕ

2
(0)δ∆−,2

+

(
`2V3ϕ(0)ϕ(1) +

1

6
`2V4ϕ

3
(0)

)
δ∆−,1. (A.29)

This equation determines ϕ(2) as long as ∆− −∆+ + 2 6= 0,

ϕ(2) =



1

2(d− 2)
�(0)ϕ(0), (∆− = 0)

1

2(d− 4)

(
�(0)ϕ(0) + Tr (g−1

(0)g(2))ϕ(0) − `2V3ϕ(0)ϕ(1) −
1

6
`2V4ϕ

3
(0)

)
, (∆− = 1)

1

2(d− 6)

(
�(0)ϕ(0) + 2 Tr (g−1

(0)g(2))ϕ(0) −
1

2
`2V3ϕ

2
(0)

)
, (∆− = 2)

− 1

2(∆− −∆+ + 2)

(
�(0)ϕ(0) + ∆−Tr (g−1

(0)g(2))ϕ(0)

)
, (∆− 6= 1, 2)

(A.30)

Using the previous results, the ∆− = 1 case can be further simplified to

ϕ(2) =


−1

2
�(0)ϕ(0) −

1

2
Tr (g−1

(0)g(2))ϕ(0) +
1

12
`2V4ϕ

3
(0), (d = 3)

1

2(d− 4)

(
�(0)ϕ(0) + Tr (g−1

(0)g(2))ϕ(0) +

(
`4V 2

3

2(d− 3)
− 1

6
`2V4

)
ϕ3

(0)

)
, (d 6= 3)

(A.31)

We stress again that these expressions for ϕ(2) only apply to odd d.
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Boundary counterterms. Finally, we can use the Fefferman-Graham expansions in

order to determine the covariant local boundary counterterms. We will do this explicitly

only for the case d = 3, ∆− = 1. Inserting the asymptotic expansions (A.4) in the

regularized action (3.1) for the generic model (2.1) and performing the integration over the

radial coordinate we obtain

Sreg =

∫
z=ε

d3x
√
−g(0)

(4`2

ε3
− `2

ε

(
ϕ2

(0) + 2 Tr (g−1
(0)g(2))

)
+O(ε0)

)
. (A.32)

To determine the boundary counterterms we need to invert the Fefferman-Graham expan-

sions (A.4) in order to express the divergent part (A.32) of the regularized action in terms

of the covariant induced fields on the radial cutoff γij(ε, x
i), φ(ε, xi), ψI(ε, x

i) and Ai(ε, x
j).

A bit of algebra gives

g(0)ij =
ε2

`2

[
γij + `2

(
Rij [γ]− 1

4
R[γ]γij

)
+

1

8
φ2γij

−`
2

2

(
∂iψI∂jψI −

1

4
γkl∂kψI∂lψIγij

)]
+O(ε3),

g(2)ij = −
(
Rij [γ]− 1

4
R[γ]γij

)
− φ2

8`2
γij +

1

2

(
∂iψI∂jψI −

1

4
γkl∂kψI∂lψIγij

)
+O(ε2),

ψ
(0)
I = ψI −

1

2
`2�γψI +O(ε3), ϕ(0) =

1

ε
φ+O(ε), A

(0)
i = Ai +O(ε),√

−g(0) =
ε3

`3
√
−γ
[
1 +

1

8
ε2
(
R(0) −

1

2
gij(0)∂iψ

(0)
I ∂jψ

(0)
I +

3

2
ϕ2

(0)

)
+O(ε3)

]
. (A.33)

Substituting these expressions in (A.32) we finally get

Sreg =

∫
z=ε

d3x
√
−γ
(

4

`
+ `R[γ] +

1

2`
φ2 − `

2
γij∂iψI∂jψI

)
+ finite, (A.34)

leading to the counterterms (3.4).

B Quantum effective potential

The aim of this appendix is to provide some details of the calculation of the quantum

effective potential V QFT(σ) for the vev σ = 〈O∆−〉 = ϕ(0) of the scalar operator O∆− , as

defined in (6.1). Although the procedure we describe allows one in principle to compute

the effective potential exactly, in practice we are only able to compute it perturbatively

in the vicinity of a given vacuum. However, this suffices for the purpose of examining the

stability of the black hole solutions we discuss in the main body of the article.

