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Inferring the environment’s statistical structure and adapting behav-
ior accordingly is a fundamental modus operandi of the brain. A
simple form of this faculty based on spatial attentional orienting can
be studied with Posner’s location-cueing paradigm in which a cue
indicates the target location with a known probability. The present
study focuses on a more complex version of this task, where prob-
abilistic context (percentage of cue validity) changes unpredictably
over time, thereby creating a volatile environment. Saccadic
response speed (RS) was recorded in 15 subjects and used to esti-
mate subject-specific parameters of a Bayesian learning scheme
modeling the subjects’ trial-by-trial updates of beliefs. Different
response models—specifying how computational states translate
into observable behavior—were compared using Bayesian model se-
lection. Saccadic RS was most plausibly explained as a function of
the precision of the belief about the causes of sensory input. This
finding is in accordance with current Bayesian theories of brain
function, and specifically with the proposal that spatial attention is
mediated by a precision-dependent gain modulation of sensory
input. Our results provide empirical support for precision-dependent
changes in beliefs about saccade target locations and motivate
future neuroimaging and neuropharmacological studies of how
Bayesian inference may determine spatial attention.

Keywords: cue validity, hierarchical models, variational Bayes, visuospatial
processing, volatility

Introduction

Prior beliefs about the location of a behaviorally relevant
stimulus facilitate stimulus detection and speed reaction times
(RTs). One of the first experimental demonstrations of this
effect was provided by Posner’s location-cueing paradigm
(Posner 1980). In this task, a spatial cue (e.g., an arrow) indi-
cates the most likely position of a behaviorally relevant target
stimulus on a trial-by-trial basis. Average RTs are faster on
valid trials—where the target appears at the expected or cued
location—than on invalid trials, where target location is unex-
pected. This reflects covert orienting of attention to the cued
location in analogy to an attentional spotlight. Attentional or-
ienting enhances information processing at the cued location
at the expense of alternative (uncued) locations.

However, there is accumulating evidence that attentional or-
ienting in response to the spatial cue is not an all-or-none
phenomenon, but is critically affected by trial history and by
the current probabilistic context. For example, RT costs of
invalid cueing are larger after a valid than after an invalid trial
(Jongen and Smulders 2007)—and RTs to invalid targets

increase with the number of preceding valid trials (Vossel
et al. 2011). Moreover, the RT difference between invalid and
valid trials increases, the higher the proportion of validly cued
trials (percentage of cue validity [%CV]; Jonides 1980; Eriksen
and Yeh 1985; Giessing et al. 2006; Risko and Stolz 2010).
These results imply that subjects infer and predict the current
probabilistic context and adjust their behavior accordingly.

The behavioral effects observed in Posner’s location-cueing
paradigm can be interpreted within recent theoretical frame-
works of perception and attention based on Bayesian prin-
ciples (e.g., Rao 2005; Friston 2009, 2010; Itti and Baldi 2009;
Chikkerur et al. 2010; Feldman and Friston 2010). Here, the
brain is considered as a Bayesian inference machine (e.g.,
Dayan et al. 1995; Friston 2009) which maintains and updates
a generative model of its sensory inputs. In other words, per-
ception can be framed as an “inverse problem”: under a
specific generative model, the current state of the world has to
be inferred from the noisy signals conveyed by the sensorium.
Notably, even when stimuli are presented with a very high
signal-to-noise ratio, there are many aspects about the state of
the world (i.e., the cause of sensory inputs) that are nontrivial
to infer, such as its probabilistic structure (the “laws” that
relate causes of stimuli to each other) or nonlinear interactions
among causes (e.g., visual occlusion). The overall goal of this
architecture is to minimize surprise about sensory inputs and
thus underwrite homeostasis—either by updating model-
based predictions or by eliciting actions to sample the world
according to prior expectations. Notably, because surprise
about sensory inputs cannot be evaluated directly, it has been
proposed that perception and action optimize a free-energy
bound on surprise (Friston et al. 2006; Friston 2009, 2010).
Based on this free-energy principle, simulations have demon-
strated how spatially selective attention can be understood as a
function of precision (confidence or inverse uncertainty)
during perceptual inference: attentional selection serves to in-
crease the precision of sensory channels, enabling faster
responses to attended stimuli (Feldman and Friston 2010).
Physiologically, this attentional effect may be mediated by an
increase in the synaptic gain of neuronal populations encod-
ing prediction error. These populations are assumed to project
to higher level units in the visual hierarchy where faster
changes in neuronal activity are engendered in the context of
higher precision (for details, see Feldman and Friston 2010).

An important aspect of Posner’s location-cueing task relates
to the trial-by-trial uncertainty about the predictive value of
the spatial cue (i.e., the probability that the target appears at
the cued location in a given trial) (cf. Yu and Dayan 2005).
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This becomes particularly important in volatile environments,
where the cue predicts the target location with varying prob-
abilities over the course of the experiment—in other words,
situations in which probabilistic context changes unpredicta-
bly over time. Here, the estimate (representation) of this
probability—which we will operationalize in terms of %CV—
depends on the integration of information over past events.

A simple description of trial-by-trial learning of cue-target
contingencies is provided by reinforcement learning models
such as Rescorla–Wagner (Rescorla and Wagner 1972). In
these models, the update of the probability estimate (in our
case, the probability that the target will appear in the cued
hemifield) is the product of a fixed learning rate and a predic-
tion error (i.e., the difference between observed and pre-
dicted outcome). The learning rate determines the impact of
the prediction error on the belief update and, at the same
time, determines to what extent the current belief is affected
by past events. In other words, it determines the influence of
previous trials (cf. Rushworth and Behrens 2008).

While the Rescorla–Wagner rule describes a variety of
human and animal behaviors, it is a heuristic approach that
does not follow from principles of probability theory. More-
over, it suffers from some practical limitations that might be
overcome by the application of Bayesian principles (Gersh-
man and Niv 2010). For associative learning paradigms, hier-
archical Bayesian learning models provide a principled
prescription of how beliefs are updated optimally in the pres-
ence of new data. These models may provide a more plausible
account of behavior than the Rescorla–Wagner rule, particu-
larly in volatile environments where a fixed learning rate is
suboptimal (Behrens et al. 2007; den Ouden et al. 2010).

Recently, a generic hierarchical, approximately Bayes-
optimal learning scheme was introduced that grandfathers
and extends existing normative models (Mathys et al. 2011).
This model uses a variational approximation to the optimal
Bayesian solution. This approximation results in analytical
update equations that 1) minimize free energy, 2) are extre-
mely fast to evaluate, 3) contain parameters allowing for indi-
vidual differences in learning, and 4) directly express the
crucial role of prediction errors (and their weighting by un-
certainty) that play such a prominent role in predictive coding
schemes based on the free-energy principle described above.
Crucially, this Bayesian scheme can be applied to empirical
behavioral data, allowing one to compare different models of
subject responses and quantify their trial-by-trial estimates of
states of the environment that lead to sensory predictions, in-
cluding the precision of these estimates. This enables formal
tests of free-energy-based accounts of attention using empiri-
cally observed behavior that complements simulation work
(e.g., Feldman and Friston 2010). In particular, one can estab-
lish the aspects of a Bayesian learning model that are most
influential in determining response speed (RS). While one
might hypothesize a relationship between precision and RS in
the present attentional cueing task (or even more generally;
see, e.g., Whiteley and Sahani 2008), other studies (employ-
ing different experimental paradigms) have shown that
RTs can be related to the (log) probability estimate per se
(Carpenter and Williams 1995; Anderson and Carpenter 2006;
Brodersen et al. 2008; den Ouden et al. 2010), or to the
amount of surprise that is associated with a particular stimu-
lus (Bestmann et al. 2008). Here, we try to explain observed
responses, under these different assumptions. To this end, we

formulate competing models that embody different assump-
tions and formally compare their evidence, using Bayesian
model selection (BMS). Practically, in contrast to RTs, RS tend
to have a Gaussian distribution (Carpenter and Williams 1995;
Brodersen et al. 2008) and provide a better-behaved response
measure for modeling.

