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Abstract

During the last decade, the use of experimentatagmbes on cultural evolution
research has provided novel insights, and suppdhedretical predictions, on the
principles driving the evolution of human cultusgistems. Laboratory simulations of
language evolution showed how general-domain caims$ron learning, in addition to
pressures for language to be expressive, may lponsible for the emergence of
linguistic structure. Languages change when culfuteansmitted, adapting to fit,
among all, the cognitive abilities of their useks. a result, they become regular and
compressed, easier to acquire and reproduce. Ajth@u similar theory has been
recently extended to the musical domain, the egdimvestigation in this field is still
scarce. In addition, no study to our knowledgedliyeaddressed the role of cognitive
constraints in cultural transmission with neuropblpgical investigation.

In my thesis | addressed both these issues witbnabimation of behavioral and
neurophysiological methods, in three experimentiadiiss. Instudy 1 (Chapter 2), |
examined the evolution of structural regularitieaitificial melodic systems while they
were being transmitted across individuals via co@iibn and alignment. To this
purpose | used a new laboratory model of musicstrassion: the multi-generational
signaling games (MGSGs), a variant of the signaiagnes. This model combines
classical aspects of lab-based semiotic modelsoofnmunication, coordination and
interaction (horizontal transmission), with thetieal transmission across generations
of the iterated learning model (vertical transnua$i Here, two-person signaling games
are organized in diffusion chains of several indiils (generations). In each game, the
two players (a sender and a receiver) must agreeammmon code - here a miniature
system where melodic riffs refer to emotions. Teeeiver in one game becomes the
sender in the next game, possibly retransmittiegctide previously learned to another
generation of participants, and so on to complegediffusion chain. | observed the
gradual evolution of several structures featuremasical phrases over generations:
proximity, continuity, symmetry, and melodic comgg®n. Crucially, these features
are found in most of musical cultures of the worlakgue that we tapped into universal
processing mechanisms of structured sequence gingegossibly at work in the
evolution of real music. Istudy 2 (Chapter 3), | explored the link between cultural
adaptation and neural information processing. T® glarpose, | combined behavioral
and EEG study on 2 successive days. | show thadatiecy of the mismatch negativity



(MMN) recorded in a pre-attentive auditory sequem@eessing task on day 1, predicts
how well participants learn and transmit an ar@ficcone system with affective
semantics in two signaling games on day 2. NotdWMN latencies also predict which
structural changes are introduced by participantsthe artificial tone system. study

3 (Chapter 4), | replicated and extended behavemdlneurophysiological findings on
the temporal domain of music, with two independemperiments. In the first
experiment, | used MGSGs as a laboratory modelutitial evolution of rhythmic
equitone patterns referring to distinct emotions. @result of transmission, rhythms
developed a universal property of music structmamely temporal regularity (or
isochronicity). In the second experiment, | ancddres result with neural predictors. |
showed that neural information processing capaslf individuals, as measured with
the MMN on day 1, can predict learning, transmissend regularization of rhythmic
patterns in signaling games on day 2. In agreemvéhtstudy 2, | observe that MMN
brain timing may reflect the efficiency of senssggstems to process auditory patterns.
Functional differences in those systems, acroswithehls, may produce a different
sensitivity to pressures for regularities in théumal system. Finally, | argue that neural
variability can be an important source of varidapibf cultural traits in a population.

My work is the first to systematically describe #raergence of structural properties of
melodic and rhythmic systems in the laboratoryngsin explicit game-theoretic model
of cultural transmission in which agents freelyenaict and exchange information.
Critically, it provides the first demonstration theocial learning, transmission, and
cultural adaptation are constrained and drivembividual differences in the functional
organization of sensory systems.
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Chapter 1

General introduction:
Music evolution in the laboratory

Massimo Lumaca
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General introduction

Music is a universal trait of human culture with amcient history. It can be found in
every known human society, past and present. lvsleoremarkable diversity across
world’s cultures, but also deep analogies. It issuprising then that it has acquired a
particular charm for biological and cognitive s@es. Why is music organized like this,
and not some other way? How can we account for batiable and invariant aspects
of musical structure?

Theoretical and methodological advances in the fiéllanguage evolution can
be of help to shed light on this complex mattereQie past decade, the mechanisms
underlying the cultural evolution of languages héeen extensively studied. These
works highlighted the role of cultural transmiss@s a powerful driving force in the
evolution of natural languages. It is hypothesittet languages adapt to constraints of
the human brain/mind when they are culturally traitted, developing features that
make them easier to acquire and transmit. This 8eyaining some empirical support
from agent-based simulations, mathematical modglliand studies of cultural
transmission in the laboratory, where it has bewmked to account for universal
aspects of human language. Although similar theohiaving been extended to the
musical domain, empirical investigation in thisldies still scarce. Furthermore, no
study to our knowledge addressed with neurophygicéd investigation the question
whether cultural information reflect human braiformation processing.

My thesis has two main aims. First, | want to pdevevidence that some of the
universalproperties found in musical structure can be tiyexxplained as adaptations
of ‘musical systems’ (in fact artificial systemssimple tone sequences) to perceptual
and cognitive constraint®f the human brain/mind during cultural transnassiOur
second objective is to provide an initial neuratiemce to this phenomenon. In addition,
we aim to relate the kind of ‘neural diversity’ fudiacross individuals to some forms
of variation found in musical behavior. | will address thesesiions by combining
experimental methods of evolutionary linguisticd angnitive neuroscience. In one set
of studies | observe how artificial (auditory) syotib systems change when transmitted
from senders to receivers thorough coordination @rdmunication, along diffusion
chains in which the receiver in one game becomeséhnder in the next game. Then,
independently, | examine whether individual vagatin neural information processing,
as revealed by ERPs, predicts variation in cultbetiavior: specifically, how well
participants learn a signaling system, how faitlgfutetransmit it, and which

! Constraints on information processing and memopaciy. We originally decided to adopt this term
instead of the more usedgnitive biasesto avoid any confusion with judgment biases afiglo
psychology, the latter open to individual awareness
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modifications are introduced. | do this separatetytwo basic dimensions of musical
structure, namelghythmandmelody

This thesis focuses on thaltural evolution of musical structure, and its neural
underpinnings. Despite the fact that some of timelifigs of this work might be
explanatory for the cultural evolution of symbaodigstems in general, results will be
specifically interpreted on the domain of music.

1.1. The origins of musical structure: a brief hisbrical overview

There has recently been a surge of interest irotiggns and the evolution of music
(McDermott & Hauser, 2005; Miller, Wallin, Merke& Brown, 2000; Patel, 2010).
Among the many questions concerning its biologiaatl cognitive foundations
(Honing, ten Cate, Peretz, & Trehub, 2015), thateforigins of structure in music is
one of the most controversial. How does structuiseean music? How do we explain
the vast diversity in musical variants exhibited omgp (and within) the musical
traditions of the world (Lomax, 1977, 1980)? Andhvhim account for the evidence that
few of these variants are present in nearly all ioaiscultures, with frequencies
significantly above the chance level (Savage, Bro®akai, & Currie, 2015)? We
believe that neural constraints on cultural trassion can be partially responsible for
both aspects. Here | provide a brief summary obtreiers that systematic musicology
had to face in the last century addressing sontbesfe questions, and also potential
solutions from the language evolutionary field.

Music is unique among the biological sound systelrserved in nature, and
can be considered with language a prominent antnclise characteristic of
humankind (Patel, 2010). In particular, music résvesome distinctive features that,
taken together, cannot be found either in language any non-human vocalization
system (Fitch, 2006).

Addressing how these features evolved in musiari$rébm a trivial task. First,
music, unlike other biological and cultural arteétadid not leave accurate information
about its past forms. Audio recordings and writh@tation are only relatively recent
phenomena when compared to the putative originsna$ic (Conard, Malina, &
Munzel, 2009; Fitch, 2006). The information we extrapolate from naturalistic data
is far too small to be sufficiently valuable.

Second, the nature of music, cultural or biologicalstill debated. The predominant
position of the last century views music as a fslbgio-cultural construct, free to vary
and with virtually no biological constraints on itesign features (thecultural

account) (Blacking, Byron, & Nettl, 1995; Nettl, 1983).8ed on this notion, humans
can appreciate and acquire any musical languagepiised to it for a sufficient time
(Schoenberg & Newlin, 1951). Many, if not all projes of musical systems would be
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thus an arbitrary results of history; citing a quby Lewontin (2000) “[...] wandering
phenomena through the space of possibilities witlaoy law-like generalities”. The
vast diversity of musical forms, observed acroskuoes and over historical time,
supports this idea.

This position has been recently challenged by thady, increasing evidence
by psychological and neuroscientific methods ofldgaal constraints in music
perception and memory (theiological accour). Recent experimental work reveal
common patterns of pitch and temporal processinguimans, with parallels in the
animal kingdom (Fitch, 2015). These mechanisms geneyarly in development
(Trehub, 2000; Winkler, Haden, Ladinig, Sziller, Boning, 2009), irrespective of
individual’s musical experience and culture (Dr&Bertrand, 2001; Stevens & Byron,
2009). Following this view, prototype propertiesmofisic, such as a relatively steady
beat (termed ‘isochronicity’), and a small distafhetween adjacent tones (or ‘pitch
proximity’), are granted and constrained by builtfunctional properties of the brain
(Jackendoff & Lerdahl, 1983), which manifest naliyran human cultures (Lerdahl,
1992). This can potentially explain the wide gepbia distribution, and the greater
than chance global frequencies recently observedsdme of these properties by
phylogenetic studies (Savage, Brown, Sakai, & @ur2015). Whether these built-in
mechanisms are domain-specific modules (Huron, 20&2etz & Coltheart, 2003),
and, if so, whether they are product of evolutignpressures, sexual or natural
selection, is still in the field of debates, or eveore, of speculations (for reviews see
Justus & Hutsler, 2005; McDermott & Hauser, 2005).

An important point to be made here is that neitfeéhese two accounts, taken
separately, can provide a completely satisfyindanation for a comprehensive theory
of the origins and the evolution of musical struetuOn one hand, music is not an
arbitrary cultural construct: it firmly rests onolgical foundations, such as memory
capacity, hierarchical processing, and auditorynscanalysis (ASA) mechanisms
(Deutsch, 2012; Snyder, 2008). This is now a cemettin the fields of music cognition
and psychology. However, how this biological endemtmwvould manifest itself from
single individuals to musical structure at popuwatscale is less clear: an issue already
known in linguistics as thetoblem of linkage(Kirby, 1999).

Critically, these seemingly opposite views can @eonciled, and the issue of
linkage solved, if we think of music neither asnéquiely cultural or biological artefact,
but as a cultural adaptive system that has begredhfar many thousands of years by
cycles of learning, use and transmission (Morl&4.3). In this view different aspects
of the temporal (rhythm and meter) and spectrdtiipistructure of music, result as
adaptations to a combination of cognitive constsaamd socio-cultural forces (Merker,
2006; Merker, Morley, & Zuidema, 2015; Trainor, Z01This idea was originally
developed in the field of evolutionary linguisticsexplain the emergence of structure
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in human languages, and to account for (near-)usaVvespects of linguistic structure
(Christiansen & Chater, 2008; Deacon, 1997). Fahgwthis view, inter-generational
transmission exerts profound effects on the forioh the structure of language (Kirby,
1999). Like language, music is a rich syntactistem of perceptually discrete
elements, which can be found in all human cultuaad which is culturally transmitted
(Fitch, 2006; Patel, 2010). Given the parallelsMeein language and music, it seems
useful to extend the same idea to the musical daniaithe following sections |
examine this idea in detail and describe an englinethod aimed to test it.

1.2. Music as a complex adaptive system

Any form of knowledge that is manifested in behawnd preserved over time through
social learning mechanisms can be regarded asifalil{Boyd & Richerson, 2005).
One common misconception is that evolution belamgguely to biological organisms,
while it is used metaphorically when referring toltare. However, when Darwin
formulated his theory on evolution, he did not knalout genes. In addition, he first
noticed a parallel between the evolution of speeied that of languages (Darwin,
1888). Darwin noticed that despite the strikingiafaitity, languages show similar
characteristics like species do. In addition, heeobed that languages compete among
themselves: dominant languages (or also tiny lstguivariants) can drive others to
extinction.

When the mechanisms underlying the transmissioneaodution of culture
began to be investigated more formally (Boyd & Ricdon, 1985; Cavalli-Sforza &
Feldman, 1981) this misconception was set asidis iroad sense, the term evolution
simply indicates a change over time in the freqyeoictraits (or ‘variants’) in the
population. Briefly, this change stands on threenrmpainciples:variation, inheritance
and selection The principles hold for all forms of evolutionpciuding cultural
(Mesoudi, Whiten, & Laland, 2004). An evolutionaystem must show)(variation in
its traits, (i) transmission of variantsiji() competition between transmitted variants to
be acquired and expressed. Any system of knowlddgjefits these three criteria is a
cultural system.

Music is maintained over time through differentnfisr of social transmission.
Besides being culturally transmitted, it showsraredible variety in its traits (within
and between cultures) (Rzeszutek, Savage, & Br@@h2), and some of its variants
have larger chance to be transmitted than otheusiddl change can be thus considered
a cultural evolutionary process. In addition, musin be viewed as a system of complex
and interdependent organisms, the musical featuteish evolve under the selective
pressures of the human brain. In other words miik&Janguage (Cornish, Tamariz,
& Kirby, 2009), seems to fit most of the criter@lte considered a cultural adaptive
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system on its own right, anclltural evolutionis the fundamental mechanism that
makes this possible.

1.3. Cultural transmission solves the problem of fikage

Music, like language, is the product of thousanflgears of transmission via social
mechanisms (teaching, imitation, and observatiany innovations, introduced by
single individuals via asocial mechanisms (e.gsical compositions, embellishments,
etc.). This thesis focuses on the first class aflhmaisms, and in particular on the oral
transmission of music, which constitutes, stillagdthe principal mechanism among
world cultures of transmitting music (see section1.1). In oral traditions, there is no
musical notation to relieve the individuals of meyn@and perceptual loads. An
individual can only rely on his brain, with all ignits, as the repository of cultural
information and as the vector of transmission. &y of music acquisition (and
transmission), provides insights on the evolutignaessures that may have produced
some of its fundamental characteristics. Above ialinusic wants to survive the
intergenerational transfer it must be learnable.

When passed on from from one musician to anothesjaal culture has first to
survive to thenemory bottlenegideacon, 1997), the limited capacities of the nesres
to induce (and store) the rules that organize thsical culture, or ‘musical grammars’.
Cognitive and perceptual limitations on groupingg@man, 1990; Jackendoff &
Lerdahl, 1983), capacity and temporal limits ofitary memory (BottcherGandor &
Ullsperger, 1992), serial processing (Sigman & [@elea 2005), attention (Cohen,
2014), and neurodynamics of the auditory nervostesy (Large, 2010), are probably
only some of the properties and constraints thastitnite the memory bottleneck. In
addition, the receiver is only exposed to a portodrmusic of its own culture (or
information bottleneck(Kirby & Hurford, 2002). Limitations on cognitiveapabilities
and limited access to data considerably restrietpitoperties of the musical lore that
will survive to the next generation.

These limitations have major implications for thelaetion of music. In each
generational transfer, traits of the stimulus tramtted will be in competition with each
other to be encoded sufficiently fast in the legmememory. Noise and new-coming
information make this competition even harder, owging or interfering with the traits
which still must be encoded (Christiansen & Cha2&16). Only the fittest (i.e., the
easier and faster to process) will be encoded enléarner's memory. Accordingly,
sustained filtering processes like this and evenimal differences in processability
will be reflected in the musical corpus (Kirby, Dman, & Griffith, 2007). Major
properties of musical structure can be thus undedstas cultural adaptations to
sustained filtering processes by human brain througcultural history (Merker et al.,
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2015). Cultural transmission and learning bottlén@ovide an elegant solution to the
problem ofhow universal learning mechanisms of single individuzs manifest as
invariant aspects of musical structure at poputakewvel (Merker et al., 2015; Trehub,
2015).

The solution to the ‘problem of linkage’ was fifsirmulated in the field of
evolutionary linguistics (Deacon, 1997). In thetldscade, this view was empirically
tested by modelling cultural evolution of languagemall-scale usinignear diffusion
chain methodgBartlett, 1932). In the next section | provide rieboverview of the
most prominent of these methods, with relative igpfibns on language and music
evolution.

1.4. Iterated learning model

Historical sciences such as linguistics or musigglaim to describe human symbolic
systems at three main levels of adaptation: phylpg®entogeny and glossogeny
(Hurford, 1999). If the first level describes thmlogical adaptation of the learning
machinery underlying cultural transmission (Fit2810; Honing et al., 2015), the other
two are concerned witleultural adaptations that occur in music and language at
individual- and population-scale respectively (Ghansen & Kirby, 2003; Fitch,
2015). Specifically, ontogeny refers to the develept of the musical or linguistic
competence in the lifetime of an individual. Glogsoy refers instead to changes
observed in cultural systems in historical erasstigaesult of cumulative deviations
from the original model.

Glossogeny in particular received a great dealttgh#on in the past decade,
being virtually explanatory for the emergence opglation-level design features in
these systems. This is the domain where modelsilafral transmission operate and
test hypotheses on cultural evolution; the mostment of these models is therated
learning mode(or ILM) (Kirby, 2001). Over the past two decadiss model provided
the main empirical framework for understandingriechanisms of cultural emergence,
transmission and evolution of human symbolic syste@uoting the definition of
iterated learning by Scott-Phillips and Kirby (2010

“The process in which the behavior of one individsahe product of observation of
similar behavior in another individual who acquitbd behavior in the same way”.

It is clear from this definition that iterated learg is only one special type of social
learning mechanism, well distinct from teaching amgtation. It is not specific to

language, but extends to any behavior acquirekisnpiarticular way, including music.
It works for both peer-to-peer and parent-to-ofisgrtransmission (Garrod, Fay,
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Rogers, Walker, & Swoboda, 2010; Theisen, Oberlgr&l&irby, 2010, Galantucci,
2009; Galantucci, 2005; Mesoudi, & Whiten, 2008hafly, it is not unique to humans
but also occurs in non-human animals (see Whitéfe&oudi, 2008 for a review), most
notably in songbirds (Fehér, Wang, Saar, Mitra,dadrnichovski, 2009).

The effects of iterated learning on cultural eviolmtcan be understood in the
dynamics arising from cycles of observation, leagnand use. One individual, or
learner, induces (and stores in memory) the prgsedf a behavior that has being
produced by another individual, the transmittertgfnalizatior) (Griffith, Kalish,
Lewandowsky, 2008; Kirby, Dowman, Griffith, 2007he receiver then turns the role
in sender and reproduces this behavior to a newivec by reverse mapping
(externalizatiop. During the conversion from one domain to theeottapart from
random noise, small, non-random changes are intemtlin the original behavior due
mostly to the limited processing capabilities oé thnimal brain, discussed earlier.
When this process iterates, it exerts profoundjiptable effects on the contents of the
behavior transmitted. Small biases in informatiomcpssing are amplified, and
manifest in the structure of the cultural traditteensmitted (Kirby, Dowman, Griffith,
2007).

The iterated learning has been productively modeiite language evolution
research with agent-based simulations (Brightoniftgr& Kirby, 2005; Kirby, 2001;
Kirby & Hurford, 2002; see also Kirby, Griffith, &mith, 2007 for an exhaustive
review), and only recently with laboratory experitge(Kirby, Cornish, & Smith, 2008;
Tamariz & Kirby, 2015; Verhoef, Kirby, & de BoerQ23; Kirby, Tamariz, Cornish, &
Smith, 2015; Tamariz, 2017; Tamariz, & Kirby, 2016)

1.4.1. Iterated language learning: computational ath experimental models

One aim in iterated learning research is to cappmeulation-level changes in the
system by modelling vertical transmission from peao offspring. Computer
simulations, supplemented by mathematical modellprgvided the first important
insights on that matter. In simulations, populatadragents endowed with particular
learning algorithms, engage in a simple form of wlealge transmission: from one
individual (the teacher) to another (the learnalpng a chain in which each agent
represents a ‘generation’. The learner in onetitarabecomes the teacher in the next.
This type of transmission design is nandéélsion chainBartlett, 1932; Esper, 1925).
Theinformation bottleneckKirby 2001) is also implemented in the modeltisat the
receiver is exposed only to a subset of data. Blitebeck wants to mimic an aspect of
language acquisition that all children must fabepoverty of the stimulug&Chomsky,
1980). With the bottleneck in place, the learneforged to generalize beyond their
learning experience, to later reproduce expressiensr encountered before. Results
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in the language domain support the hypothesesctiiairal transmission lead to an
increase of regularity and learnability. Initialipwstructured languages, where sets of
labels refer to structured meanings (colored mowbgects), turn progressively to
compositionalones (where the meaning of a complex expressioerispon the
meanings of its constituent parts and how thests pae arranged). The new peculiar
arrangement is a key property of languages thateméikem simultaneously highly
compressible and expressive. Few strings can hersgtically combined to produce a
far larger amount of meanings. However, for thatappens, pressures must be exerted
in the languages to counterbalance homonymy. Wijtlleis procedure, languages
become systematic but ambiguous (see also nexibmecSimilar findings were
reported forcombinatorialstructure in phonological systems (de Boer, 20@bgre
few signal segments can be recombined to prodiexger amount of auditory signals.
Compositionality and combinatoriality are two desifgatures of human language
(Hockett, 1960). The main contribution of compudatl modelling work was to show
that these two major language features can deweliyput any intentional design by
agents, but only as result of iterated transmisgioough the learning bottleneck.

Findings by computational models need however sipgdcearning and
production algorithms of computational agents ased on very strong assumptions
on the kind of mental processes at play in languagguisition and production.
Therefore, the predictions generated by agent-basmiels need to be tested in the
laboratory, i.e., replacing the agents with reahho learners.

Inspired by the early work on diffusion chains (Btt, 1932; Kalish, Griffith,
& Lewandowsky, 2007), and by more recent artifid@guage learning paradigms
(Gémez & Gerken, 2000; Hudson, Kam, & Newport, 2008irby et al. (2008)
produced the first experimental version of iterdesning. In Kirby et al. (2008) the
first participant in a diffusion chain learns artifavial miniature language system
consisting of word-to-object mappingsaining phas¢ He is then asked to generalize
the mappings induced in the training phase to nej@ots {esting phase Finally, a
subset of the participant’s output is used as itigimput for the next participant (or
generation) in the diffusion chaitrgnsmission phagewho repeats the same steps, and
so on until the chain is complete. Critically, p@gants do not interact in the
transmission phase, and remain unaware duringxperienent that they are part of a
diffusion chain. With such adjustments in place; Eamguage change must result from
unintentional adaptations by the language itselfefmeated episodes of transmission.
Over time, languages become more learnable anctsted, as predicted by
simulations (Kirby, 2001). Compositional languageserged, where the meaning of a
label was systematically predicted by the meaninigssubparts. However, this result
was only obtained by removing homonymy from thdipgrant’'s output, i.e., filtering
out strings referred to the same label. This procedvas necessary to prevent the
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emergence of degenerate, ambiguous languages.afégtd2) reported similar issues
while modelling the emergence of combinatorial tagties in whistled sound systems
(see for details next section addapter 2). Overall, the iterated learning model (and
diffusion chains methods in general) turned oubéoa fundamental tool to reveal
underlying cognitive and perceptual biases opayaluring cultural transmission (for

iterated reproduction in single individuals seeobgc& McDermott, 2017).

1.4.2. The evolution of musical structure in the la: preliminary approaches

So far, | have described cultural transmission gowerful mechanism to produce
population-level linguistic phenomena. Given therfal similarities between language
and music (Jackendoff, 2009), and the way theywevahd preserve over time, one may
extend similar arguments to the musical domain Kdeet al., 2015). Music, like
language, is a system culturally acquired and iréitesd, based on a discrete set of
particulate sounds, which are combined to formepast with a great diversity of
meanings (Merker, 2002). Like language, music e striking diversity of global
and local structural variants (i.e., among and witultures), with few of these variants
being widely distributed among world cultures. Wiele geographical distribution of
these variants can be understood as cultural aoapta music over historical periods
to cognitive and perceptual constraints of the hutmain. It is quite surprising then,
that only few studies addressed this issue withiecapwork.

1.4.2.1. Miranda, Kirby, and Todd (2003)

In a computer simulation, Miranda, Kirby, and To@®03) used the ILM to
examine whether semantic compositionality can arnsa simple symbolic system,
which consist of tunes expressing complex affectmeanings. Although some
disputable assumptions made by the authors, sutiedanguage-likgropositional
character of the sound patterns, this work pressmige good intuitions. Music, with
other non-verbal expressive systems, is a commiivecanedium capable to affect our
behavior (Sedlmeier, Weigelt, & Walther, 2011) aswhnition, affective cognition
above all (Cross & Woodruff, 2009). In the spectrafmmusical affect we can find
emotions and moods. If the mapping from sound emotions or moods (Koelsch,
2011; Patel, 2010) is arbitrary and open to cultinBuences, one may ask to what
extent compositionality can arise in symbolic systevhere semantics is different from
language (Arbib, 2013). The key finding of Miranslavork is that highly expressive
compositional grammars emerge from initially unstowed ones as a result of repeated
transmission through the data bottleneck. It isatear to what extent the result was
“pre-built” in the model: the learning algorithme the same as in Kirby (2001, 2002)
and the affective meanings, as the meanings inylsirvork, already semantically
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combinatorial. However, it raised a fascinatingsjios: can compositionality emerge
in a semanticized melodic system, when this isucally transmitted in the laboratory
across generations of human learners? | addresgubstion in the empiricahapter

2.

1.4.2.2. Verhoef (2012)

A study in the laboratory by Verhoef (2012) haveoabeen judged as being
informative for the cultural evolution of musicatperns, despite not being explicitly
devised for this purpose. In this work participamge slide whistles to produce patterns
of whistled sounds. The sounds generated by oniipant are used to train the next
in the diffusion chain, and so on. In the coursetminsmission, combinatorial
regularities emerged, as predicted by computerlaitouns (de Boer, 2000). In the last
generations, the set of signals was structuradly, kompressed and easier to learn and
reproduce. Despite the emergence of music-likaifeat(discreteness and contour), it
is debatable whether this work is really about mu$he instrument in use by the
participants to produce signals was appositelys#al/io mimic an artificial phoneme
inventory. It is difficult to disentangle the rgiéayed by constraints on perception and
memory (Deutsch, 2012) and constraints on the mtomu of signals. In Verhoef
(2012), whistled sounds are relatively challengmgroduce, because they require the
modulation of sounds along a pitch continuum. Tischanical biases for less costly
actions may be entirely responsible for the emerg@i musical features in this study
(Tierney, Russo, & Patel, 2011). Last, mirroringli et al. (2008), the results were
only obtained by the use of an artificial procedyreeventing the participants from
reproducing the same signal twice. Indeed, witly anémory pressures in place, the
whistle systems were expected to evolve to mon@dielsignal sets. This contrasts
with the elaborate and diversified music we experein everyday life, and suggests
that other pressures (e.g., aesthetic, communégadte; Temperley, 2004; MacCallum,
Mauch, Burt, and Leroi, 2012), in addition to laag) must be at work in the evolution
of real music.

1.4.2.3. Ravignani, Delgado, and Kirby (2016)

A new experimental work on music evolution (Ravigh®elgado, & Kirby, 2016) has
recently come out, where the authors use the @eidatrning paradigm to observe how
rhythmic universals emerge over time. In this expent, participants were provided
with an electronic drum pad (connected to a compated a drumstick. They listened
to 32 rhythmic (randomly generated) patterns vedpdones (thimput), and were then
asked to reproduce them by memory using drumstickpad (theoutpu). Given the
difficulty to memorize these patterns, some ermese introduced in the rhythmic
system, which started to deviate from the origin@le erroneous output produced by
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the first generation of participants became theiripr the next generation, and so on,
so to form a transmission chain. After repeatedaes of transmission, the pattern
grew increasingly structured, with in place regiikes widely distributed across music
traditions of the world, such as a tendency towasd®ll integer interval ratios
(especially 1:1 and 2:1) and a relatively steadst lfeermedsochronicity) (Savage et
al., 2015). This work represents the first attetopgrow music-universals in the lab
(Fitch, 2017), and supports the view that differagpects of music structure can be
understood as adaptations, through millennia ofucail transmission, to the human
brain.

In summary, although cultural transmission researche laboratory provides
a suitable method for studying the evolution otgas in music (as well as they do in
language), there have been only few explicit attsmp this direction (Ravignani,
Delgado, & Kirby, 2016; for an experiment with musignals and meanings see also
Tamariz, Brown, & Murray, 2010). The studies jussdribed do not provide a solid
ground and need to be further validated with expental research or other approaches.

1.5. From neural diversity to population structure

It should be now clear that one of the main curfeatof experimental research on the
cultural evolution of language is on the mechaniant processes that generate central
cultural invariants. A particular focus of theserisis on the link that seems to exist
between structural aspects of language and furaitempects of the human brain. Can
we use similar arguments to explain the strikingedity of cultural variantebserved

in cultural symbolic systems? Humans are the exanpalr excellence of cultural
diversity in the animal kingdom. The diversity ghtbolic systems such as languages
and music in human cultures is quite astoundin@B\& Levinson, 2009; Nettl, 1983),
with virtually any dimension free to vary, withithd boundary of biological and
physiological constraints (see Fitch, 2011 for saneple with language).

The study of cultural variation has been, up to ntve proper domain of
comparative methods, such as cultural phylogeneitg/logenetic methods were
originally developed in biological science, spezafly designed to detect and explain
patterns and trends in biological evolution. Cuwdtuevolution researchers (Dunn,
Greenhill, Levinson, & Gray, 2011; Gray & Atkinsd2)03) use now these methods as
rigorous, quantitative tools to reconstruct pastgoas and trends in cultural evolution.
The advantage of phylogenetic methods is the pdiggito chart diversity in cultural
traits, music traits included, across many so@etiaath relative cladistic evolution: the
time the innovation arose, the location and theeliggment in a comparative
perspective (Rzeszutek et al., 2012). On the dihad, they only help to reconstruct
cultural macroevolution patterns and trends. Giherseveral inherent limitations (e.g.,
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time barrier, impossibility to manipulate variablek interest, etc.), these methods
cannot really explain how innovation (and thus aton) originated, and originates, at
first. While experimental methods, such as the alessribed earlier, offer one means
of addressing this problem (Mesoudi, 2007), theyehanly been focused on overall
patterns of changes, neglecting specifically thdividual sourcesof these changes

(Caldwell, Cornish, & Kandler, 2016).

Following the considerations of the previous sewtjove may believe that a
potential source of innovation are the informatfmocessing capabilities of single
individuals. Humans transform the information thregeive from others, introducing
features that fit with brain function and structufBoyd & Richerson, 1985).
Interindividual differences in brain function artdgture as found in many studies (e.g.,
Zatorre, 2013), may manifest in difference in cdtbehavior, at level of retention
(transmission and innovation) and/or on the propexf the content (see the example
of idiolects in language). According to this hypesls, the pool of ‘neural diversity’ in
a population would manifest in the form of frequiescof the cultural variants, which
may spread in the population driven by differerdlationary forces, random or biased.

Random transformative forces are cultumautations’ (e.g., random copy
errors, or sampling) and culturarift’ (random events that affect the distributianh
cultural variants, especially in small populationS}her transformative, but directed
forces are ‘biased transmission’ and ‘guided vemmt In biased transmission, some
cultural variants are preferentially adopted rathan others, either because are easier
to remember and reproduce (content-based biasesjubethe most frequent and
available (frequency-based bias), or because pesbluzy the most prestigious
individuals (model-based bias). In contrast, driveariation does not affect the
frequency distribution of the traits, but the tsaitemselves (Mesoudi, 2015). Cultural
traits are modified when culturally transmittedneerging towards general constraints
on learning and memory of the human brain (Boydi&hRrson, 1985; Sperber 1996).
The peculiar characteristic of this evolutionarycis the nonrandom introduction of
new variation.

Through these evolutionary mechanisms, culturabaés may spread in the
population, possibly affecting its own structureit Bow variation arises at first? Is it
possible to relate cultural variant traits to tleeiral characteristics of the individuals?
Which evidences do we have that neural variahttiginifests at population level? These
points have been recently addressed by Dediu add [2007). The authors of this
study found a correlation between the genetic i diversity of two brain growth
genesMicrocephalinand ASPM and the world distribution of tone languages. yrhe
proposed that these two genes determines individitfatences in brain structure and
function, and, in turn, small individual biases the acquisition and processing of
linguistic tones. These biases may be amplifiedingurcultural transmission in
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populations with different genetic structure, afimtilly, would manifest as population-
level phenomena: as tonal (or non-tonal) languages.

Testing the hypothesis of a causal relation betwedividual and cultural
diversity, is not a trivial task. It may be everrdexr to test with traditional cultural
transmission methods, given the practical limitsaaf experimental set. First, it is
necessary to change (unconventionally) the foaus fpopulation- to individual-level
phenomena. | used the word ‘unconventional’ on psepBehavioral variability across
individuals is considered in cultural transmissioethods to be a source of noise, which
must be removed by arithmetical procedures. Last,need to provide an initial
neurophysiological evidence that a link exists te&tw cultural behavior and neural
information processing (Dediu & Ladd, 2007). | aeklr this issue ichapters 3and4.

1.6. Experimental research on cultural evolution: $sues

So far | have described the iterated learning ndglogy as a fundamental tool to
empirically address questions on cultural evolutiblowever, it also has important
issues that deserve some attention. | summarize sbithese issues in the following
points.

The iterated learning modekFirst, despite the effectiveness in modelling the
emergence of regularity, the ILM lacks of some loé fundamental aspects that
characterize cultural transmission of symbolic eys, such as social learning,
interaction and communication. In its classic vansidesign features can only emerge
by the direct intervention of the experimenter {iet al., 2008; Verhoef, 2012). This
intervention is intended to mimic the adaptive pugss introduced by communication
(Scott-Phillips & Kirby, 2010). Recently, Kirby, Taariz, Cornish and Smith (2015)
tested this assumption implementing communicatr@hiateraction in a novel version
of the ILM. Two players are first exposed to thensaartificial languageti@aining
phasg. Afterwards they engage in a communication tagiere roles of speaker and
hearer are interchanged through repetitive roupldyifg phasg The output produced
by these participants is later used as trainingtiripr the next generation of players
(transmission phagePressures from both learning and communicagongenuinely
to compositional structure. Despite this, the pmeskesign does not allow to address
directly the earlier assumption. Communicative puess are here introducedthin
generation, nobetween(Kirby et al., 2008). Horizontal and vertical temnissions are
found to be equally critical in language acquisiti6uture versions of this model need
to combine both factors if they want to provide mecologically valid settings to test
cultural evolutionary hypotheses on language (belosymbolic systems) (Tamariz &
Kirby, 2016).

32



Neural constraints and population-level patteri@&econd, the link between
cognitive constraints and population-level pattesrisased mostly on assumptions. One
leading hypothesis in cultural transmission rede#&dadhat regularization of symbolic
systems results from adaptation to cognitive camsis of individuals’ brains.
However, the existence of these constraints has bely inferred by observation of
behavioral data at population level (Kirby et aD08). No evidence has supported the
existence of individuals’ cognitive biases usingmphysiological investigation.

Empirical work in music evolutiorLast, cultural transmission research, iterated
learning in the specific, left the musical fieldrdaly unexplored. Barring few
preliminary works (Miranda et al., 2003; Ravignaati al., 2016; Verhoef, 2012;
Tamariz et al.,, 2010), this area lacks the orgdiomal framework (concepts,
approaches and methodologies) of historical lingiss

The aim of my thesis is to fill these three gap<uftural transmission literature: |
introduce a model of cultural transmission of mudicat involves alignment,
communication and social learning between a seader a receiver, the ‘multi-
generational signaling gamg®r MGSGs) (Nowak & Baggio, 2016). | combine this
model with neurophysiological methods to test waegome of the forms of cultural
variation in auditory symbolic systems can be exga by individual information
processing capabilities. Finally,focus my investigation on two basic aspects of
musical systems, namely melody and rhythm.

