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Abstract. One of the simplest model swimmers at low Reynolds number is the three-sphere swimmer by
Najafi and Golestanian. It consists of three spheres connected by two rods which change their lengths
periodically in non-reciprocal fashion. Here we investigate a variant of this model in which one rod is
periodically actuated while the other is replaced by an elastic spring. We show that the competition between
the elastic restoring force and the hydrodynamic drag produces a delay in the response of the passive elastic
arm with respect to the active one. This leads to non-reciprocal shape changes and self-propulsion. After
formulating the equations of motion, we study their solutions qualitatively and numerically. The leading-
order term of the solution is computed analytically. We then address questions of optimization with respect
to both actuation frequency and swimmer’s geometry. Our results can provide valuable conceptual guidance

in the engineering of robotic microswimmers.

1 Introduction

In his celebrated 1977 lecture [1], Purcell formulated the
famous scallop theorem. According to this result, in or-
der to achieve self-propulsion at low Reynolds number, a
swimmer must change its shape in a way that is not in-
variant under time-reversal (see also [2] for a recent review
and [3,4] for a non-trivial example in the context of bi-
ological locomotion). Thus, a micron-sized scallop trying
to swim through the reciprocal opening and closing of its
valves would achieve no net motion. Two of the simplest
model swimmers that are able to beat the scallop theorem
are Purcell’s three-link swimmer [1] and the three-sphere
swimmer by Najafi and Golestanian [5]. These two model
swimmers, which have already been studied in great de-
tail (see e.g. [6-15] and the many references cited therein),
rely on the same idea: in order to break time-reversal sym-
metry, two shape parameters are needed. The two shape
parameters change periodically in time, so the swimmer’s
shape evolves by tracing a loop in shape space. Locomo-
tion is possible only if the loops are non-trivial (namely,
if they enclose a portion of the plane with positive area).
In their 2012 paper [16], Passov and Or studied a vari-
ant of Purcell’s three-link swimmer in which the front
joint angle is periodically actuated while the evolution of
the rear joint is governed by a passive torsional spring.

? e-mail: desimone@sissa.it

In this work, we pursue a similar idea and study what
happens if the rear rod of the three-sphere swimmer is
replaced by an elastic spring. The problem we obtain is
simpler than the one treated in [16] because, unlike the
three-link swimmer, the three-sphere swimmer does not
have rotational degrees of freedom. The simpler struc-
ture of the three-sphere swimmer provides us with a very
vivid representation of how non-trivial loops in the shape
space are formed thanks to the competition between elas-
tic restoring force and hydrodynamic viscous drag. This
simple principle may find wide applicability in the study
of biological microscopic swimmers, and in the design of
artificial ones.

The rest of this paper is organised as follows. In sect. 2
we describe the model and formulate the equations of mo-
tion. A qualitative study of the system that governs the
dynamics of the passive arm is presented in sect. 3.1,
while numerical solutions are discussed in sect. 3.2. In
sect. 4 we derive leading-order expressions of the swim-
mer’s velocity, displacement and expended power through
a small-amplitude asymptotic expansion. In sect. 5 we
study several optimal swimming problems by considering
both stroke optimization (optimal actuation frequency,
with respect to several alternative choices of the perfor-
mance measure) and shape optimization (length of the
elastic arm). This detailed analysis of a simple model can
provide useful conceptual guidance in the engineering of
more complex robotic microswimmers.
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Fig. 1. The three-sphere swimmer with a passive elastic arm.
It is very similar to the three-sphere swimmer by Najafi and
Golestanian [5], with the difference that one of the two arms
has been replaced by an elastic spring.

2 Problem formulation

Consider a swimmer composed of three spheres of radius a
linked by two arms. Suppose that a periodic shape change
of the swimmer is assigned by two functions Lq(t), La(t)
with period T. Then t — (Ly(t), L2(t)) is a closed curve
in the shape space (L1, Lo). To leading order in the am-
plitude of the length change, the net displacement of the
swimmer in one period is proportional to the area en-
closed by this curve, see [5,17]. Further details can be
found in [11-15].

