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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive

muscular paralysis reflecting patchy motoneuron degeneration. The exact causes are still

unknown, but it is thought to be a complex interplay among multiple pathological mechanisms,

such as excitotoxicity, mitochondrial dysfunction, increased reactive oxygen species, and

endoplasmic reticulum stress. High levels of glutamate have been detected in the cerebrospinal

fluid of ALS patients due to decreased function of the excitatory aminoacid transporter (EAAT)

proteins, responsible for glutamate re-uptake. We, therefore, hypothesize that glutamate-induced

excitotoxicity is one major provoking mechanism of ALS. During disease progression, the

hypoglossal nucleus is one of the most affected motor nuclei due to some peculiarities of its

motoneurons, like Ca2+ permeable AMPA receptors, low Ca2+ buffer capacity and poor EAAT

expression. Thus, these characteristics make hypoglossal motoneurons (HMs) readily vulnerable

to glutamate excitotoxicity. To investigate the early pathological mechanisms activated by

excitotoxic stress, we used an established in vitro model of the neonatal rat brainstem slice

containing the nucleus hypoglossus in which excitotoxicity is induced by the glutamate uptake

blocker DL-threo-β-benzyloxyaspartate, TBOA. Because the activation of nicotinic acetylcholine

receptors (nAChRs) by nicotine has manifested neuroprotective function in certain brain neurons,

we investigated if nicotine could arrest the progression of the excitotoxic damage to highly

vulnerable HMs. On about 50% of HMs, TBOA evoked intense network bursting activity and

large Ca2+ transients that were inhibited by 1-10 µM nicotine, whereas nAChR antagonists

facilitated burst emergence in non-bursting cells. Moreover, nicotine inhibited glutamatergic

transmission and enhanced GABA and glycine release. The strong neuroprotection given by

nicotine prevented cell loss after 4h of continuous TBOA exposure. This neuroprotective action

was due to block of downstream processes of neurotoxixcity such as impaired energy

metabolism, increased intracellular reactive oxygen species, upregulated genes involved in the

endoplasmic reticulum stress, and increased level of the apoptotic inducing factor (AIF). We

hypothesised that the neuroprotective role of nicotine was mediated by its effect on gap junctions

and, in particular, on connexin 36, which supports excitotoxicity spread. Moreover, nicotine
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raised the expression levels of the heat shock protein 70 (Hsp70), a protective molecule that binds

AIF preventing its nuclear translocation associated with cell death. Our results suggest that

activation of nAChRs should be a potential target for inhibiting excitotoxic damage of

motoneurons at an early stage of the neurodegenerative process.
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Introduction

1. Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Charcot disease, is a

neurodegenerative disease characterized by progressive muscular paralysis reflecting the loss of

cortical, brainstem, and spinal motoneurons. ALS symptoms were firstly described by Charles

Bell (1774 – 1842) in 1824, but it was the French neurobiologist and physician Jean-Martin

Charcot (1825 – 1893) to connect the clinical signs and the neuropathology features in the 1860s

(Rowland LP, 2001). ALS leads to death due to respiratory failure after a progressive muscular

paralysis (Orsini et al., 2015).

1.1. Epidemiology and clinical features

ALS is classified as a rare disease inasmuch the incidence ranges between 1.5 to 2.5 for 100,000

patients per year in Europe and North America. Nevertheless, there are some geographic loci of

the Western Pacific where prevalence of ALS is 50 - 100 times higher than elsewhere in the

world, like the Kii Peninsula of Japan, the islands of Guam and Rota, and southern West New

Guinea (Hermosura and Garruto, 2007; Wijesekera and Leigh, 2009). From the first symptoms

the mean survival is of about 36 months but it could varies considerably between few months to

10 -15 years (Soriani and Desnuelle, 2009).

About 90% of the patients are affected by the sporadic form of ALS (sALS) in which onset

usually occurs in the age range of 55 – 65, with a mean of 64 years; and a slight male prevalence

(M:F ratio ~1.5:1), probably connected to possible protective hormonal factors in women (Calvo

et al., 2014; Orsini et al., 2015). About two thirds of sALS patients manifest a spinal form of the

disease, which firstly affects lower motoneurons either distally or proximally in the upper and/or

lower limbs (Orsini et al., 2015; Wijesekera and Leigh, 2009). First symptoms are asymmetric

and characterized by weakness and wasting of the muscles, which evolve in spasticity of the

weakened limbs affecting manual dexterity and gait (Wijesekera and Leigh, 2009; Zarei et al.,

2015). Patients who manifest dysarthria as first symptom followed by dysphagia present the
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bulbar sALS form which affects about the 30% of patients (Wijesekera and Leigh, 2009; Zarei et

al., 2015). Limbs weakness can occur simultaneously or within 2 years (Wijesekera and Leigh,

2009).

The familiar form of ALS (fALS) is manifested in 5-10% of the cases, with a pathological and

clinical presentation similar to sALS (Zarei et al., 2015). In this case, the mean age of onset is

about a decade earlier compared with sALS and the disease connected with both autosomal

dominant and recessive pattern of inheritance affects equally males and females (Wijesekera and

Leigh, 2009). Till now, researchers have discovered more than 20 gene mutations involved in

fALS and sALS, where the most frequent is C9ORF72 (Calvo et al., 2014).

Figure 1. Schematic representation of the diverse pathological process that may contribute in
motoneuron degeneration pathogenesis (from Vucic and Kiernan, 2010).
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1.1.1. Motoneuron degeneration pathogenesis

In ALS patients, motoneuron degeneration causes remain unknown for the majority of cases,

most likely they are due with a vast and complex interplay among multiple and interconnected

mechanisms (Fig. 1).

1.1.2. Excitotoxicity

The major excitatory neurotransmitter in the central nervous system (CNS) is glutamate, which is

virtually involved in most activities of the brain (Lewerenz and Maher, 2015; Miladinovic et al.,

2015). Once released into the synaptic cleft, in addition to metabotropic receptor activation,

glutamate binds to postsynaptic ionotropic receptors (AMPA, kainate, and NMDA), which

mediate sodium and calcium influx into the cell, leading to plasma membrane depolarization and

action potential generation (Lewerenz and Maher, 2015; Van Den Bosch et al., 2006). Increases

of glutamate levels in the extracellular space to a concentration of 2-5 µM are able to induce

neuronal dysfunction and death, a process called excitotoxicity (Fig. 2; Dong et al., 2009; Van

Den Bosch et al., 2006). Excitotoxicity can be activated by an increase of the neurotransmitter

release or by a deficit in the glutamate uptake system (Van Den Bosch et al., 2006). Glutamate

re-uptake is mediated by the excitatory amino acid transporters (EAATs), located on astrocytes,

oligodendrocites and neurons (Miladinovic et al., 2015). The isoform GLT-1/EAAT2, which is

found on the astrocytic plasma membrane, is the most abundant and widely expressed throughout

the CNS and responsible for about 90% of glutamate re-uptake (Miladinovic et al., 2015; Van

Den Bosch et al., 2006). In autopsied ALS patients a pronounced EAAT2 reduction in the grey

matter has been observed with significant loss of motoneurons (Rothstein et al., 1992, 1995;

Sasaki et al., 2000). Moreover, probably as a consequence of the downregulation of the EAAT2,

in the CSF of ALS patients glutamate levels are increased (Rothstein et al., 1990).

Although excitotoxicity could affect any kind of neuron, several data highlight a particular

vulnerability of hypoglossal motoneurons (HMs; Van Den Bosch et al., 2006) due to expression

of GluR2-lacking AMPA receptors (Laslo et al., 2001), large amount of intracellular free Ca2+

(Ladewig et al., 2003), and relatively low levels of glutamate transporters (Rothstein et al., 1992)

and Ca2+ binding proteins (Medina et al., 1996). Moreover, gap junctions play a pivotal role and
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are the fundamental determinants for spreading excitotoxicity and the following cell death

(Belousov and Fontes, 2014).

Glutamate dysfunctions are not limited to ALS, but are involved in other central pathologies such

as neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and Hungtingon’s

disease), and neurodevelopment and psychiatric disorders (Dong et al., 2009; Lewerenz and

Maher, 2015; Miladinovic et al., 2015).

Figure 2. Glutamatergic neurotransmission and excitotoxicity. A, in normal condition,
presynaptic glutamate release activates AMPA and NMDA receptors due with Na+ and Ca2+ ions
influx, depolarization of the postsynaptic neuron and action potential stimulation. B, Increased
concentration of extracellular glutamate induces classical excitotoxicity. Thus, it can be induced
by deficit in glutamate re-uptake by the EAAT2/GLT-1 transporters (located on astrocytes) or by
an increase of glutamate release. Excessive stimulation of AMPA and NMDA receptors increased
intracellular concentration of Na+ and Ca2+ ions, which can results in neuronal death. Neuronal
disintegration causes a further increase of extracellular glutamate and amplifies the excitotoxic
damage. C, Slow excitotoxicity is induced by an increase in the sensitivity of the postsynaptic
neurons to glutamate stimulation, although unchanged concentrations of extracellular glutamate.
This alteration can be caused by changes in glutamate receptor properties, resulting in higher
intracellular Ca2+ concentration, or by mitochondrial distress, compromising energetically
neurons (from Van Den Bosch et al., 2006).

1.1.3. Mitochondrial dysfunction

Mitochondria are pivotal organelles in the cell, playing a complex role not only in energy

metabolism but also in the storage of calcium ions. Together with the endoplasmic reticulum

(ER) they are the most important buffers for calcium homeostasis. Moreover, mitochondria are
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key organelles in the activation of apoptosis mechanisms through the release of cytochrome c

(Fukunaga et al., 2015).

Like in other neurodegenerative disorders, in ALS there are some peculiar mitochondrial

configurations or alterations, suggesting a possible association between mitochondrial

dysfunction and degeneration (Sasaki and Iwata, 2007; Schon and Przedborski, 2011). In

particular, the majority of abnormalities were observed in mitochondria located in motoneuron

dendrites (Vinsant et al., 2013). Many studies have associated mitochondrial alteration with the

misfolded protein superoxide dismutase 1 (SOD1), one of the genes that have been found to be

mutated in ALS patients (Sasaki and Iwata, 2007; Vinsant et al., 2013). SOD1 was the first

mutated gene associated to fALS and by now more than 150 mutations have been identified in

this gene (Rosen et al., 1993; Vehviläinen et al., 2014). Its role is correlated with the elimination

of the reactive oxygen species (ROS), which are linked to dysfunction of mitochondria and

induction of apoptosis (Fukunaga et al., 2015). In the last two decades, SOD1 mutations have

been extensively studied, contributing significantly to the understanding of ALS pathology, even

if less than 1% of ALS patients express SOD1 mutations (Carrì et al., 2015). Disease

pathogenesis might be directly associated with mitochondrial deficits in the respiratory chain,

ATP production and calcium uptake (Carrì et al., 2015; Palomo and Manfredi, 2015; Schon and

Przedborski, 2011).

1.1.4. Oxidative stress

The oxidative stress, a process tightly connected with mitochondrial dysfunction, is the

mechanism generated by an imbalance between an excessive generation of ROS or reactive

nitrogen species (RNS) and the antioxidant cell system (Kim et al., 2015). ROS are a group of

oxygen-derived molecules, such as superoxide radical anion (O2
-), hydroperoxyl radical (HO2),

and hydrogen peroxide (H2O2), which have cytotoxic effects (Chiurchiù et al., 2016; Kim et al.,

2015). ROS formation could be induced either by exogenous sources, like chemicals, radiation,

and atmospheric pollutants, or endogenously by mitochondria, ER, and peroxisomes (Chiurchiù

et al., 2016; Kim et al., 2015). Mitochondrial ROS production is related to the respiratory chain

complexes, whereas ER production of ROS is connected with protein folding and lipid

biosynthesis (Kim et al., 2015). The antioxidant system is driven by SOD which transforms the
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superoxide O2
- into H2O2 that may be further reduced to H2O by glutathione peroxidases,

catalases, and peroxiredoxins (Kim et al., 2015; Vehviläinen et al., 2014). At physiological

levels, ROS/RNS regulate important functions, but increased concentrations could induce

molecule damage in living organisms (Niedzielska et al., 2015). Many studies have revealed the

increase of different ROS/RNS biomarkers in ALS patients suggesting their association with

disease progression; conversely, divergent results have been obtained with antioxidant

biomarkers (D’Amico et al., 2013; Niedzielska et al., 2015; Pollari et al., 2014).

1.1.5. Protein misfolding and aggregations

A hallmark of ALS are intra-cytoplasmic inclusions which may have a role in pathogenesis or

induction of cytotoxicity (Blokhuis et al., 2013; Ciechanover and Kwon, 2015; Kabashi and

Durham, 2006; Wijesekera and Leigh, 2009). These inclusions are the result of aberrant protein

sequestration resulting from pathological or physiological processes that, in the ER, alter the

normal protein folding or induce ER stress (Doyle et al., 2011; Kabashi and Durham, 2006). In

case of ER stress, the cell activates a series of pro-survival pathways, that collectively are called

the unfolded protein response (UPR) (Doyle et al., 2011; Hetz et al., 2013). Initially UPR blocks

the normal protein synthesis and activates processes capable of managing the increase of

unfolded proteins and restore homeostasis, but if the cell is highly damaged UPR induces

apoptosis (Doyle et al., 2011; Hetz et al., 2013). Three are the main sensors of ER stress in

mammals: the activating transcription factor 6 (ATF6, α and β isoforms); the inositol-requiring

enzyme 1 (IRE1, α and β); and the protein kinase RNA-like ER kinase (PERK). In ALS patients

UPR sensors are increased, but it remains unclear if they are addressed leading to induce or are

neuroprotective (Doyle et al., 2011; Matus et al., 2013).

1.1.6. Other ALS causes

As previously reported, a small percentage of the disease is hereditary. fALS is due, in the

majority of the cases, to an autosomal dominant transmission (Shaw, 2005). Among more than 20

discovered mutations, only four genes covered more than 50% of fALS cases: SOD1, C9orf72,

fusion on malignant liposarcoma (FUS), and TAR DNA binding-protein (TDP-43; Turner et al.,

2013; Zarei et al., 2015).
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SOD1 was the first mutantion discovered at the beginning of 1990s; its discovery significantly

helped research through the development of the first ALS animal model (Turner et al., 2013).

This mutation, which induces a toxic gain of function instead of an antioxidant function

impairment, affects about 20% of fALS patients (Orsini et al., 2015; Wijesekera and Leigh,

2009).

C9orf72 mutations, discovered about five years ago, are more widespread inducing the disease in

up to 40% of fALS and 6% of sALS (Calvo et al., 2014; Turner et al., 2013). Its role is involved

in RNA metabolism (Calvo et al., 2014).

FUS and TDP-43 are each responsible for about 5% of fALS (Calvo et al., 2014; Orsini et al.,

2015). Both are involved in processes regulating gene expression and control, such as

transcription, RNA splicing, transport, and translation (Zarei et al., 2015).

Other cellular mechanisms which may be involved in the pathogenesis of motoneuron

degeneration in ALS are: impaired axonal transport, neurofilament aggregation, inflammatory

dysfunction, and deficits in signaling pathways such as neurotrophic factors (Wijesekera and

Leigh, 2009; Zarei et al., 2015).
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2. Hypoglossal nucleus

2.1. Location, organization and function of the hypoglossal nucleus

The hypoglossal motor nucleus, or XII cranial nucleus, is located bilaterally in the medulla

oblongata immediately beneath the base of the forth ventricle and close to the midline (Fig. 3 and

4; Krammer et al., 1979). Several studies have been performed on cats, rats and monkeys to

understand the cytoarchitecture of the nucleus. Two different neuronal populations have been

Figure 3. Views of the XII nucleus. A, Cross-section through the medulla-open portion. B,
ventral view. C, Dorsal view. D, lateral view. From Wilson-Pauwels et al., 2002.
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observed: group I and group II (Boone and Aldes, 1984; Cooper, 1981; Lowe, 1980; Takasu and

Hashimoto, 1988). The group I includes all the motoneurons within the hypoglossal nucleus that

are large multipolar cells with extended soma diameters (> 20 µm) and a variety of shapes:

mainly triangular, but also bulbous, quadrangular, fusiform, and oval (Boone and Aldes, 1984;

Cooper, 1981). Primal dendrites, generally 4 or 5 which divide in secondary branches, are

widespread extensively within the ipsilateral and controlateral hypoglossal nucleus and into the

adjacent reticular formation (Boone and Aldes, 1984; Cooper, 1981). Group II is formed by

small, round or oval shaped interneurons with a diameter < 18 µm (Boone and Aldes, 1984;

Cooper, 1981; Lowe, 1980; Takasu and Hashimoto, 1988). Dendrites have less branching

compared with group I neurons and their cell bodies distribution is limited to the most ventral and

dorsolateral region of the XII nucleus (Boone and Aldes, 1984; Takasu and Hashimoto, 1988). In

accordance with their GABA-like immunoreactivity (Takasu and Hashimoto, 1988; Takasu et al.,

1987) and electrophysiological properties (Peever et al., 2002; Takata, 1993), these small neurons

are thought to be GABAergic interneurons with inhibitory functions.

The primary source of the inputs to the hypoglossal nucleus originated from the caudal part of the

reticular formation, a set of interconnected nuclei located throughout the brainstem, and in

particular from the dorsal medullary reticulum column, immediately ventral to the nucleus of the

solitary tract (Borke et al., 1983; Cunningham and Sawchenko, 2000). The dorsal medullary

reticulum column largely and bilaterally innervates the nucleus hypoglossus: the dorsal and the

ventral subdivisions innervate the protractor and retractor muscles of the tongue (Cunningham

and Sawchenko, 2000; Dobbins and Feldman, 1995). Other afferents to the XII nucleus originate

from the spinal V complex, or the nucleus of the solitary tract, both with ipsilateral predominance

(Borke et al., 1983), and other brainstem and forebrain regions (Lowe, 1980; Peever et al., 2002;

Rekling et al., 2000). Moreover, inspiratory inputs are generated also by interneurons within the

hypoglossal nucleus itself which participate in the transmission and the control of the respiratory

drive (Peever et al., 2002).

Group I axons constitute the hypoglossal nerve which emerges from the preolivary sulcus of the

medulla, passes into the hypoglossal canal and innervate the hypoglossus, styloglossus,

geniohyoid and genioglossus muscles, forming the extrinsic musculature and all the intrinsic

muscle of the tongue (Fig. 4 and 5). Extrinsic muscles alter the shape and position of the tongue,
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whereas intrinsic muscles only control the shape. The myotopical organization of HMs within the

nucleus controls the functional movement of the tongue (Fig. 4). In particular, in the rat,

protractor muscles are innervated by HMs located in the ventrolateral subdivision of the XII

nuclei (Aldes, 1995), HMs in the dorsal part are responsible for retraction (McClung and

Goldberg, 2000), and intrinsic muscles receive inputs from neurons located in the middle third of

the nucleus (Fig. 4; Gestreau et al., 2005; Sokoloff, 2000).

Figure 4. Myotropic
organization of the
hypoglossal nucleus.
Schematic representation of the
dorsomedial medulla at five
distinct levels (rostral to caudal)
expressed in µm relative to the
obex. The approximate location
of the HMs supplying both the
intrinsic (left side) and extrinsic
(righ sige) tongue muscle.
Abbreviations: X, dorsal motor
nucleus of the vagus; sol, tractus
solitaries; AP, area postrema;
CC, central canal (modified
from Gestreau et al., 2005).

The innervations of tongue musculature should be functional from birth and participate in several

oropharyngeal behaviors such as breathing, mastication, vocalization, swallowing, suckling and

protective reflexes like coughing (Gestreau et al., 2005). Muscles contract in different

combination, either synergistically or antagonistically, depending on the required movement. For

example, during inspiration, the activity of the genioglossus, laryngeal, and pharyngeal muscles
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are enhanced to increase airway patency and stability (Feldman and Del Negro, 2006; Peever et

al., 2002); this stimulation is inhibited during swallowing to prevent

Figure 5. Hypoglossal nerve. From Netter, 2006.

food aspiration (Gestreau et al., 2005). As previously reported (Gestreau et al., 2005; Roda et al.,

2002) HMs are not a homogeneous population, but rather present distinct functional pools. Roda

ad collaborators (2002) analyzed simultaneously the discharge patterns of HMs during breathing,

swallowing and coughing in vivo; their results show that some cells are active only with one

behavior (swallowing), others receive inputs during breathing and swallowing, and a third

population receives a synaptic drive in relation to the three tested behaviors. These results

propose that common subsets of neurons in the hypoglossal nucleus are active during multiple

behaviors. HMs do not provide directly rhythmic discharge, as they are not endowed with
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spontaneous activity; the multiple behaviors controlled by HMs are driven by central pattern

generators (CPGs), a group of functionally connected neurons located at the level of the

brainstem. Neurons forming CPGs are wired together to produce rhythmic motor discharges even

in absence of commands from higher centres or sensory afferents (Marder and Calabrese, 1996).

Different CPGs for breathing (Suzue, 1984), swallowing (Suzue, 1984) and mastication

(Nakamura and Katakura, 1995) have been identified.

2.2. Hypoglossal motoneuron receptors and intrinsic properties

2.2.1. Synaptic transmission in HMs

Synaptic transmission in the hypoglossal nucleus is mediated by glutamate, as excitatory input,

and GABA and glycine, as inhibitory neurotrasmitters (Berger, 2000; Quitadamo et al., 2005;

Rekling et al., 2000).

Glutamate is the main excitatory neurotransmitter and mediates about 70% of synaptic

transmission within the central nervous system through three ionotropic and eight metabotropic

receptors. The ionotropic receptors are ligated-coupled ion channels, classified into 5-methyl-4-

isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors; each one

of them is composed of four subunits encoded by different genes. Each combination presents

different channel properties in cation permeability; for example in AMPA receptors the sole

presence of one GluR2 subunits facilitates Na+ permeability, whereas GluR2 lacking receptors

are highly Ca2+ permeable (Martínez-Lozada and Ortega, 2015; Sommer et al., 1991), as the ones

in the hypoglossal nucleus (Essin et al., 2002; García Del Caño et al., 1999). AMPA and kainate

receptors have fast activation and deactivation time, followed by a rapid and strong

desensitization phase. NMDA receptors present a slower deactivation kinetic followed by a slow

and modest desensitization (Traynelis et al., 2010). Electrophysiological (Berger et al., 1998;

Funk et al., 1993; O’Brien et al., 1997) and immunohistochemical (García Del Caño et al., 1999;

Williams et al., 1996) experiments have demonstrated the presence of all three types of

ionotropic receptors at HM glutamatergic synapses. In neonatal rat, synaptic transmission is

mainly mediated by AMPA and kainate receptors (Funk et al., 1993), a condition changed during
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adulthood where also NMDA receptors are involved (Steenland et al., 2008). During the post

natal period NMDA receptors are not directly involved in fast synaptic transmission, while their

block inhibits dendritic branching and somatic growth of motoneurons (Kalb, 1994). Their

activation triggers bursting behavior in a percentage of HMs, which resembles the pattern

involved in suckling (Sharifullina et al., 2008).

Metabotropic glutatergic receptors (mGluR) are coupled with G-proteins and classified in three

groups: group I (mGluR 1 and mGluR 5) stimulates phospholipase C due to intracellular Ca2+

release, whereas group II (mGluR 2 and mGluR 3) and group III (mGluR 4, mGluR 6, mGluR 7,

and mGluR8) inhibit adenylate cyclase and negatively modulate synaptic glutamate release

(Pomierny-Chamioło et al., 2014). Moreover, mGluR activation can lead to oscillatory activity in

forebrain networks (Cobb et al., 2000; Hughes et al., 2002; Whittington et al., 1995), including

synchronization of inhibitory transmission networks (Whittington et al., 1995). In the hypoglossal

nucleus, where only the mGluR 1 has been detected (Hay et al., 1999), these channels modulate

excitability and facilitate glycinergic inhibitory neurotransmission (Donato and Nistri, 2000;

Donato et al., 2003; Pomierny-Chamioło et al., 2014; Sharifullina et al., 2004). Moreover,

application of the selective group I mGluR agonist, dihydroxyphenylglycine – DHPG, induces

persistent and regular oscillations, characterized by large outward slow current alternated by fast,

repeated inward current. This phenomenon requires transmission through AMPA receptors and

neurons electrically coupled via gap junctions (Sharifullina et al., 2005). This characteristic

behavior suggests a potential role of mGluR 1 in facilitating rhythmic firing, such the one

required during suckling behavior (Sharifullina et al., 2005).

In the hypoglossal nucleus, the inhibitory transmission is mediated by GABAergic and

glycinergic synapses originating from respiratory centers like the pre Bötzinger complex (Paton

and Richter, 1995), reticular formation neurons (Li et al., 1997) and hypoglossal interneurons

(Peever et al., 2002). Glycine receptors are blocked by strychnine, while GABA receptors, which

mainly belong to the GABAA class, are reversibly blocked by bicuculline (Barnard et al., 1993;

Donato and Nistri, 2000). Both inhibitory receptors are Cl- channels, which during the period

between late embryonic and early postnatal period shift their response from depolarizing to

hyperpolarizing, in relation to the change in intracellular chloride concentrations induced by the
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maturation of Cl- transporters (Singer and Berger, 2000). Nonetheless, a study on rat spinal and

hypoglossal motoneurons have revealed that, already at birth, GABA and glycine are playing an

inhibitory role at synaptic level (Marchetti et al., 2002). Both receptors have been detected

immunohistochemically and electrophysiologically in the nucleus hypoglossus (Donato and

Nistri, 2000; Muller et al., 2004; Rekling et al., 2000; Singer et al., 1998). Although both

neurotransmitters might be released at the same synapse, about 70% of the inhibitory inputs are

mediated by glycinergic receptors in neonatal rats (Donato and Nistri, 2000; Singer and Berger,

2000). Moreover, glycinergic currents are faster and manifest higher frequency and amplitude in

comparison to GABAergic ones (Donato and Nistri, 2000).

