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1 Introduction

One of the interesting questions regarding quantum information is how fast quantum cor-

relations can propagate in a physical system. In a groundbreaking study in 1972, Lieb

and Robinson [1] derived an upper bound for the speed of propagation of correlations in

an interacting lattice system and in recent years there has been growing interest in this

and related questions in connection with a number of new advances. The study of ultra-

cold atom systems has developed to the level where experiments on the time evolution of

quantum correlations are possible (see e.g. [2]), new techniques have been developed for

the theoretical study of time evolution of observables in perturbed quantum lattices (see

e.g. [3]),analytical results have been obtained for the time evolution of observables after

quenches in conformal field theory [4–6] and entanglement entropy has been given a geo-

metric interpretation [7–10] in the context of the holographic duality of strongly interacting

conformal field theory [11]. The present paper follows up on this last direction.

In the context of holographic duality, different ways of introducing quenches in a

conformal theory have been studied. One line of work focuses on constructing holographic

duals for quenches in strongly coupled theories [12–16], in the spirit of similar work in

weakly coupled quantum field theory involving a sudden change in the parameters of the

Hamiltonian [4–6, 17–20]. In another approach, the focus has instead been on perturbing

the state of the system by turning on homogeneous sources for a short period of time. By a

slight abuse of terminology, this process has also been called a “quench”, although perhaps

a “homogenous explosion” would be a closer term to describe the sudden change in the

state of the boundary theory. There are two good reasons to study this model. One of them

is that there is an elegant and tractable gravitational dual description of such a process in

terms of the gravitational collapse of a thin shell of null matter to a black hole, the AdS-

Vaidya geometry. The other good reason is that the time evolution of quantum correlations

manifested in the holographic entanglement entropy following such an explosion was found

to behave in the same manner as in the 1+1 dimensional conformal field theory work [4–

6] — in a relativistic case quantum correlations were found to propagate at the speed

of light [21–29]. The interesting lesson there is that even a strongly coupled conformal

theory with no quasiparticle excitations may behave as if the correlations were carried by

free-streaming particles. The model also allows for an easy extrapolation of the results

to higher dimensional field theory at strong coupling. In generic dimensions, it turns out

that the time evolution of holographic entanglement entropy has a more refined structure,

characterized by different scaling regimes [30, 31]: (I) a pre-local equilibrium power law

growth in time, (II) a post-local equilibration linear growth in time, (III) a saturation

regime. For entanglement surfaces of more general shape, one can also identify late-time

memory loss, meaning that near saturation the time-evolution becomes universal with no

memory on the detailed shape of the surface.

Many condensed matter and ultracold atom systems feature more complicated critical

behavior with anisotropic (Lifshitz) scaling [32], characterized by the dynamic critical ex-

ponent ζ > 1, or hyperscaling violation characterized by a non-zero hyperscaling violation

exponent θ [33–35]. Hyperscaling violation leads to an effective dimension dθ = d − θ. It
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was found that for a critical value dθ = 1 the entanglement entropy exhibits a logarithmic

violation from the usual area law [36], which is also generic for compressible states with

hidden Fermi surfaces [37–40].

By now there exist various holographic dual models for critical points involving Lif-

schitz scaling and hyperscaling violation [33–36, 41–57]. In the light of the rich scaling

structure in the time evolution of entanglement entropy, it is interesting to see how it

carries over to systems with Lifshitz scaling and hyperscaling violation. In [58] a Lifshitz

scaling generalization of the AdS-Vaidya geometry was constructed, and it was found that

time evolution of entanglement entropy still contains a linear regime, where entanglement

behaves as if it was carried by free streaming particles at finite velocity. This is non-trivial,

since in the non-relativistic case ζ > 1 there is no obvious characteristic scale like the speed

of light in relativistic theories. The authors of [30, 31], on the other hand, considered a

relativistic system with hyperscaling violation, and found that their previous analysis easily

carries over to that case, with the spatial dimension d replaced by the effective dimension

dθ. In this paper we extend the analysis to systems that exhibit both Lifshitz scaling and

hyperscaling violation. We do this by first constructing the extension of the Lifshitz-AdS-

Vaidya geometry to the hyperscaling violating case, and then analyzing the time evolution

of the entanglement entropy for various boundary regions. We compute numerically the

evolution of the holographic entanglement entropy for the strip and the sphere in back-

grounds with non-trivial ζ and θ. We then extract some analytic behavior in the thin

shell limit for the temporal regimes (I), (II) and (III), generalizing the results of [30, 31]

to the case of ζ 6= 1 and θ 6= 0. In an appendix, we also consider briefly quench geometries

where the critical exponents themselves are allowed to vary. This can be motivated from

a quasiparticle picture and one could, for instance, consider a system where the dispersion

relation is suddenly altered from ω ∼ k2 + · · · to ω ∼ k + · · · or vice versa, by rapidly

adjusting the chemical potential. We take some steps in this direction by considering holo-

graphic geometries where the dynamical critical exponent and the hyperscaling violation

parameter are allowed to vary with time and show that such solutions can be supported

by matter satisfying the null energy condition, at least in some simple cases. We leave a

more detailed study for future work.

This paper is organized as follows. Hyperscaling violating Lifshitz-AdS-Vaidya solu-

tions are introduced in section 2 and parameter regions allowed by the null energy condition

determined. In section 3 the holographic entanglement entropy for a strip and for a sphere

is analyzed in static backgrounds and Vaidya-type backgrounds are considered in section 4.

In section 5 scaling regions in the time evolution of the entanglement entropy are studied

for differently shaped surfaces. The details of some of the computations are presented

in appendices along with a brief description of holographic quench geometries where the

hyperscaling violation parameter and the dynamical critical exponent are allowed to vary

with time.

Note added. As we were preparing this manuscript, [59] appeared with significant over-

lap with some of our results. A preliminary check finds that where overlap exists, the

results are compatible.
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2 Backgrounds with Lifshitz and hyperscaling exponents

The starting point of our analysis is the following gravitational action [58]

S =
1

16πGN

∫ (
R − 1

2
(∂φ)2 − V (φ) − 1

4

NF∑
i=1

eλiφF 2
i

)√−g dd+2x , (2.1)

which describes the interaction between the metric gµν , NF gauge fields and a dilaton φ.

The simplest d+2 dimensional time independent background including the Lifshitz scaling

ζ and the hyperscaling violation exponent θ is given by [33–35]

ds2 = z−2dθ/d(−z2−2ζdt2 + dz2 + dx2) , (2.2)

where z > 0 is the holographic direction and the cartesian coordinates x parameterize Rd

(we denote a vectorial quantity through a bold symbol). Hereafter the metric (2.2) will be

referred as hvLif. In (2.2) we have introduced the convenient combination

dθ ≡ d − θ . (2.3)

When θ = 0 and ζ = 1, (2.2) reduces to AdSd+2 in Poincaré coordinates.

In the following, we will consider geometries that are asymptotic to the hyperscaling

violating Lifshitz (hvLif) spacetime (2.2). In particular, static black hole solutions with

Lifshitz scaling and hyperscaling violation have been studied in [35, 54, 55]. The black hole

metric is

ds2 = z−2dθ/d

(
−z2−2ζF (z)dt2 +

dz2

F (z)
+ dx2

)
, (2.4)

where the emblackening factor F (z), which contains the mass M of the black hole, is

given by

F (z) = 1 − Mzdθ+ζ . (2.5)

The position zh of the horizon is defined as F (zh) = 0 and the standard near horizon

analysis of (2.4) provides the temperature of the black hole T = z1−ζ
h |F ′(zh)|/(4π). In

order to have F (z) → 1 when z → 0, we need to require

dθ + ζ > 0 . (2.6)

The Einstein equations are Gµν = Tµν , where Gµν is the Einstein tensor and Tµν the

energy-momentum tensor of the matter fields, i.e. the dilaton and gauge fields in (2.1).

The Null Energy Condition (NEC) prescribes that TµνN
µNν > 0 for any null vector Nµ.

On shell, the NEC becomes GµνN
µNν > 0 and, through an astute choice of Nµ, one

finds [35]

dθ(ζ − 1 − θ/d) > 0 , (2.7)

(ζ − 1)(dθ + ζ) > 0 . (2.8)

In the critical case θ = d − 1, they reduce to ζ > 2 − 1/d. In figure 1 we show the region

identified by (2.7) and (2.8) in the (ζ, θ) plane.

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
1

Figure 1. The grey area is the region of the (ζ, θ) plane defined by (2.7) and (2.8), obtained

from the Null Energy Condition, and also (2.6). The panels show d = 2, 3, 4. The red dots denote

AdSd+2 and the horizontal dashed lines indicate the critical value θ = d − 1. The blue lines denote

the upper bound defined by the condition (5.5).

In order to construct an infalling shell solution, it is convenient to write the static

metric (2.4) in an Eddington-Finkelstein-like coordinate system, by introducing a new

time coordinate v through the relation

dv = dt − dz

z1−ζF (z)
, (2.9)

and rewriting (2.4) as

ds2 = z−2dθ/d(−z2(1−ζ)F (z)dv2 − 2z1−ζ dv dz + dx2) . (2.10)

The dynamical background that we are going to consider is of Vaidya type [60, 61] and it is

obtained by promoting the mass M in (2.10) to a time dependent function M(v), namely

ds2 = z−2dθ/d(−z2(1−ζ)F (v, z)dv2 − 2z1−ζ dv dz + dx2) , (2.11)

where

F (v, z) = 1 − M(v)zdθ+ζ . (2.12)

The metric (2.11) with the emblackening factor (2.12) is a solution of the equation of

motion Gµν = Tµν , where the energy-momentum tensor is given by the one of the static

case with M replaced by M(v), except for the component Tvv, which now contains the

following additional term

T̃vv =
dθ
2

zdθM ′(v) . (2.13)

Now consider the null vectors Nµ = (Nv, N z,Nx) given by

Nµ
I = (0, 1,0) , Nµ

II =

(
− 2zζ−1

F (v, z)
, 1,0

)
, Nµ

III =

(
± zζ−1√

F (v, z)
, 0,n1

)
, (2.14)
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where n1 is a d − 1 dimensional vector with unit norm. The NEC for the vectors (2.14)

leads to the following inequalities

dθ(ζ − 1 − θ/d) > 0 , (2.15)

dθ

[
(ζ − 1 − θ/d)F 2 − 2zζFv

]
> 0 , (2.16)

2(ζ − 1)(dθ + ζ)F 2 + [zFzz − (dθ + 3(ζ − 1))Fz]zF − zζdθFv > 0 , (2.17)

where the notation Fz ≡ ∂zF , Fv ≡ ∂vF and Fzz ≡ ∂2
zF has been adopted. When F (v, z) =

1 identically, (2.16) and (2.17) simplify to (2.7) and (2.8) respectively. Plugging 2.12

into (2.16) and (2.17), we get

dθ
[
(ζ − 1 − θ/d)(1 − M(v)zdθ+ζ)2 + 2zdθ+2ζM ′(v)

]
> 0 , (2.18)

2(ζ − 1)(dθ + ζ)(1 − M(v)zdθ+ζ) + zdθ+2ζdθM
′(v) > 0 . (2.19)

In the special case of θ = 0 and ζ = 1 we recover the condition M ′(v) > 0, as expected.

Notice that the NEC for the AdS-Vaidya backgrounds modeling the formation of an asymp-

totically AdS charged black hole also leads to a non trivial constraint [62], similar to the

ones in (2.18) and (2.19).

In this paper we will choose the following profile for M(v)

M(v) =
M

2

(
1 + tanh(v/a)

)
, (2.20)

which is always positive and increasing with v. It goes to 0 when v → −∞ and to M when

v → +∞. The parameter a > 0 encodes the rapidity of the transition between the two

regimes of M(v) ∼ 0 and M(v) ∼ M . In the limit a → 0 the mass function becomes a

step function M(v) = Mθ(v). This is the thin shell regime and it applies to many of the

calculations presented below. We have checked numerically that the profiles (2.20) that we

employ satisfy the inequalities (2.18) and (2.19) for all v and z.

3 Holographic entanglement entropy for static backgrounds

3.1 Strip

Let us briefly review the simple case when the region A in the boundary theory is a thin

long strip, which has two sizes ` � `⊥ [7, 8, 35]. Denoting by x the direction along the

short length and by yi the remaining ones, the domain in the boundary is defined by

−`/2 6 x 6 `/2 and 0 6 yi 6 `⊥, for i = 1, . . . , d − 1. Since ` � `⊥, we can assume

translation invariance along the yi directions and this implies that the minimal surface

is completely specified by its profile z = z(x), where z(±`/2) = 0. We can also assume

that z(x) is even. Computing from (2.4) the induced metric on such a surface, the area

functional reads

A[z(x)] = 2`d−1
⊥

∫ `/2

0

1

zdθ

√
1 +

z′2

F (z)
dx . (3.1)

– 5 –
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Since the integrand does not depend on x explicitly, the corresponding integral of motion

is constant giving a first order equation for the profile

z′ = −
√

F (z)
[
(z∗/z)2dθ − 1

]
. (3.2)

Here we have introduced z(0) ≡ z∗ and we have used that z′(0) = 0 and z′(x) < 0.