We consider a variation of the three-sphere swimmer
in which the rear rod is replaced by an elastic spring with
elastic constant £ as in fig. 1. Our swimmer is able to con-
trol the length of the front rod with a prescribed periodic
function Lo(t), while the evolution of L; is governed by
the balance of elastic and hydrodynamic (viscous) forces.
Let us denote with p the fluid viscosity, with f; the force
exerted by the i-th sphere on the fluid and with v; the
velocity of the i-th sphere. Following [5,17], we use the
Oseen tensor and the approximation L% < 1 to obtain
the following linear relation between hydrodynamic forces
and velocities:

fi f2 f3
= 1
u 6mpa * dmrply + Arp(Ly + L)’ (1)
S f2 f3
= 2
2 4Ly + 6mua * drpLy’ 2)
Vs fi " f2 f3 (3)

T dnp(Ly + Lo) | Ampls | Gmpa

We want the swimmer to be able to move without the help
of external forces, and we neglect the inertial forces due
to the sphere masses, consistently with the low-Reynolds-
number regime we are studying. This implies that the fol-
lowing condition (global force balance) must hold:

fitfatfz=0. (4)

Moreover, the geometry of the system implies the follow-
ing kinematic relations:

Ly = vy —y, (5)
LQ = V3 — V2. (6)

Finally, as a consequence of Newton’s third law of motion,
the fluid exerts on the i-th sphere a force which is equal
and opposite to f;. Since the forces acting on sphere 1 are
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the elastic force and the viscous drag exerted by the fluid,
the force balance equation for sphere 1 is

k(Ly —11) — f1 =0, (7)

where [; is the rest length of the spring. We assume that
the swimmer is able to control the time evolution of L so
that Loy and Lo are known functions of time. If we think
of egs. (1)—(7) as seven equations in the unknowns f1, fa,
f3, v1, v, V3, I we might solve the system and find I
as a function of Lo, Lo and L. We obtain in this way an
ODE for L;.

We use egs. (1)—(6) to express forces and velocities

as functions of Ly, Ly, Lo, Lo. If we plug the resulting
expressions into eq. (7) we get

Ly = —mG(L)(Ll —l1) = F(L) Lo, (8)

where [ is a characteristic length measuring the size of the
swimmer, L = (L1, L), and the dimensionless coefficients
are given by

1 1\ '/ 1 1
FL)=(— — — —_t+ —
( ) (2L2 3a> <4L2 + 4L1
I S
4(L1 + Lg) 6a ’
Loy (1
3Cl 2L1 4L1 4L2
N S A N A
4(L1 + Lg) 6a 2L, 3a '
Equation (8) is a non-autonomous ODE for L;. In the

following we will consider periodic harmonic deformations

Lo(t) = lo(1 + esin(wt)), (9)

3|~

where w, € > 0 and ¢ is small. The natural choice for the
characteristic length is [ = [; + l5. Clearly, we will assign
this deformation so that Ls(t) > 2a for every t, to avoid
overlapping of spheres 2 and 3. This is guaranteed if

€ < €max := 1 — 2a/ls. (10)
We would like to stress the fact that G(L) is strictly pos-
itive if L1, Lo > 2a. This is not difficult to check and will
be important in some of the following arguments.

Now we would like to non-dimensionalize our equation
using the following space and time variables: 7 = wt, a =
a/l, Ay = LiJl, N\ = 1;/l (i = 1,2). If we use the new
variables eq. (8) becomes

(11)

where A = (A, Ay), G(A) = G(IA), F(A) = F(IA), the
prime symbol indicates the derivative with respect to 7,
(2 is a dimensionless parameter defined as follows:

Ay = —%G(A)(Al — 1) — F(A) AL,

2 :=wul/k, (12)
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and
Aa(7) = A2(1 + esin(7)). (13)

Notice that the parameters w, [, u, k affect the response of
the system only through the dimensionless parameter (2.

3 Qualitative and numerical study of the
problem

The aim of this section is to gather some intuition on the
behaviour of the system before turning to its detailed anal-
ysis via asymptotic expansions. We discuss some qualita-
tive properties of solutions in sect. 3.1 and some numer-
ical simulations in sect. 3.2. Both numerical simulations
and qualitative study show that non-trivial loops in the
shape space are formed, therefore the swimmer is able to
achieve self-propulsion. The net displacements produced
in this way, however, become vanishingly small when the
parameter {2 is either too high or too low.