In addition, a receptors for neuromodulators affecting motoneuronal excitability through pre- and

post-synaptic mechanisms are expressed on HMs, including: norepinephrine (Parkis et al., 1995),

serotonine (Berger et al., 1992), substance P (Yasuda et al., 2001), and thyrotropin-releasing

hormone (Rekling, 1990). Also the cholinergic system is widespread in the hypoglossal nucleus,

affecting both excitatory and inhibitory transmission to HMs, and acting via nicotinic

(Lamanauskas and Nistri, 2006; Pagnotta et al., 2005; Quitadamo et al., 2005) or muscarinic

receptors (Bellingham and Berger, 1996; Pagnotta et al., 2005).

2.2.2. Intrinsic properties of HMs

HM motor output is not only regulated by synaptic inputs (excitatory, inhibitory, and

modulatory), but also by the intrinsic motoneuron membrane properties, such as resting

membrane potential and input resistance, and the type, location and density of ion channels along

the cell membrane (Berger, 2000). Series of experiments has discovered a wide range of ion

channels contributing to the intrinsic properties of HMs (Fig. 6). These could be activated by

depolarization or hyperpolarization from the resting membrane potential of about –70 mV in

HMs (Viana et al., 1994).

HMs have the classic voltage-dependent transient tetrodotoxin-sensitive sodium current (INa i) and

the delayed rectifier tetraethylammonium-sensitive K+ current (IKdr), both involved in shaping of

the action potential. The first one is involved in the rapid depolarization phase (Fig. 6A), whereas

the second one contributes to the falling phase and in the fast afterhyperpolarization (fAHP; Fig.
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6A,B) (Haddad et al., 1990; Lape and Nistri, 1999, 2001; Mosfeldt Laursen and Rekling, 1989;

Viana et al., 1993a).

HMs posses other K+ currents such as the transient outward (IA), Ca2+-activated K+ (large or

small conductance, IKCa(BK) or IKCa(SK) respectively) and the recently observed M-current (IM). IA is

activated by depolarization and plays a role in affecting the duration of the action potential (Fig.

6A) and in the initial adaptation of firing occurring after injection of depolarizing current steps

(Fig. 6C; Lape and Nistri, 1999; Mosfeldt Laursen and Rekling, 1989; Viana et al., 1993a). The

voltage dependet-IKCa(BK), is activated by influx of Ca2+ during an action potential and is involved

in the falling phase of the action potential (Fig. 6A) and in the repetitive firing behavior

(Mosfeldt Laursen and Rekling, 1989; Rekling et al., 2000; Viana et al., 1993a). Although IKCa(SK)

is activated due to Ca2+ influx, such current is voltage independent and mediates the medium

afterhyperpolarization (mAHP) (Lape and Nistri, 2000; Mosfeldt Laursen and Rekling, 1989;

Rekling et al., 2000; Viana et al., 1993a). Recently, our laboratory has reported IM in HMs, where

it regulates cell excitability depressing neuronal firing (Ghezzi et al., 2016).

HMs also express low- and high- threshold calcium channels, LVA (ICaLVA; T-type) and HVA

(ICaHVA; N-, P/Q- and L-types), respectively. Ca2+ conductances are involved in the repolarization

of the action potential, the spike afterdepolarization and afterhypolarization (Fig. 6A: Umemiya

and Berger, 1994; Viana et al., 1993b). The mixed cationic Na+/K+ hyperpolarization-activated

current (Ih) contributes to the resting membrane potential stabilization and underlies rebound

depolarization and hyperpolarizations (Fig. 6B; Bayliss et al., 1994; Viana et al., 1994).

Moreover, the persistent inward currents mediated by Na+ (INaP) and/or Ca2+ (ICaP), which is

activated below spike threshold, accelerate subthreshold membrane depolarization to spike

threshold, integrating synaptic inputs and prolonging rhythmic discharges (Fig. 6A, B; Del Negro

et al., 2005; Lamanauskas and Nistri, 2008; Rekling et al., 2000).
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Figure 6. Supra- and subthreshold membrane behavior of motoneurons. A, action potential
waveform underlined by involved ion currents. B, subthreshold membrane behavior induced by a
short-lasting depolarizing/hyperpolarizing square current pulse. C, different phase of adaptation
in case of repetitive firing and postdischarge hyperpolarization during a long-lasting current pulse
(from Rekling et al., 2000).

HM repetitive firing patterns change markedly during development due to variation in some

conductances. Neurons in the neonatal rat manifest two different behaviors: HMs < P4 show a

decrementing or adapting firing pattern, whereas, during the second postnatal week, HMs trigger

incrementing or accelerating firing pattern (Viana et al., 1995). In adults (> P21) the
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decrementing firing pattern reappears and is followed by three distinct phases of adaptation

(Sawczuk et al., 1995; Viana et al., 1995). The modulation of the firing pattern of rat HMs has

been shown to be caused by a decrease in the AHP duration (Viana et al., 1994, 1995), a

reduction of the LVA calcium current (Umemiya and Berger, 1994; Viana et al., 1993b), and an

increase in Ih expression (Bayliss et al., 1994; Viana et al., 1994).

To conclude, motoneuronal output is the outcome of synaptic input modulation by several

factors, including motor unit subtype, location and type of synaptic terminals, distribution and

character of active and passive membrane properties, neuromodulator effect on HMs and

repetitive firing behavior.

2.3. Hypoglossal motoneurons in pathological conditions and excitotoxicity studies

As mentioned above, HMs are highly involved in ALS onset; in particular they are severely

damaged in the bulbar form of the disease, but also patients manifesting the limb-onset ALS

eventually develop bulbar symptoms, as respiratory failure is the primary cause of death in ALS

(Orsini et al., 2015; Wijesekera and Leigh, 2009; Zarei et al., 2015). Little is known about the

early ALS pathogenesis in HMs. Thus, our laboratory has developed a simple in vitro model of

excitotoxicity using the glutamate uptake inhibitor TBOA (Sharifullina and Nistri, 2006). TBOA

application recreates the early stage of the disease gradually increasing the extracellular

glutamate concentration without affecting glutamatergic receptors and carriers (Anderson et al.,

2001). Glutamate uptake inhibition induces a strong enhancement in excitatory synaptic

transmission and (in a percentage of motoneurons) strong bursting activity supported by electrical

coupling among neighbouring motoneurons (Cifra et al., 2009, 2011; Sharifullina and Nistri,

2006). The network origin of these bursts has been confirmed with TTX application, or the cell-

permeable Ca2+ chelator BAPTA-AM, or the gap junction blocker carbenoxolone (Sharifullina

and Nistri, 2006). Previous studies have reported that during normal synaptic transmission

NMDA and mGlu receptors are not activated by glutamate (Huang and Bordey, 2004; Huang et

al., 2004). In condition of excitotoxic stress, the increase in ambient glutamate recruits NMDA

and mGlu receptors, which facilitate bursting by spreading membrane depolarization and

increasing membrane resistance, thus making neurons electrotonically more compact and

sensitive to excitatory inputs (Sharifullina and Nistri, 2006). The electrical activity induces an



28

irreversible increase in intracellular calcium concentration leading to the activation of a series of

pathway which may cause motoneuron death (Sharifullina and Nistri, 2006). These early events

are followed by an increased number of cells positive to propidium iodide, a dye penetrating

disrupted cell membrane and binding DNA, or ATF-3, a motoneuronal distress marker (Nani et

al., 2010). Damage is reduced by drugs suppressing bursting activity, such as carbenoxolone or

riluzole (Cifra et al., 2011; Sharifullina and Nistri, 2006).
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3. Nicotinic ACh receptors

3.1. Cholinergic systems in the brain

The cholinergic system includes all neurons which synthesize, store and release the

neurotransmitter acetylcholine (ACh). It is one of the phylogenetically oldest and most important

nervous pathways.

The ester ACh is synthesized from choline and the acetic acid acetyl-CoA by the enzyme choline

acetyltransferase located in the cytosol. Choline is supplied from the extracellular space by high

affinity active transport system, whereas acetyl-CoA is synthesized in mitochondria. After

synthesis, ACh is released into the synaptic cleft, by exocytosis through the synaptic vescicles,

where it may activate cholinergic receptors or be rapidly degradated by acetylcholinesterases to

choline and acetate.

The cholinergic system has modulator functions and is made up of a series of substystems closely

connected with different functions; in particular, eight major groups of cells, largely overlapping,

have been discovered. Each group, which receives a large and complete set of sensory-based

information, innervates only its own discrete area (Gotti and Clementi, 2004; Woolf, 1991). The

major cholinergic subsystems are (Fig. 7; Gotti and Clementi, 2004; Woolf, 1991):

• Magnocellular basal complex (nucleus basalis): this is the most important group of

cholinergic neurons, which provide the majority of cortical and hippocampal inputs.

• Laterodorsal and peduncolopontine tegmental nuclei: these represent the second most

important cholinergic complex in the brain, innervating thalamus, substantia nigra,

tectum, medial habenula, deep cerebellar nuclei, pontine reticular formation, raphe nuclei,

medullary reticular formation, vestibular nuclei and locus coeruleus.

• Striatum: its cholinergic fibers originate from the cholinergic neurons located in the

caudate nucleus, putamen and nucleus accumbens, and do not project beyond the striatum

borders.

• Lower brain system: neurons located in the brainstem reticular formation and spinal

intermediate grey matter which innervate the superior colliculus, cerebellar nuclei and

cortex.
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• Habenula-interpeduncular system: these neurons, that receive inputs from the thalamus,

are located in the medial habenula and project, through the habenula-interpeduncular

tract, to the interpeduncular nucleus. It is an important station through which the limbic

system can influence the reticular formation of the brainstem.

• Autonomic nervous system: the preganglionic neurons in both the parasympathetic and

sympathetic systems are cholinergic. The parasympathetic preganglionic cells, located in

a series of nuclei in the encephalic trunk and spinal cord segment S2-S4, project to (or

near) target organs. The sympathetic preganglionic cells are located in the column of the

mediolateral gray matter of the spinal cord segment T1-L3, innervating paravertebral

sympathetic ganglia.

Figure 7. Central cholinergic pathways in the brain. bas, nucleus basalis; BLA, basolateral
amygdale; DR, dorsal raphe; EC, enthorinal cortex; hdb, horizontal diagonal band nucleus; Icj,
island of Cajella; IPN, interpeduncular nucleus; LC, locus ceruleus; ldt, laterodorsal tegmental
nucleus; LH, lateral hypothalamus; ms, medial septal nucleus; PPN, pedunculopontine nucleus;
si, substantia innominata; SN, substantia nigra; vdb, vertical diagonal band nucleus (from Perez-
Lloret and Barrantes, 2016).
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3.1.1. ACh receptor subtypes

ACh exerts its effects by binding to and activating two pharmacologically separated groups of

receptors: sensitive to nicotine and sensitive to muscarine leading to the classification of nicotinic

acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs),

respectively. Both are expressed by either neuronal or nonneuronal cells throughout the body.

These two different receptor families are structurally and functionally unrelated inasmuch

nAChRs are ligand gated ion channels, while mAChRs are G-protein coupled receptors, which

exert their action via GTP-binding proteins. The mAChR family, distributed throughout the

central nervous system, includes five metabotropic receptors, M1-5; with M1, 3, and 5 coupling

to Gαq/11 subunits, leading to phospholipase C activation, and M2, and 4 coupling to Gαi/o

subunits and inhibiting adenylyl cyclase (Scarr, 2012). Moreover, in addition to their canonical

signal pathways, mAChRs are capable of activating multiple signal transduction pathways,

altering cellular homeostasis of inositol triphosphate, phospholipase C, cAMP and free calcium.

3.2. Nicotinic ACh receptors

The heterogenous nAChR family of pentameric channels is involved in a wide range of

physiological and pathophysiological processes. So far, seventeen vertebrate subunits (α1-10, β1-

4, γ, δ, and ε) have been identified in the nervous system and muscles; nevertheless, only the

subunits expressed in the mammalian central nervous system are reviewed in this work.

3.2.1. nAChR genes and molecular structure

In the mammalian nervous system have been cloned eleven genes (CHRNA2-CHRNA7,

CHRNA9-CHRNA10, and CHRNB2-CHRNB4; Table 1), divided in two sub families of eight α

type (α2-α7, and α9-α10) and three β type (β2- β4) (Hurst et al., 2013; Zoli et al., 2015). The α

subunits are so called in homology to muscle α1 subunit when two adjacent cysteines are located

at the N-terminal part (aminoacid position 192 and 193) as locus participating in the ACh binding

site; those cysteines are not present in β subunits (Lindstrom et al., 1995; Zoli et al., 2015).
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Table 1. Chromosomal localizations of genes coding for human neuronal nAChR subunits. Data
taken from Hurst et al., 2013.
nAChR subunit Chromosomal localization
CHRNA2 8p21
CHRNA3 15q24
CHRNA4 20q13.3
CHRNA5 15q24
CHRNA6 8p11.21
CHRNA7 15q14
CHRNA9 4p15.1
CHRNA10 11p15.5
CHRNB2 1q21.3
CHRNB3 8p11.22
CHRNB4 15q24

nAChRs belong to the gene superfamily of ligand gated ions family, that also includes GABAA/C,

glycine and serotonin ionotropic receptors (Zoli et al., 2015). As other members of this family

characterized by cys-loop homology, all nAChR subunits have four putative membrane-spanning

domains (M1, M2, M3, and M4; Fig. 8A), with a total length of less than 600 amino acids. Both

N- and C- terminal parts are extracellular; the amino-terminal part, with an approximately length

of 200 amino acid, presents glycosilation and the ligand-binding sites, whereas the intracellular

loop linking M3 and M4 presents phosphorylation sites. The four α-helices transmembrane

domains are packed around the central hydrophilic ion pore. M2 lines the pore, establishing the

ion gate, selectivity, and channel conductivity, whereas, M4 is the one that mostly interacts with

the lipid bilayer (Albuquerque et al., 2009; Zoli et al., 2015). Neuronal nAChRs have pentameric

structure with a molecular weight in the 300 kDa range. The channel kinetics are determined by

all five subunits, which may arrange in a variety of subtypes due to the diversity of the possible

combinations. Thus, the subunit composition of the receptor determines the pharmacological

characteristics of the binding site and the cation preference of the channel, which is permeable to

Na+, K+, and in some cases, Ca2+ ions. The channel opens immediately (time constant about 20

µs) when at least two ACh molecules bind to the receptor. In the open state the nAChR channel

has a pore diameter of 9-10 Å with a conductance in the range from 5 to 35 pS. The functional

properties of each nAChR subtype overlap among the several isoforms making it very difficult to

distinguish among them through the use of pharmacological agents (Zoli et al., 2015). Receptor

subtypes can be pharmacologically divided into two major groups: α-bungarotoxin-sensitive,
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which include channels made up of the α7, α9, and α10 subunits; and α-bungarotoxin insensitive,

consisting of receptor made up by a heteromeric combinations of α2-6 and β2-4, that bind

nicotine with high affinity (Changeux, 2010; Gotti and Clementi, 2004).

nAChRs can be subdivided in homopentamers or heteropentamers. The first ones are formed by

five identical subunits, whereas the second ones result from the combination of different subunits

(Fig. 8B). Homopentamers are the receptor simplest form with five identical ACh-binding sites

located at the interface between two adjacent subunits. They are exemplified by α7 nAChRs,

which are widely distributed in the central and peripheral nervous system. They are characterized

by high calcium permeability and fast desensitization (Lindstrom et al., 1995; Yu and Role,

1998) and they are thought to be the closest form to the ancestor receptor. The homomeric form

of the channel may also be composed also by α9 subunits. Two or more subunit types may

associate to form heteropentamers. They display a broad spectrum of physiological and

pharmacological properties and functions, in relation to the ratios of α and β subunits, but at least

two α subunits including the binding sites should form the receptor. The ACh binding site, in

heteromeric channels, has a principal and a complementary component; α2-α4 and α6 subunits

carry the principal component, whereas β2 or β4 subunits the complementary site; in the

homomeric receptors each subunit contributes to both components of the binding site (Fig. 8B).

The α5 and β3 subunits are classified as auxiliary subunits inasmuch they carry neither the

principal nor the complementary site (Gotti and Clementi, 2004). Thus, the α5, α6, and β3

subunits can form functional receptors only in combination with other subunits, therefore they are

called “orphan” subunits. The α4β2-containing nAChR is the most widespread isoform in the

central nervous system. It account for 90% of the high affinity neuronal nAChRs in mammalian

brain and may presents different stoichiometry, (α4)2(β2)3, (α4)3(β2)2, and (α4)2(β2)2(α5),

yielding several configurations with different properties, including agonist sensitivity and

calcium permeability (Albuquerque et al., 2009; Colombo et al., 2013; Hurst et al., 2013).
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Figure 8. Structure of neuronal nAChRs. A, (left) diagram showing a single subunit composed
of extracellular N- and C- termini and four hydrophobic transmembrane domain (M1-M4).
(Middle) an assembled arrangement of nAChR subunits. (Right) organization and localization of
ACh binding sites in a heteropentameric receptor. B, homopentameric and heteropentameric
structures of nAChRs. (Left) homopentameric channel formed by the α7 subtype and (middle and
right) example of heteropentameric structures. The primary component, indicates as P(+) is
carried by α subunints, whereas complementary component C(-) by an α or non- αsubunit. The
(α4)3(β2)2 subtype has an additional binding site ate the α4α4 interface (star). Modified from Zoli
et al., 2015.

3.2.2. nAChR life cycle

The first level of nAChR expression regulation is through the transcriptional control of subunit

composition. Studies on cultured cells and tissues have shown cell-specific regulation of nAChR

transcription, with qualitative and quantitative difference in receptor subunit composition during

development (Albuquerque et al., 2009; Boulter et al., 1990; Witzemann et al., 1989).

Transcription is finely regulated by signals provided by synaptic partners and soluble factors.

Moreover, subunit genes with a closer chromosomal localization may form a unique gene cluster.

For example, α3, α5, and β4 are often coexpressed in the central and peripheral nervous system

(Table 1; Albuquerque et al., 2009; Rosenberg et al., 2002).

During receptor assembly, cells employ multiple mechanisms to ensure correct subunit

association; in fact, the relatively few subtypes found do not match the substantial number of

possible receptors. The proper stoichiometry that is assembled into the ER is ensured firstly by

the regulation of the transcription, which is differently modulated by the state of development or

stress of the cell. Secondly, the unique primary structure ensure proper folding and preferential
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interactions between subunits: for example, mutations in the large cytoplasmic loop between M3

and M4 have been connected to a diminished or abolished expression of the mutated subunit

(Mukherjee et al., 2009; Tsetlin et al., 2011). In detail, in addition to the Cys-loop domain,

assembly is modulated by positively charged aminoacids at the end of the M4 fragment and by

the interaction between residues in the lower part of the M1 and the fragment M2 (Tsetlin et al.,

2011). Despite the several mechanisms for assembly control, about 80% of the synthesized

subunits appear to be improperly associated or never leave the ER where they are degraded.

Another important mechanism acting as modulator of nAChR expression involves chaperone

proteins that (in addition to transporting receptors away from the ER) when associated with

nAChR precursor subunits enhance and favor the folding into complete complexes and monitor

the glycosilated state. Some of these chaperons are: calnexin, rapsyn, ERp75 and Bip, 14-3-3 β-

protein and RIC-3 (Albuquerque et al., 2009). The pentameric receptors that exit the ER spend

about 3h to reach the cell surface passing through the Golgi complex via COPII vescicles, a

process relatively slow compared to the maturation phase that last about 30 min (Colombo et al.,

2013; Sallette et al., 2005). Only a small percentage of receptors, about 15%, reach the cell

surface, where their half-life has been estimated to be in the range of 10h (Arroyo-Jiménez et al.,

1999; Sallette et al., 2005). Then, plasma membrane nAChRs are internalized to the lysosomal

compartments where are degraded or re-exposed on the cell surface. The trafficking mechanism

is complicated by the fact that receptors have to target specific sites in the cell membrane

(Colombo et al., 2013).

3.2.3. nAChR desensitization and upregulation

Desensitization is the physiological loss of functional response upon continuous or repeated

exposure to agonist (Fig. 9A). When nAChRs are exposed to ACh, they may manifest a decline

in the response, whose onset is time, agonist, concentration, and nAChR subunit dependent

(Giniatullin et al., 2005; Quick and Lester, 2002). Concerning desensitization, mammalian

nervous system nAChRs can be divided in two main groups: α7-containing receptors that rapidly

desensitize (in millisecond) or non α7-containing nAChRs that desensitize slowly (in seconds;

Giniatullin et al., 2005; Quick and Lester, 2002). As previously reported, desensitization may

change with agonist concentration (Fig. 9B). ‘Classical desensitization’ occurs when a medium to
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high (µM to mM) concentration of ligand is applied that first activates the receptors and then

desensitizes them with subsequent recovery after agonist removal; classical desensitization

generally develops in the range of tens of milliseconds. Desensitization can be developed also

without apparent receptor activation; this occurs with low agonist concentrations, a process that is

referred to as ‘high-affinity desensitization’. Both phenomena are nAChR subunit and agonist

dependent (Giniatullin et al., 2005). Other local factors may modulate the response to

desensitization: for example, substance P facilitates it by binding an allosteric site of the receptor,

whereas intracellular messengers, such as Ca2+, target the recovery phase (Giniatullin et al.,

2005).

Figure 9. Modulation of responsiveness to agonist. A, minimal allosteric model illustrating
functional states of ligand gated ion channels. The model consists in three functional states: in
absence of ligand the state is closed, whereas when there is the bound of the agonist two
functional states are possible (open and desensitized), but only the open state permits ions flux.
B, relation between agonist concentration and exposure time. “Classical desensitization” is
induced by relatively high (micromolar to millimolar) concentrations of the ligand. “High-affinity
desensitization” is induced by low concentrations of agonists which directly desensitize the
channel without open it. Long-lasting application of ligands induces nAChR upregulation or
downregulation. Modified from Giniatullin et al., 2005, and Hurst et al., 2013.

Generally, a sustained (from minutes to hours) exposure of agonists to many plasma membrane

receptors, such as ionotropic glutamate receptors and G-protein coupled receptors, causes a

‘downregulation’ of the receptor through its internalization. However, nAChRs may undergo
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‘upregulation’ after a chronic exposure to the agonist nicotine (Albuquerque et al., 2009;

Henderson and Lester, 2015; Hurst et al., 2013; Sallette et al., 2005; Srinivasan et al., 2011).

Receptor increase is not limited to the plasma membrane but involves an increase in nAChR

abundance in several organelles like the ER and Golgi complex. Moreover, upregulation is not

limited to a change in receptor number, but also in its stoichiometry and trafficking (Henderson

and Lester, 2015; Kuryatov et al., 2005; Sallette et al., 2005). Nicotine acts intracellularly by

modulating maturational processes, matchmaking, and chaperoning but not by increasing

trascription (Henderson and Lester, 2015; Hurst et al., 2013; Sallette et al., 2005). It has to be

taken in consideration that upregulation is receptor-, region- and cell-specific; in fact, not all

nAChRs are upregulated in response to nicotine, or they do so limitedly. For example, α4β2

receptors highly increase with low concentration (≤ 100 nM) of nicotine, whereas α4α6β2

nAChRs are not upregulated at all, and α3β4 receptors increase only when expose to high levels

of nicotine (≥ 10 µM; Henderson and Lester, 2015).

3.2.4. nAChR localization and their function

nAChRs are widespread throughout the neuronal plasma membrane; their localization on neurons

can be divided in: cell soma, dendrites, axon terminals, preterminal axon regions, and myelinated

axons. Multiple mechanisms regulates the targeting processes to subcellular compartments but

the intracellular loop between the transmembrane domains M3 and M4 of the receptor subunits is

critical for their localization (Colombo et al., 2013).

The primary role of the somatodendritic nAChRs (α7, and (non-α6)α4β2; Champtiaux et al.,

2003), that are not confined to cholinergic synapses, is to modulate the type IA current, a fast-

inactivating whole cell current mediated principally by the α7 receptors, that have a low affinity

for agonists, a brief open state (~ 100 µs), a large conductance (70-105 pS), and a high

permeability to Ca2+ relative to Na+ (Albuquerque et al., 2009). Moreover, application of α7

receptor agonist in the somatodendritic area favors Na+ channel recruitment and action potential

initiation (Alkondon et al., 1999).

The nAChRs localized on axon terminals facilitate neurotransmitter release, including GABA,

glutamate, dopamine, serotonin, norepinephrine, and acetylcholine. Some of the subtypes
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reported to be expressed in such areas are: α7, α4β2, α4α5β2, α6β3β2, and α6α4β3β2

(Champtiaux et al., 2003; Marchi et al., 2002; Salminen et al., 2004).

Receptors expressed in the preterminal axon regions and on myelinated axons regulate axon

excitability, facilitating neurotransmitter release by increasing intracellular calcium

concentrations or through the depolarization of the presynaptic bouton (Albuquerque et al., 2009;

Hurst et al., 2013).