Plugging (3.2) into (3.1), it is straightforward to find that the area of the extremal surface is

A = 2`d−1
⊥ zdθ∗

∫ `/2−η

0
z(x)−2dθdx = 2`d−1

⊥

∫ z∗

ε

zdθ∗

zdθ
√

F (z)
[
z2dθ
∗ − z2dθ

] dz , (3.3)

with z(x) a solution of (3.2). A cutoff z > ε > 0 has been introduced to render the

integral (3.3) finite, and a corresponding one along the x direction

z(`/2 − η) = ε . (3.4)

The relation between z∗ and ` reads

`

2
=

∫ z∗

0

dz√
F (z)

[
(z∗/z)2dθ − 1

] . (3.5)

The vacuum case of F (z) = 1 can be solved analytically. Indeed, one can then inte-

grate (3.2), obtaining

x(z) =
`

2
− z∗

1 + dθ

(
z

z∗

)dθ+1

2F1

(
1

2
,
1

2
+

1

2dθ
;
3

2
+

1

2dθ
; (z/z∗)

2dθ

)
, (3.6)

where 2F1 is the hypergeometric function. Imposing x(z∗) = 0 in (3.6) one finds

`

2
=

√
π Γ(1

2 + 1
2dθ

)

Γ( 1
2dθ

)
z∗ . (3.7)

The area (3.3) with F (z) = 1 is then [35]

A =


2`d−1
⊥

dθ−1

[
1

εdθ−1 − 1
`dθ−1

(√
π Γ( 1

2
+ 1

2dθ
)

Γ( 1
2dθ

)

)dθ ]
+ O

(
ε1+dθ

)
dθ 6= 1

2`d−1
⊥ log(`/ε) + O

(
ε2
)

dθ = 1

(3.8)

The critical value dθ = 1 is characterized by this divergence, which is logarithmic instead

of power-like.

3.2 Sphere

If the perimeter between the two regions in the boundary theory is a d − 1 dimensional

sphere of radius R it is convenient to adopt spherical coordinates in the bulk (we denote

by ρ the radial coordinate) for Rd in (2.2) and (2.4), namely dx2 = dρ2 + ρ2dΩ2
d−1. In this

case, the problem reduces to computing z = z(ρ). The area functional reads

A[z(ρ)] =
2πd/2

Γ(d/2)

∫ R

0

ρd−1

zdθ

√
1 +

z′2

F (z)
dρ , (3.9)

– 6 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
1

where the factor in front of the integral is the volume of the d− 1 dimensional unit sphere.

The key difference compared to the strip (see (3.1)) is that now the integrand of (3.9)

depends explicitly on ρ and one has to solve a second order ODE to find the z(ρ) profile,

z
[
ρFz − 2(d − 1)z′

]
z′2 − 2F

[
ρ z z′′ + (d − 1)z z′ + dθρ z′2

]
− 2dθρF 2 = 0 , (3.10)

subject to the boundary conditions z(R) = 0 and z′(0) = 0. For a trivial emblackening

factor F (z) = 1 the equation of motion (3.10) simplifies to

ρ z z′′ +
[
dθρ + (d − 1)z z′

](
1 + z′2

)
= 0 . (3.11)

In the absence of hyperscaling violation (θ = 0) it is well known that z(ρ) =
√

R2 − ρ2 de-

scribes an extremal surface for any dimension d [8]. Since the extremal surface is computed

for t = const., the Lifshitz exponent ζ does not enter in the computation but equation (3.11)

does involve the hyperscaling exponent through the effective dimension dθ. The extremal

surface cannot be found in closed form for general values of dθ 6= 0 but the leading behav-

ior of the extremal surface area, including the UV divergent part, can be obtained from

the small z asymptotics when ρ = R is approached from below. We find it convenient to

rewrite (3.11) in terms of a dimensionless variables z = R z̃(x), ρ = R(1 − x),

(1 − x)z̃ ¨̃z +
[
dθ(1 − x) − (d − 1)z̃ ˙̃z

](
1 + ˙̃z2

)
= 0 , (3.12)

where ˙̃z denotes dz̃/dx.

In the appendix section A we construct a sequence of parametric curves {xi(s), z̃i(s)}
for i ∈ N such that the asymptotic one {x∞(s), z̃∞(s)} solves (3.12). These curves are

obtained in order to reproduce the behavior of the solution near the boundary (i.e. small x)

in a better way as the index i increases. Unfortunately, when i is increasing, their analytic

expressions become difficult to integrate to get the corresponding area. Nevertheless, we

can identify the following pattern. Given an integer k0 > 0, which fixes the order in ε

that we are going to consider, the procedure described in section A leads to the following

expansion for the area (3.9)

A[z(ρ)] =
2πd/2Rd−1

Γ(d/2) εdθ−1

{
k0∑
k=0

ωk(d, dθ)
( ε

R

)2k
+ O

(
ε2(k0+1)

)}
, dθ 6= {1, 3, 5, . . . , 2k0 +1} ,

(3.13)

where

ωk(d, dθ) ≡ γ2k(d, dθ)∏k
j=0

[
dθ − (2j + 1)

]αk,j , αk,j ∈ N \ {0} . (3.14)

The coefficients γ2k(d, dθ) should be found by explicit integration. For k = 0, we get

γ0(d, dθ) = 1/(dθ − 1). The peculiar feature of the values of dθ excluded in (3.13) is the

occurrence of a logarithmic divergence, namely, for 0 6 k̃ 6 k0 we have

A[z(ρ)] =
2πd/2Rd−1

Γ(d/2) ε2k̃


k̃−1∑
k=0

ωk(d, dθ)
( ε

R

)2k
+ β2k̃(d, dθ)

( ε

R

)2k̃
log(ε/R) + O

(
ε2k̃
) ,

dθ = 2k̃ + 1 .

(3.15)
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In section A.1 the result for i = 2 is discussed and it gives (see section A.1.1)

A[z(ρ)] =


2πd/2Rd−1

Γ(d/2) εdθ−1

[
1

dθ−1 − (d−1)2(dθ−2)
2(dθ−1)2(dθ−3)

ε2

R2 + O(ε4)
]

dθ 6= 1, 3

−2πd/2Rd−1

Γ(d/2) log(ε/R)
[
1 + (d−1)2

4
ε2

R2 log(ε/R) + . . .
]

dθ = 1

2πd/2Rd−1

Γ(d/2) ε2

[
1
2 − (d−1)(d−5)

8
ε2

R2 log(ε/R) + o(ε2)
]

dθ = 3

(3.16)

Notice that the first expression in (3.16) for θ = 0 provides the expansion at this order of

the hemisphere [8].

Comparing the result (3.16) for the spherical region with the one in (3.8), which holds

for a strip, it is straightforward to observe that, while for the sphere logarithmic divergences

occur whenever dθ is odd, for a strip this happens only when dθ = 1. The logarithmic terms

lead to an enhancement of the area for dθ = 1, but only contribute at subleading order for

higher odd integer dθ.

4 Holographic entanglement entropy in Vaidya backgrounds

4.1 Strip

In this section we consider the strip introduced in section 3.1 as the region in the boundary

and compute holographically its entanglement entropy in the background given by the

Vaidya metric (2.11), employing the prescription of [9]. The problem is more complicated

than in the static case considered in section 3.1 because the profile is now specified by two

functions z(x) and v(x) which must satisfy v(−`/2) = v(`/2) = t and z(−`/2) = z(`/2) = 0,

with t the time coordinate in the boundary. Since in our problem v(x) and z(x) are even,

the area functional reads

A[v(x), z(x)] = 2`d−1
⊥

∫ `/2

0

√
B

zdθ
dx , B ≡ 1 − F (v, z)z2(1−ζ)v′2 − 2z1−ζz′v′ , (4.1)

and the boundary conditions for v(x) and z(x) are given by

z′(0) = v′(0) = 0 , v(`/2) = t , z(`/2) = 0 . (4.2)

Since the integrand in (4.1) does not depend explicitly on x, the corresponding integral of

motion is constant, namely zdθ
√

B = const. By recalling that z(0) ≡ z∗, this constancy

condition can be written as (z∗
z

)2dθ
= B . (4.3)

The equations of motion obtained extremizing the functional (4.1) are

∂x
[
z1−ζ(z1−ζFv′ + z′)

]
= z2(1−ζ)Fvv

′2/2 , (4.4)

∂x
[
z1−ζv′

]
= dθB/z+z2(1−ζ)Fzv

′2/2+(1 − ζ)z−ζ(z′ + z1−ζFv′)v′. (4.5)

In figure 2 the typical profiles z(x) obtained by solving these equations numerically are

depicted. For t 6 0 the extremal surface is entirely in the hvLif part of the geometry. As

time evolves and the black hole is forming, part of the surface enters into the shell and for
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Figure 2. The profiles z(x) of the extremal surfaces for a strip with ` = 8 for different boundary

times: t = 0 (hvLif regime, red curve), t = 3.6 (intermediate regime, when the shell is crossed, blue

curve) and t = 5 (black hole regime, black curve). The final horizon is zh = 1. These plots have

d = 2, θ = 2/3 and ζ = 1.5. The left panel shows the situation in the thin shell limit (a = 0.01),

while in the right panel a = 0.5.

large times, when the black hole is formed, the extremal surface stabilizes to its thermal

result. In the special case of θ = 0 and ζ = 1, (4.4) and (4.5) simplify to

Fvv
′2 = 2

[
Fv′′ + (Fvv

′ + Fzz
′)v′ + z′′

]
, (4.6)

2zv′′ = zFzv
′2 + 2d(1 − Fv′2 − 2z′v′) . (4.7)

Once a solution of (4.4) and (4.5) satisfying the boundary conditions (4.2) has been found,

the surface area is obtained by plugging the solution into (4.1). By employing (4.3), one

finds that the area of the extremal surface reads

A = 2`d−1
⊥

∫ `/2

0

zdθ∗
z2dθ

dx . (4.8)

The integral is divergent and we want to consider its finite part. As in the static case, one

introduces a cutoff ε along the holographic direction and a corresponding one η along the x

direction, as defined in (3.4). One way to obtain a finite quantity is to subtract the leading

divergence, which, for the strip, is the only one (see (3.8) for the static case),

dθ 6= 1 A(1)
reg ≡

∫ `/2−η

0

zdθ∗
z2dθ

dx − 1

(dθ − 1) εdθ−1
, (4.9)

dθ = 1 A(1)
reg ≡

∫ `/2−η

0

zdθ∗
z2dθ

dx − log(`/ε) .

Another way to get a finite result is by subtracting the area of the extremal surface at late

time, after the black hole has formed

A(2)
reg ≡

∫ `/2−η

0

zdθ∗
z2dθ

dx −
∫ `/2−η̃

0

z̃dθ∗
z̃2dθ

dx , (4.10)
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Figure 3. Strip and a = 0.01 (thin shell). Regularizations (4.9), (4.10) and (4.11) of the area for

d = 1 (dashed red), d = 2 (blue) and d = 3 (green) with θ = d − 1 and ζ = 2 − 1/d. Left panels:

areas as functions of `/2 for fixed t = 1.5 (bottom curves) and t = 2.5 (upper curves). Right: area

as functions of the boundary time t with fixed ` = 3 and ` = 5. The latter ones are characterized

by larger variations.

or by subtracting the area of the extremal surface at early time, when the background is

hvLif, namely

A(3)
reg ≡

∫ `/2−η

0

zdθ∗
z2dθ

dx −
∫ `/2−η̂

0

ẑdθ∗
ẑ2dθ

dx . (4.11)

The quantities corresponding to the the black hole are tilded, while the ones associated to

hvLif are hatted. In particular, z̃(`/2 − η̃) = ε and ẑ(`/2 − η̂) = ε. In figure 3 we compare

the regularizations (4.9), (4.10) and (4.11) as functions of ` and of the boundary time t at

the critical value θ = d − 1.

4.1.1 Thin shell regime

Let us consider the limit a → 0 in (2.20), which leads to a step function

M(v) = Mθ(v) . (4.12)
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The holographic entanglement entropy in this background has been studied analytically for

θ = 0, ζ = 1 and d = 1 in [23, 24]. For more general values of θ and ζ the thin shell regime

is obtained by solving the differential equations (4.4) and (4.5) in the vacuum (hvLif) for

v < 0 and in the background of a black hole of mass M for v > 0. The solutions are then

matched across the shell. Thus, the metric is (2.11) with

F (v, z) =

{
1 v < 0 hvLif ,

F (z) v > 0 black hole ,
(4.13)

where F (z) is given by (2.5). Recall that the symmetry of the problem allows us to work

with 0 6 x 6 `/2. From figure 2 and by comparing figure 3 with figure 5, one can appreciate

the difference between the thin shell regime and the one where M(v) is not a step function.

Denoting by xc the position where the two solutions match, we have

v(xc) = 0 , z(xc) ≡ zc . (4.14)

Thus, when the extremal surface crosses the shell, the part having 0 6 x < xc is inside

the shell (hvLif geometry) and the part with xc < x 6 `/2 is outside the shell (black hole

geometry).

The matching conditions can be obtained in a straightforward way by integrating the

differential equations (4.4) and (4.5) in a small interval which properly includes xc and

then sending to zero the size of the interval. In this procedure, since both v(x) and z(x)

are continuous functions with discontinuous derivatives, only a few terms contribute [64].

In particular, Fv = −Mzdθ+ζδ(v) is the only term on the r.h.s.’s of (4.4) and (4.5) that

provides a non vanishing contribution. Thus, considering (4.5) first, we find the following

matching condition

v′+ = v′− ≡ v′c , at x = xc . (4.15)

Then, integrating across the shell (4.4) and employing (4.15) (we have also used that

δ(v) = δ(x − xc)/|v′c|, where v′c > 0, as discussed below), we find (notice that the term

containing v′ on the l.h.s. provides a non vanishing contribution)

z′+ − z′− =
z1−ζ
c v′c

2

(
1 − F (zc)

)
, at x = xc . (4.16)

Since Fv vanishes for v 6= 0, the differential equation (4.4) tells us that

z1−ζ
(
v′z1−ζF + z′

)
= const ≡

{
E− 0 6 x < xc hvLif ,

E+ xc < x 6 `/2 black hole .
(4.17)

Let us consider the hvLif part (v < 0) first, where F = 1. Since v′(0) = 0 and z′(0) =

0, (4.17) tells us that E− = 0. Thus, (4.17) implies that

v′ = − zζ−1z′ , 0 6 x < xc . (4.18)
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(3)
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Figure 5. Regularized area (4.11) for the strip with a = 0.5. These plots should be compared with

figure 4, because the parameters d, θ and ζ and the color code are the same.