3.1 Qualitative properties of the solution

Here we use the variable x = A; — A1 to simplify the
notation. Let us rewrite (11) as

2 = f(r,z), (14)
where

1~ -
f(r,x) = —EG(M +a, As)x — F(\ +x, ) AS,

and Ay (7) is given by eq. (13). We would like to study the
properties of the solutions to the Cauchy problem

{:L'/ = f(T’ ‘T)a
x(0) = xo.

(15)

(16)

The initial data xg with physical relevance are those such
that
(17)

namely the ones corresponding to configurations in which
spheres 1 and 2 do not overlap. It is not difficult to ver-
ify that if € is small enough then f(7,Zy) > 0 for every
time 7. This implies that the interval [Ty, +00) is invariant
for the dynamics. Physically, this means that if spheres 1
and 2 do not overlap at time 7 = 0, they will not over-
lap at any time 7 > 0. The velocity field f is smooth on
R x [Tp,+00), so classical theorems guarantee local exis-
tence and uniqueness of solutions to problem (16). We also
notice that if = is large enough then f(7,z) < 0 for ev-
ery 7. This implies that the solutions are bounded, hence
global in time. ~

By expanding G in Taylor series with respect to the
second variable we can rewrite eq. (14) as follows:

To > To = 200 — Aq,

1 -
&' = =G\ + 2, \o)z + eg(T, 2, €),

0 (18)
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an autonomous system with a periodic perturbation. No-
tice that the function g depends also on {2, even if we do
not make this dependence explicit in the notation. The
period of the perturbation is 27r. The unperturbed system

= —%G’()\l +x,A2)x (19)
has a unique equilibrium point at z = 0. This equilibrium
is stable and globally asymptotically stable, as can be seen
with the help of the Lyapunov function V(x) = 2. So the
unperturbed system admits a periodic (constant) solution.
To study the perturbed system we refer to some classical
results that can be found in [18], chapter 6, and that we
collected in appendix A. In our case the variational system
of the unperturbed equation with respect to its periodic
solution, corresponding to system (A.5) in appendix A, is

1
Y770

where Gy := G(l1,12). Notice that Gy > 0 under the nat-
ural assumption lj,ls > 2a. The characteristic multiplier
of this system is e~27¢0/?  Since it is in modulus less
than one, we can apply theorems A.1 and A.2. It follows
from theorem A.1 that for small enough values of € the
perturbed system (18) admits one and only one periodic
orbit. In addition, theorem A.2 can be invoked to prove
that this periodic orbit is asymptotically stable for small
€. We claim that a stronger property holds: the periodic
orbit is globally asymptotically stable. To prove this let us
introduce the map @° that associates to any initial datum
x( the value of the corresponding solution at time s. Con-
sider a generic initial datum zy and define the sequence
., as follows

Goya (20)

Tpp1 =P (2,) Yn>0. (21)
All the limit points of the sequence are fixed point of $>".
Due to the uniqueness of the periodic orbit, #>™ has one
and only one fixed point which corresponds to the ini-
tial datum Z( of the periodic orbit. Notice that since the
solutions of (16) are bounded, so is the sequence (zy,).
This fact and the uniqueness of the limit point imply by
a standard argument that the sequence (x,,) converges to
Zo, therefore the solution starting from xy converges to
the periodic orbit.

As noted before, the net displacement after one period
is proportional, to leading order in the amplitude of the
deformations, to the area enclosed by the loops formed
in the configuration space. Now we will prove that this
area vanishes when either 2 — 0 or {2 — +o00. By some
simple inequalities it is possible to show that there exists
Gmin > 0 such that

G(Al, AQ) > Gmin >0 V/h > 2a. (22)

Using this fact we can prove that the velocity field f of
eq. (14) is such that

{f(r,a:) <0,
f(r,2) >0,

if @ > £20,

(23)
if 2a — A\ < & < =126,
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where § := \o€/2Gpin. This implies that the loops in the
configuration space are contained in the box

{(/11,/12) Ay € [\ — 026, M\ + 24),
Ay € a1 — ), o1+ e)]}. (24)
When (2 — 0 the area of the box vanishes, and so does

the area enclosed by the loops. Now we turn to the case
in which {2 — +4o00. In this case we find the following limit

problem
r_ _F A /’
=P, )
A1 (0) = Xo-
The solution of (25) has the form
A =T(Ay), (26)
where ¥ is the solution of the following problem:
U'(x) = —FW(x),x),
(@) = ~F(#().2) o
¥ (A2) = 41(0).