1.7. Research methods used in this thesis

This thesis includes research that employs bottawelral and electrophysiological
methods. The behavioral method is a model of calltmansmission in the laboratory,
the MGSGs (section 1.7.1). In the ‘full’ versiontbfs model, | examine how musical
structures evolve in an artificial (auditory) synibsystem as a result of transmission
along diffusion chains of several generations @tipipants). The use of a ‘diffusion
chain’ design will create the condition to revdwsd tinderlying cognitive biases at work
in the cultural transmission of musical codeshia ‘teduced’ version of the MGSGs, |
restrict this process to single individuals: | exaenhow single individuals learn,
transmit and restructure similar artificial symloadlystem in two signaling games, the
first played as receiver and the second as sefither.reduced version is used in
combination with electroencephalography (EEG) {eaectl.7.2). With a ‘broken’
diffusion chain design, | can capture the effettsognitive biases on the music stimuli,
and | may try to find a possible relation with theormation processing capabilities of
the individuals. The next section examines in gredetail these research methods.
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1.7.1. Behavioral method

The model of cultural transmission and evolutionuse here is a variant of the
‘signaling games(Lewis, 1969; Moreno & Baggio, 2015; Skyrms, 201@ame-
theoretic models typically employed in experimemghllosophy and economics. In
signaling games, a sender and a receiver coordinateare information on ataté of
the world (e.g., “it is sunny outside”). In eaclgrsaling trial, the sender has private
access to a state and usesigral to inform the receiver on the identity of thetsta
The receiver must in turn take appropriagetion. If the action does not match the
observed state (e.g., umbrella), coordination faltsicially, in signaling games there is
no mapping of signals to states that is given toegotiated by the participants prior to
the start of the game. The sender and receiver thestfore coordinate, through trial
and error or other learning mechanisms, to devalopmmon code and successfully
communicate. The extent to which each player ad@ptswn signal-state mappings to
the other player reveals the division of coordimatabor between the two players.
The field of study that investigates the emergeoic@ovel communication
systems via coordination and interaction is knows ‘@xperimental semiotics’
(Galantucci, 2009). In some of these works a ‘adegeup’design is used (Mesoudi et
al., 2008), where a constant group of participéinten simple dyads to microsocieties)
repeatedly interacts in order to develop a comnaiimn system of signals referring to
concepts (items). When the set of signals is open the individual can produce any
graphical sign), while states are closed and prabished by the experimenter, these
games are named ‘semiotic referential’. They differorganization from signaling
games and the classic version of the iterated ilguikirby, 2008), where states and
signals are closed and pre-established by the iexpeter(‘'semiotic matching games’).
One of the most representative semiotic referentiatk is by Garrod, Fay, Lee,
Oberlander, and MacLeod (2007), where a Pictionasik was adopted to study the
emergence of conventions in artificial communicatisystems. There, dyads of
participants (a ‘director’ and a ‘matcher’) weré&ed to develop a common code, where
meanings were items (e.g., Microwave, televisioti) eand signals drawings depicting
the items. The matcher (or receiver) was instrutbechatch different items of a list,
with signals (drawings) produced by the directoitiihteraction, signals decreased in
complexity (but only when a feedback was givenhe tnatcher) becoming more
arbitrary and symbolic, while communication accyrmcreased. Repeated negotiation
resulted in a progressive alignment between serad@tseceivers, with iconic signals
providing the starting ground, and interaction potimg a shift towards less complex
symbolic forms. To investigate the contribution lodrizontal (dyadic interaction;
Garrod et al.,, 2007) versus vertical transmissigmbfy et al., 2008), Garrod, Fay,
Rogers, Walker, and Swoboda (2010) produced anriexpet where graphical
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communication systems were vertically transmittedchains in one condition, or
negotiated by dyadic repeated interaction in theewtcondition: only horizontal
transmission led to simplifications of signs. Imdibn, in that condition, matchers were
in general more accurate in identifying the corgraphical signs. These results support
the findings by Garrod et al. (2007). By contrése, signals of the vertical transmission
remained iconic. This result indicates that diffeneressures are at work during vertical
cultural transmission (Kirby et al., 2008) and dgadteraction: learning and expressive
(or use) pressures respectively (Scott-PhillipsKi€by, 2010). To what extent this
result was given by differences in population siegewveen the two conditions? Iterated
learning experiments involve chains of multipleygles, while in dyadic interaction the
population is limited to two individuals. Fay, Gadr Roberts, and Swoboda (2010)
addressed this question, devising a community eersf the game used by Garrod et
al. (2007), a design known as ‘microsocieties’, ctintrast to the simple dyadic
condition. In microsocieties participants interadth the same player multiple times,
then changing the partner and repeating the samee gstructure. In result of
interactions and repeated partner’s changes, tbmsticieties developed signal sets of
univoque representations (or ‘global conventionstared between individuals of the
same population, which were easier to acquire apdoduce. Different pairs in the
‘dyad condition’ developed instead idiosyncraticdes. This finding suggests that
communities can evolve more efficient communicaggstems than isolated pairs.
The multi-generational signaling games (Nowak & §iag2016) represent a
variant of the models described. In line with ttEmsmission chain design (Kirby et al.,
2008) (section 1.4), the multi-generational signgljames require a replacement over
time in the composition of the population. In thegard, multi-generational signaling
games are useful to reveal and amplify small legrbiases, otherwise hard to observe
in single individuals. However, they also presét interaction and communication of
lab-based models of experimental semiotics (Gaetaml., 2007; Garrod et al., 2010),
which prove to be particularly useful for the eneerge of stable cultural repertories. A
similar design, which combines horizontal and waiftitransmission (or ‘chain of
dyads’), was adopted by Kirby and colleagues (20T6gre, horizontal and vertical
transmission occur in two distinct phases. In thiedel, we integrate communication
and transmission in a single phase. This desigremakir model (very similar to) a
replacement method (Tamariz, 2017). In multi-getr@nal signaling games a two-
player signaling game is played iteratively two ésn(reduced version) or until the
diffusion chain is complete (full version). In thiegle signaling game, two players must
converge on a mapping of signals (simple tone semgs) to meanings (simple and
compound emotions), osignaling codg via several iterated signaling rounds. Their
roles are held constant throughout the sessiom,The receiver in one game becomes
the sender in the next game. The new sender isldask@ay a new game with the next
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participant (or generation; a new receiver), possibly retransmitting the cpae, the
set of signal-state mappings) learned in the ptevigame. This design further
distinguishes our method from the most recent vassof the iterated learning (Tamariz
& Kirby, 2015; Theisen-White, Kirby, & OberlandezQ11). There, intergenerational
transmission is perfect by design, and changesirareduced onlywithin games
(interactive phase). In multi-generational signglmames, changes in the code can
occur bothwithin andbetweerthe games (i.e., in the sender’s mind), and bothbea
captured by rigorous metrics. While the MGSGsHé general description of the ILM
(i.e. transmission to downstream generations), #isg implement social learning,
alignment and communication between users. Intgratborizontal and vertical
transmission, multi-generational signaling gamesvigile an interactional model of
cultural learning, and a valuable alternative @ HbM.

1.7.1.1 A new laboratory model of music transmissio

In my thesis, | use the multi-generational sigrlgames as a laboratory model of
music transmission via coordination and alignmeélaticeably, this paradigm serves
well the modelling of different aspects of oraltgrismitted music traditions, which is,
still today, the primary mode of transmitting mussiche world (Rubin, 1995; Kleeman,
1985). In a simple case of oral transmission, aicrars (the sender) transmits through
many repetitions his composition to another muasi¢the receiver) (Sawa, 2002). The
accuracy of transmission may depend on the alighofdorain states between the two
individuals, at least at two main levels of abditac(Bharuca, Curtis, & Paroo, 2011;
Temperley, 2004). The first level is structural.thie musical grammar used by the
producer to generate music is detached by thenligjegrammar used by the receiver
to represent that music in mind, the pair is nigiredd, and the music will result difficult
to understand, learn and appreciate (at leadirat &4earing) (Lerdahl, 1992). Repeated
interactions might be necessary for the produceaytahronize his mental grammars
with the grammars used by the receiver, who, im,ttmay decide to adopt these
grammars to generate her/his own compositionso@etransmit what had learned).
Alignment in musical grammars may reveal a powerfuechanism for the
intergenerational flow of musical structure. Linkedthe first structural level, is the
affective level. Music is not only a sonic patteonveying information about its own
construction, but it also carries an expressivedffe content (Cross, 2005), a semantic
association, prominently cultural (Meyer, 1956; l&lda, 1985; Kivy, 1980; Tolbert
2001), with the structural content of the pattdrine composer or the performer might
intentionally use this connection to align thedrsgr (or multiple listeners) with his or
her own brain affective states, or, instead, teedthem in a different direction. If the
sender is successful, he can instill common emaltiogactions in the listeners, an
experience known as affectivesonancéBharuca et al., 2011). Social cohesion is one
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of the main reasons why people engage with muasit,tais considered an important
evolutionary function in the emergence of humanicaldehavior (Trehub, Becker, &
Morley, 2015).

Another critical aspect of music oral transmissierithe asymmetry in information flow
between senders and receivers (Sawa, 2002). Unékeal communication, music
transmission is strongly unidirectional, with theles of producer and listener
maintained distinct during the performance (butchwing music communication; see
Dienes, Kuhn, Guo, & Jones, 2012). Information floway be bidirectional to some
extent - the positive or negative feedback givea tmmposer by the listeners - but the
musical structure, and the semantic content thgats, is always transferred from one
generation of musicians to the next, and not veesa.

The third and most obvious aspect of oral transomisss that music is passed
across individuals without the help of notation &ory other external aid). Individuals
must rely on their abilities to perceive and reealtlitory patterns in order to maintain
the material unchanged (Kleeman, 2012). In a long this mechanism of transmission
may produce deep and predictable consequence® @avatution of musical structure
(Trehub, 2015).

With the multi-generational signaling games, | modach of these three
different aspects of oral transmission. Transmissibsymbolic meanings (structural
and affective) occurs via repeated interactiomgraient and coordination between
players (Skyrms, 2010). The role asymmetries oleskrxperimentally in signaling
games (Moreno & Baggio, 2015; Nowak & Baggio, 2046 expected to generate an
information flow from senders to receivers, andrirthe first to the last generation of
the transmission chains. Last, the transmissiaywibolic codes depends in signaling
games only on the ability of senders and receiteepocess, store, and recall auditory
symbolic patterns by memory.

1.7.2. Electrophysiological method

Electroencephalography (EEG) is a non-invasive otktthat measures the tiny
electrical activity generated by neural proces$és. high-temporal resolution of this
method (in the order of milliseconds) makes itigatarly suitable to investigate rapidly
changing patterns of brain activity that underliental function, and more generally,
brain information processing. Recordings can beargther of spontaneous activity
(where they usually have a diagnostic value) oattievity elicited by some stimulation.
In the latter case, a derivative procedure naneserit-related potentialor ERP)

(Luck, 2014) allows to isolate individual neurocdye processes out of unspecific
activity and electrical noise, by means of a singpleraging technique. The individual’s
brain response to a single stimulus or event isisoally visible in the EEG recording,
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given the many sources of noise. The experimemeds to present the same stimulus
(or event) many times (hundreds or more), averathiegesult together. In this way,
the noise is averaged out, and the waveform tmaaires is known as ERP. The ERPs
are visible as slow waveforms, and represent cleaoger time in voltage that are time-
locked to specific events. Usually they reflect theighted sum of several neural
sources of activity, generated by the cognitivecpssing of the specific event. The
most common way to quantify ERPs is by measuringmanplitude and peak latency,
which reflect respectively magnitude and timingled examined neural process(s).

One important ERP component in auditory researtirei$nismatch negativity
(or MMN) (Naatanen, Gaillard, & Méantysalo, 1978helauditory MMN is a negative,
relatively automatic response elicited by an irtagavent in a string of regular events.
It typically peaks between 100 and 220 ms fromdhset of the deviant stimulus. It
reflects the brain’s automatic detection of dewiasi from regularity representations,
and its parametersldtency and ‘amplitude) seem to reveal how accurately these
representations are encoded in memory (Alain, Geri& Picton, 1999; Winkler, 2007;
Winkler, Denham, & Nelken, 2009). Previous studiegorted a correlation between
MMN parameters and behavioral accuracy (Kujalali&alervaniemi, & N&aatanen,
2001; Naatanen, Schroger, Karakas, Tervaniemi, & iRanen, 1993; Tervaniemi,
Rytkénen, Schroger, llmoniemi, & Naatanen, 200hisTesult shows that the MMN
can be used as an index of (pre-attentive) audpoogessing efficiency (Gottselig,
Brandeis, Hofer-Tinguely, Borbély, & Achermann, 290

1.8. Thesis purpose and outline

Our preliminary aim is to show that MGSGs are dMdaboratory model of cultural
transmission via alignment and communication faditmuy symbolic codes. | expect
this model to be effective in reproducing two tyidraits of cultural evolution
(Tomasello, 2009): directed changes of culturaldraver generations, and asymmetry
in information flow from senders (or transmittetsyeceivers (or learners).

The main aim of this thesis is to provide initieperimental support to the idea
that adaptation to cognitive constraints of the Aorarain can explain, at the same time,
some of the forms oinvariant and variant aspects observed in auditory symbolic
systems of different cultures, music in particuldy first aim is to support the view,
with laboratory work, that some of the near-uniakmoperties of music can be directly
explained as interplay between cognitive and sqe@desses. Second, | aim to provide
an initial evidence of the relation between cult@daptation and neural information
processing. | do this by focusing on two major &neal components of music, melody
and rhythm, using a combination of behavioral aedraphysiological methods. These
two subcomponents will be studied separately, i@gione in much of the experimental
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literature on music psychology (Deutsch, 2012)ti€xily, | expect that no artificial
procedures (Kirby et al., 2008; Verhoef, 2012) Wwédlhere necessary for the emergence
of musical properties. The aims of this thesis idlexplored in 4 experimental works,
two behavioral and two EEG studies, describedemirical chapters (chapters 2-4).

The first two empirical chapters focus on the meadimension of music.
Chapter 2 examineshow artificial tone systems evolve as a result of beameatedly
learned and transmitted in populations of humamka. Specifically, | explore how
constraints on melodic perception and memory slaapgniature artificial system of
isochronal tone sequences endowed with affectivenimgs during transmission. To
this purpose | implement the MGSGs, in which eaahdmission step introduces a new
generation of senders and receivers. The aim gfteh& is to gain insights on the
mechanisms and pressures at work in the evolufiometodic structures.

To follow up on thischapter 3explores whether inter-individual differences in
neural information processing may account for \emm observed in three key
processes underlying cultural evolution: sociakiésy, transmission and structural
modification. To this purpose | combine behaviamad EEG methods in two successive
days. Specifically, | test whether individual dif@ces in auditory information
processing, as revealed by event-related poter{fiE$s) recorded on day 1, predict
acquisition, transmission and modification of métaglgnaling systems on day 2. This
chapter provides the first neurophysiological emmeof cognitive constraints at work
on cultural transmission.

In chapter 41 replicate and extend the results of chaptersd®23ao the temporal
dimension of music, namely to rhythm. First, | agk$r whether the emergence of one
specific feature of musical rhythms, beat reguwaiatr isochronicity, can similarly be
explained in terms of repeated transmission consstaTo this purpose, artificial
miniature rhythmic systems are culturally transeditin the laboratory through MGSGs
(seechapter 2). Then, | examined whether temporal regularizatiaa neural origins,
and if differences in neural temporal processimpsindividuals relate to differences
in rhythmic behavior and structure. To this purpokdested whether learning,
transmission and temporal regularization of simikeithmic systems can be predicted
by using individual neurophysiological data (skapter 3). Finally, a summary of the
main findings with a broader discussion is presgimehapter 5.
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Chapter 2

Cultural evolution in the laboratory of melodic
structures

Lumaca, M., Baggio, G. (under review). Cultural transmissaonl
evolution of melodic structures in multi-generafibeignaling games.



Abstract

It has been proposed that languages may evolvedaptiag to the perceptual and
cognitive constraints of the human brain, and byetl®ing, in the course of cultural
transmission, structural regularities that maxinoz@ptimize learnability and ease of
processing. To what extent do perceptual and cegrébnstraints similarly affect the
evolution of musical systems? We conducted an @xget on the evolution of
artificial melodic tone sequences using multi-gatienal signaling games as a
laboratory model of cultural transmission. Signglsystems, using 5-tone sequences
as signals and basic and compound emotions as mgsanwere transmitted from
senders to receivers along diffusion chains in withe receiver in each game became
the sender in the next game. During transmisstounctsiral regularities accumulated in
signaling systems, following principles of proxigisymmetry and good continuation.
Whereas the compositionality of signaling systerdsdt increase significantly across
generations, we did observe a significant increasamilarity among signals from the
same set. We suggest that our experiment tappedmntersal cognitive and perceptual
mechanisms operative in the cultural evolution abmal systems, which may however
differ from the mechanisms at play in language etitoh and change.
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2.1. Introduction

Over the past twenty years, the evolution of lagguand other symbolic systems has
been understood from a broadly Darwinian perspedtiwhich languages are viewed
as complex adaptive systems (Christiansen & Cha@08; Deacon, 1997). During
cultural transmission, languages change as thdtrebpressures to adapt to the
constraints imposed, among others, by the humarnn.br@omputational and
experimental research has indeed suggested thateaslt of transmission, languages
become more regular (on several dimensions) andréagearn and re-transmit (Kirby
et al., 2008; Kirby, Griffiths, & Smith, 2014; Kiyp& Hurford, 2002). One may ask
whether and to what extent similar principles edteéa the evolution of melodic
systems, such as music and vocalization (Pate)2Qhiversal acoustic and auditory
mechanisms may explain the wide geographical Higion observed for a narrow set
of music features, or music statistical univer¢divage et al., 2015). Although the idea
is not new (Merker, 2006; Merker et al., 2015; Bedt, 1987; Trehub, 2000), only a
few studies have addressed it by means of labgratqrerimentation (Verhoef, 2012).

2.1.1. Iterated learning and beyond

In a study by Verhoef (2012), the emergence of phta combinatoriality was
investigated using an artificial sound system tnaitted in the laboratory. A set of
whistled sounds was presented to the first padidipn a diffusion chain. The
participant had to learn and reproduce the set@grately as possible. The output was
then presented through a computer to the secomnidipant, who underwent the same
procedure, and so on for several iterations (‘gain@rs’). This paradigm is a variant of
iterated learning (Kirby et al., 2008). In the cgmirof transmission, combinatorial
regularities emerged. In the last generations,stteof signals was structurally rich,
compressed and easier to learn and reproduce.

Despite the effectiveness of iterated learningniodelling the emergence of
structural regularities in artificial miniature lgumages (see Kirby et al., 2014 for an
overview), the model in use by Verhoef (2012) regmiithe direct intervention of the
experimenter in order to filter out redundant sigrieom training sets: mono-melodic
signal sets were otherwise expected to emerge.eTinesrventions were intended to
mimic the adaptive pressure imposed by communicdgaott-Phillips & Kirby, 2010)
which is by design absent in this version of iteddearning (but see Kirby et al., 2015
for a new procedure; see Nowak & Baggio, 2016 forcrdical discussion).

Here, we investigate the evolution in the labaratd a miniature artificial tone
system, where auditory signals refer to distincaniegs. We assess whether cognitive
and perceptual constraints shape auditory codédsasthey gradually acquire features
that would enhance acquisition and memory reter(id@soudi & Whiten, 2008). To
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this end, we test whether artificial tone systerosia evolve toward more compressible
and simpler forms (Tamariz & Kirby, 2015) using rees of compositionality (Kirby
et al., 2008) and melodic compression (see Corfistith, & Kirby, 2013 for a similar
measure with visual stimuli). Next, we test whettogre systems would evolve so as to
embody perceptual principles of organization, sashauditory grouping (Deutsch,
2012).

To address these issues we introduce three nmajorations as compared to
previous iterated learning studies. First, we usgstem of signals based on discrete
pitches (or scale) (Tamariz, Brown, and Murray, @0This is cognitively relevant for
both music (Deutsch, 2012; Patel, 2010) and spe#ohation perception (Mertens,
2004); in addition it allows us to introduce quéative, versus qualitative (Verhoef,
2012), analyses to measure the evolution of melstdicctures. Second we present and
apply a model of cultural evolution (signaling gane which the transmission and
acquisition of the codes occurs via repeated roohdseraction between senders and
receivers. While this is not a novel approach mglaage evolution research (Caldwell
& Smith, 2012) (see especially Nowak & Baggio, 201hly one study has exploited
it in the auditory domain (Lumaca & Baggio, 2018Je expect structural regularities
to arise spontaneously as a result of coordinadod communication, possibly
reflecting learning constraints. Third, we use defifve) meanings associated to each
melodic signal, here represented by facial expoessiThe use of artificial tone systems
endowed with a semantics makes our research relévamvestigating the evolution
of symbolic vocal or melodic systems (Patel, 20105 indeed widely accepted that
speech intonation can convey a broad variety ofninga, from affective to pragmatic,
while it still remains unclear whether similar angents may be applied to musical
melody (Fitch, 2005). There is agreement among eolagists and cognitive scientists
that musical phrases (and smaller or larger uiitsusical discourse) can be used, and
have historically being used, to convey a varietytypes of meaning, including
affective meaning (Davies, 1994; Koelsch, 2011; piwan & Davies, 2001; Leman,
1992). If music fits the properties of a communmatmedium (Shannon & Weaver,
1949; Cross, 2004), with a sender (the musiciaa)simitting some message to a
receiver (another musician) through some chanirg] (& can adopt the terms ‘musical
code’ and ‘signal’ for the objects of transmissibmthis context, we will refer to signals
as a set of sonic patterns, and musical code @&)cas the set of mappings between
signals and meanings in the mind of the two playEng goal of the players is to align
their codes, possibly to the one used by the seadd¢o have a successful transmission
of information (musical properties referring to memgs) from one player to another
(section 2.1.2). In this respect, we chose emotemmveyed by facial expressions as
meanings, given the links between facial expressama music-evoked emotions found
in behavioral and neural research (see Hsieh, Hogeb, Piguet, & Hodges, 2012;
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Palmer, Schloss, Xu, & Prado-Ledn, 2013; and eafigdizordon, Key, & Dykens,
2014). This will allow us, following Kirby et al.2008), to explore whether
compositionality, whereby the meaning of a sigsatamposed by the meaning of its
subparts, arises in the organization of symbolichgpatterns too.

2.1.2. The present study

In signaling games (Lewis, 1969; Skyrms, 2010krder and a receiver coordinate to
share information on states of affairs. In eacmaligg trial, the sender has private
access to a state and uses a signal to infornedaaver on the identity of the state. The
receiver must in turn take appropriate actionhdf &ction does not match the observed
state, coordination fails. Crucially, in signaliggmes there is no mapping of signals to
states which is given to or negotiated by the pints prior to the start of a game.
The sender and receiver must therefore coordinlteugh trial and error or other
learning mechanisms, to develop a common code.ekkent to which each player
adapts his own signal-state mappings to the otleyep reveals the division of
coordination labor between the two players.

Bidirectional negotiation of cultural material iveten peers or generations is
one aspect of cultural transmission (Schonpflu@820which may also be relevant for
the evolution of auditory symbolic systems (Tem@grl2004). In classic versions of
iterated learning (Kirby et al., 2008; Verhoef, 2)Ino coordination process may occur
between players, and the asymmetry of transmissi€ired: no learner can affect the
behavior of the previous generation. This is netdase in our model, where receivers
interact with senders and can dynamically negotia@gnaling system (Scott-Phillips,
Kirby, & Ritchie, 2009; Selten & Warglien, 2009n Lypical instances of cultural
transmission, a net flow of information from sergd&y receivers is necessary for the
maintenance of the symbolic system over time. Mo&mBaggio (2015) show that this
condition is achieved if sender and receiver pléi fixed roles throughout a game. In
this condition, most coordination labor falls te tteceiver. It is therefore the sender’s
code which tends to become the common code. Wigitekng games with fixed roles
show a limited external validity as communicationdals, they are a viable model of
cultural transmission (Nowak & Baggio, 2016), segi particularly well the
transmission of music, where the information flogtvieeen a sender (music producer
or performer) to a receiver (another musician)tiergly asymmetrical i.e., from the
first to the second.

In our experiment, the states (possible messdgds} denoted by signals are
emotions, shown on the computer screen as photograp one actor’'s facial
expressions (male or female), and signals are segaef 5 pure tones drawn from the
Bohlen-Pierce (BP) scale (Mathews, Pierce, Ree&d®pberts, 1988). The group of
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signals belonging to the same code, and denotiffereint emotions, will be referred
from now on as ‘signal set’ (or ‘melodic set’). TB® scale is used to prevent players
from exploiting entrenched musical memories in niagproperties of certain tone sets
(e.g., the major mode in the Western diatonic 3cai¢h specific emotions (e.g.,
happiness). The participants’ task is to develapfanrally agree on a mapping of signals
to states over successive signaling rounds (Fig.Hg initial code (or seed) is produced
by the experimenters. Seeding is a common techniguexperimental studies of
cultural transmission (Flynn & Whiten, 2008; Whitehal., 2007), which allows the
experimenter to seed controlled properties on i@l material, then observing how
they spread and modify as a result of transmisdiba.properties controlled in our seed
were the melodic direction and the distance betwad#jacent tones (respectively,
‘melodic contour'and ‘proximity’), and the systematicity in mappibgtween signals
and meanings (azompositionality (section 2.2.6). The seed is used to train tist fi
participant (sender) of each diffusion chain (Gatien 1). A signaling game is then
played between the first and second participanh€@dion 2). These two participants
play respectively as the sender and receiver, théhr roles held constant throughout a
session (Fig. 1). At the end of each game, thewecswitches his role and becomes
the sender in the next game, now playing with avenandividual as a receiver
(Generation 3). Multi-generational signaling garaesthus played sequentially and are
organized as in a vertical diffusion chain conspif 8 generations.

As a preliminary result, we expect to further gdate signaling games as a model
of the cultural transmission of symbolic affectisygstems (Lumaca & Baggio, 2016;
Moreno & Baggio, 2015; Nowak & Baggio, 2016). Wesessed the direction of
information flow in the chains using two indicesla asymmetry and coordination
(Moreno & Baggio, 2015). When players share mosppiregs at the end of a game,
such that coordination in practice occurs, andrédoeiver has adjusted his mappings
more frequently to those of the sender (thereymasetry in the coordination process),
then we can conclude that information has flownveod in the chain, from senders to
receivers.

In addition, we test how constraints on compressibinformation (Chater &
Vitanyi, 2003) and on melodic perception and men{@®gutsch, 2012; Snyder, 2008)
shape the structure of tone sequences during tiasiem. First, we apply measures of
compositionality and melodic compression. Thesesmes can assess how similar
signals of the same set are (melodic compressang,whether systematic relations
exist between signal segments and meanings (cotiguadity). These two constraints
are thought to drive signaling systems toward casged, easier to learn forms (Kirby
et al.,, 2008; Tamariz & Kirby, 2015). Learning calso be affected by peculiar
structural features embodied in melodic segmentggrouping features, which are
known to facilitate the encoding in memory (Deut&€i12). To this purpose, changes
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in the melodic structure will be assessed by tggtinee Gestalt principles of sequence
organization: proximity, good continuation and e@lence. All measures are formally
defined below.

Finally, to test changes in the learnability oé tbode we used an index of
transmission (T) and an index of innovation (I)n@ounication pressure introduced by
signaling games is expected to counteract leard@myands, maintaining a rich set of
diversified signals.

2.2. Methods

2.2.1. Participants

Sixty-four participants took part in the study @8nale, mean age 24.3, range 19:32).
All had normal hearing and normal or corrected-ooamal visual acuity, and no formal
musical training. Signaling games were played iex@gmerimental room on 2 computer
terminals facing each other. Screens were aligae#t b back, making it impossible
for either player to see their partner and theeac. Each participant was provided with
a full-size standard PC keyboard and stereo headysh®articipants were not allowed
to communicate verbally or otherwise besides thgnading game itself. The
experimenter was always present in the room.

2.2.2. Diffusion chains

Signaling games were organized in 8 vertical difashains of 8 generations each. At
the end of each game, the receiver in generatlmecame the sender in the next game,
playing with a new receiver in generation n+1. Bleader was instructed to transmit
the musical code as he recalled it from the pres/game.

2.2.3. States

The states or items, denoted by signals in siggajames, were 5 emotion categories
of different complexity: 3 basic and 2 compound &oms, represented as facial
expressions (Fig. 2). Although the perception anoduction of compound facial
expressions is consistent with the subordinateclgiegories they are built upon (Du,
Tao, & Martinez, 2014), they are perceived as iedelent expressions. Following the
coding system for facial expressions developed kipd&h and Friesen (2003), facial
expressions of basic emotions (peace, joy and sajinere analyzed in 2 facial regions
(or meaning dimensions): upper face and lower f@menpound emotions were built
using the upper face features of peace and ther lfage features of joy (peace+joy)
and sadness (peace+sadness). For the purposesnpbsitonality analyses, we
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determined a meaning space of 2 dimensions: upperand lower face. The upper face
was coded using two variants (open or closed egesl)the lower face involved three
variants (mouth corners up, straight and down).

2.2.4. Signals

The constituent 5 tones of the signals were drawm fthe Bohlen-Pierce (BP) scale
(Mathews et al., 1988). The number of tones fiessdize of melodic groupings (Snyder,
2000), the basic units of melodic perception. la dyual-tempered version, a tritave
(3:1 frequency ratio) is logarithmically dividedanl3 equal steps (Suppl. Fig. 1), larger
in size than the corresponding Western semitor&s ¢&nts vs 100 cents). This makes
BPS a ‘macrotonal’ scale. ‘Macrotone’ is the tersed to define the smallest units of
pitch (i.e, of size larger than a semitone). Piscbéthe BP scale are defined by the
following equation: F = k * 3 (n/13); k is the reémce pitch frequency, and n is the
number of steps on the scale. We set k = 220 Hz nvééqual to 0, 4, 6, 7 and 10 as to
maximize the number of low integer frequency rabiesveen any combination of tones
(Loui, Wessel, & Kam, 2006). Sounds were sine wa@ms long, with 50-ms fade
in-out and 50-ms of inter-tone interval (see Sup. 2). Adjacent numeric keys (1 to
5) of the computer keyboard were used to produeefitte sounds. Stimuli were
delivered through headphones at 80 dB. No sigredespvas sed priori in view of the
analysis of compositionality. See section 2.2.7n(@ositionality).

2.2.5. Procedure

Prior to the start of a game, each player in ayas independently trained to associate
each facial expression to one simple or compounatiem in 3 blocks. In the first and
second blocks, respectively, facial expressionsifaple and compound emotions were
randomly presented on the center of the screehetgarticipant, one at time. Given
each facial expression, the participant had to shabe appropriate emotion (e.g.,
peace+joy) among a vertical list of orthographicptions (i.e., peace, joy, sadness,
peace+joy, peace+sadness), using numerical ketfeeafomputer keyboard (1 to 5).
Feedback followed, in which the correct responséhfe facial expression was shown,
highlighted in green. During test in block 3, tha&tiee set of facial expression was
presented again, one at a time, but this time witf@edback. Four correct responses
for each facial expression were necessary to camfiie block. At the end of training,
participants moved in a separate testing roomdp thle signaling game. At that stage,
each player received written instructions aboutntfagn experimental task. In the first
part, they were told that the goal of the task fwaplayers to develop a communication
system made of sounds and emotional expressioogghmrepeated interactive trials,
and that no other form of communication, verbabthierwise, was allowed besides the
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signaling games. Specific instructions for the serahd receiver followed, in which
the structure of the game was described in detap-By-step. The receiver was
informed of his role in the next game as sendey. Fishows the structure of a single
signaling trial. The sender was presented withralaely-selected facial expression
from one actor’s photo set (e.g., joy; 5 sec damgtia blank screen followed. Next, the
sender was asked to generate a 5-tone sequencéiqguol of 5 tones available using
the keyboard, to signal to the receiver the stat@dd seen. All tone sequences were
isochronous: only melodic patterns (pitch), butmgythm (timing), were controlled by
senders. Across trials, the order of the tones naadomized in the auditory choice
sequence presented to senders, to prevent themdreating associations between
states and positions in a fixed sequence. Thuslesgrhad to discover the key-tone
mapping anew for each trial to produce the inten&@ sequence. Unheard by the
receiver, the sender could try any combination tdries at will: the mapping of tones
to keys was held constant for each within-triageupt (each signal actually sent). The
signal was then transmitted to the receiver, whiefied to it via headphones. In turn,
the receiver was asked to choose one of the 5l faxgpessions shown on the screen,
I.e., the one he thought the sender had seen,ibg tee ‘1'-‘5’ keys on the keyboard.
The order of the facial expressions as shown todbeiver was randomized over trials.
A simultaneous feedback (3 s) to both players wad#id, displaying the expression the
sender had seen (in a green frame), and the onedbever had chosen (in a green
frame if correct; in a red frame if incorrect). Téed of the game was set to 50 correct
trials (i.e., 50 positive feedbacks), with one lirag25 correct trials.

2.2.6. Seeding

We designed 4 sets of 5-tone sequences (Suppl3Figharacterized by controlled
levels of compositionality (M=0.01, SEM=0.002, ran@:1), contour smoothness
(Shannon entropy, M=1.19, SEM=0.04, range 0:2.3@)) proximity (absolute mean
interval size, M=12.52, SEM=0.62, range 0:28). Piaothe beginning of a session, the
first sender was trained with the seeding stimulbiblocks of increasing complexity
and duration. In each block, he was instructed¢aypce a 5-tone sequence for a given
state and the correct signal for states presemegrevious blocks. Five correct
sequences per state were necessary to move arete block or complete the training
phase.

2.2.7. Data analysis

The aim of this study is to identify and quantifetevolution of melodic structures and
regularities during transmission. Nonparametric ddblon signed-rank tests (Siegel,
1956) were used to compare data points betweerrgjemes. To examine cumulative
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code changes over time, we analyzed the data byisnef linear mixed-effects
regression models (Winter & Wieling, 2016) in R @tu(R Studio Team, 2015) with
the package ‘Ime4’ (Bates, Maechler, & Bolker, 20The same approach was used in
previous research on iterated learning (e.g., V&th2012). The dependent variables
were structural properties of the musical signalstodic proximity (mean interval size
and interval distribution), symmetry (melodic treorenations, such as retrograde and
inversions) and contour smoothness (mean contdusr); moreover, we measured
changes in information compression, here compaositity (systematicity in mapping
signals to meanings), and melodic compression (@nekmilarity within a signal set).
These measures are formally defined below. Therakp# variables (y) were modelled
as a function of ‘generation’ (fixed effect), withndom intercepts (by-chain variation
in y) and random slopes for generation (by-chamatian in the slope of generation).
For each dependent variable, we tested a full magi@hst a null model excluding the
effect of generation using a likelihood ratio téstlices of model efficiency (asymmetry
etc.) were analyzed using one-sample Wilcoxon tafstee null hypothesis that they
are not significantly different from 0. To inclu@gebaseline measure of change, we
carried out a separate set of analyses in whiclotiigenal data were shuffled (n=1000
times). Dotted lines in the figures show these lras® that is, the values toward which
the evolution of tone sequences would tend if iswaven by chance. To test the
direction of change (random versus driven), forheateasure we ran one-sample
Wilcoxon tests between the codes produced in Steggleneration (G7) and the relative
median baseline value. The significance level fbamalyses was = 0.05. Pairwise
tests between generations were Bonferroni correatted 0.05/5 = 0.01.

Melodic similarity

The similarity between pairs of musical signalsdueced by adjacent generations, and
denoting the same emotion, was measured using #ieaodersion of the Hamming
distance (Hamming, 1986), here the number of s&lagents shared between 2 strings
of equal length. In our analyses, the strings \eéteer 5-tone sequences (tone distance)
or their contour transforms, i.e., the constanpgs and downs of melodic intervals,
independent of their size (contour distance), ndred in the range 0:1. Previous
studies have shown that melodic contours are vefdienore accurately than the exact
pitch sequence (Dowling, 1971).