Plugging this result into (4.3) with F = 1, it reduces to the square of (3.2) with F = 1,

as expected. Taking the limit x → x−c of (4.18), one finds a relation between the constant

value v′c defined in (4.15) and z′−, i.e.

v′c = − zζ−1
c z′− > 0 , (4.19)

where we have used that z′− < 0. Integrating (4.18) from x = 0 to x = xc, we obtain that

zζc = zζ∗ + ζv∗ . (4.20)

Now we can consider the region outside the shell (v > 0), where the geometry is given by

the black hole. From (4.17) with F = F (z) given in (2.5) we have that

v′ =
1

z1−ζF (z)

(
E+

z1−ζ − z′
)

, xc < x 6 `/2 . (4.21)
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Then, plugging this result into (4.3), one gets

z′2 = F (z)

[(
z∗
z

)2dθ

− 1

]
+

E2
+

z2(1−ζ) , xc < x 6 `/2 . (4.22)

We remark that (4.22) becomes (3.2) when E+ = 0. The constant E+ can be related to

z′− by taking the difference between the equations in (4.17) across the shell. By employ-

ing (4.15), the result reads

E+ − E− = z1−ζ
c

[
z′+ − z′− + z1−ζ

c v′c
(
F (zc) − 1

)]
. (4.23)

Then, with E− = 0, the matching conditions (4.16) and (4.19) lead to

E+ =
z1−ζ
c

2

(
1 − F (zc)

)
z′− , (4.24)

where E+ < 0 because of (4.18). Moreover, from (4.3), one finds that

B+ = B− =

(
z∗
zc

)2dθ

, at x = xc . (4.25)

Finally, the size ` can be expressed in terms of the profile function z(x) (we recall that

z′ < 0) by summing the contribution inside the shell (from (4.22) with F (z) = 1) and the

one outside the shell (from (4.22))

`

2
=

∫ z∗

zc

zdθ
(
z2dθ
∗ − z2dθ

)−1/2
dz +

∫ zc

0

{
F (z)

[(
z∗
z

)2dθ

− 1

]
+

E2
+

z2(1−ζ)

}−1/2

dz . (4.26)

Notice that we cannot use (4.22) for the part outside the shell because E+ 6= 0. Sim-

ilarly, we can find the boundary time t by considering first (4.2) and (4.14), and then

employing (4.21). We find

t =

∫ t

0
dv =

∫ `/2

xc

v′dx =

∫ zc

0

zζ−1

F (z)

[
1 + E+zζ−1

{
F (z)

[(
z∗
z

)2dθ

− 1

]
+

E2
+

z2(1−ζ)

}−1/2
]
dz ,

(4.27)

where in the last step (4.21) and (4.22) have been used (we recall that z′ < 0).

The area of the extremal surface (4.8) is obtained by summing the contributions inside

and outside the shell in a similar manner. The result is

A = 2`d−1
⊥ zdθ∗

(∫ z∗

zc

z−dθ
(
z2dθ
∗ −z2dθ

)−1/2
dz+

∫ zc

ε
z−2dθ

{
F (z)

[(
z∗
z

)2dθ

−1

]
+

E2
+

z2(1−ζ)

}−1/2

dz

)
,

(4.28)

where the cutoff ε must be introduced to regularize the divergent integral, as already

discussed. In figure 6 we show A
(3)
reg for various dimensions. It seems that a limiting curve

is approached as d increases.

It is straightforward to generalize the above analysis to the case of n dimensional

surfaces extended in the bulk which share the boundary with an n dimensional spatial

surface in the boundary, i.e. surfaces with higher codimension than the extremal surface
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Figure 6. Regularized area (4.11) for the strip in the thin shell regime (a = 0.01.) with θ = d − 1

and ζ = 2 − 1/d for various dimensions d = 1, 2, 3, . . . , 8. The darkest curve within each group has

d = 1 and the brightest one has d = 8. Left panel: the red curves have t = 0.15 and the blue ones

have t = 0.7. Right panel: the red curves have ` = 1 and the blue ones have ` = 2.

occurring for the holographic entanglement entropy. For a strip whose sides have length ` in

one direction and `⊥ in the remaining n−1 ones, the area functional to be extremized reads

A[v(x), z(x)] = 2`n−1
⊥

∫ `/2

0

√
B

zndθ/d
dx , (4.29)

where B has been defined in (4.1). This functional reduces to the one in (4.1) for the

holographic entanglement entropy when n = d. The extrema of the functional (4.29) with

n = 2 are employed to study the holographic counterpart of the spacelike Wilson loop,

while the n = 1 case describes the holographic two point function.

The equations of motion of (4.29) are simply given by (4.4) and (4.5) where the dθ in

the r.h.s. of (4.5) is replaced by ndθ/d, while F (v, z) is kept equal to (2.12). Similarly, we

can adapt all the formulas within section 4.1 to the case n 6= d by replacing dθ by ndθ/d

whenever it does not occur through F (v, z) or F (z), which remain equal to (2.12) and (2.5)

respectively.

4.2 Sphere

Let us consider a circle of radius R in the boundary of the asymptotically hvLif spacetime.

As discussed in section 3.2 for the static case, it is more convenient to adopt spherical

coordinates in the Vaidya metric (2.11) for Rd. The area functional is given by

A[v(ρ), z(ρ)] =
2πd/2

Γ(d/2)

∫ R

0

ρd−1

zdθ

√
B dρ , B ≡ 1 − F (v, z)z2(1−ζ)v′2 − 2z1−ζz′v′, (4.30)

where now the prime denotes the derivative w.r.t. ρ. An important difference compared

to the strip, as already emphasized for the static case, is that the Lagrangian of (4.30)

depends explicitly on ρ. This implies that we cannot find an integral of motion which

allows to get a first order differential equation to describe the extremal surface. Thus, we
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have to deal with the equations of motion, which read

zdθ
√

B
ρd−1

∂ρ

[
ρd−1z1−ζ−dθ

√
B

(v′z1−ζF + z′)

]
=

z2(1−ζ)

2
Fvv

′2 , (4.31)

zdθ
√

B
ρd−1

∂ρ

[
ρd−1z2(1−ζ)−dθ

√
B

v′
]

=
dθ
z

B +
z2(1−ζ)

2
Fzv

′2 +
1 − ζ

zζ
(z′ + z1−ζFv′)v′.

(4.32)

These equations have to be supplemented by the following boundary conditions

v(R) = t , v′(0) = 0 , and z(R) = 0 , z′(0) = 0 . (4.33)

We are again mainly interested in the limiting case of a thin shell (4.12).

4.2.1 Thin shell regime

Considering the thin shell regime, defined by (4.12), we can adopt to the sphere some of

the observations made in section 4.1.1 for the strip. Again, there is a value ρc such that for

0 6 ρ < ρc the extremal surface is inside the shell (hvLif geometry), while for ρc < ρ 6 R

it is outside the shell (black hole geometry).

The matching conditions can be found by integrating (4.31) and (4.32) across the shell,

as was done in section 4.1.1 for the strip. Introducing

v̌′ ≡ v′√
B

, ž′ ≡ z′√
B

, (4.34)

we can use (4.32), whose r.h.s. does not contain Fv, to obtain

v̌′+ = v̌′− , at ρ = ρc , (4.35)

while from (4.31) and employing (4.35) as well, we get

ž′+ − ž′− =
z1−ζ
c v̌′c

2

(
1 − F (zc)

)
, at x = xc . (4.36)

Considering (4.31), since Fv = 0 for v 6= 0, we have

ρd−1z1−ζ−dθ
√

B
(v′z1−ζF + z′) = const ≡

{
E− 0 6 ρ < ρc hvLif ,

E+ ρc < ρ 6 R black hole ,
(4.37)

where E− = 0 because v′(0) = 0 and z′(0) = 0. By using (4.34), one can write

1/B+ = 1 + v̌′+z(1−ζ)
c

[
z(1−ζ)
c v̌′+F (zc) + 2ž′+

]
, (4.38)

1/B− = 1 + v̌′−z(1−ζ)
c (z(1−ζ)

c v̌′− + 2ž′−) . (4.39)

Taking the difference of these expressions and using (4.35) and (4.36), one finds

B+ = B− . (4.40)
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By using (4.35), (4.36) and (4.37), we get

E+ =
ρd−1
c z

2(1−ζ)−dθ
c

2
√B+

(F (zc) − 1)v′c . (4.41)

Then, from (4.37) in the black hole region, one obtains

v′ =
zζ−1

F (z)

(
AE+

√
1 + z′2/F (z)√

1 + A2E2/F (z)
− z′

)
, A ≡ zdθ+ζ−1

ρd−1
. (4.42)

Plugging this expression into (4.32) leads to

2dθρF 2 + z
[
ρFz − 2(d − 1)z′

]
z′2 − 2F

[
ρ z z′′ + (d − 1)z z′ + dθρ z′2

]
(4.43)

+ E2
+A2ρ

[
z(Fz + 2z′′) − 2(ζ − 1)(F + z′2)

]
= 0 ,

which reduces to (3.10) when E+ = 0, as expected. The boundary time t is obtained by

integrating (4.42) outside the shell ρc 6 ρ < R (see e.g. (4.27) for the strip)

t =

∫ R

ρc

zζ−1

F (z)

AE+

√
1 + z′2/F (z)√

1 + A2E2
+/F (z)

− z′

 dρ . (4.44)

Notice that we cannot provide a similar expression for R, like we did for the strip in (4.26).

Finally, the area of the extremal surface at time t is the sum of two contributions, one

inside (finite) and one outside (infinite) the shell, and is given by

A =
2πd/2

Γ(d/2)

∫ ρc

0

ρd−1
√

1 + z′2

zdθ
dρ +

∫ R

ρc

dρ
ρd−1

√
1 + z′2/F (z)

zdθ
√

1 + A2E2
+/F (z)

 . (4.45)

Numerical results for the regularized extremal area A
(3)
reg for a sphere (defined via an ap-

propriate adaptation of (4.11)) in the thin shell regime are shown in figure 7.

5 Regimes in the growth of the holographic entanglement entropy

In this section we extend the analysis performed in [30, 31] to θ 6= 0 and ζ 6= 1. For t < 0 we

have A
(3)
reg = 0 because the background is hvLif. When t > 0, it is possible to identify three

regimes: an initial one, when the growth is characterized by a power law, an intermediate

regime where the growth is linear and a final regime, when A
(3)
reg(t) saturates to the thermal

value. We report our results for the different regimes in the main text while the details of

the computation are described in appendix section B.

5.1 Initial growth

The initial regime is characterized by times that are short compared to the horizon scale

0 < t � zh . (5.1)
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Figure 7. Holographic entanglement entropy for the sphere in the thin shell regime with a = 0.01

(see section 4.2). The parameters d, θ and ζ are the same of figure 4 (same color coding). Left

panel: fixed t = 1.5 (lower curve) and t = 3 (upper curve). Right panel: fixed R = 2 and R = 4

(larger spheres thermalize later).

In appendix section B.1, following [31], we expand A
(3)
reg around t = 0 and consider the

first non trivial order for an n dimensional spatial region whose boundary Σ has a generic

shape. Given the metric (2.11) with (4.13), the final result for this regime is (see (B.9))

A(3)
reg(t) =

MAΣ(ζt)[dθ(1−n/d)+ζ+1]/ζ

2[dθ(1 − n/d) + ζ + 1]
, (5.2)

where AΣ is the area of Σ. Notice that for the holographic entanglement entropy n = d,

for the holographic counterpart of the Wilson loop n = 2 and for the holographic two point

function n = 1. Explicitly, for the holographic entanglement entropy, (5.2) becomes

A(3)
reg(t) =

MAΣ ζ1+1/ζ

2(ζ + 1)
t1+1/ζ , (5.3)

which is independent of d and θ. This generalizes the result of [31] (see [65] for d = 1). In

figure 8 we show some numerical checks of (5.3) both for the strip and for the sphere.

5.2 Linear growth

When z∗ is large enough, the holographic entanglement entropy displays a linear growth in

time. The computational details for the strip are explained in appendix section B.2. The

result for (4.13) is that, in the regime given by

zh � t � ` , (5.4)

and if the following condition is satisfied

dθ > 2 − ζ , (5.5)

we find a linear growth in time for the holographic entanglement entropy, namely

A(3)
reg(t) ≡ 2`d−1

⊥ vlinear t . (5.6)
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Figure 8. Initial growth of the holographic entanglement entropy for d = 2 (see section 5.1).

The points come from the numerical solution of (4.4)–(4.5) for the strip (left) and (4.31)–(4.32)

for the sphere (right) in the thin shell regime. The black dashed lines are obtained through the

formula (5.3), which is independent of θ and of the shape of the region in the boundary. Left panel:

strip with ` = 4. Right panel: sphere with R = 4.

The method of [31] for the thin shell regime, extended to θ 6= 0 and ζ 6= 1, tells us that

A(3)
reg(t) = 2`d−1

⊥ A(3)
reg(t) , A(3)

reg(t) =

√
−F (zm)

zdθ+ζ−1
m

t ≡ vE

zdθ+ζ−1
h

t , (5.7)

where, for F (z) given by (2.5), vE reads

vE =
(η − 1)

η−1
2

η
η
2

, η =
2(dθ + ζ − 1)

dθ + ζ
. (5.8)

It can be easily seen that vE = 1 when η = 1 and vE → 0 as η → +∞ monotonically.

Notice that the linear regime depends only on the combination dθ + ζ. In figure 9, where

the points are computed using the numerical solutions of (4.4) and (4.5), we see a typical

linear behavior in time for two strips with large `. The agreement between the slope of the

numerical data and the value computed from (5.8) is quite good. In figure 10 we compare

the slopes of the numerical curves with the values obtained from (5.8) for other values of θ

and ζ. We consider the linear growth regime for more generic backgrounds in appendix C

In order to get a better understanding of the origin of the ζ dependence in (5.7).