Non relativistic flows. The main ingredient in the calculation of the quantum effective

potential is writing the black brane solutions in terms of first order flow equations, governed

by a fake superpotential [54]. For solutions of the generic action (2.1) that are spatially

homogeneous and isotropic, but break Lorentz invariance, such first order flow equations

were obtained in [39]. These equations can be straightforwardly generalized to include

non-zero axionic charge.
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In order to obtain the first order flow equations it is convenient to parameterize the

general background we are interested in as18

ds2 = du2 + e2a(u)
(
−b(u)dt2 + `2(dx2 + dy2)

)
,

A = c(u)dt+
qm
2

(xdy − ydx),

φ = φ(u), ψI = pxI , (B.1)

where qm is the constant magnetic charge density, p is the isotropic axion charge density,

and we have introduced the canonical radial coordinate u. The field strength of the Maxwell

field on such backgrounds is given by

F = dA = ċ du ∧ dt+ qmdx ∧ dy, (B.2)

where a dot ˙ indicates differentiation with respect to u. It may be interesting to note that

the ansatz (B.1) can describe not only planar black hole solutions such as the ones we are

studying in this article, but also non-relativistic zero temperature flows [39].

Generalizing the result of [39] to non-zero p, it can be shown that any solution of the

first order flow equations

ȧ = −1

2
W,

ḃ

b
= −∂aW, φ̇ = 2∂φW, ψ̇I = 0, ċ =

qe
`2
Z−1e−ab1/2, (B.3)

where qe is the electric charge density, automatically solves the second order field equations

provided, the superpotential W (a, φ) satisfies the partial differential equation

2(∂φW )2 − 1

2
(3 + ∂a)W

2 = V (φ) +
p2

`2
e−2a +

1

2`4
(
q2
mZ(φ) + q2

eZ
−1(φ)

)
e−4a. (B.4)

Notice that setting all the charges to zero and taking the superpotential to be a function

of φ only leads to the standard flow equations for Poincaré domain wall solutions.

The key reason why this description of the solutions in terms of a fake superpotential

is useful for computing the quantum effective potential is that it allows us to determine the

renormalized on-shell action as a function of an arbitrary scalar vev ϕ(0), since the quantum

effective potential can be directly related to the superpotential. Extremizing the quantum

effective potential with respect to the vev σ = ϕ(0) then determines the extremum σ∗,

corresponding to a smooth solution of the second order equations. In contrast, evaluating

the on-shell action using the solution of the second order field equations yields only the value

corresponding to the extremum of the quantum effective potential at a specific ϕ(0) = σ∗.

The regularized on-shell action is related to the superpotential by [39]

Sreg = −2

∫
d3x
(√
−γ W (a, φ)− qe

2
c− `2V0/2

)
, (B.5)

18As in the main body of this article we take x, y to be dimensionless, which leads to the extra factor of

`2 in the spatial part of the metric.
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where V0 is a constant that does not depend on ϕ(0). This constant can be computed, if de-

sired, by evaluating the on-shell action of the bald solution of the theory. From the expres-

sion (6.4) for the effective action and the counterterms (3.4) we obtain the general formula

for the quantum effective potential on Minkowski space (with metric g(0) = diag (−1, `2, `2))

VQFT(σ) = V0 + lim
u→∞

[
−e3a

(
2W (a, φ) +

4

`
+

1

2`
φ2 − p2

`
e−2a

)
+
qe
`2
c

]
+ F(σ). (B.6)

Solving directly the partial differential equation (B.4) that determines the superpotential

is not an easy task, but it is also not necessary for our purposes, since we do not need

to determine new solutions of the field equations, but rather to examine the stability of

known solutions. This can be achieved by computing the effective potential in the vicinity

of the extrema corresponding to the known background solutions.

Solving the superpotential equation around a known solution. Any solution of

the field equations of the form (B.1) provides a curve Y (a, φ) = 0 on the configuration space

(a, φ). In the vicinity of the solution corresponding to such a curve, the superpotential

W (a, φ) can be expressed in the form of a Taylor expansion in Y as

W (a, φ) =

∞∑
n=0

Wn(X)Y n, (B.7)

for some suitable function X(a, φ). In order for Y = 0 to correspond to a solution of the field

equations, as required by the hypothesis, it must satisfy Ẏ = O(Y ), as a consequence of the

equations of motion, or equivalently of the flow equations (B.3). This leads to the condition

2∂φY
(
W ′0(X)∂φX +W1(X)∂φY

)
− 1

2
W0(X)∂aY = O(Y ). (B.8)

Depending on the form of Y (a, φ), this constraint restricts the form of X(a, φ), as well

as W1(X).