Asymmetry and coordination

In the first step of data analysis, signal-statgpiags in each trial were determined
separately for the two players. For each statadesmtified a coordination point, or the
trial from which sender and receiver use the samepimg consistently until the end of
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the game (barring random errors) (Moreno & Baggii,5). More specifically, we first
identified a block of 5 consecutive trials (as maag/ the semantic states) where
participants were consistently using the same nmgpWe then searched backward in
the trial sequence for the first trial in which cdimation de facto occurred, that is,
where players use the same code, possibly des@ielteing unaware of that. This
point divides the trial sequence for a given state two portions: the first portion,
where players attempt to coordinate (coordinatiwase), and the second portion, where
the code is shared (communication phase). Hencentlices of model efficiency were
used: asymmetry, or the difference in the numberoofe changes introduced by the
sender (S) and by the receiver (R) during coordinatdivided by the total of code
changes: A=(S-R)/(S+R). Asymmetry ranges from k& (eceiver adapts his mappings
to the sender) to 1 (vice versa), with a singleigatalculated for each pair (i.e., each
game). Finally, coordination, measured for a paithe mean similarity between signals
of corresponding emotions used by players at tldeoém game. Two values for each
pair were derived using the actual tone and cord@miances. The values range from O
(no coordination) to 1 (shared code).

Transmission and Innovation

The tone and contour similarity measures (modifiégmming distance) between
sequences denoting the same emotion, produceaigrplof adjacent generations, are
indices of the faithfulness of transmission (a Esw+player measure). A code that is
faithfully transmitted have values close to 1; weesa, values close to 0. Innovation is
measured as 1-D, where D is the distance (tone@mdur) between the tone sequence
for one emotion learned by a receiver in one gaand, the sequence produced in
response to the same emotion by the same player tfr® sender) in the next game
(within-player measure). High values of innovatare associated with restructuring of
the musical code by the same player. Note thafames where coordination is partial,
the melodies received and the ones learned byettever do not fully match. In that
case, though related, the two indices do not meamh other. Values close to 1 suggest
that the code were restructured between games.vatues (2 for transmission, 2 for
innovation) were measured for each signal seterestperiment.

Proximity

A reliable measure of pitch proximity is the abselmean interval size (Von Hippel
2000), here computed for each set of tone sequemsed by players. First, we
computed the absolute mean interval size for eacd sequence. Then, we averaged
the output value across tones sequences of the setimieow values are associated to
sets with more proximal melodies, and high valués wiore distant melodies. The
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actual statistical distribution of unison, small ¢ 2 macrotone in size) and large
intervals (3, 4, 6, 7, 10 macrotones in size) wase aalculated for each melody, and
averaged across signals of the same set. Thisde®wa further, different measure of
melodic size.

Measures of mirror forms

We tested the evolution of signals towards threegsyof transformations: retrogrades,
inversions (mirror forms) and retrograde inversigpswling & Angeles, 1972). In
retrogrades, the order of tones of the originalseqe (e.g., ABCDE) is reversed in the
new sequence (EDCBA). In inversions, the direcbbthe intervals is reversed, such
that an ascending interval in a sequence (e.g., @B)®ecomes descending in the
transformed sequence and vice versa for any desgendtervals (CBCBA). In
retrograde inversions, inversion is carried owgtfand is then reversed as in retrograde
transforms. The presence of each transformatidhardata was calculated using the
mean value in a similarity matrix excluding the maiagonal. The matrix contains
pairwise similarity values between elements ofgéieand the relative transformation.

Measures of contour smoothness

The Shannon entropy (Shannon, 1949) of contousfoams was obtained with the
following equation:

H(X)= -ZP(xi)log2P(xi)

where X is the string of constants, ups and dowdsPAxi) is the probability the element

i occurs in that place (estimated from the frequesfdre element and the alphabet in
use). A single entropic value was computed for dank sequence, which represents
the complexity of the signal surface.

Compositionality

Compositionality is a measure of how predictabgnais and meanings are associated.
The compositionality of each melodic set was comguising the information-theoretic
tool RegMap (for details on this measure see Tam&riSmith, 2008). Following
Cornish et al. (2009), signals from the last pdieach chain were partitioned into
segments, such that elements could be reliablyceded to meaning dimensions. As
result of this, signals were segmented into unit2 @and 3 tones. We applied this
segmentation to the entire pool of signals produicethe experiment. Then, we
followed Tamariz (2013) and computed the conditioeatropy of any possible
combination of signal elements and meanings in li@®@omizations, obtaining a
partial RegMap. A partial RegMap specifies to wihedgree a signal element can predict
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a meaning element. Last, a single RegMap valudhi®rentire code was computed
(range 0:1), summarizing the compositionality af #et of signals in a pair.

Melodic compression

Melodic compression measures the similarity betwsegnals of the same set (Cornish
et al., 2013). It was computed by taking the meailarity between signals of the same
melodic set (and relative contour transforms).atiges from O (different signals or
contour profiles) to 1 (mono-melodic or mono-comtsignal sets)

2.3. Results

Our results, presented in greater detail belowgesigthat a system of tone sequences
is restructured when it is transmitted in diffusichains. Proximal tone material
emerged in each set of sequences, featuring cenbmumd by symmetry relations. A
progressive compression in the repertoire of sgynas revealed by a gradual increase
in similarity among signals of the same melodic $a& evolution of signaling systems
from an unstructured state was characterized by significant changes, followed by
incremental variation in the same direction in detseam generations.

2.3.1. Asymmetry and Coordination

Asymmetry was negative and significantly differdrdm O (median=-0.73, n=56,
Z=6.140, p<0.001). There is a division of laborviltn players throughout a game,
with a tendency for the sender to maintain hisaht¢ode and for the receiver to adjust
his mapping during coordination. Coordination asasueed using tone distance was
significantly different from 0 (median=1, n=280, %547, p<0.001), and so was
coordination as measured by contour distance (median=280, Z=16.50, p<0.001).
This confirms previous results that an agreemerghamed semantic conventions can
be achieved in this version of signaling games (hcan& Baggio, 2016; Moreno &
Baggio, 2015; Nowak & Baggio, 2016).

2.3.2. Transmission and Innovation

Fig. 3 shows the changes in the rates of transomsand innovation as measured by
tone (Fig. 3a) and contour distances (Fig. 3b)nishe latter measure, we found an
increase in transmission between the second amdl glenerations (n=40, Z=-3.653,
p<0.001), with a concurrent decrease in innovatjpr40, Z=-3.665, p<0.001).

However, no significant changes occurred betweerthird and the last generations
(transmission, n=40, Z=-0.78, p=0.44; innovatior4®, Z=-0.78, p=0.44). Similar

results were obtained with tone distances. Dedpgh values, from the third game
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onward transmission was rarely ever perfect andaleqa 1 (mean contour
distance=0.80, SD=+0.02), while innovations introeldi by participants remained
frequent in successive generations (mean contstardie=0.19, SD=+0.02).

The observed increase in transmission fidelitylgitiet al., 2008; Kirby et al.,
2015) between the second and the third generadiogygests that some critical changes
in code structure occurred in the output of gemama2. From this point on, gradual
changes occurred, as indicated by lower innovatelnes. The specific direction of
such changes is described below (see Suppl. Fag.ah example of evolving code).

2.3.3. Proximity

An initial, non-significant decrease in intervakei(n=40, Z=-1.838, p=0.06) was
followed by gradual yet robust change in the sarection in successive generations
(G2/G7, n=40, Z=-2.456, p=0.01) (Fig. 4a). This gegfs an evolution of signals
towards proximal melodies. The cumulative increatesmall interval sequences is
supported by linear mixed model analysis. The ilitadd ratio test of the full model
with proximity as test variable against a null mlodes significant £2(1)=8.15,
p=0.004).

2.3.4. Interval distribution

To test whether changes in proximity are due toognessive increase in the frequency
of monotone melodies, we performed a two-tone ttiansanalysis. Comparisons of
the first and last generations, when generatiomad wncluded (G1/G7, n=80, Z=-0.084,
p=0.93, Wilcoxon) or excluded from the analysis (&2, n=80, Z=-1.454, p=0.15), did
not show changes in the proportions of unison (@rotane intervals). In support of
this, the frequency of horizontal melodic shap@sagents only a fraction of the signals
produced by players. Patterns with changing smogtfeatures were best represented
(Suppl. Fig. 6). These findings suggest that thergence of proximal intervals could
explain the compression in size of signals. Coestswith this idea, we also observed
a significant effect of generation on the perceataflarge £2(1)=9.60, p=0.001) and
small intervals x2(1)=4.39, p=0.03), which respectively decreasediaackased over
time. No effects of generation were found for uns¢2(1)=1.21, p=0.26).

2.3.5. Melodic transformations

A systematic rearrangement of regular patternsroeduhrough vectorial operations
performed by players to produce symmetrically-eddbrms. A significant emergence
over time of mirror forms or inversions was observwehether we included the first
generation (G1/G7, n=80, Z=-4.515, p<0.001) oreded it from the analyses (G2/G7,
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n=80, Z=-3.983, p<0.001) (Fig. 4c). A different fgah was observed for retrogrades
(G1/G7, n=80, Z=-1.835, p=0.06; G2/G7, n=80, Z=88,1p=0.23) and retrograde
inversions (G1/G7, n=80, Z=-1.032, p=0.30; G2/G¥30 Z=-1.860, p=0.06) (Suppl.
Fig. 5). The cumulative increase of mirror formssveanfirmed by comparing a linear
mixed effect model with inversion as test variadgtginst a null model excluding the
fixed effect §2(1)=7.27, p=0.006). This highlights the importanaesymmetrical
structures in the evolution of melodic material.

2.3.6. Contour smoothness

We also tested the emergence of smoothed meloég diver generations. The Shannon
Entropy of the melodic contours of tone sequencas used to test this hypothesis.
More fragmented contours have higher entropy valbhas smoother signal surfaces.
Fig. 4b shows changes in this measure across gemstaThe decrease between
generation 1 and 2 was not significant (n=40, Z223, p=0.08), and the same applies
to generation 2 to 7 (G2/G7, n=40, Z=-1.191, p=p.A3ecrease of entropy was found
using a Wilcoxon-signed rank test (comparing G1 & data, n=40, Z=-2.455,
p=0.01). However, likelihood ratio tests of thel fmlodel with contour entropy as test
variable against a null model excluding the fixé&e&, showed that ‘generation’ does
not affect change herg¥(1)=2.87, p=0.09). This indicates that the inithaklodic
material, that mostly consisted of elaborate corstowas replaced by more regular,
predictable patterns (Suppl. Fig. 6), possibly wiififierent factors at work in producing
the observed result (see Baseline).

2.3.7. Melodic compression

Fig. 4d shows a gradual increase in similarity ssreignals of the same melodic set in
terms of relative contours. A significant differenbetween the first and the last
generations was found using a Wilcoxon signed-rest, both including the first
generation (G1/G7, n=8, Z=-2,380, p=0.01) or exicligdt in the comparison (G2/G7,
n=8, Z=-2.028, p=0.04). The linear mixed effectlgsia confirms a progressive change
across generationsy¥(1)=9.11, p=0.002). Similar results were obtainethew
compression was measured on tone sequene€9=<6.14, p=0.01), with a gradual
increase between the first and last generation83G =8, Z=-2.533, p=0.01; G2/G7,
n=8, Z=-1.065, p=0.28).

2.3.8. Compositionality

Previous results on compression indicate that bditiin melodic sets decreases as
melodic signals of the same set become similan&amother. This might be explained
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by the re-use of fewer smaller subsequences tapeodhole sequences. Possibly, the
combinatorial recycling of these subunits may befally random but also related to
the structure of the meanings conveyed. Our subuvete melodic segments of two
and three tones, while upper and lower face weeenteaning dimensions possibly
related. This feature is known as compositionadity its evolution is shown in Fig. 4e.
The increase in compositionality was not significas assessed by a Wilcoxon signed-
rank test (G1/G7, n=16, Z=-1,680, p=0.093) and dinenixed effect analysis
(x2(1)=3.20, p=0.07).

2.3.9. Introducing baselines

To test whether the observed structural regulariéeolved by chance to mean or
baseline levels, rather than by learning and piogsconstraints in participants, we
ran one-sample Wilcoxon tests between original r&stiuffled data in each measure
(n=1000). While all structural features startedrira random-like state (p>0.05 for all
comparisons between original generation 1 datastéwdfled data), proximity (n=8,
p=0.02; baseline B=3.46), mirror forms (n=8, p<0.B£0.35), melodic compression
(tone sequence: n=8, p=0.02; B=0.2; contours: p=8,02; B=0.33) were found to be
significantly different from baseline at the lagingration (Figs. 4a, 4c and 4d). No
significant difference was instead found at thd sneration in retrogrades (n=8,
p=0.12; B=0.35), retrograde inversions (n=8, p=pPB30.35), contour entropy (n=8,
p=0.16; B=1.12) and compositionality (n=8, p=0.B#0.5) relative to baseline values.
This more stringent analysis against the basehows that code evolution in a specific
direction, as opposed to random drift, was foundvia melodic properties of signals
(proximity and symmetry), and for one key requigsifehuman learning (information
compression). This, of course, does not rule caifpitssibility that random states may
have been functional for participants.

2.4. Discussion

Our results suggest that an artificial system nétsequences endowed with semantics
tends to regularize in several non-trivial ways witas transmitted across generations.
We observed the emergence of several structurtdrésathat may promote learning
and memory retrieval. In particular, proximal me&swith symmetric patterns of tones
emerged over time. In addition, the similarity beém melodic segments increased from
the first to the last generations, whereas chaimgesmpositionality were negligible
and remained around baseline levels. In contrast edrlier iterated learning work on
melodic transmission (Verhoef, 2012), no externedrivention on the participant output
was necessary to produce these results.
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2.4.1. Signaling games as a model of cultural tramgssion

The initial sharp increase in transmission obseimedur data set contrasts with the
slow changes of previous iterated learning stu(keby et al., 2008; Verhoef, 2012).

The bidirectional negotiation of the code that tal@ace during transmission in
signaling games may well account for this. Sociatenaction and repeated
communication with the partner may boost receivé&ning (Tan & Fay, 2011),

leading to a rapid convergence to a shared syntht#-snapping (Swarup & Gasser,
2009). As a result, a more faithful reproductiontloé code is expected after few
generations.

The code was rarely perfectly reproduced in sulsetggenerations. Inno-
vations, either deliberate or introduced by meneypsion, maintained tone sequences
in a persistent dynamic state and accumulated ghgdaver generations. High-fidelity
transmission and low levels of innovation are twoperties of cumulative cultural
evolution, which is thought to have a role in thigims of linguistic and musical
behavior (Caldwell & Millen, 2008). In agreementtlviMoreno & Baggio (2015),
receivers changed their mapping of states to sgnake often than senders to achieve
coordination in a game. This resulted in a nett{wal) flow of information from senders
to receivers, and thus from the first to the lashagyation of the diffusion chains.

Cumulative transmission and asymmetry in infororatilow, as found in our
experiment, are essential traits of cultural evolu{Tomasello, 2009). These properties
make signaling games a viable laboratory modehefdultural evolution of auditory
tone systems (Tamariz, Brown, and Murray, 201@&t dombines communication and
transmission of iterated learning (Kirby et al.,13) with a replacement method
(Caldwell & Smith, 2012). Multi-generational sigimj games can be used as a
complementary approach to iterated learning (Kebgl., 2015).

2.4.2. Perceptual and cognitive pressures in meladevolution

The compression of interval size and the reguldodie surface found in our data obey
two basic laws of perceptual organization: proxyn@ihd good continuation (Deutsch,
2012). These principles entail that the auditorgtay creates pattern units using
elements that are close in pitch and ordered imgles melodic direction, whereas
boundaries at points where changes in the intenvdirection occur. In general, tone
streams governed by those principles produce peralsmhesion and can be efficiently
encoded in memory. A different Gestalt construcghmiexplain the emergence of
melodic transformations within a melodic pool, sashthe perceived equivalence for
listeners of pairs of melodic sequences with a sgimyrrelation, especially inversions
(Dowling & Angeles, 1972; Schoenberg & Newlin, 195By using high-order

abstractions of a given melodic sequences, suttamasforms, participants introduced
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moderate levels of redundancy in a signal, thusuced memory load while
maintaining melodic diversity and expressivity. @ik our results are supported by
psychological studies showing that melodic inforoais processed more effectively
when it follows principles of grouping (e.g., Roleier & Cross, 2013; Rohrmeier,
Rebuschat, & Cross, 2011).

These results suggest that melodic informatioaadalled as particular instances
of grouping or configuration, but they also providedications on how these
configurations may be encoded and recalled. Weedtihat fine-grained information
was usually lost, whereas the contour of melodi&s pveferentially encoded (Dowling,
1994). As a first result, we found that code trailssion was enhanced, as revealed by
melodic contour changes rather than pitch sequ&w®ond, the signal set was
reorganized in fewer melodic shapes, with the tegulncrease of similarity between
signals of the same set. A analogue finding wasrteg by (Bartlett, 1932) in serial
production experiments. In that study he reprodwateal small scale the oral tradition
of a folk tale. He discovered that only ‘dominafgatures were well remembered in
retellings, while details were omitted or modifieBased on this result, Bartlett
proposed that remembering is more a reconstrugireeess based on a high-level
abstract model than an exact replication of the@gninformation. This hypothesis is
now supported by empirical work in language acqoisi According to this view, the
linguistic input must be rapidly re-coded in congmed forms through multi-level
chunking mechanisms to avoid it being overriddemmlopming information. After this
process, new memory represents just an abstrachanymof the original sensory input
(Christiansen & Chater, 2016). Results in our expent show that similar chunk-and-
pass mechanisms operate in the evolution of meloadierial, probably affecting the
transmission and the evolution of melodic strucutastorically documented in the
musical domain (Kleeman, 1985; Sawa, 2002). Théitgtime observations by (Kirby
et al., 2008; Verhoef, 2012) are in line with oumdfngs.

The effects we have observed correspond to widadptrends or melodic
regularities found across the world, with some tagbetween the musical and speech
domain. The arrangement of sounds in intervalsnoélier size (proximity), with
coherent directions, is a well-documented phenomenalifferent musical (Huron,
1996) and linguistic cultures, when continuoustpitides are converted into discrete
pitch patterns (Huron, 1996; Patel, 2010). The]‘§reater relative emphasis on global
features [...] than on local details” (Trehub, 2008)d likewise the proportion of
transformations found in our experiment can be a@smmonly found in different
cultures and historical periods (Dowling, 1971; Diogyy & Angeles, 1972; Huron,
1996).

Studies using iterated learning show that cultgsstems, when repeatedly
learned and re-used, are regularized so that steubecomes compressible, or easier
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to acquire or reproduce. Compression is a fundashengnitive principle (Rissanen,
1978). It allows for the most concise encoding akadal input and as a result it may
enhance learnability or ease the burden on mentorage. When this principle is
applied to languages, and when also expressivityesanto play, it is partly reflected
in a key feature of (islands of) natural languagd &hought: compositionality. The
systematic arrangement of signal elements in o#latdo the meanings they express
provides a parsimonious encoding of meaning arecanomical use of expressions in
the language (Kirby et al., 2008; Verhoef, 2012)e hegligible changes in the degree
of compositionality found in this experiment standcontrast with previous iterated
learning studies (Kirby et al., 2008; Theisen et 2010; Kirby et al., 2015), and are
instead consistent with an arrangement of pattefnsounds based on perceptual
principles (Fitch, 2006; Pierrehumbert & Hirschhe®90). In support of this
conclusion, a relatively inefficient transmissioi compositional structures was
reported in musically naive participants for a ratore artificial tone language
(Tamariz, Brown, & Murray, 2010). We cannot excluldat the present outcome might
change if a full compositional semantics, as iroliiet al. (2008), is made available to
participants. However, precisely because a trie@inpositional solution could be
achieved in our experiment, we may interpret ogulteas preliminary evidence that
participants were not restructuring the code foilt@vstrictly linguistic principles.
In parallel, we observed a progressive compressiomelodic material, as

indicated by an increase in the similarity betwegmals of the same melodic set. At
first, this might be interpreted as a progressivelwion towards mono-melodic
systems. The tendency of signaling systems towaodsonymy has been reported in
previous iterated learning studies (Verhoef, 2Aihy et al., 2008). These findings
are in line with the notion that memory pressurmge(orm of cognitive economy) is at
work in the cultural evolution of communicative sms (Chater & Vitanyi, 2003;
Tamariz & Kirby, 2015), leading towards greater goessibility within the system in
use. Several effects of these pressures are wedited in human musical and vocal
behavior. One relevant example is the combinatosal of a progressively limited set
of melodic elements (Adams, 1976). However, ounltesare also compatible with an
alternative explanation: the progressive combinaltarse of a limited set of melodic
segments. In the last generations, fewer melodjmsats are re-used in combination
to produce the full set of signals. Hence, the Isinty between signals is expected to
increase. In the musical domain, this is reflectethe preferred use across traditions
of small systems of discrete pitch elements (5aiy in the combinatorial re-use of
these elements, or groups of elements (motiveseB&006), to produce a virtually
boundless number of complex musical phrases (Vérta®d2). A pressure for the
system to become expressive, as in our experimenid point towards this direction.
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It is worth noting that both explanations referaaptations to the limits of human
memory, and are not necessarily mutually exclusive.

2.5. Conclusion

Our results suggest that culturally transmittedieidl tone sequences are subject to the
same basic set of cognitive and perceptual constrahat operate on the cultural
evolution of auditory symbolic systems, musical apdech melodies included. When
these principles are brought out through severelesyof learning and use, they can
explain the emergence of common melodic propemiesuditory symbolic systems,
music in particular. The present work is the fasperimental contribution to the debate
on the role of cognitive constraints in the cult@eolution of tone patterns. It provides
experimental evidence that basic principles of tamgiorganization as well as cognitive
constraints can drive the evolution of simple tesequences toward universal melodic
regularities.
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2.6. Figures and tables
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Fig. 1.a) A trial of a signaling game with 5 emotions (3 slm® compound) as states (or messages)
and 5-tone sequences as signals. Emotions are sh®wrpressive faces. Tones are drawn from the
Bohlen-Pierce scale. The top and the bottom rowsvsivhat the sender and receiver view on their
screen, respectively. Time flows from left to righeedback is positive if the facial expressiorwed

by the sender and the one chosen by the receitehpeand negative otherwise. With positive feedback
facial expressions are shown to both participantisisaneously in a green framework, while a rednfea

is used for negative feedback. b) Structure of ing@lherational signaling games. The receiver in one
game (generation) becomes the sender in the next game (genenatibyy and diffusion chains are thus

constructed.
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Fig. 2. Stimulus set of the study on emotion expressioateStare faces expressing either simple
(sadness, joy, peace) or compound emotions (peaceppacexsadness). Stimuli for compound
emotions are constructed by merging the upper qronif ‘peace’ with the lower portion of ‘joy’ or
‘sadness’.
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Fig. 3.Changes in transmission and innovation over geioasaais measured by (a) tone and (b) contour
distance. The dark line shows the mean value foh g&neration across chains; the blue-shaded area
represents SEMs. Transmission is the modified Hargrdistance between codes produced by senders
of adjacent generations (between-players measkmedvation is calculated as 1-D, where D is the
distance between the code learned and the codeigeddn the following game by each participant
(within-player measure).
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PROXIMITY (b) CONTOUR ENTROPY (c) MIRROR FORMS
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Fig. 4. Temporal evolution of structural regularities (aaejoss generations. The dark line is the
average value computed for each generation achasss; the blue-shaded area represents the SEM.
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2.7. Supplementary material
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Supplementary Figure 1.Frequency increments in the Bohlen-Pierce systeat) @nd in the
tempered diatonic system (black).
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Supplementary Figure 2.Diagram-notations of two example tone sequencesh Eaund is 500-ms
long with 50-ms of fade in-out and 50-ms of intené¢ intervals. Time flows from left to right. The y

axis is in log-scale. Circles represent the on§gitohes, while the dotted line is used to repnésiee
contour of the melodic pattern.
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Supplementary Figure 3.Diagram-notation of the seeding material. Four se&il-S4) of 5-tone
sequences each, were used as starting materibeftnansmission chains. Each circle represeritgyies

tone of the sequence. The blue line representshitueges in the melodic contour.
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Supplementary Figure 4.Diagram-notations of melodic patterns producedhairc 1. Generations are
ordered from top (seed or G1) to bottom. In eachegsion a set of 5 melodies was produced,
corresponding to one of the 5 emotions. Each coltepresent the evolution of a single melodic code
from G1 to G7.
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(a) RETROGRADES (b)  RETROGRADE INVERSIONS
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Supplementary Figure 5.Mean similarity between signals and relative (&ograde and (b) retrograde
inversion transformations. No significant increases observed between the first and the last geoerat

No differences with the baseline level were repbitethe first and last generations.
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Supplementary Figure 6.Distribution of string contour shape. Statisticadtdbution of 9 melodic
contour configurations discussed by Tierney (20@&Hy. height is equal to the mean frequency value
computed across chains and generations. Basellnesyaobtained by shuffling the original material
(n=1000), are shown in bold.
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Neural predictors of melodic regularization
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Abstract

It has recently been argued that symbolic systenwdve while they are being
transmitted across generations of learners, grhdadapting to the relevant brain
structures and processes. In the context of thtmesis, little is known on whether
individual differences in neural processing capaeaitcount for aspects of variation
observed in symbolic behavior and symbolic systeams.addressed this issue in the
domain of auditory processing. We conducted a coetbbehavioral and EEG study
on two successive days. On day 1, participantsnesl to standard and deviant 5-tone
sequences: as in previous oddball studies, an MMhI elicited by deviant tones. On
day 2, participants learned an artificial signalgygtem from a trained confederate of
the experimenters in a coordination game in whitbrte sequences were associated to
affective meanings (emotion-laden pictures of hufaaes). In a subsequent game with
identical structure, participants transmitted amdasionally changed the signaling
system learned during the first game. The MMN layeinom day 1 predicted learning,
transmission and structural modification of signglisystems on day 2. Our study
introduces neurophysiological methods into reseamchcultural transmission and
evolution, and relates aspects of variation in sylimtsystems to individual differences
in neural information processing.
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3.1. Introduction

Human symbolic systems such as language and musieeewhile they are being
acquired and transmitted by learners from subsdmesrerations. It has recently been
hypothesized that the brain co-determines the tilre®f cultural evolution: symbol
systems would gradually adapt to the constraing®srd by the relevant neural circuits,
becoming easier to learn or process by inheritipgcgic structural and semantic
properties (Christiansen & Chater, 2008; Dehae@»&en, 2007). This view has found
some support in research on language (Kirby et28l08), arithmetic and reading
(Dehaene, Cohen, Morais, & Kolinsky, 2015; Hannagamedi, Cohen, Dehaene-
Lambertz, & Dehaene, 2015), where it has been iedtd& account for universal aspects
of such systems. However, little is known aboutiataon: would subtle yet possibly
critical differences in brain structure and funaotiacross individuals account for some
of the forms of variation (e.g., across individualsover time) observed in cultural
symbolic systems Dediu & Ladd, 2007).

Here we provide the first experimental evidencat gsymbol systems reflect
individual cognitive processing capabilities whdreyt are culturally learned and
transmitted. We set out to test whether individdiffierences in neural information
processing, as revealed by event-related poten{aRPs), would predict how
individuals learn, transmit and modify an artificggmbolic system. Our methodology
involved two elements: (1) a laboratory model dfumal transmission, and (2) a neural
marker of processing efficiency for structured seues.

We used signaling games as a model of culturahileg and transmission
(Lewis, 1969; Moreno & Baggio, 2015; Nowak & BaggikD16; Skyrms, 2010). In
signaling games, the goal for the sender and recé&wvto converge on a mapping of
signals to meanings (or ‘code’) via iterated sigmalrounds (see Methods). Our
participants played 2 signaling games: first, azirers, they learned a mapping of
signals (5-tone sequences; the signal set) to mgsugimple and compound emotions);
then, as senders, they transmitted the systemel@anrthe first game (Fig. 2). Artificial
languages are generally assumed to be relevannderstand natural languages.
Similarly, artificial tone systems can be usedtwlg actual musical systems. Moreover,
music may be seen as a cultural symbolic systems€C2005): it has often been used
throughout its history to convey cognitive or affee meaning (Juslin & Sloboda,
2001). Our tone sequences were indeed endowedaffétiive meanings, referring to
facial expressions of emotions: a link betweenalaexpression and music-evoked
emotions is supported by neural and behaviorabrebgGordon et al., 2014; Hsieh et
al., 2012; Palmer et al., 2013).

As a neural marker of auditory processing we ubedmismatch negativity
(MMN). The MMN is an ERP component peaking betw&6éf and 220 ms from the
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onset of a deviant event disrupting a standard eserpi (Naatanen et al., 1978). Its
elicitation therefore depends on whether a menmmaigetfor the standard sequence has
been formed (Alho, Sainio, Sajaniemi, ReinikainkiNaatanen, 1990). Its latency and
amplitude are correlated with pattern discriminatédpilities in individuals (Naatanen
et al., 1993). The MMN has been seen as a markermeokssing efficiency (Gottselig
et al., 2004; Tervaniemi et al., 2001), and as anseto investigate individual
differences in auditory perception (Tervaniemi,olen, Karma, Alho, & Naatanen,
1997).

To test whether individual differences in audit@rpcessing, as measured by
MMN peak latencies and amplitudes, predict learnitmgnsmission and structural
modification of signaling systems, we designed twperimental sessions on two
successive days: on day 1, participants undervwantlard auditory MMN acquisition;
on day 2, they played first as receivers (learnérsh as senders (transmitters) in two
successive signaling games (Methods, Study Designg) MMN stimuli used on day 1
and the signals used on day 2 were 5-tone sequdh&&8IN amplitudes or latencies
predict learning, transmission and reorganizatiérsignaling systems, this would
suggest a direct link between individual differenae neural processing and variation
in cultural symbolic systems.

3.2. Methods

3.2.1. Participants

Twenty-one right-handed native speakers of Italgafemale; mean age 23.71) with no
hearing or neurological disorders participatedhe study. Three (1 female) had an
excess of movement artifacts in the EEG data; ¢heaming 18 were included in the
final data analysis (mean age 23.71). To reduceréisp effects on auditory processing
(Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004 p8anen, Brattico, & Tervaniemi,
2007), we included only musically naive individuals

3.2.2. Study design

Each subject participated in 2 sessions on 2 catisecdays (24h apart). The EEG
session took place on day 1. At the start of thesiea, we assessed participants’
working memory with a digit span test (Orsini et 4987) and a complex span tests
(Foster et al., 2015). We recorded EEG data wbite sequences were delivered in 3
blocks with high-, low-, and 0-entropy sequence (Stimuli) using loudspeakers (80
dB). During EEG recording, participants watchedens subtitied movie in a 8x11 cm
frame in the center of the screen. They were inéatitihhere would be questions about
the movie at the end of the session, in order verditheir attention from the stimuli.

72



On day 2, the participant played 2 signaling garfiest,as receiver (Game 1), then as
sender (Game 2) (see Transmission design; Figwih a confederate of the
experimenters; sender and receiver roles were .fixedGame 1, the participant
(receiver) learned a signaling system where theadsgvere 5 5-tone sequences and the
meanings were 3 basic and 2 compound emotionsamez, the participant (sender)
had to transmit the signaling system learned in &dmas they recalled it, to the
receiver. The signaling games took place in a qo@ih with two screens aligned back-
to-back, with a curtain between them, preventingyets from looking at or
communicating with each other. Written instructiomsre given to the participant
before the beginning of each session (Suppl. Iif.1land 1.1.2). Players used a full-
size keyboard and headphones.

3.2.3. Bohlen-Pierce scale

Sequences were built using tones of the Bohlerc@iscale (Mathews et al., 1988).
The equal tempered Bohlen-Pierce scale is basd® twgarithmically even divisions
of a tritave (3:1 frequency ratio). The frequenEy ¢f each note i = k * 3 ™13 kis
the reference pitch frequenayis the number of steps on the scale. This scaleused
instead of the Western diatonic scale to prevemtigg@ants from exploiting prior
intuitions about musical harmony or melody, whiclymaffect perception of tone
sequences. To avoid carry-over effects of the stilarned on day 1 (during the EEG
session) on those used on day 2 in the signalintegawe set different values to
build the EEG stimuli and the materials used bydbafederate in the signaling games
(see below).

3.2.4. Day 1 - EEG experiment

3.2.4.1. Stimuli

Tone sequences of different complexity (high-engrdpw-entropy and 0-entropy or
control) were presented in 3 blocks. In each bl8digpes of tone sequences were used:
standards (80% frequency), contour deviants (Ceayil0%) and interval deviants (I-
deviant, 10%); for control stimuli, a single dewiamas used (Fig. 1). A session
consisted of 8 sub-blocks with 250 stimuli eachd #re control block included 4 sub-
blocks. The order of the sessions (high-entropyy-éatropy and control) was
counterbalanced across participants. The complexityne sequences was defined as
the complexity of their contour transforms (contamtropy) where ‘+' stands for
upward intervals, ‘-’ for downward intervals, ard for repeated tones. We produced
high-entropy standard stimuli (- + - +; Shannonrgpy = 1), low-entropy standard
stimuli (+ + + -; SE = 0.81), and 0-entropy stimwith repeated tones (= = ==; SE =
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0). In contour deviants, the 4th tone violateddtwdace structure of standard sequences,
but not interval size; vice versa for interval dews on the 5th position. The deviant
was always the same as the first tone in a sequ@mceganiemi et al., 2001). Each
sequence consisted of 5 50-ms sinusoidal tonesthreritequencies 440, 521, 567, 617,
730.6 Hz (low register), separated by 50-ms ohs#e(interstimulus interval, ISI 750
ms). Sequences were transposed over trials atiSteegof the Bohlen-Pierce scale
(lowest frequencies: 440, 478, 567 Hz).

3.2.4.2. Data acquisition

The EEG was acquired using a Biosemi (Amsterdane, Natherlands) ActiveTwo
system with 128 active electrodes, digitized at4lB2, off-line down sampled to 500
Hz and bandpass filtered (0.1-30 Hz). The EEG wé&sxenced on-line to the average
of signals from the left and right mastoid chann@lse EOG was recorded by 2
electrodes above and below the right eye, andddg@rodes placed at the outer canthus
of each eye. Data analysis was performed in ER@lapez-Calderon & Luck, 2014)
and EEGlab (Delorme & Makeig, 2004). Epochs wereetiocked to the onset of the
critical (4th or 5th) tones for the standard andialet stimuli, in a time window from -
200 ms (baseline) to 800 ms after tone onset. Rreepsing included rejection of trials
with ocular artifacts using a 150 ms step-funcfanrthe bipolar horizontal and vertical
EOG channels (threshold at 35 pV; step 10 ms). &r@8-wide moving window was
slid across the data in all 128 channels: epocleseMie peak-to-peak offset exceeded
100 pV in any window were rejected. The remainipgahs were averaged separately
for each condition (deviant or standard). Mean pkd&ncies and amplitudes of
individual difference waves were calculated in eatl! scalp quadrants (posterior,
right, anterior, left; 32 channels each), and ioheaf 4 120-ms time windows (0-480
ms after tone onset), selected according to thadiicharacteristics of the MMN (100-
220 ms from deviant tone onset; (Naatanen et arg8;1Paavilainen, 2013) and after
inspection of ERP data.