The functional form of the velocity in (5.8) suggests that η < 1 corresponds to quali-

tatively different behavior than the η > 1 and our calculations are not easily extended to

cover this case. In particular, we are not able to determine whether there is linear growth

in the holographic entanglement entropy for η < 1. We note that when combined with the

null energy condition (as displayed in figure 1), this case corresponds to dθ < 0 which is

problematic for several reasons. This includes finiteness of SA in the UV, negative specific

heat for black branes, and lack of a decoupling limit in string theory realizations of the

hvLif metric [35]. Specifically, we run into problems when trying to extend our calculations

to η < 1, both in implementing the methods of [30, 31] as described in section B.2 and in

setting up initial conditions for the numerical shooting method in section B.4.
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We can investigate one of the points more carefully and plot the actual data points for one of the
parameter pairs. Let us choose θ = 1 and ζ = 2 and plot two of the data sets.

5
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15x

0
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S

FIG. 7: Two sets of data points in the case θ = 1 and ζ = 2

We can flatten this plot to see the time development more clearly.
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FIG. 8: The two sets of data points in the case θ = 1 and ζ = 2 flattened. The slope seems to be rather independent
of x, as predicted by theory.

14

Even more illuminating is the S/t-ratio as a function of time.

����������

�
��
��
� �
�

� � � ��� � � ����� � � �� � � ������� � � � � �� � ��������

����������

�
��
��
� �
�

� � ������ �
� ������ � � ���� � � ����� � � � � � � ����� �

2 4 6 8 10
t

� 1

1

2

3
S � t

FIG. 9: The S/t ratio of data points in the plot 8 as a function of t. Pink line is the analytic prediction for the
linear regime. The data points appoach the predicted value as the initial nonlinear offset becomes more and more
negligible.
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Figure 9. Typical example of linear growth for the holographic entanglement entropy in the thin

shell regime. Here d = 2, zh = 1, θ = 1 and ζ = 2 for two large strips: ` ∼ 16 (green squares) and

` ∼ 20 (blue squares). In the bottom panel, the dashed line is obtained through (5.7) and (5.8).
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Figure 10. Linear regime for the strip: the colored squares are values of the slope (see (5.6)) found

from the numerical data as in the bottom panel of figure 9. The black empty circles denote the

corresponding results of vE from (5.8). In this plot zh = 1.
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5.3 Saturation

We define the saturation time ts as the boundary time such that, for t > ts, the extremal

surface probes only the black hole part of the geometry. It is possible to estimate ts as a

function of z∗ for sufficiently large regions with generic shapes. The relevant computations

for this regime are explained in appendix section B.3. To leading order, ts is given by

ts = −zζ−1
h

F ′h
log(zh − z∗) , (5.9)

where F ′h ≡ −∂zF (z)|z=zh . Since the relation between z∗ and the characteristic length of

the boundary region depends on its shape, we have to consider the strip and the sphere

separately. For a strip, if ∂tAreg(t) is continuous at t = ts, we find the following linear

relation

ts = zζ−1
h

√
dθ

2zhF
′
h

` + . . . , (5.10)

where the dots denote subleading orders at large `. Notice that (5.10) can be generalized

to n dimensional spatial surfaces in the boundary according to the observation made in the

end of section 4.1.1, namely dθ should be replaced by ndθ/d while F (z) kept equal to (2.5).

This gives

ts = zζ−1
h

√
ndθ

2dzhF
′
h

` + . . . . (5.11)

It can also be shown that, whenever ∂tAreg(t) is continuous at saturation, we have

A(2)
reg(t) ∝ (t − ts)

2 + o((t − ts)
2) , (5.12)

for a strip for any values of ζ and θ (see appendix B.3.3).

The saturation time has also been evaluated numerically for the geodesic correlator,

with the following procedure from [58]. The action for the geodesics has solutions with

turning points either inside or outside the horizon. We first choose turning points z∗ inside

the horizon, generate the corresponding geodesic and find the coordinates of the endpoints

at the boundary and the length of the geodesic. The results are regulated by subtracting

the vacuum value. For sufficiently large `, at early times the bulk geodesics will all have

turning points inside the horizon, and also pass through the infalling shell extending into

the part of the spacetime with vacuum geometry. In this case the corresponding observable

will not be thermal. At later times the turning point will be outside the horizon and the

observable takes a thermal value. The conversion between these two types of behavior is

sharp and defines the saturation time. Following [58], the saturation times can be calculated

by fitting surfaces to the data of the above solution. The intersection of the surfaces then

defines the curve for the saturation time as a function of the transverse length scale. In

figure 11 the numerical results for the saturation time of the geodesics are compared with

the corresponding results from (5.11). Notice that the agreement improves for large `, as

expected.
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FIG. 5: Thermalization time of the entanglement entropy with ζ = 2 and different values of θ. The dashed line
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Figure 11. Saturation time as a function of the transverse length scale ` for geodesic correlators.

The dashed black line is a reference line with slope equal to 1, while the colored ones are obtained

through (5.11) with n = 1, ζ = 2 and the corresponding values of θ indicated in the legend. The

agreement improves for large `.

When the boundary region is a sphere and in the regime of large R, the transition to

the saturated value is always smooth. In appendix section B.3.2, we show that

ts = zζ−1
h

√
2dθ
zhF

′
h

R − zζ−1
h

(d − 1)

F (1)(zh)
log R + . . . . (5.13)

Moreover, by extending the analysis of [31] to backgrounds with non trivial ζ and θ, in

section B.3.4 we find that

A(2)
reg ∝

{
−(ts − t)2 log(ts − t) d = 2

(ts − t)1+d/2 d > 2
(5.14)

telling us that the saturation regime is independent of ζ and θ. In figures 12 and 13 we

show the saturation regime for the holographic entanglement entropy in the thin shell limit

(a = 10−4) for the two cases of R = 2 and R = 4 with the dimensionality given by either

d = 2 or d = 3. The agreement between the numerical data and the expression (5.14) is

quite good.
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Figure 12. Saturation regime for the holographic entanglement entropy in the thin shell limit

(a = 10−4) for a spherical region of radius R in the boundary. In this plot θ = 0 and ζ = 1, which is

the situation considered in [30, 31]. The continuos black curves are obtained through (5.14) with the

corresponding values of d. The inset shows the entire sets of data describing the complete evolution

of the four cases considered (the plots are shown in the same positions of the corresponding points

in the legend). The gray regions have ∆t = 0.5 and show the parts of the curves which have been

reported in the main plot.
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A Spherical region for hvLif

In this appendix we construct a sequence of curves {xi(s), zi(s)} for i ∈ N defined in a

parametric way, whose asymptotic one {x∞(s), z∞(s)} is the solution of (3.11).

The extremal surface ending on the sphere of radius R and extended in the t = const

section of the d+2 dimensional spacetime hvLif obeys (3.11) with the boundary conditions

z′(0) = 0 and z(R) = 0. We recall that for hvLif without black holes the Lifshitz exponent

ζ does not enter in the equation. The equation (3.11) can be rewritten as

d

(
z′

ρ
+

1

z

)
+

(
z′′

1 + z′2
− z′

ρ

)
=

θ

z
. (A.1)

We find it convenient to introduce

z̃(x) ≡ z(ρ(x))

R
, x ≡ 1 − ρ

R
∈ [0, 1] =⇒ z′(ρ) = − ˙̃z(x) , z′′(ρ) =

¨̃z(x)

R
.

(A.2)

By employing (A.2), (A.1) becomes (3.12), which can be written as follows

d

(
1

z̃
−

˙̃z

1 − x

)
+

¨̃z

1 + ˙̃z2
+

˙̃z

1 − x
=

θ

z̃
, z̃(0) = 0 , ˙̃z(1) = 0 . (A.3)
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Figure 13. Saturation regime for the holographic entanglement entropy in the thin shell limit

(a = 10−4) for a spherical region of radius R in the boundary. Here (θ, ζ) = (0, 2) (top panel) and

(θ, ζ) = (d − 1, 2 − 1/d) (bottom panel). The plots are constructed as in figure 12. The agreement

with the continuos black curves from (5.14) indicates that the saturation regime is independent

of (θ, ζ).

The well known hemispherical solution for θ = 0 becomes

z̃(x)
∣∣
θ=0

=
√

x(2 − x) =
√

2x

(
+∞∑
n=0

Γ(n − 3/2)

Γ(−3/2)n!
xn

)
, (A.4)

which evidences that z̃(x) =
√

2x when x → 0. Also for θ 6= 0 we have z̃ ' 0 near the

boundary x ' 0 and here we are interested in the way it vanishes. First, from (A.3) one

observes that, when d − θ 6= 0 (the case d − θ = 0 is not allowed by NEC), the solution

must have a divergent z̃′(0). Introducing the following ansatz for the solution close to the
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boundary

z̃(x) = c0x
α , 0 < α < 1 , x ∼ 0 , (A.5)

and plugging it into (A.1), the first order for x → 0 provides the following equation(
d − θ + 1 − 1

α

)
x−α + c2

0α(1 − d)xα−1 = 0 . (A.6)

We can recognize three cases:

1. d = 1. In this case we find

z̃(x) ' c0x
1

2−θ , (A.7)

where the condition 0 < α < 1 becomes θ < 1. In particular, for θ = 0 we recover the

expected
√

x behaviour, although the overall constant is not fixed. Since for d = 1

the calculations from the strip hold, we have that (see (3.6))

x(z̃) =
z̃∗

2 − θ

(
z̃

z̃∗

)2−θ

2F1

(
1

2
,
1

2
+

1

2(1 − θ)
;
3

2
+

1

2(1 − θ)
; (z̃/z̃∗)

2(1−θ)
)

, (A.8)

where the constant z̃∗ reads

z̃∗ =
Γ(1/(2 − 2θ))√

π Γ(1/2 + 1/(2 − 2θ))
. (A.9)

Since the hypergeometric function in (A.8) goes to 1 at the boundary, from (A.7) we

can write

c0 =
(
z̃1−θ
∗ (2 − θ)

) 1
2−θ

, (A.10)

which simplifies to c0 =
√

2 when θ = 0 because z̃∗|θ=0 = 1.

2. d 6= 1 and dθ 6= 1. In this regime one finds that

z̃(x) =

√
dθ − 1

d − 1
2x

[
1 − 1

4

(
1 +

d − 1

dθ − 1
− d − 3

dθ − 3

)
x + O(x2)

]
, (A.11)

again, notice how when dθ = d we recover the AdS solution but now with even the

correct value of the coefficient, c0 =
√

2. We included also the c1 correction to show

the emergence of poles in the coefficient for any odd integer value of dθ. It is possible

to compute the expansion up to arbitrary order, but it appears the terms in the series

cannot be written in any compact or recursive form.

3. d 6= 1 and dθ = 1. In this case (A.6) becomes

x−α
2α − 1

α
+ xα−1c2

0α(1 − d) = 0 , (A.12)

which gives α = 1/2 and c0 = 0. This tells us that the ansatz (A.5) is meaningless

in this case.
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A.1 A parametric reformulation

In order to improve this analysis and understand better the last case, following [63] (where

the d = 2 case has been studied) we introduce

s ≡ 1

z̃dθ
√

1 + ˙̃z2
. (A.13)

This allows to write the term containing ¨̃z in (A.3) as follows

¨̃z

1 + ˙̃z2
= −dθ

z̃
−
(

s
dz̃

ds

)−1

. (A.14)

Thus, the equation (A.3) can be written as

d − 1

x − 1

dz̃
ds
dx
ds

−
(

s
dz̃

ds

)−1

= 0 . (A.15)

From (A.13) it is straightforward to write that

dx

ds
=

sz̃dθ√
1 − s2z̃2dθ

dz̃

ds
. (A.16)

Then, by isolating x in (A.15) and employing (A.16), the differential equation (A.15)

becomes

x = 1 +
(d − 1)

√
1 − s2z̃2dθ

z̃dθ
dz̃

ds
. (A.17)

We find it convenient to rewrite (A.17) and (A.16) respectively as follows
d
ds z̃(s)−(dθ−1) = (dθ−1)[1−x(s)]

(d−1)
√

1−s2z̃(s)2dθ
dθ 6= 1

d
ds log z̃(s) = − 1−x(s)

(d−1)
√

1−s2z̃(s)2
dθ = 1

,
d

ds
x(s) = − [1 − x(s)] sz̃(s)2dθ

(d − 1)[1 − s2z̃(s)2dθ ]
.

(A.18)

Integrating these equations, one finds

z̃(s) =


(
dθ−1
d−1

∑+∞
n=0

Γ(n+1/2)√
πn!

∫ s
smin

[1 − x(r)]r2nz̃(r)2dθndr
)− 1

dθ
−1

dθ 6= 1

exp
(
− 1
d−1

∑+∞
n=0

Γ(n+1/2)√
πn!

∫ s
smin

[1 − x(r)]r2nz̃(r)2ndr
)

dθ = 1
(A.19)

and

x(s) = − 1

d − 1

+∞∑
n=0

∫ s

smin

[1 − x(r)]r1+2nz̃(r)2dθ(1+n)dr , (A.20)

where the expansion of (1−w)−α for w → 0 has been used. This can be done because (A.13)

implies that sz̃dθ is infinitesimal when s is large. Moreover, smin is the value of s at which

the tip of the minimal surface is reached and it can be found from (A.13)

smin = z̃−dθ∗ . (A.21)
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It is evident that (A.19) and (A.20) is only a formal solution and it does not even allow to

plot the solution numerically. Nevertheless, this form allows us to construct the solution

{z̃(s), x(s)} recursively through an inductive procedure.

Since large s corresponds to the boundary, we have that x(s) = o(1) for large s. This

allows us to observe that the leading order of the integrals in (A.19) and (A.20) can be

obtained by neglecting x(r) within the square brackets occurring in the integrands. We

find it convenient to define the first pair of functions in the inductive process through the

boundary conditions x(s) → 0 and z̃(s) → 0 for s → ∞, namely

z̃0(s) = 0 , x0(s) = 0 . (A.22)

Then for i > 0 we define

z̃i+1(s) =



(
dθ−1
d−1

∑i
n=0

Γ(n+1/2)√
πn!