Let us indicate with A (7) the solution of (16). When 2 —
+o00 this solution converges to the solution of (25). In par-
ticular the loop enclosed by the trajectory (A;(t), Aa(t))
shrinks to the graph of ¥ and therefore the enclosed area
vanishes.

Our analysis shows that {2 plays a fundamental role in
determining the behaviour of the system. Obviously, there
are different ways of varying (2. The reference problem
we have in mind is the following: the swimmer is given
(hence ! and k are fixed), and the surrounding fluid is
given (hence p is fixed), so the only way to vary (2 is to
change the actuation frequency w. In this case we need to
be careful about the results concerning the regime in which
w — 4o00. These results should be taken with a grain of
salt because egs. (1)—(3), on which all of our analysis is
based, hold in the hypothesis that the surrounding fluid
is governed by the steady Stokes system (rather than by
the Navier-Stokes equations). This requires not only that
the Reynolds number Re := V L /v be vanishing small, but
also that the Strouhal number St := wL/V be bounded,
see e.g. [19]. Here v = u/p is the kinematic viscosity of the
surrounding fluid (v = 10° (m?s=1)~! for water at room
temperature), and V and L are the swimming velocity and
the size of the swimmer, the typical velocity and length
scales for the flow induced by a swimmer in a fluid at rest.

3.2 Numerical simulations

In this section we consider the reference problem in which
we vary w while the other parameters are fixed (see ta-
ble 1). All numerical simulations are obtained using MAT-
LAB oded5 procedure, which consists of a Runge-Kutta
integration scheme with adaptive step size. Figure 2 shows
the trajectories in the configuration space: we observe that
non-trivial loops are formed. The distance travelled in one
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Table 1. Values of the parameters used in the numerical sim-
ulations. p is the dynamic viscosity of water at 25°C.

L 2.107*m

lo 2.107"m

a 0.1-107%m
U 8.9-10"*Pas
k 107" Nm™!

Loops in the shape space
T

28F T T T T T T 3
w =0.1 rad/s
o =1 rad/s

26 w=10rad/s

141 1

Fig. 2. This plot, obtained though numerical integration of (8),
shows the curves along which the two shape parameters L; and
Lo evolve. The different colours correspond to different actua-
tion frequencies of the front rod. The unit of length is 10™% m.
Notice that the area enclosed by the red loop (intermediate
actuation frequency) is the largest.

period is, to leading order, proportional to the area en-
closed by the loop. We thus expect that, if the angular
frequency w is too small or too large, then the net dis-
placement per period will be small compared to the ones
achievable at intermediate frequencies. This is in agree-
ment with the results of the previous section, in which we
showed that the area enclosed by the loops vanishes when
{2 goes to zero or to +oco. The swimming velocity of the
whole object is the average translational velocity

1
Vo = 5(1}1 + v + Ug).

Using eqgs. (1)-(4) we can show that

1 1\ f 1 LY _f3
Vo= (+—r-— + - :
L1 + L2 L2 127Tu L1 + LQ L1 1271"[’]
(29)
Now we can use egs. (1)—(6) to express f; and f3 in terms

of Ly, Lo, Ly, Lo. If we substitute the resulting expressions
in eq. (29) and keep only the leading-order terms in a/L;

we obtain
Lo— I, L1 Ly Lo In
—_— | +2 ==+ = — —
<L2+L1> <L2 L1> Ly I,

(28)

a
VO:E
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Fig. 3. Time evolution of the displacement . The graph was
obtained through numerical integration of (32). We plot the
displacement as a function of the normalized time ¢/T, where
T = 27 /w is the period of the swimmer’s stroke. The unit of
length is 10™* m.