In particular, we here apply this hierarchal Bayesian learn-
ing model to saccadic RS data from a variant of Posner’s
location-cueing paradigm with changes of probabilistic
context (%CV) that are unknown to the subject. Saccadic eye
movements and covert spatial attention are closely related and
share a common functional neuroanatomy (Corbetta et al.
1998; Nobre et al. 2000; Perry and Zeki 2000; Beauchamp
et al. 2001; de Haan et al. 2008). There is strong evidence that
eye movements to a given location are inevitably preceded by
covert attention shifts to this location, enhancing local percep-
tual processing (e.g., Deubel and Schneider 1996; Godijn and
Theeuwes 2003; Dore-Mazars et al. 2004; Deubel 2008). The
“premotor theory of attention” (Rizzolatti et al. 1987) states
that attentional orienting may be functionally equivalent to
saccade planning and initiation, and that therefore program-
ming a saccade causes a shift of spatial attention. In a related
theory, the “Visual Attention Model” (Schneider 1995), a
single visual attention mechanism is proposed that controls
both the selection for perception and the selection for action.
Here, attention shifts are not caused by—but are a precondi-
tion for—saccade preparation (Deubel 2008). The obligatory
coupling between spatial attention and saccade programming
is also evident in a recent computational model of evidence
accumulation in the visuomotor cascade: visually responsive
neurons that can be found in the frontal eye fields (FEF), the
lateral intraparietal area, and superior colliculi (SC) provide
the source of drive for motor neurons in FEF and SC to elicit a
saccade (Schall et al. 2011).

Saccadic RS have been shown to be affected by the prob-
ability of the saccade target location (Carpenter and Williams
1995; Farrell et al. 2010; Chiau et al. 2011), and there is initial
evidence that trial-by-trial changes in saccadic RS reflect learn-
ing of probabilistic context according to Bayesian principles
(Anderson and Carpenter 2006; Brodersen et al. 2008). Ander-
son and Carpenter (2006) presented 2 subjects with multiple
trial blocks, in which targets initially appeared to the left and
right side of fixation with equal probability. After 70–120 trials
in each block, this probability could change abruptly, so that
saccades were more likely to be made to one of the targets. By
fitting an exponential function—modeling the trial-by-trial
probability of the target location—the authors showed that
saccadic RS is related to the learned prior probability of target
appearance. Similarly, Brodersen et al. (2008) presented 3 sub-
jects with blocks of left and right targets with different sto-
chastic properties: the targets were either presented with
different fixed probabilities, or the probability of the target
location was conditional on the target location in the previous
trial (first-order Markov sequence). They used 2 different
learning models to ask whether the subjects learned and uti-
lized the marginal probabilities of the target locations or their
conditional probabilities (and thus a probability transition
matrix).

While both studies (Anderson and Carpenter 2006; Broder-
sen et al. 2008) address the question of intertrial variability in
probabilistic beliefs, they do not deal with the effects of the un-
certainty (precision) of these beliefs, which have been formally
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implicated in spatial attention (Feldman and Friston 2010).
Moreover, both studies employed models that are agnostic
about environmental volatility, thereby precluding the possi-
bility that the subjects can adapt their learning rates, based on
their current belief about the volatility of the environment.

Here, we extend the previous findings in 2 ways. First, we
show that trial-by-trial RS in the location-cueing paradigm can
be explained as a function of the precision of trialwise beliefs,
as inferred using hierarchical Bayesian inference (Mathys et al.
2011). Second, our model accommodates individual learning
processes by introducing subject-specific parameters that
couple hierarchical levels and thus provides a novel quantifi-
cation of, and explanation for, individual learning differences.
In what follows, we will refer to the hierarchal Bayesian learn-
ing model as the “perceptual model,” because this model pro-
vides a mapping from hidden states (or environmental causes)
to sensory inputs (Daunizeau, den Ouden, Pessiglione, Kiebel,
Stephan et al. 2010; Daunizeau, den Ouden, Pessiglione,
Kiebel, Friston et al. 2010). Furthermore, we will introduce
and compare different “response models” (Daunizeau, den
Ouden, Pessiglione, Kiebel, Stephan et al. 2010; Daunizeau,
den Ouden, Pessiglione, Kiebel, Friston et al. 2010) that de-
scribe the mapping from the subject’s probabilistic represen-
tations (beliefs)—as provided by the perceptual model—to the
observed responses (i.e., RS).

Materials and Methods

Subjects
Sixteen healthy subjects gave written informed consent to participate
in the current study. One subject had to be excluded from further
analysis due to lack of fixation during the cue-target interval. There-
fore, data from 15 subjects were analyzed (9 males, 6 females; age
range from 23 to 35 years; mean age 27.4 years). All subjects were
right-handed and had normal or corrected to normal vision. The
study had been approved by the local ethics committee (University
College London).

Stimuli and Experimental Paradigm
We used a location-cueing paradigm with central predictive cueing
(Posner 1980). Stimuli were presented on a 19-inch monitor (spatial
resolution 1024 × 768 pixels, refresh rate 75 Hz) with a viewing dis-
tance of 60 cm. On each trial, 2 peripherally located boxes were

shown (1.9° wide and 8° eccentric in each visual field, see Fig. 1) that
could contain target stimuli. A central diamond (0.65° eccentric in
each visual field) was placed between them, serving as a fixation
point. Cues comprised a 200-ms increasing brightness of one side of
the diamond—creating an arrowhead pointing to one of the periph-
eral boxes. After a 1200-ms stimulus onset asynchrony (SOA), a target
appeared for 100 ms in one of the boxes. The targets were vertical
and horizontal circular sinusoidal gratings (1.3° visual angle). Vertical
and horizontal gratings were presented with equal probability.

Subjects were instructed to maintain central fixation during the cue
period and to make a saccade to the target stimulus as fast as poss-
ible. They were encouraged to blink and refixate the central fixation
dot after the saccade. After a short practice session of 64 trials—with
constant 88%CV—the experiment comprised 612 trials with blockwise
changes in %CV that were unknown to the subjects. After half of the
trials, the subjects had a short rest of 1 min. Each block with constant
%CV contained an equal number of left and right targets, counterba-
lanced across valid and invalid trials. %CV changed after either 32 or
36 trials switching unpredictably to levels of 88%, 69%, or 50% (see
Fig. 1). Subjects were told in advance that there would be changes in
%CV over the course of the experiment, but were not informed about
the levels of these probabilities or when they would change. Each
subject was presented with the same sequence of trials. This is a stan-
dard procedure in computational studies of learning processes that
require inference on conditional probabilities in time series (cf.
Behrens et al. 2007; Daunizeau, den Ouden, Pessiglione, Kiebel,
Friston et al. 2010). In these situations, the parameters of the learning
process depend on the exact sequence of trials used. Although this
dependency will diminish asymptotically with increasing numbers of
trials, for the relatively short sequences (of a few hundred trials at
best) that are feasible within a standard experiment, introducing a
different sequence for each participant could increase the variability
of parameter estimates, over and above the intrinsic interindividual
trait-differences per se. We therefore decided to keep trial sequence
constant to ensure that differences in model parameters can be attrib-
uted to subject-specific rather than task-specific factors.

Eye Movement Data Recording and Analysis
Participants sat in a dimly lit sound-proof cabin with their head stabil-
ized by a chinrest. Eye movements were recorded from the right eye
with an EyeLink 1000 desktop mounted eye-tracker (SR Research Ltd)
with a sampling rate of 250 Hz. A 9-point eye-tracker calibration and
validation was performed at the start of the experiment and after the
pause in the middle of the experiment. The validation error was <1°
of visual angle.

Eye movement data were analyzed with MATLAB (Mathworks) and
ILAB (Gitelman 2002). Blinks were filtered out and pupil coordinates
within a time window of 20 ms around the blink were removed. Trials
with >20% missing data were discarded from the analyses. To ensure
central fixation after presentation of the spatial cue, the period
between cue and target was analyzed for gaze deviations from the
center. After target appearance, only the first saccade was analyzed.
Saccades were identified when the eye velocity exceeded 30°/s (Fischer
et al. 1993; Stampe 1993). After this threshold was reached, the begin-
ning of the saccade was defined as the time when the velocity exceeded
15% of the trial-specific maximum velocity (Fischer et al. 1993). Like-
wise, the end of the saccade was defined as the time when the velocity
fell below 15% of the trial-specific maximum velocity. Moreover, the
saccade amplitude needed to subtend at least two-thirds of the distance
between the fixation point and the actual target location. Saccadic RT
was defined as the latency between target and saccade onset. Saccades
in which the starting position was not within a region of 1° from the
fixation point and saccades with a latency <90 ms were discarded from
the analyses. Our analyses focused on inverse RTs (i.e., RS) since, in
contrast to RTs, RS are normally distributed (cf. Carpenter and Williams
1995; Brodersen et al. 2008).