Recent studies have revealed that the distribution of nAChRs is not limitated to

plasmamembrane, but include localization to the outher membrane of mitochondria (Gergalova et

al., 2012; Lykhmus et al., 2014). In a tissue specific manner, brain mitochondria express several

nicotinic receptor subtypes: α7β2, α4β2, and α3β2. These receptors, blocking the cytochrome c

release, control various pathways due to mitochondrial type of apoptosis through the activation of

intraorganelle kinases. nAChRs play a key role in defending mitochondria from any types of

stress influence (Gergalova et al., 2012, 2014; Lykhmus et al., 2014).

3.2.5. nAChR distribution in the brain and expression during development and aging

The distribution of nAChRs has been consistently investigated at both mRNA and protein level.

To accomplish the pleiotropic role in physiology and pathology, nAChRs are distributed on

neuronal and non-neuronal cells. In the rodent brain, the most widespread receptor subtype is the

α4β2, which may contain the α3β4 and α5 subunits. Also, the α7 nAChR is rather diffuse, in

particular in the hippocampus, the hypothalamus, the cortex and the motor nuclei. Other receptors

are limited to certain areas, such as the α6-containing receptors present in the locus coeruleus, the

optic pathway, and the dopaminergic neurons; or the α9/α10- containing nAChRs expressed only

extraneuronally in limited areas like the cochlea, the pituitary pars tuberalis and the olfactory

epithelium. Also in the primate brain the α4β2 receptor is the main isoform; although the subtype

α2β2 also has a substantial presence (Gotti and Clementi, 2004).

During development and aging, nAChR expression changes considerably in all animal species.

Earliest detection of the receptor mRNA is at E11 in rat and after 5-7 weeks of gestational age in

human brain (Zoli, 2000). In rat fetal brain, the α7 mRNA expression starts from E13 and

increase until birth; then its level decreases in the postnatal days to adult expression levels. α2,

α3, α4, α5, α6, β2, and β4 Subunit mRNA is present from the early days in rat; and their
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distribution is not dissimilar from that of adult animals. During aging the expression of the

several mRNA subunits slightly decreases, even with regional specificity; moreover, with aging

the cholinergic system may present dysfunctions, contributing to neurodegenerative disease onset

(Albuquerque et al., 2009; Gotti and Clementi, 2004).

3.2.5.1. nAChRs in the nucleus hypoglossus

As previously described, the hypoglossal nucleus receives cholinergic nerve terminals from the

laterodorsal and peduncolopontine tegmental nuclei, even if they are not abundant and are

distributed in an apparently scattered fashion (Rukhadze and Kubin, 2007; Woolf, 1991).

Immunoistochemical experiments have detected the nicotinic α2, α3, α4, α5, α7, α9, β1 and β2

subunits in this nucleus (Quitadamo et al., 2005; Vivekanandarajah et al., 2016). Despite their

presence, no spontaneous cholinergic events have been recorded, even when acetylcholinesterase

blockers were applied or after the stimulation of the reticular formation. However, administration

of dihydro-β-erythroidine (DHβE) or methyllycaconitine (MLA), selective antagonists of the α4

and α7 subunits respectively, significantly decreases the amplitude (but not the frequency) or the

kinetics of the glutamatergic, miniature, and evoked post synaptic currents. When both

antagonists are coapplied, significant decrease in both amplitude and frequency is recorded.

Moreover, DHβE and MLA virtually suppress the currents evoked by nicotine indicating that the

main contribution to glutamatergic currents into the nucleus hypoglossus by nAChRs is given by

the α4β2 and α7 subtypes. It should be noted that the continuos presence of nicotine desensitizes

these receptors (Quitadamo et al., 2005).

3.2.6. nAChR role in normal brain function and mental disorders

nAChRs are not essential for survival and basic behavior execution, rather they are involved in

the implementation and fine control of sophisticated and complex behaviors. Fundamental

contribution to study the functional role of nAChRs has been given by genetically engineered

knock-out (Ko) or knock-in (Kin) mice. Due to multiorgan dysfunction, the α3 and double β2-β4

Ko mice usually die in the first week of life. α4 and β2 Ko mice manifest great reduction in

antinociceptive and analgesic responses, whereas the α5 and β4 Ko show deficit in sympathetic

and parasympathetic ganglionic transmission (Gotti and Clementi, 2004; Marubio et al., 1999).
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Finally, the phenotype not expressing the α7 subunit manifests lack of nicotine-evoked fast

desensitizing currents (Gotti and Clementi, 2004).

Nicotinic transmission is mainly involved in cognitive processes; in particular, nicotine improves

task performances involving associative and spatial learning, attention, cognition, and working

memory. Furthermore, nAChRs control many processes involved in locomotion. Moreover,

nicotine capacity to modulate the dopaminergic system is thought to be connected with drug

reinforcement; this additive property is achieved by increasing the release of dopamine that

activates nAChRs of dopaminergic neurons (Changeux, 2010; Gotti and Clementi, 2004).

In addition to the above described effects, nAChRs play a pivotal role in a wide variety of

diseases associated with the nervous system. These diseases could be divided into three major

groups: age-related degenerative diseases, age-dependent disorders and age-indipendent

disorders.

Degenerative diseases:

In some neurodegenerative diseases, the cholinergic pathways are consistently affected. In

particular, the activity of choline acetyltransferase is decreased and the nucleus basalis of

Meynert manifests degeneration. Epidemiological studies of Alzheimer’s disease (AD) and

Parkinson’s disease (PD) patients highlight that tobacco smoking reduces the probability to

develop such diseases, although smoking adversely affects cardiovascular and certain

cerebrovascular functions (Gotti and Clementi, 2004).

• Alzheimer’s disease: the age-related decline in nAChRs and neurons in the central

nervous system together with the impairment of the limbic cholinergic system contributes

to the onset of dementias including AD. nAChR subtypes are differentially affected

during disease progression; in particular β-amyloid proteins principally accumulate in

brain regions that express α4β2 and α7 nAChRs such as neocortex and hippocampus

(Albuquerque et al., 2009; Dineley et al., 2015). In an advanced state of the disease, there

is a decrease of about 50% of the α4β2 nAChR, while muscarinic receptors remain

relatively intact (Dineley et al., 2015). Early treatments with acetylcholinesterase or

nAChR agonist could have positive symptomatic effect on disease progression by
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delaying decline of cognitive processes, although AD progression continues (Gotti and

Clementi, 2004).

• Parkinson’s disease: nAChRs play a pivotal role in dopaminergic neurons where α6β2

and α4β2 receptors promote the release of dopamine (Gotti and Clementi, 2004).

Treatments with drugs that selectively target the receptors above mentioned may prove

useful in the management of PD in which the nigro-striatal pathway is severely damaged

(Quik and Wonnacott, 2011).

Age-dependent disorders:

• Attention-deficit hyperactivity disorder (ADHD): It is a multigenic neurobehavioral

disorder characterized by hyperactivity, impulsivity, and difficulties in attending to tasks.

This disease presents as risk factors early smoking and maternal smoking (Potter et al.,

2014).

• Autism: this neurodevelopmental disorder is characterized by deficit in socialization and

communication and becomes apparent in early childhood. Studies on post-mortem tissues

of autistic patients revealend a decrease in mRNA expression of 50% of the α3, α4, and

β2 nAChR subunits (Martin-Ruiz et al., 2004).

• Schizophrenia: it comprises cognitive deficit and disordered thoughts characterized by

altered perception of reality. Its relation to nAChRs is suggested by the high prevalence of

smoking among patients, which some consider to be a form of self-medication (deficit in

α7 receptors has been observed). Symptoms appear to be improved or normalized after

nicotine exposure (Dineley et al., 2015).

• Tourette syndrome: this familial, chronic neuropsychiatric disorder induces movement

disturbances, inappropriate vocalizations and cacolalia. Although there is no evidence for

direct involvement of nAChR in this disease, neuroprotective effects of nicotine have

been observed in animal models, where nAChR agonists positively affected movement

disorders perhaps modulating dopaminergic release from striatal and limbic cortical areas

(Gotti and Clementi, 2004; Quik et al., 2014).
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Age-independent disorders:

• Epilepsy and febrile convulsions: correlation between nAChRs and epilepsy has been

observed in the autosomal dominant nocturnal frontal lobe form of epilepsy that is

characterized by attacks arising during the non-rapid eye movement (non-REM) phase of

sleep. A percentage of families presenting this disease carries mutations in genes coding

for subunits of the heteromeric nAChRs, in particular the α4β2 subtype (Becchetti et al.,

2015).

• Depression and anxiety: positive association between smoking cessation and mental

illness has been reported. In humans, nicotine has antidepressant and mood stabilizer

properties (Fluharty et al., 2016).

3.3. Nicotine

Nicotine is a potent alkaloid found in the Solanaceae family of plant, in particular in the leaves of

Nicotiana rustica, Duboisia hopwoodii, Asclepias syriaca, and the tobacco plant Nicotina

tabacum.

Nicotine is a weak base (pKa = 8.0) and a tertiary amine consisting of a pyrrolidine and a pyridine

ring. In tobacco, it is found as (S)-nicotine that binds stereoselectively nAChRs. (R)-nicotine,

present in small quantities in cigarette smoke, is a nAChR agonist (Benowitz, 2009). In smokers,

the nicotine peak concentration is tissue and body fluid specific: in blood plasma it is about 0.31

µM (between 10 and 50 ng/ml), in milk, due to a more acidic pH, the concentration is triple

(mean value 100 ng/ml), in the brain is about 1 µM, and after smoking in lung fluids the value

may reach the concentration of 60 µM (Clunes et al., 2008; Matta et al., 2006). When smoke

from a cigarette is inhaled, nicotine is carried into the lungs where it is absorbed rapidly and

reaches the brain within 8-10 s through arterial circulation. The absorbed nicotine through

mucous membranes is rapidly distributed to tissues; in particular, it tends to accumulate in those

rich of lipids. The half-life of nicotine is about 2 h, and the one of cotinine, the major nicotine

metabolite, is about of 16 h (Benowitz, 2009). In man, nicotine is metabolized to six primary

metabolites and several minor metabolites by the liver. As previously reported, the quantitatively

(approximately 70 to 80%) most important metabolite is cotinine, produced by the liver enzyme

CYP2A6. Only 5% of nicotine is excreted unchanged by the kidney. The metabolism and
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clearance of nicotine and its metabolites have been reported to be affected by several factors such

as age, sex, race, stress, and disease states (Matta et al., 2006). Further to nAChR activation, in

specific brain regions, chronic exposure to nicotine increase the number of nAChRs due to post-

trascriptional mechanisms, the process called up-regulation (Colombo et al., 2013; Henderson

and Lester, 2015).
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Aims of the study

The main goal of the present study was to investigate a putative protective role of nicotine against

TBOA-induced excitotoxicity in an ALS model in vitro. To this purpose, we employed brainstem

slices conteining the nucleus hypoglossus from neonatal Wistar rats. Nicotine was co-applied

with TBOA at a concentration of 1 or 10 µM, similar to values reported in human fluids after

smoking.

The questions we tried to answer during this thesis were the following ones:

1. Which are the downstream effects of the excitotoxicity? Is nicotine able to block them?

This question led to study:

- Electrophysiological characterization of bursting activity and synaptic transmission

- Evaluation of the mitochondrial energy metabolism

- Analysis of the reactive oxygen species production

- Investigation of the endoplasmic reticulum stress response

2. What are the characteristics of the excitotoxic network propagation? And how do they

change in the presence of nicotine?

This question should shed light on:

- the network mechanisms of excitation spread

- the role of gap junctions in determining propagation and protection from

excitototoxicity

3. Which are the cell death mechanisms activated by the increase of glutamate?

For Material & Methods and Results sections, please see enclosed papers.
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bursting and neurodegeneration evoked by glutamate
uptake block on rat hypoglossal motoneurons

Silvia Corsini, Maria Tortora and Andrea Nistri

Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy

Key points

� Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter
to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus
hypoglossus.

� This process is the expression of the excitotoxicity that underlies motoneuron degeneration in
diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons.

� In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate
uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors
with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic
receptor antagonists.

� Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy
dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these
phenomena synergize to provide motoneuron protection.

� Nicotinic receptors may represent a novel target to contrast pathological overactivity of brain-
stem motoneurons and therefore to prevent their metabolic distress and death.

Abstract Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic
lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal
fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brain-
stem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an
established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced
by the glutamate uptake blocker DL-threo-β-benzyloxyaspartate (TBOA). Because certain brain
neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by
nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable
hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense
network bursts that were inhibited by 1–10 μM nicotine, whereas nAChR antagonists facilitated
burst emergence in non-burster cells. Furthermore, nicotine inhibited excitatory transmission
and enhanced synaptic inhibition. Strong neuroprotection by nicotine prevented the HM loss
observed after 4 h of TBOA exposure. This neuroprotective action was due to suppression of
downstream effectors of neurotoxicity such as increased intracellular levels of reactive oxygen
species, impaired energy metabolism and upregulated genes involved in endoplasmic reticulum
(ER) stress. In addition, HMs surviving TBOA toxicity often expressed UDP-glucose glycoprotein
glucosyltransferase, a key element in repair of misfolded proteins: this phenomenon was absent
after nicotine application, indicative of ER stress prevention. Our results suggest nAChRs to
be potential targets for inhibiting excitotoxic damage of motoneurons at an early stage of the
neurodegenerative process.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society DOI: 10.1113/JP272591
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Abbreviations ALS, amyotrophic lateral sclerosis; AP5, (2R)-amino-5-phosphonovaleric acid; DHβE, dihydro-
β-erythroidine; DHR 123, dihydrorhodamine 123; DNQX, 6,7-dinitroquinoxaline-2,3-dione; EAAT, excitatory amino
acid transporter; ER, endoplasmic reticulum; fALS, familial amyotrophic lateral sclerosis; HM, hypoglossal motoneuron;
MLA, methyllycaconitine; MTT, 3(4,5-dimethylthiazolyl-2)-2,5 diphenyl tetrazolium; nAChR, nicotinic acetylcholine
receptor; Rho 123, rhodamine 123; Rin, input resistance; ROI, region of interest; ROS, reactive oxygen species; sALS,
sporadic amyotrophic lateral sclerosis; sEPSC, spontaneous excitatory post synaptic current; sIPSC, spontaneous
inhibitory post synaptic current; sPSC, spontaneous post synaptic current; TBOA, DL-threo-β-benzyloxyaspartate;
UGGT, UDP-glucose glycoprotein glucosyltransferase; UPR, unfolded protein response; Vh, holding potential.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neuro-
degenerative disease characterized by progressive
muscular paralysis. The vast majority of patients show
the sporadic form of this syndrome affecting bulbar
and/or spinal motoneurons (Aguilar et al. 2007; Poppe
et al. 2014; Boylan, 2015). In the brainstem, hypo-
glossal motoneurons (HMs) are particularly vulnerable
(Lewinski & Keller, 2005), leading to early dysarthria
and dysphagia. A complex interplay among multiple
mechanisms such as protein misfolding, mitochondrial
dysfunction, oxidative stress and excitotoxicity are likely
to foster and accompany motoneuron death (Shaw, 2005;
Ngo & Steyn, 2015). These phenomena are associated
with enhanced motoneuron excitability that may actually
occur presymptomatically to indicate excitotoxicity (Gu
et al. 2010), a deleterious process caused by over-
stimulation of glutamate receptors apparently due to
deficit in glial glutamate re-uptake (Van Den Bosch
et al. 2006). In support of the latter notion, large
increases in glutamate levels (Spreux-Varoquaux et al.
2002) have been reported in the cerebrospinal fluid of
ALS patients together with impaired glutamate transport
of post-mortem tissue (Rothstein et al. 1992; Cleveland &
Rothstein, 2001). Enhanced excitatory neurotransmission
may also originate (or be aggravated by) from heightened
network release of glutamate (Van Den Bosch et al.
2006). The latter process might be caused by loss of
inhibitory inputs mediated by cholinergic fibres, an early
event reported for ALS spinal motoneurons (Nagao et al.
1998). Identification of new treatments aiming at arresting
disease progression therefore remains a top priority
and requires an understanding of its underlying basic
mechanisms.

Although continuous exposure to nicotine in utero and
during the first week of life through breast milk alters
cardiorespiratory rhythms (Hafström et al. 2005) and
desensitizes nicotinic acetylcholine receptors (nAChRs),
increasing the incidence of apnoea (Robinson et al. 2002;
Pilarski et al. 2012), later in life nicotine might also
provide neuroprotection in neurodegenerative diseases,

neurodevelopmental disorders and neuropathic pain
(Dineley et al. 2015). Cholinergic transmission, mediated
by nAChRs, is widely distributed through the brain to
regulate different physiological processes (Dani & De
Biasi, 2001; Sharma & Vijayaraghavan, 2001, 2002; Zhou
et al. 2002; Changeux, 2010; Wevers, 2011). nAChRs
are predominantly located at neuronal cell bodies and
presynaptic terminals (Gotti & Clementi, 2004), where
they modulate neurotransmitter release (Dani & De
Biasi, 2001; McKay et al. 2007; Wevers, 2011). Their
prolonged agonist exposure increases receptor number
and sensitivity (Bohnen & Frey, 2007; Henderson &
Lester, 2015). In the brainstem the hypoglossal nucleus
expresses α7 and α4β2 nAChRs (Dominguez del Toro
et al. 1994; Chamberlin et al. 2002; Dehkordi et al.
2005; Quitadamo et al. 2005; Wevers, 2011). Even if
there is no detectable nicotinic synaptic transmission on
HMs, the early consequence of nicotine application is
facilitation of network excitatory and inhibitory neuro-
transmission, although onset of desensitization may
later change this phenomenon (Quitadamo et al. 2005;
Lamanauskas & Nistri, 2006). The role of endogenous
ACh in modulating synaptic transmission on HMs is,
however, complex because, in addition to the effects of
nAChRs, ACh-sensitive muscarinic receptors are reported
to inhibit glutamatergic transmission (Bellingham &
Berger, 1996) and also to depress inhibitory synaptic trans-
mission (Pagnotta et al. 2005). It is therefore clear that the
functional impact of nAChR activity depends on a fine
balance between the facilitatory and depressant actions of
network cholinergic transmission (Quitadamo et al. 2005;
Zhou et al. 2015). After excitotoxic insult, neuroprotection
by both α4β2 (Laudenbach et al. 2002; Nakamizo et al.
2005) and α7 (Laudenbach et al. 2002; Nakamizo et al.
2005; Riljak et al. 2011) subtypes is described with neuro-
nal cultures (Nakamizo et al. 2005), and adult (Riljak et al.
2011) or neonatal (Laudenbach et al. 2002) animal models.
Whether this approach is applicable to the excitotoxicity
of HMs remains to be explored.

In recent years, our laboratory has developed a simple in
vitro model of excitotoxic stress by applying the glutamate
uptake inhibitor DL-threo-β-benzyloxyaspartate (TBOA)
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to the nucleus hypoglossus motoneurons (Sharifullina
& Nistri, 2006) as a useful tool to investigate the
physiological and pathophysiological mechanisms of
motoneuron excitability (Nistri et al. 2006). Inhibition
of excitatory amino acid transporters (EAATs) reflects the
pathological condition reported in familial and sporadic
ALS (fALS and sALS) patients (Rothstein et al. 1995; Fray
et al. 1998; Sasaki et al. 2000). The aim of the present
study was to examine the effect of nAChR activation on
HMs during excitotoxicity. To this end, we used nicotine
as a selective, stable agonist on nAChRs. In particular,
we focused on how nicotine could modify not only the
electrophysiological consequences of glutamate uptake
block, but also certain parameters essential for cell viability
such as mitochondrial respiration, generation of reactive
oxygen species (ROS), changes in gene expression and
related intrinsic protection mechanisms.

Methods

Ethical approval

All experiments and treatment protocols were approved
by the Scuola Internazionale Superiore di Studi Avanzati
(SISSA) ethics committee (prot. 3599, 28 May 2012) and
were carried out in accordance with the European Union
rules for animal experimentation. All efforts were made
to minimize the number of animals used for the pre-
sent experiments and their suffering. Experiments were
performed with in vitro brainstem slices removed from
neonatal Wistar rats (postnatal days 2–6; P2–P6) rapidly
decapitated under I.P. urethane anaesthesia (10% solution,
0.1 ml injection).

Slice preparation and drug application protocols

Details of all experimental procedures have been pre-
viously published (Sharifullina & Nistri, 2006; Nani
et al. 2010). The brainstem was isolated in continuously
oxygenated (95% O2 and 5% CO2) Krebs solution
containing (in mM): 130 NaCl, 3 KCl, 1.5 NaH2PO4, 1
CaCl2, 5 MgCl2, 25 NaHCO3 and 18.5 glucose (pH 7.4;
300–330 mosmol l–1). Slices (250–450 μm thick) obtained
with a vibrating tissue slicer (Vibracut, FTB, Weinheim,
Germany) were transferred to an incubation chamber for
20 min at 32°C and then for at least 10 min at room
temperature before use for patch clamp recording as
detailed below.

For all other experiments that included longer slice
maintenance in vitro (4–6 h), slices or isolated brainstems
were incubated under resting conditions as above and sub-
sequently kept in continuously oxygenated Krebs solution
(sham), TBOA (50 μM), TBOA (50 μM) + nicotine
(10 μM) or nicotine (10 μM) at room temperature and
processed as indicated later.

Electrophysiological recordings

Single slices (300 μm thick) were placed in a small
recording chamber and superfused (2–3 ml min−1) with
Krebs solution containing the following salt composition
(in mM): 130 NaCl, 3 KCl, 1.5 NaH2PO4, 1.5 CaCl2,
1 MgCl2, 25 NaHCO3 and 19.4 glucose (pH 7.4;
300–330 mosmol l–1) at room temperature. Under ×40
magnification, the large soma of HMs (�25 μm) was
clearly visible for patch clamp recording. Patch electro-
des (3–4 M� resistance) were filled with an intracellular
CsCl-based solution (in mM: 130 CsCl, 5 NaCl, 2 MgCl2, 1
CaCl2, 10 Hepes, 10 EGTA, 2 ATP-Mg salt and 2 glucose;
pH 7.2 with CsOH, 300–330 mosmol l–1) to reduce leak
currents of cells clamped at −70 mV holding potential
(Vh). Series resistance (Rs; 5–20 M�) was continuously
monitored and compensated for; data were discarded
when Rs exceeded 20% of the initial value. Recordings
(obtained with Clampex 9.2 software, Molecular Devices,
Sunnyvale, CA, USA) were filtered at 10 kHz and sampled
at 10 kHz.

Electrophysiological data analysis

Electrophysiological data were analysed using Clampfit
10.0 (Molecular Devices). The template search function
of the software was used to detect pharmacologically iso-
lated excitatory and inhibitory spontaneous post synaptic
currents (sPSCs). Cell input resistance (Rin) was calculated
measuring the current response to 10 mV hyperpolarizing
steps from Vh.

Immunohistochemistry

Immunohistochemical experiments were run to
determine the effect of TBOA and nicotine on HM
survival. For this, brainstem slices (450 μm) containing
the hypoglossal nucleus were processed as described
above. After 4 h of treatment, PBS containing 4%
paraformaldehyde was used as fixative medium (4 h
at 4°C) and 30% sucrose as cryoprotector (72 h at
4°C). Thereafter, slices were embedded in a mounting
medium for cryostat sectioning and frozen for at least
12 h. Cryostat tissue sections (30 μm) were sequentially
collected on histology slides, rinsed three times for 10 min
in PBS, and treated with blocking solution (10% normal
goat serum, 50% BSA, 3% Triton X-100 in PBS) for
3 h at room temperature. Slices were then incubated
overnight at 4°C with the primary antibodies anti-SMI
32 (mouse monoclonal, 1:200 dilution; BioLegend, San
Diego, CA, USA; validated in our previous studies, see
Nani et al. 2010; Cifra et al. 2012) and anti-UDP-glucose
glycoprotein glucosyltransferase 1 (UGGT; rabbit mono-
clonal, 1:500 dilution; Abcam, Cambridge, UK). The
secondary antibodies AlexaFluor 488 and 594 (1:500
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dilution; Molecular Probes, Invitrogen, Carlsbad, CA,
USA) were applied for 2 h at room temperature. Primary
and secondary antibodies were diluted in the antibody
solution containing: 2% normal goat serum, 10% BSA
and 1% Triton X-100 in PBS. After incubation with
the secondary antibody, slices were rinsed and stained
with the DNA dye DAPI (1:1000 dilutions in PBS) for
20 min at room temperature. Finally, slices were mounted
with fluorescence mounting medium (Dako, Glostrup,
Denmark) to reduce fading. Images were taken by either a
Zeiss Axioskop2 microscope (Oberkochen, Germany) or
a Nikon confocal microscope (Tokyo, Japan), using 1 μm
z sectioning. SMI 32-immunopositive HMs were counted
within a 67.2 mm2 region of interest (ROI) for each
nucleus section, using ImageJ software (version 1.44p, W.
Rasband, National Institutes of Health, Bethesda, MD,
USA).

MTT mitochondrial toxicity test

As described by Mosmann (1983), cell viability was
tested with the MTT assay in accordance with pre-
viously reported methods (Mazzone et al. 2010).
After 4 h treatment with various protocols as above,
slices were incubated for 2 h at room temperature
with 3(4,5-dimethylthiazolyl-2)-2,5 diphenyl tetrazolium
(MTT) dissolved (0.5 mg ml−1) in PBS (pH 7.4) and
diluted to a final concentration of 0.5 mg ml−1 in Krebs
solution. After this period, the medium was replaced with
0.5 ml of HCl and 0.04 M isopropanol, and the samples
were slowly shaken in a roller drum at room temperature
overnight. The dissolved tissues were then centrifuged
at 10,000 g for 5 min and the absorbance values (wave-
length = 550 nm) were evaluated with a Bio-Rad micro-
plate reader (model 550, Bio-Rad Laboratories, Poole,
UK).