3.2.4.3. Data analysis

A mismatch negativity (MMN) is an enhanced negaBWRP component in response to
deviants relative to standard stimuli, larger ofrental sites at 100-220 ms from
stimulus onset (Naatanen et al., 1978; Paavilai2@h3). We used a four-way repeated-
measures ANOVA with mean MMN amplitude as dependemiable in each of 3
conditions, and 4 factors: Stimulus Type (standardeviant), Temporal Window (4
levels, as above), Quadrant (4 levels, as abovk)yested on the latter, Electrode (32*4
levels), using the Greenhouse-Geisser correctioenvappropriate. Wilcoxon signed-
rank tests were used in post-hoc analyses.
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To investigate whether individual differences ud#ory processing predict
learning, transmission and structural modificatioh signaling systems, we first
measured MMN amplitudes and peak latencies in iddai difference waves (deviant
minus standard stimuli). Next, we computed correfst between MMN peak latencies
(or mean amplitudes) in each participant with vasimeasures of behavior in signaling
games (see below). P-values from the correlatists t@ere Bonferroni corrected at
= 0.05/12 = 0.004; 12 is the number of times eadependent variable (amplitude or
peak latency) is correlated with behavioral measure

3.2.5. Day 2 - Signaling games

3.2.5.1. Signaling games

Signaling games are games of incomplete informatiavhich a sender and a receiver
develop a mapping of signals to meanings via regeatteractions (Lewis, 1969;
Skyrms, 2010). In the standard form, the sendemafely withesses an event or state
and uses a signal to inform the receiver on thetigeof that state. Upon receiving the
signal, the receiver takes appropriate action totcimathe state’s identity.
Communication may succeed or fail depending on kdrethe state and action match
or not. The players receive feedback as to whetteetrial was successful. (Moreno &
Baggio, 2015) showed that when sender and receles are fixed within a game, the
mapping is largely determined by the sender anthéshby the receiver. In these
conditions, signaling games are a viable laboratoogel of social learning and cultural
transmission of artificial symbol systems (for iegtions and extensions, see Nowak
& Baggio, 2016). In our experiment signals werestitated by 5 sine-wave tones (200
ms length; inter-tone interval 50 ms). In the BolkRierce equation, we defined k = 440
Hz and n =0, 4, 6, 7, or 10 to obtain the maximmumber of tone combinations with
a low-integer frequency ratio. The states were Sicb§oy, peace or sadness) or
compound emotions (peace+joy or peace+sadnessgtetbps facial expressions. We
recruited 4 professional actors (2 male, 2 femf@en photo shoot session: they were
instructed to express naturally each basic emotina;photo per emotion per actor was
included in the final stimulus set. Facial expressifor compound emotions were
generated by dividing up expressions of basic emstinto two regions (Ekman &
Friesen, 2003): the upper and lower face. Compaemadtions were produced by
merging the upper face portion of peace and thelddace portion of joy (peace+joy)
or sadness (peace+sadness).
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3.2.5.2. Transmission design

Fig. 2 (right panel) shows the structure of sigmplgames. In Game 1, the participant
played as receiver and the confederate playedrateseBefore the start of the game,
the confederate was trained to deliver one of 8 eétstimuli. In each melodic set,
signals with different contour complexity were mded: 2 high entropy (Shannon
entropy, Entropy=1), 2 low entropy (Entropy=0.81)monotone stimulus (control,
Entropy=0). Each set was randomly assigned to aaleymber (7) of participants. We
expected the participant to learn the associatietween tone sequences and emotions
consistently used by the confederate in Game Gdme 2, the participant played as
sender and the confederate as receiver. The semagdasked to reproduce and transmit
the system of tone sequences learned in the preg@me as they remembered it.

3.2.5.3. Procedure

Fig. 2 (left panel) shows a single trial in signgligames. The sender is privately shown
a facial expression from an actor’s set (e.g., fogec duration). Next, he is expected to
generate an isochronous 5-tone signal from a gdot@nes using a standard keyboard,
to inform the receiver on the state the sendeiskasa. The relation between keyboard
keys and tones was randomized over trials, sodh g&l the sender had to learn anew
the key-to-tone mappin§sUnheard by the receiver, the sender could try eadh
composition of the 5-tone signal at will; the redatbetween keyboard keys and tones
was fixed within a single trial. Visual cues wen@yded on the screen showing the
‘height’ of each tone. The signal was sent to teeeiver, who listened to it via
headphones, and chose, using the numeric keypad)fdhe 5 facial expressions. All
5 expressions were displayed simultaneously on streen; their position was
reshuffled randomly for each trial. Feedback (3d@@tion) was given to both players
simultaneously: the left-hand side of the screewsd the face seen by the sender, and
the right-hand side showed the face chosen byettwiver. For positive feedback, both
faces were displayed in a green frame, while fayatige feedback a red frame was
used. Participants had to play exactly 70 trialGame 1 and 50 trials in Game 2. Each
state (emotion) occurred equally frequently. Theas no reward for speed in a trial or
in the game: coordination was the only reward fatipipants.

3.2.5.4. Data analysis

Our aim was to determine whether MMN peak latenamesamplitudes predict
individual performance and changes in the orgalmaaif tone sequences in signaling
games. The simplicity and formal explicitness ghsiling games allows us to define a

2A partial exception here was the confederate inp@ame 1, see Suppl. Inf. 1.2.1.
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set of intuitive, rigorous measures of similarigtlween two tone sequences (Hamming
distance), learning or recall (coordination, trarssion, innovation), direction of
transmission from sender to receiver or vice ve@symmetry), and structural
modification (entropy and proximity) (Suppl. Fig. 2

3.2.5.5. Signaling measures

Measures of learning and recall were computed uaimgeasure of similarity, the
inverse of the Hamming distance (Hamming, 1986 @&lements compared were the
5 tones (tone distance) or interval directions @mps$ downs) of adjacent tones (contour
distance). A normalized output to [0 1] was givenSiL: S is the number of shared
items and L the length of a sequence. Values ttb$eare associated to similar strings.
Using the Hamming distance, we measured to whatnéxihe signaling system
transmitted by the confederate was actually leaimedhe participant (receiver) in
Game 1 (coordination), and to what extent the @adnt (sender) then reproduced
(transmission) or modified (innovation) that systenGame 2. Formally, coordination
is the extent to which sender and receiver duriam&1 use the same mapping of states
to signals (i.e., the extent to which they shasegaaling system), and is defined as the
mean similarity between the signal used by the elefot a given emotion and the set
of signhals mapped by the participant to the sametiem during the second half of
Game 1, where player responses are more constdrghow fewer errors. It ranges
from 1 (shared signaling system; the participamsuthe same mapping of states to
signals as the confederate, and has thereforesl@#inat mapping) to O (different signals
for every emotion). Transmission was measuredeasdhtour similarity between pairs
of tone sequences for a particular emotion prodweitd greater frequency by the
senders in Game 1 (confederate) and Game 2 (jpanii (between-player measure).
Faithful transmission of signaling systems learice@ame 1 yields values close to 1.
Innovation is the Hamming contour distance betwibersignals acquired during Game
1 and transmitted by the participant during GamdeRoting a particular emotion
(within-player measure). Values close to 1 indi¢chtg a significant number of changes
were introduced in the signaling system by theigaént. If coordination in Game 1 is
imperfect (the signaling system transmitted byatvefederate and the signaling system
learned by the participant do not exactly corresfpotransmission and innovation do
not mirror each other. A measure of asymmetry dugdnordination was given by
subtracting the number of changes introduced instgealing system by the sender
from the number of changes made by the receiverdeti by the total number of
changes (Moreno & Baggio, 2015); it ranges fromtte (sender is modifying the
signaling system more frequently) to -1 (vice virsa
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Entropy

The Shannon Entropy (Shannon 1949) of tone seqadacel of the relative contour
transforms) was used as measure of the complekietodic surface structures:

H(X) = -ZP(xi)log2P (xi)

X is the string of ups and downs (contour smootbinestones (sequence complexity)
and P(xi) is the probability to find item xi in thstring position. A single mean entropy
value was computed for the entire set of sequeranas$,separately for the relative
contour transforms. The absolute difference in meaimopy values was computed
between the two games and used in the correlatinalysis with MMN
latencies/amplitudes.

Proximity

Measures of perceptual proximity were applied te tequences received and
reproduced by the participant (interval distribatianterval compression ratio). The
distribution of unison (0 macrotones), small (12anacrotones) and large intervals (3,
4, 6, 7 or 10 macrotones) was calculated for eathot melodies. The absolute
difference in the frequency of unison, small og&aintervals was computed between
the two games and was used in the correlation sisalyith MMN latencies or
amplitudes. The interval compression ratio (Tiereéwl., 2011) represents a bias in
tone sequences toward smaller intervals. The iaterompression ratio is defined as
the mean absolute interval size (in macrotones) twine sequence randomly shuffled
(n=100), divided by the mean absolute interval sizihe original sequence. Because a
scrambled version of a proximal melody typically harger intervals than the original
(Von Hippel, 2000), larger values for this ratie arssociated to compressed, small-
interval melodies.

3.3. Results

3.3.1. Mismatch negativity

The time-course and topographical distributionhaf ¢ffect elicited by deviant stimuli
are typical of the MMN (Figs. 3-4; Suppl. Figs. R-#ith a frontal maximum between
120 and 240 ms from deviant onset. Statisticakteshfirmed an MMN effect in all

three conditions (Table 1). Interaction effectspupa stronger MMN at 120-240 ms
in the frontal quadrant.
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3.3.2. Asymmetry and coordination

Asymmetry in Game 1 was -1 by design (the confddemaver changed the current
signaling system), and in Game 2 it was negativediffierent from 0 (median=-0.12;
n=18; Z=3.48; p<.001): the sender (participanthgjea his mapping of states to signals
(learned in Game 1, possibly with modificationsysldrequently than the receiver
(confederate). Coordination was different from Oe@han=0.77; n=90, Z=0.86,
p<.001): the tone systems were effectively leachathg the game. These data show a
net flow of information from the sender to the rigeein both games.

3.3.3. Transmission and innovation

Transmission of tone sequences was faithful andfgigntly different from O (contour
distance, median=0.75; n=90, Z=7.61, p<.001), shgwiscarce innovation
(median=0.25; n=90, Z=6.74, p<.001). Using ton¢adise, instead, we observed lower
levels of transmission (median=0.2) and higher wation (median=0.8), reflecting
ease of recall and production of the contours giusaces. This justifies our use of
contour distance as a measure of transmissionngodation in subsequent analyses.

3.3.4. Structural changes

Tone sequences were restructured in the coursedignaling games. The entropy of
tone sequences decreased from Game 1 to 2 (Z=;20603008), more than contour
entropy (Z=-1.835, p=0.06). Both these changesctflhe emergence of smoother
sequences: tones were repeated or varied in stapi.dVedian interval compression
ratio values (Z=-2.577, p=0.01) indicate changestd smaller intervals.

To examine whether ERPs predict participant bedrawi signaling games, we
correlated MMN latencies or amplitudes with behaaligperformance or structural
changes to tone sequences during Game 2. Belowaus bn the latency (120-240 ms)
typical of the MMN (Suppl. Tabs. 1-8).

3.3.5. Neural predictors of learning and transmissin

Fig. 5 (upper panel) shows behavioral measuresdamation, transmission, innovation
accuracy) against MMN peak latencies in the anten@drant. MMN data from this
quadrant only, in the high-entropy condition, weredictive of individual behavior
(Suppl. Tab. 1). Peak latency was negatively cateel with coordination (p<0.004)
and transmission (p<0.01): individuals with shoN#IN peak latencies learned more
efficiently the signaling systems in Game 1, arahsmitted them more faithfully in
Game 2. Shorter MMN latencies also predicted fest@anges to the signaling system
across games (innovation, p<0.01). Moreover, patgkties from the anterior quadrant
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predicted accuracy in Game 1 (p<0.004). In Gameehbserved a positive correlation
with the number of changes introduced in the siggasystem before coordination
occurred, which suggests a greater effort to coatdi for participants with longer
MMN peak latencies (Suppl. Tab. 3). Together, thresalts point to a relation between
longer MMN peak latencies and less accurate or feghful acquisition and
transmission of tonal material.

No correlations in the remaining conditions (andhdyant) were significant
(Suppl. Tabs. 1, 3). Using mean MMN amplitudesralations were weaker and right
lateralized (p<0.05; Suppl. Tabs. 2, 4). No cotretes were found in the 240-360 ms
post-MMN window (Suppl. Tabs. 5-8).

3.3.6. Neural predictors of structural changes

Fig. 5 (lower panel) shows absolute changes inlt@matour smoothness, sequence
complexity) and interval structure (percentagenoélt and large intervals) against peak
latencies in the frontal scalp quadrant. Positiwgatations were found with contour
smoothness (p<0.05), sequence complexity (p<.00d)changes in the percentage of
smaller (p=0.01) and larger intervals (p=0.004)eSéndata reflect a reorganization of
the melodic surface and interval distribution ofjences, mainly introduced by
individuals with longer MMN latencies. In contragtdividuals with shorter MMN
latencies were more conservative: specificallyyttended to maintain the melodic
structures acquired in the first game.

3.3.7. Working memory

Working memory span scores were not predictiveebfdvior or structural changes in
signaling games (all p-values>0.05).

3.4. Discussion

The main finding of the present study is that Hitelividual variability in pre-attentive
processing of tone sequences, as revealed by MNBhdes, predicts subsequent
learning, transmission and structural reorganipatiof signaling systems by
participants. Below we discuss the possible origind implications of this variability
in the context of experimental research on culttreaismission.

3.4.1. Individual differences in MMN latencies

The auditory MMN reflects pre-attentive sensitivityregularities and how accurately
these are encoded as auditory traces (Alain, Ackivoods, 1999; Alain, Cortese, et
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al., 1999). Can the MNN be used to track individiiffierences in auditory processing
capacity? Previous studies have shown correlatiebseen the MNN characteristics
and individual discrimination capability with conepl spectrotemporal patterns
(Naatéanen et al., 1993; Tervaniemi et al., 200Batéinen et al. (1993) showed that
poor auditory discrimination is related to a snraNM&8VIN: a monotonic increase in
MMN amplitude was observed for participants impngvtheir performance over time.
Converging results were obtained with hit-rates adttion times (Kraus et al., 1996;
Menning, Roberts, & Pantev, 2000; Tiitinen, May,irflainen, & Naatanen, 1994;
Tremblay, Kraus, & McGee, 1998) and fMRI (ZatorB§13): e.g., auditory cortex
responses to microtonal intervals (smaller than Western semitone) predicted
individual discrimination of microtonal patternsatérre, Delhommeau, & Zarate,
2012). Overall, these data point to neural predigjpms (not necessarily innate) in
some individuals for processing complex auditoryjeots (Zatorre, 2013).

One possibility is that ERP latencies reflect amiivity strengths in the relevant
networks, while amplitudes are linked to the extehtctive tissue (Baggio, 2012;
Baggio & Hagoort, 2011; Cardenas et al., 2005).sTmight explain why in our
experiment the best predictors were MMN latencies @ot amplitudes. Variation in
MMN latencies may then be related to learning oturaional states of the relevant
cortical networks (Choudhury & Benasich, 2011; Mo& Guan, 2001; Trainor et al.,
2003). Inter-individual differences in temporalegtation, moreover, may be a source
of variation in MMN latencies: temporal integratienused by the auditory system to
track input regularities, create a unified percapimodel (Bregman & Ahad, 1995) and
predict upcoming events. Violations of expectedutagties would then explain the
generation of mismatch-related brain potentialsnér, 2007; Winkler, Denham, et
al., 2009).

Temporal integration is key to create and maingaiditory representations of
the environment (Sussman, Ritter, & Vaughan, 1980people with poor integration
capacity, rapidly presented information, as in expperiment, may limit the accuracy
of the perceptual model, and delay detection ofdé&@ant sound. Sensory memory
might be rapidly overwritten by novel inputs unléss stimuli are not rapidly processed
(Christiansen & Chater, 2016). Although impairmemsapid temporal integration
mechanisms have been reported in special or dimopulations (Bishop, 2007;
Williamson & Stewart, 2010), it is likely that term@l integration abilities occur in a
continuum. Individual differences in MMN charactits are indeed more pronounced
between- than within-individuals (Pekkonen, Rin&eNaatanen, 1995). Collecting
these evidences, we suggest that interindividdtdrénces in MMN latencies observed
here reveal individual constraints in auditory @meging, rather than contextual, or
global, non-functional factors. In addition, if #e low-level mechanisms govern
perceptual information processing (Naatadnen & Wank1999), they may account for
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performance at the behavioral level (Novak, Ritteryaughan, 1992; Tervaniemi,
llvonen, et al., 1997; Tiitinen et al., 1994).

3.4.2. Sequence complexity and behavioral predictio

Demands on temporal integration change with theptexity of the rules violated
(Todd, Myers, Pirillo, & Drysdale, 2010) as well asgth individual differences
(Naatanen & Winkler, 1999). From low- to high epysequences, rules become more
complex and less predictable, increasingly taxtregauditory system. Thus, control and
low entropy melodies (Fujioka et al., 2004; Naata8eWinkler, 1999; van Zuijen,
Sussman, Winkler, Naatanen, & Tervaniemi, 2004)wdiin primitive grouping
mechanisms and ‘top-down schemata’ largely shacedsa individuals of the same
musical culture (Snyder, 2008). Here, differencetemporal integration, reflected by
MMNs, are minimal (van Zuijen et al., 2004). Instegreater individual variation in
ERPs has been shown for complex patterns (Boh,dierhappe, & Pantev, 2011,
Naatanen et al.,, 1993). In this condition, différ@megration capacities may be
reflected at the behavioral level (Naatadnen & Wenkl1999). Consistent with this
notion, only MMN latencies recorded with high-emtyostimuli in our study were
predictive of behavioral performance.

3.4.3. Learning, transmission and modification of gnbolic systems

One key finding here is that learning and transimmsare predicted by the timing of
brain processes: shorter MMN latencies were obdeirvéaithful transmitters; longer

latencies were found in individuals who innovaterenthe artificial tone system. This
agrees with previous findings (Naatdnen et al., 3198chrbger, Naatdnen, &
Paavilainen, 1992; Tervaniemi, Schroger, & Naataaé07). The result that latencies
correlate with learning (coordination) and sucoesgiecall (transmission) provide
additional support to the memory interpretatiothef MMN, up to now addressed using
auditory discrimination tasks (Naatanen, Paavilajiiinne, & Alho, 2007).

Perhaps most interestingly, MMN latencies predi@nges in the structure of
signals: individuals with longer latencies reorgaa the melodic contour and interval
distributions of sequences more often; smootherpaogimal melodic forms became
more frequent from Game 1 to Game 2. Importantlgsé changes follow the Gestalt
principles of auditory perceptual proximity and docontinuation: strings with such
properties are easier to memorize and recall ([@butd012). Previous experimental
studies support the view that cultural systems témslard compressibility and
simplicity (Tamariz & Kirby, 2015; Verhoef et a013) to fit the capability and limits
of human memory (Chater & Vitanyi, 2003). Our wastiows that these pressures can
appear after a single round of learning and trassiom, and suggests that the extent of
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the adaptation of cultural systems toward simptam& may relate to individual
constraints on information processing.

3.4.4. Individual processing constraints and cultual evolution

One leading hypothesis in cultural transmissioraesh is that symbolic systems are
shaped and constrained by properties of the huniadvionain (Christiansen & Chater,
2008). Humans transform information they receiarfrothers, introducing features
which fit general constraints on learning and megnBoyd & Richerson, 1985). These
constraints may be amplified during transmissioakimg the cultural system easier to
acquire, use and transmit (Griffiths, Kalish, & Lawdowsky, 2008; Kirby, 2001; Kirby
et al., 2008; Smith & Kirby, 2008; Verhoef, 2012heir existence has so far been
inferred largely from observations at the populatiievel (Griffiths et al., 2008; Kirby
et al., 2008). Such constraints are often assumdx ttoo small to be observed and
measured in single individuals and, as a resuleuidence has supported this view by
directneural investigations.

Here, we have shown that such constraints can bdesgat the individual level
after only one instance of transmission, leavirginct behavioral and neural traces.
We have shown that the extent of change variesfisigntly across individuals. Our
study provides initial neural evidence for the rofdearning and memory constraints
in the cultural transmission of symbolic systemér{§€liansen & Chater, 2008), and
musical systems in particular (Huron, 2001; Kleem&®85; Sawa, 2002; Trainor,
2015).
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3.5. Figures and tables

Main effects Condition = df p*
Stimulus-type HE 28.11 (1.17) = 0.001
L= 18.39 (1,17) = 0.001
CTRL 1.24 (1.17) 0.28
Temporal Window HE 2954  (181.3092) = 0.001
= 38.79 (1.49,2534) = 0.001
CTRL 28.95 (2.68.4556) = 0.001
Quadrant HE 104.18 (41,2396 = 0.001
L= 100.70 (1542629 = 0.001
CTRL 98.62 (1582695 = 0.001
Two-way interaction
Stimulus-type x Temporal window HE 28.73 (214,8651) = 0.001
[iE 18.57 (237, 40.38) = 0.001
CTRL 36.04 (286, 4864) = 0.001
Stimulus-type x Quadrant HE 17.11 (181,27.49) = 0.001
= 2.04 (1.48, 25.24) 018
CTRL 5.56 (145,2478)  =0.01
Three-way interaction
Stimulus-type x Temporal window x HE 14.89 (321,5470) = 0.001
quadrant )= 417 (4.14,7038) = 0.01
CTRL 15.91 (372,6332) = 0.001

° p-values are Grenhouse-Geisser corrected

Table 1 Results of ANOVA statistics on mean MMN amplituddues in the high entropy (HE), low
entropy (LE) and control conditions (CTRL).

Control Low entropy High entropy
Standard Devian Standard evian levian Standard
51780 ms 51750 ms 81750 ms
- > ol e = =
o o 50 ms. o — —
o = — H i — =
o] [} —-— - -— - [} - : = 4 —
= | 50ms i o -— H -— H - pow | - H - i —
o ————  S—— — o - D H— o — —
o : ] : : D :
[ —— LC —_— c LC ——
450 ms 450 ms 450 ms
Time Time Time

Fig. 1.Schematic illustration of the tone sequences piesdo participants on day 1 of the experiment.
The EEG was recorded while participants listendti¢se sequences. Each sequence consisted of5 tone
with 50 ms duration and 50 ms inter-tone intervats, 450 ms sequence duration. The interstimulus
interval (ISI; the interval between the offsetloé fast tone in one sequence and the onset afshéohe

in the next sequence) was 750 ms. Standard sequefadifferent complexity were used: control

(monotone) sequences, low and high entropy seqaebBeiants were constructed such that the 4th tone
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violated the melodic contour of the standard segedoontour deviant or C-deviant) or the 5th tone
violated the interval between the 4th and 5th tanestandard sequences while preserving melodic
contour (interval deviant or I-deviant). The praam of standards to deviants was 4:1. A blockesigie

was used, where the blocks were randomized acesfisipants.

@ Confederate

9] -

2 ' - = * * ' . ,

& = ) )

. Participant @ @\ Participant
2 2

g * * ) 200 ' . n

o

Confederate

2
0

Fig. 2. Example of a trial from the signaling games (fhel) played by participants on day 2 of the
study. The top and bottom rows show what the seadérreceiver saw on their screens, respectively.
The task for the sender was to compose a 5-tongeseq to be used as a signal of the simple or
compound emotion expressed by the face presentedeoscreen at the start of the trial, and for the
receiver to respond to that signal by choosingfétoe that the sender had seen. The sender and the
receiver converged over trials on a shared mappiisggnals (tone sequences) to meanings (emotions).
Hand symbols indicate when the sender and thevertkad to produce a response. Feedback was given
to both players simultaneously, displaying the faeen by the sender and the face selected by the
receiver in a green frame (matching faces; corat) a red frame (mismatching faces; incorréithe

flows from left to right. A diagram of the signadjryames played by the participant is also shovgi{(ri
panel). The participant played as receiver (R) wittonfederate of the experimenters playing asesend

(S) in Game 1, and roles switched in Game 2.
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Control
Low entropy
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0-120 ms 120-240 ms 240-360 ms

360-480 ms

Fig. 3. Topographic isovoltage maps of grand-average (h<llfference waves between ERPs to

deviants and standards in control, low and highoggt sequences. The mismatch negativity (MMN)

corresponds to the topographic maps shown at 120v#4 0 ms is the onset of the deviant tone (4th or
5th) in a sequence.
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Fig. 4. Grand-average ERPs (n=18) from the frontal midéfeztrode (Fz) in response to the 4th and

5th tones in standard and deviant stimuli in cdntow and high entropy sequences. The waveforms
shown here were low-pass filtered at 30Hz.

86



Coordination Transmission Innovation Accuracy
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Fig. 5. Pearson product-moment correlations (r) betweenNviidak latencies relative to the onset of
the deviant tone (0 ms) in high entropy sequeneesrded from the frontal scalp quadrant on day1 (x
axis), and behavioral (top, orange) and structiimattom, blue) measures from signaling games on day
2 (y-axis). All MMN peaks fall within the 120-240smwindow. See Methods and Suppl. Fig. 1 for further

details on the measures. Each point on a scattéspdoe participant (n=18).

3.6. Supplementary material
1.1. Written instructions to participants

1.1.1.Day 1. During the EEG session, the participant was aséedbtch a silent movie without paying
any attention to the tone sequences played thrthegloudspeakers; the movie was subtitled in Italia
To direct their attention away from the tone segasnwe told participants that there would be goest

about the movie at the end of the session.

1.1.2.Day 2. Prior to the signaling games (SGs) session, thecjpant was informed he would take part

in two successive games, each played in a diffexdat In Game 1, he would be the receiver. He was
asked to try to learn which facial expressions @@ong) corresponded to the 5-tone sequences sent by
the other player (confederate). There was no refaarspeed, either in a trial or in the game. Sashid
coordination was the only reward for participattsGame 2, the participant played as sender. He was

instructed to transmit the tone system acquirg@dame 1, as he remembered it, to the receiver.
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1.2. Confederate behavior

1.2.1.Game 1. The confederate was trained on a particular nmgppi emotions to keys on the keyboard
(instead of tones): in Game 1, he played with nmddeedback (volume set at 0), to prevent him from
altering the tone system based on auditory priasiplr prior knowledge, and from using (in any way)
the ‘seed’ system in Game 2. The confederate veicted to use consistently that mapping throughou

Game 1, regardless of what the participant (recgiveuld do.

1.2.2.Game 2. The confederate played according to the sameawritistructions given to the participant
(receiver) in Game 1, namely, he was instructetiytao learn the tone system as produced by the

participant (sender).
1.3. Ethics

The experiment was conducted according to the iplex of the Helsinki declaration on research
involving human subjects. Participants signed @@miinformed consent sheet to participate in theys
Data were anonymized upon collection by removingeal information. All procedures were approved
by the Ethics Committee of SISSA.
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2 Supplementary figures
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Supplementary Figure 1.Examples of the formal measures used in the staicanalyses of tone
sequences (for additional information, see Methindhe main article).
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Supplementary Figure 2.Topographically-arranged plots (n=18) of stand@tdck) and deviant (red)
ERP waveforms in thkigh entropy condition (all 128 channels). The onset of theéaalittone (0 ms) is
shown as a black vertical bar in each plot. Negaimtages are plotted upward. An MMN is visible at

about 200 ms from the deviant tone onset.
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Supplementary Figure 3.Topographically-arranged plots (n=18) of standé&iedak) and deviant (red)
ERP waveforms in thew entropy condition (all 128 channels). The onset of théaai tone (0 ms) is
shown as a black vertical bar in each plot. Negatimtages are plotted upward. An MMN is visible at

about 200 ms from the deviant tone onset.
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Supplementary Figure 4.Topographically-arranged plots (n=18) of stand&ldak) and deviant (red)
ERP waveforms in theontrol condition (all 128 channels). The onset of théaai tone (0 ms) is shown
as a black vertical bar in each plot. Negativeagds are plotted upward. An MMN is visible at about

200 ms from the deviant tone onset.
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Coordination Transmission Innovation Correct

HD MC MC trials

HE

P -0.27 -0.35 -0.42 -0.28

R -0.30 -0.32 -0.37 -0.26

A -0.68* -0.60° -0.62° -0.64*

L -0.58" -0.51 -0.65 -0.50

LE

P -0.40 -0.40 -0.39 -0.31

R -0.12 -0.12 -0.12 -0.05

A 0.20 0.02 0.01 0.27

L -0.06 -0.003 0.01 -0.04
CTRL

P 0.38 0.18 -0.17 0.51

R 0.31 0.15 -0.15 0.46

A 0.15 0.16 -0.13 0.22

*p=0.01

L 0.23 0.10 -0.08 0.34 . s 0.004

Supplementary Table 1 Pearson product-moment correlationdbetween MMNpeak latencies at 120-
240 ms relative to the onset of the 4th-tone devi@nmng) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation, accuracy)
Coefficients are shown for each scalp quadrant {gvieis posterior, R is right, A is anterior, andsL
left). P-values are Bonferroni corrected &t0.05/12=0.004, where 12 is the number of testsliing

each independent variable.

Sin all cases, the MMN peak fell within the 120-240 ms window. See main article, Fig. 5.
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Coordination Transmission Innovation Correct

HD MC MC trials
HE
p -0.27 -0.18 0.18 -0.26
R -0.62° -0.62 0.53 -0.48
A -0.34 -0.18 0.18 017
L -0.20 -0.11 013 -0.13
LE
p 0.40 0.38 -0.35 0.45
R 0.44 0.47 0.47 0.44
A 0.16 0.26 -0.25 0.17
L 0.18 0.25 -0.23 0.23
CTRL
P 0.25 -0.18 0.16 0.31
R 013 -0.09 0.07 -0.14
A 0.01 0.07 007 -0.05
L -0.10 -0.13 0.11 0.24 p=0.M
*p = 0.004

Supplementary Table 2 Pearson product-moment correlatiorisbietween MMNamplitudes at 120-
240 ms relative to the onset of the 4th-tone dévi@ams) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation, accuracy)
Coefficients are shown for each scalp quadrang (@sterior, R is right, A is anterior, L is lefB-values
are Bonferroni corrected at=0.05/12=0.004.
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SiE SE SE SE ICR ICR Percentage Percentage Percentage Code
C. HE (abs diff) C. LE (abs diff) S. HE (abs diff) S. LE (abs diff) HE (abs diff) LE (abs diff)y  repeated intervals  small intervals  large intervals ~ changes
HE
P 0.06 0.22 0.42 0.02 0.33 0.55 0.09 0.25 0.38 0.35
R 0.33 -0.13 0.64* 0.09 -0.17 0.44 0.06 0.29 0.49 0.26
A 0.50 -0.25 0.69* 0.28 -0.39 0.71* 0.12 0.58 0.63* 0.54°
L 0.20 -0.07 0.49 0.29 -0.43 0.67* 0.23 0.29 0.40 0.28
LE
P 0.33 0.45 0.35 0.31 -0.29 0.21 0.35 0.08 0.31 0.44
R 0.08 0.28 0.29 0.29 -0.37 0.13 0.13 -0.05 0.13 -0.04
A -0.34 0.25 -0.051 -0.07 -0.26 0.001 0.14 -0.20 -0.13 -0.14
L 0.18 0.03 0.15 0.24 0.24 -0.09 0.26 0.05 0.06 0.35
CTRL
P 0.02 0.29 -0.17 -0.05 0.16 -0.48 -0.005 -0.17 -0.13 -0.05
R 0.10 0.46 0.03 0.10 0.11 028 0.11 -0.03 0.05 -0.18
A -0.05 0.1 0.02 0.09 -0.11 -0.25 0.02 0.10 0.24 -0.03
L 0.00 0.40 0.08 0.01 -0.20 -0.31 0.11 0005 0.19 0.07
°p=0.01
*p=0.004

Supplementary Table 3 Pearson product-moment correlations (r) betwebtiNbeak latenciesat 120-
240 ms relative to the onset of the 4th-tone deyj@ams) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andtructural measures (SE is Shannon Entropy, ICR is interval of compi@s
ratio; C. is contour, S. is tone sequence). Caefiis are shown for each scalp quadrant (P is poste

R is right, A is anterior, L is left). P-values d@enferroni corrected at=0.05/12=0.004.
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SE SE SE SE ICR ICR Percentage Percentage Percentage Code
C. HE (abs diffy  C.LE (abs diffy ~S.HE (absdiff)  S.LE (abs diff) HE (abs diff) LE (abs diff) repeated intervals small intervals large intervals  changes
HE
B 0.33 0.12 0.07 0.21 0.15 -0.29 -0.20 0.28 0.02 0.33
R 0.46 0.09 0.36 0.43 0.13 0.07 0.04 0.29 0.15 0.55°
A 0.34 0.26 0.24 0.55 0.30 -0.07 -0.07 0.03 0.35 0.04
L 0.28 0.11 0.24 0.31 0.20 -0.18 -0.20 0.1 0.08 0.05
=
R -0.09 0.01 0.11 -0.04 0.03 0.009 0.007 -0.11 0.05 -0.25
R -0.07 0.26 -0.003 0.13 -0.006 -0.05 -0.08 -0.16 -0.10 -0.48
A 0.21 0.12 0.15 0.007 -0.09 -0.17 0.27 -0.06 0.06 -0.23
L 0.21 0.07 0.23 0.04 -0.02 -0.10 0.21 -0.03 0.14 -0.23
CTRL
P 0.44 -0.06 0.14 0.13 0.006 0.02 -0.45 0.22 0.00 0.30
R 0.35 0.07 0.06 0.06 0.24 0.05 -0.27 -0.001 -0.19 0.04
A 0.26 0.09 0.06 0.03 0.26 -0.04 -0.26 -0.08 -0.14 -0.17
L 0.45 -0.06 0.18 -0.03 0.08 0.04 -0.24 0.05 -0.03 0.02
°p=0.01
*p = 0.004

Supplementary Table 4 Pearson product-moment correlations (r) betwedtNvVamplitudes at 120-

240 ms relative to the onset of the 4th-tone deyi@ms) in high entropy (HE), low entropy (LE) and

control stimuli (CTRL), andtructural measures (SE is Shannon Entropy, ICR is interval of compi@s

ratio; C. is contour, S. is tone sequence). Caefits are shown for each scalp quadrant (P is poste

R is right, A is anterior, L is left). P-values @enferroni corrected at=0.05/12=0.004.
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Coordination Transmission Innovation Correct

HD MC MC trials
&
P 017 -0.31 0.32 -0.15
R -0.06 -0.06 0.05 0.02
A 0.005 -0.04 -0.03 0.05
L -0.18 -0.24 0.25 -0.08
L=
P -0.20 -0.14 0.20 0.12
R 0.13 -0.18 -0.14 0.21
A 0.23 0.29 -0.27 0.34
L 0.08 0.18 -0.14 0.11
CTRL
P -0.17 -0.35 0.36 -0.13
R 0.01 -0.20 0.21 0.04
A 0.06 -0.16 0.11 0.26
L 0.09 -0.11 0.09 0.27 *p=0.01

*p=0.004

Supplementary Table 5 Pearson product-moment correlatiorjsbetween ERPeak latencies at 240-
360 ms relative to the onset of the 4th-tone deyj@ams) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andoehavioral measures (coordination, transmission, innovation, accuracy)
Coefficients are shown for each scalp quadrars @sterior, R is right, A is anterior, L is lef®-values
are Bonferroni corrected at=0.05/12=0.004.
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Coordination Transmission Innovation Correct

HD MC MC trials
imlE
P -0.27 -0.18 0.18 -0.26
R -0.62° -0.52 0.53 -0.48
A -0.34 -0.18 0.18 -0.17
L -0.20 -0.11 O3 -0.13
i
P 0.42 0.40 -0.39 0.44
R 0.49 0.51 -0.52 0.47
A 0.20 0.30 -0.30 0.21
L 0.22 0.27 -0.26 0.25
CTRL
P -0.25 -0.18 0.16 -0.31
R -0.13 -0.09 0.07 -0.14
A -0.01 0.07 -0.07 -0.05 -
°p=0.
- o -0.24
L 0.18 0.13 0.11 p 20,004

Supplementary Table 6 Pearson product-moment correlationsbetween ERRmplitudes at 240-360
ms relative to the onset of the 4th-tone deviamhg)in high entropy (HE), low entropy (LE) and t@h
stimuli (CTRL), and behavioral measures (coordination, transmission, innovation, accuracy)
Coefficients are shown for each scalp quadrarg (@sterior, R is right, A is anterior, L is lef®-values
are Bonferroni corrected at=0.05/12=0.004.
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SE SE SE SE ICR ICR Percentage Percentage Percentage Code