If &; is the position of the i-th sphere and & = %(&+&+E3)
then obviously

£=V. (31)
By using this kinematic relation together with egs. (8)
and (30) we obtain a system of ODEs of the form

d (L
a (§> :H(t,th),

(32)
where the components of H are given by the right-hand
sides of egs. (8) and (30), respectively. We integrated this
system numerically to investigate the time evolution of
&: the result is shown in fig. 3. There are some interesting
facts to point out about this graph. First of all, after 6 pe-
riods the swimmer with intermediate actuation frequency
has achieved a net displacement which is much larger than
those of the other two swimmers, as we expected from the
size of the loops in the configuration space. In addition, we
notice that the motion is retrograde: the net displacement
after one period has a negative sign. Clearly, the motion
of these swimmers is rather inefficient, because small net
displacements are achieved with large back and forth os-
cillations.

We conclude with a remark on the formula for Vj.
When a steady state is reached, both L; and Lo are peri-
odic functions with period 7', so the terms L;/L; average
to zero in a full swimming cycle, since they are derivatives
of log(L;). If we neglect terms which have zero mean over
one period we obtain the following formula:

LQ—Ll Ll L2
2T ) Lo o220 (33
<L2+L1>+ (Lz Llﬂ (33)

which can be used instead of (30) to compute the average
velocity in the stationary regime.

a
o=z
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4 Asymptotic analysis

We assume that solutions of (11) can be expressed in the
form
A (1) = M+ exy (1) + Exo(T) + ... . (34)

By expanding the velocity field in (11) in powers of € we
obtain the following equation for the leading-order term:

1
z) = —=Goxy — Fyg cos(T), (35)

Q
where Fy = F(l1,12) and Gy = G(ly,12), namely,

[ O T T O S S B
= \2l, 3a 4l 4l A1 +1)  6a)’
(36)
Ll/1 1 1 1\*!
GO—W[(M—%%(%—%)
11 1 1)?

Notice that (35) can be seen as the equation of a damped
harmonic oscillator with negligible mass and periodic driv-
ing force. The solution for the leading-order term is given
by

x1(1) = —A(2) A2 sin(7) + B(2) Xy [e‘GUT/Q - cos(r)],
(38)

where
02
A(2) = —F
( ) QQ+G3 () (39)
n

We notice from (38) above that the leading-order term
has an exponentially decaying term describing a transient,
and a term describing a harmonic steady-state response.

The relaxation time is 7. = Gﬁo, which is the characteristic

relaxation time of the damped harmonic oscillator (35).

In fig. 4 we show a comparison between the loops in the
configuration space obtained through numerical integra-
tion of (11) and the harmonic steady-state response of the
leading-order term (38), in the case 2 = Gy. The result of
the numerical integration is plotted with solid lines while
the dashed lines show the leading-order approximation.
The error due to neglecting higher order terms becomes
visible only for large values of e.

Now we would like to compute leading-order expres-
sions of some important physical quantities, namely, dis-
placement per period, average swimming velocity, and me-
chanical work in one period. First of all we would like to
compute the average of V() over one full swimming cycle
in the stationary regime. We can use eq. (33) in which the
terms with zero average have been neglected. We consider
the case of small deformations

L1211+U,
L2:12+Ua
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0.7

0.65

0.6

0.45

0.351

Az

Fig. 4. Loops in the shape space: comparison between numer-
ical simulations (solid lines) and leading-order approximation
(dashed lines) corresponding to the case 2 = Go. The biggest
loop is obtained for € = emax and the others by decreasing € in
steps of 0.2.

with u/lj,v/l; < 1. Following [5,17], we expand eq. (33)
and retain only the leading-order terms in w/l;, v/l; ob-
taining

Voo a b—u (0 =) (u+v)

T 6 L+ (I1 + 5)?
20 2w 20 20
e
2L B

The terms w, ¥, wu, Vv, UV + ud average to zero over one
period. So we get the following expression for the average
swimming velocity:

Ly

6 1B (It )2

The net displacement per period is X1 = TVj,. If we non-
dimensionalize (42) and set * = u/l, y = v/l we obtain

(42)

( v — ),

where

2m
X = C/ (xy’ — 2'y)dr, (43)
0

which expresses the net displacement per period in units
of body length. Now we can use (38) to compute a leading-
order expression for X. The result is the following:

X = —2n\2CB(2)e 4+ O(e). (44)
In particular we see that the leading-order term has a
negative sign, in agreement with the numerical simula-
tions showing retrograde motion. The negative sign of the
displacement is not due to our particular choice of the
deformation of the active arm (9). The case of a generic
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periodic deformation can be studied with the help of a de-
composition in Fourier series: the computations are simi-
lar to the ones presented here and it is not difficult to see
that the sign of X remains negative. So the three-sphere
swimmer with passsive elastic arm can only swim with the
passive arm ahead. Now we compute the leading-order ex-
pression for the mechanical work done by the swimmer in
one period. The power expended to drive the active arm is

P = f3Lo. (45)
Using eqs. (2), (4), (6), and (7) we find
| T N
fi= (g~ 5r) mde— KIi-WF@).  (10)
Therefore the work done in one period is

-1
B uwW = /(M—ZM) muli—k(Li—11)F(L)Lydt.
(47)

If we non-dimensionalize the previous equation and use
(38), we find a leading-order expression for the dimen-
sionless work in one period:

-1
W |o (- 3x) | RO

2 3
30 2 e+ 0(e).

(48)

5 Optimal swimming

In this section we study some optimization problems. We
take into account the various performance measures con-
sidered in [16]. First we study optimization of swimming at
fixed geometry. Since the dynamics is entirely controlled
by the dimensionless parameter {2, this means optimiz-
ing the different performance measures with respect to (2.
Then we consider optimization with respect to the geom-
etry of the swimmer, namely, we discuss how the different
performance measures change when the ratio 8 =1/l is
varied.

5.1 Optimization with respect to Q

In this subsection we study optimization of different per-
formance measures with respect to the parameter (2. For
the computations we use the leading-order expressions ob-
tained in the previous section. Then we compare the re-
sults with data obtained from numerical simulations of the
full system.

The first performance measure we consider is the net
displacement per period. Notice that if we use dimension-
less variables then the average velocity over one period
coincides (up to a multiplicative constant) with the net
displacement per period. Therefore the value of the pa-
rameter {2 optimizing the latter optimizes also the for-
mer. For this reason we do not consider the average swim-
ming speed as an independent performance measure. Us-
ing eq. (44) it is easy to see that X is optimized when
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2 = Q2x := Gy. The corresponding maximal displacement
is

X* = —mA3CFyé . (49)

From eq. (44) we also see that X goes to zero when {2
goes to either zero or +00. We discuss below the physical
interpretation of this important fact.

To understand what happens in the limit cases, let us
consider eq. (35). The term corresponding to the elastic
restoring force is %Goxl. Therefore if {2 — 400 the elastic
force becomes negligible with respect to the viscous drag
and the passive arm behaves as if it were free. If no elastic
force is present, the hydrodynamic forces tend to synchro-
nize the evolution of A; and As, causing reciprocal shape
change and no net motion in view of the scallop theorem.
Indeed, if we send 2 to 400 in (35) we get the following
equation:

x] = —Fy)g cos(7), (50)

with the initial condition x1(0) = 0. The solution is
x1(7) = —FpAesin(7). As a consequence the equation

/11 = )\1 — FO(A2 — )\2) (51)
is satisfied to leading order in e. This implies that the
shape change of the swimmer is reciprocal.

If £2 goes to zero we observe the opposite behaviour:
the elastic force dominates and the passive arm behaves
as a rigid rod of fixed length [;. Thus, the loops in shape
space collapse to a line. In fact, if we multiply eq. (35)
by 2 and send {2 to 0, we obtain the algebraic equation
T = 0.

To sum up, in the regime {2 — 0 the elastic force domi-
nates over viscous drag and makes the passive arm behave
as a rigid link. In the regime 2 — 400 the elastic force be-
comes negligible and the hydrodynamic interactions cause
a synchronization of A; and As. In the two limit cases the
swimmer does not achieve net displacement after one pe-
riod. In the intermediate case 0 < {2 < +o00, the interplay
between elastic and hydrodynamic forces causes the for-
mation of loops in the shape space, producing locomotion.
The maximal net displacement per period is obtained for
2 = Gy.