∫ s
smin

[z̃i−n+1(r)
2dθn − xi−n(r)z̃i−n(r)

2dθn]r2ndr
)− 1

dθ−1

dθ 6= 1

exp
(
− 1
d−1

∑i
n=0

Γ(n+1/2)√
πn!

∫ s
smin

[z̃i−n+1(r)
2n − xi−n(r)z̃i−n(r)

2n]r2ndr
)
dθ = 1

(A.23)

and

xi+1(s) = − 1

d − 1

i∑
n=0

∫ s

smin

[z̃i−n+1(r)
2dθ(1+n) − xi−n(r)z̃i−n(r)

2dθ(1+n)]r1+2ndr . (A.24)

Given the pairs {z̃j(s), xj(s)} for j 6 i, this equation give {z̃i+1(s), xi+1(s)}. Notice that

xi+1 depends on z̃i+1 through the n = 0 term and this means that one has to solve (A.23)

first and then (A.24). This procedure defines a sequence of pairs {z̃i(s), xi(s)} for i ∈ N
and the exact solution of (A.18) is the asymptotic one {z̃∞(s), x∞(s)} for i → +∞. The

pair {z̃i(s), xi(s)} for some finite i gives a better approximation of the asymptotic solution

the higher i is, starting from the regime of large s.

Given (A.22), for i = 1 we find

z̃1(s) =


(
d−1
dθ−1

) 1
dθ−1

(s − smin)
− 1
dθ−1

e−
s−smin
d−1

,

x1(s) =

 1
2

(
dθ−1
d−1

) dθ+1

dθ−1
(s − smin)

− 2
dθ−1 dθ 6= 1

2s+d−1
4 e−2

s−smin
d−1 dθ = 1

(A.25)

From (A.25) for dθ 6= 1 and large s, we can write

s =

(
d − 1

dθ − 1

) 1+dθ
2

(2x1)
− dθ−1

2 . (A.26)

Plugging this back into the corresponding z̃1 in (A.25), we get the first term of (A.11) and

the first term of (A.4) when θ = 0, as expected. By employing (A.22) and (A.25), for i = 2
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Figure 14. The black curve is the numerical solution z̃ = z̃(x) of (A.3) for d = 2 and dθ = 1. The

remaining curves are (xi(s), z̃i(s)) for i = 1, 2, 3, 4, 5, 6 (respectively orange, brown, magenta, green,

blue and red), constructed in section A.1.

in the regime of large s we find

z̃2(s) =



(
d−1
dθ−1

) 1
dθ−1

s
− 1
dθ−1

[
1 −

(
d−1
dθ−1

) dθ+1

dθ−1 θ s
− 2
dθ−1

2(dθ−3)

]− 1
dθ−1

dθ 6= 1, 3

e−
1
d−1

s + (d−1)(d−3)+2(d−2)s+2s2

8 e−
3
d−1

s dθ = 1[
2s
d−1 + (d−1)(d−3)

8 log s
]− 1

2
dθ = 3

(A.27)

The expression for x2 is quite complicated even at large s and we do not find it useful to

write it here. We have neglected smin because s is large, but it must be taken into account

properly to obtain the plot in figure 14. Higher orders are rather complicated as well and

therefore we do not write them. Repeating the procedure we can find the various curves in

figure 14, from which it is evident that the exact solution of (3.12) is better approximated

as i increases.

A.1.1 Area

The area functional is given by (3.9) F (z) = 1), namely

A =
2πd/2Rθ

Γ(d/2)

∫ 1

0

(1 − x)d−1

z̃dθ

√
1 + ż2 dx =

2πd/2Rθ

(d − 1)Γ(d/2)

∫ +∞

smin

(1 − x)d

1 − s2z̃2dθ
ds . (A.28)

Since the integral is divergent, we must introduce the UV cutoff ε̃ = ε/R in the z̃ variable.

It corresponds to a large value smax such that z(smax) = ε. By employing the expressions

{z̃i(s), xi(s)} discussed above in (A.28), one gets a corresponding area Ai. Thus, we have

A = lim
i→∞

Ai , Ai ≡ 2πd/2Rθ

(d − 1)Γ(d/2)

∫ smax

smin

(1 − xi−1)
d

1 − s2z̃2dθ
i−1

ds . (A.29)

A crucial point consists in finding smax(ε), but the relation z̃i(smax) = ε̃ is typically

transcendental and therefore it cannot be inverted. Introducing smax,i as the solution
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of z̃i(smax,i) = ε̃, we have that for i = 1 the inversion can be performed, giving

smax,1 =

{
d−1

(dθ−1)ε̃dθ−1 dθ 6= 1

−(d − 1) log ε̃ dθ = 1
(A.30)

which gives

A1 =

{
2πd/2

(dθ−1)Γ(d/2)
Rd−1

εdθ−1 dθ 6= 1

− 2πd/2

Γ(d/2) Rd−1 log(ε/R) dθ = 1
(A.31)

For i = 2, it is clear from (A.27) that z̃2(smax,2) = ε̃ cannot be inverted. Nevertheless,

we can find the first terms of the expansion of smax(ε̃) for ε̃ → 0 as follows. The relation

z̃2(smax,2) = ε̃ can be written as

ε̃ = f1(s) + f2(s) , (A.32)

where both f1 and f2 vanish for s → ∞, while f1/f2 → 0. Assuming that f1 is invertible,

we have that

s=f−1
1 (ε̃−f2(s))=f−1

1 (ε̃)−[∂ε̃f
−1
1 (ε̃)]f2(s)+O

(
f2(s)

2
)
=f−1

1 (ε̃)−[∂ε̃f
−1
1 (ε̃)]f2(f

−1
1 (ε̃))+. . .

(A.33)

where in the second step we have employed that f2/ε̃ = (f2/f1)/(1 + f2/f1) → 0 when

s → ∞, while in the last one the first order of the expansion has been used. The dots

denote higher orders that we are neglecting. Thus, for i = 2 we find

smax,2 =


d−1

(dθ−1)ε̃dθ−1

[
1 − (d−1)θ

2(dθ−1)(dθ−3) ε̃2 + . . .
]

dθ 6= 1, 3

−(d − 1) log ε̃
[
1 − (d−1)2

4 ε̃2 log ε̃ + . . .
]

dθ = 1

d−1
2ε̃2

− (d−1)2(d−3)
8 log ε̃ + . . . dθ = 3

(A.34)

As for the integral (A.29) with i = 2, we find

A2 =


2πd/2Rd−1

Γ(d/2) εdθ−1

[
1

dθ−1 − (d−1)2(dθ−2)
2(dθ−1)2(dθ−3)

ε2

R2 + O(ε4)
]

dθ 6= 1, 3

−2πd/2Rd−1

Γ(d/2) log(ε/R)
[
1 + (d−1)2

4
ε2

R2 log(ε/R) + . . .
]

dθ = 1

2πd/2Rd−1

Γ(d/2) ε2

[
1
2 − (d−1)(d−5)

8
ε2

R2 log(ε/R) + o
(
ε2
)]

dθ = 3

(A.35)

As a check of this formula, notice that the first expression for θ = 0 provides the expansion

at this order of the hemisphere [8]. Moreover, we have also checked that the first expression

in (A.35) can be found by plugging (A.11) into (A.28), properly regulated through the

introduction of xmin > 0 such that xmin = x(smax).

B Computational details for the entanglement growth

B.1 Initial growth: generic shape

Let us consider a n dimensional region embedded into Rd, which is the spatial part of the

boundary (i.e. z = 0) of the Vaidya background (2.11). The boundary of such region will
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be denoted by Σ and it has a generic shape. The submanifold Σ is n − 1 dimensional and

therefore it can be parameterized through a n−1 dimensional vector of intrinsic coordinates

ξα. Thus, being xa the cartesian coordinates of Rd, the submanifold Σ is specified by

xa(ξ
α) , a ∈ {1, . . . , d} , α ∈ {1, . . . , n − 1} . (B.1)

The surface ΓΣ we are looking for is also n dimensional and it extends into the bulk,

arriving to the boundary along Σ, i.e. ∂ΓΣ = Σ at certain time t. It is described by the

functions

v(ξα, z) , Xa(ξ
α, z) , (B.2)

satisfying the following boundary conditions

v(ξα, 0) = t , Xa(ξ
α, 0) = xa(ξ

α) . (B.3)

We remark that for the holographic entanglement entropy n = d, for the holographic

counterpart of the Wilson loop n = 2 and for the holographic two point function n = 1

(ΓΣ is a geodesic and Σ is made by two points spacelike separated).

The area AΣ of ΓΣ is given by

AΓΣ
=

∫ z∗

0
dz

∫
dξα

√
det γ

zndθ/d
, (B.4)

where z−2dθ/dγab is the induced metric on ΓΣ and det γ denotes the determinant of γab.

Differentiating (B.2) and plugging the results into (2.11), we find that

γzz = −z2(1−ζ)Fv2
z − 2z1−ζvz +Xz ·Xz , (B.5)

γαz = −z2(1−ζ)Fvαvz − z1−ζvα +Xα ·Xz , (B.6)

γαβ = −z2(1−ζ)Fvαvβ +Xα ·Xβ , (B.7)

whereX denotes the vector whose components are Xa, the dots stand for the scalar product

and the subindices indicate the corresponding partial derivatives.

Here we consider the analogue of A
(3)
reg defined in (4.11), namely the area of ΓΣ reg-

ularized through the area of Γ̂Σ computed in hvLif, when F = 1. Given that the hatted

quantities refer to hvLif, it reads

A(3)
reg(t) =

∫ [ ∫ z∗

0

√
det γ

zndθ/d
dz −

∫ ẑ∗

0

√
det γ̂

zndθ/d
dz

]
dn−1ξ . (B.8)

The initial regime is characterized by 0 < t � zh and we want to compute A(3)
reg(t) for small

t. Keeping the first order in (B.8) and repeating the same arguments discussed in [31],

we find

A(3)
reg(t)=

∫ [∫ ẑ∗

0

∂F
(√

det γ
)∣∣
F=1

zndθ/d
δF dz+

√
det γ̂

z
ndθ/d
∗

δz∗+
∑
A=0,a

∂

∂XA,z

(√
det γ̂

zndθ/d

)
δXA

∣∣∣∣ẑ∗
0

]
dn−1ξ ,

(B.9)
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where X0 ≡ v, XA,z ≡ ∂zXA and only the first term within the square brackets provides a

non-vanishing contribution. In order to find it, we employ the well known formula for the

variation of the determinant

∂F
(√

det γ
)

=

√
det γ

2
Tr
(
γ−1∂Fγ

)
. (B.10)

From (B.5), (B.6) and (B.7), we get respectively

∂F (γzz)
∣∣
F=1

= − v2
z

z2(ζ−1)
, ∂F (γαz)

∣∣
F=1

= − vαvz

z2(1−ζ) , ∂F (γαβ)
∣∣
F=1

= − vαvβ

z2(1−ζ) .

(B.11)

Now, from (2.9) with F = 1 we find that v̂ = t − zζ/ζ. Since t is a constant in terms of

ξα, in (B.11) we have that vα = o(t) and vz = −zζ−1 + o(t). Plugging these behaviors

into (B.11), only the first expression is non vanishing and equal to −1. Then, by using

that Xa(ξ
α, z) = xa(ξ

α) + o(z), where o(z) vanishes fast enough when z → 0, we have

γαβ = hαβ + o(z) , γαz = o(z) , γzz = 1 + o(z) , (B.12)

where hαβ ≡ ∂αxa∂βxa is the induced metric on Σ. Notice that (B.12) tells us that the

contribution of the term Tr(γ−1∂Fγ) to ∂F (
√

det γ )|F=1 is equal to −1. Collecting these

observations, we find

∂F
(√

det γ
)∣∣
F=1

= −
√

det h

2
. (B.13)

Finally, since in our case δF = F (z) − 1 = −Mzdθ+ζ is non vanishing only for 0 < z < zc,

the first term in (B.9) becomes

A(3)
reg(t) =

MAΣ

2

∫ zc

0
zdθ(1−n/d)+ζdz =

MAΣ z
dθ(1−n/d)+ζ+1
c

2[dθ(1 − n/d) + ζ + 1]
=

MAΣ(ζt)[dθ(1−n/d)+ζ+1]/ζ

2[dθ(1 − n/d) + ζ + 1]
.

(B.14)

In the last step we have used that zc = (ζt)1/ζ to the first order, which is obtained from

v̂ = t − zζ/ζ and the condition v = 0 at the shell.

B.2 Linear growth

In order to study this regime, we consider the strip (see section 4.1). Following [31], let us

start from (4.22) for the black hole regime. By employing (4.24) and (3.2) with F (z) = 1,

we can write it as follows

z′2 = F (z)

[(
z∗
z

)2dθ

− 1

]
+ g(z)

[(
z∗
zc

)2dθ

− 1

]
≡ H(z) , xc < x 6 `/2 , (B.15)

where

g(z) ≡ (F (zc) − 1)2

4

(
zc
z

)2(1−ζ)
. (B.16)

Notice that the dependence on z of g(z) disappears when ζ = 1. Assuming that H(z) has

a minimum at z = zm with zm < z∗, its defining equation ∂zH(z)|zm = 0 gives

z2dθ
∗ =

zmF ′(zm) + 2(ζ − 1)g(zm)

zmF ′(zm) − 2dθF (zm) + 2(ζ − 1)(zm/zc)2dθg(zm)
z2dθ
m . (B.17)
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Assuming also that at z = zm, it is possible to find zc = z∗c such that H(zm) = 0 (thus

z∗c = z∗c (zm)). Then, z∗c is given by

2dθF (zm)
[
F (zm)+g(zm)|zc=z∗c

]
+
[
(zm/z∗c )

2dθ−1
][

2(1−ζ)F (zm)+zmF ′(zm)
]
g(zm)|zc=z∗c

zmF ′(zm)−2dθ(zm)F (zm)+2(ζ−1)(zm/z∗c )
2dθg(zm)|zc=z∗c

=0.