C. HE (abs diffy C.LE (abs diff) S.HE (abs diff) S. LE (abs diff) HE (abs diff)  LE (abs diff) repeated intervals ~ smallintervals  large intervals  changes
HE
P -0.19 0.15 0.14 0.19 -0.17 0.38 0.14 0.12 0.12 -0.008
R -0.12 0.25 0.10 0.41 0.03 0.19 0,27 0.008 -0.07 -0.32
A 0.24 0.25 0.12 0.36 -0.19 0.22 -0.26 -0.06 0.01 -0.27
L 0.03 0.28 0.31 0.43 -0.06 0.44 -0.07 -0.005 0.1 -0.23
i
P 0.17 0.10 0.18 0.41 0.01 0.15 017 0.01 0.08 0.1
R 0.32 0.23 -0.06 0.35 0.21 -0.07 0.001 -0.02 -0.02 -0.04
A -0.32 0.36 -0.20 0.30 0.40 -0.21 0.004 -0.05 -0.06 -0.18
L 0.25 0.31 -0.02 0.44 0.13 -0.12 -0.01 0.03 0.04 -0.041
CTRL
B 0.33 0.18 0.30 0.41 -0.31 0.30 -0.12 0.47 0.36 0.50
R 0.30 0.28 0.25 0.36 -0.27 0.32 -0.12 0.13 0.15 0.15
A 0.22 0.64° 0.20 0.42 -0.08 0.12 0.02 0.006 0.08 -0.09
L 0.15 0.45 0.33 0.46 -0.16 0.20 0.11 0.15 0.30 0.04
°p=001
*ps0.004

Supplementary Table 7 Pearson product-moment correlations (r) betweRR [geak latencies at 240-
360 ms relative to the onset of the 4th-tone deyj@ams) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andtructural measures (SE is Shannon Entropy, ICR is interval of compi@s
ratio; C. is contour, S. is tone sequence). Caefits are shown for each scalp quadrant (P is poste
R is right, A is anterior, L is left). P-values @enferroni corrected at=0.05/12=0.004.
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EE SE SE SE ICR ICR Percentage Percentage Percentage Code
C. HE (abs diff)y C. LE (abs diffy S. HE (abs diff) S. LE (abs diff) HE (abs diff) LE (abs diff) repeated intervals  small intervals large intervals changes
HE
P 0.18 -0.12 -0.29 0.06 0.34 -0.43 -0.20 0.16 -0.21 0.06
R 0.01 -0.25 -0.18 0.18 0.42 -0.39 -0.06 0.04 -0.22 0.14
A -0.1 -0.41 -0.10 0.27 0.53 -0.34 -0.07 -0.20 -0.25 -0.24
L -0.005 -0.25 -0.25 0.07 0.44 -0.43 -0.22 -0.09 -0.26 -0.20
LE
P 0.29 -0.005 (i 0.05 -0.34 0.36 -0.13 -0.08 0.08 =01
R 0.11 0.21 -0.03 0.30 -0.21 0.36 -0.20 -0.07 0.02 -0.29
A -0.25 0.29 0.19 0.08 -0.36 0.11 0.29 0.11 0.29 0.16
L -0.25 0.16 0.30 0.18 -0.47 0.20 0.10 0.10 0.27 0.02
CTRL
P -0.003 -0.07 -0.20 -0.07 0.001 -0.41 -0.48 0.03 -0.06 -0.05
R -0.07 -0.26 -0.22 0.03 0.18 -0.36 -0.28 -0.05 -0.12 -0.23
A -0.15 -0.22 -0.18 0.09 0.24 -0.22 -0.08 -0.17 -0.16 -0.59°
L -0.24 -0.08 -0.09 -0.06 0.05 -0.30 -0.21 -0.01 -0.02 -0.31
°p=0.01
*p = 0.004

Supplementary Table 8 Pearson product-moment correlations (r) betwedtiNVamplitudes at 240-
360 ms relative to the onset of the 4th-tone deévi@dms) in high entropy (HE), low entropy (LE) and
control stimuli (CTRL), andtructural measures (SE is Shannon Entropy, ICR is interval of compi@s
ratio; C. is contour, S. is tone sequence). Cdefiils are shown for each scalp quadrant (P is poste

R is right, A is anterior, L is left). P-values @enferroni corrected at=0.05/12=0.004.
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Abstract

It has been recently proposed that universal reges in human symbolic systems
may emerge in cultural transmission as adaptationgvariant aspects of brain
function. While there is now support from experitamesearch, no study addressed
this hypothesis with neurophysiological methodswHioes symbolic structure and
symbolic behavior reflect the information procegsaapacity and constraints of the
human brain? Can inter-individual differences iformation processing account for
aspects of the kind of variation observed in synebsystems? We addressed these
issues in two independent experiments, focusingmusical rhythm. In the first
experiment we investigated how regular temporaiepas emerge and change in the
course of iterated signaling games, where the vec@ one game becomes the sender
in the next game. In the second study, we combisgphaling games and
electrophysiology in two successive days. On dayelrecorded MMN responses by
participants listening to standard and deviant Bitege temporal sequences. On day 2,
participants learned rhythmical systems from angdiconfederate of the experimenters
in one signaling game, and were asked to transhmt Whey learned by memory in a
successive game. The MMN latency from day 1 predié¢arning, transmission and
temporal regularization of the artificial symbofigstem on day 2. This work supports
the view that cognitive constraints impose regtyamn the symbolic system
transmitted, and links regularity of cultural infieation with constraints on the
functional organization of the human brain. Perhayose interesting, it suggests that
small individual neural biases in the reorganizatdcultural material can be amplified
by cultural transmission to produce universal pagef human culture.
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4.1. Introduction

Music shows a striking diversity across and withirtures, with a multiplicity of
variants for each given musical trait (Nettl, 19BZeszutek, et al., 2012). However, it
also shows deep similarities, with few of thesédrgand variants) widely distributed
across world cultures. Examples are the small piistance between adjacent tones
(named ‘proximity’), and the use of near-equallyaspd beats, or ‘isochronicity’
(Savage et al., 2015). How might we reconcile tistensible contradiction? One recent
proposal (Dehaene & Cohen, 2007) aims at explaisperific universal aspects of
symbolic domains, such as reading and arithmegia,raflection of universal properties
of neural function. Cultural systems, as they ateoduced in human evolutionary
history, ‘invade’ pre-existing neural circuits anglly evolved for a different, but
related, purpose. As the neural circuits accomneotted novel cultural function, they
reorganize themselves while retaining their oribisamputational capacity and
constraints, exerting a powerful influence on theeywhe new function is represented
and recalled. In another influential proposal (Gtieinhsen & Chater, 2008; Deacon,
1997), symbolic systems, in particular languagiéeceproperties of brain structure and
function as a result of adaptation, in the coufseiocessive generations, to the selective
pressures imposed by human information processingtaints. Experimental research
on language, reading and arithmetics, supportsthese hypotheses, with remarkable
examples of brain reorganization found during aakt@acquisition (Hannagan, et al.,
2015; for a review see Dehaene et al., 2015),@ethergence of structure observed in
culturally transmitted artificial languages (Kirkeyal., 2008).

These proposals begin to explain central inva@apects in human culture, or
statistical universals, but they leave the probteEndiversity or variation untouched.
How cultural variants originate at first in a pogtibn? And how the proportion of these
variants changes to produce universal aspectsméhwculture? Our hypothesis is that
differences in brain structure and function aciods/iduals can manifest in differences
in cultural behavior, which may spread in the pagioh via cultural transmission
mechanisms, enabling universal patterns found lii@ symbolic systems. This view
has recently found some support by cultural evolutesearch. In their work, Dediu &
Ladd (2007) show that population frequencies of innman genedicrocephalinand
ASPM are reliably associated to the presence (or abtjnguistic tones in that
population. The author’s proposal is that allehciants of the two genes may determine
small biases at individual level in the processing acquisition of linguistic tones. This
is not enough to manifest their phenotypic effesiisce tonal and non-tonal language
can be acquired by people with or without theseegehese variants need to be
amplified by cultural transmission across generati(Kirby et al., 2008) to produce
large-scale population patterns, here the pres@rcabsence) of a tonal language. In
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another study, Lumaca and Baggio (2016), showedrtavidual differences in neural
information processing, revealed by an index ofitaugl processing efficiency, the
mismatch-negativity (or MMN) (Naatanen, 1978), pceed to what extent individuals
learned, transmitted and reorganized a simple siimbgstem with signals (artificial
tone sequences) associated with meanings. Thesstidies (Dediu & Ladd, 2007;
Lumaca & Baggio, 2016) suggest a possible connetttween neural variability and
universal properties of cultural systems.

Here, we address this hypothesis in the laborateithh a focus on musical
rhythms: (1) we anchor individual neural varialyilin information processing with
small cognitive biases in the acquisition, transimis and reorganization of complex
temporal patterns; and (2) we examine whether @llttansmission can amplify these
biases, leading to the emergence of an universalgpty of musical rhythms, namely
isochronicity (Fitch, 2016). We did so in two inéeplent studies. We first tested
whether isochrony evolves over generations, i.bether signals tend to become more
regular rhythmically, possibly to facilitate retemt, recall and transmission in the
diffusion chains. Next, we examined whether indixbvariation in neural information
processing, revealed by ERPs, predicts variatiaultural behavior: specifically, how
well participants learn the signal system, howtfaily they re-transmit it, and what
kind of structural modifications they introducetire process.

In the first study, we usaulti-generational signaling gamé¢sIGSGs) (Lewis,
1969; Skyrms, 2010; Moreno & Baggio, 2015; Nowakl &aggio 2016), that is,
signaling games played iteratively in diffusion etsa(Esper, 1925; Bartlett, 1932),
where one game, played by a sender and a receoregsponds to a generation. Players
must converge on a mapping of signals (equiton@oeah patterns) to meanings (here,
simple and compound emotions),arde via iterated signaling rounds (Fig. 1). The
receiver in each game becomes the sender in thegame, which he will play with a
new participant in the diffusion chain (a receivai)is process is repeated until the end
of a chain (9 generations). Seeding is used taaiizié the chains with controlled
material (Whiten et al., 2007; Flynn & Whiten, 2008/e measured code changes
across generations in timing regulari8h@nnon Entrogyand fidelity of transmission
(transmissiorandinnovatior). We assessed the direction of information flowhiains
using two indexestole asymmetryand coordination(Moreno & Baggio, 2015) (see
Methods). Our aim was to determine whether toneuesecps, denoting specific
meanings, would be gradually regularized by suceeggenerations.

In the second study, we use two approaches ovesaeessive days (Lumaca
and Baggio 2016): (i) a reduced version of MGSG3 @i an event-related potential
(ERP) experiment aimed at identifying a neural rearf processing efficiency for
structured tone sequences. In the reduced versibhGSGs each individual played
two signaling games. In the first game, the submaied as the receiver with a

104



confederate of the experimenters as the senderwandasked to learn seed code
consisting of given associations of tone sequeandsneanings (as in Study 1). In the
second game, the participant is asked to retrartbiaitcode to the receiver. We first
measured behavioral performance: individual lea@niacores doordinatior),
transmission fidelity tfansmissionandinnovatior), and accuracy in the transmission
of the code over trialxénsistency We computed changes in time regularégt(opy
between the seed and the reproduced code. Nettte@®cond day, as a neural marker
of processing capacity, we used the mismatch negatiMMN). The MMN is a
negative ERP component peaking between 100 andh8Zfom the onset ofdeviant
(i.e., infrequent) event in a train sfandardstimuli. The MMN has been often used in
the past as neural marker of auditory pattern @msing efficiency (Naatanen et al.,
1993; Tervaniemi et al., 2001; Alain et al., 19@nttselig et al., 2004; Lumaca &
Baggio, 2016). We tested whether individual differes in auditory processing, as
revealed by MMN peak latencies and amplitudes dembon Day 1, predict behavioral
performance and regularization of tone sequencaggimaling games on Day 2. The
main contribution of this study is to introducebeit with a simplified model, a first
experimental link between individual differencesthe functional organization of
sensory systems and universal properties of musiaatture.

4.2. Methods

4.2.1. Experiment 1

4.2.1.1. Participants

Sixty-five volunteers (1 confederate) participatedExperiment 1 (33 female, mean
age 24.94). All had normal hearing, with no formalsical training. Upon arrival to
the lab, participants were informed that they wqalldy a game at a computer terminal
with a partner, as described by written instruci¢8uppl. Inf. 1.1). Participants were
organized in 8 transmission chains with 9 genenateach (the confederate played as
first sender in all chains).

4.2.1.2. Stimuli

The statesin signaling games were 5 emotions:b&sic (joy, peace, sadness), 2
compound (peace+joy, peace+sadness), shown as facial expnes Compound
emotions were produced first by dividing up basiéon faces in two regionspper
andlower face(Ekman & Friesen, 2003), then by combining theardgpce features of
peace with the lower face features of joy (peacg+dmd sadness (peace+sadness). In
compositionality analyses, the upper face was caegelvariantsopenor closedeyes;
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the lower face was coded as 3 variants: mouth esupe straightor down Prior to the
start of the games, participants were trained $o@ate a facial expression to a simple
or compound emotion, in 3 blocks of increasing claxipy. In the first and second
blocks, respectively, facial expressions for simpled compound emotions were
presented on the screen to the participant. Thecipant was asked to learn the
mapping between facial expressions and emotionkcts® one among the
orthographical options (numerical digit 1 to 5) ggeted on the screen. A feedback
followed, showing to the participant the correcswar. After 4 correct responses
participants moved to the test, where simple amdpound emotions were randomly
presented. This time, no feedback followed. Sigmalsdenoting the emotions were 4-
note rhythms of 2 sec duration, each denoting #ereit state. Sounds were drum
timbres of 100-ms duration (5-ms fade in-out) tgobaduced by participants using one
predefined key on the numeric keypad. To aid peiaemf correct meter, the signal
was reproduced twice and delivered through steeadphones at 80 dB.

4.2.1.3. Procedure

Signaling games were played in an experimental rasimg two computer terminals
facing each other. Sender and receiver were prdwdth a computer keyboard and
stereo headphones. Roles were maintained fixechgl@wach game. At the end of a
game, the receiver (generatiopbecame the sender and played with a new receiver
(generatiom+1). The sender was now instructed to transmit dkftdly as possible
the code learned in the previous game. Thus, asiifi chain of 9 generations (8
games) was constructed. Participants were nevavedl to communicate verbally or
otherwise besides the signaling game itself. TipeBrmenter was always present in the
testing room. Fig. 1 shows the structure of a.tliak sender is privately shown a facial
expression (2 sec), and sends a rhythmic signaltoignthat emotion to the receiver,
composing a 4-note sequence (with the exceptiahefirst sender of a chain, who
didn’t need to compose the signals by himself;isdew). Unheard by the receiver, the
sender could try a combination of beats at wiitehing to the final beat sequence
played twice (8 beats; 4 sec) via headphones. Bmglgignals of the correct duration
(max 2 sec) was required to proceed in the ganmtifthe signal was automatically
rejected, and had to be composed anew. The sigastielivered to the receiver, who
listened to it via headphones (repeated twice: @). sEhe receiver responded by
selecting among the 5 facial expressions presemrtetthe screen the one the sender
might have seen. The order of facial expressions wadomized across trials.
Feedback (2 sec) was then shown simultaneoushetplayers, showing the face the
sender had seen and the one that the receivernoserc A trial is correct if the two
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expressions match. The game ended at 70 trialf taa@l expression was randomly
presented 14 times in each session, twice evetyd® and never in sequence.

We designed 4 signal sets to initialize the 8 tmaasion chains (oseeding
material see Suppl. Tab. 1.3 and Suppl. Fig. 1.4.1): 8 gdtains 1-4) withhigh-
syncopated stimuli (HS; syncopation, M=2; metrimpdexity, M=2.95, SEM=+0.26),

2 sets (chains 5-8) witlow-syncopated stimuli (LS; syncopation, M=1; metric
complexity, M=1.96, SEM=+0.32). The following paraters were matched across
signal sets: regularity (Shannon entropy=1.5, rdngg regularity on rhythmic contour
(Entropy = 0.91, range 0:1.58) and compressiomgtinmic contour (within-set rhythm
similarity, M=0.66, range 0:1). See below for infation on these measures. In each
set of signals, the stimuli varied in the type oktntal categories: duple (16
subdivisions per metrical cycle; 2 rhythms), triglE2 subdivisions; 2 rhythms),
irregular meters (15 subdivisions; 1 rhythm). Temyas always 120 beat per minutes
(bpm). A confederategéneration 1first sender in each chain) was instructed tovdel
the rhythmic stimuli to the partner (receivegeneration 2 For each trial, the
confederate was presented on the screen withal &agiression, and, below the picture,
a digit corresponding to the key to press on themaer keyboard (1 to 5). Each digit
was mapped to one of the 5 four-note rhythm padtere., the one denoting the
expression observed at the beginning of the trial.

4.2.1.4. Data analysis

We aimed to describe the evolution of rhythmic tegties in the course of
transmission within diffusion chains. The main degent variable wasegularity
(measured by entropy) in linear mixed-effects regia models (Winter & Wieling,
2016) in R Studio (R Studio Team, 2015) ame4 (Bates et al., 2012). We modeled
dependent variableg)(as a function of Generation and Syncopation ¢fieiects) with
random intercepts (by-chain variation in y) andd@m slopes for generation (by-chain
variation in the slope of generation). No differepavere observed between models
with (i.e., the full model) and without Syncopatjavhich was removed from the final
analysis £%(1)=0.31, p=0.57). The opposite pattern was instaasbrved excluding
Generation. Specifically, only the likelihood ratest between the full model and the
reduced model without Generation resulted sigmificgy?(1)=9.55, p=.001).
Generation is the factor that most explains tha daten the model. This justifies our
use of a model where Generation is the only fixédce factor. There were no
deviations from homoscedasticity or normality. Wastéd changes over time in
regularity by using likelihood ratio tests for thiged effect included in the model,
against a null model (fixed effect excluded). Nargmetric Wilcoxon signed-rank
tests (Siegel & Castellan, 1988) were used to coengi@ta points between generations.
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In addition, a baseline measure of change wasdedureflecting how codes would
evolve by chance (dotted line in the figures). fiig purpose the original dataset of the
interonset intervals was randomly shuffled (n=100@s): a one-sample Wilcoxon test
was performed between codes produced in the lasrgigon and the median baseline
value. To test whether signaling games can capheeultural transmission process,
independent of the initial levels of syncopatione wneasuredole asymmetry
coordination, transmissioandinnovation(Moreno & Baggio, 2015; Nowak & Baggio,
2016) pooling the two conditions.

First, to account for temporal imprecisions introed by players, and to
facilitate a comparison, all signals produced warearly normalizedto match the
original tempo (120 bpm) amguiantizedon the best fitting metrical grid. Normalized
rhythms (N) were computed by multiplying the pattef inter-onset intervals (101s) of
the played rhythm with a tempo factor. This fast@s calculated as the ratio between
the time of the last onset in the played rhythmg/j the time of the last onset in the
rhythm of the seeding material (S) denoting the es@motion:N = 10Is * (S/P). A
quantized signal was then produced by roundingoumdwn) the normalized played
onsets to the nearest onset on the best fittingeakygrid (binary, ternary or quinary),
i.e., the one that minimized the sum of squarethdce with the normalized played
onsets.

Changes in theegularity of signals were measured using Shannon Entropy
(Shannon, 1949) on time intervals. Lower scoresaaseciated to isochronous signals.
Other measuressyncopation metric complexitycompressiorand compositionality
are described in Suppl. Inf. 1.2

We measured thgimilarity between pairs of rhythms using the inverse of the
normalized Hamming distance (Hamming, 1986). Thenatized Hamming distance
is defined as the number of substitutions requioethatch two strings of equal length,
divided the number of elements in the stringshis study, strings were 4 inter-onset
intervals and relative contour transformations: Hegies ofups (larger intervals),
constants and downs (shorter intervals), independent of their exact grhythmic
contour similarity. The inter-onset interval is known as the tempgarameter
encoded in tone sequences (Schulze, 1989; Vos,sMatean Kruysbergen, 1995),
while the relative contour is the form of tempomaanization most recognized
(Dowling & Harwood, 1986).

Coordinationindicates the fraction of the code shared by thepiayers at the
end of the session. Wwas measured as the mean similarity of rhythms titemo
corresponding states and used with major frequentlye second half of a game by
sender and receiver (i.e., when responses by glayermore consistent and show less
random errors). Similarly, we computed the coortiameindex for the relative rhythmic
contours. Values close to 1 denote a shared signajistem.
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One-sample Wilcoxon were used to test the null thgss that coordination is not
significantly different from 0.

Then, we measurewle asymmetr§A) between senders and receivers (Selten
& Warglien, 2007). This measure indicates the déiftial effort carried out by the two
players to achieve coordination on the signal-&tesinappings. It was measured as the
difference in the number of code changes introdumedender (S) minus the ones of
the receiver (R), divided by the total number oflechangesA=(S-R)/(S+R). With
negative asymmetry (the receiver changes his codee raften than the sender),
information flows from sender to receiver. Moremm @aggio (2015) show that this
condition is achieved if player roles are fixed idgrthe signaling games. In this
condition, signaling games become a viable modetoafe transmission (Nowak &
Baggio, 2016). One-sample Wilcoxon tests were usdeést the null hypothesis that
mean role asymmetry is not significantly differéam zero.

Transmissionndicates how faithful the transmission of the sigmg system is
between two successive generations. It was meaasrii mean similarity of rhythms
(or their contour transforms) denoting correspogdstiates, produced with greater
frequency in the second half of the game by sermfegsneratiom and generation+1
(between-player measuré)novationindicates to what extent a code changed between
two successive games by the same players (witlayeplmeasure). It is measured as
the mean normalized Hamming distance between cledgsed by the receiver in
generatiom and codes reproduced by the same person playisgnaer in generation
n+1. Only when coordination is equal to 1, innovatamd transmission mirror each
other. Changes in transmission and innovation gesrerations were tested using a
linear mixed-effects regression model, with meamgmission and innovation values
as dependent variables respectively.

4.2.2. Experiment 2

4.2.2.1. Participants

Seventeen volunteers were recruited for the EE@ystiil females; mean age = 25.9
y, SD = 5.6; 5 additional participants were excllideie to excessive EEG artifacts).
To avoid effects of musical training on auditoryopessing (Vuust et al. 2009),
musically naive subjects were enrolled. All pafants signed a written information
consent sheet (Suppl. Inf. 2.1).

4.2.2.2. Design

Each subject participated in 2 experimental sesston2 successive days (24h apart).
On day 1 the EEG session took place. The EEG wawded in three blocks with
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rhythmic patterns at 3 different levels of regulafsee section 4.2.2.3.1) delivered by
loudspeakers (80 dB). In the meanwhile, the subjest watching a subtitled silent
movie centered on the screen (8x11 frame). Subjeete specifically instructed to
ignore the sounds coming from the loudspeaker aydagtention to the movie. They
were also asked to minimize movements, includirggragvements and blinks. On day
2, the subject played 2 signaling games with a exerfate, the first a®ceiver the
second asender.In game 1 the participant was instructed to leaangnaling system
from a confederate. In game 2, the participant (semder) was instructed to re-transmit
the signaling system to the confederate as thetyreegembered it (how the receiver).
Sender and receiver roles were fixed during theisesThe signaling system consisted
of 5 four-note rhythms denoting affective meanir(@ssimple and 2 compound
emotions). Two rhythms were high-entropic (H=2 hig&slow-entropic (H=1 bits) and
1 control (H=0 bits; isochronous). Metric subdiaiss (1/16), duration (2 sec), tempo
(120 bpm) and syncopation levels (0) were matcleensa stimuli. Three sets of signals
with these parameters were built and counterbathaceoss participants.

4.2.2.3. Day 1EEG

4.2.2.3.1. Stimuli

The stimuli consisted of sine-waves equitone rhyhoh 5 beats, presented in 3
recording sessions. The order of sessions or dondithigh-entropy, H=2 bits, low-
entropy, H=1 bits, and control, H=0 bits) was ceub&lanced across participants. The
Shannon Entropy of the stimuli indicates the averagnimum information (in bits)
necessary to encode the rhythmical sequence, anddps a reliable measure of
rhythmical complexity. Low entropic rhythmic seqees can be encoded in fewer
chunks of information, and are easier to learn &tnde in memory. Each session was
approximately 15 min long, and consisted of 4 bsoakth 100 stimuli each, for a total
of 1200 stimuli per session. Fig. 3 shows the &s$ypf stimuli used in each session: 1
standard and 2 deviants. In each block of the @@s80% were standard stimuli 1300-
ms long with 700-ms of interstimulus interval (I$hjgh- and low-entropic stimuli) or
1600-ms long with 900-ms of ISI (control stimul)n 10% of the trials, early deviants
were presented in which the fourth beat was shi88@-ms earlier, altering the
rhythmic contour¢ontour deviant On the remaining 10% of trials, the fourth b&as
anticipated by 100-ms, producing a deviant thadgmeed the original rhythmic contour
(timing deviant. Standards and deviants were presented in psanafom order, with
the only constraint that two deviants could notusda a row. The equitone rhythms
within each block were randomly transposed at tdréerent fundamental frequencies
(315.0 Hz, 397 Hz and 500 Hz).

110



4.2.2.3.2. EEG recording and processing

EEG data was recorded at a sampling rate of 100@dtz an EEG actiCap (Brain
Products) with 64 Ag-AgCl electrodes arranged im ititernational 10-20 system and
referenced to FCz. EEG data were offline downsathfues00 Hz, bandpass filtered
between 0.1 and 30 Hz (roll-off = 12 dB/octave)ngsihe Matlab toolboxes ERPIlab
(Lopez-Calderon and Luck 2014) and EEGIlab (Deloame& Makeig 2004). The EEG
was re-referenced offline to the average of thetomhghannels and then segmented
into 700-ms epochs (-100 to 600 ms relative todhset of the fourth beat). EEG
responses exceeding iV (peak-to-peak; moving window = 200 ms) in any @po
were considered artifacts and excluded from theaae

4.2.2.3.3. ERP data analysis

The remaining epochs were averaged separatelydohn eondition (standard and
deviants), and deviant-standard difference wava® wemputed for each participant
by subtracting standard from deviant ERPs. Thiscgulare isolates the mismatch
negativity (MMN) component, and possibly other effg in ERPs. The MMN is a
negative ERP component fronto-centrally distribigad peaking between 100 and 220
ms in response to an auditory mismatch (Naataneh, t978).

First, we tested the presence of an MMN using a-Wfeay repeated measures
ANOVA with mean MMN amplitude as dependent variahleach of 3 conditions, and
4 factors: Stimulus Type (standard or deviant), peral Window (4 levels), Quadrant
(4 levels) and, nested on the latter, Electrodel (@¥els). The Greenhouse-Geisser
correction was applied when appropriate. Wilcoxigned-rank tests were used in post-
hoc analyses. The 4 scalp quadrants were: antex@mtral left, central right and
posterior (9 channels each). Four 80-ms time wirgl®x320) were selected according
to the timing characteristics of the MMN and aftespection of the ERP data.

Then, we tested whether the MMN recorded on daguldcpredict learning,
transmission and reorganization of signaling system day 2. To this purpose, we
correlated individual peak latencies or amplitudeEMMN difference waves obtained
in each time window/quadrant, with different measuof behavior in signaling games
(see below). Based on our previous work (Lumacaagdso, 2016) we expected that
ERPs with the timing and topographical charactessof the MMN be consistently
predictive of behavioral measures.
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4.2.2.4. Day 2Signaling games

4.2.2.4.1. Stimuli

Signals and states were the same as in Experimétdlever, in Experiment 2 the

signals were matched in metric subdivision (bind;subdivisions) and syncopation
(S=0). In each set of signals, stimuli varied igutarity: 2 rhythms were high-entropic
(H=2 bits), 2 low-entropic (H=1 bits) and 1 isochons (H=0 bits). Sounds were
produced as sine-waves at a fundamental frequdr&0cHz. Three set of stimuli with

these properties were produced and counterbalaacexss participants as starting
material in game 1.

4.2.2.4.2. Procedure

The trial design was the same as in Experimenhg.duration of game 1 was fixed at
70 trials. Game 2 ended when 3 correct trialstiovafor each emotion was achieved,
with a limit of 50 trials (mean=33.05; SD=5.75).

4.2.2.4.3. Data analysis

We tested whether MMN amplitudes or latencies mtedi individual learning,
transmission and regularization of signaling systeifhe same procedureeripo
normalization and quantization and formal measures used in Experiment 1
(asymmetrytransmissioninnovationandregularity) were applied to the set of signals
in Experiment 2. Only here, a more sensitive measiicoordination was computed
on the data (Lumaca & Baggio, 2016). Coordinatimere defined as the mean contour
similarity between the signal used by the confeigdi@ a given emotion and the set of
signals used by the participant for the same ematioing the second half of the game
1, where player responses are more consistentdditi@n, the consistencyof a
participant in sending signals in game 2 was cosgpas the mean similarity between
contours of rhythms produced for each given emotalues close to 1 indicate high
consistency: signals to state associations do mmtge during a game. We computed
Pearson-product moment correlationg between behavior (coordination, trans-
mission, innovation, consistency) and structuraingfes across games (regularity), and
MMN parameters.
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4.3. Results

4.3.1. Result Experiment 1

Fig. 2 shows entropy changes across generatioliselfood ratio test of the reduced
model against the null model reveals a significenehd of decreasing entropy
(x*(1)=9.45, p=.002). This is supported by a signiftcdifference in entropy between
the first and the last generations (Wilcoxon sigratk test, p=0.01). This indicates
that the initial rhythmic material was regularizeder time. Moreover, a significant
difference in entropy was observed between thedeseration and median baseline
levels (one sample Wilcoxon=p005). This suggests that changes in entropy are no
random. We did not observe any significant predéecteffects of generation or
significant differences from baseline values fdress structural measuresyicopation
metric complexitycompressiomandcompositionality, that remained constant over time
(Suppl. Figs. 1.4.2.-1.4.5).

Asymmetrywas negative and significantly different from 0e@hian=-0.13,
n=64, Z=-6.957, p<0.001): receivers adjusted theppings more often than senders
did during coordinationCoordination (on rhythmic contours) was also significantly
different from 0 (median=0.51,n=64+6.955,p<0.001): most of the code was shared
between players at the end of each session. Ndisat changes over generations
were found for contoutransmissiorandinnovation comparing the reduced and null
models (transmission?(1)=0.005,p=0.93; innovationy?(1)=0.62, p=0.42). The high
levels of transmission observed in generation 26, SD=0.11) were maintained
throughout the diffusion chain, until the last ga(ive=0.67, SD=0.19). We observed
similar results for the low values ofnovation(G2, M=0.45, SD=0.20; g8, M=0.35,
SD=0.31). The high values of transmission and tive Ievels of innovation suggest
that most of the code was transmitted from one rgio@ to the next, and that only a
small fraction of it was changed by participantewlhhey played the game as senders.
When we used the same metrics for rhythmic codés Mils values, we observed a
low coordination value, significantly different fro0 (median=0.24, n=64&=6.955,
p<0.001), and no significant changes either in gmagsion or in innovation
(transmissiony?(1)=0.14,p=0.78; innovationy?(1)=0.73, p=0.40).

4.3.2. Result Experiment 2

4.3.2.1. Signaling games

Asymmetry during game 2 was negative and diffefeaxh 0 (one sample Wilcoxon,
median=-0.05, n=17, Z=-3.18<.001). Coordination was also different from 0 (one
sample Wilcoxon, median=0.91, n=17, Z=4.¢%.001). These data indicate that
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receivers adjusted their mappings more often tlegndeys, and that learning of the
codes occurred during game 1.

Transmissiorof rhythms was high and significantly differentrind® (taken on
rhythm contours; one sample Wilcoxon, median=071%h Z=3.62,p<.001) with
scarce innovation (one sample Wilcoxon, median=0:2,7, Z=3.34, p.001). An
opposite pattern was observed using the Hammingratie of inter-onset intervals, with
low levels of transmission (0.35) and high levelsrmovation (0.7). These results
highlight the privileged status of rhythmic contamitemporal perception and memory,
and at the same time, they suggest that interamsgval sequences are not a reliable
measure of rhythmic learning. This pattern of rssyuistifies our use of rhythmic
contour in subsequent analysis, where we are tryingelate reliable indexes of
rhythmic learning with indexes of neural informatiprocessing capabilities.

Finally, we observed a consistent reorganizatiothef structure of signaling
systems by the participants. The entropy of theaggchanged significantly between
game 1 and 2 (Wilcoxon signed-rank test, Z=3@8001). We observed an increase
of entropy for low-entropic rhythms (Wilcoxon sigheank test, median=0.5, Z=-3.64,
p<.001), with no significant changes for isochronatiswuli (Wilcoxon signed-rank
test, median=0, Z=-1.8%<.001). A different pattern of results was obserf@dthe
high-entropic rhythms: entropy significantly deged between the 2 games (Wilcoxon
signed-rank test, median=0.25, Z=-3.4986,001).

4.3.2.2. MMN

Timing and topographical distribution of the evesliated potential elicited by deviants
are consistent with the MMN (Figs. 4-5). Resultth@ ANOVA and post-hoc analyses
on interaction effects show that the largest effgas in the central-left quadrant
between 160 and 240 ms in all conditions (Table 1).

We further examined whether ERPs recorded on dpyedicted participant
behavior in signaling games on day 2. To this psepwe correlated MMN amplitudes
and latencies with signaling measures and chamgébe iregularity of signals between
the two games, as reported above. We focus orethteat left quadrant at 160-240 ms
from the deviant onset, which showed the stronffects in the previous analysis.

4.3.2.3. Neural predictors

Fig. 6 shows correlations between the MMN peaknlgiess (160-240 ms) from the
central left quadrant and behavioratogrdination, transmission, innovation,
consistencyand structural measureedularity) (see also Suppl. Tabs. 2.3.1-2.3.2).
The MMN peak latency was negatively correlated watbordination (p=.006),
transmissior(p<.001) andconsistencyp=.005), and positively related withnovation
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(p=.007): players with shorter MMN peak latencies tshdo learn and re-transmit
more efficiently the signaling system than playeith longer peak latencies.

Changes in theegularity of signaling systems were also predicted by MMN
peak latencies. Positive correlations were founth wilean absolute changes in the
entropy of signaling systems<®07) and mean changes of high-entropic signals
(p=.005). These data reflect a general regulagnatf the code, mainly introduced by
individuals with longer peak latencies. The sandividuals were found to be most
responsible for the regularization of highly irréusignals. No correlations were found
in other conditions (and quadrants) (Suppl. Tal&122.3.2). Moreover, no significant
correlations were found using MMN amplitudes (Supjlbs. 2.3.3-2.3.4). We did not
observe any significant correlation (peak latencgraplitude) in the 240-320 ms post-
MMN window (Suppl. Tabs. 2.3.5-2.3.8).

4.4. Discussion

We examined the link between cultural and neurabidity in the temporal domain.
We demonstrate that near-periodic rhythms ariseggimaling systems when these are
transmitted across generation of learners via Smmaounds. Then, we show that
learning, transmission and temporal regularizatadntone sequences by single
individuals relate to individual (pre-attentiveJanmation processing capabilities. This
result supports and extends the previous findiygd.bmaca and Baggio 2016) on the
temporal dimension. Below we discuss the implicabbthese findings on the broader
context of cultural evolution.