To assess the effect of probabilistic context (true %CV), mean RS for
each subject and for each %CV condition were entered into a 2 (cue:
valid, invalid) × 3 (%CV: 50, 69, 88%) within-subjects analysis of var-
iance (ANOVA). In this analysis, evidence for an impact of probabilistic

Figure 1. Illustration of the experimental task and the manipulation of %CV over the
612 trials.
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context would be reflected in a significant cue ×%CV interaction effect
—with increasing differences between valid and invalid RS with higher
%CV. Results from this analysis are reported in the Results section at a
significance level of P < 0.05 after Greenhouse–Geisser correction.
Condition-specific mean RS was also calculated separately for the 2
halves of the experiment and analyzed with a 2 (cue: valid, invalid) × 3
(%CV: 50, 69, 88%) × 2 (time: first half, second half) within-subjects
ANOVA (note that each %CV condition was presented 3 times in each
half, cf. Fig. 1).

Having established the significance of the experimental effects, we
then sought to model them in terms of hierarchical Bayesian updating:

Perceptual Model
In what follows, we briefly outline the generative perceptual model
(for details on the mathematical derivation of the update equations
see Appendix section and Mathys et al. 2011). The perceptual model
(dark gray panel in Fig. 2) comprises a hierarchy of 3 hidden states
(denoted by x), with states 2 and 3 evolving in time as Gaussian
random walks.

The probability of a target appearing at the cued location in a
given trial (t) (represented by the state xðtÞ

1 , with x1 = 1 for valid and
x1 = 0 for invalid targets) is governed by a state x2 at the next level of
the hierarchy. (Note that in this particular experiment the target
stimulus was visible without any ambiguity [very high signal-to-noise
ratio]; this means there is a simple deterministic mapping between
the [mean of ] x1 and input u of the general model, which allows for
situations with perceptual ambiguity [e.g., visual noise].) x2 is a real
number, and the probability distribution of x1 given x2 is described
by a logistic sigmoid (softmax) function, so that the states x1 = 0 and
x1 = 1 are equally probable when x2 = 0.

pðxðtÞ
1 jxðtÞ

2 Þ ¼ sðxðtÞ
2 ÞxðtÞ

1 ð1� sðxðtÞ
2 ÞÞ1�xðtÞ

1 ð1Þ

with sðxÞdefð1=ð1þ e�xÞÞ and x1 [ f0; 1g:
Hence, in the current location-cueing paradigm, x2 determines the

trial-specific estimate for %CV. The probability of x2 itself changes
over time (trials) as a Gaussian random walk, so that the value xðtÞ

2
will be normally distributed around xðt�1Þ

2 from the previous trial,
with the variance of the distribution described by the term ex

ðtÞ
3 þv.

(This is a simplified version of the full model in Mathys et al. 2011, in
which a scaling parameter (κ) has been set to 1.)

pðxðtÞ
2 Þ�N ðxðt�1Þ

2 ; ex
ðtÞ
3 þvÞ: ð2Þ

Changes in x2 over time (trials) are thus determined by the quantities
x3 (the 3rd level of the hierarchy) and a subject-specific parameter ω
that allows for individual differences in the updating of x2. Accord-
ingly, x3 and ω can be regarded as state-dependent and subject-
specific (trait-like) measures of log-volatility (trial-by-trial variability
in x2), respectively. The state xðtÞ

3 (Fig. 2) on a given trial is normally
distributed around xðt�1Þ

3 with a variance determined by the constant
subject-specific parameter q. The parameter q is a measure of meta-
volatility (volatility of volatility) that determines the variability of the
log-volatility over time.

pðxðtÞ
3 Þ � N ðxðt�1Þ

3 ;qÞ: ð3Þ

To map from the sensory inputs to the probabilistic representations of
the subject, the perceptual model needs to be inverted to obtain pos-
terior densities on the hidden states x. In the following, the sufficient
statistics of the subject’s posterior belief will be denoted by μ (mean)
and σ (variance) or p ¼ ð1=sÞ (precision). We use the hat symbol (^)
to denote predictions before the observation of x1 on a given trial.
Variational inversion under a mean field approximation yields simple
analytical update equations—where belief updating rests on
precision-weighted prediction errors. The update of the posterior
mean at level i in the hierarchy on trial t has the following general
form (at the second level of the model in this study, the precision
weighting has a slightly different form, i.e., p̂

ðtÞ
1 =ðp̂ ðtÞ

2 p̂
ðtÞ
1 þ 1Þ,

because of the sigmoid transform that relates the second level to the
first; see equation A2.):

Dm
ðtÞ
i / p̂

ðtÞ
i�1

p
ðtÞ
i

d
ðtÞ
i�1: ð4Þ

In equation (4), p̂ ðtÞ
i�1 is the precision of the prediction about the state

at the level below and p
ðtÞ
i is the precision of the posterior belief

about the state at the current level, while d
ðtÞ
i�1 is the prediction error

about the input from the level below. For the derivation of these
updates and their detailed form, see the Appendix section and Mathys
et al. (2011). In brief, these equations provide approximately Bayes-
optimal rules for the trial-by-trial updating of the representations
(beliefs) that determine the subject’s estimate of the probability that
the target appears at the cued location on a particular trial. Note that
this is an individualized Bayes optimality, in reference to the subject-
specific values for the parameters ω (determining subject-specific log-
volatility) and q (subject-specific meta-volatility).

It is interesting to note that the general update equations (4)
arising from the variational hierarchical Bayesian scheme are formally
similar to reinforcement learning models such as the Rescorla–
Wagner rule (Rescorla and Wagner 1972). As described in detail in
Mathys et al. (2011), the precision weighting of the updates at the
second level can be understood as a time-varying learning rate, which
varies with the state-dependent component m3 of the log-volatility
(see Appendix section for details). An alternative—but equally useful—
perspective on the generic update scheme in equation (4) is in terms
of Bayesian filtering, for example, Kalman filtering. The Kalman filter
can be regarded as an extension of the Rescorla–Wagner rule. It for-
malizes the predictive relationship between events, but also comprises
expectations about how this relationship is expected to change over
time and takes into account the uncertainty about this prediction
(Dayan 2000). In this context, the precision–dependent weighting of
prediction errors in our scheme corresponds to something called the
Kalman gain that is applied to prediction errors to provide optimal pre-
dictions about the future. These perspectives on precision (reinforce-
ment learning rates and Kalman gain) illustrate the formal equivalence
between reinforcement learning, predictive coding, and Bayesian filter-
ing, disclosed by the general scheme used here.

In addition to the full hierarchical Bayesian model, we employed 2
reduced versions of the perceptual model. This allowed us to evaluate
whether the relatively complex hierarchical model was needed to
explain our subjects’ behavior. Specifically, the full hierarchical model
assumes that 1) subjects are capable of learning the hierarchical struc-
ture of the probabilities in this experiment and 2) exploit this

Figure 2. Graphical illustration of the perceptual (generative) model with states x1,
x2, and x3. The model parameters ω and q impact on the time course of subjects’
inferred belief about the states x and are estimated from the individual subject RS
data. Circles represent constants, while diamonds represent quantities that change in
time (i.e., that carry a time (or trial) index). Hexagons, like diamonds, represent
quantities that change in time but that additionally depend on their previous state in
time in a Markovian fashion.
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knowledge to dynamically adapt the speed at which they update
beliefs (i.e., learning rate) by using precision-weighted prediction
errors. Although these assumptions are theoretically well founded (cf.
Mathys et al. 2011), it needs to be shown that equivalent explanations
of the data could not be afforded by simpler, nonhierarchical learning
models. Therefore, we specified 2 alternative perceptual Bayesian
models that eschewed assumptions about hierarchically structured
learning, but in different ways. The first alternative model assumed
that subjects ignored the instructions that the environment was vola-
tile, expecting negligible changes in log-volatility (third level): q was
thus fixed to zero, and only ω was estimated. The second perceptual
model did not use estimates of environmental volatility to adapt learn-
ing. In this model, the influence of x3 on the variance of x2 was there-
fore fixed to zero (cf. eq. 2), so that levels 2 and 3 of the model
became decoupled and rendered the values at the third level of the
model irrelevant (an equivalent effect is obtained by fixing xðtÞ

3 to
zero).