(B.18)

When F (z) is given by (2.5), (B.17) and (B.18) become respectively

z2dθ
∗ =

2(dθ + ζ)(zm/zh)
dθ+ζ + (1 − ζ)(zc/zh)

2(dθ+ζ)(zc/zm)2(1−ζ)

4dθ − 2(dθ − ζ)(zm/zh)dθ+ζ + (1 − ζ)(zm/zh)2(dθ+ζ)(zc/zm)2
z2dθ
m , (B.19)

and

2dθ
[
1 − (zm/zh)

dθ+ζ
]2

= (B.20)

= −(z∗c/zh)
2(dθ+ζ)

(z∗c/zm)2(1−ζ)

{
1 −
(

zm
zh

)dθ+ζ

+

[(
zm
z∗c

)2dθ

− 1

][
2(1 − ζ) − (dθ + 2 − ζ)

(
zm
zh

)dθ+ζ
]}

.

We note that the expression (B.19) simplifies dramatically for ζ = 1 and provides a simple

relation between z∗ and zm without any reference to zc in this case.

At this point, let us consider the limit z∗ → ∞ with both zm and z∗c kept fixed. For

the moment we just assume to be in a regime where this is allowed. The equations (B.17)

and (B.18) become respectively

zmF ′(zm) − 2dθF (zm) = 2(1 − ζ)

(
zm
zc

)2dθ

g(zm) , F (zm) = −
(

zm
z∗c

)2dθ

g(zm)
∣∣
z∗c

.

(B.21)

Plugging the second equation in (B.21) into the first one, one finds

zmF ′(zm) + 2(1 − ζ − dθ)F (zm) = 0 , at zc = z∗c , (B.22)

which can be written also in the following form

∂zm

(
F (zm)

z
2(dθ+ζ−1)
m

)
= 0 . (B.23)

For F (z) given by (2.5) this equation tells us that

zm
zh

=

(
2(dθ + ζ − 1)

dθ + ζ − 2

) 1
dθ+ζ

=

(
η

η − 1

) 1
2

(2−η)

, η ≡ 2(dθ + ζ − 1)

dθ + ζ
. (B.24)

Notice that in this expression, the dimensionality, the Lifshitz and the hyperscaling expo-

nents occur only through the combination dθ + ζ. In order to have a positive expression

within the brackets of the first equation in (B.24), we need to require η > 1, i.e.

dθ + ζ > 2 . (B.25)

Plugging (B.24) into the second equation of (B.21) computed for (2.5), we find that

z∗c
zh

=
2(η − 1)

1
2

(η−1)

η
1
2
η

. (B.26)
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Figure 15. Thin shell regime: v∗ and zc for the strip in terms of z∗ at constant size `. Here d = 2

and The horizon is zh = 1. Dashed curves correspond to θ = 0 and ζ = 1, while continuous curves

have θ = 1 and ζ = 3. Different colors denote different strips: ` = 4 (black), ` = 5 (blue), ` = 6

(red) and ` = 7 (green).

It is useful to plot curves C` with constant ` in the plane (z∗, zc) or (v∗, zc) as done in

figure 15. As t evolves, z∗ decreases along each curve. After some time (which changes

with `), all the curves lie on a limiting one C∗. For any fixed `, it will be shown that

Areg(t) is linear when the curve C` coincides with C∗. From figure 15 it is clear that, as `

increases, also the linear regime increases. Thus, now we are considering

z∗ → ∞ , η > 1 , zc = (1 − ε)z∗c , (B.27)

where 0 < ε � 1. When z∗ is large, for F (z) given by (2.5), from (B.24) and (B.26) we

have that
zm
z∗c

=
η

2
√

η − 1
> 1 . (B.28)

This tells us that the solutions z(x) are not injective for 0 6 x 6 `/2, which implies that

we cannot employ (4.26), (4.27) and (4.28) because they have been derived assuming that

z(x) is invertible. In this case we have to use the following ones (see [31] for a detailed

discussion)

`

2
=

∫ z∗

zc

zdθ√
z2dθ
∗ − z2dθ

dz +

∫ zm

zc

dz√
H(z)

+

∫ zm

0

dz√
H(z)

, (B.29)

t =

∫ zm

zc

1

z1−ζF (z)

(
E+

z1−ζ
√

H(z)
+ 1

)
dz +

∫ zm

0

dz

z1−ζF (z)

(
E+

z1−ζ
√

H(z)
+ 1

)
dz ,

(B.30)

A = 2`d−1
⊥ zdθ∗

∫ z∗

zc

dz

zdθ
√

z2dθ
∗ − z2dθ

∫ zm

zc

dz

z2dθ
√

H(z)
+

∫ zm

0

dz

z2dθ
√

H(z)

 . (B.31)

Comparing these equations with (4.26), (4.27) and (4.28), notice that only the part outside

the shell is different.
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Since the point z = zm and zc = z∗c is a quadratic zero of H(z), it provides a leading

contribution to the integrals in (B.29), (B.30) and (B.31). Thus, expanding H(z) around

z = zm, we find

H(z) = H2(z − zm)2 + bε . (B.32)

By employing that for a smooth function f(z) we have∫
f(z)√

H2(z − zm)2 + bε
dz =

f(zm)√
H2

arcsinh
(
H2(z − zm)/(bε)

)
+ · · · = −f(zm)√

H2
log ε + . . . ,

(B.33)

we conclude that

`/2 =

√
π Γ
(
1/(2dθ) + 1/2

)
Γ
(
1/(2dθ)

) z∗ − log ε√
H2

, (B.34)

t = − E+(z∗c )

z
2(1−ζ)
m F (zm)

√
H2

log ε = − zdθ∗

zdθ+1−ζ
m

√
−H2F (zm)

log ε , (B.35)

A(3)
reg = −2`d−1

⊥
zdθ∗

z2dθ
m

√
H2

log ε , (B.36)

where in the second equality of (B.35) we used the second equation of (B.21). Combin-

ing (B.35) and (B.36), we also obtain that

A(3)
reg = 2`d−1

⊥

√
−F (zm)

zdθ+ζ−1
m

t ≡ 2`d−1
⊥

vE

zdθ+ζ−1
h

t . (B.37)

For a F (z) given by (2.5), the linear growth velocity reads

vE =

(
zh
zm

)dθ+ζ−1√
−F (zm) =

(η − 1)
η−1

2

η
η
2

, (B.38)

where η has been defined in (B.24) and (B.25) guarantees that η > 1.

We note that the turning point in B.26 admits a nontrivial limit for η → 1, namely

z∗c = 2zh. Given this limit, we can solve (B.19) when dθ > 0, finding that

zm = d
1

2(dθ+1)

θ zh

(
z∗
zh

) dθ
dθ+1

, (B.39)

which tells us that zm diverges when z∗ → ∞, while z∗c remains finite. This implies that

a linear regime is still possible and its velocity is vE = 1, consistent with taking η → 1

in (B.38).

Let us briefly comment on what happens when instead η < 1. Figure 16 shows numer-

ical results for z∗c obtained from (B.20) for several different η values. When η < 1 there is

no turning point and z∗c diverges as z∗ → ∞. This means that ε, as defined in (B.27), is

not small anymore and therefore the method of [30, 31] cannot be applied.
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Figure 16. Numerical solution of (B.19) and (B.20) for d = 2, zh = 1 and some values of (ζ, θ).

The curves for ζ = 3, θ = 0 (purple), ζ = 1, θ = 0 (blue) correspond to η > 1, while ζ = 1, θ = 4

(red) and ζ = 1, θ = 6 (orange) have η < 1 and violate the condition (B.25). The green curve with

θ = ζ = 1 corresponds to the limiting case η = 1. In the curves for η > 1 the turning point z∗
c

approaches a finite value for large z∗ but this is not the case for the η < 1 curves.

B.3 Saturation

B.3.1 Large regions in static backgrounds

In order to understand the regime of saturation, when the holographic entanglement en-

tropy approaches the thermal value, let us consider the static case when the size of the

boundary region is large with respect to zh. In this case a large part of the extremal surface

is very close to the horizon.

Starting with the strip, when ` � zh, we have that (we recall that tilded values of z

refer to the static black hole case, following the notation introduced in section 4.1)

z̃∗ = (1 − ε)zh , (B.40)

where ε is a positive infinitesimal parameter. Expanding (3.5), we find

`

2
= − zh log ε√

2dθzhF
′
h

+ . . . , F ′h ≡ −∂zF (z)
∣∣
z=zh

. (B.41)

In a similar way, plugging (B.40) into (3.1) and keeping the first divergent term as ε → 0,

we get

A = −
√

2 `d−1
⊥ log ε

zdθ−1
h

√
dθF

′
h

+ · · · =
`d−1
⊥ `

zdθh
+ . . . . (B.42)

For a sphere, the analysis is slightly more complicated because we have to expand the

differential equation for the minimal surface [66]. Setting

z(ρ) = zh − ε a(ρ) + O(ε2) , (B.43)

and expanding (3.10), the first order reads

2zh
[
(d − 1)a′ + ρa′′

]
a − zhρa′2 − 2dθF

′
ha

2 = 0 . (B.44)
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This equation cannot be solved exactly, but, at large ρ, we can find that the solution

behaves as

a(ρ) = C
eρ

√
2dθF

′
h/zh

ρd−1
+ . . . , (B.45)

where C is an arbitrary constant. Keeping only the first order in ε in (B.43) and imposing

z(R) = 0, one finds a(R) = zh/ε, whose logarithm gives

− log ε = R
√

−2dθF ′(zh)/zh − (d − 1) log R + . . . . (B.46)

As for the area, plugging (B.43) into (3.9) and keeping the first divergent term as ε →
0, (B.46) allows us to conclude that

A =
2πd/2Rd

dΓ(d/2)zdθh
+ . . . . (B.47)

B.3.2 Saturation time

In the thin shell regime and whenever the saturation to the thermal value of the holographic

entanglement entropy is smooth (the derivative does not jump), we can define the saturation

time ts as the time such that ṽ∗ = 0. For t > ts, the extremal surface is entirely within the

black hole region. Thus, the equation for ts reads

0 = ṽ∗(ts) = ts −
∫ z̃∗

0

dz

z1−ζF (z)
. (B.48)

For F (z) given by (2.5) the integral can be solved explicitly, finding

ts =
(z̃∗)

ζ

ζ
2F1

(
1, ζ/(dθ + ζ); 1 + ζ/(dθ + ζ); (z̃∗/zh)

dθ+ζ
)

. (B.49)

For very large regions, z̃∗ = zh(1 − ε) and therefore (B.49) expanded to the first order in ε

gives

ts = −zζ−1
h log ε

F ′h
= −zζh log ε

dθ + ζ
, (B.50)

where in the second step we have employed (2.5). If the region on the boundary is a strip,

we can use (B.41) to obtain

ts = zζ−1
h

√
2dθ
zhF

′
h

`

2
+ · · · = z

ζ−dθ
2
−1

h

√
dθ

2(dθ + ζ)
` + . . . . (B.51)

For a sphere, (B.46) gives us

ts = zζ−1
h

√
2dθ
zhF

′
h

R − (d − 1)zζ−1
h

F ′h
log R + . . . . (B.52)
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B.3.3 Saturation of the holographic entanglement entropy: strip

In this section we try to estimate A
(2)
reg(t) as a function of t−ts, being ts the saturation time

computed above. As the holographic entanglement entropy approaches its thermal value,

the extremal surface is almost entirely within the black hole region. This means that the

point zc, where the extremal surface crosses the shell, is very close to z∗.

Let us consider the strip first and introduce a positive infinitesimal parameter ε as

follows

zc = z∗

(
1 − ε2

2dθ

)
. (B.53)

Plugging this expansion into (4.24), at first order we get

E+ =
z1−ζ
c (F (zc) − 1)

2

√(
z∗
zc

)2dθ

− 1 =
z1−ζ
∗ (F (z∗) − 1)

2
ε + O(ε2) . (B.54)

Since we are approaching the extremal surface corresponding to the one of the static black

hole, z∗ is close to its thermal value z̃∗, namely we are allowed to introduce another positive

infinitesimal parameter δ as

z∗ = z̃∗

(
1 − δ

2dθ

)
. (B.55)

We want to estimate t − ts in terms of the infinitesimal parameters ε and δ. Using (4.27)

and (B.49), we find that

t − ts =

∫ zc

0

zζ−1

F (z)

(
E+

z1−ζ
√

H(z)
+ 1

)
−
∫ z̃∗

0

zζ−1

F (z)
dz , (B.56)

=

∫ zc

z̃∗

zζ−1

F (z)
dz +

∫ z∗

0

E+z2(ζ−1)

F (z)
√

H(z)
dz −

∫ z∗

zc

E+z2(ζ−1)

F (z)
√

H(z)
dz , (B.57)

= − z̃ζ∗
2dθF (z̃∗)

δ +
z̃1−ζ
∗ (F (z̃∗) − 1)Q1(z̃∗)

2
ε + . . . , (B.58)

where H(z) is defined as the r.h.s. of (4.22) (see also (B.15)), Q1(z∗) is defined as follows

Q1(z∗) ≡
∫ z∗

0

z2(ζ−1)

F (z)
√

F (z)
[
(z∗/z)2dθ − 1

] dz , (B.59)

and the dots denote higher orders in ε and δ. Following [31], one can find a relation between

δ or ε from the expansion of (4.26). The presence of ζ does not modify the result, which

reads

δ =
1 − F (z̃∗)

F (z̃∗)Q′2(z̃∗)
ε + O(ε2) , (B.60)

where (see [31] for further details)

Q2(z∗) ≡
∫ z∗

0

dz√
F (z)

[
(z∗/z)2dθ − 1

] . (B.61)
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Thus, plugging this result into (B.58), one finds

t − ts ∝ ε + O(ε2) , (B.62)

where the coefficient in front of ε depends on ζ and θ, as can be clearly seen from (B.58),

but the power of ε does not. Given this result, one can repeat precisely the computation

of [31] and show that in this regime

A(2)
reg(t) ∝ ε2 + O(ε3) , (B.63)

i.e.