The second performance measure we consider is the
work per travelled distance

w
A= —. (52)
| X
Using eqgs. (44) and (48) we find
1
A=K Q2+ Ky—, (53)
0
where
1 1 1\ ' 1
Ki=—n|———] ——
! 2071' (3a 2)\2) G()FO ’
1 1 1\ "Gy
Ky = — [ — 24 F
2750 7T(Sa 2)\2> R,
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x107°
-2
€e=0.1
€e=0.5
€=0.7
-4 — — —leading order |4
6}
8t
=
-10f
-12f
-14f
Q
_16 L L L
0 5 10 15 20

Q

Fig. 5. Plot of scaled dimensionless net displacement per pe-
riod X/e? as a function of the parameter (2. The full lines
correspond to numerical simulations of the system with differ-
ent values of ¢ while the dashed line shows the leading-order
approximation. The vertical line corresponds to 2x.

It is easy to see that A\ is optimized for 2 = 2, =
VKs/K; and that the corresponding optimal value is
A =2 K1 Ks.

The third performance measure we consider is
Lighthill’s efficiency. We follow [20] and define

. ISﬂMaVOZ

= (54)

If we non-dimensionalize the different quantities we find
that n = 9aX?/W. By using (44) and (48) we obtain the
following leading-order expression

ATN2CPGEF2 0? ,
— €
!PT — o) (22 1 GB) 1 GoFY)
+0(e). (55)

The leading-order term is maximized when 2 = (2,,, where

F2G3 (1 1\\"*
Q =gty oo (2 .
" (GO * T (Sa 2)\2>)

We indicate with n* the corresponding maximal efficiency.
It is not difficult to verify that

(56)

2x < §2) < 02y (57)
The graphs in figs. 5, 6, and 7, obtained from the numeri-
cal solutions of the full problem, confirm the reliability of
the theoretical predictions about the optimal values of (2
obtained above on the basis of the leading-order terms.
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Fig. 6. Plot of dimensionless work per travelled distance A as
a function of the parameter (2. The full lines correspond to
numerical simulations of the system with different values of ¢
while the dashed line shows the leading-order approximation.
The vertical line corresponds to {2,.
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Fig. 7. Plot of scaled Lighthill’s efficiency as a function of the
parameter (2. The full lines correspond to numerical simula-
tions of the system with different values of € while the dashed
line shows the leading-order approximation. The vertical line
corresponds to (2.

5.2 Optimal geometry

In this section we study optimization of the swimmer’s
shape. We keep the swimmer’s total length | = I3 + [,
fixed and vary the ratio 3 := Iy /ls. We would like to op-
timize X*, A", and n* with respect to 3. First of all we
observe that, since [; and Iy must be greater than 2a, the
acceptable values of 3 are subject to the following restric-
tion:

2a <ﬁ<l—2a
[ —2a 2a

In figs. 8, 9, and 10 we show the plots of the optimal values
of the different performance measures as functions of [3.

ﬂmin = (58)
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Fig. 8. Plot of the scaled optimal net displacement per period
X" as a function of the ratio 8 =11 /l2. In order to satisfy the
natural assumption that {1 > 2a (no overlapping of spheres 1
and 2 when the spring is at rest), the values of 3 are subject
to the restriction 8 > Bumin-
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Fig. 9. Plot of the optimal work per travelled distance as
function of the ratio 8 = l1/l2. In order to satisfy the natural
assumption that {1 > 2a (no overlapping of spheres 1 and 2
when the spring is at rest), the values of 3 are subject to the
restriction 8 > Bmin.-

0.25

The three different performance measures give different
optimal values of 3. These values are strictly greater than
Bmin- This analysis has, however, only qualitative value
because when (3 is close to Bmin, the hypothesis a/L; < 1
on which (1)—(3) and all our subsequent analysis are based
no longer holds.