Response Models
To map from the subject’s posterior beliefs to observed responses, 3
different response models were compared. A detailed analysis and
motivation of their functional forms can be found in the Appendix
section. All response models predict inverse RT (RS), since the distri-
bution of RS is typically normal, in contrast to RTs themselves (Car-
penter and Williams 1995). Furthermore, all response models
describe trialwise RS as a linear function of an attentional factor a,
based on the posterior beliefs of the perceptual model. This factor
can be regarded as the proportion of attentional resources allocated
to the cued location (i.e., a is normalized to the unit interval):

RS ¼ z1valid þ z2 for x1 ¼ 1 ði.e:; valid trialÞ;
z1invalid þ z2ð1� aÞ for x1 ¼ 0 ði.e:; invalid trialÞ:

�
ð5Þ

Note that in all cases, RS is the same function of attentional resources
allocated to the outcome location: on valid trials, this is the amount of
attentional resources a allocated to the cued location, while—on
invalid trials—it is the amount of attentional resources 1� a allocated
to the uncued location (cf. Fig. 3). Here, z1valid , z1invalid , and z2 are
subject-specific parameters that are estimated from the data. Minimal
and maximal RS for valid and invalid trials are then defined by
z1valid=invalid and z1valid=invalid þ z2, respectively.

Crucially, the 3 competing response models differ in how they
specify the dependence of a on computational quantities from
the perceptual model: these are precision, belief, and surprise
about the sensory signal, respectively. All 3 models respected the
same boundary conditions, i.e., a remained confined to the unit
interval with a ¼ 0:5 when m̂1 ¼ 0:5 (cf. Appendix section and
Fig. 4).

The first response model focused on the precision estimate at the
first level of the perceptual model—following the recent proposal by
Feldman and Friston (2010) concerning the role of precision for
spatially selective attention in the location-cueing paradigm. Here, we
assumed that on a given trial t, the attentional factor aðtÞ was deter-
mined by a sigmoid transformation (s) of p̂

ðtÞ
1 , the precision of the

prediction at the first level, relative to its minimal value (i.e., 4 when
m̂1 ¼ 0:5):

aðtÞ ¼ sðp̂ ðtÞ
1 � 4Þ: ð6Þ

In the second response model, the “belief” model, the attentional
factor a depended on the strength of the prediction about CV:

aðtÞ ¼ m̂
ðtÞ
1 ¼ sðmðt�1Þ

2 Þ: ð7Þ

The third response model (surprise) was based upon the (Shannon)
surprise associated with the target stimulus. The Shannon surprise
(Shannon 1948) is the negative logarithm of a probability (here m̂

ðtÞ
1 ).

This response model was inspired by a previous study on cueing of
motor responses in which RTs were examined in relation to trialwise
surprise (Bestmann et al. 2008). Here, we defined a as a nonlinear
function of Shannon surprise:

aðtÞ ¼ 1

ð1þ surpriseðm̂ ðtÞ
1 ÞÞ

ð8Þ

with surprise ðm̂ ðtÞ
1 Þ ¼ � log2 pðxðtÞ

1 ¼ 1jm̂ ðtÞ
1 Þ ¼ � log2ðm̂ ðtÞ

1 Þ:
In summary, we specified 3 alternative perceptual models and 3

alternative response models. This resulted in a 3 × 3 factorial model
space. We compared the relative plausibility of these models using a
random effects BMS procedure at the group level, both for individual
models and model families (Stephan et al. 2009; Penny et al. 2010). In
addition, we compared these models to a standard Rescorla–Wagner
learning model as well as to a model assuming that the true under-
lying (categorical) probabilities were known to subjects—in other
words, they did not have to be inferred on the basis of experience. In
the latter 2 models, trialwise RS was supposed to be linearly related
to the estimated or true %CV, respectively.

Estimation of the Model Parameters
The perceptual model parameters ω and q, as well as the response
model parameters z1valid , z1invalid , and z2 were estimated from the trial-
wise RS measures using variational Bayes. This enabled us to obtain
an estimate of the log model evidence for model comparison and to
evaluate the posterior densities of the model parameters. In short,
variational Bayes optimizes the (negative) free-energy F as a lower
bound on the log-evidence, such that maximizing F minimizes the
Kullback–Leibler divergence between exact and approximate pos-
terior distributions (for details, see Friston et al. 2007; Penny et al.
2007). MATLAB functions for the variational Bayes scheme were
derived from the DAVB toolbox (Daunizeau et al. 2009; dl.dropbox.
com/u/18527014/CODE/DAVB.zip). This approach is analogous to
the Bayesian inversion of Dynamic Causal Models for functional
imaging or electrophysiological data (dynamic causal modeling
[DCM], Friston et al. 2003; Daunizeau et al. 2011).

As any Bayesian approach, variational Bayesian inversion requires
the definition of priors on the parameters. Importantly, the prior (co)
variance influences the estimability of parameters, e.g., their degree
of independence; also by choosing a very small prior variance (very
high prior precision) one can effectively fix the value of a parameter.
Table 1 provides the priors used for inverting the full hierarchical
model. In the perceptual model, starting values for μ and σ of states 2

Figure 3. Illustration of the relationship between RS (inverse RT) and the quantity a,
representing the amount of attentional resources allocated to the cued location. For
each response model, RS were assumed to be linearly related to a (which differs
between the 3 models, see Appendix). Note the opposite behaviour of RS for
increasing a on valid (black line and equation) and invalid (gray line and equation)
trials (cf. eq. 5).
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and 3 were fixed and an upper bound of 1 was defined for the par-
ameter q. In the response model, the prior variance for ζ2, which
parameterizes the relationship between the attentional factor a and
RS (Fig. 3), was set to a fairly small value (10−3). In other words, we
assumed that the relation between RS and a (see eq. 5) did not differ
greatly across subjects. In contrast, to account for individual baseline
differences in RS (i.e., the intercept of the linear slope); the response
model parameters z1valid and z1invalid were given a larger prior variance,
allowing for substantial individual differences between subjects.

While trials with missing responses did not contribute to parameter
estimation, they did contribute to estimating the evolution of the
states x, since they still provided the subject with an observation
about the cue-target contingency. In other words, we used what the
subject saw to estimate the Bayes-optimal estimate of hidden states
over the experiment—under a particular set of parameters and used
subject responses to optimize the parameters of the perceptual and
response models.

Bayesian Model Selection
BMS evaluates the relative log-evidence (or log-marginal likelihood)
of alternative models. The log-evidence of a model is the negative sur-
prise about the data, given a model, and represents a generic trade-off
between the accuracy and complexity of a model that can be derived
from first principles of probability theory. Over the past decade, BMS
has become a standard approach to assess the relative plausibility of
competing models that describe how neurophysiological or behavior-
al responses are generated (cf. Stephan et al. 2009; Daunizeau, den
Ouden, Pessiglione, Kiebel, Stephan et al. 2010, Daunizeau, den
Ouden, Pessiglione, Kiebel, Friston et al. 2010). Here, we use it to dis-
ambiguate different hypotheses about how learning (as described by
the perceptual models) and decision making (as described by the
response models) evolve across and within trials.