We are only going to discuss the effective potential around the hairy solutions of either

Theory I or II, and so we focus on hairy solutions in the rest of this appendix. Any hairy

solution can be described by a curve of the form

Y (a, φ) = e−2a − Yo(φ) = 0, (B.9)

for some non-trivial function Yo(φ). Setting X = φ and taking into account the transfor-

mation of the partial derivatives according to

∂a → (∂aY )∂Y = −2(Y + Yo)∂Y , ∂φ → ∂X + (∂φY )∂Y = ∂X − Y ′o∂Y , (B.10)

the constraint (B.8) and the first two orders in the expansion of (B.4) lead to the three

equations

2Y ′o(W ′0 − Y ′oW1) = W0Yo, (B.11a)

2(W ′0 − Y ′oW1)2 − 3

2
W 2

0 + 2YoW0W1 = V (φ) +
p2

`2
Yo +

1

2`4
(
q2
mZ + q2

eZ
−1
)
Y 2
o , (B.11b)

4W ′1(W ′0 − Y ′oW1)−W0W1 + 2YoW
2
1 =

p2

`2
+

1

`4
(
q2
mZ + q2

eZ
−1
)
Yo. (B.11c)
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Notice that the coefficient W2 has dropped out of the last of these equations due to the

first equation, which follows from the constraint (B.8). These three equations form a set

of coupled non-linear system that determine the functions W0(φ), W1(φ) and Yo(φ).

In order to solve these equations we write them in the form

W1 =
2W ′0Y

′
o −W0Yo
2Y ′2o

, (B.12a)

Yo
Y ′o

(W 2
0 )′− 1

2

(
Y 2
o

Y ′2o
+3

)
W 2

0 = V +
p2

`2
Yo+

1

2`4
(
q2
mZ+q2

eZ
−1
)
Y 2
o , (B.12b)

− Y
2
o

Y ′2o
(W 2

0 )′+
1

2

(
3
Yo
Y ′o

+
Y 3
o

Y ′3o
−
(
Y 2
o

Y ′2o

)′)
W 2

0 = −V ′− 1

2`4
(
q2
mZ
′+q2

e(Z
−1)′

)
Y 2
o . (B.12c)

The last two equations comprise an algebraic linear system for W 2
0 and (W 2

0 )′ which de-

termines

W 2
0 =

−1

KK′

[
K
(
V +

p2

`2
Yo+

1

2`4
(
q2
mZ+q2

eZ
−1
)
Y 2
o

)
−V ′− 1

2`4
(
q2
mZ
′+q2

e(Z
−1)′

)
Y 2
o

]
,

(B.13a)

(W 2
0 )′ =

K2 + 3− 2K′

2K
W 2

0 +
1

K2

(
V ′ +

1

2`4
(
q2
mZ
′ + q2

e(Z
−1)′

)
Y 2
o

)
, (B.13b)

where

K ≡ Yo/Y ′o . (B.14)

Taking the derivative of the first equation in (B.13) with respect to φ and equating it

with the second leads to a decoupled third order non-linear equation for Yo. However, in the

present context we do not need to solve this equation for Yo(φ) since we can simply read it

off using the known background solution of the field equations. By construction, the Yo(φ)

read off the background solution automatically solves the non-linear equation for Yo(φ)

obtained from (B.13). Given the function Yo(φ), the equations (B.12) and (B.13) allow

us to obtain W0(φ) and W1(φ) algebraically in terms of Yo and its derivatives. Moreover,

the flow equations (B.3) imply that the background solution from which we read off Yo(φ)

satisfies the first order equations

ȧ = −1

2
W0,

ḃ

b
= 2YoW1, φ̇ = W0τ, (B.15)

or equivalently

e−2a = Yo(φ), b = W 2
0 exp

(
−
∫ φ

dφ̄ K(φ̄)
)
,

∫ φ dφ̄

W0(φ̄)K(φ̄)
= u. (B.16)

This information is sufficient to obtain the effective potential to quadratic order in σ − σ∗
around the extremum σ = σ∗, corresponding to the specific background from which Yo(φ)

is read off.
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Hairy solution of Theory I. From (4.3) we easily see that the hairy solution of Theory I

corresponds to the curve e−2a = Yo(φ), where

Yo(φ) =
`2

v2

 sinh
(

φ

2
√

3

)
1−
√
α tanh

(
φ

2
√

3

)
2

, (B.17)

and recall that the parameter v is related to all the charge densities through (4.4). Equa-

tions (B.12) and (B.13) then determine W0(φ) and W1(φ) algebraically, but we will not

write the explicit expressions here. However, inserting the asymptotic form of W0(φ) and

W1(φ) and Yo(φ) in the constraint (B.8) determines that to leading order asymptotically,

i.e. as φ→ 0,

Ẏ ∼ −2

`
Y, (B.18)

and hence Y ∼ e−2u/`. Since also Yo(φ) ∼ φ2 ∼ e−2u/`, it follows that Y is sourced by the

deviation of the scalar VEV σ = ϕ(0) from its value at the extremum (cf. (5.36))