6 Conclusions

We analyzed the dynamics of the three-sphere low-
Reynolds-number swimmer with an active arm and a pas-
sive elastic one. We considered periodic deformations of
the active arm with amplitude € and angular frequency w.
Similarly to the behaviour illustrated in [16], the compe-
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Fig. 10. Plot of the scaled optimal Lighthill’s efficiency as
function of the ratio 8 = l1/l2. In order to satisfy the natural
assumption that {1 > 2a (no overlapping of spheres 1 and 2
when the spring is at rest), the values of 3 are subject to the
restriction 3 > Bumin-
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tition between hydrodynamic and elastic forces generates
a phase lag in the response of the elastic arm and hence
non-reciprocal shape changes and self-propulsion. This im-
plies that a minimal swimmer requires only one device,
controlling the length of only one arm, and not two inde-
pendent ones. However, this is at the expense of losing the
possibility of controlling swimming direction. In fact, the
three-sphere swimmer with passive elastic arm can move
only with the passive arm ahead.

We then addressed some optimal swimming problems.
By rewriting the system in dimensionless variables we
showed that its behaviour is determined by a parameter
{2 depending on the fluid viscosity, the elastic constant of
the spring, the body length of the swimmer and the actua-
tion frequency of the active arm. We considered three dif-
ferent optimality measures: net displacement per period,
work per travelled distance, and Lighthill’s efficiency. We
worked in the framework of small deformations (e < 1)
and computed leading-order expressions for the different
performance measures. By using these leading-order ex-
pressions we found three different optimal values of {2, one
for each performance measure. The results of numerical
simulations of the full problem show that the optimal val-
ues computed using leading-order expressions are a good
approximation of the actual optimal values. Finally, we
considered the problem of optimizing the geometry of the
swimmer. We studied how the optimal values of the dif-
ferent performance measures vary when the ratio between
the lengths of the two arms is changed, keeping the total
length of the swimmer fixed.

Support by the European Research Council through the ERC
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Appendix A. Periodic perturbations of
periodic systems

We collect here some classical results on periodically perturbed
dynamical systems that we used in sect. 3.1. We refer to [18] for
the proofs. We begin with some definitions. For g < ¢; let the
matrix function A : (to,t1) — R™™™ be continuous. Consider
the homogeneous linear system

y=A(t)y.

Along with this system we may also consider the following
matrix differential equation

(A1)

Y = A(L)Y. (A.2)
A matrix function Y : (to,t1) — R™*™ is a solution of (A.2) if
it is C' and satisfies the equation for every time ¢. A solution
of (A.2) is called a matriz solution of (A.1). A regular matrix
solution is a matrix solution R(t) such that det R(¢) # 0 for
every t. A regular matrix solution is called a fundamental ma-
triz. We denote with R(t,s) the fundamental matrix that is
equal to the n x n identity matrix at time s € (to,t1). Now we
consider the special case in which A € C°(Ry,R™*™) and A
is periodic with period T'. In this case the characteristic mul-
tipliers of system (A.l) are defined as the eigenvalues of the
fundamental matrix R(T,0). Now consider a one parameter
family of differential equations

&= f(t,x) +eg(t,z, ), (A.3)
where f is a smooth function on R x X, X C R" an open and
connected domain and ¢ is a smooth function on R x X x [
where I is an open interval containing ¢ = 0. We assume that
f and g are periodic in the variable ¢t with period 7" > 0. The
system

@ = f(t,x) (A.4)

is called the unperturbed equation while (A.3) is the perturbed
one. We assume that (A.4) has a periodic solution p : R — X
with period T'. This solution will be called the unperturbed
periodic solution. The variational system of the unperturbed
eq. (A.4) with respect to its periodic solution p is the following
equation:

Y= Drf(tvp(t))yv (A5)
where D, f is the total differential of f with respect to the
spatial variables. Now we are ready to give the statement of
two important theorems concerning existence and stability of
periodic solutions.

Theorem A.1l. If the wvariational system (A.5) does not have
non-trivial T-periodic solutions or, equivalently, 1 is not a
characteristic multiplier, then e = 0 has an open neighbourhood
U C I such that for each € € U the perturbed system (A.3) has
one and only one periodic solution q(t,€) with period T with
the properties that ¢ € C*(R x U) and ¢(t,0) = p(t).

Proof. See [18], theorem 6.1.1.

Theorem A.2. If all the characteristic multipliers of the varia-
tional system (A.5) are in modulus less than 1, then for suffi-
ciently small |e| the periodic solution q(t,€) of system (A.3) is
asymptotically stable.

Proof. See [18], theorem 6.1.3.
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