Detection of intracellular ROS

Membrane-permeable dihydrorhodamine 123 (DHR 123;
Molecular Probes, Invitrogen) was used to evaluate the
generation of intracellular free oxygen radicals as pre-
viously reported (Cifra et al. 2009; Nani et al. 2010). Slices
(250 μm) were incubated for 4 h using the protocols as
reported, and then treated for 20 min with DHR 123
(5 μM) and Hoechst 33342 (10 mg ml−1 stock from
Molecular Probes, Invitrogen; dilution 1:1000) diluted
in Krebs solution. Finally, slices were washed and trans-
ferred to a small Petri dish containing Krebs solution to be
analysed with a TCS SP2 Leica confocal microscope (20×
objective and 2× magnification). To obtain fluorescence
images of rhodamine 123 (Rho 123, the oxidized form of
DHR 123) staining, slices were visualized by excitation
at 514 nm and emission at 530–610 nm. For slice
counterstaining, we used Hoechst 33342, a cell-permeable

fluorescent dye which emits blue fluorescence once bound
to double-stranded DNA. Images were acquired in 5 μm
steps to a total 40 μm z-stack (corresponding to one HM
plane) from each slice side for both hypoglossal nuclei.
ImageJ software was used to measure Rho 123 fluorescence
signal intensity and detect Hoechst 33342 and Rho 123
signal-positive voxels.

Western blot

Western blot analysis was performed on whole brain-
stem treated according to the protocols described above
and previously published (Mladinic et al. 2014). Tissues
were lysed in CHAPS buffer solution (0.5% CHAPS,
50 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl,
10% glycerol plus protease inhibitors mixture; Complete,
Roche Applied Science, Basel, Switzerland) and immuno-
blotted with rabbit anti-UGGT (1:7000, Abcam) and
mouse anti-β-actin (1:2000, Sigma) antibodies. For signal
detection we used the enhancer chemiluminescence light
system (Amersham Bioscience, Piscataway, NJ, USA).
The signal was recorded with the digital imaging system
Alliance 4.7 (UVItec, Cambridge, UK) and quantified with
the program Alliance LD2-77-WL (UVItec).

Real-time RT-PCR

As for Western blot, PCR experiments were performed on
whole brainstem and RNA was extracted with the protocol
described above using Trizol reagent (Invitrogen). After
extracting RNA with a purpose-made kit (Ambion,
Austin, TX, USA), cDNA was purified using the RNeasy
Mini Kit (Qiagen, Hilden, Germany) and retrotranscribed
with the iScript cDNA Synthesis Kit (Bio-Rad, Hercules,
CA, USA). To study the unfolded protein response (UPR)
we used the RT2 Profiler PCR Array PARN 089ZD (Qiagen;
http://www.sabiosciences.com/rt_pcr_product/HTML/
PARN-089Z.html) (Kuny et al. 2012). All the analysed
genes are listed in the Supporting Information, Table S1.

Drugs

The following drugs were used: (2R)-amino-5-
phosphonovaleric acid (AP5, Tocris, Bristol, UK),
6,7-dinitroquinoxaline-2,3-dione (DNQX, Abcam),
bicuculline methiodide (Tocris), dihydro-β-erythroidine
(DHβE, Tocris), (TBOA, Tocris), methyllycaconitine
(MLA, Sigma-Aldrich, Saint Louis, MO, USA), nicotine
(Sigma-Aldrich) and strychnine hydrochloride (Tocris).

Statistical analysis

Results were collected from at least three different
experiments and expressed as means ± standard error of
the mean; n refers to the number of slices or brainstems for
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each independent experiment. For statistical analysis, we
used SigmaStat 3.5 (Systat Software, Chicago, IL, USA).
A normality test was first used to distinguish between
parametric and non-parametric data. For multiple groups,
parametric data were compared with the one-way
ANOVA, whereas non-parametric data were evaluated
with the Kruskal–Wallis one-way ANOVA on ranks test.
Student’s t-test was applied to compare two parametric
groups; otherwise non-parametric values were processed
with the Mann–Whitney test. Groups of data were
accepted as statistically different at P � 0.05.

Results

Nicotine inhibited bursts induced by TBOA

Figure 1A exemplifies how bath application of TBOA
(50 μM) induced bursting activity that occurred in
51% of HMs (41/80) in accordance with previous
data from our laboratory (Sharifullina & Nistri, 2006).
This phenomenon is known to originate from extensive
network excitation involving rhythmic intracellular Ca2+
waves, gap junction communication and activation of
certain K+ conductances (Sharifullina et al. 2005). Bursts
disappear when TBOA is washed out within 20 min from
onset; otherwise HMs are usually damaged (Sharifullina
& Nistri, 2006). In the present study bursts had a
mean amplitude of −545 ± 69 pA calculated from
baseline current, duration of 43 ± 2 s and period of
94 ± 7 s (n = 41). It is noteworthy that, within a
typical burst sequence of seven events, the second and
third ones (Fig. 1Da) were the largest in amplitude
followed by a gradual decrease. Regardless of a cell’s
ability to generate bursts, a significant rise in amplitude
and frequency of spontaneous post-synaptic currents was
observed in analogy to previous data (Sharifullina & Nistri,
2006).

To test the effect of nAChR ligands on bursting
activity and other electrophysiological properties, we
first established that TBOA could evoke bursting (at
least two such events) and then applied the drug under
investigation. Figure 1B exemplifies the effect of nicotine
(1 μM), which switched off bursts within 3 min. A
higher concentration (10 μM) of nicotine rapidly and
fully blocked TBOA-evoked bursts (Fig. 1C). Figure 1Da–c
summarizes average data for burst depression induced by
1 or 10 μM nicotine.

Nicotine-induced modulation of synaptic events

Regardless a cell’s propensity to generate TBOA-elicited
bursts, nicotine consistently exerted similar effects on
spontaneous synaptic events that were measured in the
interval between bursts or during the inward baseline
current induced by TBOA on non-bursters (Sharifullina

& Nistri, 2006). Thus, Fig. 1E and F shows that the
two nicotine concentrations (1 and 10 μM) decreased
average amplitude of sPSCs that returned to basal values
within approximately 10 min. While these data collectively
indicated that nicotine could depress bursting as well as
synaptic transmission, we next inquired the mechanism
of action underlying the observed phenomena. Recording
a mixed population of synaptic events did not allow us to
identify any discrete modulation by nicotine of excitatory
or inhibitory synaptic transmission. In particular, because
nicotine can facilitate synaptic inhibition (Jaiswal et al.
2016), it might have been possible that enhanced
inhibition was one process to block bursting.

On HMs, synaptic inhibition is mediated by glycinergic
(Singer et al. 1998) and GABAergic (Donato & Nistri,
2000) inputs that were investigated after blocking
glutamatergic transmission. Hence, we antagonized
AMPA and NMDA receptors with DNQX (10 μM) and
AP5 (50 μM), and thus suppressed TBOA-induced bursts
(Sharifullina & Nistri, 2006). In the presence of nicotine
(10 μM), GABAergic events (Fig. 2A) unmasked with
the glycine antagonist strychnine (0.4 μM; Donato &
Nistri, 2000) were not significantly changed in amplitude
(Fig. 2A, C; n = 5), while their frequency (Fig. 2A, D) rose
significantly from 3 ± 0.7 to 7 ± 0.04 Hz (P � 0.001; n = 5).
The GABA receptor blocker bicuculline (10 μM) was used
to investigate glycinergic current changes in the presence
of nicotine (10 μM). Also in this case the event amplitude
remained unchanged (Fig. 2B, C; n = 5), while the event
frequency was significantly increased from 2 ± 0.9 to 6
± 1 Hz (P = 0.042; n = 5; Fig. 2B, D). While these data
indicated that nicotine could facilitate inhibitory neuro-
transmission onto HMs, the impact of this phenomenon
on bursting could not be directly assessed because bursts
were pharmacologically prevented.

Next, we explored if nicotine modulated excitatory
synaptic transmission after suppressing synaptic
inhibition with bicuculline (10 μM) and strychnine
(0.4 μM) (Donato & Nistri, 2000; Marchetti et al. 2002):
with such a protocol the occurrence of TBOA-induced
bursts becomes facilitated (Sharifullina & Nistri, 2006), as
validated by the present observation that TBOA evoked
bursts in all recorded cells (n = 5). Nicotine (10 μM)
fully blocked bursting activity (Fig. 2E), yet it did not
influence spontaneous excitatory postsynaptic current
(sEPSC) amplitude recorded in the presence of TBOA
+ strychnine + bicuculline (Fig. 2F). Furthermore,
sustained application of nicotine led to a late, significant
decrease in the average sEPSC frequency, suggesting
depressed release of glutamate (Fig. 2G; n = 4) probably
due to nAChR desensitization (Quitadamo et al. 2005). In
these tests (Fig. 2F, G) we analysed for each drug protocol
applied to each slice approximately 3000 synaptic events
in control Krebs, a value that fell to about 1500 at the end
of the TBOA plus nicotine application.
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Figure 1. Nicotine depresses bursting activity induced by TBOA
A, record under voltage-clamp configuration (Vh = −70 mV) showing bursting activity evoked by 50 μM TBOA.
Bursts are characterized by large inward currents with superimposed spikes and interposed spontaneous synaptic
events. B, subsequent application of 1 μM nicotine decreases burst activity; C, higher concentration of nicotine
(10 μM) fully blocks bursts. Trace interruptions are due to Rin monitoring. D, plots of burst amplitude vs. burst
sequence. In the presence of TBOA (Da), on average, cells manifest seven bursts of decreasing amplitude.
Co-application of 1 μM nicotine (Db) after the first two bursts reduces the burst amplitude. A higher concentration
of nicotine (10 μM; Dc) fully blocks burst activity. E, spontaneous postsynaptic current (sPSC) amplitude is
significantly smaller in the presence of nicotine (1 or 10 μM) when compared to TBOA alone. Horizontal bars
indicate the data groups tested for statistically significant difference. Nicotine (1 μM): Kruskal–Wallis one-way
analysis on ranks test: P = 0.002 among groups; Student’s t-test: ∗P = 0.003 for control vs. TBOA at 10 min,
∗P = 0.026 TBOA at 10 min. vs. TBOA + nicotine at 20 min, ∗P = 0.014 for TBOA at 10 min. vs. TBOA + nicotine
at 25 min and P = 0.003 for TBOA at 10 min vs. wash out; n = 8. Nicotine (10 μM): Kruskal–Wallis one-way
analysis on ranks test: P = 0.046 among groups; Student’s t-test: ∗P = 0.053 for control vs. TBOA at 10 min,
∗P = 0.029 TBOA at 10 min. vs. TBOA + nicotine at 20 min, ∗P = 0.029 for TBOA at 10 min. vs. TBOA + nicotine
at 25 min and P = 0.029 for TBOA at 10 min vs. wash out; n = 5. F, sPSC frequency is not influenced by nicotine
(1 or 10 μM). Horizontal bars indicate the data groups tested for statistically significant difference. Nicotine (1 μM):
Kruskal–Wallis one way analysis on ranks test: P = 0.011 among groups; Student’s t-test: ∗P = 0.028 for control
vs. TBOA at 10 min, ∗P = 0.004 control vs. TBOA + nicotine at 15 min and P = 0.003 for TBOA + nicotine at
15 min vs. wash out, ∗P = 0.015 for control vs. TBOA + nicotine at 20 min and ∗P = 0.009 for control vs. TBOA
+ nicotine at 25 min; n = 8. Nicotine (10 μM): Kruskal–Wallis one-way analysis on ranks test: P = 0.002 among
groups; Student’s t-test: ∗P = 0.003 for control vs. TBOA at 10 min, ∗P = 0.024 control vs. TBOA + nicotine at
15 min and ∗P = 0.003 for control vs. TBOA + nicotine at 25 min; n = 5.
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Figure 2. Nicotine effects on inhibitory and excitatory synaptic currents
Voltage clamp traces (Vh = − 70 mV) showing example of GABAergic (A) and glycinergic (B) currents under basal
(strychnine or bicuculline, respectively plus AP5 + DNQX) or nicotine treatment conditions without application
of TBOA. C, analysis of synaptic event amplitude shows no effect by 10 μM nicotine on GABAergic (n = 5) or
glycinergic (n = 5) inhibitory currents (sIPSC). D, frequency of spontaneous inhibitory post synaptic currents (sIPSC)
is significantly augmented by nicotine. Student’s t-test: ∗∗∗P � 0.001 for GABAergic currents, n = 5; ∗P = 0.042
for glycinergic currents, n = 5. E, 10 μM nicotine fully blocks burst activity induced by TBOA in the continuous
presence of bicuculline (10 μM) and strychnine (0.4 μM). Gap in the trace is for Rin monitoring. F, amplitude of
excitatory synaptic currents (sEPSC) is not changed during TBOA + nicotine application when compared with
TBOA alone. Kruskal–Wallis one-way analysis on ranks test: P = 0.010 among groups; n = 4. G, nicotine (10 μM)
significantly decreases sEPSC occurrence. Kruskal–Wallis one-way analysis on ranks test: P � 0.001 among groups;
Student’s t-test: ∗∗P = 0.009 for TBOA + nicotine at 15 min vs. TBOA + nicotine at 20 min; ∗∗P = 0.002 for TBOA
+ nicotine at 15 min vs. TBOA + nicotine at 25 min; ∗∗∗P � 0.001 TBOA + nicotine at 15 min vs. washout; n = 4.
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Table 1. HM input resistance (mean ± SEM)

Input resistance (M�)

Control 132 ± 29
TBOA 105 ± 16
TBOA + nicotine 113 ± 17
TBOA + bicuculline + strychnine 109 ± 20
TBOA + bicuculline + strychnine +

nicotine
102 ± 24

AP5 + DNQX 157 ± 24
AP5 + DNQX + nicotine 165 ± 35
P (one-way ANOVA) P = 0.341

TBOA data were recorded during the interburst periods,
whereas the TBOA + nicotine values were recorded after burst
suppression.

We also measured HM input resistance following
such pharmacological treatments because changes in
multi-site-generated synaptic events may simply originate
via alteration in HM passive membrane properties. Thus,
Table 1 shows that HM Rin values were not statistically
different among drug treatments in keeping with former
reports (Lamanauskas & Nistri, 2006; Sharifullina &
Nistri, 2006; Cifra et al. 2011a).

The inhibitory effects of nicotine on bursting and
related synaptic events should not be confused with
the ability by nicotine per se (5, 10 or 20 μM) to
induce fast oscillations in a subpopulation of HMs
(Lamanauskas & Nistri, 2006). In the present study, when
synaptic inhibition was pharmacologically suppressed,
after 5 min of nicotine application (10μM), rapid rhythmic
oscillations emerged in the majority of HMs (60%, n = 5)
at oscillatory frequency of 10 ± 1 Hz.

Taken together, these results show that, during
excitotoxic stress, nicotine depressed bursting through a
combinatorial network process that probably included
potentiation of synaptic inhibition and depression of
glutamate release. It was, however, noteworthy that, even
when synaptic inhibition was blocked, nicotine remained
an effective burst suppressor.

nAChR antagonists enhanced bursting activity

To explore any role of endogenous ACh and whether the
effects of nicotine could be attributed to nAChR block, we
next tested DHβE (5 μM) and MLA (5 nM), namely nAChR
antagonists against the neuronal α4 and α7 receptor
subunits, respectively (Arroyo-Jiménez et al. 1999; Jones
et al. 2001; Simone et al. 2005). Neither DHβE nor MLA
significantly reduced the peak amplitude and frequency
of sPSCs in control solution (Table 2), confirming
that under resting conditions there was no detectable
cholinergic transmission on HMs (Lamanauskas & Nistri,
2006).

Table 2. Variation in sPSC amplitude and frequency in the pre-
sence of DHβE (5 μM) or MLA (5 or 50 nM) (n = 5) (mean ± SEM)

Amplitude (%) Frequency (%)

DHβE (5 μM) 85 ± 2 95 ± 4
MLA (5 nM) 92 ± 2 83 ± 5
MLA (50 nM) 105 ± 11 82 ± 6

When these antagonists were applied in combination
(Fig. 3A) or isolation (Fig. 3B, C) during TBOA-evoked
bursting, they did not interfere with burst parameters
(amplitude, duration and period; Fig. 3D, E). Likewise,
co-application of nAChR antagonists with TBOA induced
a similar increase in synaptic event amplitude (Fig. 3F)
and frequency (Fig. 3G) as in TBOA alone (Sharifullina &
Nistri, 2006). Nevertheless, a distinct scenario appeared
when nAChR antagonists were tested on HMs (about
50%) that did not initially burst in the presence of TBOA
despite the application of this drug for 15 min. Hence,
as shown in Fig. 4A–C, DHβE and MLA in combination
or applied separately unmasked bursting in 6/10 HMs.
These results suggest a conditional role for endogenous
cholinergic transmission as it could not change established
bursting, yet it could decrease the bursting probability in
a subgroup of HMs.

The next question was whether burst inhibition evoked
by nicotine was mediated via nAChRs. As shown in
Fig. 1Dc, 10 μM nicotine rapidly suppressed bursts that
were arrested after the 3rd event. On the other hand,
following co-application of nAChR antagonists together
with nicotine after the 2nd event (Fig. 5A, B), bursts
continued in a fashion similar to that detected in TBOA
alone solution reaching a total number of seven events
(Fig. 1Da). Note that the total number of events was 6–7
also in the presence of antagonists applied after the 2nd
TBOA-induced burst (Fig. 3D).

Excitotoxic cell loss

As previously demonstrated by our laboratory, a
significant loss of HMs was detected 4 h after TBOA
application through a delayed cell death process (Cifra
et al. 2011a). The present study investigated whether
nicotine could prevent this outcome. HM numbers were
evaluated with the marker SMI 32, which labels the
non-phosphorylated form of neurofilament H (Campbell
& Morrison, 1989; Cifra et al. 2012). Figure 6A, B
shows that extending the slice incubation period to
a maximum of 6 h did not change the number of
HMs in sham or TBOA-treated conditions. The nucleus
of motoneurons that survived did not show signs of
apoptosis or necrosis. Taken together, these data suggest
that, within a timeframe of 4 h, the toxic effect of
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TBOA (approximately 35% HM death) reached a plateau.
Further experiments were therefore performed with a 4 h
treatment protocol. Figure 6C, D shows the extent of
HM loss after TBOA treatment versus control (sham) or
nicotine-alone treatment (Student’s t-test: P � 0.001 for
sham vs. TBOA and P � 0.001 for TBOA vs. nicotine;
n = 9 slices). This significant loss observed after TBOA
alone was contrasted by its co-application with nicotine
(10 μM) (Student’s t-test: P � 0.001 for TBOA vs. TBOA
+ nicotine; n = 9).

Nicotine prevented TBOA-induced oxidative stress
damage to HMs

We next queried whether nicotine might have prevented
neuronal death induced by TBOA by inhibiting oxidative
stress (Selkirk et al. 2005; Lewerenz et al. 2006; Cifra
et al. 2011a). Thus, DHR 123, a cell-permeable fluoro-
scent probe, was used to detect ROS such as peroxide and
peroxynitrite (Cifra et al. 2011a). Using the experimental
paradigm described earlier, Figure 7A shows staining with
Rho 123 and Hoechst 33342 (for nuclear staining) within
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Figure 3. nAChR antagonists facilitate bursting activity
A–C, voltage clamp traces (Vh = −70 mV) show bursting activity in the presence of nAChR antagonists DHβE and
MLA applied together or in isolation. Traces interrupted for Rin monitoring. D, plots of average burst amplitude
vs. burst sequence for the protocols shown in A–C. E, unchanged burst values (amplitude, duration and period) in
the presence of nAChR antagonists. F, the increase in sPSC amplitude evoked by TBOA (Sharifullina & Nistri, 2006)
persists unchanged even in the presence of antagonists. Kruskal–Wallis one-way analysis on ranks test: P = 0.042
among groups; Student’s t-test: ∗P = 0.022 for TBOA at 10 min vs. wash out, ∗P = 0.015 for TBOA + DHβE +
MLA at 15 min vs. wash out, ∗P = 0.011 for TBOA + DHβE + MLA at 20 min vs. wash out, ∗P = 0.022 for TBOA
+ DHβE + MLA at 25 min vs. wash out; n = 9. G, the significant increase in sPSC frequency induced by TBOA
(Sharifullina & Nistri, 2006) is not altered by nAChR antagonists. Kruskal–Wallis one-way analysis on ranks test:
P = 0.010 among groups; Student’s t-test: ∗P = 0.021 for control vs. TBOA at 10 min and P = 0.042 for TBOA at
10 min vs. wash out, ∗P = 0.047 for TBOA + DHβE + MLA at 15 min vs. wash out, ∗P = 0.010 for control vs.
TBOA + DHβE + MLA at 20 min and P = 0.004 for TBOA + DHβE + MLA at 20 min vs. wash out, ∗P = 0.028
for control vs. TBOA + DHβE + MLA at 25 min and P = 0.012 for TBOA + DHβE + MLA at 25 min vs. wash out;
n = 9.
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the nucleus hypoglossus following 4 h of incubation in
Krebs solution, TBOA (50 μM), TBOA (50 μM) + nicotine
(10 μM), or nicotine (10 μM). Figure 7B indicates that after
4 h the number of Hoechst-labelled nuclei fell to 70% after
TBOA, whereas it remained similar to control when TBOA
+ nicotine were applied. This observation is, therefore,
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Voltage clamp traces (Vh = −70 mV) indicating examples of
antagonists facilitating emergence of bursting in non-burster cells.
Gaps in the traces are due to Rin monitoring.
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co-application of nAChR antagonists
A, voltage clamp recording (Vh = −70 mV) showing that bursting
activity is not blocked by a co-application of nicotine (10 μM), DHβE
(5 μM) and MLA (5 nM). B, plots of burst amplitude versus burst
sequence (n = 5). Data are obtained in the presence of bicuculline
and strychnine.

consistent with the degree of HM losses depicted in Fig. 6.
Figure 7C summarizes average data for ROS fluorescence:
thus, the ratio of rhodamine-positive motoneurons to
Hoechst-positive cell nuclei was significantly larger in
the presence of TBOA vs. sham or nicotine treatment.
Co-application of nicotine prevented TBOA-induced cell
loss and ROS generation as shown in Fig. 7A–C.

nAChR activation stimulated metabolic activity
in HMs

To explore the link between ROS generation and perturbed
mitochondrial energy metabolism, we examined the
metabolic activity of samples after 4 h of treatment using a
standard test based on the reduction of MTT to formazan,
a non-invasive index of mitochondrial activity (Mosmann,
1983; Mazzone et al. 2010; Mazzone & Nistri, 2011; Goiato
et al. 2015). Formazan formation (Fig. 7D) was decreased
to 73 ± 4% after TBOA when compared with sham.
Co-application of TBOA + nicotine (10 μM) increased
MTT reduction to 126 ± 16%, a value similar to the effect
produced by nicotine alone (120 ± 14%; n = 4). The data
thus indicated that nicotine improved energy metabolism
even in conditions of excitotoxic stress applied to brain-
stem tissue.

Application of TBOA induced UPR

As excitotoxicity is associated with an increase in ROS
and mitochondrial dysfunction, this phenomenon is
thought to eventually lead to protein misfolding and
neurodegeneration (Forder & Tymianski, 2009; Mehta
et al. 2013). Indeed, under these conditions, protein
misfolding induces the UPR, namely a reactive cell
process activated in the endoplasmic reticulum (ER) by
three major sensors, ATF6 (α and β), IRE1 (α and β)
and PERK (Rutkowski & Kaufman, 2004; Doyle et al.
2011). ER stress has been reported as an early pathological
event in both sALS and fALS (Doyle et al. 2011; Hetz
et al. 2013; Matus et al. 2013). We wondered whether
TBOA-induced excitotoxicity was followed by activation
of UPR. For this, we investigated mRNA expression
level of 84 genes correlated with ER stress (Kuny et al.
2012) as listed in Supporting Information Fig. S1 and
Table S1. We report a discrete increase in the expression
of certain genes after 4 h in the presence of TBOA
compared with sham or nicotine (Fig. 8). In particular,
we observed a significant upregulation of genes involved
in ER stress mechanisms (Fig. 8 and Table 3 for statistics)
such as apoptosis [Mapk8 (JNK1), Mapk9 (JNK2);
Davis, 2000; Shoji et al. 2000], cholesterol metabolism
regulation (Insig2, Mbtps1, Mbtps2; Kleinfelter et al.
2015; Ren et al. 2015), control of protein folding quality
(Edem1, Rpn1; Qin et al. 2012; Wang et al. 2015), ER
degradation (ERAD; Htra4, Nploc4, Syvn1; Clausen et al.
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2002; Ballar et al. 2011; Nakajima et al. 2015), protein
folding (Hspa4, Uggt1; Zhou et al. 2014; Wang et al.
2015), transcription [Atf6, Ern2 (IRE1β); Rutkowski
& Kaufman, 2004; Oikawa et al. 2012] and translation
(Eif2ak2, Ppp1r15b; Kloft et al. 2012; Niso-Santano et al.
2013). A systematic description of the activity of the
single genes studied in the current protocol is provided at:
http://www.sabiosciences.com/rt_pcr_product/HTML/
PARN-089Z.html#function. These results validated

the notion that TBOA-evoked activation of the UPR
system was manifested as increased activity of a group
of genes related to ER stress, including ATF6 and IRE1β

(Rutkowski & Kaufman, 2004; Doyle et al. 2011), and that
such an effect was inhibited by nicotine.