4.4.1. The cultural evolution of isochronicity in he laboratory

Rhythmical structure implies large regularity anedictability of temporal events
(Huron, 2006; Levitin, Chordia, & Menon, 2012; Rat2010; Vuust et al., 2009).
Diffusion chains studies have shown that regulantgultural symbolic systems, such
as language grammar and color terminology (e.ghyet al., 2008; Xu, Dowman, &
Griffiths, 2013), and other systems (e.g., Kal{shffith, & Lewandowsky, 2007), may
reflect universal principles of cognition and peten. In this regard, constraints on
temporal processing and encoding, such as memagesgorocessing time, and
perceptual categorization (Drake & Bertrand, 20@ight be responsible for the origins
of temporal regularity in music (Merker et al., 3)Trehub, 2015). Irregular rhythmic
patterns are perceived as regular if their timerirdls remain within certain tolerance
windows. As a result, complex durations ratios @:32:5) are perceptually reduced
onto simpler interval ratios (1:1, 1:2, or 1:3)ig &lso facilitates human memory, which
must retain and processe a lower number of intexatglgories (three or four) (Fraisse,
1946; Pablos Martin et al., 2007; Povel, 1981). da¢ed episodes of perceptual
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categorization and memory processes, during cllttaasmission, and the rhythmic
sequences are expected to become more regulatimeeiThe progressive decrease of
rhythmic entropy found in the first study suppdhis hypothesis. In our study, cultural
information is progressively transformed or distdrtowards rhythmic sets of fewer (1
or 2) durational categories, i.e., more regulathimjc set. These interval categories are
widely distributed across the musical cultures o tvorld (Fraisse, 1956, 1982).
Similar findings were obtained Ravignani et al. 18D using a different model of
cultural transmission, thigerated learning(Kirby et al., 2008). In Ravignani et al.
(2016), a participant (or experimental generatiomal there instructed to learn and
reproduce a set of random computer-generated psttey using a drumstick and an
electronic pad. The output produced was stored oanaputer device, and used by
another participant (the next generation) as tngininput. The iteration of this
procedure allowed the experimenters to observeggdsaf the rhythmic patterns over
time (i.e., over generations). As a result, thesttepns increased in regularities. The
authors observed the emergence of a smaller shirafion ratios and regular timing
(isochronicity). The conceptual reproducibility thfis result supports the view that
temporal regularity in music may have arisen byneoaical processing principles
(Chater & Vitanyi, 2003), not necessarily specific music (Cornish et al., 2013).
Temporal regularity is a design feature of museryvtypical of ensemble and dance
around the world. In these contexts, multiple indlials must coordinate their listening
and actions to precise events in time, and, becaliflgat, some predictable tempo
becomes invaluable. This raised the hypothesisisbahronicity may be a byproduct
of pressures for synchronization between differemdividuals during group
performance (Fitch, 2012). Savage et al. (2015ndathat traditions with isochronous
beat, also tend to have group performances, a rgailveelationship that supports the
idea by Fitch (2012). The results of our study,hwiite support of Ravignani et al.
(2016), add a new ingredient on the list of theapué mechanisms at the origins of this
feature. Cognitive limits on cultural transmissiam,addition to social pressures for
synchronization (Cornish et al., 2013; Cross et 2013; Fitch, 2012), might be a
driving force behind the emergence of temporal lagy in musical systems.

4.4.2. A neurophysiological index of individual costraints on temporal processing

The auditory MMN reflects the brain’s automaticetgton of deviations from regular
representations, and how accurately these repedserd are encoded in memory
(Alain, Achim, et al., 1999; Alain, Cortese, et,a999; Winkler, 2007; Winkler,

Denham, et al., 2009). The MMN found here provifigther evidence that temporal
structure is one of the elements encoded in aydpoedictive models (e.g., Ford &
Hillyard, 1981; Geiser, Ziegler, Jancke, & Meydd02; Kujala et al., 2001; Port, 1991,
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Sable, Gratton, & Fabiani, 2003; Vuust et al., 2088nkler & Schrdger, 1995). Can

the MMN be used as individual marker of (auditamfnporal processing efficiency?
Interindividual variability in brain structure arfdnction has been shown to affect
auditory processing mechanisms (see Zatorre, 2003 freview). Previous studies
reported correlations between MMN characteristied discrimination accuracy on

sound deviations on complex spectro-temporal patée.g., Baldeweg, Richardson,
Watkins, Foale, & Gruzelier, 1999; Lang et al., 398laatanen et al., 1993; Sams,
Paavilainen, Alho, & Naatanen, 1985; Tervaniermalet2001). Similar findings were

reported in the temporal domain: larger amplitude earlier latencies reflect a better
and faster detection of temporal deviations froangard sequences (Kujala et al.,
2001; Ladinig, Honing, Haaden, & Winkler, 2009; \famiemi, llvonen, et al., 1997).

Together, these suggest a neural processing digpogiot necessarily innate; Bigand
& Poulin-Charronnat, 2006) by individuals for presang complex spectro-temporal
patterns.

ERP latency seems to reflect learning or matunatistates of the relevant neural
networks: the degree of myelination of white-maitennectivity between cortical
generators (Baggio, 2012; Cardenas et al., 2008 \HMRP amplitude, seems to rely
on the neuronal population size of cortical gersatnd the extent of active tissue
(Naatanen & Alho, 1997). Myelination and functionannectivity between the
relevant cortical generators may contribute to fiast auditory temporal mechanisms
(Koelsch & Siebel, 2005) are for processing rapidigoming information, and
consequently, for detecting standard-deviant diéfiees. The evidence presented in this
section suggests that inter-subjects variabilitiiiN latency, as found in this study,
likely reflects differences in (pre-attentive) infieation processing rather than global or
contextual, non-functional factors. Early sensorgnmry mechanisms may then
account for individual behavior performance obsérivesignaling games (Tiitinen et
al., 1994).

4.4.3. Sequence complexity and behavioral predictio

Temporal regularity optimizes temporal integratianechanisms (Schwartze,
Rothermich, Schmidt-Kassow, & Kotz, 2011; Tavanddivann, Bendixen, Truijillo-
Barreto, & Schroger, 2014). Small temporal deviadi@re more easily detected in
isochronous than irregular temporal patterns (D&Botte, 1993). Irregular temporal
patterns may increasingly tax the auditory systeeducing the quality of memory
templates. In turn, this would be echoed by sloavet weaker responses from the pre-
attentive change-detection system. The presenitsesipport this view. We found the
weakest MMN response for the high-entropic stimblaticeably, only the MMN
latency generated by these stimuli was consisteptigdictive for behavioral
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performance. In line with Lumaca and Baggio (204 propose that more demanding
auditory processes may be necessary for the enmrgdrinter-subject variability in
behavior. If as noted before, high-entropic stinmglfuire more sensitive auditory
processing mechanisms, even small differences ategsing capabilities across
individuals, as reflected by MMNs, would manifestdehavior (Kujala et al., 2001).
This difference would be minimal for control anavi@ntropic stimuli, where temporal
information is highly predictable (van Zuijen et,&004). Complexity reveal to be a
critical ingredient to investigate individual infoation processing capacities.

4.4.4. Neural predictors of cultural behavior

Faithful transmission is one property of cumulatmdtural evolution (Caldwell &
Millen, 2008). This may depends on the difficultfy the cultural repertoire to be
transmitted and the learning skills of the receii&awa, 2002). An inaccurate learner
will be an unreliable transmitter in the future.relewe show that the ‘timing’ of the
brain processes can distinguish good from bad égsrrand consequently, accurate
from inaccurate transmitters. In line with LumacaB&ggio, (2016) we found longer
MMN latencies for inaccurate learners: the oneswsmg low coordination, and
inaccurate transmission within (low consistency) batween games (low transmission
and high innovation). Changes in MMN amplitude daigncy have been shown to
predict variations in reaction times and hit-rates auditory discrimination tasks
(Aaltonen, Eerola, Lang, Uusipaikka, & Tuomainer®94; Atienza, Cantero, &
Dominguez-Marin, 2002; Kujala et al., 2001; Tiitmet al., 1994). Here, we show that
early sensory mechanisms can also drive more coym@production tasks. This result
further supports and strengthen the memory inteapoa of the MMN (Naatanen et
al., 2007).

Perhaps more interesting is that ‘timing’ of edshain processes predicts the
temporal regularization of the signaling systemjdvi@roperties of human symbolic
systems, and cultural transmission systems in gérean be understood as adaptations
to human brain “information bottleneck” (Kirby, 200 The size of the information
bottleneck determines properties of the symbolgtesy transmitted therein. Previous
work shows that the tighter the bottleneck (ilee, smaller the size of the data available
to the learner), the more regular is the systertime (Kirby, Dowman, & Griffiths,
2007). In simulation studies, agents have no merarys or learning constraints of
any type. Here we suggest that similar resultsadtained with tighter ‘memory’
bottleneck: the less efficient are the informatwacessing capabilities of individuals,
the more sensitive the same individuals are to spres for learnability and
regularization. Experiments on cultural researcppsut this hypothesis (Kempe,
Gauvrit, & Forsyth, 2015). In this experiment, thethors compared transmission
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chains of children with adults, the participantiéerbeing to reproduce by memory the
original positioning of visual-spatial patternsdufts. The random patterns of the first
generations gradually increased in regularity inthbgroups as result of iterated
transmission, but more readily in children. Cogr@tdemands to reproduce complex
patterns can be higher for children, which haveyesttfully developed their cognitive
potential. This may explain why children injectednmm structure than adults into the
code. In a fieldwork study, Dale and Lupian (204Bpwed that American populations
living in areas with high prevalence of nonnatipeakers, tend to adopt more regular
than irregular verbs. For nonnative adult speakean be hard to learn (idiosyncratic)
irregular forms from another language. This mayltes greater pressures to remove
unpredictable variation, and to adopt regular forimghis study, we support the view
that complexity of the learning material taxesehéintly the human brain, according to
its neural information processing capabilities,edetining different pressures for the
emergence of structure in cultural system. Thetgreéhe individual noise in perception
and cognition (Spike, Smith, & Kirby, 2016), thedar the magnitude of adaptation by
cultural material.

4.4.5. Individual processing constraints, culturakvolution and diversity

Cultural transmission is a powerful regularizersginbolic systems (Deacon, 1997).
Regularities emerge as a consequence of adaptatstructure and function of human
cognition (Boyd & Richerson, 1988; Christiansen Bafer, 2008). Empirical works on
language evolution support this view (e.g., Kirl2001; Kirby et al., 2008, 2007,
Verhoef, 2012). However these studies have sorflyrfocused on general pattern of
changes (Caldwell et al., 2016), and the sourcethege changes only inferred at
population-level. Individual variability is thereeated asioise and removed by simple
arithmetical procedures. Here we show that thisabdity, instead of representing
random noise, may reflect the information procegsispabilities of individuals. How
does this variability manifest in the populatiorusture? Through what mechanisms?
Dediu and Ladd (2007) nominated cultural transroissas a potential one. Their
proposal is that individual neural variability miasts in phenotypic differences in the
acquisition and production of linguistic tones. § kariability is amplified by cultural
transmission to produce variation in linguistictpais observed among world cultures
in the use of linguistic tones. In this work, wether support this view in the laboratory
(e.q., Kirby et al., 2008; Kirby et al., 2015; Rgwani et al., 2016), showing that small
(and possibly different) individual biases on thequsition, transmission, and
regularization of rhythmic material, are amplifieldring cultural transmission in a
diffusion chain, and manifest in the form of a desfeature of music: isochronicity.
Different evolutionary mechanisms might be alsossible for this outcome, such as
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content-based biases (Mesoudi, 2015). After thergemee of isochronicity, which

could take longer in populations of good learnéms, stimuli are easier to learn and
recall. Individuals might have preferences to deleese variants, which in turn, would
spread widely in the population. Mechanisms ofumaltevolution may provide a bridge
to link individual neural variability and populatidevel patterns observed in cultural
symbolic systems. The use of microsocieties, with support of computational
methods, can shed further lights on this mattee @Way is to replicate this experiment
with larger population of individuals. We could exiae how isochronicity emerges at
first, through the method of neural predictors, dmiv it spreads in communities
(Tamariz, 2017). We could investigate to what eixpapulations of good-learners are
affected by the ‘invasion’ (i.e., the introductionthe microsociety) of bad-learners,
and much more.

The present work provides further support for & between neural and cultural
diversity (Lumaca & Baggio, 2016), and introduce§rst experimental connection
between neural variability and population structui@ediu & Ladd, 2007).
Phylogenetic methods constituted up to now the magjproaches to explain cultural
variation (Mesoudi, 2007; Savage & Brown, 2007)a@dres over time in the frequency
of cultural variants may produce peculiar populagiattern phenomena (Boyd &
Richerson, 1985; Cavalli-Sforza & Feldman, 1981ithva rich variability within the
same culture (Rzeszutek et al., 2012). Howeverstiuece of the initial variability is
often vague and assumedpriori. We propose that cognitive variation is a non-
negligible source of cultural variation, supplensptto socio-environmental factors
(Pagel & Mace, 2004). In the present context, iy Imave contributed to some forms of
variation observed for temporal regularity overdiand across cultures (Levitin et al.,
2012; Nettl, 2000; Dediu & Ladd, 2007). Criticalbhis work shows a direct, visible
trace of the relation between neural processesaltgral adaptation, up to now only
assumed by cultural transmission research.
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4.5. Figures and tables

Main effects Condition = df p*
Stimulus-type HE 0:15 {1,161 69
LE 4.37 {1.16) 05

CTRL 6:43 (118} 02

Temporal window HE 5.25 {218 32.55] .0069
LE 384 (2118, 35.03) 002

CTRL 0.80 {2.05; 32.88) 0.80

Ouadrant HE 769 {199 2 35 007
LE 3.84 (220, 35.24) <.001

CTRL 1815 (199, 31.90) <.001

Two-way interactions

Stimulus-type x Temporal windew  HE 297 (1.90 30.44) 04
LE 7.58 (1,485, 29 68) 0.003
CTAL 748 (213315 0002

Stimulus-type x Quadrant HE 297 {1.63 29.10) 006
LE 9.70 (1.82,30,83) C.001
CTAL 2332 (@7sEs <001

Three-way interactions

Stimulus-type x Temporal window x e e N e R
guadrant LE 450 (G755074) 0,004
CTAL 11,96 (377, 6od6) <001

° p-values are Greenhouse-Geisser corrected

Table 1 Results of ANOVA statistics on mean MMN amplitudgues in the high entropy (HE), low
entropy (LE) and control conditions (CTRL).
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Fig. 1. Sample a trial from the signaling games playegényicipants in Experiments 1 and 2. The top

and bottom rows show what senders and receiverogaeir screens, respectively. The task for the
sender was to compose a 5-tone sequence to beasisedignal for the simple or compound emotion

expressed by the face presented on the screea atatt of the trial, and for the receiver to regpto

that signal by choosing the face the sender mag Baen. The sender and the receiver converged over
trials on a shared mapping of signals (monotoneieates) to meanings (emotions). Hand symbols
indicate when the sender and the receiver haddduge a response. Feedback was provided to both
players simultaneously, displaying the face seethbysender and the face selected by the receier i

green frame (matching faces; correct) or in a racthé (mismatching faces; incorrect). Time flowsriro
left to right.

122



Regularity

2 = 5 7
1.8} ;
31.6 ) Baseline
S 1.4} :
1.2F "

1 - a 'y a ' 'Y ' 'y

1 2 3 4 5 6 7 8

Generation

Fig. 2. Evolution of rhythmic regularity across generasiamExperiment 1. The shaded blue area shows

standard errors of the mean (SEM).
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Fig. 3. Schematic illustration of the rhythm sequences gnesl to participants during day 1 of
Experiment 2. The EEG was recorded while partidipdistened to these rhythm sequences. Each
sequence consisted of 5 tones occurring at varggngporal intervals from one another in different
conditions (standard, C-deviant or T-deviant). Semes of different complexity were used: control
(isochrone) sequences, low (LE) and high (HE) gmtreequences. The proportion of standards to

deviants was 4:1. A blocked design was used, wiherélocks were randomized across participants.
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Fig. 4. Grand-average ERPs (N=17) from a left central(€®) in response to the 4th tone in standard

and T-deviant stimuli in control, low and high ey sequences. The red lines show difference waves
between T-deviants and standards. Waveforms werg#ss filtered at 30Hz.

Control

()

1

Low entropy (LE) 0
-1

R .“‘

0-80 ms 80-160 ms 160-240 ms 240-320 ms
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Fig. 5. Topographic isovoltage maps of grand-average (NERP difference waves between T-

deviants and standards in control, low and highogyt sequences. The mismatch negativity (MMN)

corresponds to the topographic maps shown at 160¥240 ms is the onset of the 4th tone in a semuen
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Fig. 6. Pearson product-moment correlationsbietween MMN peak latencies relative to the onget
the deviant tone (0 ms) in high entropy sequenaaa the left hemispheric scalp quadrant on day 1 (
axis), and behavioral (blue, red) and structureddg, light blue) measures in signaling games gr2da
(y-axis). Structural measure was obtained as thelatbsdifference between mean values in Games 1
and 2. All MMN peaks fall within the 160-240 ms wiow. See Methods for further details on the
measures, and Suppl. Tabs. 2.3.1-2.3.2 for Pearsoluct-moment correlations) (values. Each point

on a scatterplot is one participant (n=17).

4.6. Supplementary material

1. Experiment 1

1.1. Written instructions to participants

Before the signaling games (SGs) session, eacltiparit was informed he would take part in two
successive games, each played in a different lml@ame 1, he would be the receiver. He was asked t
try to learn which facial expressions (emotionsjresponded to the 5-equitone sequences sent by the
other player (sender). There was no reward for dspeither in a trial or in the game. Successful
coordination was the only reward for participattsGame 2, the participant played as sender. He was

instructed to transmit the tone system acquire@dme 1, as he remembered it, to a new receiver.
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1.2. Additional structural measures
1.2.1. Metric complexity

Our measure ofnetric complexitycalculates the number of hierarchical levels vaittunked pairs of
subdivisions of the main beat (or tactus) requitedmatch each onset in one rhythm. Additional
calculations based on this estimate are applidohdothe meter of a rhythm and to calculate thereeg
of syncopation. First, we calculate the numberutifdivisions of the tactus necessary to fit the lhyt
for each note onset (at a precision level equ#iécssmallest quantization unit divided by two). Gt
the metric complexity of each onset in a rhythnestimated by rounding down to the nearest integer
value the log2 (base 2 logarithm) of the requirethber of subdivisions. Last, the metric complexity
the rhythm is estimated as the sum of the metcicalplexities of each note onset in the rhythm. Tlaen
principle of economy has been used to find theemnmeter. We assume that the perceptually moist val
meter is the simplest one. It follows that the méde a rhythm can be estimated from a set of fiedéd
possible meters by finding the regularly spacedrbaiats or tactus of the meter (e.g., binary meitdr
four beats, ternary meter with three beats, orimagy meter with five beats) which minimize the net

complexity value.

Metrical complexity = 0

———

——

T EN Eu &N

Metrical complexity = 1

- B gl
il gl = [i2s]
su'/sm su/mw
Metrical complexity = 2 =u'mn su/Euey
. ==
] =0 | 2 | e vl =
=u/sw su/se su/sw mn'mw wu'sw en/sw o
| 8 |
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Metrical complexity = 3 su'sw su'sw su'sw su'sw

Figure 1.2.1.Diagram-illustration of metrical hierarchies forbslivisions of the main beat or tactus
chunked into binary (i.e., base 2) relationships @ventual remainder single elements. The totabeu
of subdivisions is shown at the top of the metridgatarchy. The constituents’ binary elements hoas

for each chunk level. The number of levels deteesithhe metric complexity value.

1.2.2. Syncopation
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A measure of syncopation similar to Witek et aD¥2) was used. This measure is based on the metric
complexity estimate. For each note onset, if thiedong note onset occurs after the next main loeat
tactus, we assign a syncopation value that corresfmthe difference in metric complexity betwebka t
note onset and the main beat or tactus (metric ditp value - 0). Otherwise a value of 0 is assigin

The syncopation value of the rhythm is the sunhefdyncopation values of each note onset.

* * * *

} | i | Metrical complexity = (0+0+0+0) = 0

* * % *

————1—— Metrical complexity = (0+0+1+0) =1  Syncopation = 1
* % * *

H————++ Metrical complexity = (0+2+2+0) =4  Syncopation = (2+2) = 4

Figure 1.2.2. Examples on how to calculate the syncopation diediht rhythms based on metric
complexity.

1.2.3. Compression

Rhythmic compression measures how similar are rhytbf the same signal set (Cornish et al., 2013). |
was computed by taking the mean similarity betwiencontour of rhythms of the same signal set. It

range from O (different rhythmic contour profilés)l (mono-contour signal set).

1.2.4. Compositionality

Compositionality measures the degree of systemegiation between signals and meanings.
Compositionality of the rhythmic set was computeithwihe information-theoretic todkegMap(for
details see Cornish et al., 2009). For the purpds$bis measure, upper face of states was coded) usi
two variants ¢penandclosedeyes); the lower face involved three variants (thaorneraup, straight
anddown). Upper and lower face corresponds to the meatiingnsions. Then, the entire pool of signals
was partitioned into segments, in all possible cioatitons: units of 3 and 1 10Is (3+1), in units2oénd

2 10Is (2+2), and finally in units of 1 and 3 IO(%+3). For each of these partitions, the conditiona
entropy of any possible combination of signal-magnidimensions was computed under 1000
randomizations, obtaining a z-partial RegMap. Timisasure specifies to what degree a signal unit
reliably codes a meaning dimension. Also, a sirgRegMap value for the entire code was computed

(range 0:1) which summarize the compositionalityhef set of signals produced by the pair. Resudts a
shown in Suppl. Fig. 1.4.5.
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1.3. Supplementary Tables

Supplementary Table 1.3Seeding material and relative structural properesir signal sets (1-4) of
5 temporal patterns, were used as the startingrialfier the diffusion chains. We used high-syndega
(sets 1-2) and low-syncopated stimuli (sets 3-#neTlof inter-onset intervals (10Is) is shown inceds.
Abbreviations:IOI (inter-onset interval); Sync (syncopation); $&hannon Entropy); SEc (Shannon
Entropy on rhythmic contour); C (mean compressionrioythmic contour). Sound files (enclosed)

provide examples of the temporal patterns.
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1.4. Supplementary Figures

* * * *
rhythm 1
B— = = i = = = = [ = =
* * * *
rhythm 2 :
[/ SR - W~ W W' = B—= = = = =
A * * *
rhythm 3 7T
B8 B &8 & @B 8 5 B 5 5 §#7- % =
x * * *
rhythm 4
5—8—8—58H 86— —5F&—F8—&—f8—F8—6——-¢
* * * *
rhythm 5
1 1 1 i 1 1 1 1 |
0.2 04 0.5 0.8 1 1.2 14 1.6 1.8 2
Time (s)

Supplementary Figure 1.4.1Diagram-notation of the temporal patterns in thedsget 1. Rhythms are
ordered from the top (rhythm 1) to bottom. Red résits show the note onsets. Blue squares represent

the metrical grid of reference. Time (in secondts)vé from left to right.

2 | Wt T e, AN 4
g. g* A s s e i [ TR et S e
2 g
1 2 3 4 5 6 7 8 1 24 3 4 5 6 T 8
Generation Generation

Supplementary Figure 1.4.2 Evolution of syncopation across generations for high-syncopated (HS;
left) and low-syncopated set stimuli (LS; right Bignificant changes over time were observed batwe
the first and the last generation. No differencéh the baseline were reported in the last germmnati
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Metric complexity LS

Metric complexity HS
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Generation Generation

Supplementary Figure 1.4.3Evolution of metric complexity across generations for high-syncopated
(HS; left) and low-syncopated set stimuli (LS; tigiNo significant changes over time were observed
between the first and the last generation. No diffees with the baseline were reported in the last
generation.

%]

L&

Compression

T )

1 2 3 4 5 6 7 8
Generation
Supplementary Figure 1.4.4.Evolution of mean compression across generations. No significant

changes were observed between the first and thgdagration. No differences with the baseline were
reported in the last generation.
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Compositionalitty 3+1
Compositionalitty 2+2
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Supplementary Figure 1.4.5.Evolution of compositionality across generations when signals were
segmented in 3+1 tone segmentpper lef}, 2+2 tone segmentsifper righ) and 1+3 tone segments
(botton). For details see Suppl. Inf. 1.1.2.4. No sigifitchanges were observed between the first and

the last generation.

2. Experiment 2

2.1. Written instructions to participants

2.1.1.Day 1. During the EEG session, the participant was aséegbtch a silent movie without paying
any attention to the temporal patterns played tinothe loudspeakers; the movie was subtitled in
English. To direct their attention away from thed¢sequences, we told participants that there woeild

questions about the movie at the end of the session

2.1.2.Day 2. See Suppl. Inf. 1.1.

2.2. Confederate behavior

2.2.1.Game 1. The confederate was trained on a particular mapgirgnotions to keys on the keyboard
(see Procedure, main article): in Game 1, he play#tdno sound feedback (volume set at 0), to preve
him from learning the ‘seed’ system and be biase@ame 2. The confederate was instructed to use

consistently that mapping throughout Game 1, rdgasthf what the participant (receiver) would do.
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2.2.2.Game 2. The confederate played according to the saméawrinstructions given to the participant
(receiver) in Game 1, namely, he was instructeirytéo learn the temporal patterns as producedby t

participant (sender).

2.3. Supplementary Tables

Coardination Transmission Innovation Congsistency
HE
P -0.43 -0.50 0.53 -0.35
R -0.43 034 0,48 0.36
A -0.25 -0.28 0.53 -0.54
L 0.63° TR o.e2* 0.64°
i
P 012 0.1% -0.39 012
R 0.03 017 012 014
A -0.02 -0.03 k) 10.08
L -0.38 .16 0.01 -0.06
CTRL
g -0.22 -0.04 017 0.02
R 0630 -0.46 015 033
A 057 -0.29 -0.13 0.0
*pE0m
024 -0.40 -0.08 023 “p s 0.004

Supplementary Table 2.3.1Pearson product-moment correlatiorjshetween MMNpeak latencies at
160-240 ms relative to the onset of the 4th-tone devi@nng) in high entropy (HE), low entropy (LE)
and control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation,
consistency). Coefficients are shown for each sqakmrant (where P is posterior, R is central-right
is anterior, and L is central-left). P-values amntrroni corrected at=0.05/12=0.004, where 12 is the

number of tests involving each independent variable

4n all cases, the MMN peak fell within the 160-240 ms window. See main article, Fig. 4.
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Entropy Entropy HE Entropy LE Entropy CTRL

HE
P 0.48 048 023 -0.44
R 0.27 0.32 0,09 -0.20
A 0.02 0.24 0.28 olle):
L 0E2° 0.63° -0.24 0.54
LEs
P 007 -0.006 015 0.03
R -0.008 0.09 -0.30 0.32
A 005 0.10 0.03 .08
L 0.15 0.10 0.04 0.05
CTRL
P 0.23 0.37 -0.21 005
R 0.48 0647 -0.26 o1z
A 0.41 058 ‘034 0.005
fp=0m
L 0.44 0.31 0,18 -0.53 * s 0.004

Supplementary Table 2.3.2Pearson product-moment correlationsoetween MMNpeak latencies at
160-240 ms relative to the onset of the 4th-tone devi@rmng) in high entropy (HE), low entropy (LE)
and control stimuli (CTRL), andructural measures (absolute difference entropy pp-seed onléig
difference HE, LE, CTRL codes - relative codeshim $eed on theght). Coefficients are shown for each
scalp quadrant (where P is posterior, R is cemighk; A is anterior, and L is central-left). P-uak are
Bonferroni corrected at/=0.05/12=0.004, where 12 is the number of testsluing each independent

variable.

Sin all cases, the MMN peak fell within the 160-240 ms window. See main article, Fig. 4.
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Coordination Transmission Innovation Consistericy

HE
] 0,09 -0.09 -0.08 0,12
R 0,25 012 007 0.20
A 0.19 0 -0.22 028
L 017 007 -0.14 0.28
i
P 0.21 0.29 -0.44 013
R 29 0.87 -0.39 0.34
A 0.14 0.27 034 0.27
e 0.22 0.34 -0.51 027
CTRL
P 0.34 028 -0.39 0.16
R 0.03 -0.03 -0.:05 0.03
A 0147 04T 003 -0.07
‘p=0
L 0.1z 008 -0.:24 0.08 * 5 0.004

Supplementary Table 2.3.3Pearson product-moment correlations (r) betweerNvivan amplitudes

at 160-240 ms relative to the onset of the 4th-tbgant (0 ms) in high entropy (HE), low entrop]
and control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation,
consistency). Coefficients are shown for each sgabmrant (where P is posterior, R is central-right
is anterior, and L is central-left). P-values amntrroni corrected at=0.05/12=0.004, where 12 is the

number of tests involving each independent variable
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Entropy Entropy HE Entropy LE Entropy CTRL

HE
P 0.06 Q.08 013 .04
B 0.29 .18 -0.51 013
A 0.32 AT -1.54 -0:47
E 018 Q.15 -0.40 0,006
LE
P 009 0. 13 -0.15 .09
R -0.18 330 -0.11 0.08
A -0.08 -0.16 -0.08 Q.10
I -0.14 -0.26 -0.03 0:07
CTRL
i -0:16 .33 -0.09 (101
R 0.21 -0.06 045 -0.34
A 043 010 H61° -0.52
fp=E0.0
i 0.04 .16 -0.28 -0.43

== 0.004

Supplementary Table 2.3.4Pearson product-moment correlationsoetween MMNmean amplitudes
at 160-240 ms relative to the onset of the 4th-tiegant (0 ms) in high entropy (HE), low entroph¥j
and control stimuli (CTRL), andructural measures (absolute difference entropy pp-seed onléie
difference HE, LE, CTRL codes - relative codeshim $eed on theght). Coefficients are shown for each
scalp quadrant (where P is posterior, R is cemighk, A is anterior, and L is central-left). P-uak are
Bonferroni corrected at/=0.05/12=0.004, where 12 is the number of testsluing each independent

variable.
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Coordination Transmission Innovation Consistency

HE

P 010 014 0.22 0,23

R 0.14 0,003 0.0z 0.20

A -0.04 022 -0.08 031

L 040 -0.35 0.33 20,46

L

P -3.10 0.08 -0.36 .40

R -0.29 0,16 .07 003

A 014 -0.28 -0.01 007

L 0.17 -0.06 032 0.26
CTRL

P -0.08 -0.16 019 0.20

R 0.9 0008 008 0,19

A 017 -0.22 0.10 028

“pElM

i3 001 -0.06 0.01 002 * 5 0,004

Supplementary Table 2.3.5Pearson product-moment correlatioryshetween MMNpeak latencies at
240-320 ms relative to the onset of the 4th-tongashé (0 ms) in high entropy (HE), low entropy (LE)
and control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation,
consistency). Coefficients are shown for each sqakmrant (where P is posterior, R is central-right
is anterior, and L is central-left). P-values amntrroni corrected at=0.05/12=0.004, where 12 is the

number of tests involving each independent variable
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Entropy Entropy HE Entropy LE Entropy CTRL

HE
P -0.65 0.09 0.08 012
R 0.08 015 003 0.02
A D2 0.28 .05 =027
L 0.18 -0.002 0.002 0.01
EE
P 0.07 0.16 -0.36 0.26
R 022 0.37 -0.36 0:19
A 011 0.02 015 -015
L -0.08 010 047 018
CTRL
F 010 0.008 Q15 01g
R 014 -0.10 0.11 018
A 0.38 0.39 -0.47 -0.03
“pE0m
L -0.07 0.0z -0.02 0.26 "3 0004

Supplementary Table 2.3.6Pearson product-moment correlationsoetween MMNpeak latencies at
240-320 ms relative to the onset of the 4th-tongashe (0 ms) in high entropy (HE), low entropy (LE)
and control stimuli (CTRL), andructural measures (absolute difference entropy pp-seed onléfe
difference HE, LE, CTRL codes - relative codeshim $eed on theéght). Coefficients are shown for each
scalp quadrant (where P is posterior, R is cemighk, A is anterior, and L is central-left). P-uak are
Bonferroni corrected at/=0.05/12=0.004, where 12 is the number of testsluing each independent

variable.
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Coordination Transmission Innovation Cansistency

HE
P -0.08 -0.02 om 0.04
R 018 0.01 -0.04 0.20
A 018 011 -0.22 033
i -0.08 D16 -0.08 0.2z
e
P -0.33 0.7 0.09 031
R 010 0.08 -0.09 oo,
A 002 0.14 -0.03 010
I 0.09 0.28 -0.28 0.09
CTRL
¥ 048 0:35 .25 0.14
R 0.38 0.25 -0.02 0.04
A 011 0.09 013 008
“p=to
L 0.39 0.15 -0.05 -0.13 *5 50,004

Supplementary Table 2.3.7Pearson product-moment correlations (r) betweerNvivkan amplitudes

at 240-320 ms relative to the onset of the 4th-tbgant (0 ms) in high entropy (HE), low entrophy]
and control stimuli (CTRL), andbehavioral measures (coordination, transmission, innovation,
consistency). Coefficients are shown for each sqakmrant (where P is posterior, R is central-right
is anterior, and L is central-left). P-values amntrroni corrected at=0.05/12=0.004, where 12 is the

number of tests involving each independent variable
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Entropy Entropy HE Entropy LE Entropy CTRL

HE
P 0.01 0.02 002 .02
R 021 0.10 042 -0.08
A .18 014 041 0.009
E 0.08 0.04 -0.28 0.08
=
P 034 0.22 0,23 031
f 021 12 -0.34 -0.08
A 0.0 0.002 -0.08 0.05
L -0.05 CURR] 0.005 0.03
CTRL
i 018 -0.44 0.001 014
[+ -0.07 0,24 0.15 -0.09
A 013 0.01 .33 012 ) -
013 023 010 0.07 s

*pE 0004

Supplementary Table 2.3.8Pearson product-moment correlationsoetween MMNmean amplitudes
at 240-320ms relative to the onset of the 4th-tisgant (0 ms) in high entropy (HE), low entropyejL
and control stimuli (CTRL), andructural measures (absolute difference entropy pp-seed onléfe
difference HE, LE, CTRL codes - relative codeshim $eed on theéght). Coefficients are shown for each
scalp quadrant (where P is posterior, R is cemighk; A is anterior, and L is central-left). P-uak are
Bonferroni corrected at/=0.05/12=0.004, where 12 is the number of testsluing each independent
variable.
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Chapter 5

Overview and general discussion
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Abstract

In this thesis | have addressed in the laboratoeyrole of cognitive constraints on the
cultural evolution of certain basic aspects of raisistructure. | did this with a
combination of behavioral and neurophysiologicalthods. First, | examined the
evolution of structural regularities in (auditoafificial symbolic systems while they
were being transmitted across individuals, throungéraction and coordination. Then,
| explored the link between changes introducednoividuals and neural information
processing. More specifically, | examined whetiméorimation processing capabilities
of single individuals, as measured with event-sglgtotentials (ERPs), could predict
how they learned, transmitted and regularized &@ificeal symbolic system. | did this
separately for two basic dimensions of musicalcstme, namely melody and rhythm.
These studies support the idea that cognitive caings on cultural transmission can
account for some forms of variant and invarianteasp found within and across
symbolic systems, music in particular. Perhaps nretevant, they provide initial
neurophysiological evidence of adaptation by symgbelstems to constraints on
information processing of the human brain.
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5.1. Overview of the findings in this thesis

In the first empirical chapteckapter 2) | investigated the evolution of melodic systems
experimentally using a new laboratory model of wat evolution: the multi-
generational signaling games (or MGSGs). More $igadly, | studied how artificial
systems of tone sequences changed in the cournserated signaling games, where
each iteration introduces a new generation of peros and listeners. | observed the
gradual evolution of several structural regulasittd musical phrases that may promote
learning and memory retrieval: pitch proximity (@emcy for small pitch intervals),
pitch continuity (tendency for a single melodicadition), melodic symmetry (melodic
forms that mirror others) and melodic compresstond sequences of the same signal
set become increasingly similar). Crucially, mokthese features are universal traits
of musical systems. | argued that our experimepped into universal cognitive
mechanisms of structured sequence processing, pnosably at work also on the
cultural evolution of auditory symbolic systems, siwin particular. This study is the
first to describe the emergence of structural prigee of melodic systems in the
laboratory, using an explicit lab-based model dfural transmission in which agents
interact and exchange information.

An interesting and open question emerges fromstioidy. A common belief in
cultural evolution research is that every cultyriaénomenon can be understood as the
population-level result of individual-level phenonae in turn reflecting functional
aspects of human cognition (Dediu & Ladd, 2007)ycRslogical properties of
individuals would manifest, through different culildynamics, as structural properties
of culture. Iterated learning research provided fint empirical support for the
existence of this link (seehapter 1). A natural question is whether it is possible to
move one level further: namely, would ‘neural’ peojies of individuals manifest as
structural properties of culture? And, as a consege, may differences in neural
properties across individuals determine varianeetsp(across individuals and over
time) of cultural symbolic system? Up to now, tlasel of explanation has remained
unexplored.