Above, we introduced 3 perceptual models and 3 response models
(“precision”, “belief”, and “surprise”). Combining these alternatives
provides 9 models in a 3 × 3 factorial model space, plus the additional
2 control models (standard Rescorla–Wagner model and a model as-
suming that the true probabilities were known to the subjects). To
assess the relative plausibility of our models at the group level, we
used random effects BMS (Stephan et al. 2009) and report both pos-
terior probabilities and the exceedance probabilities of the competing
models. Importantly, random effects BMS treats the model itself as
being selected probabilistically by each subject in the population; i.e.,
as a random effect following a Dirichlet distribution. In brief, this
enables group-level inference while accounting for interindividual
differences (e.g., the optimal model can vary across subjects). Criti-
cally, random effects BMS not only assesses the relative goodness of
competing models but also quantifies (via the Dirichlet parameter
estimates) the degree of heterogeneity in the sample studied (Stephan
et al. 2009).

The exceedance probability of a model is the probability that it is
more likely than any other model considered, given the data. For
example, an exceedance probability of 95% for a particular model
means that one has 95% confidence that this model has a greater

Figure 4. Illustration of the amount of attentional resources a for the 3 different theoretical response models as a function of m̂1.

Table 1
Prior mean and variance for the parameters of the perceptual and response models, and the
noise parameter

Parameter Prior mean Prior variance

Perceptual model
ω −6 100
q 0.1 100

Response model
ζ1valid 0.0052 0.1
ζ1invalid 0.0052 0.1
ζ2 0.0006 0.001

Noise parameters
ζ3 0.001 1000

Note: q is estimated in logit-space, while ζ1_valid, ζ1_invalid, and ζ2 are estimated in log-space.
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posterior probability than any other model tested (Stephan et al.
2009). Both posterior probabilities and exceedance probabilities sum
to unity over all models tested.

Reproducibility of Results
To examine the reproducibility and hence generalizability of our find-
ings, we performed an additional analysis, using an independent set of
subjects (n = 16, 8 males, 8 females: age range from 19 to 30 years;
mean age 23.4 years). Again, all subjects were right-handed and had
normal or corrected to normal vision. The subjects were tested as part
of a separate psychopharmacological study employing a within-subject
cross-over design. The data presented here were taken from the placebo
session only, during which the subjects received a multivitamin tablet.
This study was approved by the NHS Research Ethics Committee.

The subjects were presented with exactly the same trial sequence
as in the original study. The within-trial structure was also almost
identical, with slight modifications to the timing of the task: the cue-
target SOA was reduced to 800 ms and the target was presented for
200 ms. Moreover, the trials were interspersed with 108 “null-trials”
where only the baseline display (the fixation point and peripheral
boxes) was shown. The task lasted 35 min and comprised 4 short rest
periods. Finally, the subjects received a slightly longer training than
the original group (one session with 100 trials with constant 80%CV
and one session with 121 trials with changes in %CV). The same pro-
cedures and analyses as outlined above were applied to the eye move-
ment data, except that the data here were recorded with a sampling
rate of 1000 Hz. Using trialwise RS, we again fitted the parameters of
the perceptual and response models outlined above.

Results

Fixation During the Cue-Target Interval and Missing
Trial Data
Between the appearance of the cue and the target, the subjects
fixated the center of the display in 87.7 ± 2.3% (mean ± SEM) of
the trials—within a region of interest of 1°—and in 95.4 ± 1.2%
of the trials, within in a region of 2° from the fixation point.
The proportion of trials with missing eye data or missing or
incorrect saccades amounted to 20.0 ± 3%, so that on average
80% of the trials (487 of 612 trials) were analyzed. Trials ex-
cluded from analysis were due to anticipated responses
(3 ± 1%), incorrect or absent saccades (5 ± 1%), saccades not
starting from the fixation zone (8 ± 1%), or missing data points,
e.g., due to blinks (4 ± 1%). There was no significant difference
in the percentage of correct trials between the first and second
half of the experiment (paired t-test, P = 0.895).

Classical Inference About the Effects of Probability
on RS
The 2 (cue: valid, invalid) × 3 (%CV: 50, 69, 88%) ANOVA on
RS data revealed a significant main effect of cue (F1,14 = 8.8,
P = 0.01) reflecting faster responses (higher RS) on valid than
on invalid trials. The main effect of %CV was not significant—
in other words, averaging over valid and invalid trials
removed any effect of probability. Crucially, we observed a
significant cue × %CV interaction effect (F1.9,26.6 = 9.5,
P = 0.001) reflecting a differential impact of %CV on valid and
invalid trials (Fig. 5). A separate analysis also considered
general trends in the data over time, e.g., due to fatigue, by
including time (first vs. second half of the experiment) as
additional factor. This resulted in a 3-factorial cue (valid,
invalid) × %CV (50, 69, 88%) × time (first, second half)
ANOVA. Again, this analysis revealed a main effect of cue
(F1,14 = 8.2, P = 0.013) and a significant cue × %CV interaction
(F1.6,22.5 = 10.5, P = 0.001). The main effect of %CV was not
significant. Importantly, there was neither a significant main
effect of time nor interaction effects of the factor time with
any of the other factors (all P’s > 0.4).

The cue × %CV interaction effect indicates a significant
influence of probabilistic context on the subjects’ responses,
with stronger attentional orienting to the cue (and higher RT
costs after invalid cueing) with higher %CV. However,
Figure 5 does not show a strictly monotonic relationship
between RS and true %CV for valid cues. This probably
results from the fact that the underlying probabilistic structure
(i.e., %CV) was unknown to the subjects and was changing in
time fairly rapidly. It therefore had to be inferred by the sub-
jects online, and these subject-specific and dynamic estimates
should be the relevant predictors of observed RS, not %CV. In
other words, the ANOVAs above (and the results in Fig. 5)
average across trials that are heterogeneous in terms of
subjective probability estimates, and a model predicting the
subjective estimates should be superior in explaining behav-
ior (cf. Fig. 9). In what follows, we test this hypothesis,
asking whether the empirically observed RS might reflect
trial-by-trial updating of the subjects’ beliefs according to
our Bayesian perceptual model. Additionally, we compare a
systematic set of models that combine different putative learn-
ing processes (perceptual models) with different ways in
which the learned quantities drive behavior (response
models).

Figure 5. (A) Average RS in valid and invalid trials for the 3 (true) %CV levels. Error bars depict standard errors of the mean (SEM) (B) Illustration of how the observed RS costs
after invalid cueing translate into RT differences (in ms).
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Bayesian Model Selection
Random effects BMS among the 3 perceptual model families
(i.e., the full models and the 2 reduced model versions for
each of the 3 response models) revealed that the full hierarch-
ical Bayesian model had substantially higher model evidence
than the 2 reduced (null) versions (Table 2).

Comparing the 3 response model families (i.e., the pre-
cision, belief and surprise models for each of the 3 versions
of the perceptual model) showed that the response model
based upon precision was clearly superior to the belief and
the surprise model (Table 2). Finally, comparison of all 11
individual models revealed that the full hierarchical Bayesian
model combined with the precision response model was
clearly superior to all other models we considered (Table 2,
Supplementary Fig. 1).

Parameters of the Winning Model
The subject-specific values for log-volatility ω and meta-
volatility q derived from the full hierarchical perceptual
model—based upon precision—are depicted in Figure 6A.
Figure 6B shows the minimal and maximal RS for each
subject as derived from the response model parameters z1valid ,
z1invalid , and z2 in relation to the subject’s overall (mean) RS.
The graph shows that there were considerable differences in
the absolute speed of responding across subjects, as parame-
terized by averaged values for z1valid and z1invalid , which were
estimated from the individual datasets.

In our hierarchical Bayesian scheme, the precision-
weighting p̂

ðtÞ
1 =ðp̂ ðtÞ

2 p̂
ðtÞ
1 þ 1Þ at the second level plays the role

of a (time-varying) learning rate that depends on the log-
volatility, determined by ω and m3. As shown previously
(Mathys et al. 2011), this dependence—on higher order
knowledge about change points in the environment—enables
more adaptive learning in volatile environments, such as our
paradigm. This is also reflected by the BMS results described
above, where the hierarchical Bayesian model clearly outper-
formed a standard Rescorla–Wagner model with a fixed

learning rate. However, given the formal similarity of the 2
models, one may expect to find a correlation between the
fixed learning rate of the Rescorla–Wagner model and the par-
ameters determining the learning rate of our hierarchical
Bayesian model. Figure 7 depicts this relationship between
the perceptual parameters ω and q, and the learning rate ε
derived from the Rescorla–Wagner model. While there was a
significantly positive correlation between the subject-specific
volatility estimate ω and learning rate ε (r = 0.69; P = 0.004),
no relationship was observed between ε and the meta-
volatility q (P > 0.25) (Fig. 7).