σ∗ =
2
√

3v

`2
, (B.19)

that is

Y = e−2A − Yo(φ) ∼ 1

`2

(
1

σ2
− 1

σ2
∗

)
φ2. (B.20)

Inserting these results in the general expression (B.6) for the effective potential and

using the boundary condition for the scalar specified in (3.19) and (5.33), we finally obtain

VQFT(σ) = V0 +
µqe
`2

+ lim
u→∞

e3u/`

[
−
(

2W0(φ)+2W1(φ)Y +O(Y 2)

+
4

`
+

1

2`
φ2− p

2

`
(Yo(φ)+Y )

)
+

√
α

6`
√

3
φ3

]
= V0 +

µqe
`2

+
ε

2`2σ3
∗

(
σ3 − 3σ2

∗σ
)

= V0 +
µqe
`2

+
ε

2`2σ3
∗

(
−2σ3

∗ + 3σ∗(σ − σ∗)2 + (σ − σ∗)3
)
, (B.21)

where ε is the energy density given in (5.37). It follows that σ = σ∗ is a stable local

extremum of the effective potential provided ε > 0, i.e. v > 0.

Electric solutions of Theory II. For the magnetically charged solutions of Theory II

given in (4.8) the function Yo(φ) takes the form

Yo(φ) =
`2

v2
e

(
e
− 1

2

√
2−ξ
ξ

φ − e
1
2

√
ξ

2−ξ φ
)2

. (B.22)

Moreover, the scalar vev at the extremum takes the value (see (5.52))

σ∗ = −
√
ξ(2− ξ) ve/`2. (B.23)
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Using these results, as well as the boundary condition for the scalar specified in (3.19)

and (5.61), we find that the effective potential (B.6) in this case is

VQFT(σ) = V0 +
µqe
`2

+ lim
u→∞

e
3u
`

[
−
(

2W0(φ) + 2W1(φ)Y +O(Y 2)

+
4

`
+

1

2`
φ2 − p2

`
(Yo(φ) + Y )

)
− (1− ξ)

6`
√
ξ(2− ξ)

φ3

]
= V0 +

µqe
`2

+
ε

2`2σ3
∗

(
σ3 − 3σ2

∗σ
)

= V0 +
µqe
`2

+
ε

2`2σ3
∗

(
−2σ3

∗ + 3σ∗(σ − σ∗)2 + (σ − σ∗)3
)
, (B.24)

where now ε is the energy given in (5.53). Hence, again these solutions are stable provided

the energy density is positive definite.

Magnetic solutions of Theory II. For the magnetically charged solutions of Theory

II given in (4.8) the function Yo(φ) takes the form

Yo(φ) =
`2

v2
m

(
e

1
2

√
2−ξ
ξ

φ − e−
1
2

√
ξ

2−ξ φ
)2

. (B.25)

Moreover, the scalar vev at the extremum takes the value (see eq. (5.64))

σ∗ = −
√
ξ(2− ξ) vm/`2. (B.26)

Using these results, as well as the boundary condition for the scalar specified in (3.19)

and (5.49), we find that the effective potential (B.6) in this case is

VQFT(σ) = V0 + lim
u→∞

e
3u
`

[
−
(

2W0(φ) + 2W1(φ)Y +O(Y 2) +
4

`
+

1

2`
φ2 − p2

`
(Yo(φ)+Y )

)

+
(1− ξ)

6`
√
ξ(2− ξ)

φ3

]
= V0 +

ε

2`2σ3
∗

(
σ3 − 3σ2

∗σ
)

= V0 +
ε

2`2σ3
∗

(
−2σ3

∗ + 3σ∗(σ − σ∗)2 + (σ − σ∗)3
)
, (B.27)

where the energy density ε is given in (5.65).
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[21] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014)

181 [arXiv:1401.5436] [INSPIRE].

[22] S.R. Coleman, J. Preskill and F. Wilczek, Quantum hair on black holes, Nucl. Phys. B 378

(1992) 175 [hep-th/9201059] [INSPIRE].

[23] C. Park, On black hole thermodynamics with a momentum relaxation, Class. Quant. Grav.

33 (2016) 245017 [arXiv:1606.07340] [INSPIRE].

[24] I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure

of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

[25] I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS

spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

[26] T. Hertog and G.T. Horowitz, Designer gravity and field theory effective potentials, Phys.

Rev. Lett. 94 (2005) 221301 [hep-th/0412169] [INSPIRE].

[27] V.P. Maslov, Zeroth-Order Phase Transitions, Mat. Zametki 76 (2004) 748.
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