Previous experiments have indicated the interaction
of nicotine with the allosteric protein modulator lynx1
(Miwa et al. 1999; Henderson & Lester, 2015) as an
important process to provide neuroprotection. Our
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Figure 6. Motoneuron survival following TBOA-induced excitotoxicity
A, example of HMs after 4 h (top row) or 6 h (bottom row) incubation in Krebs solution (sham, left column) or
TBOA solution (right column). B, bar chart indicating similar loss of HMs after 4 or 6 h of treatment with TBOA.
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+ nicotine (10 μM), or nicotine (10 μM) alone. D, bar chart showing significant loss of motoneurons after TBOA
treatment (compared with sham or nicotine data), an effect fully prevented by nicotine. Kruskal–Wallis one-way
analysis on ranks test: P � 0.001 among groups; Student’s t-test: ∗∗∗P � 0.001 for sham vs. TBOA, ∗∗∗P � 0.001
for TBOA vs. TBOA + nicotine, ∗∗∗P � 0.001 for TBOA vs. nicotine; n = 9.
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preliminary experiments, however, confirmed that lynx1 is
not expressed in the brainstem at neonatal age (Thomsen
et al. 2014; see Fig. 9). Although the precise role of lynx1
remains incompletely understood (Henderson & Lester,
2015), our data point to additional mechanisms under-
lying the neuroprotective effect of nicotine.

Nicotine enhanced mechanisms for protein folding
and quality control

To handle and correct early UPR-mediated protein
misfolding, cells can activate a series of intracellular
mechanisms among which UGGT is a key contributor

to recognize glycoproteins such as antibodies, cytokines
or hormones with minor folding defects (Izumi et al.
2012). UGGT can then repair misfolded proteins, making
them recognizable by calreticulin for recycling, refolding
or degradation (Wang et al. 2015). To investigate the extent
of protein dysfunction evoked by TBOA and the role of
nicotine neuroprotection, we analysed UGGT levels in
our model of excitotoxicity. After 4 h of TBOA exposure,
a small, yet significant rise in the expression of UGGT
was found in brainstem tissue vs. control (Fig. 10A, B).
Co-application of nicotine (10 μM) with TBOA restored
UGGT levels and, when applied alone, did not induce any
significant change (Fig. 10A, B; n = 4).
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Figure 7. HMs show sign of oxidative stress and deficit in energy metabolism after 4 h application of
TBOA
A, example of rhodamine 123 (Rho 123) and Hoechst 33342 staining of slices containing the hypoglossal nucleus
incubated for 4 h in Krebs solution (sham), TBOA, TBOA + nicotine (10 μM), or nicotine alone. Rho 123 is used
to monitor oxidative stress, whereas Hoechst 33342 is used to label cell nuclei for total cell counting in each
slice. B, graph showing a significant cell loss after TBOA treatment and protection by nicotine. Kruskal–Wallis
one-way analysis on ranks test: P = 0.025 among groups; Student’s t-test: ∗P = 0.040 for sham vs. TBOA,
∗P = 0.018 for TBOA vs. TBOA + nicotine, ∗P = 0.013 for TBOA vs. nicotine; n = 5. C, bar chart showing
higher ratio of rhodamine-positive motoneurons over Hoechst-positive cells after TBOA, an effect prevented by
nicotine. Kruskal–Wallis one-way analysis on ranks test: P = 0.038 among groups; Mann–Whitney rank sum test:
∗P = 0.057 for sham vs. TBOA, ∗P = 0.057 for TBOA vs. TBOA + nicotine, ∗P = 0.056 for TBOA vs. nicotine;
n = 5. D, bar chart quantifying the percentage of formazan production by brainstem slices. Those treated with
TBOA significantly decrease their metabolic activity compared with sham or nicotine: this effect is prevented by
nicotine co-application. Kruskal–Wallis one-way analysis on ranks test: P = 0.030 among groups; Mann–Whitney
rank sum test: ∗P = 0.029 for sham vs. TBOA, ∗P = 0.029 for TBOA vs. TBOA + nicotine, ∗P = 0.057 for TBOA
vs. nicotine; n = 4.
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To further investigate the cellular expression of UGGT,
immunohistochemical experiments were performed as
illustrated in Fig. 10C, D. Thus, when examining
motoneurons in the ROI exemplified in Fig. 10C, the
intensity of the UGGT signal was generally very low in
sham HMs as quantified in the right-hand side plot for
the number of positive cells, which mostly generated a
fluorescence signal below 20 AU (Fig. 10D, top). After
exposure to TBOA (4 h; Fig. 10C, D middle), surviving
cells expressed their UGGT signal mainly above 20 AU.
When TBOA and nicotine were co-applied, the UGGT
signal was expressed primarily at low intensity (Fig. 10C,
D) in analogy with the data observed when nicotine per
se was the only slice treatment. Figure 10E summarizes
average UGGT intensity for single HMs identified in
nine slices run in parallel with the protocol delineated
above. Thus, TBOA significantly enhanced the UGGT
signal, an effect prevented by nicotine. The phenomenon
is further illustrated in Fig. 10F in which the UGGT
fluorescence intensity is plotted against its detection
probability. Hence, the plot is largely shifted to the
right after TBOA application, demonstrating the higher
probability of observing cells with strong fluorescence
signal, while nicotine (that per se had minimal effect)
applied together with TBOA generated a plot virtually
indistinguishable from sham.

Discussion

The present study indicates a novel, strong neuro-
protection by nicotine via activation of nAChRs that
contrasted not only excitotoxic bursts but also prevented
cell loss by attenuating the intracellular stress response
developing after prolonged exposure to the glutamate
uptake blocker TBOA. The experimental use of nicotine
was a pharmacological tool to stimulate nAChRs with
a metabolically stable agonist. Thus, while these results
should not be construed in support for a neuroprotecting

role of smoking, they do propose that nAChRs modulate
the excitatory stress response of brainstem motoneurons.
Pharmacological activation of nAChRs might therefore
be considered a strategy to be further studied for neuro-
protection using models of motoneuron disease in vitro
and in vivo.

A model of motoneuron excitotoxicity

ALS is a neurodegenerative disease characterized by
progressive loss of motoneurons and non-neuronal cells
(Myszczynska & Ferraiuolo, 2016; Puentes et al. 2016)
possibly triggered by raised concentrations of extracellular
glutamate up to toxic levels due to impaired cell uptake
perhaps caused by environmental chemicals (Rothstein
et al. 1992, 1995). The hypoglossal nucleus, where
motoneurons represent about 90% of the neuronal
population (Viana et al. 1990; Cifra et al. 2011a), is
strongly affected by this process (Comley et al. 2015)
because of properties such as expression of GluR2-lacking
AMPA receptors (Laslo et al. 2001), the large amount
of intracellular free Ca2+ (Ladewig et al. 2003), and
relatively low levels of glutamate transporters (Rothstein
et al. 1992) and Ca2+ binding proteins (Medina et al.
1996), all factors contributing to HM vulnerability. The
in vitro model developed by our laboratory is based on
pharmacological block of glutamate transporters to tilt
the delicate balance between excitation and inhibition and
to study HMs for a few hours before tissue deterioration
(Sharifullina & Nistri, 2006; Cifra et al. 2011a). While ALS
progresses slowly, in our model motoneuron dysfunction
is therefore produced rapidly, yet in a patchwork fashion
typical of the clinical conditions: thus, our data may
be used to investigate the earliest phenomena that later
synergize to gradually determine the clinical onset of the
disease.

The present report employed neonatal rat tissue because
it is difficult to perform patch-clamp recording from
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TBOA treatment significantly increases gene expression involved in the UPR stress response. Details of statistical
analysis for each gene product considered are provided in Table 3. P values for TBOA vs. nicotine: ∗P � 0.050,
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Table 3. Statistical analysis of gene products significantly changed after TBOA or nicotine application

P values

Mann–Whitney rank sum test Student’s t-test

Gene Kruskal–Wallis test (among groups) Sham vs. TBOA Sham vs. nicotine TBOA vs. nicotine

Atf6 0.050 0.100 0.700 0.110
Edem1 0.050 0.100 0.700 0.051
Eif2ak2 0.050 0.100 0.700 0.065
Ern2 0.050 0.100 0.700 0.029
Hspa4l 0.004 0.100 0.100 0.004
Htra4 0.050 0.100 0.100 0.074
Insig2 0.004 0.100 0.100 0.007
Mapk8 0.050 0.100 0.700 0.001
Mapk9 0.004 0.100 0.100 0.058
Mbtps1 0.004 0.100 0.100 0.029
Mbtps2 0.050 0.100 0.700 0.063
Nploc4 0.004 0.100 0.100 0.015
Ppp1r15b 0.004 0.100 0.100 0.036
Rpn1 0.004 0.100 0.100 0.020
Syvn1 0.004 0.100 0.100 0.026
Uggt1 0.050 0.100 0.700 0.047

HMs of adult rodents (Jaiswal & Keller, 2009). Our
data are consistent with a number of ALS pathogenesis
studies done with brainstem slices or cultures from
embryonic or neonatal tissue (Singer et al. 1998;
Ladewig et al. 2003; Jaiswal & Keller, 2009; Huang
& Gibb, 2014). Notwithstanding these experimental
limitations, the model reproduces the principal glutamate
hypothesis whereby motoneurons are damaged by hyper-
excitability (Vucic & Kiernan, 2010). In line with this
notion, recent investigations have indicated that HMs of
hSOD1 mice expressing the common genetic mutation
G93A already, at neonatal age, show altered dendritic
development consistent with changes in membrane
excitability (Kanjhan et al. 2016).

Our previous studies have indicated that TBOA-
induced bursts were not facilitated by the CsCl-based
internal solution which was used to minimize leaks
currents, and very similar bursting characteristics have

mouse brain (P30)

rat brain (P5)

rat brainstem (P5)

rat liver

Primary antibody (lynx1)

Figure 9. LYNX1 is not detectable in neonatal brainstem tissue
Dot blot experiments showing the presence or the absence of the
LYNX1 protein in different samples from mouse and rat tissues at
different postnatal ages. Note lack of LYNX1 in P5 rat brain samples.

been detected when recording with KCl-filled pipettes
(Sharifullina & Nistri, 2006; Cifra et al. 2011a).

TBOA-evoked bursts of hypoglossal motoneurons
and their block by nicotine

While in the hypoglossal nucleus rhythmicity (often,
but not exclusively, related to respiratory patterns) is
readily evoked by a series of physiological or pathological
conditions (Cifra et al. 2009), the rhythm induced by
TBOA displays properties that makes it different from
bursts elicited, for instance, by NMDA receptor activation
(Sharifullina et al. 2008). In fact, NMDA-mediated
bursts possess distinctive voltage and Mg2+ sensitivity,
amplitude and frequency (Sharifullina et al. 2008): these
characteristics do not, however, exclude participation
of NMDA receptors to the global network discharges
that, via various receptor mechanisms, all contribute
to TBOA-evoked events (Cifra et al. 2009, 2011b).
In addition, neonatal rat spinal motoneurons exhibit
intrinsic rhythmic oscillations that are typically used
to generate fictive locomotion (as reviewed by Kiehn,
2016) and are apparently similar to those observed in the
adult spinal cord (Manuel et al. 2012). The latter data
indicate that NMDA-dependent discharges of neonatal
motoneurons comprise persistent inward and outward
currents that are not age-dependent.

Application of TBOA, which blocks excitatory amino
acid transporters (Shimamoto et al. 1998; Sharifullina
& Nistri, 2006), allows gradual increase in the
extracellular level of glutamate and mimicry of early-stage
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Figure 10. UGGT expression levels in HMs
A, example of Western immunoblotting showing the expression of UGGT in brainstems incubated in Krebs solution,
or treated with TBOA, TBOA + nicotine (10 μM), or nicotine. B, bar chart quantifying UGGT levels in brainstem
samples treated as before, demonstrating increment in UGGT expression after TBOA (Mann–Whitney rank sum
test: ∗P = 0.029 for sham vs. TBOA; n = 4 brainstems for each group). C, example of HMs labelled with the
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motoneuron marker SMI 32 (left column) and UGGT (middle column) after 4 h of incubation in Krebs (sham),
TBOA, TBOA + nicotine (10 μM), or nicotine solution. Merged images are shown in the right column, where nuclei
are visualized with DAPI. D, plots showing UGGT fluorescence intensity signal vs. HM number observed after
different treatments (UGGT-positive HMs: 293, sham; 139, TBOA; 215, TBOA + nicotine; 269, nicotine; n = 9
slices for each group). E, bar chart quantifying the UGGT signal increase after 4 h of TBOA treatment, an effect
prevented by nicotine (Kruskal–Wallis one-way analysis on ranks test: P � 0.001 among groups; Mann–Whitney
rank sum test: ∗∗∗P � 0.001 for sham vs. TBOA; P � 0.001 for sham vs. TBOA + nicotine, P � 0.001 for sham
vs. nicotine; ∗∗∗P � 0.001 for TBOA vs. TBOA + nicotine; P � 0.001 for TBOA vs. nicotine; P � 0.001 TBOA +
nicotine vs. nicotine; n = 9 slices for each group). F, plot of cumulative probability distribution of UGGT intensity
signal that is shifted to the right by TBOA and returned to sham values in the presence of nicotine (same data as
in E).

excitotoxicity. Thus, strong network bursting is expressed
by nearly half of HMs together with raised intracellular
Ca2+ followed by delayed neuronal death within a few
hours (Sharifullina et al. 2005; Sharifullina & Nistri, 2006;
Cifra et al. 2011a). Why some neurons manifest resistance
remains unknown.

A neuroprotective action by nAChRs has been proposed
against neuroinflammatory processes, glutamate cyto-
toxicity and, by implication, neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease and ALS
(Dajas-Bailador et al. 2000; Albuquerque et al. 2009;
Kawamata et al. 2011; Gao et al. 2014; Egea et al.
2015). To the best of our knowledge, it had not been
described before for the hypoglossal nucleus perhaps
because cholinergic nerve terminals, from the laterodorsal
and pedinculopontine tegmental nuclei, are not abundant
and are distributed in an apparently scattered fashion
(Rukhadze & Kubin, 2007). A recent study has suggested
the presence of motor axon collaterals that may connect
motoneurons to their neighbours to increase cholinergic
output (Kanjhan et al. 2015). Nevertheless, because
spontaneous cholinergic events have not been observed
even in the presence of anticholinesterases (Quitadamo
et al. 2005), their contribution to the TBOA-evoked bursts
appears limited.

Previous experiments have shown complex effects
by nicotine on synaptic transmission of the network
impinging upon HMs (Quitadamo et al. 2005;
Lamanauskas & Nistri, 2006) as validated in the pre-
sent study with the combined application of nAChR
antagonists DHβE and MLA. Despite a degree of receptor
desensitization probably produced by nicotine, sustained
nAChR activation and modulation of synaptic trans-
mission can occur (Lamanauskas & Nistri, 2006). Pre-
vious studies have indicated that nicotine can generate
nAChR responses from neuroblastoma cells even after
several hours of continuous application (Sokolova et al.
2005).We therefore used nicotine as a stable agonist to
arrest bursting activity produced by TBOA, and to depress
the concomitant increase in sEPSC frequency. These
effects could be interpreted as either nicotine-mediated
inhibition of network glutamatergic transmission, or
enhancement of synaptic inhibition mediated by GABA
and glycine (Donato & Nistri, 2000) as confirmed

in the present report. Nonetheless, burst arrest by
nicotine was observed even when synaptic inhibition was
pharmacologically suppressed, suggesting that depression
of excitation was an important mode of nicotine action.

nAChR antagonists facilitated excitotoxic bursts
induced by TBOA

The dissociation of the HM population into bursters and
non-bursters is a phenomenon not yet fully understood
as morphological and electrophysiological observations
could not identify the underlying cause(s) (Sharifullina
& Nistri, 2006). The present study attempted to answer
some outstanding issues regarding this question, namely
if network cholinergic transmission was fully operative
during bursting, and if it had any impact on this process.
Thus, we examined the effect of nAChR antagonists on
TBOA bursting. In particular, DHβE is a competitive
nAChR antagonist preferential for α4 subunit-expressing
receptors (Chavez-Noriega et al. 1997), whereas MLA is
a potent antagonist for α7-containing nAChRs (Palma
et al. 1996). When DHβE and/or MLA were superfused
after inducing bursting activity, there was no significant
bursting increment, suggesting that an inhibitory role by
endogenous ACh on bursters was minimal. Nevertheless,
on non-burster cells the same nAChR antagonists did
unmask bursts when applied either in isolation or together.
These results confirm the pivotal role of the endogenous
cholinergic tone (through α4β2 and α7 nAChRs) to
circumscribe bursting during excitotoxic stress. This
phenomenon is distinct from cholinergic modulation of
motoneuronal excitability (Quitadamo et al. 2005; Shao
et al. 2008). The experiments with nAChR antagonists
also allowed us to confirm that the depressant action
by nicotine was actually mediated through activation of
nAChRs as when agonist and antagonists were co-applied,
nicotine lost its ability to suppress bursts.

Nicotine protected hypoglossal motoneurons

Previous studies have reported delayed HM damage by
TBOA (Sharifullina & Nistri, 2006; Cifra et al. 2011a),
although the precise mechanism remains unclear. The
present study extended the observation time to 6 h
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and detected no further HM loss between 4 and 6 h.
Thus, a significant decrease in motoneuron numbers
(by about 35%) was taken as an established readout
of excitotoxicity at 4 h. No sub-region of the hypo-
glossal nucleus appeared to show selective vulnerability.
Similar data were obtained by simply counting Hoechst
33342-positive nuclei. Nicotine per se exerted no toxic
action on HMs, yet it prevented the HM loss caused
by TBOA. This result prompted us to investigate the
targets involved in nicotine neuroprotection as well as the
implications for surviving HMs. MTT analysis of brain-
stem tissue reported that mitochondrial activity decreased
by approximately 30% after TBOA, in line with the view
that even remaining cells probably suffered a degree
of metabolic dysfunction. This phenomenon was fully
inhibited by nicotine. One possible cause for deficient
energy metabolism might have been intracellular buildup
of ROS with negative impact on cell survival (Gu et al.
2010; Nani et al. 2010). In fact, after TBOA application,
a significant increase in the number of HMs positive for
a ROS fluorescence indicator was detected and fully pre-
vented by nicotine. This finding enabled us to functionally
link neuroprotection to prevention of ROS generation and
mitochondrial distress.

Cellular site of action of nicotine

nAChRs are widespread along the neuronal plasma
membrane, including the cell body and presynaptic
terminals (Gotti & Clementi, 2004). Recent studies
have, however, revealed that nAChR distribution is not
limited to the plasma membrane but it also comprises
localization to the outer mitochondrial membrane
(Gergalova et al. 2012; Lykhmus et al. 2014). The main
role of mitochondrial nAChRs is attenuation of cyto-
chrome c release, prevention of apoptosis and protection
of mitochondria from stress factors (Lykhmus et al. 2014).
These receptors do not work as classical ion channels,
but control different pathways dependent on PI3K/Akt,
CaKMII and Src (Gergalova et al. 2012, 2014; Lykhmus
et al. 2014). Nicotine is expected to act on intracellular
receptors because this alkaloid rapidly permeates cell
membranes (Albuquerque et al. 2009; Henderson & Lester,
2015). When nicotine is chronically applied a population
of highly sensitive nAChRs (upregulation) emerges within
a few hours (Bencherif et al. 1995; Kuryatov et al. 2005;
Henderson & Lester, 2015) involving various receptor
subtypes (Wang et al. 1998; Walsh et al. 2008). The
upregulation induced by nicotine does not apparently
require channel activation (Kuryatov et al. 2005), or gene
transcription (with some exceptions; see Henderson &
Lester, 2015) because nAChR mRNA levels are reportedly
unchanged after chronic nicotine application, outlining
a seemingly post-transcriptional mechanism (Bencherif
et al. 1995). Overall, the nicotine-enhanced nAChR

function is probably the result of a rather complex process
(Henderson & Lester, 2015) that comprises, amongst
others, accelerated nAChR maturation (Sallette et al. 2005)
and their increased trafficking to lipid raft membrane
regions (Kuryatov et al. 2005; Richards et al. 2011;
Srinivasan et al. 2011).

Proposed mechanism of action of nicotine

Protein misfolding associated with hyperactivation of
NMDA and Ca2+-permeable (GluR2 subunit lacking)
AMPA receptors (Tateno et al. 2004; Gu et al. 2010;
Thellung et al. 2013) induces the UPR stress response
(Doyle et al. 2011). As recently reported by Srinivasan
et al. (2016), nicotine upregulates genes connected to
the UPR process triggered via the ER stress response.
Thus, our results demonstrated that TBOA significantly
increased the expression of genes related to the ER stress
response (Kuny et al. 2012) and that HMs might react
to it via UGGT, one key protein implicated in the ER
quality control system of glycoprotein folding (Wang
et al. 2015). We posit that excitotoxicity triggered UGGT
upregulation and that this reaction was insufficient to
arrest the pathological decline in a substantial number
of HMs: because nicotine inhibited the deleterious intra-
cellular events activated by TBOA, UGGT hyperactivity
had then become unnecessary.

Implications for the pathophysiology of ALS

Our model for the early stage of ALS is based on
TBOA application to reproduce EAAT2 impairment
and a gradual glutamate increase as observed in the
cerebrospinal fluid of ALS patients (Rothstein et al. 1992;
Fray et al. 1998). Experimental block of glutamate uptake
increased intracellular free oxygen radicals, mimicking
the main features of ALS with subsequent degradation of
nuclear and mitochondrial DNA and protein misfolding
(Kaur et al. 2016). The present results candidate nAChRs as
a novel target for the control of network hyperactivation
and mitigation of the resulting stress conditions due to
impaired glutamate reuptake. Future in vivo studies are
necessary to explore the use of nAChR agonists as a
possible strategy to delay diseases progression in a pre-
clinical model of ALS.
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• Glutamate  uptake  block  evokes  hypoglossal  motoneuron  damage  due  to  excitotoxicity.
• Reactive  oxygen  species  are  the earliest  excitotoxic  players  for oxidative  damage.
• Mitochondrial  energy  deficit  is manifested  later.
• Intrinsic  cholinergic  transmission  is inadequate  to arrest  these  events.
• Nicotinic  receptor  activation  by  nicotine  provides  strong  neuroprotection.
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a  b  s  t  r  a  c  t

In several  neurodegenerative  diseases,  glutamate-mediated  excitotoxicity  is  considered  to be  a  major
process  to  initiate  cell  degeneration.  Indeed,  subsequent  to  excessive  glutamate  receptor  stimulation,
reactive  oxygen  species  (ROS)  generation  and  mitochondrial  dysfunction  are  regarded  as  two  major
gateways  leading  to neuron  death.  These  processes  are  mimicked  in  an  in  vitro  model  of  rat  brainstem
slice  when  excitotoxicity  is  induced  by DL-threo-�-benzyloxyaspartate  (TBOA),  a specific  glutamate-
uptake  blocker  that  increases  extracellular  glutamate.  Our recent  study  has  demonstrated  that  brainstem
hypoglossal  motoneurons,  which  are  very  vulnerable  to this  damage,  were  neuroprotected  from  excito-
toxicity  with  nicotine  application  through  the  activation  of  nicotinic  acetylcholine  receptors  (nAChRs)
and  subsequent  inhibition  of  ROS  and  mitochondrial  dysfunction.  The  present  study  examined  if endoge-
nous  cholinergic  activity  exerted  any protective  effect  in this pathophysiological  model  and  how  ROS
production  (estimated  with  rhodamine  fluorescence)  and  mitochondrial  dysfunction  (measured  as
methyltetrazolium  reduction)  were time-related  during  the  early  phase  of  excitotoxicity  (0–4  h).  nAChR
antagonists  did  not  modify  TBOA-evoked  ROS  production  (that  was  nearly  doubled  over  control)  or  mito-
chondrial  impairment  (25%  decline),  suggesting  that intrinsic  nAChR  activity  was  insufficient  to contrast
excitotoxicity  and needed  further  stimulation  with  nicotine  to become  effective.  ROS production  always
preceded  mitochondrial  dysfunction  by about  2 h.  Nicotine  prevented  both  ROS  production  and  mito-
chondrial  metabolic  depression  with  a delayed  action  that  alluded  to a complex  chain  of events  targeting
these  two  lesional  processes.  The  present  data  indicate  a  relatively  wide  time  frame  during  which  strong
nAChR  activation  can arrest  a runaway  neurotoxic  process  leading  to cell  death.
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1. Introduction

In physiological conditions astrocytes and neurons tightly reg-
ulate the extracellular concentration of glutamate by membrane
transporters [1] whose disruption causes excitotoxicity reported
to occur in neurodegenerative diseases [2]. A significant example
of increased extracellular glutamate related to neurodegeneration
onset is amyotrophic lateral sclerosis (ALS) since the discovery of
high levels of glutamate in the cerebrospinal fluid of ALS patients
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[3–5]. Glutamate-excitotoxicity may  evoke oxidative stress [6–8],
due to accumulation of reactive oxygen species (ROS), and sub-
sequent cell death [9]. In this scenario, an important role is also
played by the mitochondrial respiratory chain whose collapse pro-
duces energy dysfunction including imbalanced Ca2+ homeostasis
[10,11]. Since experimental block of excitatory aminoacid trans-
porters (EAATs) reflects the pathological condition often present
in ALS [12,13], we devised a model to mimic  the early pre-
symptomatic stage by pharmacological inhibition of glutamate
uptake with DL-threo-beta-benzyloxyaspartate (TBOA). Thus, we
used hypoglossal motoneurons (HMs) as an in vitro test system
because these cells are very vulnerable to the ALS bulbar type [14].