To illustrate different individual learning styles, Figure 8
shows the exemplary time courses of the third and first levels
of the Bayesian model for 2 subjects with distinct updating
behavior. The 2 subjects show differences in the volatility esti-
mate ω as well as the meta-volatility estimate q (cf. Fig. 6
where these subjects are indicated by stars). Although the
meta-volatility estimate q is higher in subject A than in subject
B, subject B shows faster updating due to a higher volatility
estimate ω. In other words, our model shows that the first
subject perceives the environment as substantially less volatile
than the second subject. As the updates of mðtÞ

2 (the estimated
CV) are coupled to the estimated log-volatility m

ðt�1Þ
3 , this

translates into a higher learning rate and quicker updating be-
havior in the second subject, when the true underlying %CV
changes.

Table 2
Results of the Bayesian model selection (BMS)

Main dataset
(n= 15)

Replication dataset
(n= 16)

Model PP XP PP XP

Model family comparison—perceptual models
Full hierarchical Bayesian family 0.873 0.999 0.777 0.997
Reduced model family (q ¼ 0) 0.064 <0.001 0.105 0.001
Reduced model family (xðtÞ3 ¼ 0) 0.063 <0.001 0.118 0.002

Model family comparison—response models
“Precision” family 0.756 0.991 0.642 0.930
“Belief” family 0.076 0.001 0.251 0.066
“Surprise” family 0.168 0.008 0.107 0.004

Model comparison of all 11 models
Full hierarchical Bayesian model “Precision” 0.499 0.995 0.381 0.914
Reduced model (q ¼ 0) “Precision” 0.006 <0.001 0.182 0.074
Reduced model (xðtÞ3 ¼ 0) “Precision” 0.119 0.004 0.047 <0.001
Full hierarchical Bayesian model “Belief” 0.040 <0.001 0.041 <0.001
Reduced model (q ¼ 0) “Belief” 0.040 <0.001 0.042 <0.001
Reduced model (xðtÞ3 ¼ 0) “Belief” 0.040 <0.001 0.074 0.004
Full hierarchical Bayesian model “Surprise” 0.040 <0.001 0.079 0.004
Reduced model (q ¼ 0) “Surprise” 0.040 <0.001 0.039 <0.001
Reduced model (xðtÞ3 ¼ 0) “Surprise” 0.040 <0.001 0.039 <0.001
Rescorla–Wagner model 0.040 <0.001 0.038 <0.001
True categorical probability model 0.040 <0.001 0.038 <0.001

Note: PP, posterior probability; XP, exceedance probability.

Figure 6. (A) Illustration of the subject-specific patterns for the values of the
volatility estimate ω and the meta-volatility estimate q. (B) Illustration of minimal and
maximal RS (as derived from the response model parameters ζ1 (averaged for valid
and invalid trials) and ζ2) in relation to overall (mean) RS. The symbols single and
double asterisks denote the data from subjects A and B depicted in Figure 8,
respectively.
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To illustrate how RTs are related to the precision-based at-
tentional factor a, we pooled RS over different bins of the at-
tentional factor (using bins of 0.1, separately for valid and
invalid trials) using estimates of trial-specific a based on the
group average values for ω and q. Figure 9 depicts the binned
RS over subjects as a function of a. A 2 (cue: valid, invalid) × 6
(precision-based quantity a: 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0)
ANOVA revealed a significant main effect of cue (F1,14 = 11.8,
P = .004) and a significant cue × a interaction effect
(F3.44,48.09 = 10.5, P < .001). We compared these empirical RS
values to the RS predicted by the model. For this, we com-
puted the expected RS as a function of a on the basis of the
group average values for z1valid and z1invalid and ζ2 (see Fig. 9). It
can be seen that the observed RS shows a similar pattern as
the predicted RS. As expected, as precision (confidence in the
validity of the cue) increases, there is a RT benefit for valid
trials and an equivalent cost for invalid trials. This illustrates
that one can explain attention formally in terms of optimizing
or learning the relative precision of competing sensory
channels.

Reproducibility of Results
In the independent replication, the proportion of trials with
missing eye data or missing or incorrect saccades amounted
to 7.6 ± 2%, so that on average 92.4% of the trials (566 of 612
trials) were analyzed. Excluded trials were due to anticipated
responses (0.6 ± 0.2%), incorrect or absent saccades
(0.6 ± 0.2%), saccades not starting from the fixation zone
(3.3 ± 1%), or missing data points (e.g., due to blinks)
(3.1 ± 1%). Note that due to the extended training and the

increased number of resting periods, the amount of usable
trials was higher than in the original study.

The 2 (cue: valid, invalid) × 3 (%CV: 50, 69, 88%) ANOVA
on RS data gave the same results as for the original dataset.
Specifically, it revealed a significant main effect of cue
(F1,15 = 17.6, P = 0.001) reflecting faster responses (higher RS)
on valid than on invalid trials. As before, the main effect of %
CV was not significant but we observed a significant cue × %
CV interaction effect (F1.99,29.88 = 4.7, P = 0.017). As the data
were derived from a within-subject cross-over design (where
half of the subjects received the placebo tablet in the first
session, while the placebo session for the other half of sub-
jects was the second experimental session), we additionally
tested for an effect of session order by adding this variable as
a between-subject factor to the ANOVA. No main effect of
session order (P = 0.15) or interaction of session order with
any of the other factors (all P > 0.28) was observed.

The results of the Bayesian model comparison are shown
in Table 2. Again, the full Bayesian model based upon pre-
cision showed the highest exceedance probability (0.914)
when compared with alternative models. For the winning
model, we again observed a significant positive correlation
between the Rescorla–Wagner learning rate ε and ω (r = 0.59,
P = 0.017), while no such relationship was observed between
ε and q (P = 0.97). In summary, this second dataset provided
a full replication of our original results.

Discussion

The present study analyzed saccadic RTs in a location-cueing
paradigm with a volatile probabilistic context, probing Baye-
sian theories of perceptual inference. Extending previous
theoretical work (Feldman and Friston 2010), we were able to
provide empirical evidence for the free-energy formulation of
attention in the context of a Posner paradigm—where CV
changed unpredictably in time, thus requiring the subject to
learn about environmental volatility. Specifically, using a
generic hierarchical Bayesian scheme (Mathys et al. 2011), we
compared 3 alternative models of how subjects might update
estimates of CV across trials (perceptual models) and crossed
these with 3 alternative hypotheses about how posterior
beliefs (precision, belief, and surprise) might inform decision
making within trials (response models). The resulting 9
models—and 2 control models—were optimized using empiri-
cal measures of saccadic RS and their relative plausibility was
evaluated using BMS. The results of this model comparison
provided strong evidence in favor of the hierarchical Bayesian
model combined with the precision response model (Table 2)
and this finding was replicated in an independent dataset. This
supports the notion that attention can be formulated as opti-
mizing the confidence in (or precision of) the inference on
sensory input (Friston 2009). In the following, we examine
our results in more detail, discuss them in the context of pre-
vious work, and outline future extensions.

Our experimental paradigm differed from a conventional
Posner task, in that the spatial cues predicted the target
location with different probabilities at different times during
the experiment, thus requiring the subject to infer CV while
accounting for environmental volatility. Indeed, a convention-
al ANOVA showed that the subjects’ RS varied as a function
of the (unknown) true probabilities, reflecting adaptation
to the changing environmental statistics. In other words,

Figure 7. Relationship between the perceptual parameters ω and q, and the
Rescorla–Wagner learning rate ε.
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probabilistic context significantly influenced saccadic
latencies, although the probabilistic structure of the task was
changing in a way that was unknown to subjects.