A(2)
reg(t) ∝ (t − ts)

2 + O
(
(t − ts)

3
)
. (B.64)

Notice that the exponent is independent of θ and ζ.

B.3.4 Saturation of the holographic entanglement entropy: sphere

Given a black hole in the hvLif spacetime, the corresponding area functional is (3.9), whose

extremization gives (3.10). Since (3.10) is invariant under the change ρ → −ρ, its solution

z(ρ) is an even function. In particular, its Taylor series expansion contains only positive

even powers of ρ. Introducing z(0) = z̃∗, the expansion of z(ρ) for ρ ∼ 0 gives

z(ρ) = z̃∗ − dθ
2dz̃∗

F (z̃∗)ρ
2 + O(ρ4) . (B.65)

For the Vaidya spacetime in the thin shell regime, the equation for z(ρ) for 0 < ρc < ρ < R

is (4.43), where E+ has been defined in (4.41). We recall that the quantities associated

to the hvLif vacuum part can be obtained by sustituting E+ with E− = 0 in all the

corresponding expressions for the black hole part. The relation defining v in the black hole

part of the metric is (4.42). The total area is (4.45), while the boundary time t is obtained

by integrating v′ (see (4.42)) outside the shell, i.e. (4.44).

The assumption in the following is that we are at a boundary time such that the

minimal surface lies almost entirely outside the shell and has almost reached its static

configuration, that is

z(ρ) = z0(ρ) + δz1(ρ) + O(δ2) , (B.66)

where δ is supposed small and z0 is solution of (3.10) which is just (4.43) with E+ = 0.

The boundary conditions are such that z0(R) = z1(R) = 0. Expanding (4.43) to the first

order in δ, we find the following differential equation for z1

z′′1 + P (ρ)z′1 + Q(ρ)z1 = S(ρ) , z′1(0) = z1(R) = 0 , (B.67)

where

P (ρ) =
d − 1

ρ
+

(
2dθ
z0

+
3(d − 1)z′0 − ρF ′(z0)

ρF (z0)

)
z′0 , (B.68)

Q(ρ) =
dθ
z0

(
F ′(z0)−

F (z0)+z′20
z0

)
− 1

2F (z0)

(
z′20 F ′′(z0)−

F ′(z0)z
′2
0

[
ρF ′(z0)−2(d−1)z′0

]
ρF (z0)

)
,

(B.69)

S(ρ) =
E2

+

δ

(
1+

z′20
F (z0)

)(
(dθ+ζ−1)ρ

z0
+

2(d−1)z′0−ρF ′(z0)

2F (z0)

)
ρ2(1−d)z

2(dθ+ζ−1)
0 . (B.70)
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Notice that S(ρ) depends on E2
+/δ. Indeed, since E+ → 0 when δ → 0, we could have

E2
+/δ = O(1) as δ → 0. In the following the correct relation between E+ and δ will be

obtained and E+/δ = O(1) (see (B.92) and (B.98)).

It is useful to remind that, given a second order linear differential equation

f ′′(x) + A(x)f ′(x) + B(x)f(x) = C(x) , (B.71)

a solution can be written in terms of the solutions fj(x) (j = 1, 2) of the corresponding

homogenous differential equation (i.e. (B.71) with C = 0). It reads

finh(x) = f1(x)

∫ x

x0

f2(y)C(y)

f1(y)f ′2(y) − f2(y)f ′1(y)
dy − f2(x)

∫ x

x0

f1(y)C(y)

f1(y)f ′2(y) − f2(y)f ′1(y)
dy ,

(B.72)

where x0 is arbitrary and finh(x0) = 0 is trivially satisfied. Then, since (B.71) is linear, its

most general solution is finh + Af1 + Bf2.

Expansion for ρ ' 0. In this regime we can expand z0(ρ) as in (B.65). Then, (B.68),

(B.69) and (B.70) become respectively

P (ρ) =
d − 1

ρ
+

dθ
d

(d − 3)F (z̃∗) + z̃∗F
′(z̃∗)

z̃2
∗

ρ + O(ρ3) , (B.73)

Q(ρ) = dθ
z̃∗F

′(z̃∗) − F (z̃∗)

z̃2
∗

+ O(ρ2) , (B.74)

S(ρ) =
E2

+

δ

[
2(θ − ζd)F (z̃∗) + dz̃∗F

′(z̃∗)
]
z̃

2(dθ+ζ)−3
∗

2d F (z̃∗) ρ2(d−1)
+ O(1/ρ2(d−2)) . (B.75)

The homogeneous equation is

z′′1 (ρ) +
d − 1

ρ
z′1(ρ) + Q0z1(ρ) = 0 , Q0 ≡ Q(0) = dθ

z̃∗F
′(z̃∗) − F (z̃∗)

z̃2
∗

. (B.76)

The independent solutions j1, j2 of this equation can be expressed in terms of Bessel func-

tions as follows

j1(ρ) =
Γ(d/2)

(
√

Q0ρ/2)
d−2

2

J d−2
2

(
√

Q0ρ) , j2(ρ) =

−π
2 Y0(

√
Q0ρ) d = 2

− π
Γ( d−2

2
)

(√
Q0

2ρ

) d−2
2

Y d−2
2

(
√

Q0ρ) d > 2

(B.77)

whose behavior for ρ → 0 is given respectively by

j1(ρ) = 1 − Q0

2d
ρ2 + O(ρ4) , j2(ρ) =

{
log ρ + log(

√
Q0/2) + γE + . . . d = 2

ρ2−d + . . . d > 2
(B.78)

Considering only the first terms of the expansions (B.78) and (B.75) and plugging them

into (B.72), one finds

z1,inh(ρ) =


E2

+

δ
z̃

2(1−θ+ζ)−1
∗ (z̃∗F ′(z̃∗)−(2ζ−θ)F (z̃∗))

4F (z̃∗)
log2 ρ d = 2

E2
+

δ
z̃

2(dθ+ζ−1)−1
∗ (dz̃∗F ′(z̃∗)−2(dζ−θ)F (z̃∗))

4d(d−2)2F (z̃∗)
ρ−2(d−2) d > 2

(B.79)

In the following j1, j2 of z1,inh will indicate only their ρ dependence.
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Expansion for ρ ' R. First, let us consider the case dθ 6= 1, when (A.11) can be

applied. Introducing the variable σ ≡ R − ρ, from (B.68), (B.69) and (B.70) we find

P (ρ) =
dθ − 3

2σ
+ O

(
σ0
)
, (B.80)

Q(ρ) = − dθ
4σ2

+ O
(
σ−1

)
, (B.81)

S(ρ) =
E2

+

δ

(
2(dθ − 1)σ

(d − 1)R

)dθ+ζ−5/2 ζ(d − 1)R2(ζ−θ−1/2)

dθ − 1
+ . . . . (B.82)

Near the boundary we find the following homogeneous equation

z′′1 (σ) − dθ − 3

2σ
z′1(σ) − dθ

4σ2
z1(σ) = 0 , (B.83)

whose solutions read

k1(σ) = σ−1/2 , k2(σ) = σdθ/2 . (B.84)

Since z1(R) = 0 and k1(σ) diverges when σ → 0, the solution of (B.83) is proportional to

k2. Adapting (B.72) to this case through (B.84) and (B.82) we obtain that

z1,inh(σ) =
E2

+

δ

4ζR3/2−d−θ+ζ

(dθ + ζ)(dθ + 2ζ − 1)

(
2(dθ − 1)

d − 1

)dθ+ζ−7/2

σζ−1/2+dθ + . . . , (B.85)

which vanishes for σ → 0 because ζ > 1.

Note that (B.85) in the limit σ → 0, z1 is well behaved and thus in the following cal-

culation the boundary contribution will be ignored being E+/δ ∼ δ → 0 when approaching

saturation. We have checked that, by employing the parametric reformulation (A.22), this

happens also when dθ = 1. This is not the case for (B.79) which will play an important

role in determine the late time behaviour of the entanglement entropy.

Approaching saturation. Let us now try to put things together. First, notice that as

the solution approaches its thermal value, we have that

zc → z̃∗ , z∗ → z̃∗ , (B.86)

where z̃∗ is associated to the tip of the static black hole geodesic, and at the same time

ρc → 0 , E+ → 0 , δ → 0 . (B.87)

In the following we will try to relate the above quantities in their approach to equilibrium

values. To this purpose it turns out to be useful to relate the three infinitesimal quantities

ρc, δ and E+ among themselves.

First, one introduces a new infinitesimal parameter ε

ρc ≡ zcε . (B.88)

From (B.65) with F = 1 we have that

z∗ = zc

(
1 +

dθ
2d

ε2 + O(ε4)

)
, (B.89)
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and also

z′−(ρc) = − dθ
dz∗

ρc + O(ρ3
c) = −dθ

d
ε + O(ε3) , (B.90)

where we recall that z− refers to the value of the solution at ρ = ρc coming from the hvLif

part living in [0, ρc]. From (4.42) with E+ = 0 and F = 1 we find

v′c =
dθz

ζ
c

dz∗
ε + O(ε3) =

dθ
d

zζ−1
c ε + O(ε3) , (B.91)

and finally, plugging (B.91) and (B.88) into (4.42), we get that

E+ =
dθ
2d

(F (zc) − 1)zθ−ζc εd . (B.92)

By employing (B.66), (B.77) and (B.78) we can write z(ρ) at ρ = ρc as follows

z(ρc) = z0(ρc) + δ
[
α1j1(ρc) + α2j2(ρc) + z1,inh(ρc)

]
, (B.93)

where the constants α1 and α2 are constrained by the boundary condition z1(R) = 0.

Since z′(ρ) has a jump at ρ = ρc, the matching constraint (4.36) allows to relate (B.90)

and (B.93) (the latter one gives z′+(ρc)), namely we have

z′+(ρc) − z′−(ρc) =
z1−ζ
c v′c

2

(
1 − F (zc)

)
, (B.94)

which gives

z′+(ρc) = z′−(ρc)+
z1−ζ
c v′c
2

(
1−F (zc)

)
= z′0(ρc)+δ

[
α1j
′
1(ρc)+α2j

′
2(ρc)+z1,inh

′(ρc)
]
. (B.95)

When d > 2, (B.93) and (B.95) become respectively

zc = z̃∗ − dθ
2d

F (z̃∗)
z2
c

z̃∗
ε2+δ

(
α1+α2z

2−d
c ε2−d

)
+O(ε4) , (B.96)

dθ
d

(
1−F (zc)

2
−1

)
zc
z∗

ε = −dθ
d

F (z̃∗)
zc
z̃∗

ε + δα2(2 − d)z1−d
c ε1−d + O(ε3) , (B.97)

Since zc → z̃∗ when ε → 0, at first order we have zc/z̃∗ = 1 in (B.97), and therefore

δ =
dθ(1 − F (z̃∗))z̃

d−1
∗

2dα2(d − 2)
εd + O(εd+2) . (B.98)

Plugging this result into (B.96) we obtain

zc = z̃∗

[
1 − dθ

2d

(
F (z̃∗) +

1 − F (z̃∗)

2 − d

)
ε2 + O(ε4)

]
. (B.99)

Instead, for d = 2 (B.93) and (B.95) become respectively

zc = z̃∗ − 2 − θ

4
F (z̃∗)

z2
c

z̃∗
ε2 + δ

[
α1 + α2

(
log ε + γE + log

√
Q0zc
2

)]
+ O(ε4 log2 ε) ,

(B.100)

2 − θ

2

(
1 − F (zc)

2
− 1

)
zc
z∗

ε = −2 − θ

2
F (z̃∗)

zc
z̃∗

ε +
α2δ

zcε
+ . . . . (B.101)
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Notice that the constant factor multiplying α2 in (B.100) can be reabsorbed by a redefini-

tion of α1

α̃1 ≡ α1 + α2γE + α2 log

√
Q0

2
. (B.102)

From (B.101) we find

δ = −(2 − θ)[1 − F (z̃∗)]z̃∗
4α2

ε2 + O(ε4 log ε) , (B.103)

which can be plugged into (B.100), giving

zc = z̃∗

{
1 − (2 − θ)[1 − F (z̃∗)]

4
ε2 log ε − 2 − θ

4

[
F (z̃∗) +

1 − F (z̃∗)

α2
(α̃1 + α2 log z̃∗)

]
ε2

}
.

(B.104)

Time. Now we can proceed by evaluating the boundary time at first nontrivial order in ε.

By using (4.44) we get

t = ts +
zc − z̃∗

z̃1−ζ
∗ F (z̃∗)

+ E+

∫ R

ρc

z
dθ+2(ζ−1)
0

√
1 + z′20 /F (z0)

ρd−1F (z0)
dρ + O(E2

+) , (B.105)

where we have employed the definition of saturation time given in (B.48) and we have

approximated z with z0 in the integral occurring in (B.105) because E+ ∝ εd. The integrand

in (B.105) can be written as h(ρ)/ρd−1 where h(0) is finite. Thus, when ρc → 0, the

divergent part of the integral can be computed as h(ρc) times the divergent part of integral

of 1/ρd−1 between ρc and R. This gives for (B.105) the following result

t − ts =
zc − z̃∗

z̃1−ζ
∗ F (z̃∗)

+
E+z̃

dθ+2(ζ−1)
∗
F (z̃∗)

×
{

− log ε − I0 + . . . d = 2
(z̃∗ε)2−d

d−2 + . . . d > 2
(B.106)

where I0 is a numerical constant containing the O(ε0) terms of the expansion. Now,

using (B.92), (B.99) and (B.104) we obtain

t − ts =

{
− (2−θ)z̃ζ∗

4

[
1 + 1−F (z̃∗)

F (z̃∗)

(
α̃1
α2

+ I0

)]
ε2 d = 2

−dθ
2d z̃ζ∗ε

2 d > 2
(B.107)

Area. The same strategy can be followed to compute the area. From (4.45) we find

A =
2πd/2

Γ(d/2)

∫ ρc

0

ρd−1
√

1 + z′2

zdθ
dρ +

∫ R

ρc

dρ
ρd−1

√
1 + z′2/F (z)

zdθ
√

1 + A2E2
+/F (z)

 (B.108)

=
2πd/2

Γ(d/2)

[
C0 + C1 − E2

+

2
C2 + O(E4

+)

]
, (B.109)

where we have kept only the first non trivial order in E+ ∝ εd and the Ci are defined as

follows

C0 ≡
∫ ρc

0

ρd−1
√

1 + z′2

zdθ
dρ , C1 ≡

∫ R

ρc

ρd−1

zdθ

√
1 +

z′2

F (z)
dρ ,

C2 ≡
∫ R

ρc

dρρ1−dzdθ+2(ζ−1)

√
1 + z′2/F (z)

F (z)
.