It is well documented that nicotine can provide neuroprotection
in certain neurodegenerative diseases [15]. Cholinergic transmis-
sion, mediated by nicotinic acetylcholine receptors (nAChRs), is
widely distributed through the brain to regulate different processes
contributing to synaptic transmission as well as to neuronal protec-
tion and cognitive performance efficiency [16,17]. In the brainstem
cholinergic projections from pontine nuclei to the hypoglossal
nucleus activate mainly �7 and �4�2 nAChRs that may  confer neu-
roprotection after excitotoxic insult [18,19] even in neonatal animal
models [15]. We  have recently discovered that, in the nucleus
hypoglossus, nicotine could prevent TBOA-induced motoneuron
loss via inhibition of complex effects that include pathological
bursting, ROS generation and mitochondrial dysfunction [20]. In
this chain of events, while bursting emerges rapidly and induces
irreversible increase in intracellular free Ca2+ within 30 min  [21],
the time course of excitotoxicity-evoked ROS production and mito-
chondrial damage remains unknown, a result potentially useful to
develop future neuroprotective strategies. This issue was inves-
tigated in the present report. Furthermore, a role of endogenous
acetylcholine (ACh) activity on downstream ROS production and
mitochondrial energy metabolism has not been determined during
the early phase of excitotoxicity. Thus, the present study explored
these questions by applying dihydro-beta-erythroidine (DH�E) and
methyllycaconitine (MLA; antagonists against the neuronal �4 and
�7 receptor subunits, respectively) during the time frame of 4 h
that ensures optimal viability of the brainstem slice preparation in
physiological conditions [22].

2. Material and methods

2.1. Ethical approval

The Scuola Internazionale Superiore di Studi Avanzati (SISSA)
ethics committee (prot. 3599, 28 May  2012) approved all experi-
ments and treatment protocols carried out in accordance with the
European Union rules for animal experimentation. The number of
animals used for the present experiments and their suffering were
minimized. Experiments were performed with an in vitro model
of brainstem slices removed from neonatal Wistar rats (postna-
tal days 2–5; P2-P5) under i.p. urethane anesthesia (10% solution,
0.1 mL  injection).

2.2. Slice preparation

Brainstems were cut in ice-cold, oxygenated (95% O2/5% CO2)
Krebs solution, containing (in mM):  130 NaCl; 3 KCl; NaH2PO4,
1 CaCl2, 1.5 NaH2PO4, 5 MgCl2, 25 NaHCO3, and 18.5 glucose
(pH 7.4; 300–320 mos  ml  l−1) inside a Vibratome chamber (Leica
1000S, Wetzlar, Germany) [20,23]. Slices (250–450 �m thick) con-
taining the hypoglossal nucleus were independently treated with
TBOA (50 �M),  TBOA + DH�E (5 �M)  + MLA  (5 nM), TBOA + nicotine,
or nicotine (10 �M)  for 0.5, 2, or 4 h at room temperature under
continuous oxygenation. These concentrations were selected on

the basis of our former neuroprotection experiments [20,21]. As
control, untreated slices were processed as described below imme-
diately after cutting procedures (t = 0 h) or after 0.5, 2, or 4 h of
incubation in Krebs solution (sham). Measurements of ROS and
mitochondrial metabolism were performed at 0.5, 2 and 4 h, i.e.
from the earliest time of electrophysiological dysfunction [21] to
the maximum slice damage time [20]. Quantification of HM loss
after exposure to TBOA for 4 h was  performed as described in our
former studies [20,23] using an analogous region of interest (ROI).

2.3. Intracellular measurements of ROS generation

To investigate the generation of intracellular free oxygen
species, dihydrorhodamine 123 (DHR 123; Molecular Probes, Invit-
rogen, Carlsbad, CA, USA) was  used as a membrane permeable
dye that, by oxidation, yields the fluorescence probe rhodamine
123 (Rho 123) [22]. After rapid rinsing in Krebs solution, slices
(250 �m thick) were treated with DHR123 (5 �M)  and the nuclear
dye Hoechst 33342 (10 mg/mL  stock from Molecular Probes; dilu-
tion 1:1000) for 20 min  at room temperature. Hoechst 33342 was
used for counterstaining as it emits blue fluorescence once bound to
double-stranded DNA. Finally, slices were washed and transferred
into a Petri dish (containing Krebs solution) to be examined with
a TCS SP2 Leica confocal microscope (20X objective and 2X mag-
nification). For fluorescence imaging of rhodamine 123 (Rho 123,
the oxidized form of DHR 123) staining, slices were visualized by
excitation at 514 nm and emission at 530–610 nm,  while Hoechst
33342 was excited by ultraviolet light (blue fluorescence emission
at 460–490 nm). For each slice side and for both hypoglossal nuclei,
a 40 �m z- stack (corresponding to one HM plane) was acquired
(5 �m step size) to reconstruct an average fluorescence signal
that was  independently processed by the experimenter (blind to
the treatment) with ImageJ software (version 1.44p, W.  Rasband,
National Institutes of Health, Bethesda, MD,  USA). Rho 123 fluores-
cence was not evaluated for TBOA + nicotine at 0.5 h, and nicotine
at 0.5 and 2 h.

2.4. MTT  mitochondrial toxicity test

Mitochondrial toxicity test (MTT) is a standard colorimetric
assay for assessing cell viability. As described by Mosmann [24]
and reported earlier in our laboratory [20], NADPH-dependent
cellular oxido-reductase enzymes may  be considered a direct
index of cell viability and mitochondrial energy metabolism. These
enzymes are capable of reducing the tetrazolium dye MTT  3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to its
insoluble formazan, which has purple color whose intensity can be
quantified. Under continuous oxygenation in Krebs solution, two
slices (450 �m thick) were incubated as described above. For this
experiment, nicotine (10 �M)  or rotenone (1 �M)  treatments lasted
4 h. Rotenone was  used as a control for its capacity to interfere with
the electron transport respiratory chain in mitochondria by inhibit-
ing the transfer of electrons from complex I to ubiquinone [25].
After treatment, at the above indicated time points, slices were
incubated with MTT  (0.5 mg/mL; Sigma-Aldrich, Saint Louis, MO,
USA) for 2 h at room temperature under oxygenation. MTT  was
firstly dissolved (5 mg/mL) in phosphate buffer (pH 7.4) and then
diluted to 0.5 mg/mL  in Krebs solution. Later, slices were treated
with 0.5 mL  hydrochloric acid plus 0.04 M isopropanol and shaken
in a roller drum overnight at room temperature. Lysates were then
centrifuged at 10,000g for 5 min  and their absorbance values (wave
length = 550 nm)  were evaluated with a Bio-Rad microplate reader
(model 550, Bio-Rad Laboratories, Poole, UK). Values were normal-
ized with respect to the lysate protein content assayed with the
bicinchoninic acid method (Sigma).
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Fig 1. Time course of ROS expression in the nucleus hypoglossus. (A) Histological examples of the nucleus hypoglossus stained with Rho 123 (red pseudocolor), as ROS
indicator, and Hoechst 33342 (blue pseudocolor), as counterstaining, at 0, 0.5, 2, or 4 h in sham preparation or treated with TBOA (50 �M),  TBOA + DH�E (5 �M)  + MLA  (5 nM),
TBOA  + nicotine (10 �M),  or nicotine alone. (B) Plot quantifies the Rho 123 intensity signal (AU). In sham condition ROS expression significantly changes (One Way  ANOVA:
P  = 0.015; n = 5, 0 h; 8, 0.5 h; 8, 2 h; 10, 4 h); P = 0.02 between 2 and 4 h values (Student’s t-test). No difference among any treatment is observed at 0.5 h. Values for TBOA
treated slices are significantly different from sham ones at 2 h (*; Student’s t-test: P = 0.052; n = 9) and 4 h ($; Student’s t-test: P ≤ 0.001; n = 9). When TBOA is applied together
with  DH�E + MLA, there is a similar increase in ROS value (#; Student’s t-test: P ≤ 0.001; n = 9). Co-applied TBOA and nicotine (n = 4) or nicotine alone (n = 4) yields ROS signal
not  different from sham. (For interpretation of the references to colour in this figure legend, the reader is referred to the web  version of this article.)

2.5. Drugs

The following drugs were used: DH�E (Tocris, Bristol, UK),
MLA (Sigma-Aldrich), nicotine (Sigma-Aldrich), rotenone (Sigma-
Aldrich), and TBOA (Tocris).

2.6. Statistical analysis

Results were expressed as means ± standard error of the mean;
n refers to the number of slices for each independent experiment.
We  first assessed the normality and equality normality distribu-
tion of the data and applied parametric and non-parametric tests
for further evaluation. For statistical analysis, Student‘s t-test was
applied to compare differences between two parametric groups,
whereas the Mann-Whitney test was applied to compare two non-

parametric groups. To compare multiple groups of parametric and
non-parametric data we  used the One Way  ANOVA and the Kruskal-
Wallis test, respectively. Differences with P ≤ 0.05 were accepted as
statistically significant.

3. Results

While our former data indicated that endogenous ACh played
a role in regulating the rapid onset of excitotoxic bursting evoked
by TBOA [20], it remained to be clarified if this effect was trans-
lated into at least partial neuroprotection via activation of nAChRs.
Previous studies have shown that the HM number remains stable
for up to 4 h in control condition [20]. Thus, prolonged exposure
to TBOA induces a significant cell loss, which in the present study



46 M. Tortora et al. / Neuroscience Letters 639 (2017) 43–48

was quantified as 37 ± 2 HMs  vs. 46 ± 3 in control solution (P < 0.05,
n = 13) using a similar ROI as reported earlier [20,23].

The pathway to HM death involves two major gateways, namely
intracellular ROS accumulation and mitochondrial dysfunction. It
was, therefore, of interest to explore if endogenous ACh was tar-
geting these processes, their time relation and whether the effect
of endogenous ACh was comparable with the one by nicotine. For
this purpose, we used nAChR antagonists applied to the nucleus
hypoglossus and performed confocal analysis of intracellular ROS
level. Fig. 1A shows the ROS signal in sham condition and at
0, 0.5, 2 or 4 h after treatment with TBOA, TBOA + DH�E + MLA,
TBOA + nicotine, or nicotine. A comparatively low level of basal
oxidative stress was detected in this nucleus even at t = 0 (7.4 ± 1.2
AU; Fig. 1B): this condition possibly reflected the experimental
manipulation procedures as it declined 4 h later under resting con-
ditions (filled circles, continuous line in Fig. 1 B). In particular, the
main difference was observed between 2 and 4 h (Student’s t-test:
P = 0.02; n = 8, at 2 h and 10, at 4 h). Application of TBOA elicited a
large (P = 0.052; n = 9) rise in ROS at 2 h as exemplified in Fig. 1A
and quantified in Fig. 1B (open squares, dashed line). This incre-
ment remained sustained even at 4 h (P ≤ 0.001, n = 9). As shown in
Fig. 1A, B, when TBOA was co-applied with the nAChR antagonists
DH�E and MLA, the Rho 123 intensity signal was similar to the one
observed with TBOA alone at 4 h (when it was significantly higher
than sham; P ≤ 0.001; n = 9; see filled triangles, dotted line). Nico-
tine per se did not alter the ROS signal at 4 h vs. sham (Fig. 1A, B;
inverted filled triangle). Nevertheless, co-application of TBOA and
nicotine inhibited the rise in ROS intensity as shown in Fig. 1A, B
(P = 0.009, n = 4; grey circles, dotted/dashed line).

We next examined mitochondrial activity by measuring the
reduction of MTT  to formazan [24] using the same protocols
employed for the experiments depicted in Fig. 1. The graph for
sham condition (Fig. 2, filled circles, continuous line) shows that,
over 4 h, there was no significant change in mitochondrial energy
metabolism. After TBOA application there was a delayed (4 h),
significant (P = 0.04; n = 4) fall in MTT  production (open squares,
dashed line) without earlier (2 h) change. This response pattern
was essentially the same 4 h after co-applying TBOA with the
nAChR antagonists (P = 0.03; n = 5; filled triangles and dotted line
in Fig. 2). Nicotine application (Fig. 2, inverted triangle) signifi-
cantly (P ≤ 0.001; n = 5) enhanced MTT  reduction at 4 h (30.8 ± 0.14
AU), an effect that was approximately 50% higher than sham val-
ues (19.6 ± 0.13; n = 5). When nicotine was co-applied with TBOA
(Fig. 2, grey circles), the delayed rise in formazan production was
still observed (P = 0.008, n = 9), indicating strong contrast to the
mitochondrial activity depression evoked by TBOA. As a further
control of the MTT  method efficiency, we also tested the effect of the
powerful mitochondrial poison rotenone [25] that after 4 h applica-
tion induced a strong decrease in MTT  reduction (Fig. 2, open circle;
P ≤ 0.01, n = 6).

4. Discussion

The novel finding of the present report is the identification
of oxidative damage of HMs  as one early consequence of TBOA-
mediated excitotoxicity, while the dysfunction of mitochondrial
energy metabolism occurred later. In view of the observed time
course of these processes, the nicotine neuroprotective effect could
be exerted over a few hours.

4.1. An in vitro model of motoneuronal excitotoxicity

Our current in vitro model, based on glutamate uptake block,
allowed us to monitor the development of oxidative stress and
mitochondrial function in the hypoglossal nucleus challenged by

Fig. 2. Quantification of mitochondrial metabolism following excitotoxic stress.
Plot  quantifying formazan production (AU) at 0, 0.5, 2, or 4 h in sham condition
(filled circles) or after treatment with TBOA (open squares), TBOA + DH�E + MLA
(filled triangles), TBOA + nicotine (grey circles), rotenone (open circle), or nico-
tine  alone (reverse triangle). In sham condition mitochondrial metabolism remains
unchanged over the 4 h time lapse (n = 6 samples at 0 h, 9 at 0.5 h, 5 at 2 h, and
5  at 4 h). Among treatments no changes are observed either at 0.5 h (n = 8 sam-
ples for TBOA, 9 for TBOA + DH�E + MLA, and 4 for TBOA + nicotine) or at 2 h (n = 5
samples for TBOA, 5 for TBOA + DH�E + MLA, and 8 for TBOA + nicotine). After 4 h
treatment a significant reduction in formazan production is detected in presence
of  TBOA ($; Student’s t-test: P = 0.045 vs. sham; P = 0.008 vs. TBOA + nicotine; and
P  ≤ 0.001 vs. nicotine; n = 4) or TBOA + DH�E + MLA  (#; Student’s t-test: P = 0.03 vs.
sham; P = 0.004 vs. TBOA + nicotine; and P ≤ 0.001 vs. nicotine; n = 5). Nicotine alone
significantly enhances mitochondrial metabolism compared to sham at 4 h (£; Stu-
dent’s t-test: P ≤ 0.001; n = 5). Rotenone significantly decreases formazan production
at  4 h against all other values (*; Student’s t-test: P ≤ 0.01; n = 6).

excitotoxicity. Thus, future experiments to inhibit each one of these
two processes might be differentially studied for their impact on
cell death.

Evaluation of intracellular ROS generation following various
insults is routinely performed using fluorescent probes that react
with a host of ROS [26,27]. This approach is, therefore, helpful
to identify how widespread in a cell population ROS production
is, while the identification of ROS compounds requires distinct
biochemical assays. While DCFH-DA and DHR are often used as
fluorescent probes that are transformed into active compounds
after cell membrane permeation, we  employed the latter because
of ease of comparison with our former studies [23,28] and lower
propensity to generate additional ROS via their chemical reaction
[29].

In control condition the Rho-mediated ROS signal slowly
declined suggesting metabolic stabilization in line with the cell
viability (4 h) previously reported [20,23]. The maximum level
of oxidative stress induced by TBOA was already reached at 2 h,
whereas the significant impairment in mitochondrial metabolism
was experimentally observed after 4 h. In analogy with previ-
ous observations [20], the impairment of mitochondrial function
evoked by TBOA was  significant, yet much less intense than the
toxic effect by rotenone, in accordance with the discrete nature of
HM damage in this model.

One interesting result of the present study is that after 0.5 h of
glutamate uptake block (despite earlier onset of intense network
bursting [20–22]), there was no detectable increase in ROS genera-
tion or deficit in mitochondrial metabolism. These findings validate
the notion that, in our model, excitotoxicity was  caused by a slowly
developing cell death process [21].
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4.2. nAChRs and motoneuronal excitotoxicity

Pharmacological block of nAChRs enabled us to estimate the
role of endogenous ACh in the neurotoxicity model. Hence, co-
application of nAChR antagonists and TBOA did not change the
increase in ROS level or the reduction in formazan production at
4 h. The issue of endogenous ACh action remains complex because
blocking nAChRs does not suppress bursting, yet it facilitates onset
of bursting in 60% of silent motoneurons [20]. Because the distri-
bution of cholinergic fibres is scattered in the nucleus hypoglossus
[30], the effectiveness of cholinergic modulation is likely to depend
on the extent and distribution of afferent pathways impinging on
motoneurons. This view is consistent with the frequent presynaptic
location of ACh receptors [31].

Boosting cholinergic activity with nicotine application consis-
tently antagonized the excitotoxicity evoked by TBOA. Indeed, after
4 h, it fully protected cells from oxidative stress and metabolic
impairment. On the basis of recently published results [20], our data
confirm that nicotine per se was not toxic and it actually improved
the parameters measured at 4 h with respect to sham.

4.3. Nicotine antioxidant properties

Because of their limited antioxidant mechanisms [26,27], neu-
rons are vulnerable to toxicity from ROS that damage lipids,
proteins and nucleic acids [32]. Mitochondria play a Janus-like
role in ROS metabolism. On the one hand, they express a range
of antioxidant proteins to contrast ROS increase, such as superox-
ide dismutase (SOD), glutathione peroxidase, glutathione reductase
and thioredoxin [33]. On the other, the mitochondrial respira-
tory chain is a major producer of intracellular ROS and becomes
an important origin of the ROS damaging effects [34]. Within
this context, nicotine is reported to possess antioxidant proper-
ties through radical scavenging that might confer neuroprotective
effects [35]. This process is likely to originate from nicotine facilitat-
ing NADH binding to complex I, inducing a decrease in superoxide
anion generation [36]. While our data are compatible with this
phenomenon, they also show that inhibition by nicotine of TBOA-
evoked ROS occurred earlier than mitochondrial dysfunction. It
is feasible, therefore, that ROS were abundantly produced even
when the mitochondrial energy metabolism was  not yet severely
decreased.

While �7 and �4�2 nAChRs involved in synaptic transmis-
sion are located on the plasma membrane [37,38], they have
also been discovered on mitochondrial membranes [39,40]. In
particular, �7 nAChRs prevent cytochrome c release and conse-
quently apoptosis [40] by activating intramitochondrial kinases
[41]. Likewise, activation of mitochondrial �4�2 nAChRs inhibits
Ca2+-calmodulin-dependent kinase II (CAMKII) and Src-kinases
involved in cytochrome c release [39]. These findings indicate that
nicotine might have induced neuroprotection not only by activating
and modulating synaptic transmission, but also via a discrete site of
intracellular action on mitochondria in view of the high membrane
permeability of this alkaloid [42,43] .

5. Conclusions

It is generally assumed that ALS is the result of defective cel-
lular mechanisms which include oxidative stress, mitochondrial
dysfunction, and excitotoxicity [44]. Overstimulation of ionotropic
glutamate receptors is highly implicated in this process of neu-
ronal death [45] via a cascade of cell damaging processes [2,46].
Because ROS inhibits glutamate uptake [47] and glutamate induces
ROS generation [48], a mutually-reinforcing process of cell damage
is likely to be produced with later decline in mitochondrial activity.

Endogenous cholinergic transmission is insufficient to arrest this
vicious circle unless strong stimulation of nAChRs with nicotine is
produced to exert a robust neuroprotective effect.
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Abstract 10 

Motoneuron disease including amyotrophic lateral sclerosis may be due, at an early stage, 11 

to deficit in the extracellular clearance of the excitatory transmitter glutamate. A model of 12 

glutamate-mediated excitotoxic cell death based on pharmacological inhibition of its 13 

uptake was used to investigate how activation of neuronal nicotinic receptors by nicotine 14 

might protect motoneurons. Hypoglossal motoneurons (HMs) in neonatal rat brainstem 15 

slices were exposed to the glutamate uptake blocker DL-threo-β-benzyloxyaspartate 16 

(TBOA) that evoked large Ca2+ transients time-locked among nearby HMs, whose number 17 

fell by about 30% 4 h later. Since nicotine or the gap junction blocker carbenoxolone 18 

suppressed bursting, we studied connexin 36 (Cx36) which constitutes gap junctions in 19 

neurons and found it largely expressed by HMs. Cx36 was downregulated when nicotine 20 

or carbenoxolone was coapplied with TBOA. Expression of Cx36 was preferentially 21 

observed in cytosolic rather than membrane fractions after nicotine and TBOA, suggesting 22 

protein redistribution with no change in synthesis. Nicotine raised the expression of heat 23 

shock protein70 (Hsp70), a protective factor that binds the apoptotic inducing factor (AIF) 24 

whose nuclear translocation is a cause of cell death. TBOA increased intracellular AIF, an 25 

effect blocked by nicotine. These results indicate that activation of neuronal nicotinic 26 

receptors is an early tool for protecting motoneurons from excitotoxicity and that this 27 

process is carried out via the combined decrease in Cx36 activity, overexpression of Hsp70 28 

and fall in AIF translocation. Thus, retarding or inhibiting HM death may be 29 

experimentally achieved by targeting one of these processes leading to motoneuron death.      30 

 31 
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Introduction 32 

The neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by 33 

motoneuron death in the brainstem and spinal cord. While the etiopathology remains 34 

unclear, it is likely due to a complex interplay among pathogenic factors such as 35 

glutamate-mediated excitotoxicity, oxidative stress with reactive oxygen species (ROS) 36 

generation, and mitochondrial dysfunction (1). The brainstem nucleus hypoglossus is often 37 

affected early, thus leading to dysarthria and dysphagia (2). Hypoglossal motoneurons 38 

(HMs) are very vulnerable because of their high basal intracellular free Ca2+ (3), 39 

expression of Ca2+  permeable AMPA receptors (4), and comparatively  low levels of 40 

glutamate transporters (5).  In ALS these properties are exacerbated by impaired glutamate 41 

transport (as observed in post-mortem tissues; 5,6) and increased level of glutamate in 42 

cerebrospinal fluid (7): therefore, excitotoxicity is an important candidate for causing the 43 

disease. Nonetheless, motoneuron death has usually a patchy distribution and a slow 44 

progression (8) associated with muscle weakness and fasciculations (9), indicating that an 45 

unresolved interaction among discrete intracellular death mechanisms is probably taking 46 

place. 47 

In the past few years, a simple in vitro model of excitotoxic stress applied to rat HMs has 48 

been developed by our laboratory (10–12). It consists of mimicking the pathological 49 

process of motoneuron hyperexcitability and excitotoxicity in the nucleus hypoglossus 50 

through pharmacological inhibition of glutamate uptake with DL-threo-β-51 

benzyloxyaspartate (TBOA). Salient characteristics of this model are generation of 52 

electrical bursting among HMs interconnected via gap junctions (12) and slow onset of cell 53 
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death (11) via production of ROS and subsequent mitochondrial energy deficit in a subset 54 

of motoneurons (13). One essential property of HMs is their ability to generate “group 55 

bursting” dependent on the membrane expression of gap junctions (14,15) made by 56 

connexins, of which connexin 36 (Cx36) is highly represented in the nervous system  57 

(16,17). Gap junctions may also be due to pannexins, particularly pannexin 1 (Panx1) 58 

which share, with connexins, similar topology, permeability and gating (17,18). In case of 59 

cell stress, expression of connexins and pannexins may increase the probability of damage 60 

diffusion and cell death (16). 61 

We recently observed  that nicotine (selective agonist on nicotinic acetylcholine receptor, 62 

nAChR) prevents cell death, hyperexcitability, mitochondrial dysfunction, oxidative and 63 

ER stress (13).  Because in cultured endothelial cells nicotine downregulates connexins 64 

(19,20), we wondered if a similar process could account for neuroprotection of HMs. To 65 

this aim, we studied how nicotine could modulate Ca2+ transients, Cx36 and Panx1, and 66 

compared it with the effects of the gap junction blocker carbenoxolone (21). In analogy 67 

with previous reports (22,23), we used expression of heat shock protein 70 (Hsp70) and 68 

apoptosis-inducing factor (AIF) as indices of cell protection or death, respectively.   69 

 70 

Results 71 

Network distribution of Ca2+ signals induced by TBOA 72 

TBOA (50 µM) induces bursting activity in about 50% of HMs (12,13) with large inward 73 

currents translated into strong intracellular Ca2+ transients (24). The present study 74 



5 

 

investigated [Ca2+]i changes in the hypoglossal nucleus (Fig. 1A, B; movie 1-3) to monitor 75 

in detail mechanisms of excitation spread. To this purpose, we performed continuous 76 

imaging (10 min) of [Ca2+]i transients as shown in Fig. 1B and movies 1-3, in which about 77 

thirty HMs for each slice were recorded during application of TBOA. Fig. 1A shows 78 

representative examples (taken from five HMs) recorded in the presence of TBOA alone 79 