This relates to previous work in so far as it has been shown
that (inverse) saccadic RTs are sensitive to the probability of
the saccade target location when abrupt changes in location
probability occur within an experimental block (Anderson
and Carpenter 2006), or when different blocks employ
saccade targets with different probabilities and/or stochastic
properties (Brodersen et al. 2008). In contrast to our task,
both these studies presented targets without preceding cues,
and the latter study also examined learning of sequential (con-
ditional) dependencies between successive stimuli according
to a first-order Markov sequence. The present task used expli-
cit cues to elicit spatial attention shifts and investigated how
the impact of these cues depended on the subject’s current
belief (and its precision) about the cue-target contingency.
Moreover, instead of presenting different experimental blocks
with different probabilistic contexts, here we introduced a
volatile environment with frequent but hidden changes of
probabilistic context within one continuous trial sequence. A
natural modeling framework for explaining the ensuing sacca-
dic reactions is a hierarchical Bayesian learning model—
where the subject’s belief about the environment’s volatility
affects the updating of beliefs about the most likely saccade
target location. Indeed, comparison of competing perceptual
models showed that a full hierarchical perceptual model had
higher evidence than reduced models; assuming either that
subjects ignored prior knowledge about the volatile nature of

the environment or that they did not use them for updating
beliefs about current CV. Moreover, the optimal full hierarchi-
cal Bayesian learning model showed higher model evidence
than a Rescorla–Wagner learning model or a model which
assumes that the subjects knew the true underlying probabil-
ities. Interestingly, however, the subject-specific volatility par-
ameter ω significantly correlated with the learning rate ε of
the Rescorla–Wagner model, while no such relationship was
observed for the meta-volatility parameter q. The effects of
the BMS as well as the relationship to the learning parameter
of a Rescorla–Wagner model could be replicated in an inde-
pendent dataset.

Hierarchical Bayesian models have been used previously to
successfully explain various aspects of human behavior under
uncertainty, such as binary choices (Behrens et al. 2007) or
RTs (den Ouden et al. 2010). These studies, however,
assumed an ideal Bayesian observer with no interindividual
variation in the learning process per se. In contrast, we fol-
lowed the meta-Bayesian approach of Daunizeau, den Ouden,
Pessiglione, Kiebel, Stephan et al. (2010), Daunizeau, den
Ouden, Pessiglione, Kiebel, Friston et al. (2010) and inferred
subject-specific parameters of a Bayes-optimal learning
scheme (Mathys et al. 2011) from empirical responses. Our
results showed that there is considerable interindividual varia-
bility, even within our group of young healthy subjects (cf.
Figs. 6 and 8). An obvious and important extension of the
present work is to relate this variability to demographic or
neurobiological factors. In fact, the work reported here is a
prelude to future psychopharmacological and patient studies,

Figure 8. Illustration of the time course of μ3 (upper panels) and s(μ2) (lower panels) during observation of x1 (black diamonds) for 2 exemplary subjects with different
parameters for ω and q. The true %CV is depicted as a dotted line. It can be seen that subject A (ω=−6.09; q ¼ 0:97) shows slower updating of the probability estimate
that the target will appear at the cued location than subject B (ω=−2.78; q ¼ 0:12). This can be attributed to subject A’s lower value of ω (reflecting the subject’s belief in a
less volatile environment).

Cerebral Cortex June 2014, V 24 N 6 1445



in which we will examine the putative relationship between
individual differences in learning and attention (as encoded
by our model parameters) and individual differences in
neuromodulatory processes (as induced by medication, aging,
or disease). In this context, the current results can be seen as
trying to establish the construct validity or our paradigm and
its modeling.

Moreover, we introduced and tested different response
models, i.e., mappings from posterior beliefs provided by the
perceptual model to observable behavior. These response
models account for the individual variability in the overall
speed of responding (Fig. 6B), but differ in assuming whether
precision of predictions, strength of the prediction about CV
or surprise, respectively, determine saccadic RS. Our results
showed that model evidence was highest for the response
model in which RS was determined by the precision of the
prediction.

In one sense, our findings from the Bayesian model com-
parison—that precision was the most plausible account for RT
benefits—should not be surprising. This is because precision
plays the role of a rate constant in evidence accumulation
schemes based upon predictive coding (Feldman and Friston
2010). In other words, precision modulates the gain of predic-
tion error in driving changes in conditional representations or
expectations. This means that sensory channels that enjoy
greater precision will engender faster changes in high-level
representations and lead to more rapid perceptual conver-
gence. Behaviorally, this should be manifest in speeded up
RTs. Exactly the same theme is seen at higher levels of the
hierarchy—that concern slower timescales—such as inference
about the probabilistic (trial-to-trial) contingencies, we ma-
nipulated in our volatility paradigm. Here, the rate constant
corresponds to a learning rate in conventional (reinforcement
learning) formulations. In short, sensory evidence and empiri-
cal priors that are afforded greater precision have preferential
access to higher levels in hierarchical inference. This is ex-
pressed as more efficient and faster convergence in those pro-
cessing streams—and provides a nice metaphor for attention.

In other words, attention corresponds to optimizing esti-
mates of precision in sensory hierarchies and is implemented
by changing the postsynaptic gain of neuronal prediction
error units. Hence, attention determines which part of the
sensorium is treated as furnishing precise information. In this
respect, this approach is perfectly congruent with spotlight or
zoom lens theories of attention (Posner 1980; Eriksen and St
James 1986) as well as with the biased competition model
(Desimone and Duncan 1995): the limitation of processing
capacities demands a selection of stimulus locations or fea-
tures so that only the most relevant receive full attention. Neu-
robiologically, this is likely reflected in increased synaptic
gain and neuronal synchronization, manifesting as enhanced
firing rates (e.g., Luck et al. 1997) or blood-oxygen-level–de-
pendent responses (e.g., Brefczynski and DeYoe 1999;
Kastner et al. 1999) in visual cortex, when attention is
directed to a particular spatial location. It may also be note-
worthy that, at the synaptic level, precision-dependent synap-
tic gain (e.g., at superficial pyramidal cells) may be controlled
by classical neuromodulators such as dopamine or acetyl-
choline (Friston 2009). In predictive coding schemes, in-
creased gain boosts the sensitivity of principal cells sending
forward afferents to higher levels (such as the intraparietal
sulcus [IPS] or the FEF), so that evidence accumulates more
rapidly and saccades are elicited more quickly. This notion
resonates with findings from several recent studies. For
example, Saproo and Serences (2010) showed that spatial at-
tention increases the mutual information of population
responses in early visual cortex and suggested that this
should enable higher visual areas to read out this information
more quickly and efficiently. This is similar to the proposals
by Feldman and Friston (2010) and in this article, where
higher precision at lower levels induces more rapid changes
in the activity of higher level areas. Others have suggested
that attention produces behavioral improvements by effi-
ciently selecting the “relevant” sensory signals (Pestilli et al.
2011); the suggested mechanism (focusing on the magnitudes
of signals and employing pooling operations) differs in detail

Figure 9. (A) Observed and predicted average RS in valid and invalid trials as a function of the precision-dependent attentional weight parameter a (attention to cued location;
calculated for the group average values). Error bars depict standard errors of the mean (SEM). The lines correspond to the predictions using the average response model
parameters, over subjects. (B) Illustration of how the observed RS costs after invalid cueing translate into RT differences (in ms).
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from mechanisms assumed in Feldman and Friston (a simple
modulation of postsynaptic gain) but both call upon nonlinear
(pooling and selection) mechanisms. It would be interesting
to see whether the results obtained by Pestilli et al. on
behavioral contrast-discrimination performance could be re-
plicated when trials are grouped according to precision esti-
mates. Finally, it has been shown that electrical stimulation of
direction-selective neurons in MT elicits faster perceptual
decisions due to faster evidence accumulation (Ditterich et al.
2003).

According to predictive coding implementations of hier-
archical Bayesian inference, the gain of prediction error
associated with bottom-up signals corresponds to the pre-
cision of those prediction errors. Physiologically, this means
that precision may be encoded by the gain of superficial pyr-
amidal cells (Brown and Friston 2012). Accordingly, our com-
putational model would predict that during spatial attention,
activity in hierarchically related visual areas should exhibit
precision-dependent modulatory effects that result from the
enhanced gain of superficial pyramidal cells. This hypothesis
—as well as questions about where in the spatial attention/
saccade network precision exerts this effect—could be tested
with DCM of electroencephalographic or magnetoencephalo-
graphic data (Bastos et al. 2011; Brown and Friston 2012).
Interestingly, a recent fMRI study, using a simpler DCM for
fMRI, has highlighted the importance of the modulation of
inhibitory self-connections in visual areas by attention and
prediction (Kok et al. 2012). This type of modulation corre-
sponds (phenomenologically) to a simple gain control
mechanism that may reflect the precision-dependent modu-
lation of pyramidal cells described above.