(B.110)
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From (B.88), (B.90), (B.99) and (B.104) we get

C0 ' ρd−1
√

1 + z′2

zdθ

∣∣∣∣∣
ρ→ρ−c

ρc =
zθcε

d

d
− d2

θz
θ
cε
d+2

2d2(d + 2)
+ O(εd+4) . (B.111)

As for the functional C1, notice that its integrand is the same occurring in (3.9) (which is

minimized by z0) but the integration domain is (ρc, R) instead of (0, R). Since ρc → 0, we

have that C1 is equal to the static black hole area Abh plus small corrections, which can

be originated both from the fact that now the integration domain is not (0, R) and also

from evaluating the integral at z = z0 + δz1. The second kind of contribution, obtained by

computing the variation of the integrand on z0, gives only a boundary term (computed at

ρ = ρc). Thus we have

C1 = Abh −
∫ ρc

0

ρd−1

zdθ0

√
1 +

z′20
F (z0)

dρ + δz1

(
ρd−1

zdθ
∂z′
√

1 + z′2/F (z)
∣∣∣
z=z0

) ∣∣∣∣
ρ=ρc

(B.112)

= Abh − zθcε
d

d
− d2

θ[(d + 1)F (zc) − (d + 2)]

2d2(d + 2)
zθcε

d+2 +
dθ
d

[zc − z0(ρc)] z
θ−1
c εd + O(εd+4) ,

(B.113)

where

zc − z0(ρc) =

{
− (2−θ)[1−F (zc)]

4 zc log ε d = 2
dθ[1−F (zc)]

2d(d−2) zc ε2 d 6= 2
(B.114)

As for C2, since it is already multiplied by E2
+ in (B.109), it is enough to compute it at

z = z0 and keep only the most divergent term (at ρ = ρc). This turns out to provide the

same integral occurring in (B.106) and for C2 we find

C2

∣∣
z0

= −z
dθ+2(ζ−1)
c

F (zc)
×
{

log ε + I0 + . . . d = 2
(zcε)2−d

2−d + . . . d > 2
(B.115)

where I0 is the same quantity as in (B.106).

Finally, putting (B.111), (B.113) and (B.115) together we find

A(2)
reg =

2πd/2

Γ(d/2)

d2
θ[1 − F (z̃∗)]z̃

θ
∗

2d2
×


1−F (z̃∗)
4F (z̃∗)

ε4 log ε + . . . d = 2(
d−2
d+2 + 1−F (z̃∗)

4F (z̃∗)

)
εd+2

2−d + . . . d > 2
(B.116)

Finally, comparing (B.107) and (B.116), we find (5.14).

B.4 Initial conditions for the shooting procedure

The numerical analysis of the ordinary differential equations (4.4) and (4.5) for the strip

and (4.31) and (4.32) for the sphere employs the shooting method to relate {z∗, v∗} to

{`/2, t} for the strip or {R, t} for the sphere. The numerical procedure does not allow us

to impose initial conditions at x = 0, so we instead start from x = ε̃, where ε̃ is a small

positive number.
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Expanding the solution (z(x), v(x)) for both the strip and the sphere around x = 0,

we have that

v = v∗ +
1

2
v′′∗ x2 + o(x2) , z = z∗ +

1

2
z′′∗ x2 + o(x2) , (B.117)

where z′(0) = v′(0) = 0 for parity and we have introduced the notation v′′∗ ≡ v′′(0) and

z′′∗ ≡ z′′(0). Plugging (B.117) into (4.4) and (4.5), for the strip we find

v′′∗ = dθz
ζ−2
∗ , z′′∗ = −dθ

z∗
F (v∗, z∗) , (B.118)

while for the sphere, from (4.31) and (4.32) we obtain

v′′∗ =
dθ
d

zζ−2
∗ , z′′∗ = − dθ

z∗d
F (v∗, z∗) . (B.119)

From these expressions we can then read off initial conditions (v(ε̃), v′(ε̃)) and (z(ε̃), z′(ε̃))

for the shooting algorithm.

Note that for both the strip and the sphere the sign of z′′∗ is opposite to that of dθ. It

follows that we must have dθ > 0 for our numerics to converge to a solution ending on the

boundary at z = 0.

C Strip in more generic backgrounds

In order to understand the terms of the metric determining the linear regime, let us consider

the following static background

ds2 =
1

z2dθ/d

(
− Q(z)dt2 − P (z)2

Q(z)
dz2 + dx2

)
, (C.1)

which reduces to the black hole (2.4) when Q(z) = z2(1−ζ)F (z) and P (z) = z1−ζ . By

introducing the time coordinate v as

dv = dt − P (z)

Q(z)
dz , (C.2)

the metric (C.1) can be written as

ds2 =
1

z2dθ/d

(
− Q(z)dv2 − 2P (z)dvdz + dx2

)
. (C.3)

Here we consider the Vaidya background obtained by promoting Q to a time dependent

function, i.e.

ds2 =
1

z2dθ/d

(
− Q(v, z)dv2 − 2P (z)dvdz + dx2

)
. (C.4)

Considering a strip in the spatial part of the boundary z = 0, its holographic entanglement

entropy is obtained by finding the extremal surface of the following functional area

A[v(x), z(x)] = 2`d−1
⊥

∫ `/2

0

√
B

zdθ
dx , B ≡ 1 − Q(v, z)v′2 − 2P (z)z′v′ , (C.5)
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and the boundary conditions for v(x) and z(x) are given by (4.2). We only have to adapt

the analysis performed in section 4.1 to the background (C.4). The equations of motion

of (C.5) read

∂x
[
Qv′ + Pz′

]
= Qvv

′2/2 , (C.6)

∂x
[
Pv′
]

= dθB/z + Qzv
′2/2 + Pzv

′z′ . (C.7)

Choosing the thin shell profile

Q(v, z) = P (z)2 + θ(v)
[
Q(z) − P (z)2

]
, (C.8)

we have that for v < 0 the backgrounds is

ds2 =
1

z2dθ/d

(
− P (z)2dt2 + dz2 + dx2

)
, (C.9)

while for v > 0 the metric becomes (C.1). The equation (C.6) tells us that Qv′ + Pz′ is

constant for v 6= 0 but we recall that it takes two different values E− (for v < 0) and E+

(for v > 0). Since v′(0) = z′(0) = 0, we have that E− = 0. Integrating across the shell as

in section 4.1, (C.7) implies again that

v′+ = v′− ≡ v′c , at x = xc . (C.10)

Then (C.6) leads to

z′+ − z′− = − 1

2P (z)
(Q(z) − P 2(z))v′c . (C.11)

From these equations, we get

E+ =
(Qc − P 2

c )v′c
2

= −(Qc − P 2
c )z′−

2Pc
, (C.12)

where Pc ≡ P (zc), Qc ≡ Q(zc) and again z′− = −
√

(z∗/zc)2dθ − 1. Thus, in the black hole

part xc < x 6 `/2 we have

v′ =
E+ − Q(z)z′

P (z)
, (C.13)

z′2 =
Q(z)

P (z)2

[(
z∗
z

)2dθ

− 1

]
+

(Qc − P 2
c )2

4P 2
c P (z)2

[(
z∗
zc

)2dθ

− 1

]
≡ H(z) . (C.14)

Repeating the steps explained to get (4.27) and (4.28), in this case we find

t =

∫ zc

0

P (z)

Q(z)

(
E+

P (z)
√

H(z)
+ 1

)
dz , A = 2`d−1

⊥ zdθ∗

∫ zc

0

dz

z2dθ
√

H(z)
. (C.15)

– 44 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
1

C.1 Linear growth

At this point we take the limit of large z∗, keeping zm and zc finite. In this limit, (C.14)

becomes

z′2 =

(
Q(z)

z2dθ
+

(Qc − P 2
c )2

4z2dθ
c P 2

c

)
z2dθ
∗

P (z)2
= H(z) . (C.16)

The equation ∂zmH(zm) = 0, which defines zm, reads

(Q′mPm − 2QmP ′m)zm − 2dθPmQm − 2P ′mγcz
2dθ+1
m = 0 , (C.17)

where the subindex m denotes that the corresponding quantity is computed at z = zm and

we defined

γc ≡ (Qc − P 2
c )2

4z2dθ
c P 2

c

. (C.18)

Introducing γ∗c ≡ γc|zc=z∗c , the equation for z∗c reads

γ∗c = − Qm

z2dθ
m

, (C.19)

which reduces to the second equation of (B.21) for the case considered in the appendix B.

Then, plugging (C.19) into (C.17) we find

Q′mzm − 2dθQm = 0 , at zc = z∗c , (C.20)

which can also be written as

∂zm

(
Qm

z2dθ
m

)
= 0 . (C.21)

Repeating the steps done to get (B.34), (B.35) and (B.36), in this case we obtain

`/2 =

√
π Γ(1/(2dθ) + 1/2)

Γ(1/(2dθ))
z∗ − log ε√

H2
, (C.22)

t = − E+

Qm

√
H2

log ε = − zdθ∗

zdθm
√−H2Qm

log ε , (C.23)

A(3)
reg = − 2`d−1

⊥
zdθ∗

z2dθ
m

√
H2

log ε . (C.24)

Thus, (C.23) and (C.24) allow us to find that

A(3)
reg = 2`d−1

⊥

√−Qm

zdθm
t . (C.25)

We conclude that P (z) does not affect the linear growth regime.
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D Vaidya backgrounds with time dependent exponents

In this appendix we consider the following generalization of (2.11)

ds2 = z2θ(v)/d−2
(
−z2(1−ζ(v))F (v, z) dv2 − 2z1−ζ(v) dv dz + dx2

)
, (D.1)

where we have introduced a temporal dependence in the Lifshitz and hyperscaling expo-

nents. Let us discuss the energy-momentum tensor when the metric (D.1) is on shell. For

simplicity, we consider only the backgrounds (D.1) with F (v, z) = 1 identically.

The first case we consider is given by θ(v) = const. The associated energy-momentum

tensor reads

Tµν = T (hs)
µν + T (ζ)

µν , (D.2)

where T
(hs)
µν is the part containing the hyperscaling exponent, which occurs also when ζ(v)

is constant, namely

T (hs)
µν =

−z−2ζ(dθ+1+θ/d)dθ/2 −z1−ζ(dθ+1+θ/d)dθ/2 0

−z1−ζ(dθ+1+θ/d)dθ/2 z−2dθ(θ/d−ζ+1) 0

0 0 z−2[d2
θ(d−1)/d+2ζ(ζ−1+dθ)]Id/2

,

(D.3)

(we have denoted by Id the d dimensional identity matrix), while T
(ζ)
µν is the term due to

ζ ′ 6= 0

T (ζ)
µν =

 0 0 0

0 0 0

0 0 zζζ ′ Id

 . (D.4)

Similarly, we can consider the situation where ζ(v) = const. It leads to

Tµν = T (hs)
µν + T (θ)

µν , (D.5)

where T
(hs)
µν is (D.3) and

T (θ)
µν =

θ′

z

 zζ−1
[
2+log z

(
ζ−dθ−θ/d+(θ′/d) log z

)]
(1 − dθ log z) 0

(1 − dθ log z) 0 0

0 0 zζ−1
[
2+(d−1)(dθ/d) log z

]
Id

,

(D.6)

which vanishes when θ(v) is constant, as expected. When both θ′(v) 6= 0 and ζ ′(v) 6= 0, we

find that

Tµν = T (hs)
µν + T (ζ)

µν + T (θ)
µν + T (θζ)

µν , (D.7)

where T
(hs)
µν , T

(ζ)
µν and T

(θ)
µν have been defined respectively in (D.3), (D.4) and (D.6), while

T
(θζ)
µν is given by

T (θζ)
µν =

−ζ ′θ′ log2(z) 0 0

0 0 0

0 0 0d

 , (D.8)

being 0d is the d × d matrix whose elements are zero.

It could be interesting to analyze the Null Energy Condition for these kind of back-

grounds. Unfortunately, since the inequalities turn out to be lengthy and not very illu-

minating, we will consider here only the case of θ(v) = const. First, since a null vector
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with respect to the metric (D.1) is null also with respect to (2.11), we can employ the

vectors (2.14). Secondly, given the additive structure of Tµν in (D.2), we can consider

the results of section 2 and add to them the contribution of T
(ζ)
µν NµNν . The resulting

inequalities read

dθ
[
ζ(v) − 1 − θ/d

]
> 0 , (D.9)[

ζ(v) − 1
][

dθ + ζ(v)
]
+ zζ(v)ζ ′(v) > 0 , (D.10)

which reduce respectively to (2.7) and (2.8) when ζ(v) = const, as expected. When θ = 0,

the inequality (D.9) tells us that ζ(v) > 1. As for (D.10), it allows, for instance, a profile

with ζ ′(v) > 0. In the critical case θ = d−1, (D.9) becomes ζ(v) > 2−1/d > 1 while (D.9)

becomes [ζ(v)2 − 1] + zζ(v)ζ ′(v) > 0. Thus, for instance, profiles having ζ ′(v) > 0 are again

allowed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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