(top records; movie 1), or co-applied with nicotine (10 µM) + TBOA (Fig. 1A middle; 80 

movie 2), or with carbenoxolone (200 µM) + TBOA (Fig. 1A bottom; movie 3). TBOA 81 

induced transients in about 50% of HMs (50 ± 8%, n = 5 slices), a value reduced to 36 ± 82 

14% (n = 5 slices) in presence of nicotine, and to 14 ± 7% when carbenoxolone was 83 

coapplied (Mann-Whitney test: P = 0.016 for TBOA vs. carbenoxolone + TBOA, n = 5 84 

slices). On average, nicotine or carbenoxolone significantly decreased the number of 85 

transients evoked by TBOA (Fig. 1C) as they fell from 4.4 ± 0.4 (n = 69 HMs) to 2.8 ± 0.2 86 

(Mann-Whitney test: P = 0.006, n = 40 HMs) in presence of nicotine, or to 2.3 ± 0.3 87 

(Mann-Whitney test: P = 0.002, n = 18 HMs) with carbenoxolone coapplication. However, 88 

neither nicotine nor carbenoxolone changed the basal level of [Ca2+]i at 10 min. Fig. 1D 89 

shows a plot of the number of transients against cumulative probability. Thus, the plot for 90 

nicotine or carbenoxolone co-application is significantly shifted to the left (Kolmogorov-91 

Smirnov test: P ≤ 0.001 for TBOA, solid line vs. nicotine + TBOA, dotted line; and P ≤ 92 

0.001 for TBOA vs. carbenoxolone + TBOA, dashed line), demonstrating increased 93 

probability to observe fewer events than in the presence of TBOA alone.  94 

Because of the scattered onset of [Ca2+]i transients (movie 1-3), we studied whether 95 

topographical distance between two motoneurons was predictive of the closely-spaced 96 
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activity. Thus, Fig. 2 compares the inter-neuronal distance with the latency between the 97 

first calcium transient of each cell pair (Fig. 2A). The top plot (Fig. 2B), which refers to 98 

TBOA-treated cells only, shows how the latency between transients was closely related to 99 

their distance and that the vast majority of latency values were below 100 s. Conversely, 100 

when nicotine or carbenoxolone was co-applied with TBOA (Fig. 2C, D), the plots were 101 

made up by a cloud of widely scattered points and the latency values were larger than 200 102 

s even for closely located HMs. These data demonstrated the asynchronous occurrence of 103 

[Ca2+]i changes when nicotine or carbenoxolone were co-applied.    104 

Nicotine or carbenoxolone modulates Cx36 expression. 105 

Because HM bursting is supported by a variety of mechanisms including gap junctions 106 

(14,15,24,25), the above results raised the hypothesis that nicotine (like carbenoxolone) 107 

might impair intercellular communication via Cx36 and Panx1. Because mitochondrial 108 

dysfunction and motoneuron death are observed after 4 h treatment with TBOA (13), we 109 

evaluated Cx36 expression (Fig. 3A-C; red) in relation to immunoreactivity of single HMs 110 

(identified with SMI 32 immunostaining; green). DAPI was used for nuclear staining 111 

(blue). In accordance with previous studies (26,27), Cx36 immunoreactivity was 112 

distributed through the soma of HMs as shown in Fig. 3A (middle column) and quantified 113 

in Fig. 3C: the Cx36 signal was not significantly altered by TBOA alone in the cells that 114 

remained after the excitotoxic stimulation, while the motoneuronal number after TBOA 115 

(Fig. 3D) fell by approximately 30%. When nicotine was co-applied with TBOA, the Cx36 116 

immunoreactivity was significantly decreased (Fig. 3A, C) and the average number of 117 

motoneurons was similar to sham (Fig. 3D). An analogous result was observed when 118 
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carbenoxolone was co-applied with TBOA (Fig. 3A, C, D). Nicotine per se did not change 119 

the average Cx36 signal (Fig. 3A, C) or motoneuron survival (Fig. 3D; 13).  120 

To further investigate the amount of expressed Cx36 under various experimental 121 

conditions, Western blot experiments were performed as depicted in Fig. 4 using brainstem 122 

tissue blocks in order to collect a sufficient amount of protein. Evaluation of Cx36 total 123 

lysate (approximately 36 kDa) samples confirmed unchanged protein quantity after 4 h 124 

treatment with TBOA (0.99 ± 0.07, n = 9 brainstems) or nicotine (0.94 ± 0.07, n = 6 125 

brainstems; Fig. 4A). In support of the immunohistochemical data (Fig. 3A-C), we 126 

observed that, when samples were treated with nicotine + TBOA or carbenoxolone + 127 

TBOA, Cx36 expression was significantly reduced to 0.89 ± 0.07 (Mann-Whitney test: P = 128 

0.038; n = 9 brainstems) or 0.82 ± 0.08 (Mann-Whitney test: P ≤ 0.001; n = 5 brainstems), 129 

respectively. We further explored the distribution of Cx36 in membrane and cytoplasmic 130 

compartments. In the case of nicotine exposure there was a small, yet significant decrease 131 

in Cx36 membrane expression (Fig. 4B; Mann-Whitney test: P = 0.008 for sham vs. 132 

nicotine; n = 5 brainstems) concomitant with a corresponding increase in the cytoplasmic 133 

fraction (Fig. 4C; Mann-Whitney test: P = 0.008 for sham vs. nicotine; n = 5 brainstems). 134 

The fall in membrane expression of Cx36 was intensified when nicotine was co-applied 135 

with TBOA (Fig. 4B; Mann-Whitney test: P = 0.016 for sham vs. nicotine + TBOA; n = 5 136 

brainstems) in association with a significant rise in the cytoplasmic expression (Fig. 4C; 137 

Mann-Whitney test: P = 0.008 for sham vs. nicotine + TBOA; n = 5 brainstems). 138 

Interestingly, neither compartmental expression was modified by TBOA alone, perhaps 139 

suggesting that the manifestation of the action of this drug required an unchanged Cx36 140 
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expression.   These effects of Cx36 compartmentalization were not due to changes in its 141 

synthesis as qPCR experiments showed no alteration in the Cx36 gene product (Fig. 5A; 142 

Kruskal-Wallis test: P = 0.21 among groups; n = 6 brainstems).  143 

Hsp70 and AIF contrasting expression in HMs 144 

In case of excitotoxicity, motoneuronal survival may depend on the relative intracellular 145 

expression of Hsp70 and AIF with cell-protecting or cell-damaging properties, respectively 146 

(22,23). Fig. 5B, C shows that, after TBOA or nicotine treatment, Hsp70 expression was 147 

unchanged compared with basal sham conditions. When nicotine and TBOA were co-148 

applied, Hsp70 expression was significantly enhanced (Mann-Whitney test: P = 0.008 for 149 

sham vs. nicotine + TBOA; Student’s t-test: P = 0.053 for nicotine + TBOA vs. nicotine; n 150 

= 5 brainstems). Thus, during excitotoxic stimulation, application of nicotine enhanced 151 

Hsp70 expression, thus strengthening the neuroprotective processes of motoneurons. In 152 

fact, protection of motoneurons from excitotoxicity depends to a large extent on the 153 

binding by Hsp70 of AIF, a mitochondrial factor released by metabolically-damaged 154 

motoneurons (22,23). When, during excitotoxicity, Hsp70 expression is insufficient to bind 155 

AIF, the latter migrates to the cell nucleus and inactivates DNA (28). We, therefore, 156 

studied immunohistochemical expression of AIF when TBOA was applied alone or 157 

together with nicotine. Fig. 6A shows examples of AIF immunoreactivity increased after 158 

TBOA administration with broad distribution within nuclear (delineated by the blue line in 159 

Fig. 6B for DAPI staining) and non-nuclear compartments as indicated by the line scan red 160 

trace that had higher value throughout (Fig. 6B; note different ordinate scale for the 161 

various treatment protocols). Viceversa, the level of AIF was low in the presence of 162 
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nicotine with or without TBOA (Fig. 6B), suggesting that nicotine kept the AIF level at 163 

sham-like condition. These data are quantified in the bar graph of Fig. 6C in which the 164 

average fluorescence signal (AU) of AIF in basal condition was 16.1 ± 3.2 (n = 9 slices) 165 

and significantly increased to 60 ± 7.8 (P ≤ 0.001, n = 19 slices) after TBOA exposure, 166 

while it was low when nicotine was co-applied with TBOA (P = 0.014, n = 16 slices). It 167 

should be noted that nicotine (n = 6 slices) per se left unchanged the AIF immunoreactivity 168 

compared with sham.   169 

  Unchanged expression of Panx1 170 

We sought to understand whether nicotine or carbenoxolone could change other proteins 171 

such as Panx1 reputed to make gap junctions. To this end, immunohistochemical and 172 

western blot experiments were performed as illustrated in Fig. 7A-C. Hence, 173 

Panx1immunoreactivity was readily detected in HMs as depicted in Fig 7A and remained 174 

unchanged following TBOA with or without nicotine protocols (Fig. 7B). Likewise, Panx1 175 

protein expression was very similar among all these treatments, indicating that Panx1 was 176 

not involved in nicotine neuroprotection at least within the 4 h experimental timeframe.     177 

 178 

Discussion   179 

The principal finding of the present study was the demonstration that, during an 180 

excitotoxic stimulus, nicotine perturbed the emergence of coordinated Ca2+ transients 181 

among HMs, decreased the expression of Cx36 at membrane level, enhanced the 182 

expression of Hsp70 while diminishing the one of AIF. These data were critical 183 
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components of the HM neuroprotective action by this alkaloid. Since many effects of 184 

nicotine were replicated by carbenoxolone, it is likely that inhibition of Cx36 was essential 185 

to uncouple motoneurons from their collective bursting behavior that was prodromic to cell 186 

distress and death. 187 

Motoneurons wired together, die together 188 

Inhibition of glutamate uptake recruits clusters of motoneurons in group bursting processes 189 

that, if continued unabated, will lead to significant neuronal death (12). Since our recent 190 

work indicates that nicotine largely suppresses bursting (13), we investigated whether this 191 

phenomenon was translated into dissociation of intense discharges (recorded as Ca2+ 192 

transients) among motoneurons. Indeed, following application of nicotine or the gap 193 

junction blocker carbenoxolone, bursting became sparse and, importantly, was followed by 194 

a significant protection of HMs from death. This realization implies that the severity of 195 

damage was perhaps dependent on the collective activation and recruitment of clusters of 196 

HMs into pathological discharges, and led us to study the role of gap junctions (known to 197 

exist among HMs; 14,15) mediated by Cx36 in this process.  198 

Connexins and cell death 199 

Cx36 is the most prevalent gap junction protein expressed by neurons  (16,17). It 200 

electrically couples neighboring cells by allowing transcellular communication and 201 

exchange of Ca2+, Na+, K+, and other small (<1-1.5 kDa) hydrophilic molecules (17,29). 202 

Many factors regulate the activity of gap junction channels, including changes in voltage, 203 

[Ca2+]i, pH (30), connexin phosphorylation, (30,31) and ROS (32).  In the past few years 204 
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many other components of intra-/extracellular signaling have been associated with plasma 205 

membrane hemichannels such as facilitation of glutamate release from astrocytes (33) and 206 

apoptosis (29). Indeed, gap junction-related apoptosis has been demonstrated by 207 

carbenoxolone-mediated prevention (34), and by the spreading of death signals within a 208 

cell cluster via gap junctions (34,35). This mode of propagation from injured to uninjured 209 

close neighbor cells is classified as bystander killing (the ‘kiss of death’; 16,29). An 210 

interaction among connexins and mitochondrial AIF in cardiomyocytes has been described 211 

with potential effects on mitochondrial respiration and ROS signaling (36).  Whether this 212 

process could also occur in motoneurons remained unclear.   213 

During NMDA receptor-mediated excitotoxicity a strong reduction in neuronal death of 214 

cultured cortical neurons is obtained when Cx36 is pharmacologically blocked or 215 

genetically ablated, indicating that the expression level of Cx36 critically modulates 216 

neuronal death (25,37).  Thus, the observation of basal expression of Cx36 by HMs made 217 

this protein a likely candidate in the excitotoxic cell death. It was of interest that, following 218 

glutamate uptake block and loss of a number of HMs, surviving cells did not show 219 

impaired Cx36 expression, alluding to the possibility that these cells had relied on certain 220 

intrinsic mechanisms to withstand the injury process.   221 

Nicotine prevents HM excitotoxic death via Cx36 downregulation   222 

In endothelial cell cultures, nicotine, via membrane ACh receptors, down-regulates  223 

various connexins through intracellular pathways (19,20) that impact their turnover (20). In 224 

excitotoxic stress, we actually detected a fall in Cx36 immunoreactivity of HMs when 225 
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nicotine (or carbenoxolone) was applied with TBOA, a result which was accompanied by 226 

no significant loss of HMs. Although nicotine can decrease excitatory synaptic 227 

transmission on HMs (13,38), the analogy with the effects by carbenoxolone and  the 228 

downregulated immunopositivity of Cx36 suggested that Cx36 were important targets to 229 

restrain excitotoxicity. Because our model did not allow prolonged observation of the 230 

timecourse of nicotine effects, it is difficult to reveal the dynamics of Cx36 turnover over 231 

an extended time profile in a relatively thick brainstem slice. It was, however, clear that 232 

changes in Cx36 synthesis had not taken place in view of the negative qPCR data. 233 

Circumstantial evidence was sought with tissue fractionation experiments in which we 234 

sought the relative distribution of Cx36 among membrane and cytosolic fractions. Despite 235 

the limitation inherent in the use of brainstem tissue blocks containing a heterogeneous cell 236 

population, we detected a significant decrease in the Cx36 membrane fraction together 237 

with a notable rise in its cytoplasmic fraction. These data implied that the expression and 238 

perhaps the function of Cx36 at membrane level were impaired with nicotine application. 239 

Our model also indicated that the effect by nicotine had a degree of specificity since Panx1 240 

expression was unchanged by nicotine. We cannot, however, rule out that the long life-241 

cycle of Panx1 (39) had precluded detecting a later alteration following nicotine 242 

application. 243 

Nicotine modulated Hsp70 expression as a gateway to cell survival against AIF-mediated 244 

death 245 

One further result of interest was the observation that nicotine and TBOA application 246 

evoked a significant increase in Hsp70 expression, while nicotine or TBOA alone did not 247 
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change this protein. Since the intracellular expression of Hsp70 is an important biomarker 248 

of the ability of motoneurons to resist to excitotoxicity (22), we surmise that surviving 249 

cells had an adequate Hsp70 expression even though these data were obtained from 250 

brainstem tissue rather than single HMs. The perturbation triggered by TBOA plus the 251 

effects of nicotine probably synergized to raise Hsp70 expression and extend 252 

neuroprotection. These observations, therefore, provided an interesting clue to further 253 

explore the mechanism of nicotine neuroprotection. Our view was in line with reports of 254 

nicotine ability to enhance Hsp70 expression in lung vessels and ovarian tissue culture  255 

(40,41), and to block AIF lethal translocation into the nucleus (28). The 256 

immunofluorescent data showed that, at HM level, TBOA clearly enhanced the expression 257 

of AIF, a factor released by distressed mitochondria, and that this biomarker was 258 

distributed throughout the motoneuron including its nucleus. Co-application of TBOA and 259 

nicotine normalized the rise in AIF expression and restituted sham like condition, 260 

suggesting that the effect of this death factor was inhibited likely as a consequence of the 261 

raised Hsp70 expression in the cytoplasm.  262 

A scenario for motoneuron protection by nicotine 263 

Fig. 8 depicts an idealized diagram we propose to account for the complex process of HM 264 

death evoked by glutamate uptake block and the intervention levels exerted by nicotine. 265 

Excitotoxicity, induced by the impairment of excitatory amino acid transporters with 266 

TBOA (42), severely damages motoneurons by excessive glutamate receptor stimulation 267 

that induces strong network bursting (11–13,24) among electrically-coupled HMs. This 268 

phenomenon elicits excessive Ca2+ influx, that depolarizes the neuronal membrane 269 
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potential to activate further Ca2+ influx (43,44) and intracellular second messengers in a 270 

death cell cascade (45,46). The role by mitochondria in Ca2+ buffering may lead to 271 

mitochondrial membrane depolarization (43,44,47)  and perturbation of the respiratory 272 

chain (43,44). This process is compounded by ROS-evoked oxidative stress (13,48,49).  In 273 

this vicious sequence, cell damage is extended via gap junctions (16,25,50) activated by 274 

ROS (32).  275 

In conclusion, we propose that a potential device to contrast excitotoxic damage to HMs is 276 

activation of nAChRs. The mechanism linking nAChR activation to inhibition of Cx36 277 

activity remains unsolved and requires future investigation. We can posit that, since 278 

nicotine is reported to enhance protein kinase C (PKC; 51–53), PKC-mediated connexin 279 

phosphorylation is a putative process to reduce gap junction-dependent intercellular 280 

communication (54). Finally, our data are not intended to support a neuroprotecting role of 281 

smoking, rather to prompt a strategy for further investigation of inhibiting motoneuron 282 

disease in vitro and in vivo with novel tools to stimulate nAChRs. 283 

 284 

Materials and methods 285 

Ethical approval 286 

All experiments were performed following the ethical guidelines for the use and the care of 287 

laboratory animals of National Institutes of Health. The Scuola Internazionale Superiore di 288 

Studi Avanzati (SISSA) ethics committee (prot. 3599, 28 May 2012) approved all 289 

treatment protocols which were in agreement with the European Union rules for animal 290 
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experimentation. We made all the effort to minimize the use and the suffering of the 291 

animals, and reduce their number for experimentation.  292 

Slice preparation and drug application protocols 293 

Experiments were carried out on neonatal Wistar rats (postnatal days 1-6; P1-P6), rapidly 294 

decapitated under i.p. urethane anaesthesia (10% solution, 0.1 ml injection volume). 295 

Brainstems were removed in continuously carbogenated (95% O2 and 5% CO2) ice-cold 296 

Krebs solution containing (in mM): 130 NaCl, 3 KCl, 1.5 NaH2PO4, 1 CaCl2, 5 MgCl2, 25 297 

NaHCO3 and 18.5 glucose (pH 7.4; 300-330 mOsm/l). For Ca2+ imaging and 298 

immunohistochemical experiments, slices (270-450 µm thick) containing the nucleus 299 

hypoglossus were immediately cut with a vibrating tissue slicer (Leica VT 1000S, Wetzlar, 300 

Germany). Slices (or intact brainstems for molecular biology) were then rapidly transferred 301 

to an incubation chamber for 20 min at 32°C and then recovered for 10 min at room 302 

temperature. Details of the experimental procedure were previously published (12,55). 303 

With the exception of slices for the calcium imaging technique, samples were subsequently 304 

incubated for 4 h at room temperature in continuously carbogenated Krebs solution (sham), 305 

TBOA (50 µM; Sigma-Aldrich, Saint Louis, MO, USA), TBOA + nicotine (10 µM; 306 

Sigma-Aldrich), nicotine, or TBOA + carbenoxolone (200 µM; Sigma-Aldrich) and 307 

processed as indicated later. Experiments were run in parallel to minimize the bias. 308 

Intracellular Ca2+ imaging [Ca2+]i 309 

In accordance with formerly described protocols (12,56), slices (270 µm thick) were 310 

loaded with the fluorescent Ca2+ dye Fluo-3, AM (4 µM, Molecular Probes, Invitrogen, 311 
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Carlsbad, CA, USA) for 1h in continuously carbogenated Krebs solution. After 30 min 312 

wash, samples were transferred into the recording chamber of the Nikon Eclipse T1 313 

microscope (Nikon, Tokyo, Japan), where the nuclei hypoglossi were identified with a 40x 314 

objective (aperture 0.60). Drug concentrations were chosen on the basis of previous reports 315 

(12,13) and applied acutely in accordance with the following protocols (10 min): TBOA 316 

(50 µM), nicotine (10 µM) + TBOA (50 µM); carbenoxolone (200 µM) + TBOA (50 µM). 317 

Ca2+ fluorescent emission was excited at a fixed wavelength of 488 nm generated by a 318 

Nikon intensilight C-HGFI lamp (Nikon) and detected with the digital CMOS camera 319 

ORCA-Flash 4.0 (Hamamatsu Photonic, Hamamatsu City, Japan). Images were acquired 320 

with the Fiji software (ImageJ, Wayne Rasband, National Institued of Health, USA; 57) 321 

with 150 ms exposure time. In each slice, a small region of interest (ROI) was placed over 322 

about 30 randomly distributed motoneurons easily recognizable for their somatic diameter 323 

(> 20 µm). Traces extrapolated with Igor Pro software (version 6.37, Wavemetrics, Lake 324 

Oswego, OR, USA) were analyzed with the software Clampfit 10.0 (Molecular Devices 325 

Corporation, Sunnyvale, CA, USA). Ca2+ transients were analyzed if events had a duration 326 

< 20 s and a rise phase faster than the decay. Transients were expressed as ΔF/F0, the 327 

amplitude fractional increase, where ΔF is the fluorescence rise over baseline, and F0 the 328 

baseline fluorescence level; [Ca2+]i elevations were considered significant when they 329 

exceeded 5 times the noise standard deviation (58,59). 330 

Immunohistochemistry 331 

At the end of 4 h experiments, slices were fixed in PBS containing 4% paraformaldehyde 332 

for 4 h at 4°C, treated for cryoprotection in 30% sucrose for 72 h at 4°C, and finally frozen 333 
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for at least 12 h in an embedding mounting medium. Embedded slices were then cut with a 334 

cryostat in 30 µm tissue sections. Samples were blocked (in a PBS-based solution 335 

containing: 10% normal goat serum, 50% BSA and 3% Triton X-100) for 2 h at room 336 

temperature and incubated overnight at 4°C with the primary antibodies anti-SMI 32 337 

(mouse monoclonal, 1:200 dilution; cat. #: 801701; BioLegend, San Diego, CA, USA; for 338 

validation see 51), anti-Cx36 (rabbit polyclonal, 1:300 dilution; cat. #: ACC-209; 339 

Alomone, Jerusalem, Israel; 27), anti-Pannexin 1 (Panx1; rabbit polyclonal, 1:300 dilution; 340 

cat. #: ACC-234; Alomone; 60), or anti-AIF (rabbit polyclonal, 1:200 dilution; cat. #: 341 

AB16501; Millipore, Billerica, MA, USA;61). AlexaFluor 488 and 594 (1:500 dilution; 342 

Life Technologies, Carlsbad, CA, USA) were used as secondary antibodies and applied for 343 

2h at room temperature. Antibodies were diluted in an antibody PBS-based solution 344 

containing: 2% normal goat serum, 10% BSA and 1% Triton X-100. After secondary 345 

antibody incubation, slices were rinsed and stained with the DNA dye DAPI diluted in 346 

PBS (1:1 000; Sigma-Aldrich), for 20 min at room temperature. To reduce fading, slices 347 

were mounted with fluorescence mounting medium (Dako, Glostrup, Denmark) and 348 

images acquired by either a Zeiss Axioskop2 microscope (20x; Oberkochen, Germany) or 349 

a confocal Nikon microscope (40x in oil) with 1 µm z sectioning. Images were analyzed 350 

with the Volocity software (PerkinElmer, Waltham, MA, USA). 351 

Western blot 352 

Analysis of quantitative and qualitative protein expression was performed with a standard 353 

Western blot technique on whole brainstem treated as described above in accordance with 354 

the previously published protocol (62). Total lysates, cytoplasmic and membrane fractions 355 
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were analyzed. Total lysates were obtained by homogenizing samples in CHAPS buffer 356 

solution (0.5% CHAPS, 50 mM Tris pH 7.5, 1 mM EDTA, 150 mM NaCl, 10% glycerol 357 

plus protease inhibitors mixture and reducing agents; Complete, Roche Applied Science, 358 

Basel, Switzerland; and Sigma-Aldrich). A hypotonic lysis buffer (10 mM HEPES pH 7.9 359 

with 1.5 mM MgCl2 and 10 mM KCl plus protease inhibitors mixture and reducing agents) 360 

was used to process samples for membrane and cytoplasmic extraction, which were then 361 

centrifuged for 5 min at 4000 rpm at 4°C and the supernatant transferred to ultracentrifuge 362 

tubes for centrifugation (1 h) at 100 000g. Cytoplasmic proteins were considered those in 363 

the supernant, whereas the pellet was formed by membrane proteins which were re-364 

suspended in the extraction buffer (20 mM HEPES pH 7.9, with 1.5 mM MgCl2, 0.2 mM 365 

EDTA, 25% glycerol, 1% SDS plus protease inhibitors mixture and reducing agents). 366 

Samples were then immunoblotted with rabbit anti-Cx36 (1:200, Alomone), rabbit anti-367 

Panx 1 (1:400, Alomone), mouse anti-Hsp70 (1:5 000, Abcam, Cambridge, UK), mouse 368 

anti-β-actin (1:2 000, Sigma-Aldrich), mouse anti-β-tubulin (1:2 000, Sigma-Aldrich), or 369 

mouse anti-synaptophysin (1:10 000, Millipore) antibodies. Because both Cx36 and Panx1 370 

encode consensus sites for phosphorylation and glycosilation, it is, thus, common to 371 

observe more than one band in the immunoblotting gels (39,63) as reported in the present 372 

study as well. The enhanced chemiluminescence light system (ECL, Amersham 373 

Bioscience, Piscataway, NJ, USA) was used to detect signals recorded with the digital 374 

imaging system Alliance 4.7 (UVItech, Cambridge, UK) and quantified with the software 375 

Alliance LD2-77-WL (UVItec). 376 

Real Time-PCR 377 
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PCR experiments were performed on total RNA isolated from tissues, treated as described 378 

above, using the Triazol reagent (Invitrogen). RNase-free DNase (Ambion, Austin, TX, 379 