Given the involvement of common areas (FEF and IPS) in
both covert attentional orienting of attention and overt eye
movements (Corbetta et al. 1998; Nobre et al. 2000; Perry and
Zeki 2000; Beauchamp et al. 2001; de Haan et al. 2008), the
psychophysical evidence for an inherent link between atten-
tion shifts and saccade programming (Deubel and Schneider
1996; Godijn and Theeuwes 2003; Dore-Mazars et al. 2004;
Deubel 2008), and the existence of both visual and motor
neurons in key structures such as the FEF (e.g., Bruce and
Goldberg 1985; Schall and Hanes 1993), it seems plausible
that precision should affect both sensory-perceptual as well as
motor preparatory processes (cf. the model proposed by
Schall et al. 2011). Hence, one could also frame the processes
studied here in the broader context of visual-saccadic decision
making (see Glimcher 2001, 2003 for comprehensive
reviews).

The focus of the present study was on explaining observed
trialwise saccadic RS using a generative (hierarchical Baye-
sian) model and on using model selection to disambiguate
among different ways of updating beliefs about upcoming
target locations in a volatile environment. While our analyses
suggest a precision-based mechanism for spatial attention, it
remains to be investigated where these precision estimates are
computed within the hierarchical visual attention/saccade
network. The present behavioral-modeling results are a foun-
dation for future imaging studies that will exploit the across-
trial and between-subject variation in model states and
parameters to identify the network of regions in which pre-
cision plays a role for belief updating in spatial attention. We

imagine that neuroimaging studies could use the time series
of the states of our perceptual model as predictor variables to
identify their neuronal correlates (cf. Behrens et al. 2007; den
Ouden et al. 2010). Furthermore, as mentioned above,
subject-specific estimates of the parameters encoding individ-
ual learning style can be used at the between-subject level to
reveal the neuronal substrates of interindividual differences.

Conclusion

We have used a new formal framework for characterizing
Bayes-optimal trial-by-trial updating of probabilistic beliefs
under uncertainty for explaining attentional mechanisms.
Specifically, we characterized saccadic RS during an extended
Posner paradigm with variable CV. Comparing 11 alternative
models, we found that empirical responses are most plausibly
explained as a function of precision (of the beliefs about the
causes of sensory input). This finding is consistent with
attention theories derived from Bayesian theories of brain
function (the free-energy principle) that equate spatial atten-
tion to a precision-dependent gain modulation of sensory
input. Future neuroimaging work could use the modeling
approach introduced in this article to identify the neural and
neurochemical basis of attentional selection and saccadic eye
movements, in relation to probabilistic expectancies.
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Appendix

Update Equations of the Perceptual Model

The variational inversion method introduced in Mathys et al.
(2011) yields closed-form one-step update equations for the
sufficient statistics of the posterior distributions representing
beliefs about the hidden states x of the agent’s environment.
In the specific perceptual model depicted in Figure 2, state x1
is observed, whereas x2 and x3 remain hidden. As posteriors
are assumed to be Gaussian, the relevant sufficient statistics
are the means m2, m3 and precisions (inverse variances) p2,
p3 of the distributions for x2 and x3. It turns out that the
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updates of the means take the form of precision-weighted
prediction errors:

Dm3 ¼ m
ðtÞ
3 � m

ðt�1Þ
3 ¼ 1

2
vðtÞ2

p̂
ðtÞ
2

p
ðtÞ
3

d
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where for clarity and to reveal the conceptual meaning of
these equations, we make use of the following definitions:
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vðtÞ2 is the agent’s estimate of the variance of the random walk
in x2 before receiving input xðtÞ

1 ; p̂ ðtÞ
i are the precisions of the

predictions about states xðtÞ
i and d

ðtÞ
i are the prediction errors.

Note that dðtÞ2 is a prediction error referring not to the value of
x2 but to its log volatility; therefore, it is determined by the
ratio of observed to predicted total variance in x2.

It is obvious from equations (A1) and (A2) that updates are
always proportional to the prediction error about the input
from the level below di�1 and to the precision p̂i�1 of the pre-
diction about the state at the level below.

The update equations for the precisions are

p
ðtÞ
3 ¼ p̂
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2
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with

p̂
ðtÞ
3 def

1

s
ðt�1Þ
3 þ q

: ðA10Þ

For the derivation of these equations, see Mathys et al.
(2011).

Response Models

In the following, we explain the functional form of our 3
response models in more detail. All models assume a linear

relationship between a and RS, parameterized by the 2 par-
ameters ζ1 and ζ2 (cf. eq. 5 and Fig. 3). a represents the pro-
portion of total attentional capacity that is allocated to the
cued location (and therefore lies in the unit interval) and
should amount to 0.5 if both target locations are equally
likely. These constraints, which all response models conform
to, can be summarized as:

C1: 0 � a � 1;

C2: a ¼ 0:5 for m̂1 ¼ 0:5:

Given these constraints, our response models differ in which
attribute of the predicted validity of the cue maps to the atten-
tional factor a (and thus determines RS in eq. 5). The func-
tional forms of these models are motivated in the following
and are depicted graphically in Figure 4. (Note that the verti-
cal axis in Fig. 4 is attention to outcome location. For valid
trials, this is equal to attention to cued location a, while for
invalid trials it is 1� a.)

The “precision” model (eq. 6) links attention to the pre-
cision of predictions as suggested by Feldman and Friston
(2010). In our specific case, the precision of the prediction at
the first level ðp̂1Þ has a minimal value of 4 when m̂1 ¼ 0:5
and approaches infinity as m̂1 approaches 1 (cf. eq. A6). The
most parsimonious way to meet the above constraints C1 and
C2 is to define a as the logistic sigmoid of p̂1, minus its
minimum (cf. eq. 6):

a ¼ sðp̂1 � 4Þ: ðA11Þ

Note that as the cue becomes a counter indication of outcome
location when m2 falls below 0 (or equivalently, when m̂1

drops below 0.5), a suitable definition of a for the whole
range of m̂1 is

aðtÞ ¼ sðsign(mðt�1Þ
2 )(p̂ ðtÞ

1 � 4)Þ: ðA12Þ

This ensures that attention to the cued location falls to 0 as m̂1

approaches 0.
A simpler model of attention allocation given a cue-induced

belief about outcome is that attention is proportional to pre-
dicted probability of outcome: if the agent believes that the
probability of seeing outcome “left” is P (e.g., 80%), then it
will allocate proportion P (i.e., 80%) of its attentional re-
sources to location left. We call this the belief model (cf. eq.
7). In terms of our perceptual model, the predicted prob-
ability of a valid trial is simply m̂1:

a ¼ m̂1: ðA13Þ

Finally, the surprise model describes the attentional factor a
as a function of the Shannon surprise (the negative logarithm
of the probability of the outcome being the cued location
given the prediction m̂1) (cf. Bestmann et al. 2008). For a pre-
dicted probability m̂1 ¼ 1 of a valid trial, surprise is zero,
whereas for m̂1 ¼ 0, it is infinite. In the first case, attention is
therefore allocated exclusively to the cued location (i.e.,
a ¼ 1), whereas in the second case, attention is allocated ex-
clusively to the noncued location (i.e., a ¼ 0). The simplest
way this can be achieved under consideration of constraints
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C1 and C2 is (cf. eq. 8):

aðtÞ ¼ 1

1þ surpriseðm̂ ðtÞ
1 Þ

; ðA14Þ

where surprise(m̂ ðtÞ
1 ) ¼ � log2 pðxðtÞ

1 ¼ 1jm̂ ðtÞ
1 Þ ¼ � log2ðm̂ ðtÞ

1 Þ:
Note that we make use of log2 x ¼ ln x= ln 2 to ensure we
meet constraint C2.
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