Chapter 3 addressed this question, with the rationale thpbpulation-level
regularities originate in neural constraints, thershould be possible to predict
individual regularization of cultural material dmetbase of neural data. As a follow up
of the previous study, | focused on the melodicetision. To test this hypothesis, |
combined EEG and behavioral experiments in two esgige days. | showed that the
latency of the mismatch negativity (MMN) recorded a pre-attentive auditory
sequence processing task on day 1, could predigtvinell participants learned and
transmitted an artificial symbolic system (simitarthe one used ichapter 2) in two
signaling games on day 2. Notably, MMN latenciesogbredicted which structural
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changes were introduced by participants into thiécal tone system. Specifically,
individuals with longer MMN peak latencies were $bdhat innovated the code more
(i.e., they were less faithful transmitters), imhwging more structural regularities, such
as proximal intervals and smooth contours on thdéodie surface. | argued that
differences in brain function across individualsrdae thus a primary source for
variation in cultural symbolic system, and a prigndactor to distinguish faithful
transmitters from innovators. To our knowledges thiiudy is the first demonstration
that social learning, transmission and culturaltat#on are constrained and driven by
individual differences in the functional organizatiof sensory and memory systems.
This finding opens new and intriguing questions.atWvould we expect by dividing
populations of individuals by auditory processimgpabilities (bad-learners versus
good-learners)? How would the different processuagacities affect the cultural
transmission of complex information?

In the last empirical chaptecHapter 4) | replicated and extended previous
behavioral and neurophysiological findings on #rporal domain of music. | did this
in two independent studies. In the first studysédi MGSGs as laboratory model of
cultural evolution of symbolic system with signéleere equitone temporal patterns)
associated to meanings (simple and compound ensytibrobserved how different
properties of the symbolic code emerged and chaagexss generations. | found near-
periodic rhythms arising in the signaling systerm&th other properties (i.e.,
syncopation, compression, and compositionality) ai@mg relatively unchanged. |
speculated that temporal regularity, a universatuiee of musical languages, might
partially result from constraints on temporal pigsiag and transmission processes. In
the second study | combined signaling games arutrefghysiology (as ichapter 2).
Here too, individuals with the worse informatioropessing capabilities (i.e., longer
MMN) were found to introduce more regular, isochcorhythms. All these findings
(chapters 3 and 4) provide the first neurophysiological evidence cultural
transmission research that the tighter the ‘infdromaprocessing bottleneck’ is, the
greater the pressures for regularity and compressworeover, they suggest that
individual small biases for temporal or melodic ukegities, as revealed by neural
predictors, amplify during cultural transmissiorraiigh different mechanisms of
cultural selection, to produce universal patterhsnasical systems. We show that
simple laboratory models of cultural transmissi@md canonical paradigms of
electrophysiology, can in principle address thesaplex issues.
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5.2. Cultural evolution of music regularities in the laboratory

As | reviewed inchapter 1, two main theoretical lines in the field of musizolution
tried to account in the past decades for why migdite way it is. On one hand, theories
stressing the cultural nature of music; on theotlaed, theories stressing its biological
nature. In the same chapter, | argued that annalige, more plausible solution to
explain how music came to be as it is now, maydeesn the middle of these two
accounts: music as a socio-cultural artifact, deb adapted to cognitive pressures
arising from cultural transmission (Merker, 2006e\er et al., 2015).

In this thesis | was the first teystematicallyaddress this hypothesis in the
laboratory, for two basic aspects of musical stitegstnamely rhythm and melody. Our
findings (hapters 2and4) seem to support this view. | showed that whenieidif
tone sequences are culturally transmitted alorfgsidn chains of several individuals,
they progressively develop regularities typical tbéir domain, in particular pitch
proximity and continuity, melodic symmetry, and tgoral isochronicity. Notably,
these features are found in most of musical cudtofethe world. The pervasive use,
across several world cultures, of small pitch vdés organized in ascending or
descending melodic directions, and equally spaoetime, was noticed by several
scholars during the last century (e.g., Dowlingh 4;3Brown & Jordania, 2013; Savage
et al., 2015; Harwood, 1976), and so the use obdielmirror forms (Dowling &
Angeles, 1972; Tovey, 1956). The presence of tregpdarities in music has been often
related to universals principles of pattern perogpi{Huron, 2001; Trehub 2000;
Terhardt, 1987), and possibly explained by theuiement of these principles during
cultural transmission (Trehub, 2015; Merker 200&).this day, only one study has
tested this idea in the laboratory, and only indbmain of musical rhythm (Ravignani
et al., 2016). | argued that basic principles atpptual organization (Deutsch, 2012)
and cognitive economy (Tamariz & Kirby, 2015), bgbt out through cultural
transmission, may in principle explain these result

Up to now, the use of classification methods on swasmusic databases
including material of the past centuries, musi@tioh or audio recordings, has been the
main source of knowledge to provide insights inbdhbthe diversity and the unity of
music (Lomax, 1987). In these works, music of tlelevwas classified according to
general phenetic (surface) similarities. The digition of these databases, allowed
researchers to use more sophisticated and rigatatistical methods, including the
phylogeneticmethods, which explore the possible evolutionarycimeaisms at the
origin of these similarities (Savage & Brown, 200he recent use of other advanced
statistical methods on large-scale music datab8serd, 2013), was also useful to
outline common historical trends on the evolutidmusical styles, such as tracing
changes in the frequencies of different musicéaistia Western popular music (Mauch,
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MacCallum, Levy, & Leroi, 2015; Serra, Corral, Bég Haro, & Arcos, 2012), or to
examine the perceptual mechanisms leading to tokitean of rhythmic and melodic
features in Classical music (Zivic, Shifres, & Ceicc2013; Levitin et al., 2012).
However, the unrepresentative sample of the daa (i€., mostly Western music, and
only of the past few centuries), with all the liatibns inherent to statistical methods
(Krumhansl, 2015), recommend some caution in therpnetation of these findings.
The main weakness of these approaches is thag Wil provide invaluable insights
into real processes of cultural change, they doalfotv manipulation of variables to
test specific hypothesis on the mechanisms unaerlyie origins of these changes.

In this respect, | believe that historical and istaial methods can take
advantage of hypothesis-driven experimental ingastbn. The conjunctive use of
these methods can provide a better understandioglefral phenomena (Mesoudi &
Whiten, 2008), with the possibility to test hypatee on cultural mechanisms only
inferred with real-world data. Our experimental gghgm was effective in modelling
both music structural regularities (on both rhythmic andlodic dimensions), and
characteristics of cultural transmission and evoiytin particular of oral traditions (see
section 1.7.1 for a comparison of MGSGs with itedalearning models). The
transmission of musical cultures has been accohmaisfor hundreds (maybe
thousands) of years by oral/aural methods, sutibtaring, repeating, and memorizing.
Our model captures these aspects. The bottlenéi@dduted by human learning and
memory constraints, transmission after transmissitay have produced some of the
musical structures observed in the world, suchrasimity and isochronicity, and may
also explain why the contour (melodic and rhythi)iceeems to be the musical
dimension more preserved and characteristic oitioadl folk music (Poladian, 1951).
Notably, the social pressures introduced in our ehathde unnecessary any artificial
manipulation for that to happen (Kirby et al., 200@rhoef, 2012). With this in mind,
| suggest that the MGSGs can be used as a poterpialimental methodology to test
hypotheses on the cultural evolution of musicateays, a valuable alternative to the
ILM.

5.3. Cognitive constraints and cultural selectionmmusic transmission

So far, | have described limitations on memory patception as the only source of
change in music transmission. What abselection(Kleeman, 1985)? The role of
‘aesthetic selection’ has been examined in recep¢r@mental research (MacCallum,
Mauch, Burt, & Leroi, 2012). MacCallum et al. (2Q1@vestigated whether Darwinian
principles can account for how the preferencestdrners shape the evolution of music.
The hypothesis here is that random transformativecgsses njutations and
recombinationy typically occur in the course of music transnossifrom one
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generation to another, producing variants thatediggble (or not) to become stable
components of a musical repertoire. But while s@apvinian random processes, here
cultural mutations, may in principle represent augnd for innovation in actual music
(e.g., musical copy errors, random variations iriggenance etc.), they appear too rare
to account for the rapid historical evolution ofsiaal systems. In this respect, cognitive
pressures may represent a major sourcdirgicted non-random transformation of
musical material, and thus, one major driving foraenong others (e.g., cultural
selection), in the evolution of music (Claidiererby, & Sperber, 2012).

In support of this view, | showeaHapters 2 and4) that inter-generational
transmission is capable of deeply transformingdbetent of music-like material in
non-random ways. | do not deny the just as imporae played by selection on music
evolution. | only argue that this role is differeift cognitive constraints are a major
source of non-random innovation and transformadiomusical variants, selection-like
mechanisms are mainly responsible for the mainimmnanchanges of their frequencies
over time (and/or within the population) (Mesoud(15). When new variants are
introduced in a musical repertoire, they can bentamed, die out, or spread, depending
(often) on their intrinsic properties, especialgsthetic. The selection bias that makes
consumers to favor one variant over another, ag@grtb its content, is known as
content-dependent bias. This bias may be respensilihe difficulty of the twentieth
century dodecaphonic music - in which all notethefchromatic scales appear with the
same frequency in a repeating row- to have a prentirole in the public scene (Ross,
2007). In other cases, selection can be contesebiasome variants are copied
disproportionately more than others, or, on thetreoy, they can disappear from the
public scene, because of the political, social, asdnomical local context. The
banishment of Mendelssohn music in Nazi Germargnes example of the effects of
this selection mechanism (Haas, 2013). Finallypjpecan prefer some musical variants
over others according to the popularity or the @loprestige of the musician who
performs or composes the music (or prestige biages) result of these selection
mechanisms, music can become more appealing overkacCallum, 2012), or some
of its variants, such as chord progressions in &egiopular music, can be maintained
unchanged for a long time (Serra et al., 2012).

| acknowledge that music, more than language, apesth by socio-intellectual
and aesthetic factors, at least in the sense bescrbove (Grout, 1980; Leroi,
MacCallum, Mauch, & Burt, 2012; Temperley, 2004) nty thesis | did not addressed
these factors. Rather, | decided to focus my ingasbn on cognitive constraints,
designing our experiment with the specific intentto test their effects on cultural
evolution (Boyd & Richerson, 1985; Caldwell et &016). | argue that complex
phenomena, such as musical transmission and emojutan only be understood if
abstracted and modelled in their more basic commsn@&icherson & Boyd, 1985).
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Here, | focused on only one component: transmis@ianinteraction, alignment and

coordination). All these pieces, selection anddnaigsion included, need to be then
integrated in a coherent theoretical framework & want to provide a better

understanding of how music evolved in the way rasv.

5.4. Symbolic systems adapting to the brain, culta variation and
the problem of linkage

One key tenet in cultural evolution research iddlea that the organization of cognition
shapes culturally transmitted information over edpd episodes of transmission
(Christiansen & Chater, 2001; Kirby, 2001; Deacb®97). The information acquired
by an individual is typically transformed in nomdoom directions to fit functional
aspects of his brain (Boyd & Richerson, 1985). finman brain/mind (or those of other
species capable of cultural transmission) actsaBusfilter of information, so that more
efficient forms outcompete others over time alorgesal dimensions, among these
conformity to processing constraints and memoryacdigs of the relevant neural
networks (Merker, 2006). Literature commonly referghis multi-dimensional filter as
cognitive biases. In this thesis | preferred the atanother term, namebognitive
constraints While constraints on information processing h&een revealed by a
wealth of cultural transmission studies (Fehéd.e@09; Kashima, 2000; Kirby et al.,
2008; Martin et al., 2014; Mesoudi & Whiten, 200#)eir existence has been only
assumed by observationg 6f behavioral dataiij at individual level by iterated
reproduction (e.g., Jacoby & McDermott, 2017), i0) by behavioral and simulation
data at population-level, i.e., looking at arithioalt trends computed across several
individuals or agents (e.g., Kirby et al., 2008yRaani et al., 2017; Kirby, 2001). It is
quite surprising that up to now, no one tried tpprt the idea of cultural adaptation
with neural data.

In this thesis | used both these approachestisimswed that auditory symbolic
systems adapt over time to the constraints impbgatie human brain, developing in
the course of transmission prototypical melodic angthmic regularities. Then, |
provided an initial evidence of the neural origofsthis phenomenon, showing that
information processing capabilities of individuafgedict not only individual
performance, but also tltrection of cultural changes. | showed that individualshwit
less efficient auditory processing systems comprasd regularize more than
individuals with more efficient sensory systemsspeculated that each individual
represents a different ‘neural niche’ (here theo$eteural mechanisms and constraints
underlying the processing and representation & s@guences), through which cultural
information must pass, and eventually adapt. lmftigl-level cultural transmission may
thus provide a major source of variation in culkgsanbolic systems.
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How neural variation manifests and spread at pajoumdevel in more complex
cultural dynamics is not easy to address. We magine a population of individuals
with different biases in the acquisition and regaktion of musical material. If the
musical trait produced by ‘bad-learners’ (e.g.jwidlials with longer MMN latencies)
Is enough regular to ease its own acquisition,ay toe selected (or adopted) by other
bad learners, and would start to spread in the lpapo. If bad-learners represent the
majority of the population, traits would convergento regular and easy-to-learn
musical variants (Tamariz, Ellison, Barr, & Fay12), with the complexity of musical
systems (and the extent of variation) progressidelyreasing over time. However, the
outcome might be different with a different popidatstructure, or when pressures for
learnability were relieved by other vectors of su@mssion, such as music notation. In
the first condition, we may consider a populatioheve less constrained learners
(individuals with shorter MMN latencies) represetite majority. These individuals
would not suffer of pressures for regularity, anayrfavor the second because the more
frequent. In this condition complexity could petgiger time. Music notation may also
counterbalance pressures for simplicity. In oneseixpent, Tamariz and Kirby (2015)
compared two conditions in transmission chains, where the cultural material
(drawings) had to be transmitted across individuays memory (‘remembering
condition’) (Bartlett, 1932), and the other whereauld be copied from view, without
constraints on time (‘copy condition’). Only in tiest condition, when participants
were given a limited time to observe the drawirtlgs,system decreased in complexity,
becoming graphically simpler and schematic (i.esembling commonly known
semantic categories). In the copy condition, bgrfew changes, complexity of the
drawings remained unchanged. These findings sudbatt whenever memory and
perception are relieved by their limits and consts using other channels of
transmission (such as notation), the cultural syste less sensitive to pressures for
regularities, and can maintains its original comrjpje In this regard, teaching and
written notation are two fundamental ingredientscomulative cultural evolution, or
‘ratchet effect’ (Tomasello, 2009; Caldwell, Atkorg & Renner, 2016; Caldwell &
Millen, 2008), and can explain the great achievamehWestern classic tonal music
(Blanning, 2008). These predictions could be testedthe laboratory using
microsocieties. We could create a condition withhégh proportion of constrained
learners and a low proportion of less constraieadiers (and vice-versa for the second
condition), and observe how variants emerge andaspin that populations using
signaling games as a model of transmission andaictien. Would we observe the
dynamics predicted? For more complex populatioradyins, with innovators, copiers,
bad-copiers, and egocentric individuals (unwillbegcopy variants of the others), the
effects are less predictable. Theoretical and caatipmal models would be here
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necessary to lay some foundations, which then shioeiltested in the laboratory with
real human learners.

The index of information processing used in thissth, the MMN, is an early
component in the information processing stageadtttion, it represents only the ‘tip
of the iceberg’: it reflects constraints on tramsfational mechanisms, which are
supposed to be upstream. These mechanisms oparatalibory sensory memory and
include perceptual categorization, where continueaistic information is converted
to discrete auditory events, and mechanisms ofpgngs, where auditory events are
segmented based on different principles, i.e., ipmiy, similarity, and continuity
(Deutsch, 2012). Operations in auditory memoryhsag a regularity violation of an
incoming sound patterns, are then (partly) refl@édte the mismatch-negativity. These
two mechanisms operate in the first 100 ms fromahsget of the last heard events
(Snyder, 2000). This leads us to speculate ondheldvel (pre-attentive) nature of
some of the cognitive constraints at work in théucal transmission of symbolic
systems, musical systems in particular.

| will conclude with a final point that concernsetproblem of linkage (already
discussed ichapter 1). Up to now, this problem has been framed at omtylevels of
explanation. The first, arode levellinks code changes introduced by single indivislua
to population-level code patterns (Cavalli-Sforza=&8ldman, 1981). The second, or
psychological levellinks (invariant) individual-level psychologicalonstraints to
population-level code patterns (Kirby et al., 200) this thesis | moved one step
deeper, introducing the idea of theural level | showed that it is in principle possible
to build experiments and to obtain data that linétividual-level neural information
processing with population-pattern phenomena, & ¢hmplest case between two
individuals in a coordination game. Moreover, imgarison to the psychological level,
here | introduce the concept wériation. In some sense, this idea generates many
guestions to address. Which outcome would we expgdemplementing differential
constraints in a population of computational agemie we expect populations of good
learners to reorganize a cultural system diffegetithn a population of bad learners?
To what extent teaching or written notation coutimmterbalance this result? Is it
possible to find evidence for a furthestructural level, where differences in brain
structure would manifest as cultural variants? Arahy more. | leave these fascinating
issues for future investigation.
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5.5. Conclusions

In this thesis, | have investigated the culturabletton of musical structure in the
laboratory, by combining methods and paradigms ey&gl in economics, evolutionary
linguistics and cognitive neuroscience. | have adgfor the importance of cognitive
constraints in the emergence of both universalpgudliar aspects of human symbolic
systems, music in particular. Perhaps more inteiggt | have provided an initial
support for the neural origins of cultural changéésit need however to be further
investigated. Last, | hope to have shown that dspgfcmusic change can be studied
experimentally in the laboratory, and that thiseegsh can be as fruitful as it is for
language. If we want to undertake this task, weld/dio well to follow the concepts,
methods, and tools of evolutionary linguistics, iscgbline which has been through
similar issues over the past decades (Ravignaningi@s, 2013).

151






References

A

Aaltonen, O., Eerola, O., Lang, A. H., Uusipaikka,& Tuomainen, J. (1994). Automatic discriminatio
of phonetically relevant and irrelevant vowel paedens as reflected by mismatch negativitye
Journal of the Acoustical Society of Ameri8é(3), 1489-1493. doi:10.1121/1.410291

Adams, C. R. (1976). Melodic contour typologthnomusicology?20, 179-215. doi:10.2307/851015

Alain, C., Achim, A., & Woods, D. L. (1999). Septganemory-related processing for auditory frequency
and pattern€?sychophysiology86(6), 737—744. doi:10.1111/1469-8986.3660737

Alain, C., Cortese, F., & Picton, T. W. (1999). Bt«eelated brain activity associated with auditory
pattern processingNeuroreporf 10(11), 2429-2434. doi:10.1097/00001756-19981026(B000

Alho, K., Sainio, K., Sajaniemi, N., Reinikainen,, & Naaténen, R. (1990). Event-related brain pidén
of human newborns to pitch change of an acoustiousts. Electroencephalography and Clinical
Neurophysiology77(2), 151-155. doi:10.1016/0168-5597(90)90031-8

Arbib, M. A. (2013) Language, Music, and the Brain: A Mysterious Relahip Cambridge, MA: MIT
Press.

Atienza, M., Cantero, J. L., & Dominguez-Marin, 2002). The time course of neural changes
underlying auditory perceptual learninggarning & Memory, 9(3), 138—-150.

B

Baggio, G. (2012). Selective alignment of braimpases by task demands during semantic processing.
Neuropsychologigb0(5), 655-665. doi:10.1016/j.neuropsychologia.2012D02

Baggio, G., & Hagoort, P. (2011). The balance betwmemory and unification in semantics: A dynamic
account of the N40Q.anguage and Cognitive Process2§(9), 1338—-1367.

Baldeweg, T., Richardson, A., Watkins, S., Foale@Gruzelier, J. (1999). Impaired auditory frequg
discrimination in dyslexia detected with mismatefolkeed potentialsAnnals of Neurologyd5(4),
495-503.

Bartel, C. (2006). Musical Thought and CompositldpaPostgraduate Journal of Aestheti@1), 25—
36.

Bartlett, F. C. (1932)Remembering: An Experimental and Social St@hmbridge, UK: Cambridge
University Press.

Bates, D., Maechler, M., & Bolker, B. (2012). Imd4near mixed-effects models using S4 classes. R

153



package version 0.99875-4.

Bharucha, J., Curtis, M., Paroo, K. (2011). Musicainmunication as alignment of brain states. In
Language and Music as Cognitive Syste@ford: Oxford University Press.

Bigand, E., & Poulin-Charronnat, B. (2006). Are texperienced listeners™? A review of the musical
capacities that do not depend on formal musicalnitrg. Cognition 100(1), 100-130.
doi:10.1016/j.cognition.2005.11.007

Bishop, D. V. M. (2007). Using mismatch negativity study central auditory processing in
developmental language and literacy impairmentere/lare we, and where should we be going?
Psychological Bulletin1334), 651-672. doi:10.1037/0033-2909.133.4.651

Blacking, J., Byron, R., & Nettl, B. (1995Music, Culture, and Experience: Selected Paperdobh
Blacking Chicago, IL: University of Chicago Press.

Blanning, T. C. (2008)The triumph of music: The rise of composers, maisgcand their artHarvard:
Harvard University Press.

Blood, A. J., & Zatorre, R. J. (2001). Intenselgadurable responses to music correlate with acfivit
brain regions implicated in reward and emotiBroceedings of the National Academy of Science
of the United States of Amerjc@8, 11818— 11823.

Boh, B., Herholz, S. C., Lappe, C., & Pantev, Q1(®). Processing of complex auditory patterns in
musicians and nonmusiciar®oS One6(7), e21458. doi:10.1371/journal.pone.0021458

Boyd, R., & Richerson, P. J. (198&)ulture and the Evolutionary Processhicago, IL: University of
Chicago Press.

Boyd, R., & Richerson, P. J. (2005)he Origin and Evolution of Culture©xford, UK: Oxford
University Press.

BottcherGandor, C., & Ullsperger, P. (1992). Mismatch Neggt in Event /Related Potentials to
Auditory Stimuli as a Function of Varying Interstitas Interval.Psychophysiology29(5), 546-
550.

Bregman, A. S. (1990Auditory Scene Analysis: The Perceptual Organiratb Sound Cambridge,
MA: MIT Press.

Bregman, A. S., & Ahad, P. A. (1995). Demonstragiaf auditory scene analysis: The perceptual
organization of soundThe Journal of the Acoustical Society of Ameri®@®(2), 1177.
doi:10.1016/s0166-2236(96)01022-3

Brighton, H., Smith, K., & Kirby, S. (2005). Langg@ as an evolutionary systefhysics of Life
Reviews2(3), 177—-226. doi:10.1016/j.plrev.2005.06.001

Brown, S., & Jordania, J. (2013). Universals inwueld’s musicsPsychology of Musjet1(2), 229-248.
doi:10.1177/0305735611425896

154



C

Caldwell, C. A, & Millen, A. E. (2008). Review. &lying cumulative cultural evolution in the
laboratory. Philosophical Transactions of the Royal SocietyLohdon. Series B, Biological
Sciences3631509), 3529-3539. doi:10.1098/rsth.2008.0133

Caldwell, C. A., & Smith, K. (2012). Cultural evaion and perpetuation of arbitrary communicative
conventions in experimental microsocieties. PloS One  7(8), e43807.
doi:10.1371/journal.pone.0043807

Caldwell, C. A., Atkinson, M., & Renner, E. (201@&xperimental approaches to studying cumulative
cultural evolution. Current directions in psychological science25(3), 191-195. doi:
10.1177/0963721416641049

Caldwell, C. A., Cornish, H., & Kandler, A. (2018dentifying innovation in laboratory studies of
cultural evolution: rates of retention and measofeslaptationPhilosophical Transactions of the
Royal Society of London. Series B, Biological Smgn 371(1690), 2015013.
doi:10.1098/rstb.2015.0193

Cardenas, V. A., Chao, L. L., Blumenfeld, R., Sdag,Meyerhoff, D. J., Weiner, M. W., & Studholme,
C. (2005). Using automated morphometry to detesbaations between ERP latency and
structural brain MRl in normal adultsHuman Brain Mapping 253), 317-327.
doi:10.1002/hbm.20103

Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Qudal transmission and evolution: a quantitative
approachMonographs in Population Biolog$6, 1-388. doi:10.1016/0160-9327(82)90036-9

Chater, N., & Vitanyi, P. (2003). Simplicity: a diying principle in cognitive sciencePrends in
Cognitive Scienceg(1), 19-22. doi:10.1016/s1364-6613(02)00005-0

Chomsky, N. (1980). Rules and representatidhs. Behavioral and Brain Scienc&§1), 1.

Choudhury, N., & Benasich, A. A. (2011). Maturatimfrauditory evoked potentials from 6 to 48 months:

338. doi:10.1016/j.clinph.2010.05.035

Christiansen, M. H., & Chater, N. (2008). Languageshaped by the braifihe Behavioral and Brain
Sciences31(05), 489-489. doi:10.1017/s0140525x08004998

Christiansen, M. H., & Chater, N. (2016). The NowMever bottleneck: A fundamental constraint on
languageThe Behavioral and Brain Scien¢@&9, 1-52. doi:10.1017/s0140525x1500031x

Christiansen, M. H., & Kirby, S. (2003)anguage EvolutionOxford, UK: Oxford University Press.

Claidiére, N., Kirby, S., & Sperber, D. (2012). &ff of psychological bias separates cultural from
biological evolution.Proceedings of the National Academy of SciencabeotUnited States of
Americag 109(51), E3526. doi:10.1073/pnas.1213320109

Cohen, R. A. (2014)The Neuropsychology of Attenti¢@nd ed.). New York, NY: Plenum Press.

Conard, N. J., Malina, M., & Minzel, S. C. (2008w flutes document the earliest musical tradition
southwestern Germaniature 46(Q(7256), 737—740. doi:10.1038/nature08169

Cornish, H., Smith, K., & Kirby, S. (2013). Systefinam Sequences: an Iterated Learning Account of
the Emergence of Systematic Structure in a Non-listg Task. In M. Knauff (Ed.Proceedings

155



of the 35th Annual Meeting of the Cognitive ScieBoeiety 340-345. New York, NY: Curran
Associates.

Cornish, H., Tamariz, M., & Kirby, S. (2009). CoraglAdaptive Systems and the Origins of Adaptive
Structure: What Experiments Can Tell Wanguage Learnings9, 187—205. doi:10.1111/j.1467-
9922.2009.00540.x

Cross, 1. (2005). Music and meaning, ambiguity &wdlution. In D. Miell, R. MacDonald, & D.
Hargreaves (Eds.Musical Communicatiofpp. 27-43). Oxford, UK: Oxford University Press.

Cross, ., & Woodruff, G. E. (2009). Music as a counicative medium. In R. Botha, & C. Knight (Eds.),
The Prehistory of Languagép. 77-98). New York, NY: Oxford University Pges

Cross, |., Fitch, T., Aboitiz, F., Iriki, A., JasjiE., Lewis, J., Liebal, K., Merker, B., Stout, Drehub,
S. E. (2013). Culture and evolution. In M.A. Arbgd.), Language, music, and the brain: a
mysterious relationshifpp. 541-562). Cambridge, MA: MIT Press.

D

Dale, R., & Lupyan, G. (2012). Understanding thios of morphological diversity: The linguistic
niche hypothesisAdvances in Complex Systerhs3, 1150017.

Darwin, C. (1888)The descent of man, and selection in relation %o Isendon, UK: John Murray.
Davies, S. (1994Musical Meaning and Expressiolthaca, NY: Cornell University Press.

de Boer, B. (2000). Self-organization in vowel syss.Journal of Phonetic28(4), 441-465.
Deacon, T. (1997)The symbolic specieslew York, NY: Nortonp.

Dediu, D., & Ladd, D. R. (2007). Linguistic tonerislated to the population frequency of the adaptiv
haplogroups of two brain size genes, ASPM and Miepbalin.Proceedings of the National
Academy of ScienceB04@6), 10944-10949. doi: 10.1073/pnas.0610848104

Dehaene, S., & Cohen, L. (2007). Cultural recyclyigortical mapsNeuron 56(2), 384—398.

Dehaene, S., Cohen, L., Morais, J., & Kolinsky(F15). llliterate to literate: behavioural andetenal
changes induced by reading acquisitiddature Reviews. Neuroscienc&6(4), 234-244.
doi:10.1038/nrn3924

Delorme, A., & Makeig, S. (2004). EEGLAB: an opeayuce toolbox for analysis of single-trial EEG
dynamics including independent component analysigrnal of Neuroscience Methqdis34(1),
9-21.

Deutsch, D. (2012). The processing of pitch contiging (3rd ed.). In D. Deutsch (EdThe Psychology
of Music(pp. 249-325). New York, NY: Academy Press.

Dienes, Z., Kuhn, G., Guo, X. Y., & Jones, C. (20X2ommunicating structure, affect and movement:
Commentary on Bharucha, Curtis & Paroo. In Rebusdha Rohrmeier, M., Cross, |. Hawkins
(Eds.),Language and Music as Cognitive Syste@dord: Oxford University Press.

Dowling, W. J. (1967)Rhythmic fission and the perceptual organizatiotoog sequencebnpublished
doctoral dissertation. Cambridge, MA: Harvard Unsigy Press

Dowling, W. J. (1971). Recognition of inversions melodies and melodic contoulBerception &

156



Psychophysic®9(3), 348—349. doi:10.3758/bf03212663

Dowling, W. J. (1972). Recognition of melodic tréorsnations: Inversion, retrograde, and retrograde
inversion.Perception & Psychophysic$2(5), 417-421. doi:10.3758/bf03205852

Dowling, W. J. (1994). Melodic contour in hearintgdaremembering melodies. In R. Aiello & J. Sloboda
(Eds.),Musical perceptiongpp. 173-190), New York, NY: Oxford University Pges

Dowling, W. J., & Harwood, D. L. (1986Music cognition Orlando, FL:Academic Press.

Drake, C., & Bertrand, D. (2003). The Quest for \Wmsals in Temporal Processing in Musite
Cognitive Neuroscience of MusiZ1-31. doi:10.1093/acprof:0s0/9780198525202.@IR 0

Drake, C., & Botte, M. C. (1993). Tempo sensitivityauditory sequences: evidence for a multipleloo
model.Perception & Psychophysics4(3), 277-286. doi:10.3758/bf03205262

Du, S., Tao, Y., & Martinez, A. M. (2014). Compoufactial expressions of emotioRAroceedings of the
National Academy of Sciences of the United Stafed\roerica 111(15), E1454-E1462.
doi:10.1073/pnas.1322355111

Dunn, M., Greenhill, S. J., Levinson, S. C., & Gr&y D. (2011). Evolved structure of language shows
lineage-specific trends in word-order universblature 473(7345), 79-82.

E

Ekman, P., & Friesen, W. V. (2003)nmasking the Face: A Guide to Recognizing Emofiams Facial
Clues Los Altos, CA: Malor Books.

Esper, E. A. (1925). A technique for the experiniauéstigation of associative interference in auitf
linguistic materialLanguage Monographs

Evans, N., & Levinson, S. C. (2009). The myth afigaage universals: language diversity and its
importance for cognitive sciencéhe Behavioral and Brain Scienc82(5), 429-448.

F

Fay, N., & Ellison, T. M. (2013). The cultural eutibn of human communication systems in different
sized populations: usability trumps learnabil®yoS one8(8), e71781.

Fay, N., Garrod, S., Roberts, L., & Swoboda, N.1(@0 The Interactive Evolution of Human
Communication Systemg&ognitive Science34(3), 351-386.

Fehér, O., Wang, H., Saar, S., Mitra, P. P., & Tatohovski, O. (2009). De novo establishment ofiwil
type song culture in the zebra findtature 4597246), 564-568. doi:10.1038/nature07994

Feld, S., & Keil, C. (1994)Music Grooves: Essays and dialogu€icago: University and Chicago
Press.

Fitch, W. T. (2005). The evolution of music in coangtive perspectivénnals of the New York Academy
of Sciencesl06(Q(1), 29—49. doi:10.1196/annals.1360.004

Fitch, W. T. (2006). The biology and evolution ofisic: a comparative perspecti@gnition 100(1),
173-215. doi:10.1016/j.cognition.2005.11.009

157



Fitch, W. T. (2010)The Evolution of Languag€ambridge, UK: Cambridge University Press.

Fitch, W. T. (2011). Unity and diversity in humanbuagePhilosophical Transactions of the Royal
Society of London. Series B, Biological Scien86§1563), 376—-388. doi:10.1098/rsth.2010.0223

Fitch, W. T. (2012). The biology and evolution bfthm: Unraveling a paradokanguage and Music
as Cognitive System#3—95. doi:10.1093/acprof:0s0/9780199553426.@IR0

Fitch, W. T. (2015). Four principles of bio-musiogy. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciencgs(0(1664), 20140091. doi:10.1098/rstb.2014.0091

Fitch, W. T. (2017). Cultural evolution: Lab-culad musical universal®ature Human Behavioud,
0018.

Flynn, E., & Whiten, A. (2008). Cultural Transmissiof Tool Use in Young Children: A Diffusion
Chain StudySocial Developmentl7(3), 699-718. doi:10.1111/j.1467-9507.2007.00453.x

Ford, J. M., & Hillyard, S. A. (1981). Event-Reldt®otentials (ERPs) to Interruptions of a Steady
Rhythm.Psychophysiologyl 8(3), 322—-330. d0i;:10.1111/j.1469-8986.1981.tb03043.

Foster, J. L., Shipstead, Z., Harrison, T. L., Kidk. L., Redick, T. S., & Engle, R. W. (2015). Siemed
complex span tasks can reliably measure working ongwapacityMemory & Cognition43(2),
226-236. doi: 10.3758/s13421-014-0461-7

Fraisse, P. (1946). Contribution a I'’étude du ryghen tant que forme temporelleurnal de psychologie
normale et pathologiqu&9, 283-304.

Fraisse, P. (1956).es structures rhythmiqudsouvain, Belgium: Publications Universitaires dafce.

Fraisse, P. (1982). Rhythm and tempo. In D. Deuidh), The psychology of mugjpp. 203-254). New
York, NY: Academy Press.

Fujioka, T., Trainor, L. J., Ross, B., Kakigi, B.Pantev, C. (2004). Musical training enhances iaatiic
encoding of melodic contour and interval structuleurnal of Cognitive Neuroscienc&6(6),
1010-1021.

G

Galantucci, B. (2005). An experimental study of #maergence of human communication systems.
Cognitive science29(6), 737-767. doi:10.1207/s15516709cog0000_34

Galantucci, B. (2009). Experimental semiotics: & a@proach for studying communication as a form of
joint action.Topics in cognitive sciencé(2), 393-410. doi: 10.1111/j.1756-8765.2009.01027 .x.

Garrod, S., Fay, N., Rogers, S., Walker, B., & Sedady N. (2010). Can iterated learning explain the
emergence of graphical symbols®eraction Studiesl1(1), 33-50. doi:10.1075/bct.45.03gar

Geiser, E., Ziegler, E., Jancke, L., & Meyer, MO@2). Early electrophysiological correlates of mete
and rhythm processing in music perceptiCortex 45(1), 93-102.

Gobmez, R. L., & Gerken, L. (2000). Infant artificlanguage learning and language acquisitimends
in Cognitive Scienceg(5), 178-186. do0i:10.1016/s1364-6613(00)01467-4

Gordon, R. L., Key, A., & Dykens, E. M. (2014). Nalicorrelates of cross-modal affective priming by

158



music in Williams syndromeSocial Cognitive and Affective Neuroscien@4), 529-537.
doi:10.1093/scan/nst017

Gottselig, J. M., Brandeis, D., Hofer-Tinguely, @grbély, A. A., & Achermann, P. (2004). Human
central auditory plasticity associated with tongusnce learning.earning & Memory, 11(2),
162-171. doi:10.1101/Im.63304

Gray, R. D., & Atkinson, Q. D. (2003). Languageetivergence times support the Anatolian theory of
Indo-European originNature 4266965, 435-439.