USA) was used for RNA extraction and cDNA was purified using the RNeasy Mini Kit 380 

(QIAGEN, Hilden, Germany), according to the respective manufacturer’s instructions. 381 

Single strand cDNA samples were obtained using the iScriptcDNA Synthesis Kit (Bio-382 

Rad) from at least 20 ng of purified RNA. The new synthesized cDNA was amplified 383 

using the oligonucleotide primer listed in Table 1, the nucleic acid stain iQ SYBER Green 384 

Supermix (Bio-Rad) and an iCycler IQ Real time PCR System (Bio-Rad). 385 

Statistics 386 

Results were expressed as means ± standard error of the mean (SEM) and collected from at 387 

least three different experiments, where n refers to the number of slices or brainstems for 388 

each independent experiment, as indicated, and N refers to the number of times an 389 

experiment was repeated. Using the standard software SigmaStat 3.5 (Systat Software, 390 

Inc., Chicago, IL, USA), the normality test was used to discriminate between parametric 391 

and non-parametric data in the statistical analysis. In particular, two parametric groups 392 

were processed with the Student’s t-test, whereas the Mann-Whitney test was used for non-393 

parametric values. Multiple groups were analyzed with the One-way Anova if parametric 394 

or with the Kuskal-Wallis One-way Anova on ranks if data were non-parametric. 395 

Cumulative probabilities were compared with the Kolmogorov-Smirnov test. Groups of 396 

data were accepted as statistically different if P ≤ 0.05.  397 

 398 
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Movie 1. TBOA application onto hypoglossal motoneurons. 406 

Movie 2. Nicotine + TBOA application onto hypoglossal motoneurons. 407 

Movie 3. Carbenoxolone + TBOA application onto hypoglossal motoneurons. 408 
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Figure legends: 596 

Figure 1. [Ca2+]i transients evoked by TBOA. (A) Example of records of [Ca2+]i changes 597 

simultaneously taken from 5 HMs in the same slice preparation in presence of TBOA (50 598 

μM; top), nicotine (10 μM) + TBOA (middle), or carbenoxolone (200 μM) + TBOA 599 

(bottom). (B) Example of slice preparation containing HMs. Each ROI indicates a different 600 

cell used for analysis. Bar = 50 μm. (C) Box plot of the number of transients evoked during 601 

the different treatment listed above; nicotine or carbenoxolone coapplication with TBOA 602 

significantly reduces the number of the events (Mann-Whitney test: ** P = 0.006 for 603 

TBOA vs. nicotine + TBOA, and ** P = 0.002 for TBOA vs. carbenoxolone + TBOA; n: 604 

69, TBOA; 40, nicotine + TBOA; 18, carbenoxolone + TBOA; N = 5). (D) When TBOA is 605 

applied alone, the cumulative probability line (solid line) is significantly shifted to the right 606 

compared with nicotine + TBOA (dotted line) or carbenoxolone + TBOA (dashed line; 607 

Kolmogorov-Smirnov statistic test: P ≤ 0.001 for TBOA vs. nicotine + TBOA, and P ≤ 608 

0.001 for TBOA vs. carbenoxolone + TBOA).  609 

 610 

Figure 2. Topographic distribution of Ca2+ transients according to inter-cell distance. 611 

(A) Example of latency analysis taken as interval between Ca2+ transient onset in two 612 

nearby HMs. (B-D) Inter-cell latency scatter plots in presence of TBOA (50 μM; B), or 613 

nicotine (10 μM) + TBOA (C), or carbenoxolone (200 μM) + TBOA (D). Each data point 614 

represents coupling latency in a pair of cells. 615 

 616 
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Figure 3. Nicotine and carbenoxolone induce significant reduction in Cx36 617 

expression. (A) Example of HMs after 4h incubation in Krebs (sham), TBOA, nicotine + 618 

TBOA, nicotine, or carbenoxolone + TBOA. HMs were labeled with SMI 32 (green 619 

pseudocolor; left column), as motoneuronal marker, or Cx36 (red pseudocolor; middle 620 

column). The right column shows merged images where DAPI (blue pseudocolor) is used 621 

to visualize nuclei. (B) Histograms quantify the Cx36 signal decrease after 4h of nicotine + 622 

TBOA (Student’s t-test: *** P ≤ 0.001 for sham vs. nicotine + TBOA, * P = 0.038 for 623 

TBOA vs. nicotine + TBOA, and ** P = 0.005 for nicotine + TBOA vs. nicotine) or 624 

carbenoxolone + TBOA treatments (Student’s t-test: *** P ≤ 0.001 for sham vs. 625 

carbenoxolone + TBOA, and * P = 0.012 for nicotine vs. carbenoxolone + TBOA). Cx36 626 

mean signal (AU): 58 ± 4.9, sham (n = 10, N = 3); 48 ± 7.2, TBOA (n = 15, N = 4); 30 ± 627 

3.4, nicotine + TBOA (n = 14, N = 3); 58 ± 10, nicotine (n = 8, N = 3); 32 ± 2.8, 628 

carbenoxolone + TBOA (n = 11, N = 4). (C) Plot indicates significant HM loss after 629 

TBOA treatment, an effect fully prevented by nicotine or carbenoxolone co-application 630 

(HMs: 40 ± 3, sham; 28 ± 1, TBOA; 48 ± 3, nicotine + TBOA; 40 ± 2, nicotine; 41 ± 2, 631 

carbenoxolone + TBOA; Student’s t-test: # P = 0.014 for sham vs. TBOA, P ≤ 0.001 for 632 

TBOA vs. nicotine + TBOA, P = 0.002 for TBOA vs. nicotine and P ≤ 0.001 for TBOA vs. 633 

carbenoxolone + TBOA). 634 

 635 

Figure 4. Brainstem Cx36 expression decreases due to nicotine or carbenoxolone 636 

application. (A) example of Western immunoblotting (top) showing the expression of 637 

Cx36 in brainstems incubated for 4h in Krebs, or treated with TBOA, nicotine + TBOA, 638 
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nicotine, or carbenoxolone + TBOA. Histograms (bottom) quantifying the significantly 639 

decreased Cx36 levels after treatment with nicotine + TBOA (Mann-Whitney test: * P = 640 

0.038 for sham vs. nicotine + TBOA; n, N = 9) or carbenoxolone + TBOA (Mann-Whitney 641 

test: *** P ≤ 0.001 for sham vs. carbenoxolone + TBOA; n, N = 5). (B, C) example of 642 

Western blot  (top) showing Cx36 expression in membrane (B) or the cytoplasmic (C) 643 

fractions of samples treated as described above. Histograms illustrate how nicotine alone 644 

or co-applied induces a significant decrease of Cx36 expression in the membrane pool (B, 645 

bottom; Mann-Whitney test: * P = 0.016 for sham vs. nicotine + TBOA and **P = 0.016 646 

for sham vs. nicotine; n, N = 5) and an increase in the cytoplasmic one (C, bottom; Mann-647 

Whitney test: ** P = 0.008 for sham vs. nicotine + TBOA and **P = 0.008 for sham vs. 648 

nicotine; n, N = 5). 649 

 650 

Figure 5. Cx36 mRNA levels and Hsp70 expression. (A) Plot illustrating unchanged 651 

values of Cx36 mRNA levels among different treatments. Fractional Cx36 expression 652 

(AU): 1 ± 0.0, sham; 0.9 ± 0.2, TBOA; 1 ± 0.3, nicotine + TBOA; 1.3 ± 0.2, nicotine (n, N 653 

= 6). (B) Example of Hsp70 immunoblotting. (C) Histogram quantifying the significant 654 

increase of Hsp70 expression after nicotine + TBOA treatment (Mann-Whitney test: ** P = 655 

0.008 for sham vs. nicotine + TBOA; Student’s t-test: *P = 0.053 for nicotine vs.nicotine + 656 

TBOA; n, N = 5). 657 

 658 
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Figure 6.  Expression of AIF in HMs. (A) Confocal images of SMI 32 (left; green), AIF 659 

(middle; red), and DAPI (blue; merged image, right) of motoneurons in control condition 660 

or after TBOA (50 μM), nicotine (10 μM) + TBOA, or nicotine alone. (B) Line scan 661 

analysis for the cells indicated by the bars in (A). Nuclear area is delimited by the strong 662 

DAPI distribution. Note different ordinate calibrations. The large rise in AIF with TBOA is 663 

prevented by nicotine. (C) Histograms show average AIF intensity signal in cell soma. 664 

There is no difference between sham (n = 9, N = 4) and nicotine (n = 6, N = 3) data 665 

(Mann-Whitney test: P = 0.14). TBOA treatment (n = 19, N = 7) induces a large increase 666 

in AIF expression ($, Mann-Whitney test: P ≤ 0.001 for sham vs. TBOA, P = 0.014 for 667 

TBOA vs. nicotine + TBOA, and P ≤ 0.001 for TBOA vs. nicotine). Nicotine + TBOA (n 668 

= 16, N = 5) elicits a comparatively smaller increase in AIF (#, Mann-Whitney test: P = 669 

0.016 for sham vs. nicotine + TBOA).  670 

 671 

Figure 7. Panx1 expression remains unchanged. (A) Example of HMs after 4h 672 

incubation in Krebs (sham), TBOA, nicotine + TBOA, or nicotine, labeled with the 673 

neuronal marker SMI 32 (left column; green), or Panx1 (middle column; red). Merged 674 

images are shown on the right column where DAPI (blue) is used as nuclear marker. (B) 675 

Histograms quantifying unchanged levels of Panx1 among the treatments described above. 676 

(C) Example of Western immunoblotting (top) showing the unchanged expression of 677 

Panx1 in brainstems incubated as described above.        678 

 679 
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Figure 8. Idealized diagram to account for the toxic effects by TBOA and their 680 

antagonism by nicotine on HMs. (A) In the presence of TBOA, glutamate (filled red 681 

circled) released from presynaptic terminals acts on AMPA, kainate, and NMDA receptors 682 

to depolarize HMs and open voltage dependent Ca2+ channels (VDCC). TBOA-mediated 683 

Inhibition of glutamate uptake by astrocytes leads to intensification of glutamate effects 684 

with build-up of intracellular free Ca2+ which acts on mitochondria and favors production 685 

of ROS, release of AIF and DNA damage. This process is greatly amplified by the 686 

bidirectional (red arrows) operation of gap junctions (Cx36; filled blue cylinders) that 687 

spread and recruit HMs into a hyperexcitable state with deleterious consequences on cell 688 

survival. (B) In the presence of nicotine the neurotoxic effect of TBOA is largely 689 

attenuated. Nicotine exerts multiple effects via nAChRs located on presynaptical terminals 690 

(with consequent decrease in glutamate release), HM membrane and even mitochondria. 691 

Through these effects nicotine strongly decreases the motoneuron coupling via gap 692 

junctions through redistribution of Cx36 subunits, therefore disjoining motoneurons from 693 

their collective excitatory behavior. Our hypothesis is that this process is accompanied by 694 

activation of PKC that inhibits Cx36 activity, reduction in production of ROS, and 695 

facilitation of the effect of Hsp70 to sequester AIF and prevent its nuclear migration. For 696 

references see text. 697 
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Table 1. List of primers used for Real time-PCR 

Gene Primer sequence (5’ – 3’) Reference 
Cx36 Fw:ATACAGGTGTGAATGAGGGAGGATG 

Rv:TGGAGGGTGTTACAGATGAAAGAGG 
(64) 

Actb Fw:GTGGGGCGCCCCGGCACCA 
Rv:CTCCTTAATGTCACGCACGATTT 

(65) 

Hprt Fw:TCCTCATGGACTGATTATGGACA 
Rv:TAATCCAGCAGGTCAGCAAAGA 

(66) 

Rpl13A Fw:TCCTCATGGACTGATTATGGACA 
Rv:TAATCCAGCAGGTCAGCAAAGA 

(66) 
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Discussions

The pathways illustrated in Fig. 10 are common cell death mechanisms involved in a range of

neurological disorders, although in case of ALS they have been derived from studies undertaken

mainly using the mutant mouse model SOD1 (Turner et al., 2013).

Figure 10: Proposed mechanisms underlying neurodegeneration in ALS. (from Turner et al.,
2013)
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Neurodegeneration in ALS might reflect combination of glutamate-mediated excitotoxicity, free

radical generation, mitochondrial dysfunction and disruption of axonal transport processes via the

accumulation of neurofilament intracellular aggregates. Intracellular aggregates, which are

harmful to neurons, are associated with mutations in several ALS-related genes. Mithochondrial

dysfunction, associated with increased production of ROS, facilitates susceptibility to glutamate

excitotoxicity, perturbations in motoneuronal energy production, and apoptosis. Moreover, the

activation of microglia results in secretion of proinflammatory cytokines resulting in further

toxicity (Calvo et al., 2014; Orsini et al., 2015; Turner et al., 2013; Vucic and Kiernan, 2010;

Wijesekera and Leigh, 2009; Zarei et al., 2015). In this framework, the present study is consistent

with this scenario and suggested nAChRs as candidate for the prevention of HM degeneration.

Principal results are depicted in fig. 12 and listed below.
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Figure 11. Idealized diagram to explain the toxic effects induced by TBOA and their
antagonism by nicotine on HMs. (A) Inhibition of the excitatory aminoacid transporters by
TBOA leads to the intensification of AMPA, kainate, and NMDA receptor activation by
glutamate (filled red circles). This results in an increase of intracellular free Ca2+ which acts on
mitochondria and favors ROS production, AIF release and DNA damage. The process is highly
amplified by the bidirectional (red arrows) operation by gap junctions (in particular Cx36; filled
blue cylinders) which may propagate damaging signals from injured to uninjured close neighbor
HMs, with deleterious consequences on cell survival. (B) The neurotoxic effect of TBOA is
largely attenuated in the presence of nicotine. It exerts multiple effects via nAChRs located on
presynaptic terminal (decreasing glutamate release), HM membrane and even mitochondria.
Nicotine reduces ROS production and promotes Hsp70 production, which blocks AIF nuclear
migration. Moreover, nicotine strongly decreases motoneuronal coupling via gap junctions
through the redistribution of Cx36 subunits, disjoining HMs from their collective excitatory
behavior.
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In summary, the present project obtained the following results:

1. On bursting HMs, nAChR activation rapidly contrasted excitotoxic burst activity induced

by selective block of glutamate uptake, and modulated synaptic transmission (inhibition

of glutamatergic tone and enhancement of synaptic transmission). Conversely, in non-

bursting HMs, application of the antagonists for the α4- and α7-containing nAChRs

unmasked bursts. These results suggest a pivotal role of the cholinergic tone, in particular

via α4β2 and α7 nAChRs, to circumscribe bursting activity during excitotoxic stress.

2. After prolonged exposure to excitotoxic stress (up to 4 h), the motoneuron number

significantly decreased. Nicotine, which per se exerted no cell toxic action, prevented HM

loss caused by TBOA. Cell death was combined with an increase in intracellular free

oxygen radicals (already highly expressed at 2 h), mitochondrial dysfunction (at 4 h), and

protein misfolding associated with endoplasmic reticulum stress (4 h). Nicotine was able

to prevent all the above mentioned stress factors, whereas nAChR antagonists co-

application with TBOA did not change the increase in ROS level or the reduction in

formazan production.

3. Neighbouring cells were more prone to bursting recruitment as observed with Ca2+

transients. Nicotine, and the gap junction blocker carbenoxolone, reduced the number of

cells manifesting Ca2+ transients and the number of such events. Prolonged exposure to

nicotine or carbenoxolone induced downregulation of connexin36 expression, and

changes in the relative distribution of this protein (decreased in the membrane fraction

and rise in the cytoplasmic fraction). Similar results were not obtained when analyzing the

expression level of pannexin1.

4. Histochemical studies demonstrated that TBOA significantly increased the expression

level of the apoptotic factor AIF. Nicotine both prevented the increase in the expression of

this apoptosis inducing protein and increased intracellular levels of Hsp70, an important

biomarker against cell stress factors.
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These results were systematically discussed in the “discussion” sections of the enclosed

papers. Here, I will review the limitation of the current models used in ALS research and

suggest future experiments to translate our results to a human clinical setting.

1. Outlook for present and future studies

Although SOD1, the first ALS associated gene was discovered almost 20 years ago, the disease

etiopathology remains poorly understood. Researchers have focused their attention to

recapitulating the human disease in animal models, which has resulted in the identification of

riluzole as the single drug approved for ALS treatment (Bensimon et al., 1994). However, the

sole benefit of riluzole is to extend the lifespan by an average of a few months (Shamshiri et al.,

2016; Wijesekera and Leigh, 2009). Over the past decade, all human clinical trials, of new drugs

based on data collected using animal models have failed to demonstrate therapeutical efficacy

(DeLoach et al., 2015). Thus, improvement of ALS experimentation will need directing focus

toward innovative approaches.

1.1. Current animal model in use

To study ALS, various species have been use to developed models, from invertebrates to

vertebrates, but all of them possess limitation in their ability to recapitulate the disease phenotype

(Liu et al., 2013; McGoldrick et al., 2013; Philips and Rothstein, 2015). The ‘ideal’ model should

reproduce human symptoms, with the same induction, progression, and neurobiological

mechanism of action, allowing the evaluation of the possible therapeutic intervantions in humans.

1.1.1. Canine neurodegenerative myelopathy

Humans are the only known species that naturally developed ALS; however, dogs may develop

similar neuromuscular disease with some common clinical features. The canine degenerative

myelopathy is an age related, fatal disease with progressive loss of motoneurons and subsequent

muscle degeneration caused by two SOD1 mutations. Although the role of SOD1 expression

remains unclear, oxidative stress and ubiquitine-positive inclusion bodies appear to play a crucial

role in the induction of the disease (Nardone et al., 2016). However, ALS and the canine
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neurodegenerative myelopathy manifest significant differences and sick dogs are early

euthanized in disease progression due to deterioration of quality of life (Clerc et al., 2016).

1.1.2. Transgenic animals

Rodents, and in particular mice, are the most used animal models for ALS studies due to their

complex central nervous system associated with availability and short time to manifest disease-

like phenotype. Concerning the phylogenetic similarity with humans, also non-human primate

models have been developed (Uchida et al., 2012); though their use has significant disadvantages

such as time, space, funding, and ethical concerns. Other models in use to study disease

phenotype and progression are zebrafish, C. elegans and Drosophila (Guerrero et al., 2016; Liu et

al., 2013; Philips and Rothstein, 2015).

Since 1993, when the gene SOD1 was associated with ALS (Rosen et al. 1993), a number of

transgenic mutant human (h)SOD1 overexpression models have been created in mouse, C.

elegans, Drosophila, and zebrafish (McGoldrick et al., 2013; Philips and Rothstein, 2015).

Although SOD1 mutations account only for a small percentage of sALS cases (1-3%; Orsini et

al., 2015), there is the general assumption that studying the fALS could provide insight into the

sporadic form of the disease, inasmuch the two forms manifest many similiraties which may

develop through the same neuronal degeneration pathway. However, the validity of these

assumptions has been questioned (McGoldrick et al., 2013). In fact, the pathogenesis of sALS

implicates TDP-43 aggregations, which are absent in SOD1 mutation models (Mackenzie et al.,

2007), leading us to hypothesize that motoneuron degeneration may result from a set of different

mechanisms and SOD1 models may better represent the phenotype of patients with this

mutations, but not the remaining 98% of sALS which do not express SOD1 mutations.

The association between TARDBP (TAR DNA binding proteins, TDP-43) and ALS (3-5% of

fALS and 2% of sALS; Calvo et al., 2014; Philips and Rothstein, 2015) was discovered in 2008.

Since then, (h)TARDBP was overexpressed in C. elegans, Drosophila, zebrafish, rodents, and

non-human primate (Guerrero et al., 2016; Liu et al., 2013). Mouse overpression models seem to

replicate human ALS phenotypes exhibiting neuronal ubiquitin-positive inclusions, motoneuron

and axon degeneration, motor loss, paralysis, and death (Guerrero et al., 2016; Stallings et al.,
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2010). This model is relatively new, and there is a lack of characterization of the ALS phenotype

of human TARDBP. Available studies are controversial because some publications report that 50

mutations of TARDBP involved with ALS, wheres others report that those mutations are rare in

ALS (Gendron et al., 2013; Mackenzie et al., 2010).

The FUS mutated form was associated with 5% of fALS and 1% of sALS cases in 2009 (Calvo et

al., 2014; Guerrero et al., 2016).  Also for this gene a model has been created in C. elegans,

Drosphila, zebrafish, and rodents (Guerrero et al., 2016). Even if mutants overespressing hFUS

manifest many similar characteristics with ALS patients, such as protein aggregation,

neurodegeneration, and muscle atrophy (Mackenzie et al., 2010), it seems that the overexpression

of FUS induces different phenotypes depending on the species. Moreover, recent studies have

reported cognitive defects in aged animals overexpressing FUS without motor phenotype or

spinal cord pathology (Clerc et al., 2016).

To delineate the fundamental molecular disease pathway or integrate the complex genomic

landscape, researches are performed also on cell and tissue models, such as yeast and induced

pluripotent stem cells (Thomsen et al., 2014).

1.2. Limitations of the current models

The present study used a simple in vitro model obtained from neonatal rat motoneurons, which

by its nature has certain limitations. Firstly, it is interesting to evaluate if the results obtained are

reproducible in adult rodents, even if it is exceptionally difficult to applicate the patch-clamp

technique to brainstem slices of adults (Jaiswal and Keller, 2009). Second, because of the

viability of in vitro brainstem slices limited to a few hours, we are unable to follow up the

evolution of the excitotoxicity over a long period (days). Nevertheless, our first aim was to

investigate how motoneurons are damaged by early pathological mechanisms related to

excitotoxic stress, which would reproduce the putative ALS-related rise in endogenous glutamate

rather than a more aggressive and widespread excitotoxicity using direct agonist of glutamatergic

receptors such as glutamate, AMPA, or kainate. We were able to show how nicotine was able to

block or prevent motoneuronal damage activated by the impairment of glutamate reuptake. This

process started from the early signs of distress and prevented delayed cell loss.
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Another aspect of our research is the co-application of nicotine and TBOA. In many studies,

potential drugs or compounds are usually tested before the onset of first symptoms. This

approach is clearly unsuitable to clinical trials inasmuch it is impossible to start treating patients

presymptomatically.

ALS is a complex disease with a wide spectrum of phenotypes that could represent several

related disorders with different causes but similar phenotypes (Wijesekera and Leigh, 2009).

Unfortunately, until now there is no effective model to represent the disease in all ALS features,

thus, making it difficult to research and assess of new therapies. Future perspectives for the

neuroprotective role of nicotine against excitotoxicity should lead to test nAChR agonists on a

time extendent model. A possible strategy could be to test nicotine effects on organotipic colture

of spinal cord, which may survive for a few weeks (Cifra et al., 2012 and 2013). As previously

reported, ALS is a multifactorial disease (Turner et al., 2013), so its protective role on a model of

excitotoxicity is not sufficient to justify clinical trials. A parallel study should be carried on ALS

related mutant animals, to evaluate if the protective activity of nicotine could be replicated on

various phenotypes. Lastly, given the wide spectrum of nicotine actions and its ability to

permeate cell membranes and activate a series of intracellular pathways (Henderson and Lester,

2015), it should be interesting to analyze specific positive allosteric modulators of nAChRs.

1.2.1. nAChR positive allosteric modulators

Because nAChRs are involved in a wide range of functions, including modulation of synaptic

transmission, organization of sleep, drug reinforcement, and cognitive processes (Changeux,

2010; Gotti and Clementi, 2004), the use of full- or partial- agonists may induce several side

effects beyond neuroprotection. The same consideration should be applied to the use of ACh or

acetylcholinerase inhibitors leading to ACh accumulation in the synaptic cleft and beyond. In the

past years attention has been turned on the nAChR positive allosteric modulators (PAMs; Grupe

et al., 2015; Pandya and Yakel, 2013; Williams et al., 2011). An allosteric modulator is a

substance that indirectly modulates the effects of an agonist on a target protein, such as a

receptor. It binds at sites other than the orthosthetic site where ACh binds. In particular, PAMs

induce an amplification of the agonist effects, but are inactive in the absence of the orthosteric

ligand. Moreover, they are divided into two groups concerning whether they decrease receptor
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desensitization (type II) or not (type I; Chatzidaki and Millar, 2015). Thus, allosteric modulators

provide an additional approach to manipulate nAChR fuction by increasing the effectiveness of

endogenous ACh and strengthening the cholinergic tone without directly activating nicotinic

receptors. The use of PAMs may prevent receptor desensitization its effect remains under the

strict control of the released ACh, thus restricting drug effects to the areas where the

neurotransmitter is released (Chatzidaki and Millar, 2015; Williams et al., 2011). Since α7 and

α4β2 nAChRs are the more widespread forms in the nervous system and are highly connected to

neurological diseases (Gotti and Clementi, 2004), PAMs for these receptors hold therapeutic

potentials. This notion should, promising of course, be first tested with in vivo and in vitro animal

models.

1.3. Concluding remarks

In the simple in vitro model used in our laboratory where excitotoxicity is induced by TBOA,

nicotine has shown the potential to be a candidate for the prevention of motoneuron degeneration:

this should might open new perpectives for ALS therapy. The short life span of our model and

the lack of an appropriate animal model for studying ALS make the clinical translation from

animals to human currently complex. However, our model may be useful to replicate the early

pathological mechanisms involved in ALS and to be a starting point to develop new drug

therapies.
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