Griffiths, T. L., Kalish, M. L., & Lewandowsky, $2008). Review. Theoretical and empirical evidence
for the impact of inductive biases on cultural ewimn. Philosophical Transactions of the Royal
Society of London. Series B, Biological Scien86§1509), 3503—-3514.

Grout, D. J. (1980)A history of Western mus{8rd ed.). New York, NY: WW Norton & Company, Inc.

H

Haas, M. (2013)Forbidden Music: The Jewish Composers Banned byN#ds.New Haven: Yale
University Press.

Hamming, R. W. (1986)oding and Information Theorypper Saddle River, NJ: Prentice-Hall, Inc.

Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lamabebt, & Dehaene, S. (2015). Origins of the
specialization for letters and numbers in ventratipitotemporal cortexTrends in Cognitive
Sciencesl9(7), 374-382.

Harwood, D. L. (1976). Universals in music: A persfive from cognitive psychology.
Ethnomusicology521-533.

Hockett, C. F. (1960). The origin of spee8itientific American203 89-96.

Honing, H., ten Cate, C., Peretz, I., & TrehubES(2015). Without it no music: cognition, biologpd
evolution of musicality.Philosophical Transactions of the Royal SocietyLofdon. Series B,
Biological Sciences37(0(1664), 20140088. doi:10.1098/rsth.2014.0088

Hsieh, S., Hornberger, M., Piguet, O., & HodgesRJ(2012). Brain correlates of musical and facial
emotion recognition: Evidence from the dementieuropsychologigb((8), 1814-1822.

Hudson Kam, C. L., & Newport, E. L. (2005). Regidarg unpredictable variation: The roles of adult
and child learners in language formation and chabgeguage learning and developmeh),
151-195.

Hurford, J. (1999). The evolution of language artfuages. In R. Dunbar, C. Knight, & C. Power (Eds.
The evolution of culturép. 173-193). Edinburgh, UK: Edinburgh Univerdityess.

Huron, D. (1996). The melodic arch in Western folikgs.Computing in Musicologyl0, 3—23.

Huron, D. (2001). Tone and Voice: A Derivation dietRules of Voice-Leading from Perceptual
Principles.Music Perception19(1), 1-64. doi:10.1525/mp.2001.19.1.1

Huron, D. (2012). Two challenges in cognitive mogigy. Topics in Cognitive Sciencé(4), 678—684.
doi:10.1111/j.1756-8765.2012.01224.x

159



Huron, D. B. (2006)Sweet Anticipation: Music and the Psychology ofdexgtion Cambridge, MA:
MIT Press.

J

Jackendoff, R. (2009). Parallels and non pardatletareen Language and Mudidusic Perception26(3),
195-204. doi:10.1525/mp.2009.26.3.195

Jackendoff, R. S., & Lerdahl, F. (1983)generative theory of tonal mus€ambridge, MA.: MIT Press.

Jacoby N., & McDermott J. H. (2017). Integer ratidiors on musical rhythm revealed cross-culturally
by iterated reproductiorCurrent BiologyIn press corrected proof.

Juslin, P. N., & Sloboda, J. A. (200Music and emotion: Theory and resear@xford, UK: Oxford
University Press.

Justus, T., & Hutsler, J. J. (2005). Assessingtemass and Domain Specificitvusic Perception23(1),
1-27. d0i:10.1525/mp.2005.23.1.1

K

Kalish, M. L., Griffiths, T. L., & Lewandowsky, $2007). Iterated learning: Intergenerational knalgie
transmission reveals inductive biasesychonomic Bulletin & Review4@), 288-294.

Kashima, Y. (2000). Maintaining Cultural Stereotypim the Serial Reproduction of Narratives.
Personality & Social Psychology Bulletipg(5), 594—-604. doi:10.1177/0146167200267007

Kempe, V., Gauvrit, N., & Forsyth, D. (2015). Stture emerges faster during cultural transmission in
children than in adultCognition 136, 247-254. doi;10.1016/j.cognition.2014.11.038

Kirby, S. (1999) Function, Selection, and Innateness: The Emergehtanguage Universal©xford,
UK: Oxford University Press.

Kirby, S. (2001). Spontaneous evolution of lingigisstructure-an iterated learning model of the
emergence of regularity and irregularitg EE Transactions on Evolutionary Computatié),
102-110.

Kirby, S., & Hurford, J. R. (2002). The Emergendd.imguistic Structure: An Overview of the Iterated
Learning Model. In A, C. Laurea, & M. A. Domenicari Laurea (Eds.Bimulating the Evolution
of Languaggpp. 121-147). New York, NY: Springer Verlag.

Kirby, S., Cornish, H., & Smith, K. (2008). Cumdulat cultural evolution in the laboratory: an
experimental approach to the origins of structareuman languag@roceedings of the National
Academy of Sciences of the United States of Ama&0&31), 10681-10686.

Kirby, S., Dowman, M., & Griffiths, T. L. (2007)nhateness and culture in the evolution of language.
Proceedings of the National Academy of SciencHsedinited States of Americb04(12), 5241—
5245,

Kirby, S., Griffiths, T., & Smith, K. (2014). Iteted learning and the evolution of langua@eirrent
Opinion in Neurobiology?28, 108-114. doi:10.1016/j.conb.2014.07.014

Kirby, S., Tamariz, M., Cornish, H., & Smith, K.q25). Compression and communication in the cultural

160



evolution of linguistic structureCognition 141, 87-102. doi:10.1016/j.cognition.2015.03.016

Kivy, P. (1980).The corded shell: Reflections on musical expres$tanceton, NJ: Princeton University
Press.

Kleeman, J. E. (1985). The parameters of musicahsmission.Journal of Musicology 1-22.
doi:10.2307/763720

Koelsch, S. (2011). Towards a neural basis of msiog musical semanticBhysics of Life Reviews
8(2), 89-105. doi:10.1016/j.plrev.2011.04.004

Koelsch, S., & Siebel, W. A. (2005). Towards a m@lrasis of music perceptiofirends in Cognitive
Sciences9(2), 578-584. doi:10.1016/j.tics.2005.10.001

Koopman, C., & Davies, S. (2001). Musical Meaning@iBroader PerspectivEhe Journal of Aesthetics
and Art Criticism 59(3), 261-273. doi:10.1093/acprof:0s0/9780199608¥X¥H0007

Kraus, N., McGee, T. J., Carrell, T. D., Zecker,G5, Nicol, T. G., & Koch, D. B. (1996). Auditory
neurophysiologic responses and discrimination defic children with learning problemScience
273(5277), 971-973. doi:10.1126/science.273.5277.971

Krumhansl, C. L. (2015). Statistics, Structure, &tygle in MusicMusic Perception33(1), 20-31.

Kujala, T., Kallio, J., Tervaniemi, M., & NaataneR, (2001). The mismatch negativity as an index of
temporal processing in auditio@linical Neurophysiologyl129), 1712-1719.

L

Ladinig, O., Honing, H., Haaden, G., & Winkler,(2009). Probing attentive and preattentive emergent
meter in adult listeners without extensive musiining. Music Perception26(4), 377—386.

Lang, A. H., Eerola, O., Korpilahti, P., Holopainén Salo, S., & Aaltonen, O. (1995). Practicaluss
in the clinical application of mismatch negativiBar and Hearing16(1), 118—-130.

Large, E. W. (2010). Neurodynamics of Music. InR1.Jones, R. R. Fay, & A. N. Popper (Edsljysic
Perception(pp. 201-231). New York, NY: Springer.

Leman, M. (1992). The theory of tone semantics: c@ph foundation, and applicatiomMinds and
Machines 2(4), 345-363. doi:10.1007/bf00419418

Lerdahl, F. (1992). Cognitive constraints on conijmsal systemsContemporary Music Revie®(2),
97-121. doi:10.1093/acprof:0s0/9780198508465.00R.00

Lerdahl, F., & Jackendoff, R. (1983.generative theory of tonal musi@ambridge, MA: MIT Press.

Leroi, A. M., MacCallum, R. M., Mauch, M., & Burf\. (2012). Reply to Claidiere et al.: Role of
psychological bias in evolution depends on the kificculture. Proceedings of the National
Academy of Sciencel0951), E3527-E3527. d0i:10.1073/pnas.1214445109

Levitin, D. J., Chordia, P., & Menon, V. (2012). Blaal rhythm spectra from Bach to Joplin obey a 1/f
power law.Proceedings of the National Academy of SciencdheotUnited States of America
10910), 3716-3720.

Lewis, D. (1969)Convention: A Philosophical Studgambridge, MA: Harvard University Press

161



Lewontin, R. (2000). Does culture evolve? In M. i8lpB. Battaglia, E. Carafoli, & G.A. Danieli (EQs
The origin of humankinddmsterdam, the Netherlands: IOS Press.

Lomax, A. (1977). Universals in songlorld of Musi¢19, 117-129.
Lomax, A. (1980). Factors of musical styldheory & Practice: Essays Presented to Gene Weltfis

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB:apen-source toolbox for the analysis of event-
related potentiald=rontiers in Human Neuroscienc® 213. doi:10.3389/fnhum.2014.00213

Loui, P., Wessel, D., & Kam, C. H. (2006). Acqugimew musical grammars: a statistical learning
approach. In R. sun, & N. Miyake (EdsBroceedings of the 28th annual conference of the
cognitive science sociefpp. 1711-1716). Vancouver, BC: Curran Associdtes,

Luck, S. J. (2014)An introduction to the event-related potential teicjue (3rd ed.). Cambridge, MA:
MIT Press.

Lumaca, M., & Baggio, G. (2016). Brain potentiategict learning, transmission and modification of a
artificial symbolic systemSocial Cognitive and Affective Neuroscigntewl112.

M

MacCallum, R. M., Mauch, M., Burt, A., & Leroi, Al. (2012). Evolution of music by public choice.
Proceedings of the National Academy of Sciencttsedfnited States of AmericeE0930), 12081
12086.

Martin, D., Hutchison, J., Slessor, G., Urquhart, Qunningham, S. J., & Smith, K. (2014). The
spontaneous formation of stereotypes via cumulatieural evolution.Psychological Scienge
25(9), 1777-1786. doi:10.1177/0956797614541129

Mathews, M. V., Pierce, J. R., Reeves, A., & Rahelt A. (1988). Theoretical and experimental
explorations of the Bohlen—Pierce scdlbe Journal of the Acoustical Society of Amer&4),
1214-1222.

Mauch, M., MacCallum, R. M., Levy, M., & Leroi, Ad. (2015). The evolution of popular music: USA
1960-2010Royal Society Open Scien@és), 150081. doi:10.1098/rso0s.150081

McDermott, J., & Hauser, M. (2005). The originswafisic: Innateness, uniqueness, and evoluktusic
Perception23(1), 29-59. doi:10.1525/mp.2005.23.1.29

McNamara, L., & Ballard, M. E. (1999). Resting asalj sensation seeking, and music preference.
Genetic, Social, and General Psychology MonograpB$§, 229—-250.

Meyer, L. B. (1956)Emotion and meaning in musiChicago: University of Chicago Press.

Meyer, L. B. (1957). Meaning in music and infornoatitheory.The Journal of Aesthetics and Art
Criticism, 15, 412-424.

Menning, H., Roberts, L. E., & Pantev, C. (2000jasfc changes in the auditory cortex induced by
intensive frequency discrimination trainingeuroreport 11(4), 817—822. doi:10.1097/00001756-
200003200-00032

Merker, B. (2002). Music: the missing Humboldt systMusicae Scientiges(l), 3-21.

162



Merker, B. (2006). The Uneven Interface Betweent@al and Biology in Human MusidVusic
Perception24(1), 95-98. do0i:10.1525/mp.2006.24.1.95

Merker, B., Morley, 1., & Zuidema, W. (2015). Fiftiendamental constraints on theories of the origins
music.Philosophical Transactions of the Royal Societi@idon. Series B, Biological Sciengces
370(1664), 20140095. doi:10.1098/rstb.2014.0095

Mertens, P. (2004). The prosogram: Semi-automiitstription of prosody based on a tonal perception
model.Speech Prosody 2004, International Conference

Mesoudi, A. (2007). Using the methods of experirabsbcial psychology to study cultural evolution.
Journal of Social, Evolutionary & Cultural Psychgl 1(2), 35. doi:10.1037/h0099359

Mesoudi, A. (2015). Cultural Evolution: A Review ©heory, Findings and Controversi&solutionary
Biology, 1-17. d0i:10.1007/s11692-015-9320-0

Mesoudi, A., & Whiten, A. (2004). The Hierarchichtansformation of Event Knowledge in Human
Cultural Transmissionlournal of Cognition and Culturé(1), 1-24.

Mesoudi, A., & Whiten, A. (2008). Review. The mplg roles of cultural transmission experiments in
understanding human cultural evolutio®hilosophical Transactions of the Royal Society of
London. Series B, Biological Scienc8631509), 3489—-3501. doi:10.1098/rstb.2008.0129

Mesoudi, A., Whiten, A., & Laland, K. N. (2004). lBpective: is human cultural evolution Darwinian?
Evidence reviewed from the perspective of the @rafiSpeciesEvolution; International Journal
of Organic Evolution58(1), 1-11. doi:10.1111/j.0014-3820.2004.tb01568.x

Miller, G., Wallin, N., Merker, B., & Brown, S. (ZM). The origins of musicCambridge, MA: MIT
Press.

Miranda, E. R., Kirby, S., & Todd, P. (2003). Onoutational Models of the Evolution of Music: From
the Origins of Musical Taste to the Emergence @&f@marsContemporary Music Revie®2(3),
91-111.

Moore, J. K., & Guan, Y. L. (2001). Cytoarchite@band axonal maturation in human auditory cortex.
Journal of the Association for Research in Otolggiogy, 2(4), 297-311.
doi:10.1007/s101620010052

Moreno, M., & Baggio, G. (2015). Role asymmetry azwte transmission in signaling games: an
experimental and computational investigatiorCognitive Scienge 39(5), 918-943.
doi:10.1111/cogs.12191

Morley, I. (2013). The Prehistory of Music: Human Evolution, Archagplpand the Origins of
Musicality. Oxford, UK: Oxford University Press.

N

Naatanen, R., & Alho, K. (1997). Mismatch negayiite measure for central sound representation
accuracyAudiology and Neurotolog®(5), 341-353. do0i:10.1159/000259255

Naatanen, R., & Winkler, I. (1999). The conceptanfditory stimulus representation in cognitive
neurosciencePsychological Bulletin1256), 826—859. doi:10.1037//0033-2909.125.6.826

163



Naatanen, R., Gaillard, A. W., & Mantysalo, S. (&8R7Early selective-attention effect on evoked
potential reinterpretedicta Psychologicad2(4), 313-329. doi:10.1016/0001-6918(78)90006-9

Naatanen, R., Paavilainen, P., Rinne, T., & Alho(2007). The mismatch negativity (MMN) in basic
research of central auditory processing: a revighmical Neurophysiologyl1812), 2544—2590.

Naatanen, R., Schroger, E., Karakas, S., Tervanigmi& Paavilainen, P. (1993). Development of a
memory trace for a complex sound in the human bN#uroreport 4(5), 503-506.

Narmour, E. (1990)The analysis and cognition of basic melodic streesuThe implication-realization
model.Chicago: University of Chicago Press.

Nattiez, J. J. (1990Music and discourseToward a semiology of musiBrinceton University Press,
1990.

Nettl, B. (1983).The Study of Ethnomusicology: Twenty-nine Issuab @oncepts Chicago, IL:
University of lllinois Press.

Nettl, B. (2000). An ethnomusicologist contemplateg/ersals in musical sound and musical culture. |
N. L. Wallin, B. Merker, & S. Brown (Eds.J,he origins of musi{pp. 463—472). Cambridge, MA:
MIT Press.

Novak, G., Ritter, W., & Vaughan, H. G. (1992). TBkeronometry of AttentionModulated Processing
and Automatic Mismatch DetectioRsychophysiologydoi:10.1111/j.1469-8986.1992.tb01714.x

Nowak, I|., & Baggio, G. (2016). The emergence ofravorder and morphology in compositional
languages via multigenerational signaling gandesrnal of Language Evolutigi(2), 137-150.
doi:10.1093/jole/lzw007

O

Orsini, A., Grossi, D., Capitani, E., Laiacona, Rgpagno, C., & Vallar, G. (1987). Verbal and spati
immediate memory span: normative data from 1358tadund 1112 childrertalian Journal of
Neurological Science$(6), 539-548. doi:10.1007/bf02333660

P

Paavilainen, P. (2013). The mismatch-negativity (NDMcomponent of the auditory event-related
potential to violations of abstract regularitiesegiew.International Journal of Psychophysiolggy
88(2), 109-123. doi:10.1016/j.ijpsycho.2013.03.015

Pablos Martin, X., Deltenre, P., Hoonhorst, |., Kessis, E., Rossion, B., & Colin, C. (2007). Peteap
biases for rhythm: The Mismatch Negativity lateimgexes the privileged status of binary vs non-
binary interval ratiosClinical Neurophysiology11812), 2709-2715.

Pagel, M., & Mace, R. (2004). The cultural wealtmations.Nature 4286980), 275-278.

Palmer, S. E., Schloss, K. B., Xu, Z., & Prado-LdarR. (2013). Music—color associations are mediat
by emotionProceedings of the National Academy of ScientEX22), 8836—8841.

Patel, A. D. (2010)Music, Language, and the BraiNew York, NY: Oxford University Press.

Pekkonen, E., Rinne, T., & Naatanen, R. (1995)ialdity and replicability of the mismatch negativi

164



Electroencephalography and Clinical Neurophysiolo@6(6), 546-554. do0i:10.1016/0013-
4694(95)00148-r

Peretz, |., & Coltheart, M. (2003). Modularity olusic processindNature Neuroscien¢&(7), 688—691.
doi:10.1038/nn1083

Pierrehumbert, J., & Hirschberg, J. (1990). Themmaaof intonational contours in the interpretatiafn
discourse. In P.R. Cohen, & M.E. Pollack (Edim}entions in Communicatiofpp. 271-311).
Cambridge, MA: MIT Press.

Poladian, S. (1951). Melodic Contour in Traditiomdlisic. Journal of the International Folk Music
Council 3, 30-35. doi:10.2307/835769

Port, R. F. (1991). Can complex temporal pattemaltomatized?he Behavioral and Brain Sciencges
14(04), 762—764. doi:10.1017/s0140525x00072447

Povel, D. J. (1981). Internal representation of pémtemporal patternslournal of Experimental
Psychology. Human Perception and Performan¢g), 3—18. doi:10.1037//0096-1523.7.1.3

R

Ravignani A., Delgado T. and Kirby S. (2016). TheltGral Evolution Of Structure In Music And
Language. In S.G. Roberts, C. Cuskley, L. McCrolomarcelo-Coblijn, O. Fehér, & T. Verhoef
(Eds.)The Evolution of Language: Proceedings of the litdrnational Conference

Ravignani, A., & Gingras, B. (2013). EvoMus: Theokiion of music and language in a comparative
perspective. In H. Lyn, & E.A. Cartmill (EdsThe Evolution of Language: Proceedings of the 10th
International ConferenceSingapore: World Scientific.

Richerson, P. J., & Boyd, R. (1985). Simple modefilscomplex phenomena: The case of cultural
evolution. In J. Dupre (Ed.J;he Latest on the Best: Essays on Evolution anih@fity (pp.27-
52). Boston, MA: MIT Press.

Rissanen, J. (1978). Modeling by shortest datarge®m. Automatica: The Journal of IFAC, the
International Federation of Automatic Contrdi4(5), 465-471.

Rodriguez Zivic, P. H., Shifres, F., & Cecchi, G.(8013). Perceptual basis of evolving Western oalsi
styles.Proceedings of the National Academy of Sciencésedinited States of Americkl((24),
10034-10038. doi:10.1073/pnas.1222336110

Rohrmeier, M., & Cross, |. (2013). Artificial granamlearning of melody is constrained by melodic
inconsistency: Narmour’'s principles affect melodiearning. PloS One 8(7), e66174.
doi:10.1371/journal.pone.0066174

Rohrmeier, M., Rebuschat, P., & Cross, I. (2014gidental and online learning of melodic structure.
Consciousness and Cognitid@0(2), 214—-222. doi:10.1016/j.concog.2010.07.004

Ross, A. (2007)The Rest is Noise: Listening to the Twentieth Ggntdew York: Farrar, Straus and
Giroux.

Rubin, D. C. (1997)Memory in oral traditions: The cognitive psycholazfyepic, ballads, and counting-
out rhymesOxford: Oxford University Press.

165



Rzeszutek, T., Savage, P. E., & Brown, S. (2012 S$tructure of cross-cultural musical diversity.
Proceedings. Biological Sciences/The Royal Sqc2811733), 1606-1612.

S

Sable, J. J., Gratton, G., & Fabiani, M. (2003uBbpresentation rate is represented logarithnyidall
human cortexThe European Journal of Neurosciend&(11), 2492—-2496. doi:10.1046/j.1460-
9568.2003.02690.x

Salimpoor, V. N., Benovoy, M., Longo, G., Coopeckiol. R., & Zatorre, R. J. (2009). The rewarding
aspects of music listening are related to degreenudtional arousaPloS ONE4(10): e7487.
doi:10.1371/journal.pone.0007487

Sams, M., Paavilainen, P., Alho, K., & N&aatanen,(H85). Auditory frequency discrimination and
event-related potentialElectroencephalography and Clinical Neurophysiolog@g(6), 437—-448.

Savage, P. E., & Brown, S. (2007). Toward a New Gamative MusicologyAnalytical Approaches to
World Musig 2(2), 148-197.

Savage, P. E., Brown, S., Sakai, E., & Currie, T(2B15). Statistical universals reveal the stegtand
functions of human musi®roceedings of the National Academy of Sciencéiseo/nited States
of America11229), 8987-8992. do0i:10.1073/pnas.1414495112

Sawa, G. D. (2002). Oral transmission in arabiciqymast and preser@ral Tradition, 41).
Schoenberg, A., & Newlin, D. (19513tyle and idealLondon, UK: Williams & Norgate

Schoénpflug, U. (2008).Cultural Transmission: Psychological, Developmentaocial, and
Methodological Aspect€ambridge, UK: Cambridge University Press.

Schrdger, E., Naatanen, R., & Paavilainen, P. (L¥2ent-related potentials reveal how non-attended
complex sound patterns are represented by the hbnaém Neuroscience Letterd46(2), 183—
186. d0i:10.1016/0304-3940(92)90073-g

Schulze, H.-H. (1989). Categorical perception gthimic patternsPsychological Resear¢b1(1), 10—
15. doi:10.1007/bf00309270

Schwartze, M., Rothermich, K., Schmidt-Kassow, &Kotz, S. A. (2011). Temporal regularity effects
on pre-attentive and attentive processing of dea@aBiological Psychology87(1), 146-151.

Scott-Phillips, T. C., & Kirby, S. (2010). Languageolution in the laboratorylrends in Cognitive
Sciencesl4(9), 411-417. doi:10.1016/j.tics.2010.06.006

Scott-Phillips, T.C., Kirby, S., & Ritchie, G.R.8009). Signalling signalhood and the emergence of
communicationCognition 113@), 226—233.

SedIimeier, P., Weigelt, O., & Walther, E. (2011usdit is in the muscle: How embodied cognition may
influence music preferencegdusic Perception: An Interdisciplinary Journ&@8), 297-306.

Selten, R., & Warglien, M. (2007). The emergencsiofple languages in an experimental coordination
game Proceedings of the National Academy of Sciencésediinited States of Americk04(18),
7361-7366. doi:10.1073/pnas.0702077104

166



Seppéanen, M., Brattico, E., & Tervaniemi, M. (2007)actice strategies of musicians modulate neural
processing and the learning of sound-patteNeurobiology of Learning and Memorg7(2),
236-247.

Serra, J. (2013). What can we learn from massiveierarchives? In S. Muller, S.S. Narayanan, &
Schuller B. (Eds.)Pagstuhl seminar 13451: Computational Audio Anayéiadern, Germany.

Serra, J., Corral, A., Boguia, M., Haro, M., & Ascal. L. (2012). Measuring the evolution of
contemporary western popular musscientific Report2, 521. doi:10.1038/srep00521

Shannon, C. E. (1949). A Mathematical Theory of Gamication.Bell System Technical Journal7,
379-423.

Shannon, C. E., & Weaver, W. (1949he mathematical theory of informatiodniversity of lllinois
Press, Urbana, II.

Siegel, S. (1956Nonparametric statistics for the behavioral sciendéew York, NY: McGraw-Hill.

Sigman, M., & Dehaene, S. (2005). Parsing a cogntisk: a characterization of the mind’s bottlénec
PLoS Biology3(2), €37. doi:10.1371/journal.pbio.0030037

Skyrms, B. (2010)Signals: Evolution, Learning, and Informatid@xford, UK: Oxford University Press.

Sloboda, J. A. (1985Y.he musical mind: The cognitive psychology of m@idord: Oxford University
Press.

Smith, K., & Kirby, S. (2008). Cultural evolutioimplications for understanding the human language
faculty and its evolutionPhilosophical Transactions of the Royal Society @fidon. Series B,
Biological Sciences3631509), 3591-3603. doi:10.1098/rsth.2008.0145

Snyder, B. (2008). Memory for music. In S. HalldmCross, & M. Thaut (Eds.pPxford Handbook of
Music Psychologypp. 107-117). Oxford, UK: Oxford University Press

Sperber, D. (1996Explaining culture: A naturalistic approackaxford: Oxford University Press.

Spike, M., Smith, K., & Kirby, S. (2016). Minimalr@ssures leading to duality of patterning. In S.G.
Roberts, C. Cuskley, L. McCrohon, L. Barcel6-CapliO0. Fehér, & T. Verhoef (EdsThe
Evolution of Language: Proceedings of the 11thrimiéional ConferencéEVOLANG11), New
Orleans.

Stevens, C., & Byron, T. (2009). Universals in nousiocessing. In S. Hallam, I. Cross, & M. Thaut
(Eds.)Oxford handbook of music psycholdgyp. 14—23). Oxford, UK: Oxford University Press.

Sussman, E., Ritter, W., & Vaughan, H. G., Jr. @9%n investigation of the auditory streaming effe
using event-related brain potentidPsychophysiologyd6(1), 22—34.

Swarup, S., & Gasser, L. (2009). The Iterated {fiaaion Game: A New Model of the Cultural
Transmission of LanguagA&daptive Behavigqrl7, 213-235. doi: 10.1177/1059712309105818

167



T

Tamariz, M. (2013). RegMap (Version 1.0) (software)

Tamariz, M. (2017). Experimental Studies on thet@al Evolution of LanguageAnnual Reviews of
Linguistics

Tamariz, M., & Kirby, S. (2015). Culture: copyingpmpression, and conventionali§ognitive Scienge
39(1), 171-183.

Tamariz, M., & Kirby, S. (2016). The cultural evtin of languageCurrent Opinion in Psychologg,
27-43

Tamariz, M., & Smith, A. D. (2008). Regularity inappings between signals and meanirgs.
Proceedings of the 7th International Conferencet@nEvolution of Languag®&15-322.

Tamariz, M., Brown, J. E., & Murray, K. M. (2010)he role of practice and literacy in the evolutafn
linguistic structure. In A.D.M. Smith, M. SchouwstB. de Boer, & K. Smith (Eds.JThe Evolution
of Language: Proceedings of the 8th Internationahference Singapore: World Scientific.

Tamariz, M., Ellison, T. M., Barr, D. J., & Fay, \R014). Cultural selection drives the evolution of
human communication systemBroceedings of the Royal Society of London B: okl
Sciences281(1788), 20140488.

Tan, R., & Fay, N. (2011). Cultural transmissionthe laboratory: agent interaction improves the
intergenerational transfer of informatidgvolution and Human Behavic32(6), 399—-406.

Tavano, A., Widmann, A., Bendixen, A., Trujillo-Bato, N., & Schrbéger, E. (2014). Temporal
regularity facilitates higher-order sensory pradits in fast auditory sequencéshe European
Journal of Neuroscieng89(2), 308-318. doi:10.1111/ejn.12404

Temperley, D. (2004). Communicative Pressure aadetiolution of Musical Styleddusic Perception
21(3), 313-337. d0i:10.1525/mp.2004.21.3.313

Terhardt, E. (1987)Gestalt principles and music perceptidn W.A. Yost, & C.S. Watson (Eds.),
Auditory processing of complex sourfdp.157-166). Hilldale, NJ:Erlbaum.

Tervaniemi, M., llvonen, T., Karma, K., Alho, K., 8d&tdnen, R. (1997). The musical brain: brain wave
reveal the neurophysiological basis of musicalithiuman subject®Neuroscience Letter26(1),
1-4.

Tervaniemi, M., Rytkdnen, M., Schréger, E., ImanieR. J., & Naatanen, R. (2001). Superior formatio
of cortical memory traces for melodic patterns imsiniansLearning & Memory; 8(5), 295-300.
doi:10.1101/Im.39501

Tervaniemi, M., Schroger, E., & Naatanen, R. (19%#g-attentive processing of spectrally complex
sounds with asynchronous onsets: an event-relat#dnial study with human subjects.
Neuroscience Letter2273), 197—-200. doi:10.1016/s0304-3940(97)00346-7

Theisen-White, C. A., Oberlander, J., & Kirby, 2012). Systematicity and arbitrariness in novel
communication systemStudies on the Emergence and Evolution of Humann@orication 15—
32. doi:10.1075/bct.45.02the

168



Tierney, A. T., Russo, F. A., & Patel, A. D. (201The motor origins of human and avian song strectu
Proceedings of the National Academy of Scienctsedinited States of AmericE08(37), 15510—
15515.

Tiitinen, H., May, P., Reinikainen, K., & Naatandn, (1994). Attentive novelty detection in humass i
governed by pre-attentive sensory memdgture 3726501), 90-92. doi:10.1038/372090a0

Todd, J., Myers, R., Pirillo, R., & Drysdale, K.Q®0). Neuropsychological correlates of auditory
perceptual inference: a mismatch negativity (MMNQ)dy. Brain Research131Q 113-123.
doi:10.1016/j.brainres.2009.11.019

Tolbert, E. (2001). Music and meaning: An evoluéipnstory.Psychology of Musj29, 84-94.

Tomasello, M. (2009)The cultural origins of human cognitio@ambridge, MA: Harvard University
Press.

Tovey, D. F. (1956)The forms of musicCleveland: Meridian-Books.

Trainor, L. J. (2015). The origins of music in a@ody scene analysis and the roles of evolutioncatidire
in musical creationPhilosophical Transactions of the Royal SocietyLohdon. Series B,
Biological Sciences370(1664), 20140089. doi:10.1098/rsth.2014.0089

Trainor, L., McFadden, M., Hodgson, L., Darragh, Barlow, J., Matsos, L., & Sonnadara, R. (2003).
Changes in auditory cortex and the developmentisfnaitch negativity between 2 and 6 months
of age.International Journal of Psychophysiolady1(1), 5-15.

Trehub, S. E. (2000). Human processing predispostand musical universals. In N. L. Wallin, B.
Merker, & S. Brown (Eds.)The origins of musi¢pp. 427-448). Cambridge, MA: MIT Press

Trehub, S. E. (2015). Cross-cultural convergencenabical featuresProceedings of the National
Academy of Sciences of the United States of Amand@R9), 8809-8810.

Trehub, S. E., Becker, J., & Morley, I. (2015). €seultural perspectives on music and musicabhyl.
Trans. R. Soc. B370(1664), 20140096. doi:10.1098/rstb.2014.0096

Tremblay, K., Kraus, N., & McGee, T. (1998). Then& course of auditory perceptual learning:
neurophysiological changes during speestund trainingNeuroreport 9(16), 3557.

Vv

van Zuijen, T. L., Sussman, E., Winkler, |., NA@&dnR., & Tervaniemi, M. (2004). Grouping of
sequential sounds—an event-related potential staiypparing musicians and nonmusicians.
Journal of Cognitive NeurosciencEy(2), 331-338. doi:10.1162/089892904322984607

Verhoef, T. (2012). The origins of duality of patiang in artificial whistled languagekanguage and
Cognition 4(4), 357-380. doi:10.1515/langcog-2012-0019

Verhoef, T., Kirby, S., & de Boer, B. (2013). Coméforial structure and iconicity in artificial whisd
languages. In M. Knauff (Ed.Proceedings of the 35th annual conference of tigaitiove science
sociey (pp. 3669-3674). Berlin, Germany: Curran assesiaic.

Von Hippel, P. (2000). Redefining pitch proximitfjessitura and mobility as constraints on melodic
intervals.Music Perception17(3), 315-327. doi:10.2307/40285820

169



Vos, P. G., Mates, J., & van Kruysbhergen, N. W98)9 The perceptual centre of a stimulus as the cue
for synchronization to a metronome: Evidence frosynghronies.The Quarterly Journal of
Experimental Psycholog¢8(4), 1024—1040. doi:10.1080/14640749508401427

Vuust, P., Ostergaard, L., Pallesen, K. J., Balley& Roepstorff, A. (2009). Predictive codingrofisic-
brain responses to rhythmic incongruiBortex 45(1), 80-92. doi:10.1016/j.cortex.2008.05.014

Vuust, P., Pallesen, K. J., Bailey, C., van Zuijénl., Gjedde, A., Roepstorff, A., & Jstergaard, L
(2005). To musicians, the message is in the meeatentive neuronal responses to incongruent
rhythm are left-lateralized in musiciariéeurolmage24(2), 560-564.

w

Whiten, A., & Mesoudi, A. (2008). Establishing arperimental science of culture: animal social
diffusion experimentsPhilosophical Transactions of the Royal SocietyLohdon. Series B,
Biological Sciences, 363489-3501. doi: 10.1098/rstb.2008.0134

Whiten, A., Spiteri, A., Horner, V., Bonnie, K. E.ambeth, S. P., Schapiro, S. J., & de Waal, AVIB.
(2007). Transmission of multiple traditions withamd between chimpanzee grougurrent
Biology, 17(12), 1038-1043. d0i:10.1016/j.cub.2007.05.031

Williamson, V. J., & Stewart, L. (2010). Memory fpitch in congenital amusia: beyond a fine-grained
pitch discrimination problenMemory, 18(6), 657—669. doi:10.1080/09658211.2010.501339

Winkler, 1. (2007). Interpreting the Mismatch Negdy. Journal of Psychophysiologp1(3-4), 147—
163. doi:10.1027/0269-8803.21.34.147

Winkler, 1., & Schroger, E. (1995). Neural represgion for the temporal structure of sound patterns
Neuroreport 6(4), 690—694. doi:10.1097/00001756-199503000-00026

Winkler, I., Denham, S. L., & Nelken, I. (2009). Meling the auditory scene: predictive regularity
representations and perceptual objetitsnds in Cognitive Sciences3(12), 532-540.

Winkler, 1., Haden, G. P., Ladinig, O., Sziller, & Honing, H. (2009). Newborn infants detect theab
in music.Proceedings of the National Academy of Scienctednited States of AmericE0§7),
2468-2471. doi:10.1073/pnas.0809035106

Winter, B., & Wieling, M. (2016). How to analyzenfjuistic change using mixed models, Growth Curve
Analysis and Generalized Additive Modelirpurnal of Language Evolutiod(1), 7-18.

X

Xu, J., Dowman, M., & Griffiths, T. L. (2013). Cultal transmission results in convergence towards
colour term universalsProceedings of the Royal Society B: Biological Soés 280(1758),
20123073-20123073. doi:10.1098/rspb.2012.3073

Z

Zatorre, R. J. (2013). Predispositions and pldagtiai music and speech learning: neural correlates
implications.Science342(6158), 585-589. doi:10.1126/science.1238414

Zatorre, R. J., Delhommeau, K., & Zarate, J. M1@0 Modulation of auditory cortex response tolpitc
variation following training with microtonal melogk. Frontiers in Psychology 3, 544.
doi:10.3389/fpsyg.2012.00544

170



